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Abstract

TU Delft Bio-Robotics Lab developed a new type of robotic arm, called a macro-micro ac-
tuated system for the inherent safety characteristics in human-interaction environment. The
macro-micro actuated system is equipped with a macro actuator and a micro actuator which
works together to control one joint angle. The macro actuator is connected to the link through
a low stiffness spring, and the micro actuator is directly connected to the link. This was de-
signed successfully to have the inherent safety of the robot arm. However, there remains the
challenge of controlling the manipulator to possess the inherent safety with high-bandwidth
performance and robustness, when the robot arm performs pick-and-place work of an unknown
mass.

In this paper, first, the macro-micro actuated system of the Delft robot arm is introduced.
Second, the control challenge to have safety with high-bandwidth performance is discussed
along with possible control schemes for their successful implementation. Balancing/Tracking
mode is chosen as the control scheme. In Balancing/Tracking mode, the macro actuator com-
pensates for gravity and the micro actuator tracks the desired trajectory. Third, a feedback
linearization method with a sliding mode algorithm and an indirect adaptive algorithm is
surveyed to decrease nonlinearities of the system and to make the system robust. For fast
estimation of an unknown variable and simplicity of a control algorithm, the sliding mode
algorithm is applied to the chosen control scheme with the feedback linearization method.
Finally, the Balancing/Tracking mode with the feedback linearization method and the sliding
mode algorithm is proposed as the controller of the macro-micro actuated system.

Master of Science Thesis Kyoung Su Choi



ii

Kyoung Su Choi Master of Science Thesis



Table of Contents

Preface v

1 Introduction 1
1-1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Delft robot arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-4 Assumption in control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Modeling of a single link system 9
2-1 Description of the manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-2 Modeling of a manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-3 Modeling actuator dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-3-1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-3-2 A mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-4 Overall dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-5 Stability analysis of an open loop system . . . . . . . . . . . . . . . . . . . . . . 16
2-6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Analysis of control schemes 19
3-1 A simplified model of a single rotating link system . . . . . . . . . . . . . . . . . 20
3-2 Control by only the macro actuator . . . . . . . . . . . . . . . . . . . . . . . . . 20
3-3 Tracking/Compensating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3-4 Tracking/Tracking mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3-5 Balancing/Tracking mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3-6 Comparison of three control schemes . . . . . . . . . . . . . . . . . . . . . . . . 33
3-7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Master of Science Thesis Kyoung Su Choi



iv Table of Contents

4 Controller 51
4-1 Feedback linearization control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4-2 Sliding mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4-3 Indirect adaptive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Simulation with overall dynamic model 71

6 Conclusions and Recommendations 77
6-1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6-2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Stability Analysis 81
A-1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A-2 Lyapunov direct method with Sector nonlinearity . . . . . . . . . . . . . . . . . 82

A-2-1 The sector nonlinearity for a system assuming the system is in perfect static
balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A-2-2 The sector nonlinearity for a system assuming the mass is variable and
observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A-2-3 The sector nonlinearity for a system assuming the mass is variable, but
unobservable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A-3 Vanishing Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B PID cascade control 89

C Cubic polynomial trajectory 93

D Dynamics of a Delft robot arm 95
D-1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
D-2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

Glossary 101
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Kyoung Su Choi Master of Science Thesis



Preface

TU Delft Bio-Robotics Lab is developing the Delft robot arm. In this report, mathematical
models are derived for the manipulator and the actuator of the Delft robot arm. Control
schemes and controllers are designed to meet the requirements of the Delft robot arm.

The reader is assumed to have basic knowledge of mechanics and control theory. Some basic
information on control and robotics is provided in Appendix A, B, C, and D. Readers who are
interested in modeling a robot manipulator in Matlab/Simulink are referred in Chapter 2 and
Appendix D. In these chapters, the modeling of the manipulator and the actuator is covered.
Appendix A shows the stability analysis of a closed loop system, using the mathematical
model. The control schemes with controllers of the manipulator can be found in Appendix
B, Chapter 3 and 4. The simulation of overall dynamic model is represented in Chapter 5. A
trajectory planner for the simulation is explained in Appendix C.
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Chapter 1

Introduction

1-1 Background

Many robot arms such as farm robots, medical robots, and service robots have been developed
to provide both safety and high-bandwidth performance in human-interaction environment [1].
In conventional highly geared robot arms, an actuator and a link are stiffly connected, giving
conventional robot arms high bandwidth. However, they are not safe since the high power
of actuator transfers to the contact environment or the human without any compliance. To
improve the safety of a robot arm, Series Elastic Actuation (SEA) robot arms were developed
[2]. A SEA robot arm consists of a low stiffness spring between the actuator and the link.
The spring increases the safety of the robot arm by decreasing the contact force in the case
of an unexpected impact, but it also results in a bandwidth limitation of the robot arm. In
addition, attenuation of flexible mode oscillation excited by disturbances can be difficult to
achieve [3].
To overcome the drawbacks of the series elastic actuation method, macro-micro actuated robot
arms were developed [1]. These robots are equipped with two actuators, a macro actuator
and a micro actuator, which work together to control one joint angle or one axis motion.
The macro actuator is connected to the link through a low stiffness spring similarly to the
actuator of SEA robot arms, and the micro actuator is directly connected to the link with
a gear-box. TU Delft Bio-Robotics Lab has developed the macro-micro actuated robot arm,
called the Delft robot arm [4, 5]. Its main function is pick-and-place work with an unknown
mass held by the end-effector as shown in Figure 1.1. When the robot arm moves point to
point with an unknown mass, it has to be both fast and accurate with low actuating power
for both safety and high-bandwidth performance.

1-2 Delft robot arm

The Delft robot arm is shown in Figure 1.2. The arm has four Degrees of Freedom (DOF)
with four rotation joints (ϕ1, ϕ2, ϕ3, ϕ4), and two translation joints (a2, a4). The four rotation
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2 Introduction

Figure 1-1: An example task of a Delft robot arm; pick-and-place motions with objects of an
unknown mass

joints (ϕi) are actuated by four motors with gearbox, which are called as micro actuators.
The translation joints (ai) are connected to the joint ϕ2 and ϕ4 through springs respectively,
and those are actuated by two motors with a lead screw, which are called macro actuators.

Figure 1.3 shows a schematic diagram of the robot kinematics. It consists of the three major
links (L12, L34, Lm4) attached to the four rotation joints (ϕ1, ϕ2, ϕ3, ϕ4), and the three minor
links (Lab, Lb3, La4) with the two passive joints(ϕa, ϕb). The two translation joints (a2, a4),
which are not expressed in this figure, are connected to L34 and Lm4 by wire and spring.
Thus, the joint angles, ϕ2 and ϕ4, are driven by one macro actuator and one micro actuator.
Joint angles, ϕ1 and ϕ3, are driven by single actuators. The passive joints, ϕa and ϕb, follow
joint angle ϕ4 and ϕ2 respectively.

In the macro-micro actuated systems of joint angle ϕ2 and ϕ4, micro actuators control the
joint angles directly, and macro actuators control the joint angles indirectly via springs as
shown in Figure 1.4. In this project, the macro-micro actuated system for one joint angle in
Figure 1.4 is considered for the positioning task with an unknown mass. The two actuators
should cooperate to obtain maximal performance, while the safety is guaranteed because of
the special construction with springs in the macro actuation.

1-3 Problem definition

The goal of this report is to find the best control scheme with a controller for the macro-
micro actuated system. To reach this goal, four subgoals are formulated. In Section 6.1, the
conclusions are drawn based on the four subgoals.
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1-3 Problem definition 3

Figure 1-2: The Delft robot arm developed at the Delft Bio-Robotics Lab.

Figure 1-3: A schematic diagram of the robot kinematics; the diagram shows the parallel mech-
anism which allows the application of macro-micro actuation for both the shoulder and elbow
joint.
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4 Introduction

Figure 1-4: A schematic diagram of a simplified model, one-DOF macro-micro actuated system;
this report focuses on this simplified model

1. In order to simulate the manipulator, a dynamic model of the manipulator and actuator
dynamics are required. This dynamic model must include the following characteristics:
inertia, gravitational forces, and Coriolis and centrifugal forces. A visual representation
is needed to understand the motion and the dynamic model.

2. To analyze the system properties, it is required to check the nonlinearity of the system,
the influence of an unknown mass attached to the end-effector, the stability of the Multi-
Input-Multi-Output (MIMO) system, and the performance limitations by the kinematic
limits and actuation saturations.

3. The third subgoal is to survey several control schemes. The control schemes must have
adaptivity or robustness against the mass variation of the end-effector, which should be
represented by design methods such as root locus.

4. To choose the best control scheme for the macro-micro actuated system, the performance
of the system with the control schemes and controllers have to be compared. The system
must have low actuation power of the micro actuator, less than 0.5 degree position error
and high-bandwidth performance in the given ranges of motor speeds, motor torques,
current, and voltage.

1-4 Assumption in control design

The following assumption are made for modeling the single rotating link system in Figure 1.4.

• There are two DOF, one rotational joint and one translational joint.

• The operational angle of the link is between 30 and 150 degrees.

• The lead screw length is from -0.01m to -0.25m, originated from the rotation point of
the link.
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1-5 Organization 5

• The mass variation of the end-effector including the load is between 0.35kg and 2kg.

• The mass of the link is neglected, only the mass of the end-effector is considered.

• The inertia of the gear and lead screw is neglected.

• The spring is ideal. ’Ideal’ means the spring is linear.

• There is no friction in the system such as static friction, coulomb friction and viscous
friction; the gear efficiency is 100%. Only viscous damping of motors is considered.

• Voltage control is considered.

• The Performance specification for controller design are 0.5 degrees tracking error, 1.5
sec. settling time, and less than 5% overshoot. 0.5 degrees error means that the end-
effector position is apart by 3mm from the desired position. A settling time of 1.5 sec.
is an average time to have one movement of human to pick or place an unknown mass
[4]. These are acceptable specification for farm robots and service robots which do not
need high precision works.

The parameters and actuator dynamics are based on the actuating system of the joint angle
ϕ4 of the Delft robot arm. The parameter values are mentioned in Table 5-1 and 5-2 of
Chapter 5.

1-5 Organization

The contents of this report is organized in six chapters; Figure 1.5 shows a flow chart of global
strategy to solve the problems in Section 1.3. In Chapter 2, the single rotating link system is
described, and mathematical models of the manipulator and actuator dynamics are derived.
The stability of an open loop system is also analyzed. Chapter 3 compares three control
schemes: Tracking/Compensating mode, Tracking/Tracking mode, and Balancing/Tracking
mode. A control scheme which has the smallest torque of the micro actuator is chosen as
the best scheme, when the three control schemes have same performance. Chapter 4 shows a
feedback linearization method to decrease nonlinearities of the system, based on the chosen
control schemes in Chapter 3 . Two advanced algorithms, a sliding mode algorithm and an
indirect adaptive algorithm, are applied to the feedback linearization method for robustness
of the system. One of the advanced algorithm which has faster estimation is selected for a
final controller. In Chapter 5, the overall dynamic model of the single rotating link system
is simulated with the chosen controller considering various saturations and limitations of the
system. Finally, the conclusions are given in Chapter 6, followed by the recommendations.
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6 Introduction

Figure 1-5: A flow chart of global solution strategy
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Chapter 2

Modeling of a single link system

The first step in this project is to develop a mathematical model of the single rotating link
system, which has macro-micro actuation. This model can be used to simulate the dynamic
behavior of the single rotating link system. Additionally, the dynamic behavior includes the
interaction of the macro-micro actuators. The model can also be used to analyze the stability
of the system and to find a proper control scheme. Control schemes can be tested on the
model before implementing them on an extended model including actuator dynamics.

The model of the single rotating link system is depicted in Figure 2.1. It is modeled as two
separated parts; a model of the manipulator and a model of the actuator dynamics. The
manipulator dynamics are described in free space. This model takes into account inertia
properties, viscous damping of actuators, and gravitational torques. The model of the actua-
tor dynamics describes the behavior with electrical factors, such as inductance and resistance,
and kinematic factors such as gear ratios and the pitch of the lead screw. The two models
are combined to represent the system as in whole.

