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Off-Policy Temporal Difference Learning for
Perturbed Markov Decision Processes
Ali Forootani*', Senior Member, IEEE, Raffaele lervolino™, Senior Member, IEEE, Massimo Tipaldi*,

and Mohammad Khosravi

Abstract—Dynamic Programming suffers from the curse
of dimensionality due to large state and action spaces,
a challenge further compounded by uncertainties in the
environment. To mitigate these issue, we explore an off-
policy based Temporal Difference Approximate Dynamic
Programming approach that preserves contraction map-
ping when projecting the problem into a subspace of
selected features, accounting for the probability dis-
tribution of the perturbed transition probability matrix.
We further demonstrate how this Approximate Dynamic
Programming approach can be implemented as a particu-
lar variant of the Temporal Difference learning algorithm,
adapted for handling perturbations. To validate our the-
oretical findings, we provide a numerical example using
a Markov Decision Process corresponding to a resource
allocation problem.

Index Terms—Reinforcement learning, Markov decision
processes, temporal difference learning, perturbed proba-
bility transition matrix.

|. INTRODUCTION

N LARGE-SCALE Markov Decision Processes (MDPs),

Dynamic Programming (DP) faces the curse of dimension-
ality as state and action spaces grow exponentially, making
computation infeasible [1]. To address this, Approximate
Dynamic Programming (ADP) methods leverage function
approximations and simulations to reduce complexity [2], [3].
ADP techniques such as Temporal Difference (TD) further
enhance scalability [4], [5]. On-policy and off-policy TD meth-
ods estimate cost functions using three main approaches:
(i) gradient-based solutions, which apply stochastic gradi-
ent descent to minimize prediction error incrementally [6];
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(ii) least-squares minimization, which reduces the least-
squares error between estimated and true returns [1], [7], [8];
and (iii) probabilistic approaches, which use Bayesian methods
to model uncertainty in value estimates [9], [10]. Off-policy
TD, a key ADP technique, estimates cost functions from
data generated by policies different from the one being
optimized [1], enabling greater exploration and improved
policies [11]. Exploration strategies also play a crucial
role in Reinforcement Learning (RL), as seen in Deep Q-
Learning [12], while Proximal Policy Optimization (PPO) [13]
improves the exploration-exploitation trade-off using a clipped
surrogate objective, making it robust for both continuous and
discrete action spaces. MDP uses simulations to approximate
optimal cost functions for effective policies, but model inac-
curacies and dynamic environmental changes can degrade
performance. Understanding how deviations between the
model and reality impact policy effectiveness is crucial,
particularly in the context of perturbed transition probability
matrices, leading to perturbed MDPs. Perturbation analysis in
RL examines how environmental or model parameter changes
affect policy performance and value functions.

This letter proves that sufficiently small perturbation in
the environment (transition probability matrices) will lead to
restricted bound between the optimal cost-to-go function and
non-optimal one. In particular, we examine how transition
probability matrix perturbations can be account as off-policy
TD learning, specifically Q-learning, by investigating the
impact of weighted combinations of exploration and optimal
actions on efficient learning. In addition, we analyze the vari-
ations of cost functions in the context of policy perturbations
and provide the corresponding upper bounds for discounted
MDP s. More precisely, let the transition matrices P* and Q
correspond to the optimal policy 7* and an exploratory policy
g, respectively. Also, let the perturbed transition matrix P
be defined as a weighted combination of these two matrices,
i.e., for 75, we have

P=(-AQ+AP", (1
where I denotes the identity matrix and .4 is a diagonal matrix
with &« € 10, 1[ on its diagonal, i.e., A = «f and « is

the discounted factor, specifying the trade-off between the
use of the optimal policy 7* and the exploratory policy 7g.
Our framework explicitly links the perturbation of transition
matrices to the exploration-exploitation trade-off through a
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convex combination of @ and P*. While similar trade-offs
exist in algorithms like PPO and TRPO [13], [14], the novelty
lies in our matrix-based formulation and the explicit derivation
of convergence guarantees under perturbations, which is less
explored in MDP research. We characterize the performance
resulting from the utilization of suboptimal policies associated
with P. In particular, we discuss the projection on the subspace
of specifically selected features based on such perturbations
and the convergence properties for off-policy TD methods.
Furthermore, following the work of [15], we ensure that
the perturbed cost function remains bounded over an infinite
time horizon, provided that for any pairs of stationary policy
(including 7 = 7%) it is |P — Plloc < 1 —a.

