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Abstract: Ultra-thin quantum wells, with their unique charge confinement effects, are essential in
enhancing the electronic and optical properties crucial for optoelectronic device optimization. This
study focuses on theoretical investigations into radiative recombination lifetimes in nanostructures,
specifically addressing both intra-subband (ISB: e-e) and band-to-band (BTB: e-hh) transitions within
InGaN/GaN quantum wells (QWs). Our research unveils that the radiative lifetimes in ISB and BTB
transitions are significantly influenced by external excitation, particularly in thin-layered QWs with
strong confinement effects. In the case of ISB transitions (e-e), the recombination lifetimes span a
range from 0.1 to 4.7 ns, indicating relatively longer durations. On the other hand, BTB transitions
(e-hh) exhibit quicker lifetimes, falling within the range of 0.01 to 1 ns, indicating comparatively
faster recombination processes. However, it is crucial to note that the thickness of the quantum
well layer exerts a substantial influence on the radiative lifetime, whereas the presence of impurities
has a comparatively minor impact on these recombination lifetimes. This research advances our
understanding of transition lifetimes in quantum well systems, promising enhancements across
optoelectronic applications, including laser diodes and advanced technologies in detection, sensing,
and telecommunications.

Keywords: quantum wells; radiative lifetime; electromagnetic excitation; impurity; thickness

1. Introduction

In recent years, semiconductor quantum wells (QWs) have attracted considerable
attention from the scientific community due to their potential applications as sources of
non-classical light, including the generation of single and entangled photons [1,2]. In
particular, quantum wells fabricated from group III-Nitrides (e.g., GaN, InN, InGaN, etc.)
have emerged as highly promising candidates for enabling single-photon emission at or
near room temperature [3,4]. This is primarily attributed to their significant band offsets,
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tunable energy band gaps, and exceptional thermodynamic and structural characteris-
tics [5–8]. With the rapid advancement of growth and fabrication techniques in the realm
of semiconductor quantum wells (QWs), it has become feasible to produce high-quality
thin quantum wells composed of InGaN/GaN with diverse epitaxial orientations [9–12].
These factors unequivocally highlight the advantages of employing nitride-based devices
as future non-classical light emitters. Nevertheless, in principle, delving into the inherent
properties of nitride-based nanostructures allows for an even more extensive exploitation of
the potential offered by these systems. For example, in the realm of photonics, InGaN/GaN
QWs exhibit remarkable versatility. However, while commercial single-photon detectors
typically operate within the blue spectral region [13], InGaN/GaN QWs transcend these
boundaries by enhancing various applications, including photodiode detectors and blue
laser diodes [14]. Moreover, these QWs find use in devices based on InGaN/GaN multiple
QWs, particularly in scintillator and detector applications [15,16]. This adaptability high-
lights the broad range of photonics applications enabled by InGaN/GaN QWs, making
them valuable components for diverse optical technologies.

In the realm of optoelectronics, the radiative recombination lifetime (RRLT) stands
as a pivotal parameter, exerting significant influence over key device characteristics such
as the open-circuit voltage and light emission rates [17]. The comprehension and fine-
tuning of recombination lifetime are fundamental endeavors, critical for enhancing the
efficiency and performance of various optoelectronic technologies, spanning from solar cells
to light-emitting diodes and photodetectors. The radiative lifetime of electrons and holes
has been the subject of thorough investigations, encompassing both theoretical modeling
and experimental analysis [18–21]. In the realm of low-dimensional systems, including
quantum wells (QWs) and quantum dots (QDs), the recombination lifetime (RL) of electrons
and holes has not received extensive scrutiny and exploration.

Recently, Sun et al. have experimentally measured the recombination lifetime of
GaSb/GaAs QD [19]. Li et al. conducted a study on InGaN-based QW exhibiting lumi-
nescence in the yellow region of the visible spectrum. They employed both conventional
and time-resolved cathodoluminescence techniques. Their findings revealed a consistent
increase in the radiative recombination lifetime as the temperature rose, reaching up to
100 K [22]. Aghoutane et al. have recently reported a study investigating the lifetime of
exciton carriers in an InAs-based QD with an infinite potential barrier under the influence
of varying size, intense laser excitation, and magnetic fields [23]. Im et al. conducted
a study on GaInN/GaN quantum well structures grown via LP-MOVPE, employing pi-
cosecond time-resolved photoluminescence spectroscopy. Their findings indicate that, at
temperatures exceeding approximately 100 K, the decay time exhibits a significant decrease,
ultimately reaching approximately 75 ps at room temperature [24]. In a symmetric GaAs
coupled quantum well (CQW) heterostructure, Wilkes et al. conducted calculations on
spatially indirect exciton states while subjecting them to external electric and magnetic
fields [25]. In optical property computations for quantum wells (QWs) and quantum
dots (QDs), researchers commonly utilize a fixed radiative recombination lifetime (RRLT),
leading to study inaccuracies [26–32]. Therefore, there is a critical need for a comprehen-
sive investigation of the RRLT under varying conditions, including temperature, pressure,
intense laser excitation, and electric/magnetic fields.