This chapter is organized as follows: In Section 2.1, the single rotating link system is described.
In Section 2.2, the dynamic model of the manipulator of the single rotating link system in
free space is calculated. In Section 2.3, mathematical models of the actuator dynamics are
derived and the hardware properties of the actuator dynamics are introduced. In Section 2.4,
an overall dynamic model is derived, consisting of the combined mathematical models of the
manipulator and the actuator dynamics. Finally, the stability of the open loop system of the
overall dynamic model is analyzed.
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8 Modeling of a single link system

Figure 2-1: Diagram of the single rotating link system

k spring coefficient ϕ angle of the link
r link length l link length
m mass of the end-effector α angle of the lead screw
a distance of the lead nut p pitch of the lead screw
β angle of the micro actuator θ angle of the macro actuator
Jm rotor inertia of the micro actuator JM rotor inertia of the macro actuator
Lm inductance of the micro actuator LM inductance of the macro actuator
Rm resistor of the micro actuator RM resistor of the macro actuator
Vm voltage of the micro actuator VM voltage of the macro actuator
Im current of the micro actuator IM current of the macro actuator
Bm viscous damping of the micro actuator BM viscous damping of the macro actuator
kg gear ratio of the micro actuator kG gear ratio of the macro actuator

Table 2-1: Definition of parameters

Kyoung Su Choi Master of Science Thesis



2-1 Description of the manipulator 9

2-1 Description of the manipulator

The single rotating link system, which is a simplified version of joint angle ϕ4 of the Delft
Robot Arm, is shown in Figure 2.1. It consists of the actuator and the manipulator dynamics.
The manipulator is controlled by macro-micro actuators. These are connected to the manip-
ulator in parallel. The macro actuator is driven by current (IM ) generated by voltage (VM )
and an electrical circuit. Its rotation (θ) transfers a reduced rotation (α) with an increased
torque by a gearbox (kG) to a lead screw, and the lead screw changes the rotation to transla-
tion (a) through a leadscrew nut. The motion of the leadscrew nut rotates the link through
a spring (k). The micro actuator is driven by current (Im) generated by voltage (Vm) and an
electrical circuit. The rotation (β) transfers a reduced rotation (ϕ) with an increased torque
to the link through a gearbox (kg). The mass of an end-effector of the link is changed since
an end-effector of the Delft robot arm does pick-and-place work of an unknown mass.

2-2 Modeling of a manipulator

In this section, the mathematical model of the manipulator of the single rotating link system
in Figure 2.1 is derived using the Lagrangian method. The kinetic energy, T , and the potential
energy, V , with two inputs, τM and τm, are expressed as follows.

d

dt
( ∂T
∂q̇j

)− ∂T

∂qj
+ ∂V

∂qj
= τj

T = 1
2Jϕ̇

2 = 1
2ml

2ϕ̇2 = 1
2ml

2( β̇kg )2

V = 1
2k[
√

(−r sinϕ)2 + (−r cosϕ+ a)2]2 +mgl cosϕ

= 1
2k(r2 + a2 − 2ar cosϕ) +mgl cosϕ

= 1
2k(r2 + ( nθkG )2 − 2nrθ

kG
cos β

kg
) +mgl cos β

kg

where q = [β, θ], τ = [τm, τM ], ϕ = β
kg
, a = nα = nθ

kG
, and n= p

2π

The resulting equations of the motion of the system are


ml2

k2
g
β̈ + 1

kg
(knrθkG

−mgl) sin β
kg

= τm
kn2θ
k2
G
− knr

kG
cos β

kg
= τM

(2-1)

The first motion equation is for the micro part, and the second motion equation is for the
macro part.
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10 Modeling of a single link system

2-3 Modeling actuator dynamics

The actuator dynamics have to be considered to simulate the overall dynamics model. The
inertia of the rotor influences the motion of the system, and the actuators have various
saturations and limitations such as current saturation, voltage saturation, maximum motor
speed, and maximum motor torque, which limit the performance of the system. First, the
properties of hardware are introduced, and then the mathematical model of the actuator
dynamics is derived.

2-3-1 Hardware

Actuators

The micro actuator is Maxon DC motor No. 110164, and its maximum angular speed and
maximum torque are 1026 rad/s and 0.00697 Nm. The macro actuator is Maxon DC motor
No. 323890, and its maximum angular speed and maximum torque are 1256 rad/s and 0.0933
Nm. Viscous dampings of both motors are 5.8× 10−6 (kgm2/sec).

Amplifiers

The motor driver of the Delft robot arm is Acroname No.S11-3A-EMF-H-BRIDGE. The
amplifier is set up for voltage control with maximum motor voltage of 27.5V, maximum
continuous current of 3A, and maximum surge current of 6A for a duration of 0.2sec.

Sensors

An encoder is placed at the motor part, not the link part so that the motor angle is fed back
and the angular velocity of the motor is measured by a back EMF measurement circuit in the
amplifier module. The encoder of the micro actuator is Maxon No. 225805, and the encoder
of the macro actuator is Maxon No. 201937. Both sensitivities are 512 counts per turn (cpt).

2-3-2 A mathematical model

The actuator dynamics of the two actuators of the single rotating link system are shown in
Figure 2.1, and the parameters of the actuator dynamics are defined in Table 2.2. The kinetic
energy and dissipation energy, T and D of the micro actuator are:

T = 1
2Jmβ̇

2 + 1
2LmI

2
m

D = 1
2Bmβ̇

2 + 1
2RmI

2
m

Using the above energy equations and the Lagrangian, motion equations of the actuator are
derived:

Jmβ̈ +Bmβ̇ + Tl = Tm

Lmİm +RmIm = Vm − Vb

Kyoung Su Choi Master of Science Thesis



2-3 Modeling actuator dynamics 11

Using Laplace transformation, the above motion equations are written in below equations
and expressed in a block diagram of Figure 2.2.


β(s) = 1

s
Tm−Tl
Jms+Bm = 1

s ( kiIm(s)
Jms+Bm −

Tl
Jms+Bm )

Im(s) = Vm
Lms+Rm −

Vb
Lms+Rm = 1

Lms+Rm (Vm − skbβ(s))
(2-2)

where Tm = kiIm and Vb = kbβ̇

Figure 2-2: Block diagrams of the actuator dynamics of the micro actuator (top figure) and the
macro actuator (bottom figure)

Vm Voltage of the micro actuator VM Voltage of the macro actuator
Rm Resistance of the micro actuator RM Resistance of the macro actuator
Lm Inductance of the micro actuator LM Inductance of the macro actuator
Tl Load torque of the micro actuator TL Load torque of the macro actuator
Tm Motor torque of the micro actuator TM Motor torque of the macro actuator
Vb Back emf Voltage of the micro actuator VB Back emf Voltage of the macro actuator
Jm Rotor inertia of the micro actuator JM Rotor inertia of the macro actuator
kb Back emf constant of the micro actuator kB Back emf constant of the macro actuator
Bm Viscous damping of the micro actuator BM Viscous damping of the macro actuator
ki Torque constant of the micro actuator kI Torque constant of the macro actuator
β Motor angle of the micro actuator θ Motor angle of the macro actuator

Table 2-2: Parameters of actuator dynamics
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12 Modeling of a single link system

The kinetic energy and dissipation energy, T and D of the macro actuator are:

T = 1
2JM θ̇

2 + 1
2LMI

2
M

D = 1
2BM θ̇

2 + 1
2RMI

2
M

Using the above energy equations, motion equations of the actuator are derived:

JM θ̈ +BM θ̇ + TL = TM

LM İM +RMIM = VM − VB

Using Laplace transformation, the above motion equations are written in below equations
and expressed in the block diagram of Figure 2.2.


θ(s) = 1

s
TM−TL
JMs+BM = 1

s ( kIIM (s)
JMs+BM −

TL
JMs+BM )

IM (s) = VM
LMs+RM −

skBθ(s)
LMs+RM = 1

LMs+RM (VM − skBθ(s))
(2-3)

where TM = kIIM and VB = kB θ̇

2-4 Overall dynamic model

The mathematical model of the actuator dynamics and the manipulator are combined as
shown in Figure 2.1. The combined model is used to choose proper gains of the system
considering the link limitation, maximum motor speeds, maximum motor torques, current
saturations and voltage saturations of the macro-micro actuators in Chapter 5.

Two second order Differential Algebraic Equations (DAEs) are derived using equation 2-1,
2-2, and 2-3 with assumption of Lm = LM = 0, since the inductances are very small values.
The first equation is the motion equation of the micro actuator , and the second equation
is the motion equation of the macro actuator; where β = kgϕ, Tl = T

kg
, θ = kGα, and

TL = Tα
kG

= nF
kG

.


Rm
ki

(Jm + ml2

k2
g

)β̈ + (RmBmki
+ kb)β̇ + Rm

kikg
(knrθkG

−mgl) sin β
kg

= Vm

RMJM
kI

θ̈ + (RMBMkI
+ kB)θ̇ + RM

kIkG
(kn2θ
kG
− knr cos β

kg
) = VM

(2-4)
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2-5 Stability analysis of an open loop system 13

2-5 Stability analysis of an open loop system

Before analyzing the closed loop behavior in Chapter 3, first the open loop behavior of the
single rotating link system as an autonomous system is analyzed using the Lyapunov method.
Only the first equation of equation 2-4 is considered to know the stability and motion of the
single rotating link depending on the distance a. The motion equation can be expressed in
variables of ϕ and a to understand the system easily:

Rm
ki

(Jmk2
g +ml2)ϕ̈+ k2

g(
RmBm
ki

+ kb)ϕ̇+ Rm
kikg

(kar −mgl) sinϕ = Vm

This nonlinear equation has infinite equilibrium points, and those are categorized in three
sets, qeq=(ϕe,ae)=(0,∞),(π,∞),(∞,mglkr ). These three equilibrium point sets show that any
distance a is an equilibrium point when ϕ=0 and π, and all angles are equilibrium points of
the system when a = mgl

kr . Linearized motion equations of the above motion equation with
the three equilibrium point sets are

when qeq = (0, ae), Rm
ki

(Jmk2
g +ml2)ϕ̈+ kg(RmBmki

+ kb)ϕ̇+ Rm
kikg

(kaer −mgl) sinϕ = Vm

when qeq = (π, ae), Rm
ki

(Jmk2
g +ml2)ϕ̈+ kg(RmBmki

+ kb)ϕ̇+ Rm
kikg

(−kaer +mgl) sinϕ = Vm

when qeq = (ϕe, mglkr ), Rm
ki

(Jmk2
g +ml2)ϕ̈+ kg(RmBmki

+ kb)ϕ̇+ Rm
kikg

kar sinϕe = Vm

Three motion rules are derived from the above linearized equations and Lyapunov first
method.

1. When ae > mgl
kr , the link converges to 0 degrees (asymptotically stable) since the two

eigenvalues of the first linearized equation are placed in the left half plane (LHP) in
frequency domain.

2. When ae <
mgl
kr , the link converges to 180 degrees (asymptotically stable) since the

two eigenvalues of the second linearized equation are placed in the LHP in frequency
domain.

3. When a = mgl
kr , the link keeps its initial angle while torque is not applied (marginally

stable) since one eigenvalue of the third linearized equation is placed at origin; the other
eigenvalue is in the LHP.

These can be confirmed by an open loop simulation of the original nonlinear system as shown
in Figure 2.3. From the first and second graph, the link converges to 0 and 180 degrees
asymptotically when a > mgl

kr and a < mgl
kr . On the other hands, according to the third graph,

the link is in static balance even though the initial angle is changed, only if the leadscrew
nut is placed at a = mgl

kr . That is, when the macro actuator locates the lead nut at the static
balancing point, mglkr , the micro actuator does not need to provide torque to compensate for
gravity, since the gravity torques factor of the motion equation is removed. The link has
motion while the micro actuator generates torque. This static balancing concept is used in
control schemes of Chapter 3.
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14 Modeling of a single link system

Figure 2-3: Variation of angle ϕ at initial angle 45, 90, and 135 degrees

2-6 Conclusion

This chapter showed the modeling of the single rotating link system to design control schemes
in next chapter. Motion equations of the manipulator and the actuator dynamics were derived
using the Lagrange method. The original nonlinear model was linearized to check the stability
of the open loop system around the operating point. When the system is in static balance
(a = mgl

kr ), the link keeps its initial state, as long as an external torque is not applied. As a
result, the system is marginally stable in static balance. On the other hand, when the system
is not in static balance (a 6= mgl

kr ), the link converges to 0 or 180 degrees. This static balancing
concept is used to design control schemes since it makes that the micro actuator does not
need to provide torque to compensate for gravity.

Kyoung Su Choi Master of Science Thesis



Chapter 3

Analysis of control schemes

In this chapter, the three candidate control schemes for the single rotating link system are
researched and compared through simulation. For a fast calculation, a simplified model of the
single rotating link system is employed instead of the overall dynamic model in this chapter.
The simplified model in Section 3.1 is to design the control schemes with stability analysis of
a closed loop system. Next, it is shown in Section 3.2 whether the macro actuator can control
the link or not and whether linear controllers based on a linearized system model can be
used or not. And then, three control schemes are surveyed, namely Tracking/Compensating
mode, Tracking/Tracking mode, and Balancing/Tracking mode. These control schemes give
different roles to macro/micro actuators as shown in Table 3.1. The three control schemes
are analyzed in Section 3.3, 3.4, and 3.5. Finally, the three control schemes are compared in
Section 3.6.