Non-stationary MDP s have been widely studied in RL lit-
erature, particularly in scenarios where transition dynamics or
rewards evolve over time. Prior works [16], [17], [18], [19],
[20] address arbitrary or adversarial transitions, often requiring
explicit tracking mechanisms. In contrast, our formulation
introduces a structured perturbation model, representing the
perturbed transition matrix as a convex combination of optimal
and exploratory transitions (1). This principled approach
enables smooth interpolation between policies, aligning with
exploration-exploitation trade-offs in optimistic RL meth-
ods [21], [22], [23]. Unlike prior works relying on tabular
settings or parametric drift [24], [25], our framework gener-
alizes to off-policy learning scenarios by explicitly linking
policy perturbations to transition matrix perturbations, offering
a novel perspective on policy optimization under controlled
non-stationarity.

This letter is organized as follows. Section II provides some
preliminaries on DP and outlines the cost function approx-
imation problem. The on-policy ADP approach is discussed
in Section III. Section IV analyzes the perturbed transition
probability matrices and their impacts on cost functions.
Section V explores the connection between perturbed transi-
tion probability matrices and Q-learning. In Section VI, the
proposed off-policy TD approach is assessed using a resource
allocation problem. Section VII concludes this letter.

[I. PRELIMINARIES

Let us consider an infinite-horizon DP problem for an
MDP. Such a problem often is solved by employing Bellman’s
principle of optimality recursively backwards in time [11]. In
this regard, a shorthand notation is introduced for Bellman
operator as F* : RI*l — RI¥l for any cost function vector
J € R¥I which can be expressed as!:

(F 7)) =min| R@) +a Y Pu@l(¥)|. @

ueld vex
where X’ is the MDP state space with cardinality |X’|, with
x and X being its two generic elements. Moreover, u €
U is a generic element of finite set of control actions U,
R € RI¥! the vector of instant cost with element R(x),2

IThis approach can be applied similarly for value function optimization by
replacing min function by max function. See the example in Section VI.
2We omit the dependence of R on a specific control action.

P:X xUxX — [0, 1] the state transition probability
matrix, with generic element P,y (u), and « € ]0, 1[ the
discount factor. In matrix form, (2) simplifies to: F*J =
R + aP*J. As noted in [11], this shorthand notation is
common for simplifying complex expressions. Applying the
sequence of optimal decision functions {u*, u*, ...}, where
w* X — U, as time horizon goes to infinity results in optimal
stationary policy 7 * with the associate steady state probability
distribution €* € RI*I(we denote by €* an element of this
vector corresponding to the state x). The Bellman equation
for the optimal cost function satisfies: J* = R + aP*J*,
where J* € RI¥! is the vector of optimal costs, and P* €
RIXIXIXT s the optimal transition probability matrix. Any non-
optimal stationary policy is shown by 7 with its associated
shorthand notation F;; and associated cost function J;; [1]. The
cost function J*(x) is usually approximated by a parametric
model J*(x, r) , where r € R is the parameter vector to be
optimized, and ¥ € N7 is a selected number of features. This
approximation, J* : X x R¥ — RI*! uses a low-dimensional
linear function J* ~ ®r*, where ® € RI¥I*¥ is a feature
matrix with linearly independent columns which we show by
¢ (x) its row corresponding to state x, and r* € RY is the
parameter vector to compute. Substituting the approximation
into the Bellman equation yields the projected equation:
&r* = (R + aP*®r*), where I1 = (0 TO*®) 1o TO*
is the projection operator, and ®* is the diagonal matrix
with €* on the diagonal and zero elsewhere [26]. Here, ®r*
approximates J*, making the equation solvable. This approach
relies on three key assumptions for any stationary policy
7 (including the optimal 7*) and related cost function Jy:
(i) the corresponding finite Markov chain is regular, with the
stochastic matrix P having a unique steady-state probability
distribution €, with strictly positive elements €, i.e., €x >
0,Vx € X; (ii) the feature matrix @ is full rank with rank
Yr; (iii) the feature matrix @ captures the key characteristics
of the cost function J, allowing ®r to closely approxi-
mate it. In this context, the dimensionality of the feature
space (i) plays a crucial role in determining computational
feasibility.