To date, there has been limited research on recombination lifetime in the presence
of impurities and the combined influence of electric and magnetic fields. Building on
our prior investigations into InGaN/GaN heterostructures (QWs) [33–36], our goal is to
explore the dynamic behavior of radiative recombination lifetime under various excitation
conditions via theoretical calculations and numerical modeling. Recognizing the limitations
of assuming a constant radiative lifetime, our study addresses this knowledge gap via a the-
oretical and simulation investigation, enhancing the accuracy of optical property analyses
in semiconductor materials, particularly in the context of optoelectronic device research.
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2. Theory and Model

In the context of this study, our primary aim is to undertake a comprehensive exami-
nation of the interplay between several crucial factors, including the size, impurity, and
influence of electric and magnetic fields, on the radiative lifetime. We consider transitions
occurring between electrons occupying the conduction band (CB) and heavy holes situated
within the valence band (VB) of a quantum well (QW). To facilitate our investigation, we
have designed the quantum well using a non-polar m-plan [1010] Wurtzite InGaN/GaN
heterostructure [37]. The barrier material (GaN) is characterized by a width denoted as (L).
Concurrently, the well region material (In0.1Ga0.9N) features a distinct width designated
as (l). For visual clarity and reference, a comprehensive schematic representation of the
studied system is meticulously illustrated in Figure 1. To investigate the radiative lifetime
of the transitions under consideration, we must undertake numerical solutions for the 1D
Schrödinger equation, which characterizes the behavior of electrons and holes within the
system. This numerical approach is essential due to the inclusion of an impurity term and
the consideration of a finite confinement profile, making an analytical solution unfeasible.
By solving this equation within the framework of the effective mass theory, we can derive
the energy levels and corresponding wave functions for electrons in the CB and holes in
the VB. Consequently, we can calculate the transition energy and the dipole matrix element
(DME) between electrons and heavy-hole levels.
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The comprehensive Hamiltonian, encompassing particle kinetic energy, confinement
potential energy, the influence of impurities, and electromagnetic excitation, is expressed
as follows:

H =
1

2m∗e,hh

(
P +

e
c

A(r)
)2

+ Ve,hh
CB,VB(z, δ) + eFz− e2

ε∗r

√
(z− z0)

2 + y2 + x2
(1)

where m*
e,hh and h̄ are the electron/heavy-hole effective mass within the conduction band

and the Planck constant, respectively. ε∗r and e denote the relative dielectric constant of



Nanomaterials 2023, 13, 2817 4 of 16

different materials used in this study and the free electron change. A(r) represents the
vector potential of the magnetic field and is given by A(r) =

(
1

2m* B× r
)

, while z0 denotes
the impurity location within the structure. To streamline our calculations, we opted for a
1D system, taking into account that in quantum wells, particle confinement occurs solely
along the z-axis, which implies y = x = Cte = 1.

Incorporating the vector potential term of the magnetic field, the Hamiltonian trans-
forms as follows:

− h̄2

2m*
d2ψi(z)

dz2 +

 e2γ2

2m*c2 z2 + eξz + Ve,hh
CB,VB(z, δ)− e2

ε*
√
(z− z0)

2 + 2

ψi(z) = Eiψi(z) (2)

where γ stands for magnetic field strength, and ξ stands for electric field strength.
To enhance the realism of our study, we consistently employed finite confinement po-

tentials to make this theoretical investigation more representative of real-world conditions.
In particular, the confinement potential energy, responsible for confining electrons (Ve

CB)
within the CB, and the counterpart for heavy-hole (Vhh

VB) within the VB, are expressed as
follows, respectively:

Ve
CB(z) =

{
0, Well

Ve
0 , Barriers

(3)

Vhh
VB(z) =

{
0, Well

Vhh
0 , Barriers

(4)

The energy band gap for an InGaN alloy can be determined via Vegard’s law, which
can be expressed as follows:

EInGaN
g (δ) = δEInN

g + (1− δ)EGaN
g − b× (1− δ) (5)

For an indium composition of 10% (δ = 0.1) and an experimentally obtained bowing
parameter of 2.3 (b = 2.3) [38], the energy band gap of InGaN becomes

EInGaN
g (0.1) = 0.1EInN

g + 0.9EGaN
g − 2.4× (0.9) (6)

given the energy band gaps of InN and GaN are EInN
g (0.69 eV) and EInN

g (3.47 eV), respec-
tively [38]. Thus, EInGaN

g (0.1) = 2.976 eV.

