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Abstract
Tactile internet enables communication in a new
layer of immersion, touch. It has the potential
to transform the landscape of digital communica-
tion. However, the achievable scale of tactile in-
ternet is severely limited by its 1ms round-trip la-
tency. We propose a workaround for the latency
through tactile simulation, which can bypass the re-
quirement by having the user interact with locally
simulated force feedback instead of real ones. A
real-time material estimation method is required to
create such a simulation, as it needs material in-
formation such as friction and tactile texture. We,
therefore, investigate whether material is estimable
from point cloud scans since it provides readily
available environmental data. We also explore how
friction and tactile texture could be extracted from
the material. Past material estimation methods rely
heavily on point intensity; however, most exist-
ing point clouds do not have intensity information.
Therefore, we study whether mocking intensity in-
formation could be sufficient, exchanging it with
grayscale. The results demonstrate that without
point intensity, the material estimation method can
only discern object colour and not material prop-
erties. This finding implicates the importance of
intensity and suggests future exploration of the via-
bility of material estimation with intensity data for
indoor objects.

1 Introduction
As a result of the covid-19 pandemic, we have become more
aware of the importance of connecting people over the inter-
net, primarily through video conferencing. We also realize
the limitation of this type of communication, for it is still a
far cry from reaching the immersion of in-person communi-
cation since only two dimensions of experience are present,
audio and video. Tactile internet would be able to offer an-
other layer of immersion by allowing touch over the internet
through force feedback.

Tactile itself means tangibility, to connect via a sense of
touch, which is what tactile internet aims to achieve. It aims
to grant users the ability to manipulate and feel an object over
the internet, such as holding a pen remotely and still feeling
it in hand, as shown in Figure 1. Another example of its ap-
plication could be in remote surgery, where the surgeon can
accurately sense the force feedback from the scalpel, despite
not holding the real thing. For such applications, a very low
round-trip network latency of approximately 1ms is desired
[11], as when a human actively manipulates an object, they
anticipate rapid and immediate feedback.

However, achieving such low network latency is challeng-
ing, not to mention maintaining it. Digital communications
already have trouble achieving a latency of below 5ms, as
most professional audio systems (e.g., wireless microphones)
still use analogue by choice [11]. Even if 1ms could be
achieved, since digital communication cannot be faster than

Figure 1: Example of tactile internet, holding a pen remotely with
a robot hand but still feeling the accurate force feedback in the real
hand [16].

Figure 2: Point cloud scan of a room environment using Xbox
Kinect in real-time, shown from two different angles. Demonstrate
point cloud’s ability to gather environmental information quickly.

light [10], it sets a hard limit on the possible round-trip
distance between terminals. The 1ms latency requirement
severely limits the scale of tactile internet that is achievable.

While directly minimizing latency is difficult, it is possi-
ble to work around the problem using a local simulation to
provide haptic feedback instead. If the environment users get
haptic feedback from is virtual instead of real, delay would
not exist, as the haptic information is not sent over the internet
but from the simulated environment itself. Since the user only
interacts with the local simulation, there would be no delay.
As long as the simulated environment is in sync with the ac-
tual remote environment, it would achieve the same function-
ality as regular tactile internet and without as much demand
for latency. By creating a virtual environment, the problem of
latency can be bypassed.

However, how would such a virtual environment be cre-
ated? It will need to provide effective haptic feedback, which
means objects in the environment are simulated with physics.
There will need a way to acquire visual information and
then translate it into objects with accurate mass, material,
and mesh structure that effectively resemble their real-world
counterpart. One way such information could be acquired is
through point cloud scans.

Point cloud data is a form of 3d representation that can be
acquired very quickly, which suits the purpose of creating a
virtual environment. It is a cloud of points in 3d space, form-
ing structures. Xbox Kinect, for example, a motion controller
designed for video game consoles, can acquire 3d colour and
depth information in point cloud data in real-time, as shown
in Figure 2. From that, cloud data of the objects of the en-
vironment can then be recreated. The hypothesis is that it is
possible to acquire the information needed for a haptic sim-
ulation through point cloud data alone—for instance, the ob-
jects’ mass, material, and mesh.