Ill. ADP METHODS BASED ON ON-PoOLICY FRAMEWORK

Before delving into the main results of this letter, we
present introductory material on the on-policy ADP approach
to prepare for the discussion of off-policy methods. In a
more general framework, TD methods can be classified into
on-policy and off-policy approaches [27]. In on-policy learn-
ing, the goal is to learn the cost function jﬂ(x), which
represents the approximated expected long-term discounted
costs from state x when following a target policy m. The
learning process occurs while the agent actively follows the
same policy m. On-policy methods are particularly effective
in ensuring good convergence, especially when using linear
function approximations. To find the optimal parameter vector
r* in the on-policy case for the optimal policy 7*, we solve
the following optimization problem:

r* = argmin|®r — (R + «P*dr) ||§*, 3)
r
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which minimizes the square of the weighted Euclidean
norm>* of the error between ®r and the projected Bellman
equation, where the weight €* is the steady-state probabil-
ity distribution associated to 7*. By differentiating (3) and
setting the gradient to zero, we obtain: &' @*(dr* — R —
aP*®r*) = 0, where ®* is a diagonal matrix with distribution
€* along its diagonal. Solving this equation gives: r* =
(PTO*D — adTO*P*P)" 1 (®dTO®*)R. In this formulation,
the term (®7O*® — ad O*P*d) represents the matrix
involved in solving for r*, incorporating both the feature
matrix and the transition dynamics. This approach provides
a way to approximate the optimal cost function in infinite-
horizon problems using a lower-dimensional representation,
leveraging the structure of the Bellman equation and the
projection framework to find an effective solution. Defining
Z* = dTO*(I—aP*)®, and d* = ® T O*R, then, the optimal
parameter vector is: r* = Z*~!d*. For large state spaces,
computing r* directly is infeasible, so iterative methods are
employed. The update rule can be derived as follows: rj, | =
arg min, |®r — (R + aP*CDrk)Hf*. Taking the gradient and
setting it to zero: (CDT®*¢‘)V;:+I = dDTG)*(R—i—a’P*(br,‘;), and
rearranging and simplifying:

-1
Fep1 =715 — (QJTG*CD) (Z*rZ — d*). 4

This iterative update formula is related to Least Squares
Temporal Difference (LSTD) methods [11]. Note that (4) is
applicable to any generic target policy m when considering
the associated steady state probability distribution € (whose
elements will be the diagonal elements of a diagonal matrix
®). In off-policy learning, the objective remains the same:
to estimate the cost function J,(x) for the target policy .
However, the actions taken during the learning process follow
a different behavior policy 7. Even though the agent follows
7 during learning, the focus is still on accurately estimating
the cost function for the target policy m (see [28] and
reference therein). The mechanism to compute iteratively
the parameter vector is analogous to the one in (4) and is
based on perturbation analysis, which is discussed in the next
section.

IV. PERTURBATION ANALYSIS OF STOCHASTIC
MATRICES AND COST FUNCTION BOUNDS

In order to apply off-policy methods, which require pertur-
bation of the transition probability matrices (for exploration
purposes), it is important to understand how perturbations in
transition dynamics affect cost functions. This section estab-
lishes bounds for the differences between cost functions
from perturbed and unperturbed dynamics, using properties
of stochastic matrices and positive definiteness. These results
provide insights into the resilience of MDP s under uncertain
transition probabilities, aiding ADP methods in developing
robust decision strategies. Using the results reported in [29,

3Weighted Euclidean norm on RI<¥! for any vector J € RI¥! is defined as

IVlex = vV Z‘v’xeX e;ck (J(x))z-

“4In this letter, we make use of standard definitions of norms for matrices
and vectors, e.g., ||Plloo or [|/]loco-

Lemma 6.3.1], the following Lemma 1 and Remark 1
guarantee the convergence of on-policy TD approaches and
accordingly recursive iteration (4). This result will be extended
to show the convergence property in the case of off-policy
TD approach as well.

