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Prandtl’s secondary mean motions of the second kind are driven by the variation of
Reynolds stresses near resistive boundaries. In the flows considered here the turbulence
is generated away from the boundary in the absence of a mean flow and then impacts
onto a rigid surface placed into the flow at t = 0. The initial development of the
distorted flow is obtained using the linear approximation and the statistical analysis
of rapid distortion theory, following Hunt & Graham (1978) assuming homogeneous
stationary high-Reynolds-number turbulence with an integral length scale L∞ and
r.m.s. velocity v′

∞. First, the effects of axisymmetric anisotropy and of different forms
of the spectra are analysed for turbulence impinging onto a plane surface lying at an
angle α to the unit vector e of the axis of symmetry of the energy spectrum tensor
Φij (k). R is defined as the ratio of the largest to smallest variances of the velocity
components. The surface blocking leads to gradients of Reynolds shear stresses normal
to the surface in the source layer B (s) with thickness of order L∞ and thence to a mean
velocity U (t) ∼ −tv′2

∞ sin 2α(1 − 1/R)/L∞ along the slope in the opposite direction of
the projection of e onto the plane (i.e. in the direction (e∧n)∧n where n is the normal
into the flow). U is greatest near the surface where y � L∞. As a result of shear stresses
being induced by the mean velocity gradient, a steady flow results over a time scale
TL =L∞/v′

∞ – an order of magnitude estimate for the steady-state mean velocity is
thence U (t/TL → ∞) ∼ v′

∞(sin 2α(1 − 1/R))1/2. Secondly, the effect of a curved surface
is studied by analysing isotropic turbulence near an undulating surface of wavelength
Λ and amplitude H , with a low slope so that H � Λ. The boundary condition of
zero normal velocity at the curved surface generates larger irrotational fluctuations
in the troughs, smaller fluctuations over the crest, and shear stresses over the slopes.
The curl of the gradients of Reynolds normal and shear stresses within B (s) cause
the growth of a mean vorticity which induces a mean velocity of order −tv′2

∞/L∞
within B (s) and a weaker recirculating velocity of order −tv′2

∞/Λ in a deeper wave
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layer, B (w), with thickness of order Λ outside B (s). The wavelength of the mean
motion is Λ, with downward motions over the troughs and upward motion over
the crest. As in the first case, a steady flow is predicted when t/TL � 1. Anisotropic
free-stream turbulence also induces mean motions on undulating surfaces with the
same wavelength Λ as that of the undulating surface, but the directions of these mean
motions can be towards or away from the troughs/crests depending on the orientation
of the anisotropy of the free stream. Flow visualization experiments conducted in a
mixing box with oscillating anisotropic and isotropic grids demonstrated the existence
of these mean flows and that they reach a steady state with an intensity and length
scale comparable to those predicted. These results are also consistent with numerical
simulation of Krettenauer & Schumann (1992) of convective turbulence over an
undulating surface.

1. Introduction
In turbulent flows near rigid (or deformable) surfaces, the fluctuating velocity field

(having an r.m.s. value v′
∞) is either generated locally, by mean velocity gradients

and by body forces, or is transported there by the mean flow and by self-induced
motions of the eddies, e.g. from an oscillating grid or a shear layer above the surface
(Wood & Bradshaw 1984). However, the structure of the turbulence is also affected
by the direct effects of the kinematic conditions at the surface, i.e. the parallel and
normal components of the velocity should be zero (or match those of the surface). The
effects of these boundary conditions on production, eddy transport and dissipation
are usually not applied explicitly in most one-point statistical models of shear flows.
Some account is taken of the elliptic effects in auxiliary models or in modelling wall
functions (e.g. Gibson & Launder 1978; Durbin 1993). In turbulent shear-free flows
such as thermal convection (e.g. Plate et al. 1998) they are essential in determining
the eddy structure and other properties of the flow such as heat flux. As this paper
shows, when the free-stream turbulence is anisotropic, the non-uniform gradients of
the turbulence near a planar surface can induce gradients of Reynolds stress, so that
an initially shear free flow becomes a sheared turbulent flow.

What happens to the turbulence and the mean flow if the surface is not planar and
there are non-uniformities at the surface? Prandtl (1956) explained how the spatial
variations of Reynolds stresses ∂(uiuj )/∂xj (where ui is the fluctuating velocity),
generated in unidirectional shear flows U1(y, z) over general non-planar surfaces that
are aligned with the mean flow (y = ys(z)), could force weak mean flows with mean
velocity components (U2, U3), of order v′

∞, such as those directed into and out of the
corner regions of rectangular ducts. He called these ‘secondary motions of the second
kind’ to distinguish them from those of the ‘first’ kind driven by normal pressure
gradients driven by curvature of the mean flow such as occurs in pipe bends. These
flows generated in the corner of two plates perpendicular to each other placed in an
oncoming turbulent flow were one of the test cases for turbulent models at Stanford
in 1980 (Gessner & Emery 1981).

Previous calculations of these secondary flows have been based on turbulence
model equations relating the gradients of the mean velocity ∂Ui/∂xj to the second
moments of the turbulence ulum (Launder & Ying 1972; Townsend 1976). However, no
allowance was made for Reynolds stress gradients caused by the direct impingement
of the large eddies onto the surface, which are particularly important in ‘shear free’
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turbulent flows where the turbulence intensity is large relative to any variations in
the mean velocity near the surface �U , i.e. v′

∞/�U � 1. Such flows occur in thermal
convection, near free surfaces and in boundary layers with intense large-scale free-
stream turbulence. So far, the structures of these shear-free turbulent flows have only
been studied theoretically, experimentally and numerically for approximately isotropic
turbulence near planar surfaces (Thomas & Hancock 1977; Hunt & Graham 1978
(hereinafter HG); Hunt 1984; Perot & Moin 1995; Kit, Strang & Fernando 1997).