This paper aims to address one aspect of creating the sim-
ulation from point clouds, to estimate the material properties
of an object, preparing it for physics simulation. Existing
research on the subject already exists in the field of archi-
tecture, where it is claimed that material information such as
reflectance and albedo can be accurately estimated through
the point cloud’s RGB information and intensity data [5].
That was used to identify material information from terres-
trial scans for architectural purposes.

However, there is no attempt to extend its use for household
objects, nor exploration towards simulation with acquired
material data, leaving a vacuum for exploration. Therefore,
this paper explores the possibilities of finding the physical
material of everyday objects from point clouds and delves
into how tactile texture and physical properties could be gen-
erated from that information. Regarding that aim, several
sub-questions are explored:

1. How to correctly estimate and recognize the material
properties of objects represented by segmented point
clouds?

2. How to identify compound materials, as household ob-
jects usually consist of multiple materials? e.g. a glass
jar with a plastic lid.

3. How to acquire physical properties from the object ma-
terial to be used for physics simulation, e.g. friction?

4. How to acquire tactile texture from the object material
so the user can experience the object with suitable tactile
sensation?

Our paper contributes the following. First, we demon-
strate that it is not viable to estimate material from the point
cloud’s mesh texture. Second, we test the capability of mate-
rial estimation with intensity and show that it can be used for
compound material recognition. Third, regarding the lack of
availability of intensity point clouds, we use mock intensity to
test how the method fares without intensity and found inten-
sity is too important to be omitted, as, without it, the method
only discerns between colour instead of material. Finally, we
propose viable ways to extend found material properties to
physical properties and tactile texture.

The paper is structured as follows. First, it presents the
related works in tactile internet and material estimation to
put the paper’s research into proper perspective. Second,
the methodology is presented, going through the rationale of
what is explored, what insights have been gained, and the
details of the material estimation method tested. Third, the
specific results from the method are presented, as well as its
analysis. The responsible research section follows, reflect-
ing on the ethical responsibility of the research methods. Fi-
nally, the suggestion for future work is discussed, following
the conclusion.

2 Related Works
2.1 Tactile internet
For tactile internet, the most present research is revolved
around exploring what can be done with the 1ms round-trip
delay as a precondition. This trend caused 5G to become the

centre of the discussion since it makes it possible to achieve a
1ms delay. Simsek et al., for example, discuss what 5G and
tactile internet have in common and how 5G could support
the architecture of tactile internet [2]. Some papers already
assume the use of 5G; for instance, Gupta et al. talk about
the challenges of using tactile internet with ultra-reliable low-
latency applications in a 5G environment [12].

However, there is no research on finding a way around
the delay or alternative methods for achieving tactile inter-
net. Therefore, this paper proposes using simulation as a
workaround for the delay problem, as mentioned in the in-
troduction. It goes into detail to explore a sub-question that
requires solving, which is the material estimation aspect of
creating a convincing tactile simulation.

2.2 Material estimation
For material estimation, most research is in robotics and ar-
chitecture. For robotics, it is needed for robots to walk and
grasp objects and for architecture to create a comprehensive
site analysis.

In robotics, research on physical material properties usu-
ally requires physical contact. Li et al. address the five crit-
ical dimensions of tactile information, for example, friction
and surface texture; however, they are acquired through touch
[18]. Le et al. used visual cues to acquire material properties
of varying objects; however, it was combined with haptic in-
formation, as visual data alone is noted to be limited [17].
When visual information alone was used [7], it was used in
context with machine learning.