Roles Tracking Tracking Balancing
/Compensating mode /Tracking mode /Tracking mode

Static balance M M
Trajectory tracking M M, m m

Compensating tracking error m
of the macro actuator

Table 3-1: Roles of three control schemes(M: Macro actuator, m: Micro actuator)
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16 Analysis of control schemes

3-1 A simplified model of a single rotating link system

A simplified model of the single rotating link system neglects actuator dynamics and gear ratio
as shown in Figure 3.1. Then, the motion equations of the simplified model are represented
as follows; the parameter values of Table 3.2 is substituted for time responses and frequency
responses. {

ml2ϕ̈+ (kar −mgl) sinϕ = τ
ka− kr cosϕ = F

(3-1)

Figure 3-1: Diagram of the simplified model of the single rotating link system

g 9.8 [kgm/s2] m 0.35 [kg]
r 0.075 [m] l 0.4 [m]
n 1 [-] k 568 [kg/s2]
kG 1 [-] kg 1 [-]

Table 3-2: Parameters for the simplified model of the single rotating link system

3-2 Control by only the macro actuator

For the first step, the characteristics of the macro actuator are surveyed by neglecting the
micro actuator. It is assumed that τ equals zero and the distance a is used as the control
input to control angle ϕ in equation 3-1. Then, the equation 3-1 is expressed as one equation:

ml2ϕ̈+ (kar −mgl) sinϕ = 0
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3-2 Control by only the macro actuator 17

Linearizing the above motion equation using an equilibrium point (∞,mglkr ) because the other
equilibrium sets are meaningless for trajectory tracking,

ml2ϕ̈+ kar sinϕe = 0

The transfer function ϕ(s)
a(s) is expressed as follows.

G(s) = ϕ(s)
a(s) = −kr sinϕe

ml2s2

A PD controller is considered to control this system. The closed loop system is expressed as
the following Laplace form; where ϕd is a desired angle, kp is a proportional gain, and kd is
a differential gain.

ml2ϕ(s)s2 + kr sinϕea(s) = 0 where a = −kdϕ(s)s+ kp(ϕd − ϕ(s))

Then, the transfer function of the closed loop system is
ϕ(s)
ϕd(s)

= −kpkr sinϕe
ml2s2 − kdkr sinϕes− kpkr sinϕe

= −kpz
s2 − kdzs− kpz

where z = kr sinϕe
ml2

Using the transfer function, the conditions for the gains of controller are derived which make
the closed loop system stable.

{
when 0 < ϕe < 180, kd < 0, kp < 0
when − 180 < ϕe < 0, kd > 0, kp > 0 (3-2)

In this project, since the operating range of the link is between 30 degree and 150 degree, the
gains have to be smaller than zero from the above rules. The gains of the PD controller are
chosen by Root Locus method assuming the ratio of the differential gain and the proportional
gain, kd

kp
, as 0.3. This means a zero of the system locates at about -3 in the complex plane;

note that the choice of the zero at -3 is, in a sense, arbitrary. Then, the PD controller, CM (s),
is expressed as below.

CM (s) = −kp(
kd
kp
s+ 1) = −kp(0.3s+ 1)

The proportional gain, kp, is chosen as 0.3 by Root Locus with settling time of less than 1.5
sec. and less than 5% overshoot based on the operation angle 60 degree and the mass 1kg as
shown in Figure 3.2; the operation angle and mass were chosen as the average values of the
range of the link angle and the mass of the end-effector. The system has the settling time of
less than 1.5 sec. when the poles (red *) of the closed loop system are placed in the left side
of the blue dotted line.
However, the performance of the system such as overshoot and settling time changes depend-
ing on the angle and mass. Figure 3.3 shows the variation of poles of the closed loop system
when the angle and mass are changed among their ranges, from 30 to 150 degrees, and from
0.35kg to 2kg; the blue * are poles when the angle and mass are 90 degrees and 0.35kg, and
the red * are poles when the angle and mass are 30 degrees and 2kg. This indicates that
the chosen controller does not make the system unstable, even though the overshoot and the
settling time of the system increase depending on the mass and the angle.
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18 Analysis of control schemes

Figure 3-2: Root locus of G(s)CM (s); there are two poles of closed loop system, but in this
figure, one of the poles is out of the range in left half plane of frequency domain

Figure 3-3: Variation of the closed loop system when mass and angle are changed between the
boundary

Figure 3-4: Compare of the linear model + PD controller and the nonlinear model + PD
controller
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3-2 Control by only the macro actuator 19

Figure 3.4 shows the time responses of the linearized model and the nonlinear model with
the chosen controller. The simulations are similar in the operational angle range when the
system is in static balance. Thus, the linearized system can be used to design a controller.

The designed controller is simulated with the original nonlinear system as shown in Figure 3.5.
When the link moves from 60 degree to 90 degree with mass variation from 0.35kg to 2kg at 5
sec., the macro actuator moves the lead nut of the system to static balance position following
the mass variation, but the link has a steady state error due to the mass variation. The
error can be removed by adding an integral controller. Assuming that the integral frequency
is about 3 rad/sec to place the zero at same place of the previous PD controller and the
damping ratio is 1 to suppress overshoot, the PID controller, CM (s), is expressed as below;
in this case, mass of the lead nut is not considered for simple calculation.

CM (s) = −K(s+ 3)2

s

The gain, K, is designed as 0.2 by using the Root Locus Toolbox such that the settling time
is 1.5 sec. and overshoot is less than 5%. As shown in Figure 3.6, the macro actuator can
control the link without steady state error, and it converges to static balancing point. Thus,
this closed loop system has adaptivity against mass variation, and the macro actuator can
control the link as well. This means that the system with PID controller is asymptotically
stable in the operational range. This can be confirmed by time responses of the system. It
cannot be proven by stability analysis method such as Lyapunov direct method with sector
nonlinearity and vanishing perturbation in Appendix A due to the existance of an affine model
in the closed loop system.

The micro actuator is added to improve the performance of the macro actuating system. In
this case, the control inputs are force, F , and torque, τ , which are applied to the two joints.
Thus, the equation 3-1 are re-linearized with equilibrium point (∞,mglkr ), force of the macro
actuator, and torque of the micro actuator as follows.

ml2ϕ̈+ kar sinϕe = τ

(kr sinϕe)ϕ+ ka = F

The transfer function ϕ
F and ϕ

τ is expressed as follows.

ϕ(s)
F (s) = −r sinϕe

ml2s2 − k(r sinϕe)2
ϕ(s)
τ(s) = 1

ml2s2 − k(r sinϕe)2

Using these transfer functions, three control schemes are simulated and compared in next
sections.
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20 Analysis of control schemes

Figure 3-5: Responses of the closed loop system with PD controller when the mass changes
from 1kg to 2kg at 5 sec.

Figure 3-6: Responses of the closed loop system with PID controller when the mass changes
from 1kg to 2kg at 5 sec.
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3-3 Tracking/Compensating mode 21

3-3 Tracking/Compensating mode

The first control scheme is Tracking/Compensating mode shown in Figure 3.7. Macro-micro
actuators control the angle of the link with a PID controller and a PD controller respectively.
The PID controller of the macro actuator and the PD controller of the micro actuator are
designed to have both 1.5 second settling time based on the operation angle 60 degree and
the mass 1kg. Those controllers are designed through Root Locus Toolbox of Matlab with
the previous two transfer functions; where CM (s) is the PID controller of ϕ(s)

F (s) , and Cm(s) is
the PD controller of ϕ(s)

τ(s)

CM (s) = −4000.332ss + 0.67s+ 1
s

Cm(s) = 7(0.3s+ 1)

These two controllers influence the other actuators due to coupling as shown in Figure 3.8.
This figure is the step responses of three transfer functions with an unit step input: transfer
function ϕ(s)

τ(s) ,
a(s)
τ(s) and ϕ(s)

F (s) .
a(s)
F (s) is neglected since it is the open loop transfer function and

the performance is determined by ϕ(s)
F (s) . The response of a(s)

τ(s) shows that the micro actuator
influences to the leadscrew nut motion for a few seconds, but not a lot in full simulation time.
The Macro actuator controls the angle and the micro actuator decreases the initial tracking
error. This analysis of the linearized model can be confirmed with the original nonlinear
model.

Figure 3.9 shows the responses of the nonlinear model with the first control scheme and the
errors of the macro-micro actuated system comparing with the macro actuated system. The
macro-micro actuated system estimates the mass variation. The macro actuator moves the
link to the desired position with operating the leadscrew nut to the static balancing position.
The micro actuator helps the macro actuator to diminish the tracking error. However, there
are some influences in the performance of the system due to the coupling of the two actuators;
the overshoot is smaller, but the settling time is larger than the performance of the macro
actuated system.

This influence of the micro actuator can be explained clearly in the bode plot of Figure 3.10
and 3.11. When the PD controller of the micro actuator has relatively lower gains, the total
system has low bandwidth and the system is governed by the macro actuator. On the other
hands, when the gains of the PD controller are relatively higher, the total system has higher
bandwidth, but the macro actuator has lower bandwidth. As a result, the micro actuator
governs the system and increases the settling time of the system.

Figure 3-7: A block diagram of Tracking/Compensating mode
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22 Analysis of control schemes

Figure 3-8: Time responses of multivariable system with Tracking/Compensating mode; the first
view is response of ϕ(s)

τ(s) , the second view is response of a(s)
τ(s) , the third view is response of ϕ(s)

F (s) .
The step input is π

6 .

Figure 3-9: Comparison of errors and Response of macro-micro actuators when a mass is changed
to 2kg at 5 sec.
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3-3 Tracking/Compensating mode 23

Figure 3-10: Bode plot and Step response of a closed loop system when CM (s) =
−400 0.332ss+0.67s+1

s and Cm(s) = 7(0.3s+ 1)

Figure 3-11: Bode plot and Step response of a closed loop system when CM (s) =
−400 0.332ss+0.67s+1

s and Cm(s) = 70(0.3s+ 1)

However, the torque of the micro actuator increases and the static balance concept does not
work for the total system since the settling time of the macro actuator decreases. Because
of the interaction of two actuators, it is impossible to get both high bandwidth using this
control scheme as shown in time responses of Figure 3.10 and 3.11. Moreover, if the actuator
dynamics or the mass of the leadscrew nut in Figure 3.1 are added in motion equations, the
system becomes a fourth order system and the PID controller of the macro actuator cannot
control the link. These are proven in Appendix B. If the number of open loop poles exceeds
the number of finite zeros by three or more, there is a value of the gain beyond which root
loci enter the RHP; thus, the system can become unstable [6]. Thus, PID cascade controller
has to be considered to control the fourth order system as shown in Appendix B.
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3-4 Tracking/Tracking mode

The second control scheme is Tracking/Tracking mode, adding an integral controller to the
PD controller of the micro actuator in the first control scheme as shown in Figure 3.12. The
PID controller of the macro actuator and the PID controller of the micro actuator are designed
to have both 1.5 second settling time based on the operation angle 60 degree and the mass
1kg using the Root Locus Toolbox of Matlab with the previous two transfer functions; where
CM (s) is the PID controller of ϕ(s)

F (s) , and Cm(s) is the PID controller of ϕ(s)
τ(s)

CM (s) = −4000.332ss + 0.67s+ 1
s

Cm(s) = 7(0.3s2 + s+ 1)
s

Figure 3-12: A block diagram of Tracking/Tracking mode

Figure 3-13: Time responses of the multivariable system with Tracking/Tracking mode; the first
view is response of ϕ(s)

τ(s) , the second view is response of a(s)
τ(s) , the third view is response of ϕ(s)

F (s) .
The step input is π

6 .
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3-5 Balancing/Tracking mode 25

These two controllers affect the motion of the macro-micro actuators as shown in Figure
3.13, but the interaction is not significant. This method shares the trajectory tracking of
the link through the two PID controllers of the macro-micro actuators. The gains of the two
controllers work as weighting values for the trajectory tracking as shown in the graphs of ϕ(s)

τ(s)

and ϕ(s)
F (s) . For instance, when the gains of the micro actuator are larger, the micro actuator

has more portion of trajectory tracking as shown in Figure 3.14. This is similar with Linear
Quadratic Regulator (LQR) system. To have fast response of the system, the macro actuator
has to have high bandwidth same as the previous control scheme. However, in practice, the
macro actuator cannot have high bandwidth because of the given hardware condition such as
the low pitch lead screw and voltage saturation, and the micro actuator has to consume its
power always due to sharing the role of trajectory tracking.

