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Abstract. This paper addresses a travel time reliable signal control problem. Travel time
distributional estimates are obtained from a stochastic microscopic traffic simulator. The
estimates are embedded within a simulation-based optimization algorithm. Analytical
approximations of the simulated metrics are combined with the simulated data in order
to enhance the computational efficiency of the algorithm. The signal control problems are
formulated based on the expectation and the standard deviation of travel time metrics. The
proposed approach goes beyond the traditional use of first-order simulated information,
it addresses a problem that embeds higher-order distributional information. It is used
to solve a large-scale signal control problem. The approach addresses these challenging
simulation-based optimization problems in a computationally efficient manner. Its perfor-
mance is compared to that of a traditional simulation-based optimization approach. The
proposed method systematically outperforms the traditional approach. Such an approach
can be used to inform the design and operations of transportation systems by, for instance,
addressing reliable and/or robust formulations of traditional transportation problems.

Funding: The work of Xiao Chen was supported by the Portuguese Foundation for Science and Tech-
nology [Grant SFRH/BD/51296/2010]. The work of Carolina Osorio was partially supported by
the U.S. National Science Foundation [Grant 1351512].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2017.0812.

Keywords: simulation-based optimization • travel time reliability • large-scale signal control • metamodel

1. Introduction
Most urban transportation optimization problems are
formulated based on first-order moments of network
performance (e.g., expected trip travel times, expected
throughput). Formulations based on the use of higher-
order information can lead, for instance, to enhanced
network reliability and network robustness. Enhanc-
ing the reliability of transportation networks is cur-
rently recognized as a critical goal by major trans-
portation agencies. A Transport for London report
identifies trip travel time reliability improvements as
their primary objective (Transport for London 2010).
U.S. reports have also emphasized the importance of
improving the reliability of our transportation systems
(Texas A&M Transportation Institute 2012, U.S. Depart-
ment of Transportation 2008).

Problem formulations that account for higher-order
distributional information are rare and are usually
based on the use of low-resolution analytical mod-
els. Nonetheless, providing an analytical, let alone
tractable, approximation of the distribution of the main
network performance measures is a major challenge
(see, for instance, Osorio and Flötteröd 2014, Peterson,
Bertsimas, and Odoni 1995, Odoni and Roth 1983) and
is often achieved by simplifying, or even omitting,

spatial–temporal dependencies. Stochastic simulation-
based models can yield distributional estimates that
account for such intricate dependencies. Nonethe-
less, the efficient use of simulation-based higher-order
information for optimization has yet to be explored.
This paper contributes to address the following ques-
tion: How can simulation-based higher-order distri-
butional information be efficiently used for network
optimization?

This paper focuses on travel time reliability prob-
lems. For a description of other network reliability
metrics, see Clark and Watling (2005). The two most
common metrics used to address travel time reliabil-
ity are trip travel time variability and trip travel time
percentiles (e.g., 95th percentile) (Organisation for Eco-
nomic Co-operation and Development 2010). A major
challenge in improving travel time reliability is the
approximation of the network travel time distribu-
tion. An analytical and accurate expression for the full
joint network distribution is difficult to derive given
the intricate between-link spatial–temporal dependen-
cies. A variety of analytical approximations have been
proposed based on distributional assumptions rang-
ing from the following: (1) knowledge of the func-
tional form of the full joint network distribution
(Mirchandani and Soroush 1987); (2) knowledge of

Copyright: © 2019 INFORMS
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the functional form of the marginal link distributions
(Fu and Hellinga 2000); (3) knowledge of moments of
the marginal link distributions (Ng, Kockelman, and
Waller 2011). Empirical (nonparametric) analysis of
link travel time distributions have also been proposed
(van Lint and van Zuylen 2005, Chen, Skabardonis, and
Varaiya 2003). This paper uses simulated travel time
distributional estimates. The estimates are obtained
from detailed stochastic microscopic traffic simulators
that account for intricate vehicle-to-vehicle and vehicle-
to-infrastructure interactions.

This paper focuses on reducing travel time variabi-
lity. In general, spatial–temporal variations in both de-
mand and supply can lead to increased variability
(for details on common underlying causes of supply
and demand variability, see Clark and Watling 2005;
Noland and Polak 2002). Increased variability leads
to increased uncertainty for travelers, and increased
travel cost (Noland and Polak 2002). There is a sub-
stantial body of research that studies the behavioral
impacts of travel time variability. Noland and Polak
(2002) provide a review. Carrion and Levinson (2012)
review methodologies to quantify the value of travel
time reliability. Such studies highlight that travel time
variability is accounted for by travelers in numerous
travel decisions, and that its reduction is of high value
to travelers. Thus, there is a need to design and operate
transportation systems such as to mitigate it.

The optimization problems considered in this paper
are travel time reliable traffic signal control problems.
The importance of accounting for travel time variabil-
ity in signal control has been emphasized by Yin (2008).
The traditional signal control objectives are network
efficiency maximization, such as expected through-
put maximization (Abu-Lebdeh and Benekohal 1997),
and minimization of expected travel time (Osorio and
Chong 2015), expected number of vehicle stops, or
expected delay (Wong et al. 2002).

To our knowledge, the few studies that have ac-
counted for travel time variability in the design of sig-
nal plans are based on analytical methods. Yin (2008)
proposes an analytical technique to reduce the stan-
dard deviation of delay and, ultimately, enhance the
robustness of signal plans to fluctuations in demand.
The demand fluctuation is represented by different
demand scenarios. The technique is applied to an iso-
lated intersection. Zhang, Yin, and Lou (2010) extend
the work of Yin (2008) to account for multiple intersec-
tions along an arterial. Another extension is proposed
by Li (2011), who illustrates the method on an iso-
lated intersection. Park and Kamarajugadda (2007) and
Kamarajugadda and Park (2003) develop an analyti-
cal approximation of delay variance. Parametric distri-
butions are assumed for link volumes, and the corre-
sponding parameters are estimated with traffic count
data. The analytical delay variances are then used to

address a signal control problem for an isolated inter-
section and then for a set of two adjacent intersections.
This analytical approach is not designed for use within
a general topology network.

Analytical techniques are computationally tractable
and efficient, yet rely on strong distributional assump-
tions, such as the choice of a given parametric distribu-
tion for link or path delay. The use of stochastic simula-
tors allows for more flexible and realistic assumptions
that can contribute to capturing the intricate form that
the travel time distribution may take (e.g., multimodal
distribution).

This paper uses a class of urban traffic simulation
models known as stochastic microscopic simulators.
The proposed methodology is suitable for any type
of computationally inefficient simulation-based traffic
model (e.g., macroscopic, mesoscopic, or microscopic;
deterministic or stochastic, etc.). For a review of traf-
fic simulation models, see Barceló (2010). Of the three
main families of simulation models (macroscopic, me-
soscopic, and microscopic), microscopic models em-
bed the most detailed representation of both demand
and supply. They explicitly represent individual vehi-
cles and can account for vehicle-specific technologies/
attributes. They also represent individual travelers and
embed detailed disaggregate behavioral models (e.g.,
response to en route traffic information, departure-
time choice, route choice, lane changing, car fol-
lowing). They provide a detailed representation of
the underlying supply network (e.g., variable mes-
sage signs, public transport priorities). Thus, these
traffic simulators can describe in detail the interac-
tions between vehicle performance (e.g., instantaneous
energy consumption, emissions), traveler behavior, and
the underlying transportation infrastructure, and yield
a detailed description of traffic dynamics in urban
networks. Since they account for intricate local traf-
fic dynamics and demand–supply interactions, they
capture the between-link spatial–temporal dependen-
cies of the main performance measures and can thus
yield accurate estimates of the full distribution of
the main performance measures. These simulators are
suitable tools to design traffic management strategies
that enhance travel time reliability and, more generally,
network reliability.

The computational inefficiency of microscopic sim-
ulators has mostly limited their use to what-if (i.e.,
scenario-based) analysis (as in, for instance, Bullock
et al. 2004; Ben-Akiva et al. 2003). Their use within si-
mulation-based optimization (SO) algorithms is rare
and is limited to the use of first-order distributional
information (Osorio and Selvam 2017; Osorio and
Nanduri 2015a, b; Osorio and Chong 2015; Li et al.
2010; Stevanovic et al. 2009, 2008; Branke, Goldate, and
Prothmann 2007; Yun and Park 2006; Hale 2005; Joshi,
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Rathi, and Tew 1995). This paper proposes a method-
ology that enables the use of high-resolution stochastic
traffic simulators to efficiently address higher-order SO
problems.

We consider signal control problems for congested
urban networks and address large-scale problems. The
simulated travel time distributional estimates are em-
bedded within a simulation-based optimization algo-
rithm and are used to identify signal plans with re-
duced expectation and standard deviation of travel
time metrics. By using simulated distributional esti-
mates, the proposed approach accounts for intricate
spatial–temporal fluctuations in demand-supply inter-
actions, leading to intricate within-time-of-day travel
time variabilities.

Given the computational inefficiency of stochastic
microscopic simulators, this paper focuses on the devel-
opment of computationally efficient SO techniques.
We consider tight computational budgets, which are
defined as a maximum (and small) number of simula-
tion runs. The objective is to identify within this bud-
get signal plans that improve first- and second-order
distributional information, and do so at the city scale.
To achieve efficiency, information from the (inefficient)
simulator is coupled with information from an efficient
(i.e., tractable and differentiable) analytical approxima-
tion of the objective function. The role of the simula-
tor is to provide a highly detailed approximation of
the distributions of interest, whereas that of the ana-
lytical model is to provide structural information to
the SO algorithm, enhancing its efficiency. This paper
formulates a tractable analytical approximation of the
simulation-based higher-order performance metrics.
This analytical approximation is embedded within the
SO algorithm and is used to enhance the computational
efficiency of the SO algorithm.

