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ABSTRACT
Training models for autonomous vehicles (AVs) necessitates substantial volumes of high-quality data due to the strong correlation
between dataset size and model performance. However, acquiring such datasets is labor-intensive and expensive, requiring
significant resources for collection and labeling. To optimize the utility of available data, augmenting the dataset or generating
synthetic data presents a cost-effective and efficient solution. Traditional methods that operate within the RGB domain frequently
overlook crucial information, such as object frequency, scene composition, and agent trajectories. To address these limitations, a
pipeline employing controllable diffusion models and vehicle simulation software is proposed. This approach involves loading
collected data into a physics-based simulator, which allows for augmentation beyond the pixel space into the structural space. The
augmented simulated data is subsequently transformed back into the photorealistic domain using generative artificial intelligence.
This process generates high-fidelity synthetic data, thereby enabling models to train effectively on an expanded and varied dataset,
enhancing robustness through the increased variation. The proposed method is evaluated in both image and video domains to
assess its effectiveness.
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1 INTRODUCTION

Achieving full self-driving capabilities in autonomous vehicles (AVs)
presents significant societal benefits. AVs are anticipated to reduce
traffic accidents, thereby potentially saving millions of lives and de-
creasing injury-related costs [1, 2]. Furthermore, AVs can enhance
economic productivity by allowing passengers to engage in other
activities during travel time [3] and mitigate congestion costs. For in-
stance, in the Netherlands, congestion costs were estimated between
EUR 3.3 and 4.3 billion in 2018, representing approximately 0.5%
of the Dutch GDP, primarily due to delays in the transport of goods
[4]. Training AI models for AVs necessitates extensive datasets, with
a well-established correlation between dataset size and model perfor-
mance [5]. However, the collection and annotation of these datasets
are labor-intensive and costly. To address these challenges and re-
duce expenses, researchers employ data augmentation techniques or
generate synthetic data to maximize the utility of the collected data.
Traditional data augmentation methods leverage geometric and pho-
tometric techniques such as rotation, scaling, flipping, and adding
noise. These methods help the model learn invariant features and
enhance its robustness during inference. More advanced augmen-
tation methods employ techniques like image erasing [6], masking
parts of the image [7, 8], cutting parts of the image [9], mixing
multiple images together [10, 11, 12], and copy-paste strategies that
replicate image samples [13]. Recent methods [14, 15, 16, 17, 18,
19] utilize generative models, including diffusion models [20, 21], to
produce more diverse augmented training images tailored for various
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downstream tasks such as image classification [22, 19, 23, 24, 16,
25], object detection [26, 27, 28, 17], and semantic segmentation
[29, 30, 31, 28, 32, 33]. Despite their applicability, these methodolo-
gies exhibit significant limitations. The synthetic data generated is
predominantly derived from latent spaces and directed by prompts,
which provide minimal structural guidance. This often results in syn-
thetic data that is irrelevant in real-world contexts. To address these
constraints, structural guidance is typically integrated directly from
auto-labeling simulators, which confine the model to produce valid
samples. However, the scenarios within these simulators do not ac-
curately emulate real-world agent behaviors, as they are inherently
simulated. Certain strategies attempt to resolve this issue by either
utilizing pre-existing structural information within the dataset or by
extracting it directly from RGB data through algorithmic techniques,
thereby generating valid and realistic data. Nonetheless, this data
remains structurally tethered to the original dataset. The objective
is to further enhance synthetic generation techniques to increase the
utility of real driving datasets. Our proposed pipeline aims to address
these deficiencies by leveraging real driving data to obtain realistic
agent behaviors. This pipeline incorporates structural guidance from
the simulator to ensure consistent sample generation by the diffusion
model and perturbs the dataset within the simulator to expand the
dataset across the structural dimension, as illustrated in Figure 3.

1.1 Contributions

The primary contribution of this paper is the introduction of a
novel data augmentation technique aimed at increasing the utility
of real driving datasets, such as nuScenes [34], nuPlan [35], and



Figure 1. Juxtaposition of diffusion based augmentation methods and ours.

the Waymo Motion Dataset [36], by increasing the variance in the
structural space, as depicted in Figure 1. The pipeline is applicable
to both image and video domain and operates without the need for
large GPU clusters or extensive labelled datasets. Dissecting this
algorithm, the primary contributions can be summarized into the
following key points:

• A data loading interface and data augmentation algorithm that
can load multiple datasets into simulation software (Prescan [37])
and augment them. These datasets include nuScenes [34], nuPlan
[35], and the Waymo Motion Dataset [36].

• A diffusion architecture capable of generating photorealistic
samples in the image and video domains. This architecture can adhere
to segmentation information without requiring a labeled dataset or
extensive computational resources.

• Experiments demonstrate that training end-to-end autonomous
driving models with the augmented dataset, incorporating both simu-
lation and diffusion models, results in improved average performance
compared to using only real data.

