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Tim Neijenhuis,® © Olivier Le Bussy,” Geoffroy Geldhof,® Marieke E Klijn® and
Marcel Ottens®

Abstract

BACKGROUND: Selecting an optimal chromatography resin during biopharmaceutical downstream process development is a
great challenge. This is especially the case for recombinant subunit vaccines, where product properties vary greatly and recov-
ery often involves cell lysis, which yields a complex mixture of different host cell materials. Host cell protein (HCP) impurities
may remain similar for platform processes, but their critical impact on separation efficiency is relative to specific product prop-
erties. Therefore, every process needs to be designed per product. Prior knowledge on the elution behavior of HCPs would sup-
port the identification of critical compounds. However, determining chromatographic behavior of HCPs experimentally is a
time-consuming approach.

RESULTS: In this work, we leverage quantitative structure—property relationship (QSPR) models calibrated with retention data
of 13 commercial proteins, collected at pH 7, 8, 9 and 10 to predict the anion-exchange retention of Escherichia coli HCPs. These
models use features calculated from the molecular structure to describe protein behavior, like chromatographic retention. A
multilinear regression model containing two features (isoelectric point and sum of negative surface electrostatics) was able
to predict the retention times of 288 HCPs accurately (error < 5%). Moreover, we identified the key attributes missing in the
training dataset, which is important to increase model performance in the future.

CONCLUSION: This work showcases how chromatographic data obtained using commercial proteins can be translated to a clar-
ified E. coli lysate to accelerate chromatography resin selection for new products.

© 2025 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Soci-
ety of Chemical Industry (SCI).

Supporting information may be found in the online version of this article.
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detection of persistent HCPs have been developed,”® including
identification and quantification by LC-MS/MS proteomics.” The
relevance of these techniques is reflected by a comprehensive list
of high-risk HCPs for monoclonal antibody (mAb) production in
Chinese hamster ovary cells.'® This information can accelerate

INTRODUCTION

Recombinant proteins constitute approximately 80% of the global
sales in the pharmaceutical industry.! To ensure safety and effi-
cacy of these pharmaceuticals, sufficient product purity (reviewed
case-by-case) is required.” This is achieved by downstream pro-

cessing (DSP) that often involves a sequence of chromatographic
steps separating the target protein from process and host cell
impurities.>> While product-related impurities are often most dif-
ficult to remove, host cell proteins (HCPs) are a class of impurities
that are also challenging to eliminate sufficiently. The main reason
for this is that conventionally, HCP impurities are treated as one
entity, while these are actually individual entities with a wide
variety of physicochemical properties. Therefore knowledge on
persistent HCPs is valuable to guide the DSP design.® As co-
purification is a risk, highly sensitive biochemical methods for

DSP design in platform processes as different mAb products have
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relatively similar properties that affect purification.’ This means
that the criticality of HCPs does not change for new products.
Unfortunately, DSP design is less straightforward for other recom-
binant proteins, such as subunit vaccines.'? Unlike for mAbs, affin-
ity chromatography is rarely available for subunit vaccines, as
their properties vary widely. Additionally, formulation of standard-
ized sets of HCPs that are likely to co-elute during a chromatogra-
phy step is impossible. To increase process understanding, Disela
et al. analyzed the HCP content of Escherichia coli lysates from dif-
ferent strains and expression vectors.'* The HCP content was
found to be 80% to 90% similar between lysates, leading to the
use of HCP property maps to guide DSP design. These property
maps allow for the identification of potential critical HCPs by com-
paring their properties to the properties of the subunit vaccine.