Figure 3-14: Step responses of a closed loop system when CM (s) = −400 0.332ss+0.67s+1
s and

Cm(s) = 7(0.3s2+s+1)
s , and when CM (s) = −4000 0.332ss+0.67s+1

s and Cm(s) = 7(0.3s2+s+1)
s

3-5 Balancing/Tracking mode

Another method is to decide that the macro actuator should only control static balance. The
macro actuator works only for static balance having a static balance point as an input and
the micro actuator works for trajectory tracking as shown in Figure 3.15. The PID controller
used for the macro actuator is same with the controller of the previous section, only changing
the sign of the controller, since the feedback signal is different; the signs of ϕ(s)

F (s) and a(s)
F (s)

are opposite. The PD controller of the micro actuator are designed to have both 1.5 second
settling time based on the operation angle 60 degree and the mass 1kg through Root Locus
Toolbox of Matlab and time responses of the multivariable system with the previous transfer
functions; where CM (s) is the PID controller of a(s)

F (s) , and Cm(s) is the PD controller of ϕ(s)
τ(s)

CM (s) = 4000.332ss + 0.67s+ 1
s

Cm(s) = 50(0.3s+ 1)
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26 Analysis of control schemes

An integral controller can be added to the PD controller of the micro actuator to compensate
the steady state error by slow convergence of the macro actuator. This controller guarantees
the stability of each plant with each input, but it does not show the stability of the multi-
variable system, in the view of the multivariable system. The stability of the multivariable
system can be checked by the eigenvalues of the plant such as characteristic loci with Nyquist
criterion theorem [7]. The characteristic loci of Figure 3.16 shows the system is stable with
the above controllers, since one of eigenvalues is located in the right half plane (RHP) and the
plot encircled (-1, 0) point one time in counter-clock-wise. This satisfies the Nyquist criterion
theorem (Z = N + P ); P is number of poles of loop gain in the RHP, Z is number of zeros
of sensitivity function in the RHP, and N is number of (-1,0) clockwise encirclement. Figure
3.17 shows that the time responses of the stable multivariable system. There is some interac-
tion between two actuators. The time responses of a(s)

τ(s) and ϕ(s)
F (s) is caused by the interaction,

but it can be removed by decoupling the system using a compensator [7].

Figure 3-15: Block diagram of Balancing/Tracking mode

Figure 3-16: Characteristics loci
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3-5 Balancing/Tracking mode 27

However, if the system has mass variation, the micro actuator needs lots of power to com-
pensate error and the compensator decoupling the system does not work, since this mode
cannot observe the mass variation as shown in Figure 3.18. Thus, an advanced algorithm has
to be added to the control scheme. Also, the macro actuator has to have as high bandwidth
as possible because the micro actuator has a load as much as the increased mass until the
leadscrew nut converges to the static balancing point.

Figure 3-17: Time responses of the multivariable system with Balancing/Tracking mode; the
first view is response of ϕ(s)

τ(s) , the second view is response of a(s)
τ(s) , the third view is response of

ϕ(s)
F (s) . The step inputs are π

6 and static balancing point (mglkr ) for the micro and macro actuators
respectively.

Figure 3-18: Time responses of macro-micro actuators when the mass is changed 1kg to 2kg at
5 sec. with CM (s) = 400 0.332ss+0.67s+1

s and Cm(s) = 50(0.2s2 + s+ 1)
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3-6 Comparison of three control schemes

In previous sections, the three control schemes were introduced and their characteristics were
surveyed by time responses and frequency responses with PID controllers. The best scheme
for the Delft robot arm is chosen by comparing the power of the micro actuator when the
close loop system with the three control schemes has similar performance. As shown in Figure
3.19, the controllers of the three control schemes were designed as Table 3.3 to have similar
performance with 1kg mass; the leadscrew nut is located at static balancing point for the mass.
In that case, the micro actuator torque of Balancing/Tracking mode is the smallest except
the initial surge torque. The initial surge torque can be removed by adding the trajectory
planner such as cubic polynomial planner in Appendix C.

Schemes The controller of The controller of
the micro actuator of the macro actuator

Tracking/Compensating 5(0.3s+1) −4000.332s2+0.67s+1
s

Tracking/Tracking 100.3s+s+1
s −4000.332s2+0.67s+1

s

Balancing/Tracking 100.2s+s+1
s 4000.332s2+0.67s+1

s

Table 3-3: Controllers of the three control schemes for step input

Figure 3-19: Step responses of macro-micro actuators
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Figure 3.20 shows the time responses of the three control systems with the cubic polynomial
trajectory. It is assumed that mass of the end-effector of the link is changed from 0.35kg to
2kg; the mass is observable, but the initial position of the leadscrew nut is a static balancing
point for 0.35kg mass. The controllers of the three control schemes are same with the previous
controllers of Table 3.3. As shown in Figure 3.20, the initial surge torques are removed by
using the trajectory planner. The mode which has the smallest micro actuator torque is not
Balancing/Tracking mode differently from the previous step responses. Moreover, it shows the
worst trajectory tracking performance in the three control schemes. However, this simulation
did not consider the maximum actuator velocity of the macro actuator with the leadscrew
pitch, 0.00254m.

Figure 3-20: Time responses of macro-micro actuators
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If the controller gains are tuned as Table 3.4 to make the three control schemes have same
performance in boundary of the maximum velocity of the macro actuator, Balancing/Tracking
mode shows the lowest torque of the micro actuator as shown in Figure 3.21 and Table 3.5.
The leadscrew nut converges to the static balancing point, 0.184m. On the other hands, static
balancing concept does not work in the other modes. The macro actuator performance and
the micro actuator torque of Tracking/Compensating mode and Tracking/Tracking mode can
be improved by decreasing the gains of the controller of the micro actuator. However, it
results in worse performance of the link such as large tracking error. As a result, the best
scheme for the purpose of the Delft robot arm is the Balancing/Tracking mode.

Schemes The controller of The controller of
the micro actuator of the macro actuator

Tracking/Compensating 120(0.3s+1) −1800.332s2+0.67s+1
s

Tracking/Tracking 1000.3s+s+1
s −1300.332s2+0.67s+1

s

Balancing/Tracking 1000.2s+s+1
s 3500.332s2+0.67s+1

s

Table 3-4: Controllers of the three control schemes considering saturations for cubic polynomial
trajectory

Figure 3-21: Time responses of macro-micro actuators
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Schemes The maximum torque of The final position of The maximum velocity of
the micro actuator [Nm] the leadscrew nut [m] the macro actuator [m/sec]

Tracking 6.60 0.13 0.47
/Compensating

Tracking 6.73 0.10 0.45
/Tracking
Balancing 6.35 0.18 0.45
/Tracking
Hardware - - 0.50
saturations

Table 3-5: Comparison of the three control schemes

3-7 Conclusion

The three candidate control schemes for the single rotating link system were researched and
compared through simulation. The first scheme, Tracking/Compensating mode, is good for
simplicity of a control system, but this cannot achieve both high bandwidth of the macro
actuator and the macro-micro actuated system. That is, there are trade-off between the two
actuators depending on the gains of the controllers. Moreover, when the actuator dynamics
or the mass of the lead screw nut are considered, a PID cascade controller has to be used.
The PID cascade controller needs trial-and-error to tune the gains.

The second scheme uses both macro-micro actuators for trajectory tracking. Macro-micro
actuators always work together for given task so that the performance follows the low band-
width system between the macro actuator and the micro actuator. If the macro actuator has
high bandwidth, then this can improve the performance sharing the trajectory tracking with
the micro actuator. On the other hands, the macro actuator does not work for static balance
since it shares the work compensating gravity with the micro actuator. The micro actuator
always need torque to compensate a significant portion of gravity.

The third scheme makes the macro actuator work only for static balance. The micro actuator
works only for trajectory tracking using distance a as the feedback signal of the macro actuator
differently from the other schemes. This Balancing/Tracking mode with a linear controller
showed better performance than the other modes, when hardware saturations are considered.
However, the torque of the micro actuator depends on the speed of convergence of the macro
actuator to the new static balancing point when the mass of the end-effector is changed.
Moreover, it needs an advanced algorithm to estimate the mass variation of the end-effector
in a non-autonomous system, while the other schemes do not need the advanced algorithm.
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Chapter 4

Controller

The Balancing/Tracking mode with a linear controller showed better performance than the
other modes in the previous chapter. However, in implementations of the linear controller, the
linearization results in nonuniform damping throughout the workspace and other undesirable
effects. When nonlinearities are not severe, local linearization can be used to derive linear
models that are approximations of the nonlinear equations in the neighborhood of an operating
point. Fortunately, the local linearization can work stable with the single rotating link system
with the given conditions. However, its performance is changed depending on the mass and
angle as shown in Figure 3.3 and Figure 4.1. To remove the performance variation, Feedback
linearization is introduced. Feedback linearization method is to move the operating point
with the manipulator as the manipulator moves, always linearizing about the desired position
of the manipulator. The result of this moving linearization is a linear, but time-varying,
system. It uses a nonlinear control term to cancel the nonlinearities in the controlled system
so that the overall closed loop system is linear; this decouples the two actuators and gets
rid of the nonlinearities of the system. However, an advanced algorithm such as adaptive or
robust algorithms has to be implemented in the control scheme due to the decoupling and
the properties of the Balancing/Tracking mode, which cannot estimate mass variation of the
end-effector.

4-1 Feedback linearization control

This section shows the nonlinear control of the single rotating link system based on the third
control scheme, which the macro actuator is for static balance and the micro actuator is for
trajectory tracking. Motion equations of previous sections show that the system has nonlin-
earities with the coupling of the equations of the model. A nonlinear controller decouples
and linearizes the dynamic model through a feedback linearization method. This method
decouples the multivariable system even though the angle changes [8].
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Figure 4-1: Step response depending on the variation of mass

Motion equations of the single rotating link system, equation 2-4, can be expressed as follows;
M , C, and G are the mass inertia matrix, the vector of viscous damping and back EMF
torques, and the vector of gravitational torques respectively.

Mq̈ + Cq̇ +G = V where q = [β θ]T , V = [Vm VM ]T (4-1)

M =

 Rm
ki

(Jm + ml2

k2
g

) 0
0 RMJM

kI



C =
[

RmBm
ki

+ kb 0
0 RMBM

kI
+ kB

]

G =

 Rm
kikg

(knrθkG
−mgl) sin β

kg
RM
kIkG

(kn2θ
kG
− knr cos β

kg
)


As shown in the above matrix, two variables are coupled in the gravity part, G. The nonlinear
matrix G is canceled by the feedback linearization method. Assuming that the angles and
velocities of the single rotating link system are measurable and measurements are noiseless, the
control law is defined as below. M̂ , Ĉ, and Ĝ are the estimates of M , C, and G respectively.

V = M̂w(t) + Ĉq̇ + Ĝ (4-2)
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Then, after substituting equation 4-1 into 4-2, deducing in the ideal case of a perfect modeling
and in the absence of disturbances, the problem reduces to that of the linear control of two
decoupled double-integrators:

q̈ = w(t)

w(t) is the new input control vector. Let q̈d(t), q̇d(t), and qd(t) be the desired acceleration,
velocity and position in the joint space. kp and kd are a proportional gain and a differential
gain of a PD controller respectively. Both are (2 × 2) positive definite diagonal matrices.
Defining w(t) according to the following equation:

w(t) = q̈d + kd(q̇d − q̇) + kp(qd − q)

Hence, referring to equation q̈ = w(t), the closed loop system response is determined by the
following decoupled linear error equation:

ë+ kdė+ kpe = 0 where e = qd − q

Lyapunov candidate function is chosen as

E = 1
2

˙eT ė+ 1
2e

Tkpe

Using Lyapunov direct method,

E(e, ė) = E(0, 0) = 0

E(e, ė) > 0

Ė = ëė+ ėkpe

= (−kpeT − kdėT )ė+ ėTkpe

= −ėTkdė < 0

E(∞,∞) > 0

Hence, the solution e(t) of the error equation is globally stable. It implies that a closed loop
system is globally asymptotically stable.

The block diagram of this control method is presented in Figure 4.2. The control inputs
for the actuators include three components: the first compensates for viscous damping and
gravity effects: the second is a proportional and derivative control with variable gains M̂kp
and M̂kd respectively; and the third provides the predictive action of the desired acceleration
torques M̂ q̈d. Inputs of the micro actuator are a desired trajectory of the link with a velocity
and an acceleration through trajectory planner, and the input of the macro actuator is a
value, mglkr , which makes the link marginally stable at every angle. The controller governs the
whole system as expressed in the above closed loop equation, and the gains of the controller
are chosen to have no overshoot, given damping ratio 1.
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Figure 4-2: A block diagram of the feedback linearization control

The responses of the single rotating link system are shown in Figure 4.3. It shows that
a higher gain controller with kp=10000 and kd=200 for the micro actuator, has a smaller
tracking error than the lower gain controller with kp=100 and kd=20 for the micro actuator
with the low torque of the micro actuator; controller gains of the macro actuator are kp=100
and kd=20 in this section. In the presence of modeling errors due to the payload, the closed
loop equation is obtained by combining equations 4-1 and 4-2:

M̂(q̈d + kdė+ kpe) + Ĉq̇ + Ĝ = Mq̈ + Cq̇ +G

⇒ ë+ kdė+ kpe = M̂−1
[
(M − M̂)q̈ + (C − Ĉ)q̇ + (G− Ĝ)

]
If the mass of the model of the single rotating link system is not accurate, the above equation
will be expressed as the follows.

