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S P A C E  R O B O T S

Optimality principles in spacecraft neural  
guidance and control
Dario Izzo1*, Emmanuel Blazquez1, Robin Ferede2, Sebastien Origer2,  
Christophe De Wagter2, Guido C. H. E. de Croon2

This Review discusses the main results obtained in training end-to-end neural architectures for guidance and 
control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the success-
ful learning of optimality principles by the underlying neural models. Spacecraft and drones aimed at exploring 
our solar system are designed to operate in conditions where the smart use of onboard resources is vital to the 
success or failure of the mission. Sensorimotor actions are thus often derived from high-level, quantifiable, opti-
mality principles assigned to each task, using consolidated tools in optimal control theory. The planned actions 
are derived on the ground and transferred on board, where controllers have the task of tracking the uploaded 
guidance profile. Here, we review recent trends based on the use of end-to-end networks, called guidance and 
control networks (G&CNets), which allow spacecraft to depart from such an architecture and to embrace the 
onboard computation of optimal actions. In this way, the sensor information is transformed in real time into opti-
mal plans, thus increasing mission autonomy and robustness. We then analyze drone racing as an ideal gym envi-
ronment to test these architectures on real robotic platforms and thus increase confidence in their use in future 
space exploration missions. Drone racing not only shares with spacecraft missions both limited onboard compu-
tational capabilities and similar control structures induced from the optimality principle sought but also entails 
different levels of uncertainties and unmodeled effects and a very different dynamical timescale.

INTRODUCTION
The design of a space exploration mission heavily relies on optimal-
ity principles. Given the absence of a safe harbor in space, every 
onboard resource, including propellant mass, available energy, and 
computing capabilities, must be used parsimoniously to ensure the 
highest possible mission return. Even with safety margins built into 
the mission plan, executing suboptimal plans can result in the failure 
of the entire mission. This is in contrast to many Earth-based indus-
trial applications, where optimality is often not the main concern. 
To address this challenge, since the early days of space flight, opti-
mal control models have been developed that capture the optimality 
principles relevant to different mission phases and translate them 
into elaborate system behaviors. In practice, the optimal guidance 
profile that follows the application of abstract optimality principles 
is carefully derived on the ground, well ahead of the mission launch, 
for most flown and planned missions. The plan is then uploaded on 
board and acted upon by the dedicated control system that, using 
the specific actuators available, tracks the planned profile by con-
tinuously canceling incurred deviations. This approach is common 
to interplanetary trajectory phases, landing phases, surface explora-
tion phases, formation flying missions, and more (see Fig. 1), thanks 
to the abstract nature of the well-established optimal control theory, 
which allows capture of different dynamics, actuator models, and 
timescales. It also has the advantage of being a well-tested and vali-
dated approach with a history of successfully embedding optimality 
principles in the onboard control system, allowing missions to meet 
their requirements.

This common approach is, however, known to be suboptimal. It 
violates a “minimal intervention” principle, well described by Todorov 

and Jordan (1): Efforts to correct deviations from an average path 
should be made only when interfering with task performance. In our 
context, in the case of a deviation from the preplanned trajectory, the 
onboard controller should not try to steer the system back to the tra-
jectory because the new situation may require other actions for opti-
mality. The approach also carries higher risks in missions where 
substantial unmodeled effects, noise, uncertainties, and unforeseen 
events are present, which could result in strong deviations from the 
original plan. In such cases, a new optimal guidance profile may need 
to be developed on the ground and uploaded to the spacecraft, greatly 
hindering its autonomy.

This raises the question of why space missions do not continu-
ously replan and compute the optimal guidance profile on board, for 
example, by using model predictive control (MPC). Recent efforts 
have been made to develop MPC approaches for various mission 
profiles, aiming to overcome these limitations. MPC has been stud-
ied in the past decades as a promising control approach for aerospace 
systems [see (2) for a review of MPC in this context] allowing on-
board automated transformations of high-level optimality principles 
into actions. It relies on the availability of numerical methods to reli-
ably solve some form of an optimal control problem, starting from 
the information on the current system state and the time. This online 
optimization returns an optimal sequence of open-loop predicted 
actions, the first of which is considered the best current control 
action. Despite great advances in associated numerical techniques 
and theory (3, 4), the uptake of modern MPC approaches in space 
missions remains limited by the available onboard computational 
capabilities and the reliability of existing numerical solvers.

A different, albeit related, approach appeared more recently in the 
robotics and the aerospace fields. It is loosely inspired by models that 
interpret sensorimotor action in humans in terms of optimal control 
theory (5), thus suggesting how optimality principles, in the mathe-
matical sense, are deeply embedded directly in the neuromusculo-
skeletal system. The new approach attempts to mimic this structure 
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in the guidance and control architecture of space systems by training 
a deep artificial neural network (DNN) to represent directly the rela-
tion between the system state and its action under some predefined 
task and optimality principle. In this context, the network depth re-
fers to the use of multilayer perceptrons that are capable, already with 
a few layers, of a high representativity (6, 7). Following this approach, 
the guidance and control blocks of a typical space mission control 
architecture are substituted with one end-to-end DNN that does not 
make use of a reference trajectory and is thus also called a guidance 
and control network (G&CNet) (8, 9). In comparison with the MPC 
approach, the step of having to solve an optimal control problem on 
board is bypassed and substituted by a single, computationally less 
expensive, neural inference (see Fig. 2). Most of the desirable proper-
ties of MPC [see (2) for a comprehensive review] are instead retained, 
with the new architecture requiring orders of magnitude fewer onboard 

computational resources. The treatment of constraints, often quoted 
as an advantage in MPC approaches, is, for example, also possible 
when training the DNN weights by introducing the corresponding 
task and optimality principle in the training pipeline. Ongoing re-
search on this approach is focused on designing an efficient proce-
dure to train the weights of artificial neural networks to accurately 
represent the desired task execution.