To our knowledge, this paper is the first to (1) use
higher-order distributional information from stochas-
tic simulators to solve transportation optimization pro-
blems; (2) use higher-order distributional informa-
tion, analytical or simulation-based, to solve large-scale
signal control problems; and (3) enable higher-order
simulation-based transportation optimization prob-
lems to be solved in a computationally efficient manner.
In particular, the problem addressed in Section 3.3
is considered a large-scale traffic signal control prob-
lem, as well as a difficult high-dimensional simulation-
based optimization problem.

Section 2 presents the proposed methodology. Sec-
tion 3 applies the methodology to two case studies:
the Lausanne city center and the full city network.
Section 4 presents the main conclusions and discusses
areas of ongoing and future research. The appendix
contains the formulation of the analytical network
models used as part of the SO framework, and the

online appendix contains the SO algorithm and the for-
mulation of the optimization problem solved at every
iteration of the SO algorithm.

2. Methodology
Section 2.1 describes the general SO framework of
this paper. The reliable simulation-based signal con-
trol problem is formulated in Section 2.2. The SO
algorithm uses an analytical approximation of the
simulation-based objective function derived from ana-
lytical network models. These analytical approxima-
tions are derived in Sections 2.3 and 2.4. Section 2.5
summarizes the proposed methodology.

2.1. Simulation-Based Optimization Framework
For reviews of SO methods, see Hachicha et al. (2010);
Barton and Meckesheimer (2006); and Fu, Glover, and
April (2005). We use the SO framework proposed by
Osorio and Bierlaire (2013). This section briefly presents
the framework. For details regarding its formulation,
we refer the reader to Osorio and Bierlaire (2013).
The formulation of the method has been extended to
successfully address difficult constrained simulation-
based problems in a computationally efficient manner
(Osorio and Nanduri 2015a, b; Osorio and Chong 2015;
Osorio and Selvam 2017; Zhang, Osorio, and Flötteröd
2017).

This algorithm can address continuous nonlinear ge-
nerally constrained optimization problems where the
objective function is derived from a stochastic simu-
lator, that is, a closed-form expression is not available
for the objective function, whereas closed-form analyt-
ical expressions are available for all constraints. Such
problems can be formulated as

min
x

f (x , z; p) (1)

subject to
g(x , z; p)� 0. (2)

The feasible space is defined by g, which is a set of gen-
eral, typically nonconvex, deterministic, analytical, and
differentiable constraints. The objective function f can
be, for instance, the expected value of a given stochas-
tic performance measure G: f (x , z; p) � E[G(x , z; p)].
The decision vector x is real valued (e.g., green splits),
z denotes other endogenous simulation variables (e.g.,
departure-time/mode/route choice probabilities), and
p denotes the deterministic exogenous simulation pa-
rameters (e.g., network topology).

This SO method is a metamodel method. A meta-
model is an analytical approximation of the objective
function f . The main ideas of metamodel SO methods
are illustrated in Figure 1. At a given iteration k, the SO
algorithm iterates over the following steps. First, deter-
mine what point, among the points simulated thus far,
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Figure 1. Metamodel Simulation-Based Optimization
Methods

1. Determine current iterate

2. Fit metamodel mk

3a. Optimize mk(x) 3b. Sampling strategy

4. Simulate

xk

�k

Trial point Model
improvement point

Evaluate new point x

New performance estimate: f (x)

Source. Adapted from Chong and Osorio (2018).

has the best performance. This point is denoted by xk
and is known as the current iterate. Second, fit the
metamodel, mk , based on the set of simulation obser-
vations collected so far. The metamodel parameter vec-
tor is denoted by βk . Use mk to perform optimization
and derive a trial point (Step 3a). An optional step,
which not all SO algorithms embed, is Step 3b. In this
step, points that may not be solutions to the metamodel
optimization problem are simulated. These points are
known as model improvement points. Step 4 evalu-
ates via simulation the performance of the new points
(the trial point and any model improvement points).
Step 4 leads to new simulation observations. As new
simulated observations become available, the accuracy
of the metamodel can be improved (Step 2), leading
to trial points with improved performance (Step 3a).
These steps are iterated until, for instance, the compu-
tational budget is depleted. The SO algorithm is given
in detail in the online appendix.

At every iteration of the SO algorithm, the meta-
model optimization problem is solved (Step 3a). The
main idea of the metamodel optimization problem is
to replace the (unknown) simulation-based objective
function (Equation (1)) with the analytical metamodel
function, m, such that efficient deterministic optimiza-
tion techniques can be used. A detailed formulation of
the metamodel optimization problem of this paper is
given in the online appendix. Reviews of metamodels
are given by Conn, Scheinberg, and Vicente (2009b);
Barton and Meckesheimer (2006); and Søndergaard
(2003). Metamodels are classified in the literature as
either physical or functional metamodels (Søndergaard
2003, Serafini 1998). Physical metamodels consist of
application-specific metamodels; their functional form
and parameters have a physical or structural inter-
pretation. Functional metamodels are general-purpose
(i.e., generic) functions that are chosen based on their

analytical tractability but do not take into account any
information with regards to the specific objective func-
tion, let alone the structure of the underlying problem.

The Osorio and Bierlaire (2013) framework proposes
a metamodel that combines a functional and a physical
component and has the following form:

m(x , y;α, β, q)� α fA(x , y; q)+φ(x; β), (3)

where φ denotes the functional component, fA (the
physical component) represents the approximation of
the objective function ( f of Equation (1)) as derived by
an analytical macroscopic traffic model, y represents
endogenous macroscopic model variables (e.g., queue-
length distributions), q represents exogenous macro-
scopic parameters (e.g., total demand), and α and β are
parameters of the metamodel. The metamodel is fit-
ted based on simulation observations of the objective
function via regression. At each iteration, the simula-
tor and the queueing model are evaluated at a set of
points, and then the metamodel is fitted by solving a
least squares problem based on both the current iter-
ation simulation observations and all of the previous
simulation observations.

The functional component φ is defined as a quad-
ratic polynomial in x with a diagonal second-derivative
matrix

φ(x; β)� β1
+

d∑
j�1
β j+1x j

+

d∑
j�1
β j+d+1(x j)2 , (4)

where d is the dimension of x, and x j and β j are the jth
components of x and β, respectively.

The physical component fA is derived by evaluat-
ing an analytical macroscopic traffic model, which is
referred to as the auxiliary traffic model. It provides a
problem-specific approximation of the objective func-
tion; that is, its functional form depends on the
underlying problem formulation. It also provides a
global approximation of the objective function (i.e., an
approximation across the entire feasible region). The
metamodel is therefore a linear combination of an ana-
lytical global and problem-specific approximation of
the objective function and a quadratic error term.

In this paper, the physical component is an analyt-
ical and differentiable macroscopic traffic model for-
mulated based on probabilistic finite capacity queue-
ing network theory. It provides structural information
about the problem at hand. It enables the identifica-
tion of well-performing alternatives (e.g., trial points)
with very small samples (i.e., good short-term algorith-
mic performance). The use of an auxiliary model that
is probabilistic allows us to address problems that are
formulated based on higher-order (i.e., beyond first-
order) distributional information.

As stated above, at every iteration of the SO algo-
rithm, the metamodel optimization problem is solved
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(Step 3a in Figure 1). This problem is also referred to
as the trust region subproblem. When using a macro-
scopic traffic model as the physical component of the
metamodel, the subproblem solved at every iteration
is constrained by the macroscopic traffic model. For
this subproblem to be solved efficiently, it is necessary
to use a macroscopic model that is both (i) scalable,
such that problems for large-scale networks can be
addressed, and (ii) computationally efficient, such that
the subproblem can be solved fast. The macroscopic
models used in this paper achieve both of these goals.
Their full formulation is given in the appendix (Sec-
tions A.1 and A.2). First, they are both computationally
efficient because they are defined as a differentiable
system of nonlinear equations, which can be evalu-
ated with a variety of standard numerical techniques.
Second, they are both scalable: the dimension of the
system of equations scales linearly with the number of
links in the network and is independent of the space
capacity of the links in the network. The proposed
framework can be used with any other macroscopic
model that is scalable and efficient.

2.2. Reliable Signal Control Problem
The most common approach to account for both ex-
pected travel time and travel time variability informa-
tion is to use a linear combination: tE + rtV , where tE
denotes the expected trip travel time, tV denotes a mea-
sure of trip travel time variability, and r is a weight
parameter known as the reliability ratio. The reliabil-
ity ratio is defined as the marginal rate of substitution
between expected travel time and travel time reliability
(Carrion and Levinson 2012). The value of the reliabil-
ity ratio can vary according to, for instance, the net-
work, the time of day, or the trip purpose. In practice,
travel time and travel time variability valuation stud-
ies based on travel surveys are carried out to obtain
an estimate for r. This linear combination approach is
used in various studies, such as in Yin (2008) and in the
traditional “mean-variance” approach (Jackson and
Jucker 1982).

Often, the variability metric tV consists of the trip
travel time standard deviation. The objective function
of this paper follows that same functional form; that is,
we combine expectation and standard deviation infor-
mation of a given travel time performance metric. The
travel time metric used is the total link travel time,
that is, the sum of travel times over all links in the
area/network of interest. Link travel time metrics are
easier to both measure in the field and to approximate
analytically, compared to trip travel time metrics. Link
metrics are also more suitable metrics when control-
ling a small area within a larger network (e.g., a small
set of intersections within a full city).

We consider a fixed-time signal control problem,
where the decision variables are the green splits. In this

problem, the stage structure is given, and the offsets,
the cycle times, and the all-red durations are fixed. For
a more detailed description of this terminology, see
Osorio (2010, Section 4.2.2 and Appendix A). Fixed-
time plans are determined offline. They are traditional
control strategies that do not exploit real-time traffic
data. They are broadly used in many cities with a low,
or inexistent, deployment of traffic sensors. For cities
with abundant real-time traffic data, fixed-time plans
are often chosen for areas where congestion is both high
and uniformly distributed, such as in New York City
(Osorio et al. 2015), or for areas with intricate network
topologies (e.g., grid topologies).