This paper continues with Section 2, which elaborates on the neces-
sary background knowledge. Following this, each quadrant of Fig-
ure 3 is discussed in Section 3, explaining the rationale behind the
proposed method. Experiments are conducted, of which the imple-
mentation details and results elaborated on in Section 5, Followed by
a discussion in Section 6. Future works are proposed in Section 7,
where after there will be concluded in Section 8

2 BACKGROUND

This section delves into the landscape of generative AI, with a par-
ticular focus on diffusion models. Unlike standard discriminative or
autoregressive models, diffusion models employ a unique learning
mechanism, which will be briefly explained. Furthermore, this sec-
tion covers the prominent datasets and metrics commonly used in the
automotive domain to evaluate performance.

2.1 Generative AI

Generative AI models are designed to model the entire data distri-
bution, enabling the generation of new data samples based on seen
data. Architectures include auto regressive models, latent variable
models, flow-based models, and energy-based models [38].
This research focuses on prescribed latent variable models, which
define a probability distribution over data and latent variables. Vari-
ational Autoencoders (VAEs) [39] and diffusion models [21, 20] are
key examples. The combination of these two models, utilizing the
VAE as a compressor and decompressor and the diffusion architec-
ture as the generative power, has resulted in remarkable success in
recent years, revolutionizing the field of generative AI. Diffusion

Figure 2. Markov chain of the forward and reverse diffusion process [21].

based models such as DALL-E [40, 41], Imagen [42], Midjourney
[43], Stable Diffusion [44], and Sora [45] have demonstrated their
robustness and versatility, establishing diffusion models as leading
models in the generative AI landscape. Their ability to generate
high-quality, diverse images from textual descriptions has garnered
significant attention. These models excel in generating images that
are not only realistic but also adhere closely to given prompts, making
them highly useful for applications in art, design, and content cre-
ation. However, their applicability to engineering practices is limited
due to their stochastic nature, which can result in inconsistency.

2.2 Diffusion mechanism

Diffusion models are composed of two processes: a forward process
and a backward process, as depicted in Figure 2. The forward process
follows a Markov chain ranging from 0 to 𝑇 , where Gaussian noise
is added to a sample x0 in a structured manner through a sampler
defined by 𝑞(x𝑡 | x𝑡−1). After 𝑇 steps, this transforms the sample
into pure noise. The reversal of the forward process can be learned
by a model defined as 𝑝𝜃 (x𝑡−1 | x𝑡 ), parameterized by 𝜃. Predicting
x𝑡−1 | x𝑡 is computationally expensive. Therefore, as proposed by
[21], the noise 𝜖𝑡 is predicted instead, with a model parameterized
by 𝜃, 𝝐 𝜃 (x𝑡 , 𝑡), accepting the time 𝑡 and sample 𝑥𝑡 using the loss
function in Equation 1.

𝐿 = E𝑡∼[1,𝑇 ],x0 , 𝜖𝑡

[
∥𝝐 𝑡 − 𝝐 𝜃 (x𝑡 , 𝑡)∥2

]
(1)

After being trained on extensive image datasets, diffusion models
learn the reverse process for an entire distribution of images. Dur-
ing inference, these models can generate novel images from Gaus-
sian noise. Furthermore, by utilizing cross-attention mechanisms as
demonstrated in [46], the generation process can be guided through
various modalities.

2.3 Simulators

Simulators generate data by iteratively allowing an agent to take ac-
tions and then dynamically updating the environment based on these
actions. This feedback loop ensures that the agent’s decisions contin-
uously influence the state of the environment, hypothetically allow-
ing for the possibility to generate infinite amounts of data. Various
benchmarks are used to assess performance within these simulators.
For instance, the CARLA simulator [47] offers several benchmarks,
including, noCrash [48], Town05 [49], LAV [50], Roach [51], and
Longest6 [52], each focusing on different aspects of autonomous
driving such as generalization, safety, and adaptability to diverse
environments. The nuPlan benchmark [35] introduces a large-scale
driving dataset and a closed-loop simulator, specifically designed
for evaluating long-term planning through motion-planning metrics.
This thesis utilizes the simulator provided by Siemens, named Sim-
center Prescan [37]. The Prescan [37] simulation software enables
automatic massive scenario generation with physics-based sensors
models and the extraction of various types of sensory data, including
images from a monocular camera and segmentation maps.
Domain gap: While these simulators can generate vast datasets, the



Figure 3. Complete outline of the proposed architecture.

primary challenges of utilizing this data as a surrogate for real data,
lies in the discrepancy between simulated agent behavior and real-
world conditions, as well as the photo realistic differences between
the simulated environment and reality.

2.4 Datasets For Autonmous Driving

Datasets typically encompass sensor readings, destination points,
object labels, bounding boxes, and trajectory information. They are
utilized to train autonomous vehicle agents by comparing the sys-
tem’s predicted values, derived from the dataset’s sensor inputs and
objectives, to the actual ground truth labels. The accuracy of these
predictions relative to the ground truth serves as a crucial evalua-
tion metric. This research will employ the nuScenes [34] dataset to
validate the data augmentation pipeline, owing to its comprehen-
sive documentation of labels and agent trajectories, along with the
inclusion of front-view RGB images.
Data distribution: Despite offering realistic driving scenarios, these
datasets do not cover every possible situation. This limitation can
create gaps in data coverage, excluding scenarios that are possible
but not captured in the dataset. Training on such a confined set can
lead to unexpected behavior when the model encounters data during
inference which lies outside the training distribution.