In architecture, however, there are methods proposed us-
ing only visual data and without the need for machine learn-
ing. Alkadri et al. explored the potential of recognizing sur-
face attributes from point cloud data and were able to extract
albedo values to identify material types [4]. The limitation
is that it relies heavily on intensity information from point
clouds. In later works by Alkadri et al., the material proper-
ties that could be acquired are expanded further to reflectance
and emissivity; however that made intensity information even
more crucial [5]. Also, both research deal with outdoor scans
for materials such as gravel, asphalt, and grass. It is unclear
whether indoor object materials could be recognized through
their method.

This paper, therefore, aims to explore whether the material
of small, indoor objects could be estimated through only vi-
sual information. It also tries to determine the effect of lack-
ing true intensity information on material estimation since
intensity is usually unavailable through affordable scanning
tools, such as Xbox Kinect. Many point cloud file types also
do not feature intensity, for example, ply or most of the point
formats of las file type. This severely limited the ability to
use online point cloud resources for material estimation with
methods that require intensity.

3 Methodology
This section presents the methodology of the paper. It lays out
the process and rationale of what was explored in the paper.
It goes through the different attempts to solve the material
estimation problem from a segmented point cloud, first from



Figure 3: Segmented point cloud of a sport shoe (left). Gener-
ated mesh of the shoe after poisson surface reconstruction (right).
Demonstrate how point cloud can be constructed into textured mesh.

mesh texture, second using point intensity, and finally testing
the viability of material estimation without point intensity. It
also discusses how the estimated material could be used to
find physical properties and prepare for physics simulation.
Lastly, how the material’s tactile texture could be generated
to simulate tactile perception is discussed.

For every attempt mentioned in this section, it assumes that
we start with a segmented point cloud of an object and need to
recognize the material of that cloud. It seeks to find a method
suitable for material estimation that is then extendable to find-
ing the object’s physical properties and tactile texture.

3.1 Material recognition from mesh texture
For the first attempt, we tried to acquire the colored texture
from the segmented point cloud and then recognize the mate-
rial from the texture. This method was considered because we
hypothesized that the texture generated from the point cloud
would contain distinct features. Therefore we could use fea-
ture matching methods such as Scale-Invariant Feature Trans-
form (SIFT) to match with an existing library of textures. We
could then use the matched texture to interpret the material of
the point cloud. For example, if a wooden texture is matched,
then part of the material of the point cloud would be wood.
If multiple textures are matched, we could then use the UV
map of the mesh to see which part of the point cloud mesh is
which material. The problem of recognizing compound ma-
terial would then also be solved.

We then attempted to test the hypothesized workflow with
an existing mesh processing tool Meshlab [8]. It provides
visualizations and is equipped with state-of-the-art utilities
for point cloud processing, which suits our purpose of doing
experimentation.

For the specific steps taken, we first calculated the normal
of each point cloud point to ensure the faces of the generated
mesh would face the correct direction concerning the view-
point. Secondly, we generated the point cloud to mesh, as
shown in Figure 3, through Poisson surface reconstruction
[14], since it is the standard method used in point cloud li-
braries such as PCL [22]. Thirdly, we textured the generated
mesh by assigning the colour of the cloud points to the clos-
est vertex of the mesh. From that, we were able to acquire the
mesh’s colored texture.

However, the acquired texture was proven to be unusable
for feature detection. For the sports shoe, for example, its
generated UV does not have any logical arrangement, caus-
ing the colour information to also be in complete disorder, as
shown in Figure 4(b). This distortion is the case for different

(a) sport shoe mesh (b) sport shoe texture

(c) cereal box mesh (d) cereal box texture

Figure 4: Textured meshes constructed from segmented point clouds
of a shoe and a cereal box (left). The unfolded mesh textures of the
shoe and the cereal box (right). The generated textures are unfit
for any feature extraction for material recognition due to the UV
distortions.

meshes as well. For instance, Figure 4(c) shows the cereal
box. It contains fewer faces as its point cloud was down-
sampled. However, that does not improve the distortion of
its texture. No recognizable features could be extracted from
colored textures like these. Therefore, it is impossible to rec-
ognize material from point cloud textures.