An alternative to the property maps are quantitative structure—
property relationship (QSPR) models that correlate protein proper-
ties to behavior under specific conditions. These models use
features calculated from the molecular structure in regression or
classification algorithms.'® In the last 25 years, a wide range of
regression methods have been applied to predict the chromato-
graphic behavior of proteins, including multilinear regression,'>2°
partial least squares,®'*? support vector machines,?>2® random for-
ests?’?® and Gaussian process regressions.?>*' While traditional
QSPR models predict chromatographic behavior of proteins for a
specific resin, Cai et al. demonstrated a QSPR analysis combining
both protein and ligand features to predict the protein adsorption
on different mixed-mode resins reaching a cross-validated R* of
0.8.2” More recently, Hartmann et al. trained QSPR models for pre-
dicting the partition coefficient by including protein, resin (ion-
exchange, hydrophobic interaction and mixed-mode) and mobile
phase features.? Their models were trained for therapeutic pro-
teins in their native and high-molecular-weight form, and were able
to predict low, medium and high binding conditions with 93-95%
accuracy.

Unfortunately, most QSPR models trained to predict protein
chromatographic behavior have only been validated for purified
proteins. This makes it challenging to assess their accuracy for
complex mixtures, such as host cell lysates, where many interac-
tions occur that potentially change protein retention behavior.
An example of more complex mixtures is the study by Keulen
et al., where QSPR models were successfully trained for the predic-
tion of ion-exchange chromatography retention of proteins in
three-component mixtures.'® However, the total protein concen-
tration of 2.5 g L' used in that study is considered insufficient for
notable protein interactions. A more representative complex mix-
ture was used by Buyel et al.%® Here, QSPR models were trained on
protein elution salt concentrations reported in the literature to
predict the retention of tobacco HCPs in ion-exchange and
mixed-mode chromatography. Estimated elution profiles of
67 HCPs were combined and compared to an experimental chro-
matogram of a clarified extract, where a good agreement for SP
Sepharose FF was found. Unfortunately, accuracy of specific HCPs
could not be quantified as the experimental data do not provide
elution behavior of specific proteins. Disela et al. performed a
more quantitative study on a clarified lysate of the E. coli expres-
sion host, where fractions were collected from linear gradient
experiments and analyzed by LC-MS/MS.2°*3 Such detailed
experimental characterization provides valuable data, but the
studies are time- and resource-intensive. These efforts could be
minimized by training QSPR models with data obtained for readily
available (commercial) proteins and subsequently transfer the

model for the prediction chromatographic behavior of HCPs in
complex mixtures.

To this end, there is limited knowledge on translating models
trained on purified proteins towards complex host cell lysates.
Therefore, we explored the transferability of a QSPR model trained
on commercial proteins for the prediction of HCP retention in
anion-exchange chromatography. A QSPR model was trained
using linear gradient elution data for 13 proteins on a Q Sephar-
ose XL column as used by Disela et al.?° We defined the perfor-
mance of these models by testing different subsets of HCPs
(including all or only monomeric HCPs) to identify the current
limits of this approach. The work described here is a significant
step towards generalizability in QSPR model application, thereby
contributing to faster model deployment and cost-effective pro-
cess development.

METHODS

Materials and equipment

The retention experiments were performed on two separate Akta
pure systems (Cytiva, Marlborough, USA). Both systems were
equipped with a prepacked HiTrap Q Sepharose XL 1 mL column
(Cytiva, Marlborough, USA) (Table A1). All substances were pur-
chased from Sigma-Aldrich (Saint Louis, USA) and buffers were
prepared using ultrapure water filtered with a Milli-Q Advantage
A10 (Merck Millipore, Burlington, USA). Buffer solutions at pH 7,
8,9 and 10 were prepared with 20 mmol L™ NaCl (buffer A) and
1000 mmol L™ NaCl (buffer B) for running and elution. For pH 7
and 8, a 20 mmol L' Tris—HCl solution was made, while for
pH 9 and 10, 20 mmol L™ ethanolamine was used. The pH was
adjusted by titration with 1 mol L' sodium hydroxide or
1 mol L™ hydrochloric acid. All buffers were filtered using a
0.2 pm membrane disc filter (Pall Corporation, New York, USA) fol-
lowed by 20 min of sonication.