3 METHOD

The proposed architecture, illustrated in Figure 3, will be explained
and justified. The primary objective is to maximize the utility of
a real driving dataset. Consequently, the generated data from the
pipeline will be assessed both quantitatively and qualitatively. This
assessment will utilize the Fréchet Inception Distance (FID) [53]
and Dreamsim [54] metrics, and the results will be visualized using
t-SNE. Additionally, its efficacy will be tested using an end-to-end
image and video model. These models require an image or video as
input and output a steering angle, with the video model additionally
outputting a longitudinal acceleration action. These results are then
compared to a diffusion-only augmentation technique dataset. The
following section shall elaborate on the first quadrant, datasets.

3.1 Datasets

To enhance the utility of the augmented dataset, the expansion in
the structural space must add novel information; therefore, the scene
composition must be altered in a meaningful way. The structural
perturbations should be minor enough to ensure that the original
ground truth labels remain accurate, and the new dataset must re-
main valid from a physics-based perspective. Therefore, a physics-
based simulator is utilized to ensure that the new scene compositions,
although altered, remain physically plausible. Both the image and
video-based downstream models are designed to predict the steering
angle. By optimizing for this control action, meaningful properties
of the scene can be identified. When perturbed, these properties ex-
pand the dataset, enhancing the downstream model’s robustness to
variations. The hypothesis is that the steering angle of a car, exclud-
ing cut-in or collision events, remains consistent regardless of the
types of vehicles surrounding the ego vehicle. Similarly, it is hy-
pothesized that the steering angle remains consistent irrespective of
the longitudinal displacement of other agents with respect to the ego
vehicle, again excluding cut-in or collision events. Therefore, these
two properties are selected to be perturbed. To achieve this, the pose
and dimension information of static obstacles such as traffic cones,
road blockages, speed bumps, lanes, and crossroads, including are
extracted. Subsequently, the trajectories and classifications of all dy-
namic entities within the dataset are extracted and subjected to minor
perturbations. The resultant modified dataset is then loaded into the
simulation environment. The specific implementation details of the
simulator are provided in Section 3.1. After loading the data, the
rendered images must be transformed from simulation images to the
photorealistic domain using diffusion models. These models require
caption and segmentation information. Segmentation maps can be
directly extracted from the simulator, while captions are obtained
using the scene descriptions provided in the datasets. The motivation
for using segmentation information and the structure of the prompts
will be elaborated on in Subsection 3.2.

To test the efficacy of the structural modifications, a benchmark will
be used, inspired by diffusion-based augmentation algorithms [14].
Since the nuScenes [34] dataset does not inherently include segmen-
tation maps, a high-performing segmentation algorithm is employed
[55], to aquire the maps. The same diffusion process will be applied,
expanding the dataset in the pixel space, but without any structural
modifications. This approach allows for assessing whether the struc-



tural modifications provide any benefits. This data acquisition process
is visually depicted in Figure 3 (the top left corner).

3.2 Diffusion Architecture

To leverage diffusion models for data generation, the type of guidance
needs to be selected for the sample generation, which can include tex-
tual information, depth data, pose information, segmentation maps,
HD maps, bounding boxes, or edge information. Many types of struc-
tural guidance can be extracted from the physics-based simulator
Prescan [37]. When choosing the appropriate structural guidance
technique, two factors must be considered: the maximum encoded
information per pixel and the discrepancy of the structural guidance
data between the training and inference sets.
To choose the appropriate guidance technique, the perspective must
first be specified. The downstream models will operate on monoc-
ular front-view camera images, so the guidance techniques must be
relevant from this view. From this perspective, depth and segmenta-
tion images contain the most and similar amounts of information per
pixel, whether it be depth per pixel or label per pixel.
To select the appropriate guidance method between the two options,
the second criterion is employed, which necessitates understanding
the gap between the training data and the inference data. The diffu-
sion models must utilize structural guidance to generate photorealis-
tic images, ensuring consistent and plausible samples. The training
data for the diffusion models will consist of the original RGB data
from the nuScenes [34] dataset, as this is the data that needs to be
modeled. The structural guidance for the RGB images must closely
align with the RGB samples to avoid misalignments that could lead
to poor generative capabilities. The structural guidance provided by
the simulator does not align closely enough with the RGB data for a
successful training process. Therefore, the guidance must be directly
extracted from the nuScenes [34] RGB images for training. Since the
diffusion model is trained on structural guidance from the RGB im-
ages, the guidance passed during inference from the simulator must
be similar. If this is not the case, the model will not understand the
data. Hence, a structural guidance technique must be chosen where
the training data and inference data do not significantly differ.
The discrepancy for depth data in real and simulated scenarios is con-
siderable because static obstacles, such as buildings, are not imported
into the simulator. This results in the diffusion models having access
to more information during training than during inference, leading
to poor results. This issue persists even when using segmentation
images; however, in the pre-processing of the segmentation data for
training, labels that are known not to be in the simulation dataset,
such as buildings, can be dropped and mapped to the background.
This is not trivial in the case of depth data because removing points
from static buildings without known labels is challenging. Therefore,
segmentation maps are chosen to facilitate structural guidance.
Although more structural conditions, such as bounding boxes, could
be added to include more structural data, segmentation maps will
suffice for testing the pipeline. In addition to structural guidance,
other diffusion augmentation techniques [14, 15] utilize prompts as
additional guidance. Although not foundational, the pipeline includes
prompts to showcase the versatility of diffusion models in altering the
scene with different parameters, such as the geographical location,
building types, daytime, and weather conditions. The method of
injecting these conditionals differs between image and video models,
and thus these models will be discussed separately, starting with the
image-based diffusion model.