ë+ kdė+ kpe = M̂−1M̃ q̈ + M̂−1G̃ where M̃ = M − M̂ and G̃ = G− Ĝ (4-3)

In this equation, the modeling errors constitute an excitation for the error equation. To
check the stability of the above closed loop system, Lyapunov candidate function is chosen as

E = 1
2

˙eT ė+ 1
2e

Tkpe

Using Lyapunov direct method,

E(e, ė) = E(0, 0) = 0

E(e, ė) > 0

Ė = ëė+ ėkpe

= (−kpeT − kdėT + M̂−1M̃ q̈)ė+ ėTkpe

= (M̂−1M̃ q̈)ė− ėTkdė < 0
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4-1 Feedback linearization control 37

Figure 4-3: Responses with no modeling error

Figure 4-4: Responses with the modeling error(1kg)
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38 Controller

The single rotating link system does not warrant that a tracking error becomes zero if there are
modeling errors or the system is a non-autonomous system since Ė is not always smaller than
zero. If the modeling errors are large, it is necessary to increase the proportional and derivative
gains as shown in Figure 4.4. Then, the system becomes robust against the modeling errors
or the disturbance. However, there is a limitation in the high gain controller since the system
cannot have voltage, current, and motor speed over the hardware saturations. Furthermore,
the high gains amplifies a measurement noise, and the micro actuator spends its energy to
compensate the increased mass, since the macro actuator does not work for static balance
against the increased mass. For those reasons, an advanced algorithm, which makes the macro
actuator move its position to balance the system against the mass variation of the payload,
has to be added in the controller.

4-2 Sliding mode control

One of the most important approaches to dealing with model uncertainty is a sliding mode
control [9, 10]. As shown in Figure 4.5, sliding mode approach is to drive the nonlinear plant’s
state trajectory onto a pre-specified surface in the state space and to maintain the plant’s
state trajectory on this surface for a subsequent time by the switching control law, which is
derived by switching surface and Lyapunov function. The typical structure of this controller
is composed of a nominal part, same as the feedback control law, and an additional term
aimed at dealing with a model uncertainty. A sliding mode algorithm, which uses a sliding
variable, is implemented for robustness of the single rotating link system.

Figure 4-5: Concept of sliding mode control; f is a closed loop function
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4-2 Sliding mode control 39

The principle of the sliding mode control scheme in Figure 4.6 is explained in short as follows.
The micro actuator realizes the mass variation as a disturbance of a system so that the
control input is increased to reject the disturbance. During the term of estimation, the macro
actuator diminishes the mass error by switching feedback gains depending on the variation of
sliding variables and moves to the distance, which makes the link in static balance. Finally,
the motion of the macro actuator decreases the load of the micro actuator so that the torque
of the micro actuator to compensates gravity and a trajectory error becomes approximately
zero.

The sliding mode algorithm of the single rotating link system is derived as follows. As
shown in equation 4-1, M and G matrices are affected by mass variation. Assuming that the
angles and velocities of the single rotating link system are measurable and measurements are
noiseless, the control law is defined as below. M̂ , Ĉ, and Ĝ are the estimates of M , C, and
G respectively.

V = M̂w(t) + Ĉq̇ + Ĝ (4-4)

Then, after substituting equation 4-1 into 4-4 , deducing in the absence of disturbances, the
closed loop equation with modeling errors is expressed as below.

Mq̈ + Cq̇ +G = M̂w(t) + Ĉq̇ + Ĝ (4-5)

where w(t) is the new input control vector.

Let q̈d(t), q̇d(t), and qd(t) be the desired acceleration, velocity and position in the joint space,
and let s be a sliding variable, which replaces a nth order tracking problem in q with a 1st
order stabilization problem in s. Defining w(t) according to the following equation with a
strict positive constant λ: where s = ė+ λe = q̇ − q̇d + λe = q̇ − q̇r and q̇r = q̇d − λe

w(t) = q̈r − kds− kpe

Figure 4-6: Control structure of the robust feedback linearization control
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Equation 4-5 is re-written as follows.

Mq̈ + Cq̇ +G = M̂(q̈r − kds− kpe) + Ĉq̇ + Ĝ

⇒Mq̈ + Cq̇ +G−Mq̈r = M̂(q̈r − kds− kpe) + Ĉq̇ + Ĝ−Mq̈r

⇒Mṡ+ M̂kds+ M̂kpe = M̃ q̈r + G̃

To check the stability of a closed loop system, Lyapunov candidate function is chosen as

E = 1
2s

TMs+ 1
2e

T M̂kpe

Using Lyapunov direct method,

E(s, e) = E(0, 0) = 0

E(s, e) > 0

Ė = ṡMs+ ėM̂kpe

= (−M̂kds− M̂kpe+ M̃ q̈r + G̃)s+ ėT M̂kpe

= −sT M̂kds− sT M̂kpe+ (M̃ q̈r + G̃)s+ ėT M̂kpe

= −sT M̂kds− (ė+ λe)T M̂kpe+ (M̃ q̈r + G̃)s+ ėT M̂kpe

= −sT M̂kds− eTλM̂kpe+ (M̃ q̈r + G̃)s

To make the closed loop system stable, −sT M̂kds−eTλM̂kpe+(M̃ q̈r + G̃)s has to be smaller
than zero. The first and second factors are always smaller than zero when kp and kd are
positive. However, the third factor does not warrant a negative value because parameter
values can be changed. Thus, for the stability of the system, M̃ and G̃ have to follow the
below conditions to make the system stable.

(
if sq̈r > 0, M̃ = −|ρ1|
if s > 0, G̃ = −|ρ2|

(
if sq̈r < 0, M̃ = |ρ1|
if s < 0, G̃ = |ρ2|

where M̃ =
[
ρ1
0

]
=
[

Rm
ki

(m̂−m)l2 0
0 0

]
, G̃ =

[
ρ2
0

]
=
[
− Rm
kikg

(m̂−m)gl sinϕ
0

]
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4-2 Sliding mode control 41

Assuming the end-effector of the link can be changed from 0.35kg to 2 kg, the present study
adds control inputs to compensate the tracking error resulted from the mass variation as
below. 

if sq̈r > 0, M̃ =
[

Rm
ki
−1.65l2
k2
g

0
0 0

]

if s < 0, G̃ =
[

Rm
kikg

(−1.65gl sin β
kg

)
0

]


if sq̈r < 0, M̃ =

[
Rm
ki

1.65l2
k2
g

0
0 0

]

if s > 0, G̃ =
[

Rm
kikg

(1.65gl sin β
kg

)
0

]

The above rules are implemented in the sliding mode algorithm block of Figure 4.6 with the
following controller gains and sliding constant.

Kp =
[

900 0
0 16

]
, Kd =

[
60 0
0 8

]
, λ =

[
10
0.1

]

However, as shown in the above sliding mode algorithm, the micro actuator only realizes the
mass variation and has additional control inputs, but the input of the macro actuator can
not estimate the mass variation since there is no feedback of mass variation for the input.
Therefore, the static balancing concept does not work as shown in Figure 4.7 because the
macro actuator does not have motion for the increased mass. The voltage of the micro
actuator is not decreased also because the micro actuator has to compensate an error caused
by the mass variation. Thus, some factor has to be added to realize the mass variation for a
macro actuator. The additional algorithm is derived from the variation of the gravity torque.

if
[

Rm
kikg

(knrθkG
−mgl) sin β

kg

0

]
+ G̃ > 0, m̂ = −2

if
[

Rm
kikg

(knrθkG
−mgl) sin β

kg

0

]
+ G̃ < 0, m̂ = 2

The above rule is implemented in the sliding mode algorithm block with the previous rules.
Then, the macro actuator estimates the mass and updates the input of the macro actuator
and the model based part of the controller. However, the voltage of the micro actuator still
has chattering phenomena because of the switching of the above rules, as shown in Figure
4.8. To decrease the high frequency chattering, a low pass filter, 10

s+10 , is implemented in the
sliding mode algorithm. As a result, the macro actuator realizes the mass variation and moves
its distance for static balancing as shown in Figure 4.9. The voltage of the micro actuator is
also decreased due to the recognition of the mass variation of the macro actuator.
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Figure 4-7: Responses of the feedback linearization control and the robust feedback linearization
control with a modeling error (1kg) to keep the initial angle (90 degree)

Figure 4-8: Responses of the feedback linearization control and the robust feedback linearization
control with a modeling error (1kg) to keep the initial angle (90 degree)
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4-3 Indirect adaptive control 43

Figure 4-9: Responses of the feedback linearization control and the robust feedback linearization
control with a modeling error (1kg) to keep the initial angle (90 degree)

4-3 Indirect adaptive control

An indirect adaptive algorithm, which uses a prediction error and the least squares method, is
implemented to estimate the mass variation of the payload of the single rotating link system
[9, 10]. Figure 4.10 shows the indirect adaptive control scheme, and its principle is explained
in short as follows. The micro actuator estimates the mass variation as a disturbance of
the system so that the input of the micro actuator is increased to reject the disturbance.
The macro-micro actuators estimate the mass variation from the prediction error and the
least squares method, and the macro actuator moves the leadscrew nut to the static balance
position. This prediction error concept is explained as below with considering the input of
the single rotating link system, which is defined in equation 4-1.

V = Mq̈ + Cq̇ +G(q) (4-6)

Given some estimate V̂ of the parameters, a prediction V̂ of V is

V̂ = M̂ q̈ + Ĉq̇ + Ĝ

Then, the prediction error ε of the input is given by

ε = V − V̂

= V − [M̂ q̈ + Ĉq̇ + Ĝ(q)]
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Unfortunately, the generation of ε requires the measurement of q̈. However, the acceleration
signal is eliminated by filtering both V̂ and V as shown in Figure 4.11. Providing that ε is
filtered by a stable and proper low pass filter with the transfer function of the system, H(s)
is

H(s) = ω

s+ ω
where ω > 0

The filter output is

εf (s) = H(s)ε(s)

Then, a filtered prediction error is

εf (s) = H(s)ε(s) = H(s)V (s)−H(s)(M̂(s)s2q(s) + Ĉ(s)sq(s) + Ĝ(s))

= Vf (s)− (H(s)sM̂(s)sq(s) +H(s)Ĉ(s)sq(s) +H(s)Ĝ(s))

Figure 4-10: Control structure of the indirect adaptive feedback linearization control

Figure 4-11: Generation of the filtered prediction error on the control torque
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4-3 Indirect adaptive control 45

Obtaining the inverse Laplace transform,

εf (q, q̇) = Vf (q, q̇)− (h(t) ˙̂
Mq̇ + h(t)Ĉq̇ + h(t)Ĝ(q)) = y(q, q̇)−W (q, q̇)m̂ (4-7)

where y(q, q̇) = V̂f (q, q̇) and W (q, q̇)m̂ = h(t) ˙̂
Mq̇ + h(t)Ĉq̇ + h(t)Ĝ(q)

W (q, q̇) is a filtered regressor matrix, and m̂ is the estimate of mass of the end-effector. In
the standard least-squares method, the estimate of the parameter is generated by minimizing
the total prediction error with respect to m̂(t).

J =
∫ t

0
||y(r)−W (r)m̂(r)||2dr

Since this implies the fitting of all the past data, this estimate potentially has the advantage
of averaging out the effects of measurement noise. The equation, ||y(r) −W (r)m̂(r)||2, has
to be minimized to have low cost function, J . The cost function of J can be written as

εf εf = (y −Wm̂)(y −Wm̂)

= yT y − yTWm̂− m̂TW T y + m̂W TWm̂

= yT y − yTWm̂− m̂TW T y + m̂W TWm̂+ yTW (W TW )−1W T y − yTW (W TW )−1W T y

= yT (I −W (W TW )−1W T )y + (m̂− (W TW )−1W T y)TW TW (m̂− (W TW )−1W T y)

The first term on the right hand side is independent of m̂. The second term is always positive.
The minimum is obtained for

m̂ = (W TW )−1W T y

Then, the above normal equation can be written as

m̂(t) = [
∫ t

0
W TWdr]−1

∫ t

0
W T ydr (4-8)

The derivative of equation 4-8 with respect to time is expressed as

d

dt
[P−1(t)]m̂+ P−1 ˙̂m = Wy

P−1 ˙̂m = Wy −W TWm̂ = W (y −W T m̂) = −W T εf

where P (t) = [
∫ t

0
W T (r)W (r)dr]−1

Then, the parameter update satisfies

˙̂m = −P (t)W T εf (4-9)

with P (t) being called the estimator gain matrix. In the implementation of the estimator, it
is desirable to update the gain P directly. By using the identity

d

dt
[PP−1] = ṖP−1 + P

d

dt
[P−1] ⇒ Ṗ = −PW TWP (4-10)
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The above algorithms, 4-7, 4-9 and 4-10, are implemented in the indirect adaptive algorithm
block in Figure 4.10 with the following controller gains.