The choice of green splits as the decision vector is
based on insights obtained as part of our collabora-
tion with the New York City Department of Trans-
portation. For many fixed-time controlled intersections
within Manhattan, the main variables regularly up-
dated are the green splits. More general problem for-
mulations can also optimize the offsets, which can lead
to performance improvements through enhanced coor-
dination between adjacent intersections and the stage
structure. A discussion of these extensions is given in
Section 4.

To formulate the problem, we introduce the follow-
ing notation:

Ti Travel time along link i;
x( j) Green split of phase j;

xL Vector of minimal green splits;
ai Available cycle time of intersection i;
ci Cycle time of intersection i;
� Set of links within the area of interest;
� Set of queues that represent the links of �;
� Set of intersection indices;

�I(i) Set of phase indices of intersection i;
r Reliability ratio.

The signal control problem is formulated as follows:

min
x

f (x ,z;p) :�E
[∑

i∈�
Ti(x ,z;p)

]
+r SD

[∑
i∈�

Ti(x ,z;p)
]

(5)

subject to
∑

j∈�I (i)
x( j)� ai

ci
, ∀ i∈�; (6)

x≥xL . (7)

The performance metric used, ∑� Ti , is the total link
travel time. Hereafter, we no longer indicate the depen-
dence of Ti on x , z and p. The objective function of this
problem (Equation (5)) consists of a linear combination
of the expected total link travel time, E[∑� Ti(x , z; p)],
and the standard deviation of the total link travel time,
SD[∑� Ti(x , z; p)]. Constraints (6) guarantee that for
a given intersection, the sum of green splits of the
endogenous phases equals the available cycle time.
Constraints (7) correspond to the lower bound value
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has the best performance. This point is denoted by xk
and is known as the current iterate. Second, fit the
metamodel, mk , based on the set of simulation obser-
vations collected so far. The metamodel parameter vec-
tor is denoted by βk . Use mk to perform optimization
and derive a trial point (Step 3a). An optional step,
which not all SO algorithms embed, is Step 3b. In this
step, points that may not be solutions to the metamodel
optimization problem are simulated. These points are
known as model improvement points. Step 4 evalu-
ates via simulation the performance of the new points
(the trial point and any model improvement points).
Step 4 leads to new simulation observations. As new
simulated observations become available, the accuracy
of the metamodel can be improved (Step 2), leading
to trial points with improved performance (Step 3a).
These steps are iterated until, for instance, the compu-
tational budget is depleted. The SO algorithm is given
in detail in the online appendix.

At every iteration of the SO algorithm, the meta-
model optimization problem is solved (Step 3a). The
main idea of the metamodel optimization problem is
to replace the (unknown) simulation-based objective
function (Equation (1)) with the analytical metamodel
function, m, such that efficient deterministic optimiza-
tion techniques can be used. A detailed formulation of
the metamodel optimization problem of this paper is
given in the online appendix. Reviews of metamodels
are given by Conn, Scheinberg, and Vicente (2009b);
Barton and Meckesheimer (2006); and Søndergaard
(2003). Metamodels are classified in the literature as
either physical or functional metamodels (Søndergaard
2003, Serafini 1998). Physical metamodels consist of
application-specific metamodels; their functional form
and parameters have a physical or structural inter-
pretation. Functional metamodels are general-purpose
(i.e., generic) functions that are chosen based on their

analytical tractability but do not take into account any
information with regards to the specific objective func-
tion, let alone the structure of the underlying problem.

The Osorio and Bierlaire (2013) framework proposes
a metamodel that combines a functional and a physical
component and has the following form:

m(x , y;α, β, q)� α fA(x , y; q)+φ(x; β), (3)

where φ denotes the functional component, fA (the
physical component) represents the approximation of
the objective function ( f of Equation (1)) as derived by
an analytical macroscopic traffic model, y represents
endogenous macroscopic model variables (e.g., queue-
length distributions), q represents exogenous macro-
scopic parameters (e.g., total demand), and α and β are
parameters of the metamodel. The metamodel is fit-
ted based on simulation observations of the objective
function via regression. At each iteration, the simula-
tor and the queueing model are evaluated at a set of
points, and then the metamodel is fitted by solving a
least squares problem based on both the current iter-
ation simulation observations and all of the previous
simulation observations.

The functional component φ is defined as a quad-
ratic polynomial in x with a diagonal second-derivative
matrix

φ(x; β)� β1
+

d∑
j�1
β j+1x j

+

d∑
j�1
β j+d+1(x j)2 , (4)

where d is the dimension of x, and x j and β j are the jth
components of x and β, respectively.

The physical component fA is derived by evaluat-
ing an analytical macroscopic traffic model, which is
referred to as the auxiliary traffic model. It provides a
problem-specific approximation of the objective func-
tion; that is, its functional form depends on the
underlying problem formulation. It also provides a
global approximation of the objective function (i.e., an
approximation across the entire feasible region). The
metamodel is therefore a linear combination of an ana-
lytical global and problem-specific approximation of
the objective function and a quadratic error term.

In this paper, the physical component is an analyt-
ical and differentiable macroscopic traffic model for-
mulated based on probabilistic finite capacity queue-
ing network theory. It provides structural information
about the problem at hand. It enables the identifica-
tion of well-performing alternatives (e.g., trial points)
with very small samples (i.e., good short-term algorith-
mic performance). The use of an auxiliary model that
is probabilistic allows us to address problems that are
formulated based on higher-order (i.e., beyond first-
order) distributional information.

As stated above, at every iteration of the SO algo-
rithm, the metamodel optimization problem is solved
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for the green splits. In the case studies of this paper,
it is set to four seconds following Swiss transportation
norms (VSS 1992).

For the case studies of this paper (Section 3), the sim-
ulators used are stochastic dynamic microscopic traffic
models. The dynamic traffic assignment is based on the
use of a stochastic C-logit route choice model (Cascetta
et al. 1996). The deterministic part of the route choice
utility function depends only on travel times. When
evaluating via simulation the performance of a given
signal plan (this is done at every iteration of the SO
algorithm), the route travel times change in response
to signal plan changes. This leads to changes in the
route choice probabilities. In other words, the traffic
assignment is endogenous and varies as a function of
the signal plans. This is a suitable representation of
the route choice behavior observed in practice. For a
comparative study of user equilibrium, stochastic user
equilibrium, and system optimum assignments, see,
for instance, Prashker and Bekhor (2000).

2.3. Physical Component
Recall that the metamodel formulation of Equation (3)
requires an analytical expression for fA, which is the
approximation of the objective function f (Equation (5))
as derived by the auxiliary traffic model. This section
derives the analytical (and differentiable) approxima-
tion of the two components of f provided by the auxil-
iary traffic model; that is, we derive analytical approxi-
mations for E[∑� Ti] and for SD[∑� Ti] or, equivalently,
E[∑� Ti] and SD[∑� Ti].

The auxiliary model used is an analytical queueing
network model based on finite capacity queueing the-
ory. Each lane in the road network is modeled as one
(or a set of) queues. Each queue of the model is a finite
capacity M/M/1/k queue. The model is based on a
stationary regime assumption. It consists of a system
of nonlinear equations that relate the arrival and ser-
vice rates of a queue to the demand and supply of its
upstream and downstream queues. It describes spill-
backs through the queueing theory notion of blocking.
The model is suitable for large-scale analysis, as men-
tioned above, its complexity is linear in the number of
links in the network and is independent of the links
space capacity. We briefly recall the main variables and
parameters that define each queue. For a given queue i,
we use the following notation:

λi Arrival rate;
µ̂i Effective service rate (accounts for both

service and eventual blocking);
ki Space capacity;

Ni Number of vehicles in queue i;
P(Ni � ki) Probability of queue i being full, also

known as the blocking or spillback
probability;

ρi Traffic intensity (defined as the ratio of
arrival rate and effective service rate).

The queueing variables are related to the signal plans
as defined by Equation (C.4) (in the online appendix).
This equation states that for a given lane, its service
rate is defined as the proportion of time (during a sig-
nal cycle) it has a green signal multiplied by the satu-
ration rate. This proportion of time is the sum of the
endogenous green splits (i.e., the decision variables of
the signal control problem) and any fixed (exogenous)
green time.

2.3.1. Expected Total Travel Time. The expected total
travel time is obtained by summing the expected travel
times of the queues (or equivalently links) of interest:

E
[∑

i∈�
Ti

]
�
∑
i∈�

E[Ti]. (8)

The expected travel time of a given queue i is derived
by applying Little’s law (Little 1961, 2011):

E[Ti]�
E[Ni]

λi(1−P(Ni � ki))
, (9)

where the expected queue-length of queue i, E[Ni], is
derived in Osorio and Chong (2015) and is given by the
following:

E[Ni]� ρi

(
1

1− ρi
− (ki + 1)

ρki
i

1− ρki+1
i

)
. (10)

2.3.2. Total Travel Time Standard Deviation. We now
describe the approximation for SD[∑� Ti]. By defini-
tion,

SD
[∑

�

Ti

]
�

√
Var

[∑
�

Ti

]
. (11)

To derive a tractable analytical expression, we make the
following approximation:

Var
[∑

i∈�
Ti

]
≈
∑
i∈�

Var[Ti]. (12)

The latter expression is exact only if all queues have
independent travel times. This may be an inaccurate
approximation in various congestion regimes. None-
theless, recall that the main role of the physical com-
ponent is to provide a tractable approximation of the
objective function. Given the difficulty of accurately
modeling between-link dependencies while preserv-
ing tractability (Osorio and Yamani 2017, Flötteröd and
Osorio 2017, Osorio and Wang 2017), this independence
approximation ensures tractability.