In this work, we review the use of G&CNets as a viable and 
promising path toward achieving onboard optimal decision-making 
in different space mission scenarios. We discuss past works that 
made use of two main techniques to train such networks in the con-
text of space missions: behavioral cloning, an imitation learning 
approach that learns the optimal policy directly (essentially super-
vised learning), and reinforcement learning (RL). After evaluating 
the current state of the art for both approaches, we conclude by 
showing the use of drone flight racing as a safe stepping stone to-
ward the onboard implementation of such networks for real mis-
sions and present concrete examples of the capabilities of embedded 
G&CNet implementations using drones as a model system. The suc-
cess of G&CNets on extremely resource-restricted drones illustrates 
their potential to bring real-time optimal control within reach of a 
wider variety of robotic systems, both in space and on Earth.

OPTIMALITY IN GUIDANCE AND CONTROL OF SPACE SYSTEMS
Space systems are typically well characterized and tested extensively 
on the ground before launch. Their mass, inertia tensor, flexibility, 
and thrusters are all subject to thorough testing, and precise models 
of the entire system behavior are developed well in advance of the 
mission launch. However, in some cases, the development of the 
control system of a space system still requires the consideration of 
stochastic terms in its dynamics. Uncertainties can arise from un-
modelable (or difficult-to-model) effects originating either from the 
system itself or from the environment in which it is designed to 
operate. Examples of the former include fuel sloshing (10, 11), 
misthrust events (12–14), or corrupted sensor measurements (15). 
Uncertainties coming from the environment arise, for example, in 
deep space missions to asteroids where the body shape is known 
only to a limited extent during most mission phases (16, 17) or 
in situations where the atmosphere of some celestial body plays a 
role, such as reentry, aerocapture, or exploratory drone flights (18–
20). Uncertainties about solar activity or other space-environment 
quantities also result in unmodeled effects.

In any case, ignoring the stochastic contribution and using the 
sophisticated mathematical framework for deterministic optimal 
control, which emerged from Pontryagin’s seminal work on optimal 
control theory (21), offers a starting point to understand the math-
ematical structure rising from chosen optimality principles. Under 
this framework, it is well known how the optimal feedback is already 
a discontinuous and nonlinear function of the system state for most 
simple low-dimensional and linear systems (21). An informing 
example is that of the time optimal precession angle control of a 
spinning satellite (22) where the analytical solution is available and 
allows exceptionally to observe the optimal control-switching struc-
ture in the full state space, revealing the extremely nonlinear and 
discontinuous nature of such a function (see Fig. 3). This is the case 
not only for time optimality but also, and to a larger extent, for 
higher-dimensional cases and propellant mass optimality: the pri-
mary optimality principle for most deep-space mission phases. In 

Fig. 1. Optimality principles determine the decision-making during different 
phases of exploration missions. (A) During an interplanetary phase, the space-
craft dynamics are well identified. Uncertainties are limited, and the departure 
from a theoretical mass optimal guidance is of less importance because of the rela-
tively slow dynamics involved. Please note the timescale of the x axis in years and 
the bang-bang profile of the thrust (solid line). (B) During a landing phase, accord-
ing to the specific mission profile, the adaptiveness and robustness of the planned 
actions have a larger effect on the mission success, also considering that human 
operators are typically too far away to allow replanning within an acceptable time-
frame. Please note the timescale of the x axis in minutes and the discontinuous 
actions. (C) During a planetary exploration phase (for instance, rovers or flying 
drones), uncertainties are larger, and optimality principles, such as careful use of 
available onboard energy, need to be embedded into highly disturbed and fast 
dynamics (timescale in seconds). Depending on the phase of the missions, control 
systems may have a lot or very little time to recover from errors and cope with 
noise. The Ingenuity Mars helicopter is used here to visualize this case.
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deep-space missions, thrust is mostly achieved through the ejection 
of propellant mass, which causes the spacecraft to lose mass and 
accelerate in the opposite direction. This specific form of control for 
mass-varying systems creates a distinct structure of the resulting 
optimal actions that is the subject of a large body of works from the 
aerospace community [see, for example, (23)]. Thrust is also often 
modeled as a sequence of impulsive velocity changes rather than as 
a continuous action, and dedicated concepts such as the primer 
vector introduced by Lawden (24) have been used to expand on 
Pontryagin’s work and help to answer complex questions on the re-
sulting intricate structure of the optimal sequence of impulsive ma-
neuvers (25–28).