Kp =
[

900 0
0 16

]
, Kd =

[
60 0
0 8

]

The macro actuator estimates the mass variation and moves its distance for static balancing
as shown in Figure 4.12. The voltage of the micro actuator is also decreased due to the
estimation of the mass variation of the macro actuator.

Figure 4-12: Responses of the feedback linearization control and the adaptive feedback lineariza-
tion control with a modeling error (1kg) and no noise to keep the initial angle (90 degree)

4-4 Conclusion

The sliding mode algorithm or the indirect adaptive algorithm has to be added to the feed-
back linearization method in order to estimate the mass variation of the end-effector. Both
algorithms can estimate the mass with good performances in the same conditions. However,
the sliding mode algorithm with the feedback linearization method shows smaller tracking
error and faster rise time than the performance of the indirect adaptive algorithm as shown
in Figure 4.9 and 4.12. Moreover, the process of the sliding mode control is simpler than the
indirect adaptive control, which requires least square calculation for parameter estimation.
To simulate the overall dynamic model of the link system with hardware saturations, the
sliding mode algorithm is applied in next chapter.
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Chapter 5

Simulation with overall dynamic model

In this chapter, the feedback linearization control with the sliding mode algorithm is imple-
mented for the trajectory tracking of the overall dynamic system of Figure 2.1. The overall
dynamic model is used to choose proper gains of the controller of the system considering max-
imum motor speeds, maximum motor torques, current saturations, and voltage saturations
of the macro-micro actuators with parameter values of Table 5.1 and 5.2.

r 0.075[m] m 0.35[kg]
k 568[kg

s2 ] l 0.4[m]

Table 5-1: Parameter values of the manipulator

Rm 21 [ohm] RM 0.605 [ohm]
Lm 0.00137 [H] LM 0.000191 [H]
Jm 4.13×10−7[kgm2] JM 79.2×10−7 [kgm2]
kg 410 [-] kG 1 [-]
kb 0.0212 [Vs/rad] VB 0.0292 [Vs/rad]
Bm 5.8×10−6[kgm2/sec] BM 5.8×10−6 [kgm2/sec]
ki 0.0212 [Nm/A] kI 0.0292 [Nm/A]

p 0.00254 [m]

Table 5-2: Parameter values of the macro-micro actuator dynamics

Master of Science Thesis Kyoung Su Choi



48 Simulation with overall dynamic model

The gains of the PD controller, Kp and Kd, with the sliding constants, λ, were designed to
have less than 0.5 degree error following the 3 second cubic polynomial trajectory, avoiding
the hardware saturation of Table 5.3. Designed gains of the PD controller and the sliding
constants are defined as follows.

Kp =
[

49 0
0 16

]
, Kd =

[
14 0
0 8

]
, λ =

[
1

0.1

]

Figure 5.1 shows the time responses of the single rotating link system based on the above
conditions and controllers when the mass of the end-effector is 2kg during the simulation.
Current, voltage, maximum continuous torques, and maximummotor speeds of both actuators
are within the boundary of the saturations; the peak torque is limited to 4 to 5 times maximum
continuous torque [11]. At the initial simulation time, current and voltage of both macro
actuator and micro actuator are increased to adapt the mass 2kg. The link tracks the given
trajectory with a small error until the macro actuator converges static balance point of the
system after small overshoot at the initial time. The sliding mode algorithm estimates the
mass 2kg as 1.9kg as shown in Figure 5.2. The 0.1kg estimation error is caused by the
trajectory variation. If the trajectory is slower, the error becomes smaller. The estimation
error results in the convergence error of the macro actuator. As a result, the system is not
in the perfect static balance, but it is reasonable. The trajectory error of the link is about
0.3 degree so that this perfectly satisfies the requirements; the tracking time cannot be less
than 3 second because the tracking error becomes over 0.5 degree. These simulation results
are visualized by Virtual Reality Modeling Language (VRML) model as shown in Figure 5.3.

The micro actuator factors saturations The macro actuator factors saturations

Max. motor speed 1026 [rad/sec] Max. motor speed 1256 [rad/sec]
Max. continuous torque 0.00697 [Nm] Max. continuous torque 0.0933 [Nm]

Voltage ±27.5 [V] Voltage ±27.5 [V]
Current ±3 [A] Current ±3 [A]

Table 5-3: Hardware saturations
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Figure 5-1: Responses of the system with cubic polynomial trajectory input

Figure 5-2: Tracking error and Estimation mass
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50 Simulation with overall dynamic model

Figure 5-3: 3D Virtual Reality Model of the single rotating link system
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

This research aimed at finding the best control scheme with a controller for the macro-micro
actuated system of the Delft robot arm and reached the following conclusions based on the
problem definitions of Chapter 1.

1. For simulation purpose, a dynamic model of the manipulator and actuator dynamics are
successfully derived using the symbolic toolbox of Matlab. In order to understand the
motion of the system, the dynamic model was visualized through the Virtual Reality
Modeling Language (VRML) by means of a Matlab script which applies the output data
and the VRML model in generating a 3D animation.

2. To analyze the system properties, the present study checked the nonlinearity of the
system, the influence of an unknown mass attached to the end-effector, the stability of
Multi-Input-Multi-Output (MIMO) system, and the performance limitation by hard-
ware saturations in Chapter 3 and Chapter 5. The nonlinearity of the system, resulted
from mass and angle, was confirmed by the gain variation of root locus and time re-
sponse of the closed loop system. The stability of the MIMO system was examined
to design controllers by characteristics loci, which uses eigenvalues of the system and
Nyquist criterion theorem. Lyapunov direct method was used to check the stability of
the feedback linearization control system. However, the stability of non-autonomous
system with a linear controller could not be confirmed. The performance limitation by
hardware saturations was checked by simulation.

3. The third subgoal was to survey several control schemes with controllers. Three control
schemes, Tracking/Compensating mode, Tracking/Tracking mode, Balancing/Tracking
mode, were simulated with PID controllers. Tracking/Compensating mode can not have
both high bandwidth of the macro actuator and the whole system, but it has adaptivity
against the mass variation without any advanced algorithm. Tracking/Tracking mode
makes the macro-micro actuators share the tracking work depending on the relative
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magnitude of gains of controllers, and results in high torque of the micro actuator since
the system does not use the static balancing concept. Balancing/Tracking mode uses two
different feedback signal for the macro-micro actuators and makes the system in static
balance. However it needs an advanced algorithm, such as a sliding mode algorithm
and an indirect adaptive algorithm, to estimate the mass variation of the end-effector.

4. To choose the best control scheme for the macro-micro actuated system, the perfor-
mance of the system with the control schemes and controllers were compared. The
system must have low actuation power of the micro actuator, small position error and
high bandwidth performance within the permissible boundaries of motor speeds, motor
torques, current, and voltage. To remove the nonlinearity of the system and decouple
the MIMO system, a feedback linearization controller was used instead of a linear con-
troller. Balancing/Tracking mode was selected as the best control scheme among the
three candidates. It is the best method which showed the lowest actuation power of
the micro actuator and high-bandwidth performance of the macro actuator within the
range of the hardware saturations as presented in Figure 3.21; the torques of the micro
actuator of three control schemes were about 6.6, 6.7, and 6.3 [Nm] respectively. The
static balancing concept works only in the Balancing/Tracking mode. To estimate the
mass variation, the sliding mode algorithm was selected, since it shows smaller tracking
error during the motion and faster rise time than the indirect adaptive algorithm as sug-
gested in Chapter 4; the feedback linearization method with the sliding mode algorithm
and the indirect adaptive algorithm were about 0.4 sec. and 0.5 sec. respectively. The
chosen control scheme with the advanced algorithm was used to simulate the overall
dynamic model of the macro-micro actuated system considering motor speeds, motor
torques, current, and voltage. For the fast response and the safety of the single rotating
link system, the macro actuator should has high power with high speed and the power
of the micro actuator should be as low as possible in the given hardware saturations
and limitations.

6-2 Recommendations

• The total simulation model needs verification, because assumptions, i.e. mass, iner-
tia properties, and the center of mass, are made in the modeling of the manipulator.
Parameters such as length and other dimensions are derived from the mechanical draw-
ings. To simulate accurately the real system, system identification should be performed.
Furthermore, it is recommended to estimate friction with mass of the end-effector since
the friction of the system changes depending on the angle and mass of the end-effector.

• The present study assumed the manipulator to be equipped with an angular velocity
sensor. If the real system does not have the sensor, the controller of the system has to
be designed with observers to estimate the angular velocity.

• The stability of the closed loop system with feedback linearization method can be proven
as shown in Chapter 4. However, the stability of the closed loop system with a PID
controller was failed to be proven. It could be an interesting work to prove the stability
of a non-autonomous system with a linear controller considering its boundary.
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• The combination of the model based part and the servo part in a feedback linearization
method simplifies the tuning of control gains. It will be another challenge to compare
this result with the other control methods such as an adjustable pole placement method,
knowledge based control methods, and a passivity based control.

• In this paper, the single rotating link system is used to find a proper control scheme
with a controller. The chosen control scheme can be applied to 4DOF Delft robot arm
for the future work, using kinematics and dynamics of the Delft robot arm in Appendix
D.
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Appendix A

Stability Analysis

The closed loop system in Chapter 3, which has mass variation of the end-effector, is a non-
autonomous system. It is difficult to check the stability of the non-autonomous system since
the system is nonlinear and mass is changed. In this chapter, Lyapunov direct method with
sector nonlinearity and vanishing perturbation, are introduced to prove the stability of the
non-autonomous system.

A-1 Problem Statement

Figure A-1: Diagram of a simplified single rotating link system, The control signal is a
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The system can be expressed:

ϕ̈(t) = sinϕ(t)
(
g

l
− kr

l2m(t)a(t)
)

A PID controller and an initial condition is used for a control input, a(t):

a(t) = a0 + kp(ϕr − ϕ(t))− kdϕ̇(t) + ki

∫
(ϕr − ϕ(t))dt

where a0 is obtained from the equilibrium condition (ϕ̈(t) = 0, ∀t) for a given mass m0:

g

l
= kr

l2m0
a0 ⇒ a0 = gl

kr
m0

The angle ϕ(t) and the mass m(t) vary in a given range, such as 30 to 150 degrees and 0.35
to 2 kg, respectively.

The problems to solve by using nonlinear analysis / synthesis:

1. Check the stability of the closed loop system with a known mass, given the gains kp, ki
and kd.

2. Check the stability of the closed loop system with observable varying mass, given the
gains kp, ki and kd.

3. Check the stability of the closed loop system with unobservable varying mass, given the
gains kp, ki and kd

In Section A-2 and A-3, the above three problems are checked by using sector nonlinearity
and vanishing perturbation.

A-2 Lyapunov direct method with Sector nonlinearity

For the stability analysis of fuzzy systems (ẋ(t) = f(x(t)) = A(t)x(t)), Tanaka and Sugeno
have derived a stability theorem using Lyapunov direct method [12]. In the theorem, an
existence of the positive definite matrix P , which is common to the Lyapunov inequalities
consisting of linear subsystems, plays an important role.

V = xTPx
V̇ = ẋTPx+ xTPẋ
= (xTA)Px+ xTP (Ax)
= xT (ATP + PA)x < 0 ∀x

The linear subsystems of a nonlinear system are derived from sector nonlinearity approach.
Figure A.2 illustrates the local sector nonlinearity approach, where two lines become the local
sectors under −d < x(t) < d. This is reasonable as variables of physical systems are always
bounded. From the various bounded variables, the linear subsystems are determined, and
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Figure A-2: Sector nonlinearity

the nonlinear system is asymptotically stable in the large if there exists a common positive
definite matrix P for all the subsystems such that Ai is stable and nonsingular, and

ATi P + PAi < 0 for ∀i ∈ 1, 2, ...