Lemma 1: For any stochastic matrix P corresponding to
irreducible and regular Markov chain with associated station-
ary probability distribution €, whose elements are arranged
along the diagonal of a diagonal matrix ®, the matrix ®(/ —
a’P) is positive definite, where « € ]0, 1[.

Proof: To prove that ®(I — «P) is positive definite, we
want to show that for any non-zero vector J € RIX: JTOU -
aP)J > 0. We have: J'OJ = >, exJ)% and: JTOPJ =
Y €t ) o Pyly, where the term Y, PyJy is the
expected value of J,s given x, denoted by E[J|x]. Since € is a
stationary distribution we can rewrite: Y €.Jy Y PoeJy =
Ec[Jy - E[Jy|x]]. Applying the Cauchy-Schwarz inequality to
the expectation E.[J, - E[Jy|x]], we get: Ec[J, - E[Jy|x]] <
VE[J2] - VE[(E[Jy|x])2]. By Jensen’s inequality for convex
functions, we also have: E[(E[Jy |x])2] < ]E[Jf,]. Thus,

VELEUy1x)?] < yEc[J2]. Therefore, Ec[Jy - E[Jy|x]] <
E. [Jf]. Or, equivalently, > eJyx>  Puly =< D, exJ%.
Being « € 10, 1[, this gives us the desired result: ) exJ)% >
ad Y Py ]

Remark 1: From the results of Lemma 1 and full rank
assumption of matrix ® we know Z = OTOU — aP)d is
positive definite. Moreover (&' ©®) is symmetric positive
definite, therefore invertible (see [30, Lemma 5.5]). From
[29, Proposition 6.3.3 and Lemma 6.3.2] the recursive
iteration (4) directly converges to the solution of the projected
equation since the matrix I — (®T®®)~! Z has eigenvalues
strictly within the unit circle (see also [30, Th. 5.6]).

Remark 1 implies that necessary and sufficient condition for
the convergence of any on-policy TD algorithm depends on the
positive definiteness of matrix Z, and hence of ® (/—«P). This
concept can be extended to the case of off-policy TD algorithm.
In the next Lemma, we investigate such property for the case
of perturbed transition probability matrix P.

Lemma 2: For any stochastic matrix P corresponding to an
irreducible and regular Markov chain, consider a stationary
probability distribution €, whose elements are arranged along
the diagonal of a diagonal matrix ®, associated with the
perturbed matrix P = (I — A)Q + AP, being A a diagonal
matrix with « € ]0,1[ on its diagonal, and Q another
stochastic matrix. Then, the matrix O — aP) is positive
definite.

Proof: We need to show that for any non-zero vector J €
RIXI JTOU — aP)J > 0. To this end, consider the matrix
O(I — aP), and apply the results of Lemma 1. Following the
same proof steps, we can state that:

Y oEdi =) EPudiy, )
X x,x

and also Y EJ2 —a ) &> %JXJX/ > 0. Since P, =
aPyy +(1—a)Q,y, and being Q another stochastic matrix, by
substitution in (5), it is: ), &J2 —a D v Ex D PordiJy > 0,
which completes the proof. |

Authorized licensed use limited to: TU Delft Library. Downloaded on March 25,2025 at 08:31:15 UTC from IEEE Xplore. Restrictions apply.



FOROOTANI et al.: OFF-POLICY TEMPORAL DIFFERENCE LEARNING FOR PERTURBED MDPs

3491

Now we are ready to consider the impact of perturbation
introduced by the matrix P, defined as P = I-AQ +
AP*, on the projected Bellman equation. This perturbation
can be incorporated into the projected Bellman equation
by considering the perturbed transition matrix P instead of
P*. The projected Bellman equation with perturbation is:
&F = (R + aP*®r), where [1 = O(PTODP) 1T is
the projection operator. Substituting IT and rearranging, we
get: (®TOP — ad'OP*®)F = d'OR. Defining £ =
CIDTG)(I — aP*)CD,d = ®TOR, so the solution for 7 is:
Z-'d. This formulation allows us to solve for the
parameter vector 7 that approximates the cost function under
the perturbed policy, providing a way to assess the impact of
deviations from the optimal policy within the framework of
ADP. Similar to previous case, for large state spaces, solving
directly for 7 is impractical. Instead, iterative methods like
TD are used. The iterative update formula in the off-policy
case is:

Po=

_ -1 _ _
Fril = Fr — (q>T®q>) (Zr — d), (6)

whose convergence property can be derived from the following
theorem.