When stochastic terms are considered in the system dynamics, 
the mathematical structure of the optimal control problem under-
goes a substantial change. As a result, Pontryagin’s theory is no lon-
ger applicable, and Bellman’s dynamic programming methods (29) 
offer a more appropriate tool based on the concept of the optimal 
cost to go or value function (30). This added complexity is captured 
by a set of nonlinear, second-order, partial differential equations 
known as the Hamilton-Jacobi-Bellman equations (31). Obtaining a 
solution to these equations determines the value function and, con-
sequently, the optimal policy. However, even in the simplest cases, 
solving these equations can be challenging, especially for problems 
relevant to this context. These problems often lead to discontinuous 

structures for optimal actions, requiring a high level of accuracy in 
the pursued final solution.

Most importantly, Bellman’s mathematical framework allows for 
demonstrating the existence and uniqueness of solutions in terms of 
the value function and thus the existence (outside of singular corner 
cases) of optimal feedback in the form u*(x) where u* denotes the 
optimal feedback and x denotes the system state. In summary, for 
any deterministic or stochastic task, the current system state and an 
associated optimality principle are sufficient to decide the action to 
be taken. However, such an optimal state-action mapping is nonlin-
ear and discontinuous and has an extremely intricate differential 
structure. Consequently, executing these actions becomes more 
challenging because of the requirement for precise state estimation 
and timing. Of course, these characteristics also pose additional dif-
ficulties when learning from the optimal feedback using deep neural 
networks, which is discussed profusely in the next section.

EMBEDDING OPTIMALITY PRINCIPLES INTO NEURAL MODELS
Artificial neural networks are highly versatile in their ability to ap-
proximate complex and discontinuous functions, even in their sim-
plest shallow feed-forward architecture, as recently rediscussed in 
depth by Calin (32). They have been demonstrated to represent the 
optical characteristics of complex three-dimensional scenes with 

remarkable detail, as evidenced by the 
work of Mildenhall et al. (33), as well as to 
model the gravitational field of irregular 
bodies in the solar system with a preci-
sion exceeding that of classical methods, 
such as spherical harmonic expansions 
(34). Therefore, DNNs are an obvious 
choice for representing the complex 
structure of the optimal policies u* (or the 
value function) often needed in space 
missions. A DNN (here denoted generi-
cally with 𝒩θ) can formally approximate, 
within some tolerance ϵ, a parametric 
optimal feedback of the form

where the parameters p may capture 
different tasks, objectives, and environ-
mental properties, such as constraints 
and unknown gravitational effects. As 
a result, the biases and weights θ of the 
neural model incorporate multiple opti-
mality principles, which are subsequently 
converted into control commands through 
onboard inference. This inference process, 
eventually to be carried out on board space 
agents, is becoming increasingly efficient 
because of the development of dedicated 
artificial intelligence (AI) accelerators for 
on-the-edge computations, leading to the 
creation of new space-qualified dedicated 
hardware (35). AI-focused processors 
were embarked in the Φ-Sat-1 (36) mission, 
field-programmable gate arrays on OPS-
SAT (37), and HYPer-spectral Smallsat 

u∗(x, p) =θ(x, p) + ϵ (1)

A B

Fig. 2. G&CNets have a similar role to MPC in the architecture of an autonomous mission. (A) MPC iteratively 
solves onboard optimal control problems predicting state and actions over a defined time horizon on the basis of an 
existing system model. This results in possible optimality guarantees with full predictive information at the expense 
of heavy onboard computational burden determined by the complexity of the system model and the optimal con-
trol problem to be solved. (B) A G&CNet inference directly transforms the system state into actions. (i) When trained 
using RL, an agent learns from experience the final probabilistic policy on the basis of a critical reward-feedback loop 
with the environment. The resulting architecture can be resilient to stochastic disturbances but is often based on 
engineered reward functions that depart from the original optimality principle assigned. (ii) When trained via super-
vised learning, the network captures a clear optimality principle in its structure, directly inferring optimal actions 
from the state feedback at high frequency. Such a solution allows for fast direct inference with limited hardware re-
quirements and is possibly subject to instability and lack of robustness when the state falls outside the set used to 
train the network.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on July 02, 2024



Izzo et al., Sci. Robot. 9, eadi6421 (2024)     19 June 2024

S c i e n c e  R o b o t i c s  |  R e v i e w

4 of 11

for ocean Observation (HYPSO-1) (38, 39), and graphics processing 
units are being considered for future non–mission-critical applica-
tions (40, 41). The use of DNNs for onboard systems with limited 
computational resources, such as spacecraft, cubesats, and planetary 
drones, has been only recently proposed in the context of space mis-
sions and is attracting the attention of a growing number of scien-
tists. The term G&CNets (8, 9), introduced in early studies at the 
European Space Agency, is here used to indicate such DNNs prom-
ising to replace traditional control and guidance architectures in 
future space missions. G&CNets’ main attractiveness stems from 
their promise to bypass problems connected to the onboard solution 
of optimal control problems, typical, for example, of classic MPC 
schemes (2), at the cost of introducing the need to pretrain robust 
neural models on the ground. Trivially, in the limit case in which 
both an MPC and a G&CNet can compute the actual true optimal-
feedback u* without errors and with similar computational complex-
ity, they correspond to equivalent guidance and control architectures. 
Two main approaches are mostly being studied in the context of 
G&CNet training: behavioral cloning and RL. In both cases, as part 
of the algorithmic framework, a simulation of the space system con-
sidered is required. The large variety of spacecraft and mission pro-
files limits the possibility to construct a single simulator able to 
capture all aspects, as opposed to a recent attempt for the specific 
case of quadrotors (42). Simulators are thus built and used on a case-
by-case basis, typically involving the high-fidelity numerical solu-
tion of initial value problems defined upon differential equations 