This is based on Lyapunov’s direct method, and it should be noticed that the theorem gives a
sufficient condition for the stability, and a fuzzy system is not always asymptotically stable in
the large even if all the Ai’s are stable matrices. Therefore, it is desired to find the common
positive definite matrix P in a simple manner.

A-2-1 The sector nonlinearity for a system assuming the system is in perfect
static balance

Control input is

a(t) = a0 + kp(ϕr − ϕ(t))− kd ˙ϕ(t) + ki

∫
(ϕr − ϕ(t))dt

State definition and state space model of the single rotating link system are expressed as
follows.

x1 = ϕ(t)− ϕr, x2 = ẋ1 = ˙ϕ(t), xi =
∫
x1dt

ẋ1 = x2
ẋ2 = g

l sinϕ(t) + −kr
m0l2

sinϕ(t) [a0 − kpx1 − kdx2 − kixi] = −kr
m0l2

sinϕ(t) [−kpx1 − kdx2 − kixi]
ẋi = x1 ẋ1
ẋ2
ẋi

 =

 0 1 0
krkp
m0l2

sinϕ(t) krkd
m0l2

sinϕ(t) krki
m0l2

sinϕ(t)
1 0 0


 x1
x2
xi
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Since the operational range of an angle ϕ(t) is from 30 to 150 degree, sinϕ(t) is in the below
range.

sinϕ(t) ∈ [12 , 1]

Then, two rules are derived from the above range and state space form.

Rule 1: if sinϕ(t) is around 0.5, ẋ1
ẋ2
ẋi

 =

 0 1 0
krk1

2m0l2
krk2

2m0l2
krki

2m0l2

1 0 0


 x1
x2
xi


Rule 2: if sinϕ(t) is around 1, ẋ1
ẋ2
ẋi

 =

 0 1 0
krk1
m0l2

krk2
m0l2

krki
m0l2

1 0 0


 x1
x2
xi


The gains of the PID controller (kp=-1.2, kd=-1, ki=-1.8) are designed by a linearized model
with Root Locus, and the stability of this closed loop system is checked using Matlab’s Linear
Matrix Inequality (LMI) Toolbox. The system is stable with the pre-designed controller when
the mass is equal to an initial mass since the positive definite matrix, P , exists.

A-2-2 The sector nonlinearity for a system assuming the mass is variable and
observable

Control input is

a(t) = a0 + kp(ϕr − ϕ(t))− kd ˙ϕ(t) + ki

∫
(ϕr − ϕ(t))dt

State definition and state space model of the single rotating link system are expressed as
follows.

x1 = ϕ(t)− ϕr, x2 = ẋ1 = ˙ϕ(t), xi =
∫
x1dt

ẋ1 = x2
ẋ2 = g

l sinϕ(t)− kr
m(t)l2 sinϕ(t) [a0 − kpx1 − kdx2 − kixi]

ẋi = x1 ẋ1
ẋ2
ẋi

 =

 0 1 0
krkp
m(t)l2 sinϕ(t) krkd

m(t)l2 sinϕ(t) krki
m(t)l2 sinϕ(t)

1 0 0


 x1
x2
xi

+

 0
(gl −

kr
m(t)l2a0) sinϕ(t)

0

(A-1)

Since the operational range of an angle ϕ(t) is from 30 to 150 degree and m(t) is variable
between 0.35kg an 2kg, sinϕ(t)

m(t) is in the below range.

sinϕ(t)
m(t) ∈ [14 ,

100
35 ]

Kyoung Su Choi Master of Science Thesis



A-3 Vanishing Perturbation 59

Assuming that the mass can be observed, a0 = m(t)gl
kr and the state space description is ẋ1

ẋ2
ẋi

 =

 0 1 0
krkp
m(t)l2 sinϕ(t) krkd

m(t)l2 sinϕ(t) krki
m(t)l2 sinϕ(t)

1 0 0


 x1
x2
xi


Then, the below two rules are derived from the above state space form.

Rule 1: if sinϕ(t)
m(t) is around 1

4 , ẋ1
ẋ2
ẋi

 =

 0 1 0
krkp
4l2

krkd
4l2

krki
4l2

1 0 0


 x1
x2
xi


Rule 2: if sinϕ(t)

m(t) is around 100
35 , ẋ1

ẋ2
ẋi

 =

 0 1 0
100krkp

35l2
100krkd

35l2
100krki

35l2
1 0 0


 x1
x2
xi


The gains of the PID controller (kp=-1.2, kd=-1, ki=-1.8) are designed by a linearized model
with Root Locus, and the stability of this closed loop system is checked by LMI method. The
system is stable with the pre-designed controller when the mass is variable and observable.

A-2-3 The sector nonlinearity for a system assuming the mass is variable, but
unobservable

If the mass is not observed, affine models are obtained from the equation A-1 and expressed
in the below two rules. Then, this model does not guarantee the stability of a system.

Rule 1: if sinϕ(t)
m(t) is around 1

4 , ẋ1
ẋ2
ẋi

 =

 0 1 0
krkp
4l2

krkd
4l2

krki
4l2

1 0 0


 x1
x2
xi

+

 0
g
2l −

g
4lm0

0


Rule 2: if sinϕ(t)

m(t) is around 100
35 , ẋ1

ẋ2
ẋi

 =

 0 1 0
100krkp

35l2
100krkd

35l2
100krki

35l2
1 0 0


 x1
x2
xi

+

 0
g
l −

100g
35l m0
0



A-3 Vanishing Perturbation

Sector nonlinearity cannot prove the stability of the closed loop system which has the affine
model. In this section, an another method, vanishing perturbation, is tried to check the
stability. The vanishing perturbation uses concept of robustness based on the below Lemma
[13].
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Lemma If the origin is exponentially stable equilibrium of the nominal system ẋ = f(t, x),
then the origin will be exponentially stable equilibrium also for the perturbed system ẋ =
f(t, x) + g(t, x) under following conditions.

The perturbation term satisfies the linear growth bound:

||g(t, x)|| ≤ γ||x||

0 < γ ≤ C3
C4

where C3 and C4 are determined from below conditions that will assure exponential stability
of the system:

C1||x||2 ≤ V (t, x) ≤ C2||x||2 (A-2)

λmin(P )||x||22 ≤ xTPx ≤ λmax(P )||x||22
C1 = λmin(P ), C2 = λmax(P )

where λ is eigenvalue.

∂V

∂t
+ ∂V

∂x
f(t, x) ≤ −C3||x||2 (A-3)

V̇ = ẋTPx+ xTPẋ = f(t, x)TPx+ xTPf(t, x)

= xTATPx+ xTPAx = xT (ATP + PA)x

since PA+ATP = −I
V̇ ≤ −||x||22

−λmax(I)||x||22 ≤
∂V

∂x
f(t, x) = −xtx ≤ −λmin(I)||x||22

C3 = λmin(I) = 1

||∂V
∂x
|| ≤ C4||x|| (A-4)

V (x) = xTPx ≤ ||x||22||P ||

||∂V
∂x
||2 = ||2xTP ||2 ≤ 2||P ||2||x||2 = 2λmax(P )||x||2

C4 = 2λmax(P )

The derivative of Lyapunov function, V , along the trajectories of perturbed system is ex-
pressed using the above conditions.

˙V (t, x) = ∂V
∂t + ∂V

∂x f(t, x) + ∂V
∂txg(t, x)

V̇ ≤ −C3||x||2 + ∂V
∂x g(t, x) ≤ −C3||x||2 + C4||x||||g(t, x)|| ≤ −C3||x||2 + C4||x||γ||x||
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Since the growth bound is only information on g(t, x), a conservative approach is taken to
estimate the region of attraction:

V̇ ≤ −C3||x||2 + C4||x||γ||x|| ≤ 0

C4||x||γ||x|| < C3||x||2 ⇒ γ < C3
C4

The above vanishing perturbation theory is used to check the stability of the single rotating
link system. The state space of (A-1) except an integral controller can be expressed as follow.

ẋ = f(t, x) + g(t, x)[
ẋ1
ẋ2

]
=
[

0 1
krkp
m(t)l2 sinϕ(t) krkd

m(t)l2 sinϕ(t)

] [
x1
x2

]
+
[

0
(gl −

kr
m(t)l2a0) sinϕ(t)

]
Matrix f(t, x) is assumed that the nominal system is in the worst case: m(t) = 2 and ϕ(t) = π

6 .
kp and kd are assumed as -0.2 and -0.2. Then, the system is expressed as

ẋ = f(t, x) + g(t, x) = Ax+ g(t, x)

=
[

0 1
−13 −13

]
x+

[
0

(gl −
kr

m(t)l2a0) sinϕ(t)

]

The solution of the Lyapunov equation:

PA+ATP = −I

is given by:

P=
[

1.0197 0.0188
0.0188 0.0195

]

V (x) = xTPx satisfies the below inequalities:

(1) C1||x||2 ≤ V (t, x) ≤ C2||x||2 where C1 = λmin(P ) = 0.0191 and C2 = λmax(P ) = 1.0201

(2) ∂V
∂t + ∂V

∂x f(t, x) ≤ −C3||x||2 where C3 = λmin(I) = 1

(3) ||∂V∂x || ≤ C4||x|| where C4 = 2λmax(P ) = 2.0402

(4) ||g(t, x)|| ≤ γ||x||2

taking |x1| ≥ α:
||g(x)||2 ≤

β

α
|x1| ≤ γ||x1||2

where γ = β
α , β = g

l sinϕ(t)(1− m0
m(t)), and α = π/6 (the smallest angle)

Taking Lyapunov function:

V̇ ≤ −C3||x||2 + ∂V

∂x
g(t, x) = −C3||x||2 + C4||x||γ||x||

Substituting C3, C4, and γ:
V̇ ≤ −||x||2 + 2.0402 6

π
β||x||2
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V̇ < 0 if −||x||2 + 2.0402 6
πβ||x||

2 < 0, hence:

β <
π

2.0402× 6

β = g
l sinϕ(t)(1− m0

m(t)) = 9.81
0.4 (1− 0.35

m(t)) < π
2.0402×6 ⇒ m(t) < 0.3537

The maximum mass is 0.3537kg for the stability of a system. However, the same controller
can make a system stable with 3kg mass in simulation. This method does not show anything
about stability.
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Appendix B

PID cascade control

In Chapter 3, the mass of the leadscrew nut or the rotor inertia of the macro actuator were
not included in motion equations. This provides a simple calculation to design a controller
in the three control schemes. However, such designed controller cannot be implemented in
Tracking/Compensating mode and Tracking/Tracking mode when the mass of the lead screw
nut or the rotor inertia of the macro actuator are considered, since the closed loop system
becomes fourth order system having only one zero.

Considering the mass of the leadscrew nut or the rotor inertia of the macro actuator, the
motion equations are expressed as follows; where ma is the mass of the leadscrew nut or rotor
inertia of the actuator.

ml2ϕ̈+ (kar −mgl) sinϕ = τ

maä−mag + ka− kr cosϕ = F

Linearizing the nonlinear equations,{
ml2ϕ̈+ kar sinϕe = τ
maä+ ka+ kr sinϕeϕ = F

(B-1)

It is assumed that τ equals zero and the macro actuator is used to control angle ϕ. Then,
the transfer function of ϕ(s)

F (s) is expressed as below.

G(s) = ϕ(s)
F (s) = −A

maml2s4 + kml2s2 −A2 where A = kr sinϕe

A PD controller (H(s) = kds+ kp) is considered to control this system.

G(s)H(s) = kp(−qs− 1)(−A)
maml2s4 + kml2s2 −A2 where q = kd

kp
= 0.3

However, it is impossible to design the PD controller as shown in Root Locus plot of G(s)H(s)
of Figure B.1. A stable system must have all its closed loop poles in LHP.
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64 PID cascade control

Figure B-1: Root Locus of G(s)H(s)

Thus, a PID cascade controller has to be considered instead of the PD controller for the macro
actuator as shown in Figure B.2. First, an inner PD controller for a(s)

F (s) is designed. Assuming
the spring force as a disturbance, the inner PD controller(kd1s+kp1) for a(s)

F (s) can be designed
as 7(0.3s+1) with the below transfer function.

a(s)
F (s) = 1

mas2 + k

An outer PID controller is designed with the below transfer function, which considers the
spring force with the inner closed loop system.

ϕ(s)
x(s) = −A(kd1s+ kp1)

maml2s4 +ml2kd1s3 + (k + kp1)ml2s2 −A2

The outer PID controller is designed as −6(s2 + 2s + 1). As shown in Figure B.3, this PID
cascade controller works with the original nonlinear system. The responses of the closed loop
system of the linearized model and the original nonlinear model are similar and the macro
actuator moves the leadscrew nut to the static balancing point without any observers.
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Figure B-2: Block diagram of the PID cascade controller

Figure B-3: Responses of the linearized system and the original nonlinear system with the PID
cascade controller
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Appendix C

Cubic polynomial trajectory

A trajectory planner can decrease the initial load of the actuator such as the initial surge
torque and the initial surge voltage generated by the step input in Chapter 3. One of the
trajectory planner is a cubic polynomial trajectory planner. Changing a desired input gradu-
ally depending on time (t), the cubic polynomial trajectory planner produces a single smooth
trajectory as shown in Figure C.1.