Ve
0

(
Vhh

0

)
represent the height of the potential barrier within the CB and VB, re-

spectively. ∆Eg = EGaN
g − EInGaN

g . Thus, ∆Eg = 0.494 eV, Ve
CB
(
Ve

0
)
= 0.358 eV, and

Vhh
VB

(
Vhh

0

)
= 0.654 eV.

The effective masses of the electrons and heavy holes of InN and GaN materials are
mInN

e (mInN
hh ) 0.11 (1.63 m0) and mGaN

e (mGaN
hh ) 0.20 (1.4 m0), respectively [39–41].

m∗e,hh(δ) =

{
m∗InGaN Well
m∗GaN Barriers

(7)

ε∗e,hh(δ) =


ε∗InGaN Well
ε∗GaN Barriers√

ε∗InGaN × ε∗GaN Well/barreir
(8)

To determine the effective masses of electrons (heavy hole) and their corresponding
dielectric constants in the ternary alloy (InGaN) representing the confinement region, we
employ the same principle—Vegard’s law: m*

e
(
m*

hh
)

are 1.739 m0 (0.174 m0). Similarly, the
dielectric constant of the InGaN region is ε*

InGaN(= 0.64 ε0), where m0 and ε0 are the free
electron mass and the dielectric constant of vacuum. The dipole matrix element between
electron and heavy-hole states is given as

∣∣∣Mi f

∣∣∣= 〈ψi

∣∣∣ ez
∣∣∣ψ f

〉
, where ψi and ψ f represent
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the initial and final states resulting from the optical transitions (i.e., ISB and/or BTB).
Moreover, the transition energy between the allowed states within the system is given as
∆E f i = E f − Ei. It is important to mention that optical transitions are possible between two
different levels only if the selection rule (∆l = ±1) is satisfied.

To determine these primary physical parameters, we have chosen to employ the finite
element method (FEM) to solve the Schrödinger equation of the studied system. This
numerical technique subdivides complex physical problems into smaller, more manage-
able elements, employing mathematical principles to approximate solutions within each
segment. FEM, widely utilized in engineering and scientific fields, excels in addressing a
diverse array of complex challenges spanning engineering, physics, and other domains
due to its renowned versatility. Moreover, FEM demonstrates a knack for maintaining both
precision and adaptability when modeling irregular geometries and material properties,
making it invaluable for solving practical real-world problems [42]. In this study, the pres-
ence of a donor impurity within the structure renders the Schrödinger equation inscrutable
via conventional analytical means. Consequently, we employ FEM with a one-dimensional
mesh (calculation grid) comprising 3N + 1 points, where N is set to 50. This approach
provides precision for quantum well (QW) systems’ ground and excited states. However,
for more complex or higher energy systems, the FEM solution’s precision may decline,
requiring a finer mesh and higher-order basis functions. Accuracy depends on factors like
problem complexity, numerical parameter choices, and computational resources in contrast
to conventional methods like perturbative and variational techniques. Importantly, for the
determination of energy levels and their corresponding wave functions, we consider the
following boundary conditions [34,39]:[

→
n

.→
∇

(
ψ

m*
e,GaN

)]
barrier

=

[
→
n

.→
∇

(
ψ

m*
e,InGaN

)]
well

(9)

The system being studied employs a mesh grid consisting of 3N + 1 points. Each
layer within the system is discretized with varying step sizes. In particular, the step
size for the barriers is labeled as hb = L/N, whereas for the regions within the well, it is
expressed as hw = l/N. Consequently, for k values spanning from 0 to N, the corresponding
mesh nodes for a single QW can be determined as follows: the left barrier is located at
zj = k ∗ hb, the well region is positioned at zj = L + k ∗ hw, and the right barrier is situated
at zj = L + l + k ∗ hb. Utilizing the FEM, we calculate the first and second derivative wave
functions [26,43].