3.2 Material estimation with intensity
For the next attempt, we tried to calculate the material for ev-
ery point of the point cloud. Through that, we either get the
average if the object is of a single material or use k-means
clustering on the material to section out compound materi-
als. This method was based on the architectural site analysis
method proposed by Alkadri et al., where site materials such
as asphalt and cement could be recognized, and distinguished
[5]. It was considered for its flexibility and applicability, for
it relies on primarily easy-to-acquire data, for example, the
colour and depth information of the point cloud.

However, the method also relies heavily on point intensity,
as Alkadri et al. focus on point cloud data acquired from
Light Detection and Ranging (LiDAR) technology [5]. Li-
DAR is a laser-based method which shoots a laser pulse tar-
geting object and surface and measures the return strength
and time used for the laser to return to the receiver. The laser’s
returning strength is intensity, reflecting the Emissivity of the
material. For a perfect reflector, the intensity would be 1, and
for a perfect emitter, 0. If the intensity is missing, then the
material’s Emissivity is missing, making estimating material
attributes difficult. Therefore, intensity plays an integral role



in ensuring successful material recognition for this method.
To test the method’s viability, we acquired a point cloud

with intensity information, shown in Figure 5, and calculated
the Emissivity, Albedo, and Reflectance of every point of the
cloud [5]. Details of the formula used will be elaborated on
in the following sections. We used the materials as input vec-
tors for k-means clustering and acquired a visualization of the
compound material it recognizes, as shown in Figure 6. It was
a promising result as the material segmentation matches the
cloud’s material make-up.

However, we could not apply this method directly to indoor
objects because of its heavy reliance on intensity. Scans of in-
door objects available online are usually in a file format that
does not contain intensity information, such as ply. The scans
that can be made ourselves are only through Xbox Kinect, and
it does not have any direct method to create point clouds with
intensity. It could be possible to use its infrared camera to cre-
ate a point cloud of only intensity and then combine it with
its RGB point cloud; however, that was proven difficult to
achieve due to the limited time frame of the research. There-
fore, we sought to test whether material estimation would still
be possible if intensity information is not known.

3.3 Material estimation with mock intensity
In the final attempt, we explored the viability of estimating
material without intensity information. Intensity aside, the
rest of the method remains the same. The material is still cal-
culated for every point cloud point, allowing average material
calculation of the cloud or clustering to distinguish compound
materials.

Mock intensity As mentioned in the previous section, since
point intensity is not usually available, it is necessary to test
whether it is still possible to estimate material in its absence.
This paper proposes to substitute intensity information with
grayscale values and leave the rest of the method unchanged.
The substitution is because visualized intensity looks simi-
lar to grayscale, with intensity 1 being white and intensity 0
being black. Figure 7 shows a visualisation of it. However,
this substitution only works under the assumption that objects
will be relatively well-lit.

Lighting is of concern because it now directly affects how
intensity is estimated. For LiDAR scans, lighting condition
is not of significant concern because it relies on its infrared
laser beams to gather information instead of visible light, so
the light from the environment does not affect its judgment.
However, scanning tools like Xbox Kinect uses an RGB video
camera to judge colour information. When a room is sub-
jected to a powerful light, objects it scans from that room
will appear to have brighter colours than if the room is poorly
lit. This difference, in turn, would mean higher or lower esti-
mated intensity values. It is challenging to assume how much
lighting would be optimal; therefore, the experiments in this
paper use standard indoor lighting.

After lighting is established, the problem that’s left is RGB
to grayscale conversion. It is done with the formula proposed
and used in the image editing software GIMP and numerical
computing software Matlab [23], for the method models the
human’s brightness perception, albeit simple. The formula

Figure 5: The input house point cloud used for material estimation,
shown in RGB colors.

proposes a coefficient to multiply each colour channel to out-
put the grayscale intensity:

I = 0.3R+ 0.59G+ 0.11B (1)
However, this formula does not normalize the intensity

within the 0 to 1 range. Therefore, the RGB values were nor-
malized, resulting in the formula:

I =
0.3R

255
+

0.59G

255
+

0.11B

255
(2)

After the intensity value has been acquired, the estimation
of the material can begin.
Intensity correction Three material properties can be ac-
quired from intensity data, Emissivity, Albedo, and Re-
flectance [5]. Emissivity and Albedo rely on intensity, while
Reflectance does not. Before the material properties can be
calculated, intensity correction must be taken into considera-
tion [5].