Theorem 1: Consider a Markov Decision Process (MDP)
with state space X, action space U, reward vector R, and
optimal transition probability matrix P*. Let the perturbed
transition probability matrix be defined as: P = (I — A)Q +
AP*, where A is a diagonal matrix with the discount factor
a € 10, 1] along its diagonal, and Q is a stochastic matrix
associated with an exploratory policy. Define: Z = ®TO( —
aP*)®, d = ®'OR, where ® € RI¥IX™ jg g feature
matrix, and © is a diagonal matrix with the stationary prob-
ability distribution € on its diagonal. The recursive iteration
for the parameter vector 7, € RY is given by: 711 = 7% —
(®TO®) 1 (ZF, — d). Then, the iterative update 7 converges
to the solution 7 of the projected Bellman equation: ®r =
[1(R + aP*®7), where [1 = &(®TOP) 10T 6.

Proof: From the results of Lemma 2 for the case P = P*,
we know Z = OTOUI—aP*)d is positive definite. Moreover
(T O®d) is symmetric positive definite, therefore invertible.
Since the convergence of (6) is directly related to the positive
definiteness of the term @ (I —aP*), then we can guarantee the
convergence of projected based ADP with perturbed transition
matrices. |

Remark 2: The recursive iteration (6) can be computed
using the Monte Carlo simulation mechanism. This procedure
involves producing two sequence of state visits via off-
policy TD methods, where the sequence {x(0), x(1), x(2), ...}
is generated using the transition matrix P (behavior
policy) or a steady-state distribution €, and we also gen-
erate an additional sequence of independent transitions
{(x(0), x(0)), (x(1), x(1)), ...} according to an original transi-
tion matrix P not necessarily optimal (target policy).

An important metric in analyzing perturbed MDPs is
the upper bound for the difference between cost functions
derived from perturbed and unperturbed transition probabilities
matrices. This ensures consistent policy performance under

non-stationary or perturbed conditions in MDPs and helps man-
age approximation errors in value iteration and ADP methods,
thereby maintaining optimal policy quality [13].

The next theorem provides an upper bound for the difference
between optimal cost function and its perturbed counterpart.
This result is particularly useful when the optimal policy is
not known and we want to obtain a bound on the norm of the
error between the estimated cost function and optimal one.

Theorem 2: Consider an MDP with X, U, R, and two
different transition probability matrices, P* and P, with
associated cost functions J* and J, respectively. Let P = -
A)Q + AP*, where A is a diagonal matrix with & € 10, 1[ on
the diagonal, and Q is a stochastic matrix. If ||P* — P|le <
(I-a), tﬁle |Thfference between J* and J is bounded by: ||J* —
Jlloo O‘—‘”.

Proof Usmg the Bellman optimality equations and the fixed
point mapping of the DP for J* and J [11], we can write
the following: [J*(x) —J(x)| = |R(x) +a Y ey PrI* () —
R(x) —a Y vey PurJ(¥)|. This simplifies to:

Z Pxx’ J (7

x'eX

) =T = a| Y PrI(x
xeX
We now decompose the sum:

DOPET) = Y P =

xeX xeX

Z (Pr*(x)
—J@) ®

+ Y P (x

xXeX
Substituting (8) into (7) we have:

_Pxx’-]*

@) =T = a| Y (P () = Pecd* ()

x'eX

+ Z Prv (7 (x

x'eX

JX))|
Using triangle inequality we get:

7)) —J@)] <a Y|Pl — Puo

xXeX

ta Y [P

xeX

()]
~3()].