∂2ψ(z)
∂z2

)
zk

=
ψk+1 − 2ψk + ψk−1

(zk+1 − zk)
2 (10)

∂ψ(z)
∂z

)
zk

=
ψk+1 − ψk
zk+1 − zk

(11)

Suppose that hb = zk+1 − zk, Equation (4) becomes(
−h̄2

2m*
e,hh

)[
ψk−1 − 2ψk + ψk+1

(hb)
2

]
+ Ve,hh

0 ψk = Eψk (12)

Assuming that Ω = −h̄2

2m*hb
2 , the same equation above becomes

Ω

[
ψk−1 + ψk+1 +

(
Ve,hh

0
Ω
− 2

)
ψk

]
= Eψk (13)
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The matrix that provides us with the energy levels and corresponding wave functions
in this particular region (barrier region) can then be written as follows:

MBarrier =



0 0 0 0 0 0
Ω

(
Ve,hh

0 − 2Ω
)

Ω 0 0 0

0 Ω
(

Ve,hh
0 − 2Ω

)
Ω 0 0

0 0 0 0
. . .

...
0 0 0 0 0 · · ·
0 0 0 0 0 0


(14)

Remark: similar steps can be followed to obtain the matrix that provides us with
the energy levels and corresponding wave functions within the other regions (i.e., well)
with the elimination of the potential (V0 = 0), which is zero in none of the barrier regions.
The system’s matrix is obtained by summing the three calculated matrices (left barrier,
well, right barrier). A code of “Python programming language” has been utilized to
perform numerical solutions for these matrices using libraries such as NumPy, SciPy, Math,
Matplotlib, and others. Once we have determined the values ofMi f and ∆E f i, we can
proceed to compute the radiative lifetime between the initial and final states, which arise
from optical transitions, such as ISB (inter-sub-band) and/or BTB (band-to-band). Hence,
its analytical expression is given as follows [44–46]:

τf i =
3c3h4ε0

16π3∆E3
f inrM2

i f
(15)

where c, h, ε0, nr denote, respectively, the speed of light in vacuum, Planck’s constant,
vacuum permittivity, and refractive index relative to the materials used in this study.

3. Results and Discussion

In this numerical investigation, we have employed effective units to streamline our
calculations. R*e,hh

GaN and a*e,hh
GaN used in this study are, respectively, the effective Rydberg

and Bohr radius at the barrier region (GaN). The effective Rydberg R*e,hh
GaN

(
=

m*e,hh
GaN e3

2
(

4πε*e,hh
GaN h̄)2

)
is used as unit energy, while the effective Bohr radius a*e,hh

GaN

(
a*

b =
4πε*e,hh

GaN h̄2

m*e,hh
GaN e2

)
is used as

the unit of length. The effective electric (F) and magnetic (B) fields are given via the fol-
lowing expressions: For l = 4L = 4 and δ = 10%(0.1), a*e

GaN
(
a*hh

GaN
)
= 2.55(3.65) nm and

R*e
GaN

(
R*hh

GaN

)
= 0.029(0.203) eV. Therefore, for the electron, F =

eξa*e
GaN

R*e
GaN

and B =
e2γ2a*e

GaN
2m*c2R*e

GaN
,

while for the heavy hole, F =
eξa*hh

GaN
R*hh

GaN
and B =

e2γ2a*hh
GaN

2m*c2R*hh
GaN

.

It is important to note that, per Equation (15), the recombination lifetime is directly
influenced by changes in both the transition energy and the dipole matrix element. Conse-
quently, any alterations in these physical parameters will certainly impact the behavior of
the radiative lifetime. During the discussion of the following results, we will utilize abbrevi-
ations for the sake of convenience, particularly when referring to figures and panels. These
abbreviations include LSP (left sub-panel), RSP (right sub-panel), and MP (main panel).