describing the system dynamics, possibly including some augmented 
states. Typically, the absence of contact dynamics and complex aero-
dynamics effects and the highly precise identification of actuator 
models done for most space missions result in the capability of sim-
ulators to capture the real system dynamics with a high degree 
of fidelity.

Approaches based on behavioral cloning
The model parameters θ of the DNN approximating the parametric 
optimal feedback 𝒩θ(x, p) can be learned via a supervised learning 
approach, provided some dataset

is available containing optimal state-action pairs for one or more 
tasks represented by p. This approach is also referred to as imitation 
learning (7) or, more precisely, behavioral cloning (43) because the 
expert policy (an optimal pilot in this case) is learned directly. After 
the successful demonstration over a range of simulated landing 
tasks (6), a large number of works independently tested the capa-
bilities of imitating the optimal control in diverse space contexts 
such as lunar and Mars landings (43, 44), irregular asteroid landings 
(45), low-thrust missions and orbital transfers (46–48), solar sailing 
(49), proximity operations (50), drone flights (7), and misthrust 
problems (51). Although many of the cases reported achieved con-
vincing results, much research still needs to be done to tackle the 
issues connected to the behavioral cloning approach: the efficient 

 ≔ {(x, p), u∗} (2)

A B

C

Fig. 3. Challenges in approximating optimal feedback with a G&CNet. (A) Optimal control tasks can have very high-dimensional solutions. Already in simple preces-
sion control, a complex structure emerges. In this case, the task is to lead in the shortest possible time a precessing satellite to a uniform rotation around its symmetry axis, 
thus canceling the components ωx and ωy of its angular velocity. The resulting deterministic optimal control problem is one rare case where an analytical solution can be 
derived, allowing us to peek into the structure of the optimal policy over the entire state space. According to the values of ωx and ωy, the thrusters are switching direction 
in correspondence to a complex and discontinuous switching line. The resulting time-optimal trajectories are shown in color. (B) The optimality principle pursued affects 
the resulting control profile and its gradient. Here, the optimal control commands from energy-optimal to time-optimal quadcopter flights are shown. The control profiles 
were obtained by solving optimal control problems with a direct method. The cost function used in this case (59) is J(u, tf ) = (1 − ϵ) tf + ϵ ∫

tf

0
‖u(t)‖2dt , where u are the 

control inputs, tf is the final time, and ϵ is a term allowing to gradually go from time to energy optimality. (C) Smooth control profiles result in smaller errors compared with 
nonsmooth bang-bang profiles when approximated by a G&CNet.
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creation of a dataset 𝒟, the verification of requirements on the re-
sulting onboard control system (52), and the inclusion of mecha-
nisms able to cope with unmodeled components (51).

The creation of a dataset 𝒟 requires running numerical optimal 
control solvers over a large set of initial states. This demanding com-
putational effort can be alleviated by the use of techniques leverag-
ing the proximity to previous solutions found [such as homotopy or 
continuation; (53)] but remains a limiting factor, although not one 
burdening the onboard inference speed. As a consequence, the 
number of optimal trajectories needed to build 𝒟 for these specific 
space tasks has been, so far, mostly limited to the order of tens of 
thousands (48, 49, 51, 54). Small datasets are unable to harness the 
full potential of a deep supervised learning pipeline and only allow 
for partial investigations of the potential of G&CNets, restricting 
possible results to only small portions of the state space. In cases 
where Pontryagin’s theory can be used to derive necessary condi-
tions for optimality via the introduction of a two-point boundary 
value problem defined on the augmented dynamics (indirect meth-
ods), a technique called backward generation of optimal examples 
(BGOE; see Fig. 4) has been recently introduced to allow the cre-
ation of datasets 𝒟 that are orders of magnitude larger than what is 
otherwise possible. BGOE has been used in the context of studies on 
Earth-Venus mass optimal interplanetary transfers (46), as well as 
time-optimal asteroid belt mining missions (47), showing promis-
ing results and allowing the creation of public datasets containing 
millions of optimal trajectories rather than only a few thousand.

Studies on the use of BGOE are still preliminary, and the tech-
nique cannot be used in general, for example, in contexts where in-
direct optimization methods fail. As a consequence, most of the past 

works using the behavioral cloning approach to train a G&CNet for 
a spacecraft suffer from an insufficient representativity of the trained 
network, resulting in the system state propagating outside the train-
ing set and thus the onboard closed loop becoming unstable. In the 
presence of strong perturbations and uncertainties, this can be the 
case even if the dataset size is appropriate. To tackle this issue, 
approaches of data augmentation implementing different variations 
of the dataset aggregation method (55) technique have been not 
only proposed and used (43, 44, 51, 54) but also criticized because 
they increase the burden of generating additional optimal state-
action pairs.