Albumin (bovine), albumin (human), pepsin, trypsin inhibitor A,
lipase, a-lactalboumin, g-lactoglubulin a, glucose oxidase, lipoxy-
genase, ovotransferrin, amyloglucosidase, urease and catalase
were purchased from Sigma-Aldrich (Saint Louis, USA). Each pro-
tein was dissolved in buffer A to reach a concentration of 2 g L™,
after which the solutions were filtered using a 0.22 pm Whatman
Puradisc FP 30 mm (Cytiva, Marlborough, USA).

Linear gradient elution experiments and data processing
The retention times of the selected proteins were determined for
a 10 column volume linear gradient elution from buffer A to buffer
B. Each linear gradient elution was performed at a flowrate of
1 mL min~" by injecting 200 uL of protein solution followed by
a 5 column volume wash with buffer A and 10 column volume
gradient to 100% buffer B. Columns were regenerated with
0.5 mol L™" NaOH and stored in 20% ethanol. To normalize the
protein retention for the two systems, the normalized retention
times (VR) were calculated as:

VR = VR,O _0-5Vinj_vd_vm _Vwash

where Vg is the initial retention time, Vi, is the injection volume,
V4 is the dwell volume, V, is the column void volume and V4, is
the volume of buffer A used between injection and start of the
gradient.'”*? Finally, to make the data column independent,
and allowing the comparison of retention times obtained for the
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5mL HiTrap Q Sepharose XL column, the dimensionless retention
time (DRT) was calculated as:

VR
DRT=—
Vg

where Vg is the gradient length, which is 10 column volumes for
these experiments.

QSPR modeling
Molecular structures of the commercial proteins were retrieved
from the Protein Data Bank®* with the exception of trypsin inhib-
itor A. The structure for this protein was retrieved from the Alpha-
Fold database® as the experimental structures available missed
the positions of some atoms. The full list of the structures used
can be found in Table 1. For each protein the feature sets were cal-
culated at pH 7, 8,9 and 10 using the default settings of Prodes.'®
Feature redundancy was reduced by removing features with a
Pearson correlation >0.9 to other features. Selection of which fea-
ture to remove was based on the cumulative cross-correlation to
all other features, keeping the feature with the lowest score. The
final feature set used for the multilinear regression model was
selected by sequential forward selection. Model accuracy
was evaluated by k-fold cross validation, leaving out all datapoints
representing one protein at a time. This was done to reduce the
risk of overfitting as pH-independent features would be constant
for the same protein at different pH values. The final model was
tested using a dataset of E. coli HCP DRTs described in a previous
article.?’ To make sure that the test data are similar to the training
data, HCPs with any features selected for the model that were out-
side the range (below the minimum or above the maximum)
observed in the training data were removed from the test set.
For the purpose of identifying areas of improvement for the
QSPR model, feature value distributions were compared using
the Kolmogorov-Smirnov test for proteins that were over-
predicted, under-predicted or accurately predicted.>® These HCP
groups were made depending on the residuals, calculated by:

=Yy

where r is the residual value and y and y are the experimental and
predicted values, respectively. Over-predicted proteins are
defined as r; < —0.1 DRT, under-prediction as r; > 0.1 DRT and all
other HCPs are accurately predicted. Visualization of the surface
electrostatics was performed using Prodes.'®

RESULTS AND DISCUSSION

For the purpose of training a transferable QSPR model, 13 proteins
were selected with an isoelectric point (pl) ranging from 3 to 6.8,
thereby ensuring chromatographic retention in anion-exchange
chromatography. From the surface electrostatic potentials, it can
be observed that the surface is predominantly negatively
charged, except for lipoxygenase and ovotransferrin which also
show positive patches (Fig. 1).