3.1. Thickness Effect (QW’s Size)

Figure 2 illustrates the variation in transition energy (∆E f i), the dipole matrix element
(M2

i f ), and recombination lifetime ( τi
f i; i : e→ e, e→ hh ) as a function of well thickness for

three different optical transitions in the absence of external excitations, while maintaining a
fixed barrier thickness at L = 2. It is obvious that the well’s width has a significant impact
on ∆E f i (LSP), M2

i f (RSP), and τi
f i (MP). Moreover, it is evident that for all transitions, the
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increase in the well’s width leads to a corresponding increase in ∆E f i until it reaches a
saturation regime in a weak confinement regime region (l > 0.5 nm). This effect is more
pronounced for BTB transitions compared to ISB. This increase can be attributed to the
reduction in quantum confinement resulting from the enlargement of the well, leading to
an enhancement in the excited state energy level (E f ) relative to the ground state energy
level (Ei). Consequently, ∆E f i is expected to increase. Furthermore, it is noted that the
transition energy associated with BTB remains consistent within the strong confinement
regime (l < 0.5 nm) for both considered transitions (i.e, Ee−hh

11 and Ee−hh
21 ). However, it is

evident that M2
i f demonstrates two different behaviors. It experiences a decrease in the

case of thin QW (within the strong confinement regime, where l < 0.5 nm) while exhibiting
an increase for thick QW (within the weak confinement regime, where l > 0.5 nm). This
behavior change can be explained by the fact that in the strong confinement regime, there
is less overlap between the electron wave functions of the final and initial electron states. In
contrast, within the weak confinement regime, the overlap between these wave functions
improves. Furthermore, it has been observed that the dipole matrix element related to
BTB remains constant within the weak confinement regime (l > 0.5 nm) for both of the
considered transitions, particularly Me−hh

11 and Me−hh
21 .
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transitions in InGaN/GaN ultrathin-layered heterostructure (QW).

This can be explained by the fact that in this confinement regime, the overlap between
the considered electron states (1se, 2se, 1shh) changes simultaneously. Additionally, the
overlap between ISB transitions is greater than that between BTB transitions, as indicated
in the RSP.

As mentioned earlier, it is evident that an alteration in both ∆E f i and Mi f can signifi-
cantly influence the variations in the recombination lifetime for both ISB and BTB optical
transitions. Consequently, it is clear that the radiative lifetime undergoes substantial fluc-
tuations in response to changes in both ∆E f i and Mi f concerning the QW’s thickness. As
depicted in the MP, it is readily apparent that the radiative lifetime decreases as the well
width increases until it stabilizes in thicker QWs. This reduction occurs more rapidly for
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ISB transitions compared to BTB transitions. This decline is assigned to the concurrent
increase in both ∆E f i and Mi f with the increase in the QW’s thickness, which is explained
physically by the same reasons discussed earlier in the LSP and RSP. In the realm of quan-
tum physics, we can discern striking disparities in the radiative processes associated with
the electron–electron (e− e) transitions under distinct confinement regimes. In particular,
when confronted with a strong confinement regime, the radiative timescale τe−e

f i exhibits a
significant variation, manifesting as 4.7 nanoseconds. In stark contrast, the weak confine-
ment regime gives rise to a considerably shorter radiative timescale, with τe−e

f i diminishing
to almost a mere 0.3 nanoseconds. On the other hand, when we turn our attention to
transitions involving electrons and heavy holes (e− hh), a divergent behavior is observed.
Here, the radiative timescales τe−hh

f i are substantially faster, characterized by a dynamic
range spanning from 0.8 nanoseconds to nearly instantaneous emissions, effectively ap-
proaching zero nanoseconds. This marked disparity in radiative behaviors underscores the
profound influence of confinement regimes on the radiative properties of quantum systems.
These results demonstrate a strong agreement with the existing recent literature on the
radiative lifetime of neutral excitons confined in CdSe colloidal nanoplatelets (NPLs) [47],
thin GaAs-based quantum box (QB) [48], and GaAs/GaAIAs QW nanostructure at room
temperature using the photoluminescence phase shift method [49].

3.2. Applied Electric Field Effect (F)

To calculate the exact value of the electric field strength (ξ), we can use the following

formula: F =
eξae,hh

GaN
Re,hh

GaN
.

Now, let us, for example, solve ξ for electrons.
Let us suppose that F = 1, e (electron charge) ≈ 1.602× 10−19 C, and for l = 3L = 1,

ae
GaN ≈ 2.56 nm

(
2.56 × 10−9 m

)
and Re

GaN ≈ 29.13 meV
(
29.13× 10−3 eV

)
.

ξ =
FRe

GaN
eae

GaN
=

1× 29.13× 10−3

1.602× 10−19 × 2.56 ×10−9

After calculating this expression, we obtain the real-electric field strength: ξ = 6.13×
105 V/m.