An alternative approach to creating the dataset 𝒟 proposed out-
side of the traditional space domain involves the use of optimal con-
trollers as the guiding supervisory signal, as explored in the works 
by Nubert et al. (56) and recent developments in near-optimal rapid 
MPC methods (57). This strategy enables real-time inference of 
an approximate MPC policy, thereby circumventing, similarly to 
G&CNETs, the computational overhead associated with solving 
optimization problems at each time step. However, it introduces an 
additional layer of approximation, which may be superfluous when 
access to the actual optimal control is readily available as a teacher 
signal. To address concerns arising from the use of such an approxi-
mate policy, a “dual policy” learning scheme has been proposed [as 
documented in (57)] that conducts an online assessment of the con-
troller’s optimality. In cases where the proposed controls are found 
to be suboptimal, a cautious fallback mechanism is triggered using 
established controllers, such as proportional-integral-derivative or 
linear quadratic regulator, intentionally sacrificing optimality to 
ensure constraint satisfaction.

Last, the question of how many dif-
ferent tasks and optimality principles can 
be embedded into a single DNN using 
a behavioral cloning approach remains 
open because works addressing this is-
sue were only carried out preliminarily 
for interplanetary trajectories (58) and 
drones (59, 60). These early results show 
how the introduction of multiple tasks 
and environment variables encoded in 
the extra parameters p seems to help 
in regularizing the discontinuous be-
havior resulting from aggressive opti-
mality principles and in coping with 
unforeseen, unmodeled external pertur-
bations (see the later section on onboard 
drone flight implementation).

Approaches based on deep 
reinforcement learning
A second approach suitable for learning 
the parameters θ of a G&CNet is deep 
RL (DRL). DRL captures a large variety 
of approaches and numerical methods 
concerned with the problem of an agent 
learning a policy to perform a specified 
task in its environment from experience 
and not from expert demonstrations. 
The policy, often indicated with the 
symbol πθ(u∣x), is represented by a DNN 

A

B

Fig. 4. The BGOE technique allows generation of orders-of-magnitude larger datasets by perturbing one nom-
inal solution. (A) The nominal solution for the case of a time-optimal transfer from the asteroid belt to Earth (visual-
ized in a rotating frame). (B) Two bundles of 200,000 optimal trajectories were found by applying BGOE to the nominal 
solution. Larger perturbations of the nominal trajectory result in better coverage of conditions close to the Earth 
(short bundle), which reduces the likelihood that the spacecraft lands outside of the training data (47). For compari-
son, the generation of all 400,000 trajectories uses the same numerical resources used to generate one nominal op-
timal solution. For clarity, we show only a portion of this dataset here.
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and returns the probability to choose the control u given the agent 
state x. In a deterministic setting, such a policy, when optimal, must 
correspond to the solution of the related optimal control problem 
so that one can formally write

where the Dirac delta has been used to indicate certainty over 
choosing the optimal feedback u*. In a stochastic setting, the DNN 
typically outputs some statistical property of the policy, most 
commonly its mean value—the variance being often considered 
constant. To use DRL to train the parameters of a G&CNet, the 
continuous control problem has to be modeled as an agent that 
learns through a sequential decision-making process, a Markov 
decision problem, where the simulated environment includes all 
types of uncertainties relevant to the particular mission phase 
considered. Early works (61, 62), for example, applied this approach 
to the problem of controlling a spacecraft hovering over an asteroid 
with an uncertain gravity field and considering a stochastic dynam-
ics perturbed by solar radiation pressure acceleration as well as 
accounting for sensor noise. The approach was later extended and 
refined to interplanetary transfers (9, 63), rendezvous and docking 
(64, 65), planetary landing problems (66), and drone flights (67, 68). 
In all of these cases, the trained DNN was suitable for onboard use 
and proved to be robust to different levels and types of stochastic 
effects. Although very promising, the DRL approach has much to 
prove in terms of actual optimality. Optimality principles and termi-
nal and path constraints are all encapsulated in the so-called reward 
function driving most of the agent learning. Engineering an appro-
priate reward function turns out to be problematic in most cases, 
and, when successful, the optimality principle that it corresponds to 
is unclear. Not surprisingly, the suboptimality resulting from the 
DRL approach was noted and quantified by the authors of successful 
implementations (9, 63, 64).

In a different context, specifically in the domain of drone racing, 
recent advancements in RL approaches have yielded noteworthy 
performances. In drone racing, the challenge associated with defin-
ing a dense reward function is considerably mitigated, if not entirely 
eliminated. This distinctive characteristic emerges from the ability 
to regard a reduction in distance to the targeted gate as approaching 
optimality. This feature stands in stark contrast, for example, to the 
interplanetary transfer case, where the task of formulating a dense 
reward function is more complex because of the absence of inherent 
trajectory-related metrics. Recent work proposed the use of DRL to 
learn Lyapunov functions as well as the domain-specific Q-law (69) 
in multiple revolution interplanetary transfers and showed the dif-
ficulty of finding such dense rewards in general.