In this paper, we extend the method of rapid distortion theory for inhomogeneous
turbulence to analyse the distortion of initially homogeneous turbulence when a
sloping or undulating surface y = ys(x, z) (where v′

∞/�U � 1) is introduced at t = 0.
First, we extend the analysis of HG to the case where the undistorted turbulence
is anisotropic with principal axes that are not parallel to the plane and for the
surface to be undulating. We consider axisymmetric turbulence in the free stream
using the ansatz of Sreenivasan & Narasimha (1978) to define the three-dimensional
energy spectrum tensor Φ∞ij in the free stream. Solutions are obtained for the flat-
plate problem by taking a form of energy spectrum E(K) ∝ K4 exp(−K2) (where
K is the normalized wavenumber) that occurs in many laboratory turbulent flows
and in direct numerical simulations (Townsend 1976). This form of spectrum is
simpler to analyse than the von Kármán form used by HG. We assume the Reynolds
number of the energy-containing eddies v′

∞L∞/ν is large, where ν is the kinematic
viscosity of the fluid. Note that the main contribution to the distorted turbulent
stresses comes from the large-scale eddies and is largely independent of the small-
scale spectra. Spectra, variances and cross-correlations are calculated near plane and
wavy surfaces and are used to derive expressions for the Reynolds stresses. Over a
curved surface, the strengths of these ‘sources’ of vertical motions are affected by the
horizontal components of the free-stream fluctuation. The gradients of the Reynolds
stresses (both normal and shear stresses) induce a mean rotational motion. Townsend
(1976) showed how such gradients at the edge of a boundary layer on a flat plate
produce a mean secondary flow with velocity field U , driven by the sharp change
in surface conditions. Over a plane, the mean velocity is confined to a boundary
layer with thickness of the order of L∞. For turbulence over an undulating surface,
the perturbations of the turbulence vary over horizontal distances of order Λ. It is
assumed that Λ � L∞. Our analysis shows that this leads to the mean flow varying
over a scale Λ normal to the surface.

The theory for the turbulence distortion is strictly valid as a small time expansion
when t � TL = L∞/v′

∞; but, as with other calculations of rapid distortion theory,
when the distortion leads to slow changes of turbulence with time, the theory has
been found to describe the main features of the flow even when t � TL (Hunt &
Carruthers 1990). A nonlinear analysis supports this conjecture when there is no
mean flow (Magnaudet 2003). For both the particular inhomogeneous turbulent
velocity fields considered here, the curl of the gradients of the mean Reynolds stress
is non-zero causing the mean vorticity Ωz(x, y, t) to grow with time, but the form
of the mean vorticity profile varies slowly because the turbulence structure is slowly
varying. Thence the weak secondary mean velocity field with components U1(x, y, t),
U2(x, y, t) is calculated. When the mean vorticity becomes comparable with v′

∞/L∞,
nonlinear effects are significant and the linear analysis becomes invalid.

The fact that Ωz grows when shear-free anisotropic turbulence impinges onto
a plane surface has not apparently been studied or even proposed before. This
mechanism operates within many types of shear flow where large-scale turbulence
impinges on a rigid surface, for example in separated or other kinds of free shear



332 K. Nagata, H. Wong, J. C. R. Hunt, S. G. Sajjadi and P. A. Davidson

layers which reattach or move close to a rigid surface (e.g. Wood & Bradshaw1984).
Hunt & Morrison (2000) and Högström, Hunt & Smedman (2002) showed that
this ‘blocking’ effect contributes significantly to the shear stresses in the surface
layer of turbulent boundary layers. Over an undulating surface, if the free-stream
turbulence is anisotropic, this planar blocking mechanism operates in addition to
the curvature blocking mechanism. It is not generally realized that both mechanisms
contribute to the mean motions that are also driven by convective turbulence over
an undulating surface (Krettenauer & Schumann 1992), where thermal convection
produces anisotropic turbulence over a curved surface. The barotropic mechanisms
explained in this paper also affect the convectively driven turbulence and contribute to
the mean flow. The importance of such mean motions on the formation of undulations
on erodible surfaces has been established (e.g. Bagnold 1941; Feltham, Worster &
Wettlaufer 2002) though the effects of large-scale turbulence on the process have not
previously been studied.

Mean flow generation by anisotropic velocity fluctuations has been observed in
turbulent thermal convection (Krishnamurti & Howard 1981; Owinoh et al. 2004)
and in mixing boxes (e.g. McDougall 1979; Fernando & de Silva 1993). In fact
it is quite difficult to produce anisotropic inhomogeneous turbulence without also
generating a mean flow, for the reasons demonstrated in this paper. These flow
structures are manifestations of the broad class of large-scale phenomena driven
by small-scale anisotropic and inhomogeneous fluctuation that are found in most
complex media governed by physical, chemical or biological processes (e.g. Prigogine
& Stengers 1984). At present there are no general theories, and detailed calculations
are required in each case.

Experiments to test these ideas were performed in a mixing box with an oscillating
grid for both the plane surface and undulating surface. Their results, described
in sections §§ 6.1 and 6.2, respectively, are in good qualitative agreement with the
theoretical results. For fuller details of these experiments, see Wong (1985).

2. Linear analysis of distorted anisotropic turbulence and the mean flow field
2.1. Equations and orders of magnitude

Consider the flow depicted in figure 1, in which homogeneous, statistically stationary
(not necessarily isotropic) turbulence u∗

∞(x, t) with no mean flow, such as might be
generated by a grid at y = yg . A fixed rigid surface y = ys(x, z) is introduced into
the flow when t > 0. The solution procedures are developed from those of Hunt &
Graham (1978). (They considered flow with a uniform mean velocity u∞ and showed
that the effects of the initial upstream condition do not persist downstream.) For the
different kind of turbulence considered here, the mean velocity field U(x, t) is initially
zero, but then grows with time.