Figure 3 illustrates the dependence of transition energy, dipole matrix elements, and
recombination lifetime on the magnitude of an externally applied electric field, specifically
examining various optical transitions within an ultrathin-layered heterostructure composed
of InGaN/GaN. The transitions under scrutiny encompass ISB and BTB transitions. Based
on the analysis conducted via LSP and RSP investigations, it appears that variations in
the magnitude of the applied electric field exhibit distinct behaviors for different optical
transitions (ISB and BTB) within the structure, regardless of layer thickness and without
applied magnetic field. In particular, for the transitions Ee−hh

11 and Ee−hh
21 , there is a clear

linear reduction in their energies as the electric field magnitude increases. On the other hand,
the transition energy Ee−e

21 exhibits a gradual improvement with increasing electric field
strength. Regarding the dipole matrix elements

(
Mij
)
, the behavior varies depending on the

specific transition being considered. Me−e
21 and Me−hh

11 experience a decrease in magnitude
with increasing electric field, while Me−hh

21 exhibits enhancement. This suggests that the
degree of overlap between electron and hole wave functions, crucial for radiative processes,
can either improve or diminish, contingent on the nature of the transition—whether it
involves ISB or BTB transitions. The alteration in transition energies, along with the
modifications in electron–hole correlations, certainly exerts a significant influence on the
fluctuation of the radiative lifetime associated with the examined transitions; this influence
is evident from the MP of Figure 3.
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From this panel, it is evident that as the applied electric field strength increases, the
radiative lifetime associated with the electron–electron correlation (τe−e

21 ) initially undergoes
a slight increase followed by a gradual decline. In contrast, the radiative lifetime associated
with the electron–heavy hole correlation (τe−hh

11 ) exhibits a smooth increase in response
to the electric field magnitude, with a notable acceleration in the improvement of the
radiative lifetime pertaining to the transition τe−hh

21 . The radiative lifetime (τe−e
21 ) initially

increases until it reaches a maximum value, which occurs at approximately F = 0.37,
corresponding to a critical electric field magnitude. Subsequently, it gradually decreases.
This behavior arises from a competition between two key factors: the variation in the
transition energy (Ee−e

21 ) and the overlap between the electron states (Me−e
21 ). As the electric

field strength increases, Ee−e
21 experiences an increase, while Me−e

21 decreases. Consequently,
for electric field magnitudes below 0.37, the behavior of the radiative lifetime is primarily
governed by the changes in Ee−e

21 . Conversely, for electric field values exceeding 0.37, the
behavior of the radiative lifetime is predominantly influenced by alterations in Me−e

21 . This
critical point at F = 0.37 represents a transition regime where the interplay between these
factors dictates the behavior of τe−e

21 . Moreover, the observed rise in both τe−hh
21 and τe−hh

11
across all electric field values can be attributed to the prevailing influence of the transition
energy relative to the overlap between the electron and heavy hole wave functions. This
implies that changes in the transition energy (Ee−hh

21 and Ee−hh
11 ) play a more substantial role

in shaping the behavior of these radiative lifetimes in comparison to the overlap effects
(Me−hh

21 and Me−hh
11 ). Notably, the pronounced acceleration of τe−hh

21 compared to τe−hh
11

can be attributed to the rapid increase in the dipole matrix element (Me−hh
21 ) with higher

electric field intensities. This enhancement in Me−hh
21 as the electric field intensity grows

leads to a more significant impact on τe−hh
21 compared to τe−hh

11 , contributing to the observed
differences in their behavior. Furthermore, it is imperative to emphasize that the radiative
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lifetime denoted as τe−hh
11 exhibits a notably shorter duration in comparison to the other

meticulously scrutinized recombination lifetimes. It becomes evident that in the context of
(e− e) transitions, the radiative lifetime τe−e

21 assumes values approximately in the order
of 0.25 to 0.20 nanoseconds. In stark contrast, the transitions associated with τe−hh

f i reveal
a distinct behavior, particularly within the domain of weak applied electric fields. Here,
we discern that the radiative lifetimes τe−hh

f i vary within the range of 0.13 nanoseconds to
virtually instantaneous emissions, essentially converging toward zero nanoseconds. This
conspicuous differentiation in radiative lifetimes underscores the profound influence of
applied electric fields on the recombination dynamics within the quantum system under
examination. These findings demonstrate substantial alignment with recent studies in the
literature that investigate the impact of applied electric fields on recombination lifetimes in
nanostructures, particularly a GaAs doped quantum dot (QD) [44].

3.3. Applied Magnetic Field Effect (B)

First, let us calculate the value of γ, which represents the real-magnetic field strength

in Tesla (T). This can be calculated using the following formula: B =
e2γ2a*e,hh

GaN
2m*c2R*e,hh

GaN
.