Song et al. (70) have recently argued that modern DRL efforts are 
superior to methods based on optimal control because they do not 
seek to optimize a given objective function better; instead, they in-
trinsically define a better objective. We agree that this may be the 
case but only for systems where uncertainties are prevailing and ap-
proaches grounded on the underlying optimal control theory 
(Bellman equations) fail to provide sufficient performances. The re-
cent paper from Kumar et al. (71) is also relevant to this discussion 
because advantages of behavioral cloning over DRL were found in 
cases where noise levels were low and suboptimal demonstrations 
were absent. Many of the space applications where G&CNETs have 
been proposed fall into this category. A common criticism of the 
DRL approach is its high computational requirements, which can 

result in computational times three orders of magnitude larger than 
those required for running one single optimal control solver to find 
a policy (9). Efforts have also been made to tackle this issue. One 
example is to integrate knowledge about a linear quadratic regulator 
(here the piecewise affine structure of the control law and the maxi-
mal control invariant sets) into the RL algorithm (72), thus enhanc-
ing the efficiency of learning the control policy. Last, although 
behavioral cloning methods have been used to seamlessly learn a 
variety of policies and thus integrate several tasks into the same deep 
neural network, doing the same in a DRL framework requires a 
careful design of the reward function and adds further complexity 
to the resulting pipeline.

TESTING ON FLYING DRONES
The field of onboard guidance and control of space systems using 
DNNs, specifically the G&CNet architecture, is in its infancy. To 
gain acceptance within the aerospace community as a potential im-
provement over current guidance and control schemes, convincing 
evidence of its embedded capabilities is necessary, as well as the pos-
sibility of offering guarantees on the resulting system behavior. 
Unfortunately, space missions are also extremely expensive and, 
with the exception of a few technology development platforms, do 
not allow for extensive testing of mission-critical software in space. 
With much of the current research on G&CNets focused on simu-
lations, concerns are raised that the reality gap may be over-
looked (73–77).

To address this issue, we propose that G&CNets can be studied 
on the challenging real-world task of drone racing. Drones have dif-
ferences with spacecraft. For instance, time-optimal drone flights 
operate on a different timescale compared with spacecraft interplan-
etary transfers or landings. Moreover, unmodeled effects and distur-
bances tend to be larger, particularly for smaller vehicles like micro 
air vehicles. System identification for drones is also often challeng-
ing and may not achieve the level of accuracy typically required in 
space robotics systems. However, drones also share strong similari-
ties with space systems because they too have limited onboard re-
sources and require careful optimization of their use. The time 
optimality principle in drone racing, coupled with the complex 
dynamics of the drones, provides a valuable comparison to the mass 
optimality principles preeminent in space missions. Hence, drones 
represent a hard use case in terms of latency requirements, reality 
gaps, and resource constraints. Successfully embedding neural-
based optimal control systems onboard drones will provide increas-
ing confidence for the use of this method on space systems. An 
ongoing effort is underway to integrate G&CNets into quadcopter 
flight control systems, aiming to achieve end-to-end control with 
optimal flight time and to increase the trust in the use on board 
spacecraft. Building on research that used simplified quadcopter 
models in simulations (6, 7) and performed real-world flight tests 
where G&CNets were used for longitudinal control (78), tests have 
been conducted where a high-dimensional quadcopter model with 
16 degrees of freedom was used to compute the optimal-feedback 
for the networks to imitate. The networks were then trained for end-
to-end control, which involved sending motor commands directly 
without any intermediate controllers (59, 60). The reason to send 
direct motor commands is to grant the network complete control 
authority, allowing it to handle actuator saturation directly. Conse-
quently, the learned solution is not constrained by either the temporal 

π
∗

θ
(u ∣x) = δ(u − u∗(x)) (3)
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dynamics of an inner-loop controller or the saturation priorities as-
signed in motor mixing as in previous attempts. However, this direct 
approach also posed new challenges because the time optimality 
principle pursued resulted in aggressive maneuvers that were highly 
dependent on the network’s ability to accurately replicate the ground 
truth optimal actions. Because of the short dynamical timescale of 
the quadcopter flights considered (on the order of seconds), even 
minor discrepancies in the network’s performance considerably 
affect the overall control accuracy. In hover-to-hover flights, un-
modeled moments caused the drone to take a suboptimal path, div-
ing down and overshooting its target. Additionally, modeling errors 
accumulated and caused deviations from the optimal plan, which 
destabilized the trajectory (60).

Despite the difficulty in modeling the system dynamics, sensor 
measurements on board can be used to detect discrepancies be-
tween predicted and actual forces and moments. This suggests that 
the G&CNet can be modified by adding to its inputs estimated un-
modeled effects. A modified network 𝒩θ(x, p) can then be trained 
to approximate the solution of a parametric optimal control prob-
lem, where p represents the discrepancy between the modeled dy-
namics and the observed behavior. By comparing the predicted and 
measured moments on board and using their difference as input to 
the network (60), G&CNets have been shown to adapt to unexpected 
moments, delivering a considerable improvement in stability and 
optimality, as illustrated during real flights of a Parrot AR 2.0 drone 
in Fig. 5A.