The mean and fluctuating components of the velocity, pressure and vorticity fields
are û = U∗ + u∗, p̂ = P ∗ + p∗, ω̂ = Ω∗ + ω∗, where û = U∗, ω̂ = Ω∗. Initially,

U∗ = Ω∗ = 0
ω∗ = ω∗

∞(x, y, z, t)
u∗ = u∗

∞(x, y, z, t)

⎫⎬
⎭ for t < 0. (2.1)

The no-slip boundary conditions are that at the rigid surface y = ys(x, z)

û = 0 on y = ys(x, z), −∞ < x, z < ∞ for t > 0. (2.2)
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Figure 1. Definition sketch for anisotropic external turbulence (eccentrically orientated at
anangle α to the x-axis) near an undulating surface showing the grid, the rigid surface ys(x)
and the flow blocking regions: source region B(s), viscous region B (v) and wave region for an
undulating surface B (w). (In fact, we consider a flat surface for anisotropic external turbulence
and an undulating surface for isotropic external turbulence.)

It is assumed that Re = v′
∞L∞/ν � 1, where v′

∞ is the r.m.s. value of u∗
∞, and L∞ is

the integral length scale of u∗
∞, and that the time for distortion (i.e. the time after the

initial turbulence is distorted) TD is small when compared with the Lagrangian time
scale (TL ∼ L∞/v′

∞), so that

TD/TL � 1. (2.3)

TL is both the decay time scale and the ‘turnover’ time (Tennekes & Lumley 1972)
that nonlinear processes take to affect the anisotropy and spectra. In the absence of
mean strain, Magnaudet (2003) has shown that these processes have a weak effect on
the inhomogeneous distortion of large-scale structures near a boundary even when
TD/TL � 1, as experiment indicates (e.g. Kit et al. 1997). When the mean strain grows,
as it does in this case, nonlinear effects are significant when TD ∼ TL.

The linearized governing equations for the fluctuating velocity are

∂u∗

∂t
= −∇p∗

ρ
+ ν∇2u∗ + O

(
v′2

∞
L∞

)
, (2.4a)

∂ω∗

∂t
= ν∇2ω∗ + O

(
v′2

∞
L2

∞

)
. (2.4b)

Note that, since the mean (ensemble-averaged) velocity U∗ and vorticity Ω∗ are of
order v′

∞ and v′
∞/L∞, respectively, terms such as (U∗ · ∇) u∗ and (Ω∗ · ∇) u∗ in (2.4a),

(2.4b) are of order v′2
∞/L∞ and v′2

∞/L2
∞. The mean velocity U∗ and mean vorticity
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Ω∗ = ∇ × U∗ generated by the distorted turbulence are given by

∂U∗

∂t
+ (U∗ · ∇) U∗ = −(u∗ · ∇) u∗ − ∇P ∗ + ν∇2U∗, (2.5a)

and
∂Ω∗

∂t
= −(u∗ · ∇) ω∗ + (ω∗ · ∇) u∗ + ν∇2Ω∗, (2.5b)

where overbars denote time-averages. In two-dimensional flow where all
inhomogeneities are in the (x, y)-plane (e.g. an undulating surface y = ys(x)), the
initial growth of the mean vorticity is determined by

∂Ω∗
z

∂t
=

∂2

∂x∂y

(
u∗2 − v∗2

)
+

(
∂2

∂x2
− ∂2

∂y2

)
(−u∗v∗) + ν∇2Ω∗

z + O

(
t2v′4

∞
L4

∞

)
. (2.5c)

In the free stream above the surface

ω∗(x, t) → ω∗
∞(x, t)

u∗(x, t) → u∗
∞(x, t)

}
as y → ∞. (2.6a)

u∗
∞, ω∗

∞ are assumed to be statistically homogeneous in the y- and z-directions, where
for t < TL

dω∗
∞

dt
= 0,

du∗
∞

dt
= 0. (2.6b)

Since a non-zero mean flow field for t > 0 exists only near the surface, the outer
boundary conditions for the mean flow are

|U∗|, |Ω∗| → 0 as y → ∞. (2.7)

From (2.2), the boundary condition at the rigid surface is

U∗ = u∗ = 0. (2.8)

Note that in previous studies of secondary flow the Reynolds stresses away from
the boundary are driven by the mean shear. We consider here the general case where,
away from the boundary, there is no mean shear and stresses are uniform. The
blocking effects of the boundary induce gradients of the stresses and thence a growth
of ∂Ωz/∂t near the boundary.

2.2. The viscous, source and wave regions

Two separate regions with differing dynamics determine the distortion of the
fluctuating velocity field. The outer, source region B (s) has a thickness of the order
of the integral scale L∞. The inner, viscous region B (v) has thickness δ(v) ∼ 4(tν)1/2,
which in the linear theory grows with time and within which the turbulent velocity
decays to zero at the surface y =0.

For the analysis of B (v) we use the non-dimensional coordinates

η = y/(TLν)1/2, X = x/L∞, Z = z/L∞, T = tv′
∞/L∞, (2.9)

and in B (s) the definitions X, Z and T are unchanged while Y = y/L∞. Note that
in the linear analysis (t < TL) the time scale for fluctuations in the viscous region is
determined by the outer flow. The non-dimensional flow variables are

ωi = ω∗
i L∞/v′

∞, ui = u∗
i /v

′
∞, p = p∗/

(
ρv′2

∞
)
, (2.10)

which are conveniently expressed as sums of different terms associated with B (s) and
B (v):

ωi = ω∞i(X, T ) + ω
(s)
i (X, T ) + ω

(v)
i (X, η, Z, T ), (2.11)
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ui = u∞i(X, T ) + u
(s)
i (X, T ) + u

(v)
i (X, η, Z, T ). (2.12)

In the source region, the vorticity remains the same as in the free stream, since
there is no distortion to the mean flow (for t � TL). Hence the turbulent velocity is
equal to the free-stream component plus an irrotational component −∇Φ(X, T ), i.e.

u = u∞ − ∇Φ(X, T ), (2.13)

and since ∇ · u(s) = 0, Φ satisfies Laplace’s equation

∇2Φ = 0. (2.14)

The boundary conditions on Φ are

∂Φ/∂Y = u∞2(X, Y = 0, Z, T ) on Y = 0, t > 0,

∇Φ → 0 as Y → ∞.