Intensity correction is needed for LiDAR scans. The lasers’
range and angle of incidence have a direct influence on the in-
tensity acquired, and the correction makes the intensity equiv-
alent to when all points are in a defined range with the angle
of incidence zero [13]. It would make the intensity values less
dependent upon the scanner location.

However, because the intensity value is now mocked, in-
tensity correction is no longer necessary. While Kinect and
LiDAR utilize laser, the point cloud colour from our scans
is determined solely by its RGB camera. Therefore, the
grayscale mock intensity is not dependent upon incidence an-
gle or range, making correction redundant.
Emissivity Emissivity is calculated as the inverse of inten-
sity, the first material property we can acquire. It refers to
the amount of heat radiated by the material surface [5]. A
perfect emitter surface would have an intensity value of 0
since no energy would be reflected. For a perfect reflector,
it would then have an intensity value of 1. Emissivity goes
directly in contrast to this as it would have a high value for



Figure 6: Recognized compound material from the house point
cloud, assuming it has three materials. Each material is represented
by a different colour, red, green, or blue. It shows that it is possible
to recognize compound material using material estimation with in-
tensity.

a perfect emitter and vice versa. Material characterized with
high-intensity values, such as polished metals and ceramics,
would, in turn, have low Emissivity values [5]. Therefore,
this paper calculates the normalized Emissivity value by sub-
tracting the intensity from 1.

Emissivity = 1− Intensity (3)

Albedo Albedo is the second material property we can ac-
quire, defined as the fraction of sunlight that a surface can re-
flect [9]. It is valued between 0 and 1, where 0 would present
a black body, absorbing all incoming solar radiation [5]. It
can be calculated by combining RGB information and Inten-
sity [5], as shown in equation 4.

Albedo =


√

(R2+G2+B2)
3

255

 · I, (4)

where I represents intensity, the front bracket captures
reflected light from RGB colours, combined with intensity
through multiplication.

While Albedo is a material property, its application for in-
door objects is scrutinized. Albedo is solely a measure of the
effect of sunlight, therefore valuable for remote sensing atmo-
spheric and surface properties [9]. While it can be calculated
and used as a factor for material recognition, it needs to be
taken into account that Albedo is not used to describe indoor
materials. It is more commonly used to describe urban envi-
ronments or vegetation. It is still a factor because the paper
aims to see whether it could help distinguish materials from
one another.

Reflectance Reflectance is the final material property we
could acquire. There are two types of Reflectance, spectral

Figure 7: The intensity of the house point cloud is visualized as
grayscale. It shows that intensity resembles the grayscale of RGB
information.

Figure 8: A transparent glass mug; the object to be scanned into a
point cloud using Xbox Kinect. The resulting point cloud after the
scan (right). It demonstrates that Xbox Kinect is bad at scanning
transparent objects.

reflectance and diffuse reflectance [3]. This paper only con-
siders diffuse reflectance, as spectral reflectance deals with
reflective materials such as mirrors, which is beyond this pa-
per’s scope. Therefore, Reflectance in this paper only refers
to diffuse reflectance.

Diffuse reflectance is the ratio of light energy reflected
from a material relative to the amount of light incident on the
material. The material must also be opaque, as Reflectance
does not take internal reflections into account [5]. This lim-
itation suits the purpose of point cloud scans as the scanning
tools available do not fare well with transparency, as shown
in Figure 8.

Reflectance is calculated with the below formula [5], with
the precondition that the material is both diffuse and opaque.

Ref =
(
0.2125 · R

255

)
+

(
0.7154 · G

255

)
+

(
0.0721 · B

255

)
,

(5)
where Ref refers to Reflectance.