In (59), a similar approach was adopted, where the G&CNet was 
modified to instead handle unexpected actuator saturations. It was 
demonstrated that the knowledge of the actuator’s limits was crucial 
to remaining on the optimal path during high-speed successive 
waypoint flights. By estimating a model parameter on board (in this 
case, the maximum motor revolutions per minute) and feeding it 
back into an additional neural network input, G&CNets can thus 
cope with unmodeled effects, as shown in Fig. 5B.

Additional parameters fed into a G&CNet can also represent dif-
ferent tasks. For instance, in (59), a G&CNet was also trained to fly 
through two waypoints, where the waypoint positions in space, 
which act as boundary conditions to the optimal control problem, 
can vary. When computing the state-action pairs to use in the train-
ing dataset, different distances between waypoints are used, and the 
network thus learns to represent the solution of the optimal control 
problem specific to the parametric geometry that it receives as 
additional input. During the flight, the network can then optimally 
plan a path through two waypoints, where the second waypoint 
position is displaced, as illustrated in Fig. 6.

G&CNets face serious challenges when highly aggressive or 
acrobatic maneuvers are pursued on drones. The G&CNets here 
showcased during real flights were trained to imitate energy optimal 
control (60) or a mixture of energy and time optimal control (59). 
Energy optimality was preferred because it resulted in smoother tra-
jectories, which were simpler to learn and execute. However, mov-
ing toward more time-optimal trajectories also creates a challenge as 
the optimal solution approaches a bang-bang profile, which is in-
creasingly difficult to learn (see Fig. 3C), particularly for the small 
networks used (59). Moreover, the aggressive commands will steer 
the drone toward the edge of its flight envelope, where the dynamics 
are most unpredictable. Therefore, the reality gap problem remains 
the biggest obstacle to this approach in the context of aggressive ma-
neuvering. Although the adaptive networks have shown important 

improvement in robustness, additional alterations are necessary to 
guarantee more general robustness for modeling errors, sensor 
noise, and delays.

These findings demonstrate that relatively small G&CNets, in 
this case, a feed-forward neural network with three hidden layers 
consisting of 120 neurons each, are capable of representing a broad 
range of optimal control problems and tasks effectively. The result-
ing G&CNets can cancel out rather than accumulate the errors 
made in flight, both in simulation and on the real quadcopter. This 
is, in part, possible not only because they can be made adaptive but 
also because they can be inferred at a high rate (450 Hz) in real time 
on board the drone (as measured on the Parrot P7 dual-core Cortex 
A9 CPU). A dual-core 800-MHz ARM Cortex-A9 processor is also 
now orbiting on board the European Space Agency’s OPS-SAT sat-
ellite (79), thus making the results achieved of particular interest 
here because they map closely to the space systems with similar 
computational capabilities.

As discussed previously, recent success in drone racing high-
lights the benefits of RL when compared with MPC (70), showing 
how RL excels in directly addressing model uncertainties using 
domain randomization, which bolsters the controller’s robustness. 

A

B

Fig. 5. G&CNets’ robustness to model mismatch. Two examples of real autono-
mous flights of a Parrot AR drone 2.0 in the TU Delft Cyberzoo: (A) Unmodeled 
moments are detected in real time on board and fed back to the G&CNet. The initial 
drone position is also shown with a white border. (B) Unexpected early saturation 
of the motor revolutions per minute is present. The saturation is estimated on 
board and fed back to the G&CNet. In both cases, the G&CNet learns a class of opti-
mal control policies and selects the one to enact according to the detected mis-
match. This results in improved trajectories: (A) The drone reaches the waypoint 
without unnecessarily losing altitude. (B) The drone follows the optimal trajectory 
more closely (yellow dashed line).
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This success exemplifies the benefits of integrating guidance and 
control within a neural network, in contrast to separating the con-
trol problem into planning and tracking. A particularly impressive 
follow-up is the achievement in (80), where an RL controller’s per-
formance surpasses that of three human drone racing champions. In 
this work, the authors crossed the reality gap through the fusion of 
abstraction, embodied in an inner-loop controller that tracks thrust 
and rate commands, with the precise modeling of the closed-loop 
system using a learned residual model (81). In other work (82), it 
was demonstrated that performance could be improved further by 
using end-to-end RL without abstraction layers. This serves as a 
compelling testament to RL’s remarkable performance in the context 
of drone racing, where the availability of a dense reward function 
and other specificities of the task make the DRL approach much 
more efficient.

FUTURE WORKS
Small neural networks have demonstrated, in several scenarios 
relevant to space exploration, their ability to capture optimality 
principles and to perform various guidance and control tasks re-
quiring high levels of autonomy. As the development of specialized 
accelerators for onboard inference continues to grow (35), there is 
increasing interest in exploring which additional capabilities can be 
integrated into larger networks. However, because of the data-
intensive nature of deep architectures, the efficient generation of 
training examples is imperative for realizing the potential of larger 
networks. End-to-end training of large models, when performed on 
board spacecraft, remains an open question, subject to the availabil-
ity of onboard acceleration and the development of distributed 
learning systems as a key enabling technology (83). This could result 
in considerable autonomy benefits for future deep space missions, 
and recent interest in satellite swarms and constellations may rap-
idly lead to new developments in this field.