Retention times for these proteins were determined for a 10 col-
umn volume gradient length (Table 2, Fig. S1), similar to the
experimental conditions of the HCPs published elsewhere.*® To
maximize the value of this set of proteins, the retention time
was measured at pH 7, 8 9 and 10. Two datapoints are not
reported, namely those for lipase at pH 10 (insufficient UV signal)
and catalase at pH 8 (technical error). The results show a longer
retention time for higher pH values, as would be expected due
to deprotonation of titratable amino acids. However, this trend
was not observed for urease and lipase, where chromatographic
retention remained constant while varying the pH value. In other
work it was reported that lysozyme displayed constant chromato-
graphic retention for SP Sepharose resins at pH 7 and pH 9, which
was attributed to a constant global charge.3” However, in the case
of urease and lipase, the global charge varies in the pH range of
7 to 10 when calculated from the molecular structure by Prodes
(=15 to —28 and —18 to —24, respectively). Therefore, we hypoth-
esize that these proteins have preferred binding orientations
where the local charge does remain constant.

HCP retention prediction

Cross-validation was performed by iteratively removing the reten-
tion times of each protein at all pH values from the training set to
ensure that prior knowledge about the specific protein was
absent during model validation. The sequential forward selection

Table 1. Commercial proteins and the respective system used for linear gradient elution experiments
Name PDB/AF model Molecular mass (kDa) pl (theoretical)® System
Bovine albumin 4F5S 66.4 55 2
Human albumin 1A06 66.5 5.6 2
Pepsin 4PEP 345 3.0 1
Trypsin inhibitor A AF-P01070-F1-model_v4 20.1 44 1
Lipase 1TRH 571 4.5 2
a-Lactalbumin 1F6R 14.2 4.6 2
p-Lactoglubulin a 1BSQ 183 4.6 1
Glucose oxidase 1CF3 64.1 49 1
Lipoxygenase 1F8N 94.4 5.9 1
Ovotransferrin 10VT 758 6.6 2
Amyloglucosidase 6FRV 65.8 4.0 1
Urease 3LA4 90.7 6.0 1
Catalase 6PO0 59.8 6.8 2
? Isoelectric point (pl) was calculated using Prodes.
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Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

de au Aq peuienoB e o1 YO (SN J0 SBIN 104 ARRIGIT BUIIUO ABIA UO (SUO1IPUOD-PUE-SLLLIBYLIO" A3 1M ARe.q U |UO//SdY) SUORIPLOD PU. S 13U 385 *[Z02/60/22] U0 ARIqI 8UIlUO AB1IA ‘9200, QIR I/Z00T OT/10pALI0D"AB 1M ARG 1jBUI[UO'S UINO(105//'ScY W04} papeojumo ‘0 ‘099.60T



http://wileyonlinelibrary.com/jctb

®)
SCl

where science
meets business

bovine albumin human albumin

lipase
{fd
e F *
é G
ovotransferrin amyloglucosidase

WWW.50Ci.org

pepsin

B-lactoglubulin a

T Neijenhuis et al.

trypsin inhibitor A 2

glucose oxidase lipoxygenase

o
[A] [enuejod onejsosjos|g

u

-

catalase

urease

Figure 1. Surface electrostatic potential maps at pH 7 of 13 commercial proteins. The blue and red colors indicate positive and negative electrostatic

potential (in volts), respectively.

Table 2. Experimental retention volumes of 13 commercial proteins
atpH 7,8,9 and 10 on a HiTrap Q Sepharose XL 1T mL column witha 10
column volume gradient from 20 to 1000 mmol L~' NaCl

Retention volume (mL)