3.2.1 Diffusion Model: Image Generation

Training diffusion models is computationally intensive; for instance,
latent diffusion models like those used in Stable Diffusion [44] com-
prise approximately 400 million parameters [56]. Training such a
model on ImageNet, a dataset with 14 million hand-annotated im-
ages [57], using a V100 GPU, takes approximately 271 days [56].
Some pre-trained model’s parameters are publicly available, pro-
viding access to trained models which have internalized complex
relationships between images and captions, allowing for high-fidelty
generation of samples though prompt. However, as detailed in Sec-
tion 3.2, it is also necessary to incorporate structural control into the
model to ensure generated samples are consistent with the calculated
structure.
Training the entire model from scratch to incorporate additional con-
ditions auxiliary to the prompt would disregard the existing pre-
trained weights. Fine-tuning the model using the pre-trained weights
for new conditions can lead to catastrophic forgetting, where the
model overwrites valuable previously learned information. To miti-
gate this, the ControlNet architecture [58] is utilized. This architec-
ture is designed to allow the model to adapt to new conditions while
preserving the knowledge it has already acquired, thus preventing the
loss of valuable information from the pre-trained weights.
This architecture duplicates the encoder portion of the diffusion
model and provides this duplicate with the same input as the base
model alongside the additional conditioning. The feature maps that
are generated during the forward pass are combined with the origi-
nal feature maps using zero-convolutional layers [58]. During train-
ing, the original model weights remain frozen, and only the copied
weights are trainable. This approach preserves the original knowl-
edge while allowing the model to learn new conditioning.
At the onset of training, the duplicate of the encoder is initialized
with the weights of an open-source pre-trained ControlNet [59] con-
ditioned on segmentation maps to speed up the training process. For
fine-tuning this model specifically for driving images, 700 scenes ap-
proximately 168000 images from the nuScenes dataset [34] are uti-
lized, focusing exclusively on the front camera images. This method
ensures that the model retains its original capabilities while adapting
to new, specific tasks relevant to autonomous driving.

3.2.2 Diffusion Model: Video Generation

Extending diffusion models to generate videos requires the model
to produce frames that are temporally consistent with one another.
Generating multiple frames simultaneously is computationally ex-
pensive, and training these models demands more resources com-
pared to training image-based models. Methods proposed in [60, 61,
62, 63, 46, 64, 65] have demonstrated the ability to generate video.
However, none of these methods accept segmentation maps as con-
ditional inputs, or have publicly available training scripts, and those
that do require extensive data to train effectively.
To address these challenges, the already trained image Control-
Net[58] is extended the to the video domain, depicted in Figure 4. It
must be noted that the image ControlNet lacks a temporal dimension
and to mitigate this, an approach inspired by CTRL-Adapter [66]
was used. During training, similar to the image ControlNet [58], the
base model’s weights are frozen, and the ControlNet’s [58] feature
maps are added to the feature maps of the new video base model.
However, due to the additional temporal dimension in the new base
model architecture, direct zero-convolution yields poor results as
the feature maps of the image ControlNet [58] are not temporally
aligned. Therefore, an additional adapter is introduced between the



(a) Original [34] (b) Simulator

Figure 4. Loading real driving data into the Prescan [37] simulator

feature maps. This adapter consists of the following layers: spatial
convolution, temporal convolution, spatial attention, and temporal
attention [66]. These layers are trained during the process and align
the image ControlNet feature maps over the temporal dimension,
enabling the usage of an image ControlNet on a video base model
without requiring extensive datasets.
In addition to accepting a prompt and a condition, the initial starting
frame of the video is provided to the model, allowing the model to
understand which color palette to use. Combined with the segmen-
tation images from the simulator and the initial reference frame, the
model can create videos of 16 frames. This method ensures the tem-
poral consistency of generated frames while incorporating structural
control based on the provided segmentation maps, as depicted in the
diffusion training section of Figure 3.

4 DOWNSTREAM MODELS

To validate the performance of the proposed architecture and assess
the quality of the generated samples, the downstream models are
trained on three datasets, as depicted in the training end-to-end
section of Figure 3.