The question of whether the training procedure of G&CNets 
should imitate optimal examples or use a RL paradigm remains 
open and can today only be answered on a case-by-case basis that 
considers the user’s desired trade-off between computational effi-
ciency, robustness, quest for optimality, and interpretability. Ex-
ploring the synergies between these two approaches may lead to 
innovative, hybrid solutions, yet this topic will surely continue to 
fuel scientific discussions in the years to come.

Unresolved challenges remain regarding the complete qualifica-
tion and validation of artificial neural networks when embedded 
into safety-critical systems like the guidance, navigation, and con-
trol subsystems. In this regard, it is crucial to differentiate between 
neural-based control schemes on the basis of the presence or ab-
sence of an online learning-based component. In the first scenario, 
extensive research conducted in the robotics, automotive, and aero-
nautic domains advocates for a paradigm shift in the certification 
process (84–87). It also highlights the difficulty in making meaning-
ful assertions about system behavior during the learning process. 
Safe learning for control applications aims at ensuring the stability 
and robustness of the proposed data-driven solutions in the face of 
system uncertainties. This can be achieved through learning-based 
model augmentation and reduction of the uncertainty envelope, 
encouraging robustness considerations in learning policies via ana-
lytical or heuristic-based methods, or applying so-called control 
certification filters at the output of a neurocontroller to either con-
strain the control policy or offer redundancy via the switch to robust 
controllers in the case of predicted system destabilization. Con-
versely, in the second scenario, where learning is performed a priori, 
neural-based systems can be treated as fixed black boxes or mathe-
matical functions, similar to other embedded control algorithms. 
The majority of existing work on G&CNets falls into this second 
category, although incorporating an online learning component 
into the proposed architectures is a naturally anticipated future 
development.

Similarly to other embedded control algorithms, to achieve 
certification, end-to-end neural guidance and control implementa-
tions thus need to demonstrate robustness to stochastic parametric 
and dynamic system uncertainties, as well as compatibility with 
modern fault detection, isolation, and recovery routines that require 
both explainability and adaptability. Fortunately, recent develop-
ments in explainable AI offer new possibilities for developing more 
comprehensive deep neural models that can provide greater trans-
parency and understanding of their capabilities and limitations, 
which could ultimately unlock mission-critical certifications (88). 
It is also crucial to ensure that neural systems perform as intended 
under a range of operating conditions and environments while 
meeting safety and performance requirements. To this end, and spe-
cifically for G&CNets, a first valid approach to the stability analysis 
has been proposed on the basis of the complete high-order expan-
sion of the resulting closed-loop dynamics (52), allowing proof of 
the stability of a system with multiple degrees of freedom controlled 
by an end-to-end artificial neural network. Although more work is 
needed to generalize the results obtained, this result shows the pos-
sibility of approaching the study of G&CNet stability as any other 
controlled closed-loop system.

Neuromorphic technologies have recently emerged as promising 
enablers for onboard edge computing and learning applications in 
space. These technologies propose innovatory software and hard-
ware designs inspired by biological neural systems, focusing on low 

Fig. 6. Embedding multiple tasks in one G&CNet. Real autonomous flights of a 
Parrot AR drone 2.0 in the TU Delft Cyberzoo. During this specific test, the same 
G&CNet is shown to have learned to imitate the optimal feedback in two distinct 
tasks differing in the final waypoint position. The tasks are different because the 
optimal approach to a given waypoint depends on the position of the next way-
point. The position of the next waypoint is fed to the DNN as an extra parameter. 
The initial drone position is also shown with a white border.
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power and energy efficiency, which are highly synergetic with space 
applications. The widespread availability of neuromorphic dynamic 
vision sensors (89) and chips (90) has led to a recent surge in publi-
cations on the use of event-based cameras and spiking neural net-
works on board spacecraft (91–94), with an event-based sensor 
having recently been sent to the International Space Station (95). Of 
particular interest for G&CNets is the neuromorphic promise to 
enable real-time continuous learning, with the potential to revolu-
tionize neural guidance and control capabilities and robustness at 
the cost of developing and accepting new certification procedures 
for learning-based safety-critical systems.

CONCLUSIONS
In this study, we have reviewed a nascent trend in neural spacecraft 
guidance and control, inspired by the presence of optimality prin-
ciples in human sensorimotor actions, that leverages an onboard 
end-to-end DNN to capture the relation between the spacecraft’s 
state and its optimal actions. The reviewed G&CNet architecture is 
computationally efficient and suitable for real-time onboard pro-
cessing and has shown great potential in representing complex opti-
mal state-feedback relations in various scenarios of interest while 
maintaining many of the favorable attributes of more classical con-
trol methods. Preliminary attempts to build trust in this approach 
have been presented that successfully embed G&CNet on board 
drones on hardware compatible with modern space CPUs using 
time-optimal flights as a proxy for a real space guidance and control 
system. Looking ahead, we foresee the adoption of onboard neural 
guidance and control as a concrete option in future space missions 
because it enables the necessary autonomy to meet the ambitious 
goals of future space missions while parsimoniously using onboard 
available resources.
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