}
(2.15)

The solution of (2.14) with (2.15) is

Φ(X, Y, Z, T ) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

u∞2(X
′, Y ′ = 0, Z′, T )

[(X − X′)2 + Y 2 + (Z − Z′)2]1/2
dX′ dZ′. (2.16)

This solution is also valid in a spatially developing shear-free boundary layer, except
within a distance of order L∞ from X =0. The full solution with the upstream
boundary condition is given by HG. Note that if the turbulence is to be analysed at
a station X sufficiently far downstream of X =0, the upstream boundary condition
becomes immaterial, and the solution is the same as for the time-developing solution
considered here.

2.3. Fourier analysis of B (s) over a flat surface

The normalized turbulent velocity u is expressed in terms of two- or three-dimensional
Fourier transforms, which is equivalent to HG for stationary turbulence far above
the surface. Near the surface, where the velocity is homogeneous in Z and X,{

ui(X, T )

Φ(X, T )

}
=

∫ ∞

−∞

∫ ∞

−∞

{
ˆ̂ui

ˆ̂
Φ

}
(K1, K3, Y, T ) exp{i(K1X + K3Z)} dK1 dK3. (2.17)

In the free stream, where the turbulence is homogeneous in X, Y and Z,

u∞i(X, T ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
S∞i(K1, K2, K3, T ) exp{i(K · X)} dK1 dK2 dK3. (2.18)

K is a wavenumber normalized by L∞, so that K1 is effectively a non-dimensional
frequency corresponding to an oscillation with frequency n.

In order to express the turbulence near the surface in terms of its spectrum in the

free stream, we express ˆ̂ui and
ˆ̂
Φ in terms of S∞i by the equations{

ˆ̂ui

ˆ̂
Φ

}
(K1, K3; Y, T ) =

∫ ∞

−∞

{
Mil(K ; Y )

βl(K ; Y )

}
S∞l(K ; T ) dK2, (2.19)

where

Mil = M
(∞)
il + M

(s)
il , (2.20)

M
(∞)
il = δij exp{i(K2Y )}, (2.21)

M
(s)
il = (−iK1βl, −∂βl/∂Y, −iK3βl) . (2.22)
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Substituting (2.18) and (2.19) into (2.16), we obtain

β1 = β3 = 0, (2.23)

β2 = −
exp{−

(
K2

1 + K2
3

)1/2
Y }(

K2
1 + K2

3

)1/2
, (2.24)

Mi1 = δi1 exp{iK2Y }, (2.25)

Mi2 = δi2 exp{iK2Y }+

[
iK1(

K2
1 +K2

3

)1/2
, −1,

iK3(
K2

1 +K2
3

)1/2

]
exp{−

(
K2

1 + K2
3

)1/2
Y },

(2.26)

Mi3 = δi3 exp{iK2Y }. (2.27)

The three-dimensional Fourier transform S∞i of a turbulent velocity component
u∞i is related to the three-dimensional spectrum Φ∞ij (K ) by

S+
∞i(K1, K2, K3)S∞l(K1, K

′
2, K3) =

XZ
π2

δ(K2 − K ′
2)Φ∞ij (K ), (2.28)

where + denotes a complex conjugate and L∞X, L∞Y and L∞Z are the sides of the
box within which the Fourier transforms of u∞i are defined. Equations (2.17) to (2.22)
and (2.28) imply the normalized one-dimensional cross-spectrum for the velocities at
one or two points Xa , Xb to be

Θij (Xa, Xb; K1) =

∫ ∞

−∞

∫ ∞

−∞
M+

il (K ; Ya)Mjm(K ; Yb)

× exp{i(K1(Xa − Xb) + K3(Za − Zb))}Φ∞lm(K ) dK2 dK3. (2.29)

The spectra Θij at one point are expressed as

Θ11(Y ; K1) = Θ∞11(K1) + IA(Y ; K1) + IB(Y ; K1), (2.30)

IA(Y ; K1) = iK1

∫ ∞

−∞

∫ ∞

−∞

[exp{i(−K2Y )}Φ∞12 − exp{i(K2Y )}Φ∞21](
K2

1 + K2
3

)1/2

× exp
{

−
(
K2

1 + K2
3

)1/2
Y

}
dK2 dK3, (2.31)

IB(Y ; K1) = K2
1

∫ ∞

−∞

∫ ∞

−∞

exp
{

−2
(
K2

1 + K2
3

)1/2
Y

}
Φ∞22

K2
1 + K2

3

dK2 dK3, (2.32)

Θ22(Y ; K1) =

∫ ∞

−∞

∫ ∞

−∞

[
1 − 2 cos(K2Y ) exp

{
−

(
K2

1 + K2
3

)1/2
Y

}
+ exp

{
−2

(
K2

1 + K2
3

)1/2
Y

}]
Φ∞22 dK2 dK3. (2.33)

Similar expressions for the Θ33 and cross-spectra can also be derived. Note that Θ11

is real because Φ12(K ) = Φ+
21 (Batchelor 1953).

2.4. Three-dimensional energy spectrum for isotropic free-stream turbulence

In HG, the energy spectrum E(K) was assumed to have the typical ‘von Kármán’ form,
corresponding to high- and moderate-Reynolds-number turbulence spectra (HRS);
but the algebraic power law forms meant that analytic solutions for spectra and vari-
ances could not be derived. Here, we use the form of the ‘laboratory’ Reynolds-number
spectrum (LRS) with exponential decay at high wavenumber (e.g. Townsend 1976),

E(K) = C1K
4 exp{−C2K

2}, (2.34)
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where C1 = 4/π3, C2 = 1/π and the energy spectrum and wavenumber are normalized
by v′2

∞L∞ and L∞, respectively. We begin by considering isotropic free-steam
turbulence so that E(K) is related to Φ∞ij as (Batchelor 1953)

Φ∞ij (K ) =
E(K)

4πK4
(K2δij − KiKj ). (2.35)

2.5. Anisotropic free-stream turbulence

The three-dimensional spectrum tensor Φ∞ij (K ) for the axisymmetric free-stream
turbulence depends only on K and a unit vector, e, in the direction of axial symmetry
(Batchelor 1953). The most general second-order spectral tensor for such axisymmetric
turbulence is of the form