• Dataset 1: nuScenes This experiment trains the model only
on the 700 training scenes of nuScenes [34] approximately, 168000
images.

• Dataset 2: nuScenes + nu-dif This experiment trains on the 700
nuScenes [34] scenes plus 120 generated scenes originating from the
segmentation maps obtained directly from the RGB data using the
ODISE segmentation algorithm [55], totalling 196800 images.

• Dataset 3: nuScenes + pre-dif This experiment trains on the
700 nuScenes [34] scenes plus 120 generated scenes originating from
the Prescan [37] augmented dataset and segmentation maps obtained
through the simulator, totalling 196800 images.

This setup allows for a comprehensive evaluation of the model’s
ability to generate high-quality samples and its impact on the per-
formance of downstream tasks in both image and video contexts.
In both cases, 17.1% of the original dataset was augmented, adding
120 scenes. The augmented scenes were randomly selected from the
nuScenes [34] training dataset.
The image end-to-end model processes an image through a ResNet-
34 network, which outputs a steering angle mapped between [0,1],
similar to the controller described in [67]. The video model employs
a similar approach, where six frames are processed through a ResNet-
34 network that functions as a feature extractor. The extracted features
are then passed to a Long Short-Term Memory (LSTM) network,
which interprets the relationships between the features of the frames.
This LSTM network outputs a steering angle and because it has
access to multiple time frames a longitudinal acceleration as well,

mapped between [0,1]. By comparing the performance of the models
trained on different datasets, insights can be gained into whether the
augmentation of the dataset in both pixel and structural space leads
to a significant improvement in the performance of the downstream
models.

5 EXPERIMENTS & RESULTS

Similar to Section 3, each quadrant depicted in Figure 3 will be ex-
plained independently, highlighting the implementation details and
discussing both quantitative and qualitative results. The section will
commence with an examination of the datasets used in the experi-
ments.

5.1 Processing Datasets

The data loading API consists of two main parts: initially preprocess-
ing the data, which involves extracting the desired information from
the real driving datasets so that it can be loaded into the simulator,
and the augmentation process. These two steps are detailed in the
following sections.

5.1.1 Data Loading

To maximize the utility of the data loading API for Prescan [37], it
is crucial to ensure that the API is not tailored to a single dataset.
This can be achieved by employing a generic datatype capable of
loading multiple datasets and building the API based on this more
versatile data structure. Researchers from [68] have developed such
a generic datatype, which allows for the loading of various datasets,
including Waymo [36], Woven [69], nuPlan [35], and nuScenes [34].
This generic datatype is leveraged for the API, ensuring broad com-
patibility and flexibility.
Prescan [37] requires data to be parsed in a specific format. The devel-
oped API extracts the necessary objects, such as actors, road surfaces,
lanes, crossroads, speed bumps, and their dimensions, positions, and
velocity vectors. This data is then formatted to be compatible with
the Prescan [37] simulator. In Figure 4, it can be observed that the
API successfully loads all the dynamic actors and static obstacles,
such as the road, into the simulator.
Diffusion models often have difficulty interpreting numerical data
when injected via a prompt. Therefore, the prompt focuses solely
on categorical aspects such as weather type, time of day, and
geographical location. To extract the caption that will accompany
the samples in the generation process, a separate Python module has
been developed to parse the description of the nuScenes [34] data,
forming sentences such as:

(a) Normal scene (b) Augmented scene

Figure 5. Comparison of a scene and an augmented scene, illustrating vari-
ations in car types and slight forward displacement of agents at the same
timestamp.



(a) Frame #21 [34] (b) Frame #22 [34]

(c) Segmentation Figure 6a (d) Segmentation Figure 6b

Figure 6. The detection failure of the ODISE [55] segmentation algorithm
highlighted in consecutive frames.

A clear driving scene, in Boston, during the day.

5.1.2 Augmentation

Once the data is loaded into Prescan [37], as depicted in Figure 4,
various parameters such as agent trajectories and car types become
accessible. The types of cars are randomly assigned, and in addition
to varying the car types, the trajectories are perturbed. To avoid di-
verging significantly from the original dataset, the velocities of all
actors are increased by a random percentage between 0 and 40%.
These increased velocities are uniformly applied to all actors for 1.6
seconds. After this period, the actors are teleported back to their
original positions, and a new random velocity is applied for the
next 1.6 seconds. Although this increase seems high, the simulator’s
rendering methods incorporate a smoothing function over the po-
sitional trajectories. As a result, the differences in position are not
pronounced, typically varying by less than a few meters upon in-
spection. This method ensures that the ground truth control labels
remain valid while expanding the dataset. This randomization pro-
cess is depicted in Figure 5, where it can be observed that the agents
have different car types and at the same timestamp, the cars in the
augmented scene are slightly ahead.