At least four constraints on ϕ(t) requires to make a single smooth motion. Two constraints on
the function’s value come from the selection of initial (ϕ0) and final values (ϕf ) [14]: where
tf is a final time.

ϕ(0) = ϕ0

ϕ(tf ) = ϕf

An additional two constraints are that the function be continuous in velocity, which in this
case means that the initial and final velocity are known.

ϕ̇(0) = ϕ̇0

ϕ̇(tf ) = ϕ̇f

These four constraints can be satisfied by a polynomial of at least third degree. These
constraints uniquely specify a particular cubic. A cubic has the form

ϕ(t) = a0 + a1t+ a2t
2 + a3t

3 (C-1)

so the joint velocity and acceleration along this path are clearly

ϕ̇(t) = a1 + 2a2t+ 3a3t
2 (C-2)

ϕ̈(t) = 2a2 + 6a3t (C-3)
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68 Cubic polynomial trajectory

Figure C-1: Position, velocity, and acceleration profiles for a single cubic segment that starts
and ends at rest

Combining (C.1) and (C.2) with the four desired constraints yields four equations in four
unknowns:

ϕ0 = a0 (C-4)
ϕf = a0 + a1t+ a2t

2 + a3t
3 (C-5)

ϕ̇0 = a1 (C-6)
ϕ̇f = a1 + 2a2t+ 3a3t

2 (C-7)

Solving these equations for the ai,

a0 = ϕ0 (C-8)
a1 = ϕ̇0 (C-9)

a2 = 3
t2f

(ϕf − ϕ0)− 2
tf
ϕ̇0 −

1
tf
ϕ̇f (C-10)

a3 = − 2
t3f

(ϕf − ϕ0) + 1
t2f

(ϕ̇f + ϕ̇0) (C-11)

Using equation C-4, the cubic polynomial that connects any initial and final positions with
any initial and final velocities, can be calculated.
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Appendix D

Dynamics of a Delft robot arm

In Chapter 2, the mathematical model of the single rotating link system was derived. This
model was used to find a proper controller for the macro-micro actuated system in this
report. Motion equations of 4 DOF Delft robot arm have to be derived to implement the
chosen controller to the Delft robot arm. In this chapter, manipulator dynamics of the Delft
robot arm are introduced.

D-1 Kinematics

A convenient configuration is chosen for 4 DOF Delft robot arm, corresponding with zero
initial joint angles as shown in Figure D.1. In this configuration, all the joint axes of rotations
are exactly aligned with one of the axes of the global Cartesian coordinate system. Local
coordinate systems for each of the bodies are located in the center of mass, such that the
y-axis is always in the longitudinal direction of the body. Positive directions for the joint
rotations of the local axes with respect to the global axes follow from standard conventions.
Multiplications of rotation matrices serve to express configurations of the rigid bodies. The
body coordinates in space(xj) can be expressed as the joint angles and the distances of lead
nuts (qj). The equations is given in xi = xi(qj) as shown in equation D-1. The vector of
global body coordinate is given as follows; Xi and Φi mean the Cartesian coordinate of the
link i and the global angle of the link i respectively, and Lc−i means the center of mass of Li.

xi = [X34 Φ34 Xm4 Φm4 Xb3 Φb3 Xab Φab Xa4 Φa4 Xm Φm a2 a4]T

X = [x y z]T

Φ = [φ1 φ2 φ3]T

The vector of generalized coordinates is given:

qj = [ϕ1 ϕ2 ϕ3 ϕ4 a2 a4]T
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70 Dynamics of a Delft robot arm

Figure D-1: A schematic diagram of the robot arm model in initial configuration; some of the
rigid bodies are not shown. In this configuration, all cylindrical bodies are aligned with the y-axis.
For the detail schematic diagram, refer the figure 1.2 and 1.3 in chapter 1



X34
Φ34
Xm4
Φm4
Xb3
Φb3
Xab

Φab

Xa4
Φa4
Xm

Φm

a1
a2



=



R123

 0
Lc−34

0

 0
0
ϕ1

+R1

 ϕ2
0
0

+R12

 0
ϕ3
0


R123

 0
L34
0

+R1234

 0
Lc−m4

0


ϕ3 +R123

 0
0
ϕ4


R1234

 0
Lc−b3

0


Φ4

R123

 0
Lc−ab

0

+R1234

 0
Lb3
0


Φ3

R1234

 0
−Lb3 + Lc−a4

0

+R123

 0
Lab
0


Φ4

R123

 0
L34
0

+R1234

 0
Lm4

0


Φ4
a2
a4



(D-1)
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The indices for the rotation matrices in equation D-1 denote subsequent multiplications, such
as following equations.

R12 = R1R2

The rotation matrices (Ri) can be expressed using Rx, Ry, and Rz and the joint angles
corresponding to Figure D.1.

R1 = Rz(ϕ1) =

 cosϕ1 −sinϕ1 0
sinϕ1 cosϕ1 0

0 0 1



R2 = Rx(ϕ2) =

 1 0 0
0 cosϕ2 −sinϕ2
0 sinϕ2 cosϕ2



R3 = Ry(ϕ3) =

 cosϕ3 0 sinϕ3
0 1 0

−sinϕ3 0 cosϕ3



R4 = Rz(ϕ4) =

 cosϕ4 −sinϕ4 0
sinϕ4 cosϕ4 0

0 0 1



D-2 Dynamics

The next step is deriving the differential equations of motion with the mass matrix and
external forces. Local coordinate systems for the rigid bodies are related to a global coordinate
system in the equation D-1. The local coordinate systems have been chosen along a convenient
axis of the rigid bodies, so that the local mass matrices are diagonal. The inertia tensor for
the cylindric bodies is given as follows. The inertia terms IL are associated with rotation
around a longitudinal axis through the center of mass of the long cylindrical body, while IR
is associated with rotation around a radial axis through the center of mass. Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

 =

 IR 0 0
0 IL 0
0 0 IR


The complete mass matrix of the system is a diagonal matrix of 38×38. This matrix cor-
responds with the vector of Xi of equation D-1. The elements on the diagonal of this mass
matrix are as below; Mi and Ii are mass and inertia of the link Li

M = [M34 I34 Mm4 Im4 Mb3 Ib3 Mab Iab Ma4 Ia4 Mm Im ma2 ma4]

Mi = [mi mi mi]

I = [IR IL IR]
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72 Dynamics of a Delft robot arm

The equations of motion for the rigid masses are derived by Lagrangian and Euler angle, and
those are often expressed in the joint coordinates; M(ϕ) and C(ϕ, ϕ̇)ϕ̇+G(ϕ) are the reduce
mass matrix and the reduced force vectors.

τ = M(q)q̈ + C(q, q̇)q̇ +G(q)

The transformations between joint space and Cartesian space can also be made explicit, by
using the Jacobian matrix that contains all partial derivatives Tj = ∂xi

∂qj
(q) [15, 16, 17]. Fi is

gravity force of the link Li, and ma2 and ma4 are mass of the two lead nuts.

τ = T Tj MTj q̈ + T Tj M
∂(Tj q̇)
∂q

q̇ + T Tj f (D-2)

τ = [τ1 τ2 τ3 τ4 fa2 fa4]
f = [F34 I0 Fm4 I0 Fb3 I0 Fab I0 Fa4 I0 Fm I0 −ma2g −ma4g]

Fi = [0 0 −mig]
I0 = [0 0 0]

Since there are springs in the manipulator of the robot arm, the spring element is added in
the above motion equations. The relative displacement of the spring element is expressed in
terms of the independent generalize coordinates as Dv(qi). ki is the spring coefficient, and y′si
is the position of spring-end, which is connected to a link. zai is the position of the lead nut
in global coordinate.

τ = T Tj MTq̈ + T Tj M
∂(T q̇)
∂q

q̇ + T Tj f + T Tj Dviσ (D-3)

Dvi = ∂Dv

∂qi

σ = Dvk =



0
0
0
0

k1
√
x2
s1 + y2

s1 + (zs1 − za2)2

k2
√
x2
s2 + y2

s2 + (zs2 − za4)2


 xs1
ys1
zs1

 = R2

 0
y′s1
0


 xs2
ys2
zs2

 = R2R3R4

 0
y′s2
0


For the completed model, a diagonal inertia matrix (Mactuator) containing all actuator and
gearbox inertia is taken into account in the motion equations of the robot arm structure as
follows.

τ = (T Tj MTj +Mactuator)q̈ + T Tj M
∂(Tj q̇)
∂q

q̇ + T Tj f + T Tj Dviσ (D-4)
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Glossary

List of Acronyms

SEA Series Elastic Actuation

MIMO Multi-Input-Multi-Output

DOF Degrees of Freedom

cpt counts per turn

DAEs Differential Algebraic Equations

LHP left half plane

LQR Linear Quadratic Regulator

RHP right half plane

VRML Virtual Reality Modeling Language

LMI Linear Matrix Inequality

List of Symbols

α Angle of the lead screw
β Angle of the micro actuator
ε Prediction error
Ĉ Estimates of C
Ĝ Estimates of G
M̂ Estimates of M
m̂ Estimate of mass of the end-effector
V̂ Estimate of control input V
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76 Glossary

λ Strict positive constant in the sliding mode algorithm
Φi Global angle of the link i
τM Torque of the macro actuator
τm Torque of the micro actuator
θ Angle of the macro actuator
ϕ Angle of the link
ϕd Desired angle of the link
ϕe Equilibrium angle of the link
ϕi Rotation joints of the Delft robot arm
a Distance of the lead nut
ae Equilibrium distance of the lead nut
ai Translation joints of the Delft robot arm
BM Viscous damping of the macro actuator
Bm Viscous damping of the micro actuator
C The vector of Coriolis and centrifugal torques
CM (s) Controller of the macro actuator
Cm(s) Controller of the micro actuator
D Dissipation energy
e(t) Tracking error
Fi Gravity force of the link Li
G The vector of gravitational torques
H(s) Low pass filter
Ii Inertia of the link Li
IL Inertia in a longitudinal direction
IM Current of the macro actuator
Im Current of the micro actuator
IR Inertia in a radial axis
JM Rotor inertia of the macro actuator
Jm Rotor inertia of the micro actuator
k Spring coefficient
kB Back emf constant of the macro actuator
kb Back emf constant of the micro actuator
kd Differential gain
kG Gear ratio of the macro actuator
kg Gear ratio of the micro actuator
kI Torque constant of the macro actuator
ki Torque constant of the micro actuator
kp Proportional gain
l Link length
LM Inductance of the macro actuator
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Lm Inductance of the micro actuator
Lc−i Center of mass of Li
M Mass inertia matrix
m Mass of the end-effector
ma Mass of the lead nut
Mi Mass of the link Li
Mactuator A diagonal inertia matrix containing all actuator and gearbox inertia
N Number of (-1,0) clockwise encirclement
n Pitch of the lead screw per radian
P Number of poles of loop gain in RHP
p Pitch of the lead screw
P (t) Estimator gain matrix
q Output signal
qj Vector of generalized coordinates
r Link length
Ri Rotation matrices
RM Resistance of the macro actuator
RM Resistor of the macro actuator
Rm Resistance of the micro actuator
Rm Resistor of the micro actuator
s Sliding variable
T Kinetic energy
TL Load torque of the macro actuator
Tl Load torque of the micro actuator
TM Motor torque of the macro actuator
Tm Motor torque of the micro actuator
V Control input
V Potential energy
VB Back emf Voltage of the macro actuator
Vb Back emf Voltage of the micro actuator
VM Voltage of the macro actuator
Vm Voltage of the micro actuator
W (q, q̇) Filtered regressor matrix
w(t) Input control vector of the feedback linearization method
Xi Cartesian coordinate of the link i
Z Number of zeros of sensitivity function in RHP

εf Filtered prediction error
ω Gain of low pass filter
τ Torque applied to the rotation joint ϕ
τ Torque of an actuator
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C̃ Modeling error of the vector of Coriolis and centrifugal torques
G̃ Modeling error of the vector of gravitational torques
M̃ Modeling error of mass inertia matrix
F Force applied to the translation joint a
Li Links of the Delft robot arm
qd Desired output signal
qr One of control inputs in the sliding mode algorithm
Tj Jacobian matrix of global coordinates
Vf Filtered control input
y Filtered control input (=Vf )
g Gravity constant
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