Φ∞ij (K ) = A1KiKj + A2eiej + A3δij + A4eiKj + A5ejKi, (2.36a)

in Cartesian-tensor notation, where A1 ∼ A5 are functions, not all independent, of K
and K · e. Continuity of incompressible flow requires Φ∞ij to be orthogonal to K , i.e.
Φ∞ijKj =0, and symmetry in the indices i and j demands that A4 and A5 be equal.
Hence, (2.36a) can be written as

Φ∞ij (K ) = IijB1(K, K · e) + HijB2(K, K · e), (2.36b)

where

Iij = δij − KiKj

K2
, (2.36c)

Hij = eiej +
(K · e)2

K2
δij − (K · e)

(eiKj + ejKi)

K2
, (2.36d)

B1(K, K · e) = −K2A1, B2(K, K · e) = A2. (2.36e)

The interpretation of the ‘scalars’ B1 and B2 and of (2.36) is much easier using
the Craya–Herring frame (Craya 1958; Herring 1974), which is itself linked to the
poloidal-toroidal decomposition in physical space (see the appendix in Cambon 2001
for details).

For isotropic turbulence

B1(K, K · e) =
E(K)

4πK2
, B2(K, K · e) = 0, (2.37)

where E(K) is a three-dimensional energy spectrum.
Sreenivasan & Narashimha (1978) have considered various forms of axisymmetric

turbulence in considering RDT and straining motions, such as two-dimensional
contraction along a wind tunnel. They showed that if B1 and B2 are expanded in
zonal harmonics with the Legendre polynominals P2m(cos θ) as basis function, where
K · e = K cos θ ,

B1(K, θ) + B2(K, θ) =

∞∑
m=0

F2m(K)P2m(cos θ), (2.38a)

B2(K, θ) =

∞∑
m=0

G2m(K)P2m(cos θ). (2.38b)

The expansion in terms of spherical harmonics was generalized by Cambon &
Teissèdre (1985) to arbitrary anisotropy. This expansion is consistent with that of
Sreenivasan & Narasimha (1978) for axisymmetry, but not for that of Herring’s
decomposition (1974).
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Three ansatzes have been proposed. Ansatz 1 assumes that A1 and A2 depend only
on K; ansatz 2 assumes the same condition for A2 and A3 and similarly in ansatz 3 for
A1 and A3. Ansatz 1 represents what is possibly the simplest model for non-isotropic
turbulence. It implies

F2m = G2m = 0 for m = 1, 2, · · · .

Hence from (2.36)−(2.38),

Φ∞ij (K ) = Iij (F0(K) − G0(K)) + HijG0(K). (2.39)

Ansatz 1 is adopted in our model, so

B1 = B1(K), B2 = B2(K). (2.40a)

The following forms of B1 and B2 are assumed in this study.

B1 = C1K
2 exp(−λ1K

2), (2.40b)

B2 = C2K
2 exp(−λ2K

2), (2.40c)

where C1, C2 are constants and 1/λ
1/2
1 , 1/λ

1/2
2 are proportional to the length scales of

the isotropic and anisotropic components of this turbulent velocity field. For isotropic
turbulence, C2 = 0, C1 = 1/π4 and λ1 = 1/π. If the axis of symmetry has an angle α

to the surface, i.e. e = (cosα, sinα, 0), then the three-dimensional energy spectrum
function becomes (in a frame of reference relative to a flat plate, at y =0)

Φ∞11 =
(
K2

2 + K2
3

)
C1 exp{−λ1K

2} +
(
K2

2 + K2
3 cos2 α

)
C2 exp{−λ2K

2}, (2.41a)

Φ∞22 =
(
K2

1 + K2
3

)
C1 exp{−λ1K

2} +
(
K2

1 + K2
3 sin2 α

)
C2 exp{−λ2K

2}, (2.41b)

Φ∞33 =
(
K2

1 + K2
2

)
C1 exp{−λ1K

2} +
(
K2

1 cos2 α + K1K2 sin 2α + K2
2 sin2 α

)
× C2 exp{−λ2K

2}, (2.41c)

Φ∞12 = Φ∞21 = −K1K2C1 exp{−λ1K
2} +

(
1
2
K2

3 sin 2α − K1K2

)
× C2 exp{−λ2K

2}, (2.41d)

Φ∞23 = Φ∞32 = −K2K3C1 exp{−λ1K
2} −

(
1
2
K1K3 sin 2α + K2K3 sin2 α

)
× C2 exp{−λ2K

2}, (2.41e)

Φ∞31 = Φ∞13 = −K1K3C1 exp{−λ1K
2} −

(
K1K3 cos2 α + 1

2
K2K3 sin 2α

)
× C2 exp{−λ2K

2}. (2.41f )

Here, C1, C2, λ1 and λ1 are determined from the normalized variances, i.e. for each
component ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Φ∞ii(K , α = 0) dK =

u2
∞ia

u2
∞1a

=

(
1,

1

R
,

1

R

)
. (2.42)

Since the spectra and wavenumbers are normalized in terms of the integral scale L∞,

Θ∞11(K1 → 0, α = 0)aniso = Θ∞11(K1 → 0)iso =
1

π
, (2.43a)
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R = 3/2 R = 2

β = 4 36/25π 1/π
β = 9 81/49π 1/π

Table 1. Typical values of λ2 for given β and R.

and thence the coefficients are given by

λ1 =
1

π
Fn(R, β)−2, (2.43b)

λ2 =
β

π
Fn(R, β)−2, (2.43c)

C1 =
1

π4

(
−1 +

2

R

)
Fn(R, β)−5, (2.43d)

C2 =
2β5/2

π4

(
1 − 1

R

)
Fn(R, β)−5, (2.43e)

where the function Fn(R, β) is

Fn(R, β) =

(
−1 +

2

R

)
+ 2β1/2

(
1 − 1

R

)
. (2.43f )

R is the ratio of the variances of the free-stream turbulence components parallel and

perpendicular to the principal axis (denoted by u2
∞ia),

R =
u2

∞1a

u2
∞2a

=
u2

∞1a

u2
∞3a

, (2.43g)

and β is the ratio of the length scale of the isotropic and anisotropic components λ1

and λ2, i.e. β = λ2/λ1. Note that

v′2
∞ = 1

3

∑
u2

∞i = u2
∞1a

(
1 + 2/R

3

)
. (2.43h)

Here, R is restricted to lie within the range 0 <R � 2 in order to satisfy the non-
negative Hermitian form of Φ∞ij . (This also corresponds approximately to the range
of anisotropy for which axisymmetric turbulence can persist over several integral time
scales (TL), e.g. disperse vortex rings.) When R = 1, the turbulence is isotropic. Table 1
shows typical values of λ2 for given β and R.