5.1.3 Automatic Semantic Segmentation

To segment the frames of the original nuScenes [34] scenarios, it
is first necessary to align the field of view (FOV) of the Prescan
[37] images with that of the nuScenes [34] images. This alignment
ensures that the discrepancy between the conditions during training
and inference time is minimized. This alignment is achieved through
a pre-processing method that adjusts the FOV of the nuScenes [34]
images to match the camera angle of the Prescan [37] camera. Once
this pre-processing is complete, the samples are fed into the seg-
mentation algorithm. The algorithm is slightly modified to perform
semantic segmentation instead of panoptic segmentation, ensuring
better alignment between training and inference conditions.
The model demonstrates a high degree of robustness; however, errors
occur during inference, as shown in Figure 6. One notable issue is the
failure to detect the same vehicle in consecutive frames due to poor
lighting conditions. In contrast, the segmentation maps generated by
the simulator are not affected by these errors because the simulator
can automatically label the scene. Nonetheless, as discussed in Sec-
tion 3.2, the segmentation maps originating from the Prescan [37]

(a) Image diffusion (b) Video diffusion

Original images Generated images Rendered images

Figure 7. T-sne projection of 100 images, showing the gap between simulated
data and real data, and how diffusion models are able to map simulation
information to the real domain.

Similarity Metric Simulated Generated image Generated video

FID [53] 316.02 124.38 105.66

Dreamsim [54] 20.57 14.83 10.29

Table 1. A quantitative assessment of the generated images by the video and
image model, comparing them with rendered images using FID [53] and the
DreamSim [54] metrics.

simulator do not perfectly align with RGB data from nuScenes [34],
leading to worse conditioning alignment than the detection failures
observed with ODISE [55]. Therefore, the segmentation maps pro-
duced by ODISE, combined with the RGB scenes from which they
are derived, are used for training the diffusion model.

5.2 Diffusion Training & Inference

An image and a video diffusion model are trained, sharing the same
ControlNet. To obtain the weights for the ControlNet [58], the image
model is initially trained with the segmentation images from ODISE
[55] alongside the RGB images from nuScenes [34] and a textual
prompt provided through the prompt generator. During this training
phase, the weights of the base model [44] are kept frozen. The train-
ing parameters include a learning rate of 0.00001, an input size of
640x360 pixels, no weight decay, and a batch size of 64. The 8-bit
Adam optimizer is employed for 10,000 steps on a single NVIDIA
A6000 GPU with 48 GB VRAM.
For the video model, during training, the image ControlNet [58] and
the base model [70] are frozen, and only the weights of the adapter
are trained. The learning rate remains at 0.00001, but the input size
is adjusted to 256x160 pixels, and the batch size is reduced to 16.
The 8-bit Adam optimizer is used for 70,000 steps, also on a single
NVIDIA A6000 GPU with 48 GB VRAM. During inference, the
segmentation maps of 120 scenes from ODISE [55] are processed
through the models, producing the set nu-diff. The Prescan [37]
segmentation maps are collected at a rate of 20 Hz. Due to the 12
Hz collection rate of the nuScenes [34] dataset, these segmentations
of the same 120 scenes are first sampled before being passed to the
image and video models for inference, creating the set pre-diff.
The efficacy of the generated samples will be tested through the per-
formance of the downstream models. In addition to this, a qualitative



and a quantitative assessment will be performed. A popular metric
to assess the photorealism of a generated sample with respect to a
real sample is the Fréchet Inception Distance (FID) score [53].
The FID score measures how similar the generated images are to real
images by comparing the statistical properties of features extracted
from both sets of images using a pre-trained neural network. A lower
FID score indicates higher image quality and greater similarity to
real images. FID scores are calculated for 400 Prescan images, 400
generated diffusion images, and 400 generated video diffusion im-
ages, yielding the scores shown in Table 1. The simulated images
obtained directly from the simulator are the least similar to the real
images. The image diffusion models can map the segmentation maps
of the simulator to images that are closer to the real images than
the simulated images, indicating that the generated images add valu-
able information, making the samples look more realistic. The video
models generate samples closest to the original dataset, which can
be attributed to the fact that the video model accepts an initial refer-
ence frame, thereby knowing beforehand which color palette to use,
creating images more closely resembling the original image. These
numbers have no physical meaning, therefore an addition metric is
used to validate the results.
Dreamsim [54] is a similar state-of-the-art metric utilizing a pre-
trained model to assess the quality of the samples. However, it does
not merely measure the photorealism of the generated images but
also the structural similarities. It can be seen in Table 1 that the
simulated images have the lowest structural similarity, which can
be attributed to two reasons. The first cause is the photorealism
gap between the simulated images and the real images. The second
reason is that although the dynamic actors are imported, the static
obstacles are missing, creating a structural gap. The images produced
by the image and video diffusion models exhibit a closer resemblance
to the original images. Notably, the video models outperform the
image models. This superior performance can be explained by the
same reasoning applied to the FID [53] score, where the temporal
consistency and continuity in video data provide a more coherent
and realistic representation compared to individual images.
To visually analyze the gap between the simulated images and the
generated images, the samples are projected to a low-dimensional
space using PCA, after which the features are mapped to a 2D plane
using t-SNE, visualized in Figure 7. Again, a similar trend can be
observed where the generated samples are closer to the real images.
To showcase the versatility and high performance of the diffusion
models, results of the image diffusion model are depicted in Figure
8. It can be seen that the gap between the training segmentation
maps and the inference segmentation maps has been proficiently
minimized, allowing the inference segmentation maps to generate
high-quality samples. Figure 8a is generated using a segmentation
map from ODISE and Figure 8b from augmented maps from Prescan
[37]. Visually the sample generated from the simulated segmenta-
tion map does not show any discrepancy with the guidance it was
given, indicating the gap between the training and inference data was
sufficiently small. Utilizing prompt guidance, it is observed that the
diffusion model can change weather conditions, demonstrating the
potential to generate vast amounts of structurally correct data that
can enhance the robustness of downstream models. Results of the
video diffusion model are depicted in Figures 1 2,3.