Result acquisition The method was tested using seg-
mented point clouds of individual objects, shown in Figure
9. To acquire the results, we calculated the mock intensity
first. Then using it in combination with RGB information,



we acquired the Emissivity, Albedo, and Reflectance for ev-
ery point cloud point. Under the assumption that the input
point cloud consists of a single material, we calculated the
material average of every point to get the final output mate-
rial.

3.4 Friction estimation from material
Another central question requiring exploration was how to ac-
quire physical properties such as friction from the estimated
material properties. Without physical properties, we would be
unable to use our material data for any form of physics sim-
ulation. Therefore, we looked into whether a friction model
exists that inputs material properties and outputs friction co-
efficients.

However, it was discovered that such a friction model does
not yet exist. Friction could be estimated with a model in
specific circumstances such as a mining tunnel using fluid
dynamics; however, that does not apply for most cases [24].
Otherwise, it was done with black-box machine learning
methods, trained using an image data set [7]. Friction coef-
ficients are solely an empirical measurement and can only be
acquired experimentally, as opposed to through calculations
[19].

Because we cannot calculate friction, the only way to ac-
quire friction coefficients from material properties is to have
a pre-made library of already acquired coefficients and get
the coefficients based on the materials in contact. For ex-
ample, if we have a ceramic mug placed on a wooden ta-
ble, we would recognize their material, which is ceramic and
wood, and find the friction coefficient corresponding to ce-
ramic against wood existing in the library.

3.5 Tactile texture from material
The final problem this paper explored was acquiring the tac-
tile texture of the object material and allowing users to feel the
texture when they interact with the object. For example, they
would feel the wood grain when they move their hand across a
wooden table. Due to the limited time frame, we were unable
to test its effect on users; however, we have made hypotheses
that could be useful as a guide for future exploration.

We hypothesize that users would be satisfied with basic tac-
tile sensations as long as they correlate with their vision. In
the case of tactile internet through simulation, as mentioned
in the introduction, a user would look at camera footage and
interact with a simulated environment. They will not come
into contact with the remote object and will only interact with
simulated ones. Therefore, their expectation of object tactile
texture comes solely from vision.

We believe that as long as their visual expectation of the
tactile texture is satisfied, the user would not doubt the fidelity
of the simulation. Even if a wooden table does not have wood
grain, if it looks like it does, we can have the users feel wood
grain when they touch the table without losing immersion.
Wastiels et al. have found that when a person judges whether
material is warm or cold, the perception is dominated by vi-
sion [1]. We hypothesize that could be the same for roughness
and textural perception. If valid, it would save work in sim-
ulating object material as now we have a lot more margin for
error in simulating the textural sensation. We could assign

(a) wood bat (b) cutboard (c) salt shaker

(d) white plate (e) blue plate (f) beige plate

(g) metal plate (h) plastic jar (i) cushion

Figure 9: Visualization of input point clouds for material estimation.
For the first row, (a) (b) (c) are all point clouds of wood material. For
the second row, (d) (e) (f) are also of the same material, ceramic, but
with more significant colour differences. For the final row, (g) (h)
(i) are instead all of the different materials, metal, plastic and cloth,
but of similar colour. They are organized as such to test how well
the material estimation method accounts for colour differences.

pre-prepared tactile texture based on the material, for exam-
ple, wood grain texture if the visually recognized material is
wood. We would then be able to disregard the real texture of
the material. However, this idea requires future testing.

4 Results
4.1 Experimental setup
The experiment’s aim is to test how well the material estima-
tion method without intensity work adjusts for colour differ-
ences and whether it is capable of recognizing the material
properties despite the colour variation. Regarding this aim,
three distinct batches of point clouds were used as input, each
testing a different aspect. The point clouds used are shown in
Figure 9.