Figure 2 shows the one-dimensional power spectra Θ∞ij for R =2 and β =4. These
are obtained by integrating three-dimensional energy spectrum functions Φ∞ij with
respect to K2 and K3. Here we note that in the model spectra, the anisotropy
is significant at large scales, while the small scales remain isotropic (i.e. β � 1), a
characteristic of the spectrum of most high-Reynolds-number anisotropic turbulence
(e.g. Kaimal et al. 1972). Figure 3 shows the one-dimensional power spectra Θ∞12 for
R = 3/2, 2 and β = 4. The larger anisotropy (the larger R) induces larger Reynolds
stress in the free stream. The Reynolds stress takes its maximum when α = π/4.
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Figure 2. The one-dimensional power spectra K1Θ∞ii for homogeneous anisotropic
(axisymmetric) free-stream turbulence for R = 2 and β = 4. ————, isotropic (R = 1);
— ·· — ·· —, α =0; – – –, α = π/6; - - -, α = π/4; – - –, α = π/3. K1Θ∞11 for α = 0 is
identical to that for the isotropic case (—).
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Figure 3. The one-dimensional power spectra Θ∞12 for homogeneous axisymmetric
free-stream turbulence for R =3/2, 2 and β = 4. ————, R = 3/2, α = π/6, π/3; – - –, R = 3/2,
α = π/4; – – –, R = 2, α = π/6, π/3; - - -, R = 2, α = π/4. Note Θ∞12 = 0 for isotropic free-stream
turbulence and for α =0 in anisotropic turbulence.

3. Turbulence near a flat plate of arbitrary orientation
3.1. Effects of spectral form on isotropic shear-free boundary layer on a flat plate

3.1.1. Turbulence intensities

For the ‘laboratory’ Reynolds-number spectrum (LRS), analytical solutions of the
variances for isotropic free-stream turbulence (R =1) are given by

u2
1/u

2
∞1 = u2

3/u
2
∞3 = 1

2
(πY 2 +3)+

πY 2

4
exp

{
−πY 2

4

}
− πY

8
(πY 2 +2) erfc

{
π1/2Y

2

}

− πY

4
(2πY 2 + 3) exp{πY 2} erfc

{
π1/2Y

}
, (3.1)

u2
2/u

2
∞2 = 2 + πY 2 − 2 exp

{
−πY 2

4

}(
πY 2

4
+ 1

)
+

πY

4
(πY 2 + 6) erfc

{
π1/2Y

2

}

− πY

2
(2πY 2 + 3) exp{πY 2} erfc

{
π1/2Y

}
. (3.2)

Figures 4 and 5 show the turbulence intensities, normalized by the turbulence

intensities u2
∞i in the free stream. Here the turbulence intensity in the spanwise

direction u2
3 is identical to that in the streamwise direction u2

1. In B (s) the normal

component u2
2 decreases, while the streamwise and spanwise component, u2

1 and u2
3,

increase towards the surface in such a way that the turbulence kinetic energy is
restored at the surface (Y = 0) to the value in the free stream. The blocking effects
by the surface with LRS are relatively greater than with HRS. The vertical velocity
fluctuations decrease and streamwise and spanwise velocity fluctuations increase faster
in the vicinity of the surface compared to the high-Reynolds-number case. Then, as

HG found, u2
1 and u2

3 first decrease to values below u2
∞1 and u2

∞3 before increasing to
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Figure 4. Turbulence intensities of the normal velocity fluctuations in the source layer. ——,
exponential spectrum in present study (LRS); – - –, HG for ‘high Reynolds numbers’ (von
Kármán spectra); – – –, HG for ‘moderate Reynolds numbers’ (Townsend spectrum). Note
the different slopes as y → 0.
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Figure 5. Turbulence intensities of the streamwise and spanwise velocity fluctuations in the
viscous region B (v) and the source region B (s). In B (s): symbols as in figure 4. In B (s): (i)
non-dimensional time tν/L2

∞ = 10−4; (ii) tν/L2
∞ =10−2. Note the greater dip with LRS and the

increase of u2
1 toward the surface at y = 0 extends farther from the surface.

their asymptotic values. As a result of stronger blocking this ‘dip’ is greater with the
LRS. A similar dip in the turbulence kinetic energy is found with the LRS: the lowest
value is 0.784, while they are 0.865 at high Reynolds numbers and 0.845 at moderate

Reynolds numbers. The decrease in u2
2 is associated with a rise in the mean pressure.
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Asymptotic expressions for u2
1(= u2

3) and u2
2 can be obtained near the surface (when

δ(v) → 0). As Y → 0,

u2
1/u

2
∞1 = u2

3/u
2
∞3 = 3

2
− πY + 5

2
πY 2 + O(Y 3), (3.3)

u2
2/u

2
∞2 = 5

2
πY 2 + O(Y 3). (3.4)

Note that with LRS the derivative of u2
2 at the surface is zero whereas the derivatives of

u2
2 at the surface with high Reynolds spectra (HRS) have non-zero values. Asymptotic

expressions for u2
1(= u2

3) and u2
2 for Y → ∞ are also obtained:

u2
1/u

2
∞1 = u2

3/u
2
∞3 = 1 +

3

8πY 2
+

1

πY 2
exp

{
−πY 2

4

}
, (3.5)

u2
2/u

2
∞2 = 1 +

3

4πY 2
− 6

πY 2
exp

{
−πY 2

4

}
. (3.6)

3.1.2. Integral length scales near the surface

The integral length scales near the surface are obtained from the variances and
spectra.

xL11 =
L∞

u2
1(Y → 0)/u2

∞1

=
2L∞

3 − 2πY
, (3.7)

xL22 =
πΘ22(K1 = 0)

u2
2(Y → 0)/u2

∞2

=
4 − 10Y

10 − 9πY
L∞. (3.8a)

Therefore, for isotropic turbulence, xL11(Y → 0) = xL33(Y → 0) = 2L∞/3 (which is
independent of the form of the spectrum), but xL22(Y → 0) = 2L∞/5. By comparison
with high Reynolds number turbulence, when there is a larger distortion of the spectra
(Carlotti 2001),

xL22 ∝ Y ; as Y → 0. (3.8b)

The latter (HG) result is generally assumed in turbulence models for high-Reynolds-
number turbulence.