5.3 Validation Using Downstream Models

To validate the efficacy of the additional augmented data, the im-
age and video models are trained on the three datasets specified in

(a) Real image [34] (b) Generated from ODISE [55]

(c) Generated from Prescan [37] (d) "A rainy driving scene"

Figure 8. Figure 8b illustrates a generated sample using the segmentation
map from Figure 8a with the default prompt "A driving scene." Figure 8c
presents a generated sample utilizing the segmentation map from a perturbed
Prescan [37] scenario, again with the default prompt. Lastly, Figure 8d depicts
a sample generated with the same segmentation map as in Figure 8c, but with
the prompt "a rainy driving scene."

Section 4. The augmented data for the image end-to-end model is
generated using the image diffusion model, whereas the augmented
data for the video end-to-end model is produced by the video dif-
fusion model. For the image model, inspired by the methodology
presented in [67], a ResNet-34 model is trained to accept an image
as input and output a single steering angle, normalized between 0
and 1. Training is performed with a learning rate of 0.001, without
weight decay, and a batch size of 512. The Adam optimizer is used
for 50 epochs on a single NVIDIA A6000 GPU with 48 GB VRAM,
utilizing L1 loss. Extending this architecture to the video domain,
a different ResNet-34 batch processes 6 frames and extracts 1024
features for each image. These are then fed into an LSTM network,
which can extract the underlying relationships between the features,
outputting a steering angle and a longitudinal acceleration. Training
is performed with a learning rate of 0.001, with weight decay after
30 steps with step size 1, and a batch size of 64. The Adam optimizer
is used for 50 epochs on a single NVIDIA A6000 GPU with 48 GB
VRAM. The performance of the models on the nuScenes [34] test
set are depicted in Table 2 and visualized in Figure 9
Analyzing the image model first, it can be seen in Table 2 that aug-
menting the dataset with data that has been perturbed solely in the
pixel space, namely the nuScenes + nu-diff dataset, increases the
performance of the model. The addition of the augmented diffused
data, which inherently has some noise, made the model more robust
in scenarios where the RGB images are not clear. Training the model
on the nuScenes+pre-diff set, where the dataset also has perturba-
tions along the structural dimension, further improves performance,
showcasing that adding augmentation over the structural dimension
indeed improves robustness.
The video models outperform their image counterparts. This is due
to the fact that passing multiple frames to the models makes them
inherently more robust. The trend of performance increase in the
augmented dataset follows that of the image models for the steering
angle, although it is less pronounced. This is because the generated
samples are constrained over the temporal dimension, resulting in
less pixel-wise randomization and, therefore, less overall random-
ization. The improvement in the acceleration angle is observed but
is not significant. This can be attributed to the methodology of per-



Model architecture Dataset Steering error Acceleration error

ResNet-34 nu 0.07248 N/A

ResNet-34 nu + nu-dif 0.03884 N/A

ResNet-34 nu + pre-dif 0.02171 N/A

ResNet-34 + LSTM nu 0.02794 0.04813

ResNet-34 + LSTM nu + nu-dif 0.02485 0.04765

ResNet-34 + LSTM nu + pre-dif 0.02069 0.04691

Table 2. Performance of downstream models trained on the different datasets

turbing the data in the structural dimension not being optimized for
acceleration purposes.
These results showcase that adding structural perturbations using a
physics based simulator in the loop indeed enhance the dataset more
than merely using diffusion based augmentation techniques.