By definition,

Var[Ti]� E[T2
i ] −E[Ti]2. (13)
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Equation (9) gives the expression for E[Ti]. An
expression for E[T2

i ] is derived in Section 2.4 and is
given by the following:

E[T2
i ]�

1
µ̂i

2

(4ρi − 2ρ2
i

(1− ρi)2
−

2kiρ
ki+1
i

(1− ρki
i )(1− ρi)

+
2− (ki + 1)(ki + 2)ρki

i

1− ρki
i

)
. (14)

The expression of Var[Ti] is therefore given by the
following:

Var[Ti]�
1
µ̂i

2

(4ρi − 2ρ2
i

(1− ρi)2
−

2kiρ
ki+1
i

(1− ρki
i )(1− ρi)

+
2− (ki + 1)(ki + 2)ρki

i

1− ρki
i

)

−
(
ρi

(
1/(1− ρi) − (ki + 1)(ρki

i /(1− ρ
ki+1
i ))

)
λi(1−P(Ni � ki))

)2

.

(15)

The approximation of the objective function (Equa-
tion (5)) provided by the physical component is a differ-
entiable closed-form expression that depends on three
endogenous variables per queue: ρi , λi , and P(Ni � ki).
The appendix gives the formulation of two auxiliary
traffic models used in this paper to approximate Equa-
tion (5). The model of Section A.1 is derived in Osorio
(2010, Chapter 4) and is used in this paper to address
a signal control problem for the Lausanne city center
(Section 3.2). The model of Section A.2 is a formulation
that is more efficient for large-scale problems (Osorio
and Chong 2015). It is used in this paper to address a
signal control problem for the full Lausanne city (Sec-
tion 3.3).

The use of probabilistic models can lead to differ-
entiable formulations of their nondifferentiable deter-
ministic counterparts. For instance, the work in Osorio
and Flötteröd (2014) has formulated a probabilistic
differentiable formulation of Newell’s (deterministic
and nondifferentiable) simplified theory of kinematic
waves (Newell 1993).

In this paper, the queueing network models are not
derived from deterministic traditional traffic theoretic
models. In particular, they assume a stationary traffic
regime, which implies that they do not capture the tem-
poral variations of the probability distributions of net-
work performance. They are simplified models. This
simplicity is the key to ensuring the computational effi-
ciency of the underlying SO algorithm. More recently,
time-dependent queueing network models that also
are sufficiently efficient for simulation-based optimiza-
tion have been proposed (Chong and Osorio 2018).

2.4. Analytical Approximation of E[T2]
We derive the expression for E[T2], where T denotes
the sojourn time at a given queue. We represent an
urban road network as a finite capacity queueing net-
work as in Osorio (2010, Chapter 4). Each lane is mod-
eled as one (or a set of) M/M/1/k queue(s). For an
M/M/1/k queue, the cumulative distribution function
F̃(t) of the sojourn time is given by the following (see
Gross et al. 1998, pp. 587–641):

F̃(t)�
1− ρ
1− ρk

k−1∑
n�0
ρn

(
1−

n∑
m�0

(µ̂t)m e−µ̂t

m!

)
, t ≥ 0, (16)

with µ̂, ρ, and λ defined in Section 2.3. The probability
density function f̃ (t) is obtained as follows:

f̃ (t)� dF̃(t)
dt

�−
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

µ̂m

m!
dh(t)

dt
, (17)

where h(t) is defined by

h(t)� tm e−µ̂t , t ≥ 0. (18)

Since
dh(t)

dt
� mtm−1e−µ̂t − µ̂tm e−µ̂t , (19)

we have

f̃ (t)�
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

µ̂m

m!
(µ̂tm e−µ̂t − mtm−1e−µ̂t). (20)

By definition,

E[T2]�
∫ ∞

0
t2 f̃ (t) dt �

∫ ∞

0

(
1− ρ
1− ρk

k−1∑
n�0
ρn

·
n∑

m�0

µ̂m

m!
(µ̂tm+2e−µ̂t − mtm+1e−µ̂t)

)
dt; (21)

E[T2]�
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

µ̂m

m!

·
(∫ ∞

0
(µ̂tm+2e−µ̂t − mtm+1e−µ̂t) dt

)
. (22)

According to Gradshteyn and Ryzhik (2007, pp.
247–386),

∫ ∞

0
ta e−ctb

dt �
Γ((a + 1)/b)

bc(a+1)/b
, (23)

where Γ denotes the gamma function defined as Γ(x)�
(x − 1)!.

Using the expression of Equation (23), we obtain the
following two equalities:

∫ ∞

0
µ̂tm+2e−µ̂t dt � µ̂

Γ(m + 3)
µ̂m+3 �

(m + 2)!
µ̂m+2 ; (24)

∫ ∞

0
mtm+1e−µ̂t dt � m

Γ(m + 2)
µ̂m+2 � m

(m + 1)!
µ̂m+2 . (25)
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Inserting the expressions of Equations (24) and (25)
into (22), leads to the following:

E[T2]�
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

µ̂m

m!

(
(m + 2)!
µ̂m+2 − m

(m + 1)!
µ̂m+2

)

(26)

�
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

(
(m + 1)(m + 2)

µ̂2 − m(m + 1)
µ̂2

)

(27)

�
1− ρ
1− ρk

k−1∑
n�0
ρn

n∑
m�0

2(m + 1)
µ̂2 (28)

�
1− ρ
1− ρk

k−1∑
n�0
ρn 2
µ̂2

(
n(n + 1)

2
+ (n + 1)

)
(29)

�
1
µ̂2

1− ρ
1− ρk

k−1∑
n�0

(n + 1)(n + 2)ρn . (30)

The above summation can be further simplified, for
ρ � 1, as follows:

k−1∑
n�0

(n + 1)(n + 2)ρn
�

k−1∑
n�0

d2(ρn+2)
dρ2 �

d2(∑k−1
n�0 ρ

n+2)
dρ2

�
d2(ρ2((1− ρk)/(1− ρ)))

dρ2 . (31)

We first calculate the first derivative with regard to ρ:

d(ρ2((1− ρk)/(1− ρ)))
dρ

�
2ρ− (k + 2)ρk+1

1− ρ +
ρ2 − ρk+2

(1− ρ)2 .
(32)

We then take the first derivative of (32) with re-
gard to ρ:

d((2ρ−(k +2)ρk+1)/(1−ρ)+ (ρ2 −ρk+2)/(1−ρ)2)
dρ

�
2−(k +1)(k +2)ρk

1−ρ +
2ρ−(k +2)ρk+1

(1−ρ)2

+
2ρ−(k +2)ρk+1

(1−ρ)2 +
2(1−ρ)(ρ2 −ρk+2)

(1−ρ)4

�
2(ρ2 −ρk+2)
(1−ρ)3 +

4ρ−2(k +2)ρk+1

(1−ρ)2 +
2−(k +1)(k +2)ρk

1−ρ .

(33)

Inserting the above expression into (30), we obtain
the following:

E[T2]�
1− ρ

µ̂2(1− ρk)

(
2(ρ2 − ρk+2)
(1− ρ)3 +

4ρ− 2(k + 2)ρk+1

(1− ρ)2

+
2− (k + 1)(k + 2)ρk

1− ρ

)
(34)

�
1
µ̂2

(
2ρ2

(1− ρ)2 +
4ρ

1− ρ −
2kρk+1

(1− ρk)(1− ρ)

+
2− (k + 1)(k + 2)ρk

1− ρk

)
(35)

�
1
µ̂2

(
4ρ− 2ρ2

(1− ρ)2 −
2kρk+1

(1− ρk)(1− ρ)

+
2− (k + 1)(k + 2)ρk

1− ρk

)
. (36)

2.5. Methodological Summary
Let us summarize the proposed methodology. The
considered reliable SO problem is given by Equa-
tions (5)–(7). It is addressed with the metamodel SO
framework described in Section 2.1. At every iteration
of the algorithm, a metamodel optimization problem
is solved (Step 3a in Figure 1). The exact formulation of
this problem is given by Equations (C.1)–(C.7) (in the
online appendix).

The key idea of this framework is that the metamodel
(defined by Equation (3)) is based on an analytical
approximation of the simulation-based objective func-
tion (Equation (5)) derived from an analytical network
model. This analytical approximation is represented by
the term fA in Equation (3). The analytical expression
of fA is the following:

fA(x , y; q)� E
[∑

i∈�
Ti(x , y; q)

]
+ r

√∑
i∈�

Var[Ti(x , y; q)],

(37)
where E[∑i∈� Ti(x , y; q)] is given by Equations (8)–(10),
Var[Ti(x , y; q)] is given by Equation (15), and � rep-
resents the set of queues (or lanes) in the network.
The analytical network models used to derive fA in the
two case studies of this paper are formulated in the
appendix (Sections A.1 and A.2).

At every iteration of the SO algorithm, the metamodel
combines information from the simulation-based net-
work model with information from the analytical net-
work model. More specifically, at every iteration, the
parameters of the metamodel (α and β of Equation (3))
are fitted to minimize a distance metric between the
simulation observations and the metamodel approxi-
mations at the set of sample points.

3. Case Studies
3.1. General Description
We evaluate the performance of this framework based
on a calibrated microscopic traffic simulation model of
the Lausanne city center developed by Dumont and
Bert (2006). It is calibrated for the Lausanne city road
network during the evening peak period (5:00 p.m. to
6:00 p.m.). It is implemented in Aimsun (Transport Sim-
ulation Systems 2011). For a more detailed descrip-
tion of the network and the demand, see Osorio (2010,
Chapter 4). We address signal control problems within
two networks: (i) the Lausanne city center (Section 3.2)
and (ii) the full city network (Section 3.3).

We compare the performance of the following SO
metamodel approaches:

• the proposed metamodel, m (of Equation (3));
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Table 1. Comparison of Different Metamodel Approaches

Traffic model

Simulation-based Analytical
microscopic macroscopic

Metamodel m
√ √

Metamodel φ
√

• a quadratic polynomial with diagonal second-
derivative matrix (i.e., the metamodel consists of φ as
defined in Equation (3)). In this second approach, the
metamodel consists of only a functional component;
there is no physical component.