where the first term contains the difference between the
transition matrices P* and P, while the second term accounts
for the difference in cost functions. Using the assumption that
|P*—Plloe < (1 —a), the properties of infinite norm, and the
fact that (9) holds for any norm, we bound the first term: ||J*—
Jloo < a(l=a) [T oo+ D_per [Por|l*(X) —J(X)|. Next,
we use the fact that >,y Py = 1, since P is a stochastic
matrix. Therefore, we have: ||[J* — J|oo < a(1 — ) |[|J*]|0o +
a|lJ* — J|loo, Rearranging the inequality to isolate [|J* — J|| o,
we get: [|J*¥ — Jlloo < % Since we know from the
Bellman equation that ||J*||s < ||R“°° , by substituting this
j”oo a”R”oo

C))

bound, we obtain: ||J* — , which completes the
proof. |

Remark 3: The norm condition ||[P* — Plls < (1 — @) in
Theorem 2 is satisfied whenever it is | P* — Q|loc < 1. Indeed,
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Algorithm 1 Off-Policy TD Learning With P

1: Initialize parameter vector 7g, discount factor «, feature repre-
sentation ¢ (x) for each state x, and behavior policy transition
matrix P

2: for each episode do

3 for each time step k do _

4: Generate the state x(k) using P

5: Generate the state x(k) from the transition pair (X(k), x(k))
using P

6: Observe the immediate cost R(x(k)) associated with the
target policy

7: Compute the TD error:

8k = R(x(k)) + ap(x(k) 7 — ¢ (k) ' F

8: Update parameter vector: 7 <— 7 + 83 (xz)

9:  end for

10: end for

the deviation from the optimal policy introduces a perturbation
matrix P* — P = (I — A)(P* — Q), whose norm is bounded
as follows: [|P* — Plloe < (1 — ) ||P* — Qlloo-

Algorithm 1 summarizes the off-policy implementation
using TD learning and perturbed transition matrix P for the
general target transition probability matrix P.

V. ANALOGY BETWEEN THE PERTURBED TRANSITION
MATRIX AND Q-LEARNING

In this section, we discuss how the analysis on perturbed
transition matrix P relates to Q-learning, where the optimal
policy 7* is combined with an exploratory policy, say wg. The
mixture of these two policies can be expressed as a weighted
combination, similar to the exploration-exploitation trade-off
in Q-learning. In Q-learning, the policy is a mixture of an
exploratory policy and an optimal policy, in the sense that the
action-selection strategy in Q-learning combines exploitation
of the optimal policy 7* and exploration using a stochastic
policy mg. This is mathematically described by the policy
mixture [27]: e (ulx) = & - o (ulx) + (1 —&) - 7" (ulx), where
¥ (u|x) is the optimal policy that chooses action u in state
x based on the optimal Q-function Q*(x, u), mo(ulx) is an
exploratory policy, and & € ]0, 1[ is the exploration parameter
controlling the balance between exploration and exploitation.
Under this mixed policy g, the transition dynamics can
be expressed as a combination of the transition matrices
corresponding to 7* and g : Pr, = §Prg + (1 - E)Prx.
We now observe that the perturbed transition matrix P can be
seen as a similar mixture of policies, with « playing the role
of 1 —& in Q-learning: P = (I —.A)Q+ .AP*. This formulation
shows that P models the transition dynamics of a perturbed
policy 7, which can be described as a probabilistic mixture
of the optimal policy #* and the exploratory policy mg:
7 (ulx) = (1 —a)mo(ulx) + o *(ulx).> Thus, o acts similarly
to 1 — &, determining how much the system follows the
optimal policy P* versus exploring the exploratory transitions
defined by Q. Since P is a weighted combination of the
optimal transition matrix P* and the exploratory matrix Q,
the deviation from the optimal transition matrix is given

SThe policy 7 deviates from 7* to g with probability 1 — a.

by: |P* — Pllee = (I — @)||P* — Qlloo. Assuming that
[P* — Qlloc < 1, this deviation is bounded by: [|P* —
Plloo < 1 — a. This expression is analogous to the temporal
difference error in Q-learning, where « controls the trade-off
between exploration and exploitation [27]. As « decreases,
the deviation from the optimal transition dynamics increases,
reflecting a greater degree of exploration. This trade-off allows
the system to balance between following the optimal policy 7 *
and exploring alternative policies through mwg. The deviation
from the optimal transition matrix P* is controlled by «,
similar to the exploration parameter in Q-learning. While the
principles of perturbation in Q-learning and the presented
approach share similarities, they are not interchangeable in
general. Q-learning excels in model-free and discrete setups,
while our approach is better suited for structured, large-scale,
or robust policy optimization tasks. These differences make
them complementary tools in the RL framework.

