RE - BUILD

Circular transformation extension Palace of Justice, Arnhem

Martijn Baelemans
9 July 2020
4212932
Annebregje Snijders Paddy Tomesen Bob Geldermans

Personal interest

Lifespan & Sustainability

Lifespan & Sustainability

Second Life Assignment

Multiple issues

- 1. Monofunctional
- 2. Low architectural value
- 3. Old technical installations
- 4. High energy demand

Second Life Assignment

Multiple issues

- 1. Monofunctional
- 2. Low architectural value
- 3. Old technical installations
- 4. High energy demand

Transformation

Extension Palace of Justice, Arnhem

Transformation

Design proposal

Circular material strategy

Presentation content

- 1. Palace of Justice, Arnhem
- 2. Circular material strategy
- 3. Design
- 4. Conclusion & reflection

Extension building Completed : 1997 Architect: J.D. Peereboom Voller

Main building Completed : 1963 Architect: F. Sevenhuijsen

Urban setting

'Bestuurskwartier' Government district

Urban setting

Reconstruction period

Historical city centre

Typical plot size

120 m² 1500 m²

Reconstruction period: Upscaling of urban fabric

Urban setting

Highly valued area vs Monotonous 'Prinsenhof'

Building analyses Facades

Current situation

Building ensemble

Municipal vision

Current situation

Current situation

- 1. Monofunctional
- 2. Uncomfortable
- 3. Low architectural value

Design

Future scenario

Function independently

Restored into original status

De.	SI	gr
	71	ייכ

Objective

Design question:

'How to transform the extension building into a qualitative and flexible structure, with a uniform architetural expression, a clear organisation and a comfortable user environment to ensure a long lifespan?'

Sustainability in built environment

Global CO2 emissions by sector

Sustainability in built environment

Sustainable development goal

Sustainability in built environment

2050

Future scenario

Sustainability in built environment

Circularity

Circular system diagram

33

Circularity in built environment

CO₂ emissions of building materials & construction

Circularity in built environment

1. Sharing business models; mixed use buildings

2. Prolong lifetime of buildings

3 Reuse & recycling of building materials

Circularity in built environment

1. Sharing business models; mixed use buildings

2. Prolong lifetime of buildings

3 Reuse & recycling of building materials

Material inventory

Material inventory

Principles

Levels of reuse

Material inventory

Material inventory

Concrete

Amount 24.670 ton

Embodied carbon 2.556 ton CO₂

Steel

Amount 772 ton

Embodied carbon 1.550 ton CO₂

Aluminium

Amount 16 ton

Embodied carbon 105 ton CO₂

Glass

Amount 38 ton

Embodied carbon 62 ton CO₂

Limestone

Amount 62 ton

Embodied carbon 6 ton CO₂

Rockwool

Amount 53 ton

Embodied carbon 70 ton CO₂

Gypsum

Amount 161 ton

Embodied carbon 317 ton CO₂

Embodied carbon

Concrete

Amount 24.670 ton

Embodied carbon 2.556 ton CO₂

Steel

Amount 772 ton

Embodied carbon 1.550 ton CO₂

Aluminium

Amount 16 ton

Embodied carbon 105 ton CO₂

Glass

Amount 38 ton

Embodied carbon 62 ton CO₂

Limestone

Amount 62 ton

Embodied carbon 6 ton CO₂

Rockwool

Amount 53 ton

Embodied carbon 70 ton CO₂

Gypsum

Amount 161 ton

Embodied carbon 317 ton CO₂

Total embodied carbon:

4666 ton CO₂ eq.

Current recycling rate

Concrete

Amount 24.670 ton <3%

Embodied carbon 2.556 ton CO₂

Steel

Amount 772 ton

85%

Embodied carbon 1.550 ton CO₂

Aluminium

Amount 16 ton

95%

Embodied carbon 105 ton CO₂

Glass

Amount 38 ton

60%

Embodied carbon 62 ton CO₂

Limestone

Amount 62 ton

Embodied carbon 6 ton CO₂

Rockwool

50%*

Amount 53 ton

Embodied carbon 70 ton CO₂

Gypsum

50%*

Amount 161 ton

Embodied carbon 317 ton CO₂

^{*} Recycled content in specific product types

Thematic research

Thematic research

Thematic research

Towards a circular concrete sector

Thematic research

Concrete recycling

Smart crusher installation

Thematic research - conclusion

Research inplementation:

'What are the environmental benefits of integrating reused and recycled materials into the design?'

3. Design

Extension building

	•
De.	sıar

Objectives

Design objective:

'How to transform the extension building into a qualitative and flexible structure, with a uniform architetural expression, a clear organisation and a comfortable user environment to ensure a long lifespan?'

Research inplementation:

'What are the environmental benefits of integrating reused and recycled materials into the design?'

Principles

Design objective:

'How to transform the extension building into a qualitative and flexible structure, with a uniform architetural expression, a clear organisation and a comfortable user environment to ensure a long lifespan?'

Open building

Support & infill

Shearing layers of change

Defining the basis - Volumetric arrangement

Defining the basis - Volumetric arrangement

Defining the basis - Urban scale

Defining the basis - Urban scale

Defining the basis - Internal hierarchy

Defining the basis - Adding quality

Defining the basis - Routing

Defining the basis - Programm

Defining the basis - Circulation

Defining the basis - Circulation

Defining the basis - Circulation

Defining the basis - Functional flexibility

Programmatic infill

Ground floor

Principles

Research objective:

'What are the environmental benefits of integrating reused and recycled materials into the design?'

Levels of reuse

Existing situation

Facade fragment main volume

Facade fragment wings

Existing situation

Facade fragment main volume

Existing situation

Current wall element

Facade fragment wings

Recycle Reuse

Contextual relations

Contextual relations

Reuse 75%

Design

Facades

North facade

Facade fragment main building

Facade fragment wings

Conclusion

Conclusion

1. Reuse

Concrete structure Total: 23.800 ton Reused: 19.833 ton

Concrete facade frame 242x Total: Reused: 214x

reused on same location

reused in courtyard roof structure

75% Limestone facade cladding Total: 1772x

1326x

reused as facade cladding in plinth

Reused:

30,5 ton 25,8 ton (85%) Reused:

reused in basement insulation and inside reused as facade covering of rooftop partition walls

Gypsum Total:

Reused: reused as 1st layer in partition wall finish

41%

20700 m²

8432 m²

 $374 \, \text{m}^2$

pavilion

2. Remake

100%

Concrete facade cladding Total: 208x 208x Reused:

addapted to be used on same location

Steel tubes Total: Reused:

510x 500x

adapted to be used in courtyard and atrium sub-structure

Double glass panels Total: 777x Reused: 744x

adapted to be used as double double glass in courtyard and atrium covering

Enamelled glazing Total: 160 m² Reused: 42 m²

reused as separating panel in plinth

recycled to be used in: Facade infill 320 ton Aluminium window frames external: 197,5 ton internal: 122,5 ton Total: Floor finish 1940 ton Reused:

Walkways 228,5 ton adapted to be used in courtyard and Courtyard wall atrium sub-structure

129 ton

Steel rebar Total: Recycled: 48 ton

recycled to be used in courtyard roof structure and railings

Gypsum Total: Reused:

reused as 2nd layer in partition wall finish

162 ton

59 ton

36%

16 ton

16 ton

Conclusion

Circular transformation

735 ton CO₂

85% reduction

END

THANK YOU