A comparison of these two approaches is presented
in Table 1. This table indicates that the proposed
metamodel m combines information from both the
simulation-based microscopic model and the analyti-
cal macroscopic model (the queueing network model),
whereas the metamodel φ uses only information
obtained from the microscopic simulator. Hence, the
comparison of methods m and φ indicates the added
value of coupling the microscopic simulated informa-
tion with macroscopic analytical information.

We evaluate the performance of both metamodel me-
thods by addressing three different signal control prob-
lems that vary according to their objective function:

• P1: This is a traditional signal control problem that
uses only first-order moment information (i.e., travel
time expectation information) in the objective function,
which is given by E[∑� Ti(x , z; p)].

• P2: This is the reliable signal control problem,
with the objective function given by Equation (5).

• P3: This signal control problem uses only standard
deviation information in the objective function, which
is given by SD[∑� Ti(x , z; p)].

Problem P2 requires the estimation of the reliability
ratio parameter r. Recall that the mean-variance ap-
proach considers functions of the form tE + rtV , where
tE denotes the expected trip travel time, and tV denotes
the standard deviation of trip travel time. To identify
a suitable r value, we reviewed travel time and travel
time variability valuation studies. The estimates for r
vary according to, for instance, the network, the time
of day, and the trip purpose. In past work where tV is
defined as the standard deviation of trip travel time,
estimates of r have varied between 0.1 (Hollander 2006)
and 2.1 (Batley and Ibáñez 2012). Black and Towriss
(1997) estimate an r value of 0.79 for commuters trav-
eling with a car. More recently, Li, Hensher, and Rose
(2010) derived a value of 1.43 for car commuters.

We consider evening peak period traffic, where most
trips consist of commuters. Additionally, the simu-
lation model that we use represents only car traffic.
Thus, we use the value of 1.43, which was estimated
for car commuters by Li, Hensher, and Rose (2010).

Additionally, the largest r value found in the literature
(value of 2.1) is used to evaluate the sensitivity of our
approach to r (Section 3.4).

Note that the r estimates derived from these surveys
are obtained by using trip travel time as the travel time
metric, whereas in this paper we use total link travel
time. Thus, the actual r value derived from an anal-
ysis that would consider total link travel time for the
evening peak period of Lausanne may differ from the
value of 1.43 that we use.

For all experiments, the computational budget is set
to 150 runs, that is, a signal plan with improved per-
formance needs to be identified within 150 simulation
runs. Given the stochasticity of the simulation out-
puts as well as the large-scale problems that we are
addressing, these are considered very tight computa-
tional budgets. For a description of how the simula-
tion runs are allocated across iterations, see the online
appendix and also Osorio and Bierlaire (2013).

When evaluating the performance of a given me-
thod, we need to account for the fact that the outputs
of the simulator are stochastic. For a given experiment
(i.e., a given combination of metamodel, objective func-
tion, network, initial point, and computational budget),
we run the SO algorithm five times. Each algorith-
mic run yields a proposed signal plan. Thus, a given
experiment yields five signal plans. We then compare
the performance of these proposed signal plans across
experiments.

To evaluate the performance of a proposed signal
plan, we run 50 simulation replications. This yields 50
observations of the expected total link travel time and
total link travel time standard deviation. We then plot
the empirical cumulative distribution function (cdf) of
each of these two performance metrics, and compare
the cdf’s obtained by different methods.

3.2. Lausanne City Center
The Lausanne city network is represented in Figure 2.
The city center of interest is delimited by an oval. It
contains 48 roads and 15 intersections, 9 of which are
signalized and control the traffic on 30 roads.

A total of 51 signal phases are endogenous. The
queueing model of this network consists of 102 queues.
The trust region subproblem that is solved at each iter-
ation of the SO algorithm (which is defined in the
online appendix by Equations (C.1)–(C.7)) consists of
621 endogenous variables with their corresponding
lower bound constraints, 408 nonlinear equality con-
straints, and 171 linear equality constraints.

Figure 3 displays six plots. The plots in a given col-
umn correspond to a given initial point. The plots of
a row correspond to a given performance measure.
The upper (respectively (resp.), lower) row displays the
cdfs of the standard deviation (resp., expectation) of
total link travel time (within the city center). Each plot
displays seven cdfs: the solid blue cdf corresponds to
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Figure 2. (Color online) Lausanne City Network Model with the City Center Delimited by a Circle (Left) and the City Center
of Interest (Right)

the cdf of the initial signal plan (denoted by x0), and the
remaining six cdfs correspond to solving a given prob-
lem (P1, P2, or P3) with a given metamodel method
(m or φ). The red (resp., black) cdfs correspond to the
signal plans obtained when using m (resp., φ). The ini-
tial points are uniformly drawn from the feasible space
(Equations (6) and (7)) using the code of Stafford (2006).

Recall that when solving a given problem with a
given metamodel, we run the SO algorithm five times,

Figure 3. (Color online) Performance of the Signal Control Methods When Applied to the Lausanne City Center
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Note. These plots consider various initial points and various problem formulations.

yielding five signal plans, and then evaluate each of
the five proposed signal plans by running 50 simula-
tion replications. The cdfs displayed in Figure 3 are
obtained by aggregating (for a given problem and a
given metamodel) the observations from all five signal
plans; that is, they consist of 5× 50 observations.

For the first initial point (first column in Figure 3), the
signal plans with the best performance both in terms
of expectation and standard deviation are obtained
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Figure 4. (Color online) Performance of the Methods When Applied to Problem P2 with Three Different Initial Points
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by solving P2 (i.e., a problem that combines expecta-
tion and standard deviation information) and using the
proposed metamodel, m. The signal plans derived by
using m outperform those derived by the traditional
metamodel φ regardless of the problem formulation
(i.e., for all P1, P2, and P3). Similar conclusions hold
for both the second initial point (second column) and
the third initial point (third column).

All plots in Figure 3 indicate that using metamodel
m to solve problem P2 leads to signal plans with both
(i) the lowest average standard deviation (i.e., high-
est travel time reliability), and (ii) the lowest variance
across simulation replications (i.e., the signal plans are
robust to the stochasticity of the simulator; in other
words, they are robust to the uncertainty represented
by the simulator). Both contribute to a more reliable
and predictable system performance.

Figure 3 also indicates that when usingφ, the best sig-
nal plans are obtained when using only expected total
travel time (P1), and the performance deteriorates when
higher-order information is included (P2 and P3). This
illustrates (1) the inability of a general-purpose meta-
model (in this case, a quadratic polynomial) to approx-
imate, in the entire feasible region, intricate objective
functions, such as those that account for higher-order
distributional information, as well as (2) the added
value of using auxiliary traffic models (in this case, a
queueing network model) to solve such problems.

When comparing the use of φ to address the for-
mulation that includes only standard deviation (P3)
with the formulation that includes both expectation
and standard deviation (P2), the latter leads to stan-
dard deviations that are either similar or better, which
is counterintuitive. This may be explained as follows.
First, formulation P1 (only expectation information)
leads to low standard deviation values, and thus the
expectation and standard deviation metrics may be

positively correlated. Second, the expectation metric
has less variability across simulation replications, and
thus it can be estimated more accurately with few sim-
ulation replications, leading to a better algorithmic per-
formance for tight computational budgets. For these
two reasons, the formulations that include expectation
information (P1 and P2) lead to improved standard
deviation, particularly when considering tight compu-
tational budgets.

Figure 4(a) considers all three initial points and all
solutions obtained from addressing problem P2 with
methods m and φ of Figure 3. Figure 4(a) displays nine
cdfs of the simulation-based objective function (Equa-
tion (5)). Since we consider a minimization problem,
the more a cdf curve is shifted to the left the better the
performance of the corresponding method. The three
blue dotted cdfs correspond to the three initial points.
The three red solid (resp., black dashed) cdfs corre-
spond to method m (resp., φ). Each of the red and
black cdf curves corresponds to the solutions obtained
with a given initial point. Similar to Figure 3, each of
these curves aggregates the observations from all five
solutions derived by the five SO runs of the algorithm.

Figure 4(a) shows that the solutions of method m
outperform those of method φ, and this for all ini-
tial points. In other words, the aggregate performance
of the 15 solutions proposed by method m outperforms
the 15 solutions of method φ. Figure 4(a) shows that
the different initial points have very different perfor-
mance (i.e., the three blue dotted curves have very dif-
ferent performance). Nonetheless, all three curves of
method m have a very similar performance. This indi-
cates that the solutions of method m are not sensitive
to the quality of the initial points. For method φ, one
of its three curves has a very different performance
compared to the other two. Hence, the solutions of
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Figure 5. (Color online) Link-Based Travel Time Standard Deviation for the Initial Plan (Top Plot) and the Plan Obtained by
Solving Problem P2 with Metamodel m

Note. Standard deviation estimates are obtained by averaging over 50 replications.

method φ are sensitive to the initial points. Addition-
ally, the three curves of method m have similar vari-
ability. This indicates that the solutions of the method
are not sensitive to the stochasticity of the simulator.
For method φ, the cdf curves have a higher variability;
that is, there is a higher variance in the performance
of the method for a given initial point. This indicates
that method φ is more sensitive than method m to the
simulator’s stochasticity. Figure 4(a) also indicates that
for method φ, the magnitude of the variance depends
on the initial point. Recall that methods m and φ differ
only in whether or not they use information from the
analytical macroscopic model. Hence, this figure illus-
trates that by providing the algorithm with this ana-
lytical information, we improve the robustness of the

SO algorithm to both (i) initial points and (ii) simulator
stochasticity.