3.1.3. Comparison with previous measurement

The variance at ‘laboratory’ Reynolds numbers are compared with the previous
mixing-box experiment at low Reynolds number of ReL = 40 (McDougall 1979). It is

found that the present study underpredicts the decrease in u2
2. In this experiment (and

also Uzkan & Reynolds 1967), no amplification of the horizontal velocity component
was found because the thickness of the viscous surface layer was comparable to that
of the source layer. In the experiment by McDougall, the thickness of the viscous layer

is estimated as δ(v)/L∞ ∼ 0.2 and the solution of u2
1 in δ(v) is plotted in figure 6. The

profile of u2
1 in δ(v) explains why the data of McDougall show no amplification near

the surface. Note that in the experiment with higher-Reynolds-number turbulence
(e.g. Thomas & Hancock 1977; Brumley & Jirka 1987; Hannoun, Fernando & List

1988; Kit et al. 1997 ) significant amplification of u2
1 was found.

3.2. Impingement of anisotropic turbulence onto a flat surface
and mean flow generation

Here we consider homogeneous axisymmetric free-stream turbulence. The axis of
symmetry lies at an angle α to the surface so that e = (cosα, sinα, 0). The analytical



344 K. Nagata, H. Wong, J. C. R. Hunt, S. G. Sajjadi and P. A. Davidson

2.0

1.8

1.6

1.4

1.2
0.5 1.0 1.5 2.0

1.0

0.8

0.6

0.4

0.2

0

u2 i/u
2 ∞

i

u2
1 (Re→∞)

u2
1 (Re~1)

u2
2

Y

Figure 6. Vertical distributions of turbulence intensities. ———, present study (in B(s)); – – –,

HG at high Reynolds numbers (in B (s)); � and �, u2
1 and u2

2 in mixing-box turbulence at

ReL = 40 (McDougall 1979); – - –, Estimated u2
1(= u2

3) in B (v) corresponds to McDougall’s
experiment.

solutions of the variances and covariance for this axisymmetric free-stream turbulence
are given in the Appendix. All these profiles near the surface are independent of β .
The variances in the free stream as Y → ∞ are

u2
1/u

2
∞1a = 1 − sin2 α

(
1 − 1

R

)
, (3.9a)

u2
2/u

2
∞1a =

1

R
+ sin2 α

(
1 − 1

R

)
, (3.9b)

u2
3/u

2
∞1a =

1

R
, (3.9c)

u1u2/u
2
∞1a = 1

2
sin 2α

(
1 − 1

R

)
, (3.9d)

where u2
∞1a is the variance in the direction parallel to e. Note that u2

∞1a = u2
∞1 when

α = 0. Note that the sign of u1u2 is essentially determined by whether the turbulence
along the axis of symmetry is greater or less than in the plane perpendicular to the
axis, i.e. u1u2 > 0 if R > 1, u1u2 < 0 if R < 1.

3.2.1. The case of α =0 when the axis of symmetry lies parallel to the surface

Streamwise and spanwise turbulence intensities are amplified whereas the vertical
intensity decreases toward the surface as for isotropic free-stream turbulence. However,

the relative amplification of u2
1, u2

3 varies depending on R. From (A 1)−(A 3) we have
as Y → 0

u2
1/u

2
∞1 = 5

4
+

1

4R
, (3.10a)

u2
2/u

2
∞1 = 0, (3.10b)

u2
3/u

2
∞1 = − 1

4
+

7

4R
, (3.10c)
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which satisfies the general condition (HG) that

3∑
i=1

u2
i (Y → 0) =

3∑
i=1

u2
∞i =

(
1 +

2

R

)
u2

∞1a

=

(
1 +

2

R

)
u2

∞1 for the case α = 0. (3.11)

In this type of homogeneous axisymmetric free-stream turbulence, u2
2 is damped by

the wall, but the normal velocity is not distributed equally in the X- and Z-directions
as Y → 0. Reynolds shear stresses are zero as for the isotropic case when α = 0.
Note that the dependence on R in these results (3.10a), (3.10c) were obtained using a
particular spectrum. However, this sensitivity is small, since varying β( = λ2/λ1) has no
effect on variances at the surface and only a small effect when Y ∼ 1. For example, it

only changes u2
2/u

2
∞1 by 10 % as β varies from β = 4 to β =9 for R = 3/2. In figure 7,

the variances are normalized by their values in the free stream, u2
∞i . It is found that

the blocking effects become less significant for anisotropic free-stream turbulence if
the axis of symmetry lies parallel to the surface. Note that these formula are only
valid for 0<R < 2.

3.2.2. The case of α �= 0 when the axis of symmetry lies at an angle to the surface

u2
1 decreases and u2

3 increases near the surface with increasing α when the turbulence

intensities are normalized by u2
∞1a which is the component parallel to the axis of

symmetry (see figure 1). From (A 1) ∼ (A 5) we have as Y → 0

u2
1/u

2
∞1a = 5

4
+

1

4R
− 3

4
sin2 α

(
1 − 1

R

)
, (3.12a)

u2
2/u

2
∞1a = 0, (3.12b)

u2
3/u

2
∞1a = − 1

4
+

7

4R
+ 3

4
sin2 α

(
1 − 1

R

)
. (3.12c)

In the limit R → 0, u2
∞1/u

2
∞2 → 0, and u2

∞2 = u2
∞3. However, because β is finite, the

flow field varies in three directions. This is why, as Y → 0, u2
1/u

2
∞2 → 1/4, while

u2
3/u

2
∞2 → 7/4. In two-dimensional turbulence where u2

∞1 = 0 and ∂/∂x = 0, u2
3/u

2
∞2 → 2

as Y → 0.
Figure 8 shows the vertical distributions of the Reynolds stress, normalized by the

Reynolds stress in the free stream, u1u2(Y → ∞) (in the frame parallel to the surface).