The first batch consists of three wooden objects, assuming
they would be recognized as the same material. The second
batch is placed under the same assumption, as all three objects
are ceramic, despite having different colours. For the final
batch, all three objects are of different materials, the first one
metal, the second one plastic, and the third one cloth. If the
material estimation is functional, they should produce distinct
material properties despite being very close in colour.

4.2 Data analysis
The resulting data of material estimation through mocking
intensity are presented here, where grayscale is used as inten-



Index Object Estimated Material properties
Emissivity Albedo Reflectance

(a) Wood Bat 0.62 0.15 0.38
(b) Cutboard 0.39 0.36 0.60
(c) Salt shaker 0.56 0.19 0.43

(d) White plate 0.11 0.80 0.89
(e) Blue plate 0.81 0.04 0.19
(f) Beige plate 0.06 0.97 0.94

(g) Metal plate 0.55 0.21 0.45
(h) Plastic jar 0.58 0.19 0.42
(i) Cushion 0.55 0.21 0.45

Table 1: Material properties of segmented point clouds using mock
intensity. The method is shown to be bad at dealing with colour
differences; for example, Metal plate and Cushion is recognized as
having the same material due to similar colour.

sity, and the average Emissivity, Albedo and Reflectance of
every input point cloud is calculated.

For the first batch of three wooden objects, we could see
that objects (a) and (c) from Table 1 produced similar values,
while the object (b) differs quite a bit from the two. This
finding violates the assumption that all three objects should
have similar material properties, as they are all wood. If only
looking at the three objects, we could still argue that object
(b) is of a different type of wood since its appearance differs
from (a) and (c), as shown in Figure 9. However, it could also
mean that the method cannot recognize the same material if
colour variations exist. Therefore, a more noticeable colour
difference is used in the second batch to gain a more concrete
view.

For the second batch, all three plates are ceramic, and each
of different colour, white (d), blue (c), and beige (f). As seen
from Table 1, the same pattern is shown again as in batch one,
that the material property differs significantly if their colour
differs greatly, and similar if their colours are similar. Plate
(c) differs by a large portion from the other two plates, with
Albedo close to 0, while the other two close to 1. Under the
current method, the three plates will not be recognized as the
same material.

The third batch takes a different approach from the first two
batches, as every object is of a very different material but sim-
ilar in colour. If the method can discern different materials,
the results should be very different, despite the colour simi-
larity. However, the results showed the opposite. From Table
1, we can see that (g) and (i) are considered to have identical
material, even though (g) is entirely metal, and (i) is a cloth
cushion. From this, we can conclude that the method cannot
discern objects of different materials but of the same colour.

In conclusion, the method cannot recognize objects of dif-
ferent materials and can only discern them between colours.
We cannot compare the current results with results where in-
tensity is available, however, as we do not yet have the capa-
bility of creating point clouds with intensity, nor is there an
existing data set available of indoor objects. Therefore, we
also do not know whether the method would be viable if we

have intensity. Two possible hypotheses could be drawn, first
is that while discerning between materials of different colours
is impossible without intensity, it would be possible with in-
tensity. The second is that it would still be impossible, at least
with the three material properties we can acquire.

5 Responsible Research
This paper did not involve external participants for its exper-
iment nor collaborators for data collection and is strictly a
standalone exploration. Therefore, the author of the paper
shoulders full responsibility for research integrity. The main
aspects that need to be addressed are scientific integrity, the
necessity to highlight negative results, and the reproducibil-
ity of the experiments, which in turn upholds the epistemic
virtues of honesty, humility and objectivity, as well as the
Scientific ethos of disinterestedness and communism.

This paper’s results were primarily negative, as the ex-
plored method turned out to be too limited to sufficiently an-
swer the research question. While giving more emphasis to
positive results would make the paper seem more attractive to
potential readers, that was dutifully avoided. Negative results
are just as valuable as positive results, and to falsely high-
light positive results violates the disinterestedness principle
of scientific ethos because the research results should not be
influenced by personal interests.