Figure 4(b) presents the performance of method m
for different initial points in more detail. It displays
the 15 cdfs of the 15 solutions obtained when solving
problem P2. Whereas Figure 4(a) displays one cdf per
initial point (i.e., the cdf aggregated the performance of
all five solutions), Figure 4(b) displays one cdf per ini-
tial point and per solution. The cdfs that correspond to
solutions obtained with the same initial point have the
same color. This figure shows that all cdfs are similar
regardless of their color. This means that the solutions
are robust to the quality of the initial point.

The cdfs presented thus far display the performance
aggregated across all links of the city center. Figure 5
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illustrates the performance at the link level. This figure
displays two plots of the city center network. The links
of the network are color coded according to their link
travel time standard deviation. The colors green, yel-
low, and red correspond, respectively, to standard devi-
ations that are lower than 20 seconds, are between 20
and 40 seconds, and are greater than 40 seconds. These
standard deviation estimates are obtained by running
50 replications of a given signal plan. The top network
considers the initial plan (that of the first column of
Figure 3), and the bottom network considers one of
the plans proposed by using that initial plan and the
metamodel m to solve the reliable signal control prob-
lem P2. Figure 5 shows that there is an improvement
across the entire city center. This illustrates that the
proposed approach leads to both improvements when
aggregating across links (e.g., total link travel time) and
systematic improvements at the link level.

3.3. Lausanne City
In this section, we address a signal control problem
that controls intersections across the entire city of Lau-
sanne. Figure 6 displays the road network of the city;
Figure 7 displays the corresponding network model.
The full network contains 603 roads and 231 inter-
sections. We determine the plans for 17 intersections,
which are represented as filled rectangles in Figure 7.

A total of 99 signal phases are endogenous. The
queueing model consists of 902 queues. The trust region
subproblem that is solved at each iteration of the SO
algorithm (which is defined in the online appendix
by Equations (C.1)–(C.7)) consists of 2,805 endogenous
variables with 1,821 nonlinear equality constraints and
902 linear equality constraints. The problem we address
in this section is considered a large-scale traffic sig-
nal control problem and a difficult high-dimensional
simulation-based optimization problem.

To compare the performance of the methods across
various problems, we proceed as for the city center
(i.e., as in Section 3.2). Figure 8 displays six plots:
each column corresponds to a given initial point; each
row corresponds to a given performance measure. The
upper (resp., lower) row displays the cdfs of the stan-
dard deviation (resp., expectation) of total link travel
time within the full city network. Each cdf aggregates
250 (i.e., 5× 50) simulation observations.

For the first initial point (first column), the signal
plans with the best performance both in terms of expec-
tation and standard deviation are obtained by solving
P2 (i.e., a problem that combines expectation and stan-
dard deviation information) and using the proposed
metamodel, m. The signal plans derived by using m
and solving any of the three problems outperform
those derived by the traditional metamodel φ. Similar
conclusions hold for initial points 2 (second column)
and 3 (third column).

Figure 6. (Color online) Lausanne City Road Network

Source. Adapted from Dumont and Bert (2006).

The plans obtained by using only standard devia-
tion information (i.e., solving P3) with metamodel m
still provide improvement in terms of expected travel
time (see row-wise plots) when compared to the ini-
tial point, whereas those derived by φ fail to do so for
initial points 1 and 3.

As for the city center case study, the plots of Figure 8
indicate that using metamodel m to solve problem P2
leads to signal plans with low average and variance
of the standard deviation. Both indicators enhance the
travel time reliability of the network.

We proceed just as for the city center case study and
analyze the sensitivity of the SO algorithms to the qual-
ity of the initial points and to the simulator’s stochas-
ticity. Figure 9 considers all three initial points and all
solutions obtained from addressing problem P2 with
methods m and φ of Figure 8. Figure 9 displays nine
cdfs of the simulation-based objective function (Equa-
tion (5)): the three blue dotted cdfs correspond to the
three initial points, the three red solid (resp., black
dashed) cdfs correspond to method m (resp., φ). Just
as for the city center case study, Figure 9 shows that the
solutions of method m outperform those of method φ,
this is the case for all initial points. In other words, the
aggregate performance of the 15 solutions of method
m is better than that of the 15 solutions of method φ.
Figure 9 shows that the different initial points have
very different performance, while all three curves of
method m are very similar. The curves of method φ
are also similar, yet less so than for method m. This
indicates that both methods are robust to the quality of
the initial solution. Also, the three curves have similar
variability. The variability of the curves of method m is
smaller than that for those of method φ.
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Figure 5. (Color online) Link-Based Travel Time Standard Deviation for the Initial Plan (Top Plot) and the Plan Obtained by
Solving Problem P2 with Metamodel m

Note. Standard deviation estimates are obtained by averaging over 50 replications.

method φ are sensitive to the initial points. Addition-
ally, the three curves of method m have similar vari-
ability. This indicates that the solutions of the method
are not sensitive to the stochasticity of the simulator.
For method φ, the cdf curves have a higher variability;
that is, there is a higher variance in the performance
of the method for a given initial point. This indicates
that method φ is more sensitive than method m to the
simulator’s stochasticity. Figure 4(a) also indicates that
for method φ, the magnitude of the variance depends
on the initial point. Recall that methods m and φ differ
only in whether or not they use information from the
analytical macroscopic model. Hence, this figure illus-
trates that by providing the algorithm with this ana-
lytical information, we improve the robustness of the

SO algorithm to both (i) initial points and (ii) simulator
stochasticity.

Figure 4(b) presents the performance of method m
for different initial points in more detail. It displays
the 15 cdfs of the 15 solutions obtained when solving
problem P2. Whereas Figure 4(a) displays one cdf per
initial point (i.e., the cdf aggregated the performance of
all five solutions), Figure 4(b) displays one cdf per ini-
tial point and per solution. The cdfs that correspond to
solutions obtained with the same initial point have the
same color. This figure shows that all cdfs are similar
regardless of their color. This means that the solutions
are robust to the quality of the initial point.

The cdfs presented thus far display the performance
aggregated across all links of the city center. Figure 5
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Figure 7. (Color online) Lausanne Network Model with the 17 Controlled Intersections Displayed as Grey Rectangles

We now compare the performance of methods m
and φ with different computational budgets. We pro-
ceed as in Figure 9; that is, we consider problem P2
and all three initial points. Figure 10 displays 12 plots.

Figure 8. (Color online) Performance of the Signal Control Methods When Applied to the Full City of Lausanne
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Note. These plots consider various initial points and various problem formulations.

The plots in a given column correspond to a given
computational budget. The left to right columns con-
sider budgets of 20, 50, 100, and 150 simulation runs,
respectively.
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Let us first present and analyze the plots in the first
two rows. The plots in the first (resp., second) row con-
sider method φ (resp., m). Each plot displays 18 cdfs:
the three dotted blue cdfs correspond to the three dif-
ferent initial signal plans (denoted by x0); the remain-
ing 15 cdfs correspond to solving problem P2 with a
given metamodel method (m or φ) five times for each
initial point (for a total of 5 × 3 � 15 times). The black
(resp., red) cdfs correspond to solutions derived by φ
(resp., m). All plots have the same x-axis limits; that is,
they can be directly compared. The first row of plots
indicates that as the computational budget increases,
so does the performance of the solutions proposed
by φ. For small budgets (e.g., 20 or 50) the signal plans
proposed by φ tend to have similar or worse perfor-
mance compared to the initial points. For larger bud-
gets (e.g., 100 or 150), their performance is similar or
slightly better than that of the best initial point. The
second row of plots indicates that the signal plans pro-
posed by m have consistently good performance even
for very small budgets. In other words, for all bud-
gets (20, 50, 100, or 150), the method m identifies sig-
nal plans with good performance. Additionally, for a
given budget (i.e., a given plot in the second row),
the 15 plans proposed by m have similar performance.
This indicates the robustness of the method to both the
quality of the initial point and the stochasticity of the
simulator.

The third row of plots considers the performance
of P2 across both computational budgets and initial
points. Each plot displays six cdfs: three dotted blue
cdfs that correspond to the initial points and three red
cdfs that correspond to the aggregate performance of
method m for a given initial point. In other words, each
red cdf considers a given initial point and aggregates

Figure 9. (Color online) Performance of the Methods When
Applied to the Full City Problem P2 with Three Different
Initial Points
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the performance of all five SO runs (hence, each red
curve consists of 5 × 50 simulation observations). For
each budget, the three red cdfs are very similar. This
indicates that for a given computational budget, the
performance of method m is robust to the initial point.
This holds true for all four plots of the third row; that is,
for all computational budgets, the method m is robust
to the quality of the initial point.

Figure 11 displays the link-level results for a part of
the city network. Each plot displays the link standard
deviation (averaged over 50 simulation replications).
The top plot considers initial point 2, and the bottom
plot considers a signal plan proposed by solving P2
and using the metamodel m, given initial point 2. The
colors green, yellow, and red correspond, respectively,
to values smaller than 20 seconds, from 20 to 40 sec-
onds, and greater than 40 seconds. Just as for the city
center, there is a systematic improvement at the link
level. This shows that the proposed plan reduces both
the total variability and the individual link travel time
variability.

3.4. Sensitivity to Reliability Ratio
In this section, we evaluate the sensitivity of our pro-
posed approach to the value of the reliability ratio
parameter r. We choose the highest r value found in the
literature, namely, 2.1. We address the reliable signal
control problem P2 with the proposed metamodel m.
We compare the performance of an approach that sets
r to 1.43 to another that sets r to 2.1. The sensitiv-
ity analysis serves the purpose of illustrating that the
proposed methodology performs well for various val-
ues of r.

We proceed as in Sections 3.2 and 3.3: we consider an
initial point and run each approach five times, deriving
five signal plans. We then evaluate the performance of
each of these signal plans by running 50 simulation
replications.