Protein pH7 pH 8 pH9 pH 10
Bovine albumin 342 3.95 434 4,51
Human albumin 3.27 3.80 427 443
Pepsin 6.53 6.50 6.77 6.83
Trypsin inhibitor A 438 4.53 4.75 4.83
Lipase 4.80 481 4.72
a-Lactalbumin 3.38 3.59 423 441
p-Lactoglobulin a 4.08 438 4,62 4.70
Glucose oxidase 343 3.67 412 457
Lipoxygenase 2.69 299 3.39 3.63
Ovotransferrin 1.89 2.26 2.75 3.08
Amyloglucosidase 4.58 4.75 4.98 512
Urease 2.65 2.66 2.60 2.68
Catalase 239 3.26 3.93

method resulted in a model with four features and a cross-
validated R? of 0.927 (Fig. S2). Of the four selected features, the
protein's pl is most important for predicting the retention
time. Permutating this feature has the greatest impact on
cross-validation accuracy, diminishing all predictive capabilities
(Table A2). However, this feature is not pH dependent and cannot
describe any charge-specific behaviors. The second most impor-
tant feature, the sum of all negative surface points, does capture
retention changes by varying the pH. Permutation of this feature
results in a significant accuracy reduction to a cross-validated R?
of 0.76. The remaining two features, the proline surface fraction
and median negative surface hydrophobicity potential, have sim-
ilar permutation scores of 0.88 and 0.87, respectively.

To explore the transferability of the model trained with com-
mercially available proteins, E. coli HCPs were used as a test set.

This dataset consists of features for 836 HCPs, from which
481 HCPs (approximately 58%) have features that are within the
range of the training set. Since QSPR models are only valid for
the trained conditions, 481 HCPs were used for testing. With this
approach, the retention time could be predicted with a root mean
squared error (RMSE) of 0.085 using HCP structures predicted by
AlphaFold2 (Fig. 2(A)). To identify HCPs that might co-elute with
a target protein, we believe an error of <5% to be sufficient con-
sidering a DRT between 0 and 1. This takes into account that the
DRT describes the retention as a single value, which in reality is
a distribution. In practice, when a target protein has a DRT of
0.3, the HCPs with a DRT between 0.2 and 0.4 can be considered
as potentially co-eluting. For the test set predictions, 207 (ca
43%) HCPs have an error of <5%.

To assess the model's ability to generalize for new proteins, the
ratio between the RMSE of the test and cross-validation should be
analyzed. For the current model, the test set RMSE is three times
the cross-validated RMSE. While this might indicate that the train-
ing set misses features which are essential to describe HCP reten-
tion, the model might also be overfitted. Therefore, a new model
was trained using only the two most important features (pl and
the sum of the negative surface electrostatics). For this model,
the cross-validated R* was reduced to 0.840 (Fig. S2) while the test
set was predicted with a RMSE of 0.07 (Fig. 2(B)). By eliminating
the two least important features, overfitting was significantly
reduced (test RMSE is 1.5 times the cross-validated RMSE). This
also increased the number of accurately predicted HCPs to
246 (ca 51%), which is an 11% improvement. For this test set,
the filtering criteria were based on the four feature ranges mean-
ing that the same 481 HCPs were used despite the feature adjust-
ment. Filtering based on the range of two features increases the
test set size to 572 HCPs, of which 288 (ca 50%) can be predicted
with an error of <5% (Fig. 2(Q)).

HCP structural representation

It should be noted that DRTs of HCPs are predicted using mono-
mer representations obtained from AlphaFold2. Therefore, the
QSPR model does not take into account the complex dynamics
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Figure 2. Measured (x-axis) versus predicted (y-axis) DRT of (A) four features and (B-D) two features. Models were validated with k-fold cross-validation
(circles) and tested on HCP DRTs (triangles), The dotted line represents a perfect prediction and the gray area a 5% error. (A, B) HCP test set filtered for the
four-feature model. (C, D) HCPs filtered on the two features. The test set in (D) is reduced to only include monomeric HCPs.

of a lysate mixture, in which many interactions may occur. Still, the
model is capable of predicting the DRT of 288 HCPs. The structural
representations of proteins that are actually monomeric are
expected to be more representative. Therefore, the model with
two features was also tested on 77 of the 572 HCPs that are anno-
tated as monomer in Uniprot. Surprisingly, the subset performed
similar to the complete HCP test set with a test RMSE of 0.073 and
ca 43% predictions with <5% error (Fig. 2(D)). This suggests that
the lack of interaction information about the HCPs does not limit
the current model's accuracy. The two features used in the model
describe the protein globally and might therefore not capture the
required intricacies. A similar phenomenon was observed for
the proteins presumed to be homodimers (Fig. S3, Table S1). For
this subset of HCPs, predictions using monomer structures
(RMSE: 0.071) performed similar to those of homodimer represen-
tations (RMSE: 0.068).