VI. NUMERICAL SIMULATIONS

In this section, we compute an estimation of the optimal
value function J* through J, and hence the parameter vector
r, utilizing the off-policy TD approach discussed earlier for
an MDP related to a resource allocation problem [1], [2]. In
summary, the challenge of managing resource pricing for
dynamic allocation is tackled by utilizing parallel stochastic
Markov chains. In this model, customers request a resource
with a probability of A; and release it with a probability of u;,
both of which correspond to the price ¢;. The decision-maker’s
objective is to maximize profit over an infinite time horizon,
which is analogous to minimizing costs in the dual formulation
of the problem. Denoting by x;(k) the state of Markov chain
(here number of customers) associated to ¢;, we can compute
the value function as follows:

T m
*(x) = lim E 2: kE: -
J*(x) ur&l;ae)zf Tl)moo |:k Oa ' lc,x,(k):|,
= 1=

where U = {c1, ¢2, ..., ci}. This resource allocation problem
exhibits the curse of dimensionality as the number of
available resources N and the possible price choice m
increase (see [1] for details). Consider a resource alloca-
tion problem with m = 4 price levels and N = 20
resources. In this case, the cardinality of the state space
is |X| = 10626, highlighting the curse of dimensionality
in DP problems. Consider a discount factor of « = 0.9,
with prices ¢ = [0.8,0.9, 1, 1.1], arrival probabilities A =
[0.090596, 0.048632, 0.015657, 0.005088], and service proba-
bilities p = [0.483723, 0.444019, 0.024843, 0.335103]. These
probabilities satisfy the condition: maxc; c;elf Yo [ Pv(ci) —
P ()l < (1 —a), forall i,j =1,..., m, ensuring stability
across all pairs of stationary policies (including the optimal
one). We consider 5 features for each state x of MDP, as
o1(x) = 1,¢i(x) = x;, i = 1,..., m, hence the parameter
vector r € R>. We ran 100 Monte Carlo simulations each
starting from an arbitrary initial state with the length of
50000 iterations. In particular for Monte Carlo simulations, we
employ the procedure explained in Remark 2 and Algorithm 1.
The results of these simulations are presented in Fig. 1,
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Fig. 1. The behavior of parameter vector r through off-policy
TD approach for the resource allocation with m = 4 prices, N = 20
resources and | X’ | = 10626.

where, for simplicity, we have depicted the behavior of
l7xll2 of parameter vectors across 10 experiments, show-
ing the convergence of the proposed off-policy TD learning
(see Lemma 2 and Remark 2). By averaging the parame-
ter vectors resulted from these experiments, we have r =
[0.0212, 1.9179, 2.2853, 8.9394, 3.3748]T. After computing
r, one can use the results of the Theorem 2 to approximate J*
for a given state x. In Fig. 1, for the horizontal axis we employ
logarithmic scale since the alteration rates of the curves in
linear scale are not adequately detectable through iterations.
Due to space limitation, further numerical simulations showing
the applicability of Algorithm 1 to different target policies can
be found in [31].

VIl. CONCLUSION

In this letter, we analyzed the impact of perturbations on
optimal policy in DP problems and computed the resulting
cost function’s deviation from its optimal value. In particu-
lar, we handled perturbations in state transition probability
matrices using an off-policy TD projection-based approach,
which also allowed to address the curse of dimensionality
in large-scale MDPs. We also provided the necessary and
sufficient conditions for the convergence of the associated
Monte Carlo based simulations algorithm. Finally, we vali-
dated the presented theoretical results via a suitable numerical
example.
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