Figure 12 displays two plots. The left (resp., right)
plot displays the cdfs of the standard deviation (resp.,
expectation) of the total link travel time. Each cdf con-
sists of 5 × 50 simulation observations (i.e., five signal
plans with 50 simulation replications for each signal
plan). The cdf of the initial signal plan corresponds to
the dotted dashed curve, the cdf for the signal plans
derived with r � 1.43 (resp., r � 2.1) is the solid (resp.,
dashed) curve. Solving problem P2 with these two dif-
ferent reliability ratio values leads to signal plans with
similar performance. The methodology seems insen-
sitive to such changes in the reliability ratio values.
Recent research has indicated a positive correlation
between the expectation and the standard deviation
of travel time metrics (Mahmassani, Hou, and Dong
2012, Mahmassani, Hou, and Saberi 2013). This may
contribute to the insensitivity of the approach to the
value of the reliability ratio.
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Figure 7. (Color online) Lausanne Network Model with the 17 Controlled Intersections Displayed as Grey Rectangles

We now compare the performance of methods m
and φ with different computational budgets. We pro-
ceed as in Figure 9; that is, we consider problem P2
and all three initial points. Figure 10 displays 12 plots.
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Note. These plots consider various initial points and various problem formulations.

The plots in a given column correspond to a given
computational budget. The left to right columns con-
sider budgets of 20, 50, 100, and 150 simulation runs,
respectively.
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Figure 11. (Color online) Link Travel Time Standard Deviation for the Initial Plan (Top Plot) and the Plan Obtained by
Solving Problem P2 with Metamodel m

Note. Standard deviation estimates are obtained by averaging over 50 replications.

3.5. Computational Efficiency
Each iteration of the SO algorithm involves two com-
putationally intensive tasks: (1) running the simulator;
(2) solving the trust region subproblem (defined by
Equations (C.1)–(C.7) in the online appendix). In this
section, we compare the run times needed for these
tasks. We solve the subproblem with the Matlab (Math-
Works 2011) fmincon routine for constrained nonlinear
problems and use its sequential quadratic program-
ming algorithm (Coleman and Li 1994, 1996). Details
on how the subproblem is solved are given in Osorio
and Bierlaire (2013).

For a given initial point, we solve problem P2
five times, allowing for 150 SO iterations each time.
The computer used for calculation has an Intel Core i7
processor at 3.5 GHz and 8 GB RAM. Figure 13 dis-
plays the cdfs of all 5 × 150 computational run time
observations. The left (resp., right) plot displays the
run times for the Lausanne city center (resp., full Lau-
sanne city). The solid cdf curve displays the run time
needed for the convergence of the trust region subprob-
lem, whereas the dashed cdf curve displays the run time
for one simulation replication. The simulation run time
is relatively constant across iterations, with run times of
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Figure 12. Empirical cdfs of the Total Link Travel Time Standard Deviation (Left Plot) and the Expected Total Link Travel
Time (Right Plot) with Different Reliability Ratio Values
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Figure 13. Computational Run Times for Lausanne City Center (Left) and Full Lausanne City (Right)
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the order of 30 seconds and not exceeding 60 seconds.
The trust region subproblem is solved quicker than a
single simulation run in the city center case study. For
the full city case study, it can be of the order of sev-
eral minutes (i.e., several simulation replications). This
illustrates the computational efficiency of the overall SO
framework.

4. Conclusion
This paper presents a method to address a reliable
signal control problem by using higher-order distri-
butional information derived from a stochastic sim-
ulator. The objective function is a linear combina-
tion of the expectation and the standard deviation of
total link travel time. Distributional travel time esti-
mates are derived from a detailed stochastic micro-
scopic urban traffic simulator. They are combined with
analytical approximations, which are obtained from

differentiable probabilistic macroscopic traffic mod-
els. A metamodel simulation-based optimization algo-
rithm is used.

The proposed SO approach is compared to a tra-
ditional SO approach. Three different signal control
formulations are considered. Experiments on the Lau-
sanne city center network and the full city network
are carried out. The SO methods are evaluated within
tight computational budgets, where the simulator can
be evaluated only a total of 150 times. The proposed
SO approach outperforms the traditional approach,
in particular, for formulations including the standard
deviation of link travel time. The use of the proposed
method to solve a reliable signal control problem leads
to signal plans with the lowest expected total link
travel time and the lowest standard deviation of total
link travel time. These signal plans also have the low-
est variability across simulation replications of the
travel time standard deviation. The proposed approach
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systematically outperforms the traditional approach. It
leads to aggregate improvements (total link metrics) as
well as link-level improvements.

The proposed method enables the use of highly
detailed distributional information provided by these
stochastic simulators to inform the design and oper-
ations of urban transportation networks. Such an ap-
proach can be used to efficiently address other reliable
and robust formulations of traditional transportation
problems. Of ongoing interest is the development of
traffic-responsive reliable traffic management strate-
gies. We recently proposed a tractable traffic-responsive
SO algorithm (Chen et al. 2015). Such ideas could be
combined with the ideas presented in this paper to
develop traffic-responsive reliable strategies.

As high-resolution urban mobility data (e.g., smart-
phone data, vehicle trajectory data) become more read-
ily available, it opens the way for more intricate opti-
mization problems to be addressed (e.g., network
reliability, network robustness). To enable the use of
detailed traffic models to address such problems will
require proper calibration and validation of these novel
performance metrics (e.g., reliability metrics, robust-
ness metrics). This opens the way for a variety of novel
and challenging calibration problems that aim to fit
higher-order distributional metrics. Metamodels can
play an important role in this area. For instance, as
part of ongoing work, we are exploring the use of the
analytical travel time expressions derived in this paper
to design calibration algorithms that fit both first- and
second-order moments of the data (e.g., travel time,
flows) (Zhang, Osorio, and Flötteröd 2017).

In this paper, we considered green splits as the deci-
sion vector. The proposed framework can be used to
address other types of problems with continuous deci-
sion variables. First, any continuous variable can be
included in the polynomial term of the metamodel
(φ in Equations (3) and (4)). In other words, the frame-
work can be directly applied to the optimization of
any continuous simulation-based optimization prob-
lem. Second, a computationally efficient formulation
can be obtained by including the decision variable both
in the polynomial term and in the physical component
term ( fA in Equation (3)). The latter can be achieved
by using a macroscopic model formulation that explic-
itly depends on all decision variables. For instance,
in Equation (C.4) in the online appendix, the cycle
times, c, are related to the flow capacities of the con-
trolled lanes, µ, and to the green splits, x. The cur-
rent formulation can therefore be directly used for cycle
time optimization. For offset optimization, we would
recommend the use of a time-dependent macroscopic
model. We recently formulated a tractable and scalable
time-dependent analytical network model that has been
used successfully for dynamic simulation-based opti-
mization (Chong and Osorio 2018). It is being used as

part of an ongoing collaboration with a regional trans-
portation agency to study offset optimization problems.
On the other hand, stage structure optimization is typ-
ically formulated as a discrete optimization problem.
This requires the formulation of a (nonconvex and con-
strained) simulation-based optimization algorithm for
mixed-integer problems. We are unaware of computa-
tionally efficient algorithms for such problems.

Every iteration of the proposed SO algorithm eval-
uates the performance of a set of points (i.e., signal
plans) with two types of traffic models: (i) a stochastic
dynamic microscopic traffic model (simulation-based
model) and (ii) a probabilistic stationary analytical
macroscopic traffic model. The purpose of the analyti-
cal model is to enhance the computational efficiency of
the algorithm. It should therefore be a highly efficient
model. In this paper, the microscopic simulator consid-
ers dynamic and endogenous traffic assignment (i.e.,
the assignment depends on time-varying congestion
levels and on network supply conditions such as signal
plans), while the macroscopic analytical model con-
siders time-independent and exogenous traffic assign-
ment. One extension of this work is to use a macro-
scopic model with time-dependent and endogenous
assignment. Computationally efficient analytical for-
mulations with endogenous assignment suitable for
SO and for large-scale networks were recently pro-
posed for both traffic management problems (Osorio
and Selvam 2017) and calibration problems for the
Berlin metropolitan area (Zhang, Osorio, and Flötteröd
2017). The extension of such formulations for reliable
SO problems is of interest. As discussed in Section 2.1,
the proposed framework can be used with any macro-
scopic model that is scalable and efficient. Ongoing
work studies the use of traditional traffic flow theoretic
network models for SO.

The simulation-based traffic model accounts in detail
for the between-link dependencies, while the auxiliary
analytical traffic model provides a high-level descrip-
tion of these dependencies. We recently formulated an
analytical technique that both is based on traditional
traffic flow theory and accounts in more detail for the
between-link interactions: it derives the joint queue-
length distribution of adjacent links (Flötteröd and
Osorio 2017). This can enable a more accurate approx-
imation of the link travel time distributions. Ongoing
work formulates more tractable formulations of this
novel network model to enable its use as an auxiliary
traffic model for SO.
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Appendix. Physical Components
A.1. Physical Component Used in Section 3.2
Recall from Section 2.3 that the analytical approximation of
the objective function (Equation (5)) provided by the physical
component is a function of three endogenous variables per
queue: ρi , λi , and P(Ni � ki). We present below the analyti-
cal traffic model that derives these variables. This model is
based on the general queueing network model of Osorio and
Bierlaire (2009). Its formulation for an urban traffic network is
given in Osorio (2010, Chapter 4). Each lane of an urban road
network is modeled as one or a set of finite capacity queues.
The model describes the between-link interactions (e.g., spill-
backs) through the queueing theory notion of blocking. It
provides an analytical description of how congestion arises
and propagates through the network. In the following nota-
tion, the index i refers to a given queue:

γi External arrival rate;
λi Arrival rate (also referred to as total arrival rate);
µi Service rate;
µ̃i Unblocking rate;
µ̂i Effective service rate (accounts for both service

and eventual blocking);
ρi Traffic intensity;

P f
i Probability of being blocked at queue i;
ki Upper bound of the queue length;

Ni Total number of vehicles in queue i;
P(Ni � ki) Probability of queue i being full, also known as

the blocking or spillback probability;
pi j Transition probability from queue i to queue j;
�i Set of downstream queues of queue i.