Model improvement strategies

We have shown that a QSPR model trained with 50 retention
times obtained for 13 proteins at various pH values predicted
288 HCPs with an error of <5% using only two features. While this

is a significant part of the available HCP retention times, applica-
tion of QSPR modeling for in silico process design would require
accurate prediction of all detectable HCPs. To identify possibilities
to enhance model performance, the test set predictions were
divided into over-predicted (181 HCPs), under-predicted
(103 HCPs) and accurately predicted (288 HCPs). For these catego-
ries, feature value distributions were analyzed to identify potential
biases in the model towards features that were not selected for
the QSPR model (Table S2). For a feature that does not contribute
to any bias, it can be expected that the distribution over the three
sets is similar, which can be observed for the molecular weight
(Fig. 3(A)). A feature that shows great differences in distribution
is the standard deviation of the surface electrostatics (Fig. 3(B)),
with Kolmogorov-Smirnov test values of 0.23 and 0.22 for
under- and over-predicted HCPs, respectively. For under-
predicted HCPs, a generally higher standard deviation is observed
compared to the accurately predicted HCPs, while for over-
predicted HCPs this feature tends to be lower. This indicates that
the model is lacking information on deviations in surface electro-
statics. For the training set, the feature range (0.6-1.2) is much
smaller compared to the range in the test set (0.4-1.6) (Fig. S4).
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Figure 4. Surface electrostatics at pH 7 of monomer HCPs that are predicted most accurately (top), greatest over-prediction (middle) and greatest under-
prediction (bottom). The blue and red colors indicate positive and negative electrostatic potential (in volts).

Therefore, expanding the training set with commercial proteins
that have a wider range of this feature could improve model
performance.

For the features that were selected for the model, pl showed a
notable difference in the distributions (Fig. 3(C)). Especially for
pl > 4.5 the feature distribution starts to differ, which indicates
that there is a bias for proteins in this pl range. It is therefore
important not only to extend the training set based on the surface
electrostatics deviation, but also to select proteins with pl > 4.5.

While extending the training set is essential to improve model
quality and robustness, design of novel features is considered
equally important. Plotting the surface electrostatics of the three
monomeric HCPs with the lowest and highest error reveals posi-
tively charged surface areas for the under-predicted HCPs
(Fig. 4). Such positive patches are not found on the surface of
the three accurately predicted HCPs. The presence of these
patches contributes to an increase in the surface electrostatic
potential standard distribution feature, as can be observed in
Fig. 4. Additionally, favorable binding orientations might be more

prevalent in the under-predicted HCPs, and these phenomena
cannot be captured by the global features used in this study.>*3°
Therefore, designing specific local features representing binding
orientations would be essential for improving model perfor-
mance. For chromatography specifically, local surface features
have been designed as either defining patches or projecting
properties on a plane.”'”*° However, the contribution of pre-
ferred binding orientations on adsorption differs between pro-
teins and pH3”*"*? This means each protein requires an
individual assessment to identify possible binding orientations.
This can be done with state-of-the-art molecular dynamics simula-
tions coupled to advanced sampling methods.>® Unfortunately,
these methods are too computationally expensive to perform on
the scale of a host cell proteome. As such, future research should
focus on identifying computationally efficient methods to score
surface patches based on interaction likelihood. This may also
include combining information from patches distant from each
other, as ligands with flexible linkers (e.g. XL resin used in this study)
probably reach multiple binding sides of the protein.’
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Finally, the choice of regression method could also influence the
accuracy. Even though the validation on the training data was sat-
isfactory with a cross-validated R? of 0.84, assumptions associated
with a multilinear regression model might limit the accuracy.*®
The is especially the case for the assumption that protein reten-
tion has a linear dependency on the features. Alternative non-
linear regression methods might be a solution to capture
nonlinear dependencies between protein properties and reten-
tion behavior. In recent literature, algorithms such as random for-
est regression, support vector regression or Gaussian process
regression have been applied for accurate prediction (R* > 0.85)
of different attributes corresponding to chromatographic behav-
ior.2>273%32 Unfortunately, increasing model complexity comes
with a risk of overfitting, especially when using small training
datasets.**