While the result of this paper might not seem worth cel-
ebrating, it can avoid other researchers repeating the same
failed experiments and delay genuine progress [20]. The lim-
itations on imitating intensity for material estimation mean it
can be improved in future works. It is also necessary to re-
main truthful and objective for scientific research to counter
the positive result bias rampant in published studies [20].

Reproducibility is also a big issue in various research fields
[6]. It is a crucial aspect as easily reproducible results make
it easier for future research to build on existing research and
uphold the Communism scientific ethos. Considering that,
the methodology of this paper is made to be reproducible, as
well as results. It lists in full what tools were used. The math
used is thoroughly presented in the methodology. The point
cloud data used for the experiments will be made public, as
well as the executable code. It must be noted that the point
cloud data set explored is small and manually processed due
to the scanning device’s flaws so the method might produce
different results with unfiltered and unprocessed point cloud
data.

6 Future Work
Based on the current result, two next steps can be taken. The
first is to examine the viability of material estimation with
intensity for indoor objects, and the second is an experiment
to pinpoint the user’s requirement for tactile texture fidelity.

While the method does not produce desired results without
intensity, its performance with point clouds is still unclear. To
validate this, a way of independently creating intensity point
clouds is necessary, and we believe it could be done with a
slight improvement in hardware.

Kinect V2 can produce infrared intensity images of much
higher quality than Kinect V1. It could be a viable way of



producing intensity point clouds without needing a high-cost
LiDAR scanner [21]. The intensity acquired could also be
used for roughness estimation, making more accurate tac-
tile texture simulation possible [15]. For example, if the ob-
ject material is wood, a wood grain texture can be felt when
the user touches the object and is scaled based on the actual
roughness of the surface.

This implication leads to the question of how sensitive the
users are to the accuracy of tactile texture simulated. To gain
insight on this, we propose a wizard of oz experiment setup
to test the fidelity needed for tactile texture. We could let
the user experience the texture in simulation, where we could
control the fidelity of the texture they experience. At the same
time, they can only see an image of the object with the tex-
ture. Then, we let the users rate how much they thought the
simulated texture accurately represented the tactile texture of
the object they had seen. This experiment can then narrow
down the quality of tactile texture users expect based only
on visual information without needing full working material
recognition.

7 Conclusion
Tactile internet opens the opportunities for another form of
interaction across the internet, touch, and has numerous ap-
plications such as immersive video conferencing and remote
surgery. However, it is limited by a round-trip latency re-
quirement of 1ms. The requirement can be worked around
using a simulation to provide force feedback instead of real-
time force feedback. However, this leaves the problem of cre-
ating a simulation with enough fidelity to pass for real force
feedback, and material estimation is one crucial step to ensure
simulation fidelity.

This paper sought to find a method to estimate the ma-
terial properties of an object from its point cloud so that it
can be simulated in a physics simulation. Point clouds are
used because point cloud scans can capture information about
the environment in real-time and do not require costly equip-
ment. From the material properties found, physical and tex-
tural properties should also be able to be acquired from that
information to prepare the object for simulation. Also, the
method should be capable of discovering the compound ma-
terial of an object. Regarding this aim, several discoveries
were made.

Firstly, we discovered that it is not viable to estimate point
cloud material from its mesh texture, as the colour informa-
tion is too distorted to be used for classification. Secondly,
we found that the architectural method of using cloud inten-
sity and RGB information to infer material properties fits our
purpose. However, we could not produce point cloud data
set of indoor objects with intensity information. Because
of it, we sought to mock intensity with grayscale to test the
method’s limit. After experimenting, we concluded that the
method could not discern objects with the same colour but
different material through intensity mocking. This finding
indicates that the estimated material from the method is in-
sufficient without intensity information and cannot adjust for
colour differences.

For acquiring friction from the material, it was found to

be impossible, as friction coefficients are empirical measure-
ments. The only way to still approximate friction is to have
already available data for various material types and use that
data when the material matches. Obtaining objects’ tactile
texture would be done similarly, where existing tactile tex-
tures are matched given the material properties.
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