The queueing network model is defined through the fol-
lowing system of nonlinear equations:

λi � γi +

∑
j p jiλ j(1−P(Nj � k j))
(1−P(Ni � ki))

, (A.1a)

1
µ̃i

�
∑
j∈�i

λ j(1−P(Nj � k j))
λi(1−P(Ni � ki))µ̂ j

, (A.1b)

1
µ̂i

�
1
µi

+P f
i

1
µ̃i
, (A.1c)

P(Ni � ki)�
1− ρi

1− ρki+1
i

ρki
i , (A.1d)

P f
i �

∑
j

pi j P(Nj � k j), (A.1e)

ρi �
λi

µ̂i
. (A.1f)

The exogenous parameters are γi , µi , pi j , and ki . All other
parameters are endogenous. When used to solve a signal con-
trol problem (as in this paper), the capacity of the signalized
lanes becomes endogenous, which makes the corresponding
service rates, µi , endogenous.

A.2. Physical Component Used in Section 3.3
This model builds on the models of Osorio and Bierlaire
(2009) and Osorio (2010, Chapter 4) (for its detailed deriva-
tion, see Osorio and Chong 2015). It approximates the traffic
intensity of queue i, ρi , by the effective traffic intensity, ρeff

i ,

where ρeff
i � ρi(1−P(Ni � ki)). It considers the system of equa-

tions (A.1a)–(A.1f) and replaces ρ with ρeff. The following
model is obtained:

λi � γi +

∑
j p jiλ j(1−P(Nj � k j))
(1−P(Ni � ki))

, (A.2a)

ρeff
i �
λi(1−P(Ni � ki))

µi

+

(∑
j∈�i

pi j P(Nj � k j)
) (∑

j∈�i

ρeff
j

)
, (A.2b)

P(Ni � ki)�
1− ρeff

i

1− (ρeff
i )ki+1

(ρeff
i )ki . (A.2c)
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Appendix. Physical Components
A.1. Physical Component Used in Section 3.2
Recall from Section 2.3 that the analytical approximation of
the objective function (Equation (5)) provided by the physical
component is a function of three endogenous variables per
queue: ρi , λi , and P(Ni � ki). We present below the analyti-
cal traffic model that derives these variables. This model is
based on the general queueing network model of Osorio and
Bierlaire (2009). Its formulation for an urban traffic network is
given in Osorio (2010, Chapter 4). Each lane of an urban road
network is modeled as one or a set of finite capacity queues.
The model describes the between-link interactions (e.g., spill-
backs) through the queueing theory notion of blocking. It
provides an analytical description of how congestion arises
and propagates through the network. In the following nota-
tion, the index i refers to a given queue:

γi External arrival rate;
λi Arrival rate (also referred to as total arrival rate);
µi Service rate;
µ̃i Unblocking rate;
µ̂i Effective service rate (accounts for both service

and eventual blocking);
ρi Traffic intensity;

P f
i Probability of being blocked at queue i;
ki Upper bound of the queue length;

Ni Total number of vehicles in queue i;
P(Ni � ki) Probability of queue i being full, also known as

the blocking or spillback probability;
pi j Transition probability from queue i to queue j;
�i Set of downstream queues of queue i.

The queueing network model is defined through the fol-
lowing system of nonlinear equations:

λi � γi +

∑
j p jiλ j(1−P(Nj � k j))
(1−P(Ni � ki))

, (A.1a)

1
µ̃i

�
∑
j∈�i

λ j(1−P(Nj � k j))
λi(1−P(Ni � ki))µ̂ j

, (A.1b)

1
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1
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+P f
i
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, (A.1c)

P(Ni � ki)�
1− ρi

1− ρki+1
i

ρki
i , (A.1d)

P f
i �

∑
j

pi j P(Nj � k j), (A.1e)

ρi �
λi

µ̂i
. (A.1f)

The exogenous parameters are γi , µi , pi j , and ki . All other
parameters are endogenous. When used to solve a signal con-
trol problem (as in this paper), the capacity of the signalized
lanes becomes endogenous, which makes the corresponding
service rates, µi , endogenous.

A.2. Physical Component Used in Section 3.3
This model builds on the models of Osorio and Bierlaire
(2009) and Osorio (2010, Chapter 4) (for its detailed deriva-
tion, see Osorio and Chong 2015). It approximates the traffic
intensity of queue i, ρi , by the effective traffic intensity, ρeff

i ,

where ρeff
i � ρi(1−P(Ni � ki)). It considers the system of equa-

tions (A.1a)–(A.1f) and replaces ρ with ρeff. The following
model is obtained:

λi � γi +

∑
j p jiλ j(1−P(Nj � k j))
(1−P(Ni � ki))

, (A.2a)
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, (A.2b)
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References
Abu-Lebdeh G, Benekohal R (1997) Development of traffic control

and queue management procedures for oversaturated arterials.
Transportation Res. Record 1603:119–127.

Barceló J (2010) Fundamentals of Traffic Simulation, Internat. Series
Oper. Res. Management Sci., Vol. 145 (Springer, New York).

Barton RR, Meckesheimer M (2006) Metamodel-based simulation
optimization. Henderson SG, Nelson BL, eds. Handbooks in Oper-
ations Research and Management Science, Vol. 13 (North-Holland,
Amsterdam), 535–574.

Batley R, Ibáñez N (2012) Randomness in preference orderings, out-
comes and attribute tastes: An application to journey time risk.
J. Choice Modelling 5(3):157–175.

Ben-Akiva M, Cuneo D, Hasan M, Jha M, Yang Q (2003) Evaluation
of freeway control using a microscopic simulation laboratory.
Transportation Res. Part C 11(1):29–50.

Black IG, Towriss JG (1997) Demand effects of travel time reliabil-
ity. Report, Centre for Transport Studies, Cranfield Institute of
Technology, Cranfield, UK.

Branke J, Goldate P, Prothmann H (2007) Actuated traffic signal opti-
mization using evolutionary algorithms. Proc. 6th Eur. Congress
Exhibition Intelligent Transport Systems Services, Aalborg, Denmark,
203–225.

Bullock D, Johnson B, Wells RB, Kyte M, Li Z (2004) Hardware-in-
the-loop simulation. Transportation Res. Part C 12(1):73–89.

Carrion C, Levinson D (2012) Value of travel time reliability: A review
of current evidence. Transportation Res. Part A 46(4):720–741.

Cascetta E, Nuzzolo A, Russo F, Vitetta A (1996) A modified logit
route choice model overcoming path overlapping problems:
Specification and some calibration results for interurban net-
works. Proc. 13th Internat. Sympos. Transportation Traffic Theory
(Pergamon, Lyon, France), 697–711.

Chen C, Skabardonis A, Varaiya P (2003) Travel time reliability as a
measure of service. Transportation Res. Record 1855(1):74–79.

Chen X, Osorio C, Marsico M, Talas M, Gao J, Zhang S (2015)
Simulation-based adaptive traffic signal control algorithm.
Transportation Res. Board Annual Meeting, Washington, DC.

Chong L, Osorio C (2018) A simulation-based optimization algo-
rithm for dynamic large-scale urban transportation problems.
Transportation Sci. 52(3):637–656.

Clark S, Watling D (2005) Modelling network travel time reliability
under stochastic demand. Transportation Res. Part B 39:119–140.

Coleman TF, Li Y (1994) On the convergence of reflective New-
ton methods for large-scale nonlinear minimization subject to
bounds. Math. Programming 67(2):189–224.

Coleman TF, Li Y (1996) An interior, trust region approach for nonlin-
ear minimization subject to bounds. SIAM J. Optim. 6:418–445.

Conn AR, Scheinberg K, Vicente LN (2009a) Global convergence
of general derivative-free trust-region algorithms to first- and
second-order critical points. SIAM J. Optim. 20(1):387–415.

Conn AR, Scheinberg K, Vicente LN (2009b) Introduction to Derivative-
Free Optimization, MPS/SIAM Series Optim. (SIAM and MPS,
Philadelphia).



Transportation Science, 2019, vol. 53, no. 2, pp. 523–544, © 2019 INFORMS544
Chen, Osorio, and Santos: Simulation-Based Travel Time Reliable Signal Control

Transport for London (2010) Traffic modelling guidelines, Version
3.0. Technical report, Transport for London, London.

Transport Simulation Systems (2011) AIMSUN 6.1 Microsimulator
Users Manual (Transport Simulation Systems, New York).

U.S. Department of Transportation (2008) Transportation vision
for 2030. Technical report, Research and Innovative Tech-
nology Administration, U.S. Department of Transportation,
Washington, DC.

van Lint JW, van Zuylen HJ (2005) Monitoring and predicting free-
way travel time reliability: Using width and skew of day-to-day
travel time distribution. Transportation Res. Record 1917(1):54–62.

VSS (1992) Norme Suisse SN 640837: Installations de feux de circu-
lation; temps transitoires et temps minimaux. Union des Profes-
sionnels Suisses de la Route, VSS, Zurich.

Wong S, Wong W, Leung C, Tong C (2002) Group-based optimiza-
tion of a time-dependent TRANSYT traffic model for area traffic
control. Transportation Res. Part B 36(4):291–312.

Yin Y (2008) Robust optimal traffic signal timing. Transportation Res.
Part B 42(10):911–924.

Yun I, Park B (2006) Application of stochastic optimization method
for an urban corridor. Proc. Winter Simulation Conf. (IEEE,
Piscataway, NJ), 1493–1499.

Zhang C, Osorio C, Flötteröd G (2017) Efficient calibration tech-
niques for large-scale traffic simulators. Transportation Res. Part B
97:214–239.

Zhang L, Yin Y, Lou Y (2010) Robust signal timing for arterials
under day-to-day demand variations. Transportation Res. Record
2192:156–166.