CONCLUSION AND OUTLOOK

In this work, we showcased a workflow to predict retention
behavior of 572 E. coli HCPs for a Q Sepharose XL column using
experimental data obtained for 13 commercial proteins under
similar experimental conditions. The described QSPR model with
two molecular features (pl and standard deviation of the surface
electrostatics) can predict a total of 288 (ca 50% of the total test
set) HCPs with an error of <5% DTR. Interestingly, predictions of
the monomer HCP subset did not yield greater accuracy than
the complete dataset, which includes proteins that may form mul-
timers. This suggests that the model well handles three-
dimensional structural inaccuracies regarding multimerization.

We identified significant differences for the features represent-
ing electrostatic deviations on the surface by comparing the fea-
ture value distributions for HCPs with an error of <5% and >5%.
Additionally, it was observed that for proteins with pl higher than
4.5, HCP retention time is more likely to be under-predicted.
Therefore, it is suggested to extend the current training set with
proteins that have pl > 4.5 and that contribute to a wider range
of surface electrostatic deviations. Additionally, novel features
representing preferred binding orientations are required to better
describe charge distributions and further increase model accu-
racy. Despite these proposed improvements, this work provides
insight into the use of a small dataset for the prediction of HCP
retention behavior, thereby accelerating chromatography resin
selection for new products.
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APPENDIX A

Table A2. Model parameters for the QSPR model with four features

Coefficient Permutation R?

Table A1. System properties Isoelectric point —-0.539 -027
SurfEpNegSumAverage —0.231 0.76

System 1 2 PROSurfFrac 0.089 0.88
SurfNegMhpMean -0.123 0.87
Intercept 0.813

Dead volume (mL) 0.246 0.239
Dwell volume (mL) 1.109 1.109
Void volume (mL) 0.253 0.249
Column length (mm) 7
Column diameter (mm) 25

de auy Ag poueA0B 918 SIRIE WO ‘88N JO S3INI J0) Aleld]1 SUIIUO AB]IAA UO (SUONIPUOD-pU-SLULB)WOY" AS | 1M Aleid U1 |UO//:SdiL) SUONIPUOD pue SWis | a4} 88S *[6202/60/22] Uo Ariqiauliuo AS|IM ‘9200L G0 (/Z00T 0T/I0p/L0d A8 | 1M Akelq1jpuljUO'S feuno 19s//:sciy Wo.j pepeojumod ‘0 ‘099v.60T

J Chem Technol Biotechnol 2025 © 2025 The Author(s). wileyonlinelibrary.com/jctb
Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).


http://wileyonlinelibrary.com/jctb

	Using generalized quantitative structure–property relationship (QSPR) models to predict host cell protein retention in ion‐...
	Abstract
	INTRODUCTION
	METHODS
	Materials and equipment
	Linear gradient elution experiments and data processing
	QSPR modeling

	RESULTS AND DISCUSSION
	HCP retention prediction
	HCP structural representation
	Model improvement strategies

	CONCLUSION AND OUTLOOK
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	SUPPORTING INFORMATION
	REFERENCES
	Appendix A