Now, let us, for example, solve γ for electrons.
Let us suppose that B = 1, e (electron charge) ≈ 1.602× 10−19 C, and for l = 3L = 1,

ae
GaN ≈ 2.56 nm

(
2.56 ×10−9m

)
and Re

GaN ≈ 29.13 meV
(
29.13× 10−3eV

)
. c (speed of

light in vacuum) ≈ 20m0 (m0 is the electron mass in a vacuum (=9.10938356 × 10−31 kg).

γ =

√
B× 2m*c2R*e

GaN
e2a*e

GaN

Thus, after substituting the numerical values, we obtain the value of γ ≈
√

0.03733.
So, the value of γ is approximately 0.19 T.

Figure 4 illustrates the intricate interplay between magnetic field strength and various
optical properties, including transition energy, dipole matrix elements, and recombination
lifetime focusing on ISB and BTB transitions. The figure demonstrates the substantial
impact of the applied magnetic field on parameters such as the transition energy difference
(∆E f i), the dipole matrix elements (Mi f ), and the recombination lifetime (τf i) in relation to
the considered optical transitions within the studied system. Eventually, the augmentation
of the applied magnetic field produces notable effects on the system’s optical properties. As
the magnetic field strength increases, a decrease is observed in the transition energies Ee−hh

21
and Ee−hh

11 . This reduction arises from the expanding gap between energy levels Ee
1, Ee

2,
and Ehh

1 , which is a direct consequence of the magnetic field. Additionally, the dipole
matrix elements Me−e

21 and Me−hh
11 decrease due to the diminishing overlap between the

energy levels and their corresponding wave functions under the influence of the magnetic
field. Conversely, the magnetic field enhances the transition energy Ee−e

21 . These effects
collectively highlight the intricate interplay between magnetic field strength and the optical
characteristics of the system.

Remarkably, it is worth noting that the dipole matrix element Me−hh
21 exhibits a bifur-

cated behavior: it increases for magnetic fields within the lower range (B < 0.2) and steadily
decreases for an effective magnetic field exceeding 0.2. These factors exhibit sensitivity to
alterations in the magnitude of the applied magnetic field, contributing to the observed
trends. These trends exert a significant influence on the radiative lifetime within the system,
as illustrated in the MP of the same figure. Clearly, as we intensify the magnetic field, we
observe a reduction in the recombination lifetime τe−e

21 with a comparatively minor impact
on τe−hh

21 . However, τe−hh
11 experiences a significant augmentation. Moreover, it is crucial

to underscore that τe−hh
11 manifests the shortest duration among the three meticulously

investigated lifetimes. We also noted that τe−e
21 experiences variations within the range of

0.05 to 0.24 nanoseconds, reaching its maximum value in the presence of a weak magnetic



Nanomaterials 2023, 13, 2817 11 of 16

field. In contrast, τe−hh
f i exhibits a consistent trend of being approximately zero for all

magnitudes of applied magnetic fields. This distinct behavior underscores the profound
impact of magnetic field strength on the recombination dynamics within our quantum
system. These findings demonstrate substantial alignment with recent studies in the lit-
erature that investigate the impact of applied electric fields on recombination lifetimes in
nanostructures [50].
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Figure 5 illustrates the variation of recombination lifetime associated with ISB and
BTB transitions as a function of magnetic field for two distinct electric field values in an
InGaN/GaN ultrathin-layered heterostructure, the same investigated system. This figure
provides insights into the interplay effect of electric and magnetic fields on relaxation
lifetime. However, the introduction and manipulation of an electric field have discernible
influences on the lifetimes associated with both ISB and BTB optical transition. In particular,
when an electric field (F = 1) is applied, there is a substantial reduction in the lifetime
linked to ISB, while the lifetime associated with BTB experiences a modest improvement.
It is noteworthy that for the second transition-related lifetime (τe−hh

21 ), at a critical applied
magnetic field value of approximately 0.4 (B ≈ 0.4), the applied electric field ceases to
exert any discernible influence on this critical point. This intricate balance and the effects
observed in this study underscore the potential for practical real-world applications that can
be achieved by mastering the simultaneous manipulation of electric and magnetic fields.
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3.4. Impurity-Location Effect (z0)