6 DISCUSSION

Data acquisition is inherently expensive, making the augmentation
of datasets a critical tool for enhancing the utility of collected data.
Recent advancements in diffusion models offer a promising avenue
for dataset augmentation. However, the generative nature of diffu-
sion models often leads to the production of artifacts. To mitigate
this issue, the incorporation of structural control within diffusion
models has been shown to be effective in generating more realistic
data. By leveraging the complementary strengths of physics-based
simulators and diffusion models, the structural integrity tasks can be
managed by the simulators, while diffusion models enhance photore-
alism. This synergistic approach results in a robust data augmentation
technique that has been demonstrated to outperform methods relying
solely on diffusion-based augmentation. However ensuring the va-
lidity of ground truth labels after dataset perturbation requires more
sophisticated algorithms, beyond simple perturbations such as alter-
ing velocity or changing car types. Simple perturbations can generate
scenes that misalign with the original ground truth labels, leading to
inconsistencies and inaccuracies in the training data. Perturbations
along the structural dimension have not significantly improved the
performance of predicted acceleration, indicating the need for more
refined augmentation techniques for this aspect.
Currently, augmented scenes are sampled at random. While this ap-
proach is somewhat effective, it can lead to inefficient use of com-
putational resources when generated samples do not contribute to
enhancing the model’s robustness. A more efficient strategy would
involve analyzing the samples that cause the greatest errors and then
using the pipeline to generate new scenarios specifically targeting
these problematic samples.

(a) nuScenes (b) nuScenes+nu-diff (c) nuScenes+nu-pre

Predicted Angle Ground Truth

Figure 9. Predicted steering angle of image models trained on the different
datasets visualized [34].

Moreover, to facilitate video generation, an attempt was made to cre-
ate a video ControlNet architecture. This involved extending video-
based models, such as those described in [46, 70], with an auxiliary
video ControlNet that incorporates a temporal dimension to accept
temporally aligned conditions. However, this approach proved infea-
sible due to the extensive training data required. After more than 771
computation hours on a single V100, the model learned to disregard
the conditions entirely.
The CTRL-adapter architecture has functioned as an effective sur-
rogate for video generation methods. However, given the potential
of video generation algorithms and the advantages of utilizing more
parameters, it is worth considering the implementation of not merely
an image ControlNet but also a video ControlNet. The incorporation
of additional parameters could generate even higher fidelity samples.
Additionally, as simulators continue to evolve towards more realistic
renderings, ignoring the RGB data generated from the simulator
may result in the loss of valuable information that could benefit
the diffusion models. Integrating this RGB data could enhance the
realism and utility of the augmented datasets.

7 FUTURE WORK

Currently, the segmentation maps provide the structural guidance,
but sometimes the model has trouble recognizing if the car is point-
ing towards the camera or facing away. To alleviate this problem,
additional conditions could be added to the diffusion models, such as
bounding box control. By incorporating bounding box information,
the model can better understand the orientation and position of ob-
jects within the scene, thus improving the accuracy of the generated
samples.
Moreover, the Prescan simulator should enhance its realism by im-
porting static backgrounds. This would help to bridge the gap between
simulated and real data even further, making the augmented datasets
more valuable. By incorporating realistic backgrounds, the simula-
tion environment will better mimic real-world conditions, thereby
improving the overall quality and applicability of the generated sam-
ples.
Although the data augmentation method significantly improves per-
formance, it is not without limitations. Despite generating high-
fidelity synthetic data, the inherent differences between synthetic and
real-world data and data coverage can still affect model performance.
This highlights the need for continuous refinement and validation.

8 CONCLUSION

This paper introduces a novel data augmentation pipeline that uti-
lizes controllable diffusion models and autonomous simulation soft-
ware to enhance the utility of real driving datasets. By incorporating
structural guidance and simulation-based perturbations, the proposed
method generates data that is both realistic and structurally valid.
The integration of diffusion models with the Prescan [37] simulator
enables augmentation in both pixel and structural spaces. The efficacy
of the augmented data is evidenced by the improved performance of
downstream models in both image and video domains. Quantitative
assessments, as demonstrated by metrics such as the Fréchet Incep-
tion Distance (FID) [53] and Dreamsim [54] scores, show similar
improvements. The generated samples closely resemble real images,
effectively bridging the simulation-to-reality gap.
The results indicate that adding 17.1% of augmented data, amounting
to 120 scenes, led to a significant increase in performance for both



image and video end-to-end models. This underscores the robustness
and versatility of the proposed pipeline, demonstrating its capabil-
ity to produce high-quality, photorealistic samples that effectively
enhance the training data for autonomous driving models.
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(a) Original frame (Source:[34]) (b) Generated frame 1 (c) Generated frame 6 (d) Generated frame 12

Figure 1. Augmenting scene in Prescan [37], the new scene is mapped to the photorealstic domain using the video diffusion model. Car in front is idle while the
car in the back of the scene is driving away.

(a) Original frame (Source:[34]) (b) Generated frame 1 (c) Generated frame 6 (d) Generated frame 12

Figure 2. Newly rendered video frames based on the original frame, showcasing the model abilites to render scenes in the night.

(a) Original frame (Source:[34]) (b) Generated frame 1 (c) Generated frame 6 (d) Generated frame 12

Figure 3. Augmenting scene in Prescan [51], the new scene is mapped to the photorealstic domain using the video diffusion model now during the day.

Figure 4. Enlarged view of the video diffusion model where 𝐸𝑐 is the encoder for the conditioning, 𝐸𝑡 the text encoder, and 𝐸𝑖 the reference frame encoder.
This is a simplified representation; not all layers are shown, and the dimensions are adjusted for visualization purposes.
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