To elucidate the influence of impurity localization on the radiative lifetime within the
analyzed system, we have compiled the data presented in Table 1. This figure shows the
dataset captures changes in impurity positioning within the investigated thin quantum well,
devoid of electromagnetic excitation while maintaining a constant nanostructure configu-
ration. The table unmistakably demonstrates that the impact of the impurity presence on
∆E f i and Mi f is negligible, it is approximately on the order of 10−4. Consequently, it exerts
a minimal influence on the modulation of the recombination lifetime τf i. The impurity
was initially located at the left edge of the nanostructure and then shifted to its center; it is
denoted as z0 : 0→ L + l/2. It is evident that the energy difference between the electron
and heavy hole states has been influenced by the relocation of the impurity within the
system. By shifting it from the edge toward the center, Ee−e

21 and Ee−hh
21 experienced a modest

reduction, whereas Ee−hh
11 exhibited improvement because of the rapid improvement in Ee

1
and Ehh

1 compared to the energy level Ee
2. Likewise, we observe that shifting the impurity

in the same direction has an impact on the overlap between the electron states under con-
sideration. It is noteworthy that both Me−e

21 and Me−hh
11 exhibit a marginal decrease initially,

followed by an increase as the impurity approaches its central position within the system.
This behavior arises from the fact that the electron–impurity correlation is important when
the impurity is situated near the interfaces (barrier/well) of the quantum well (QW), which
minimizes the overlap between electron–hole wave functions. Consequently, this reduced
interaction leads to a decrease in the overlap between electron and heavy hole states in this
spatial region.

Nevertheless, it is noteworthy that this influence exerts no discernible impact on
Me−hh

21 , as this particular matrix element exhibits continuous enhancements throughout
the transitional process. Otherwise, the influence of impurity positioning on the transition
energy, dipole matrix elements, and the electron–heavy hole correlation, consequently,
affects the radiative lifetimes associated with the ISB and BTB optical transitions examined
in this study, as delineated in the third section of Table 1. It is evident from this figure that
τe−e

21 and τe−hh
11 initially exhibit a slight increase, followed by a subsequent decline. This

behavior can be attributed to the sequential rise and subsequent fall in both the transition
energy and the dipole matrix elements associated with these two optical transitions. In
contrast, τe−hh

21 displays a marginal increase as the impurity is shifted toward the system’s
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center. This effect can be attributed to the concurrent increase in the competitive quantities
∆Ee−hh

21 and Me−hh
21 that are linked specifically to this transition. To further enrich the

scope of this study, our future endeavors are directed toward expanding the investigation
of radiative recombination lifetimes. In particular, we plan to explore the simultaneous
variation of temperature hydrostatic pressure and intense laser excitation, which will
provide a more comprehensive understanding of the underlying mechanisms governing
these optical processes.

Table 1. Show the effect of impurity location on the transition energy, dipole matrix element,
and lifetime.

l=3L=3a*
b

F=B=0 Ee−e
21 (eV) Ee−hh

11 (eV) Ee−hh
21 (eV)

z0(a*
b)

0.0 0.06625 2.89760 2.96386

0.5 0.06610 2.89764 2.96375

1.0 0.06604 2.89767 2.96371

1.5 0.06608 2.89766 2.96374

z0
(
a∗b
)

Me−e
21 (nm) Me−hh

11 (nm) Me−hh
21 (nm)

0.0 0.37256 0.37511 0.09271

0.5 0.37224 0.37489 0.09291

1.0 0.37221 0.37486 0.09287

1.5 0.37253 0.37507 0.09254

z0
(
a∗b
)

τe−e
21 (ns) τe−hh

11 × 10−6(ns) τe−hh
21 (ns)

0.0 0.24382 2.8755 0.00170

0.5 0.24591 2.8787 0.00169

1.0 0.24667 2.8791 0.00167

1.5 0.24578 2.8760 0.00164

4. Conclusions

In summary, this article is dedicated to a comprehensive theoretical exploration of
the electronic and optical characteristics within ultra-thin InGaN/GaN quantum wells.
Our primary emphasis is placed on understanding the radiative recombination lifetime
related to ISB and BTB optical transitions in the system. This study reveals that radiative
lifetimes can be effectively controlled using various strategies, such as size adjustments
and electric/magnetic field modifications. Moreover, we observe that radiative lifetimes
for ISB transitions are mostly longer than for BTB transitions, and impurity has a minor
influence compared to the dominant effects of electromagnetic polarization. These find-
ings hold promise for advancing theoretical calculations related to optical properties in
nanostructures, thereby contributing to the advancement of optoelectronics and photonics
applications in low-dimensional systems.
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