Note that u1u2 varies with R and β , but not α. By contrast, the profiles of u2
1 and u2

3

do depend on α. The normalized Reynolds stress near the surface where it tends to
zero is independent of R as well as α, and is given by

u1u2(Y )/u1u2(Y → ∞) = 3
4

{(
π

λ2

)1/2

Y − 1

λ2

Y 2

}
as Y → 0. (3.13)

Thus, u1u2 near the surface is determined by Y/λ
1/2
2 , i.e. the ratio of the normal

coordinate and the length scale of the additional anisotropic component of the
turbulence (defined in (2.40)).
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Figure 8. Vertical distributions of the Reynolds stress normalized by the value in the free
stream for β = λ2/λ1 = 4. ————, R = 3/2, α = π/6, π/4, π/3; – – –, R = 2, α = π/6, π/4, π/3.
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3.3. Secondary motions near plane boundaries

In this section, we analyse how secondary motions can be generated near a plane
boundary. It follows, by integrating the normalized form of (2.5a), that the time-
averaged equation for streamwise secondary flow near the surface is given by

∂U

∂t
= − ∂

∂y
u1u2. (3.14)

Substituting (3.12) into (3.14) and referring to (2.43h), we have (in dimensional terms)
for t � TL

U ∗ ∼ 3t

8
sin 2α

(
1 − 1

R

)(
3

1 + 2/R

){
2v′2

∞
λ2L2

∞
y− v′2

∞
L∞

(
π

λ2

)1/2 }
for y � L∞. (3.15)

Thus, horizontal secondary flow exists near a flat rigid surface provided the axis of
the anisotropic (e.g. axisymmetric) turbulence in the free stream does not lie on a
plane which is perpendicular or parallel to the surface. For small t , the secondary
flow grows near the surface linearly with time and decreases with distance y above
the surface. Here we are ignoring viscous stresses in the viscous layer where U → 0
at Y =0. Even for anisotropic high-Reynolds-number turbulence (e.g. in a shear flow
where Θ12(K1) ∝ K

−7/3
1 , Mann 1994) the same effect as described in (3.15) would

occur (Wong 1985). Note that the direction of U is opposite to the projection of e
onto the plane (for R > 1) (i.e. U/|U | =((e ∧ n)∧ n)(1−1/R)), where n is a unit vector
normal to the surface. Equation (3.15) is finite as R → 0, and the sign of U changes
as R decreases below 1.0.

As with other secondary flows driven by normal stresses, nonlinear effects develop
and the mean velocity reaches a quasi-steady state when t ∼ TL ∼ L∞/u′

∞s , where u′
∞s

is the r.m.s. velocity associated with the mean shear. Then, the mean shear in the
source layer induces Reynolds stress gradients (∼ U ∗u′

∞s/L∞) with opposite sign to
those produced by the blocking of the anisotropic external turbulence (i.e. given by
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(3.13)). So that, an order of magnitude estimate for the resulting mean velocity U ∗ is

U ∗(t ∼ TL) ∼ sin 2α

(
1 − 1

R

)
v′

∞

(
v′

∞
u′

∞s

)
. (3.16)

Since in most shear flows near a rigid surface, u′
∞s ∼ U ∗/10 (depending on the

roughness of the surface and the Reynolds number of the flow, e.g. Townsend 1976),
we estimate that

U ∗ ∼
{

sin 2α

(
1 − 1

R

)}1/2

v′
∞. (3.17)

A full nonlinear analysis or numerical simulation is required to study these flow
mechanisms.

4. Turbulence and mean flow over an undulating surface
4.1. Distortion of the turbulence

Now consider a rigid undulating surface of low slope, amplitude h and long
wavelength Λ, defined by

ys(x) = h(1 − cos(2πx/Λ)), (4.1)

or in non-dimensional terms (based on the length scale L∞),

Ys(X) = H (1 − cos kX), (4.2)

where H = h/L∞ � 1, k =2πL∞/Λ � 1. The surface is introduced at t = 0 into an
isotropic turbulent velocity field u∞(x, t). It is assumed that the turbulence above
the surface wave (where y � L∞) is homogeneous and approximately isotropic. The
turbulent flow is not periodic. Its integral scale is less than the wavelength of the
surface. The calculation shows how a mean flow is set up by the undulating surface.
This implies that the mean flow has a larger wavelength than that of the turbulence,
which is quite usual in distorted turbulent flows. (In the first problem the wavelength
of the mean flow is effectively infinite.) As with turbulence over the flat plate initially
there is no mean flow to distort the turbulent vorticity. Therefore outside the viscous
layer B (v), the perturbations to the turbulence are determined by the blocking effects
of (2.13) and (2.14), namely,

∇Φ · n = u∞ · n on Y = Ys(X). (4.3)

Here

n = (−Hk sin kX, 1, 0)/(1 + H 2k2 sin2 kX), (4.4a)

n 
(

−X

Rc

, 1, 0

)
when |kX| � 1, (4.4b)

where Rc is the normalized radius of curvature Rc = 1/(Hk2). Then the boundary
condition for the source layer transfer function M

(s)
il in (2.22) on y = ys(X) is

M
(s)
il · ni =

(
−M∞

1l Hk sin kX + M∞
2l

)
exp{i(K1X + K2H (1 − cos kX) + K3Z)}

(1 + H 2k2 sin2 kX)
. (4.5)

The solution to (4.3) using a formal solution in terms of Hk and K/k has been
obtained by Wong (1985). The results are even more complex than those obtained in
§ 3.
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It is more instructive to consider the simple problem of a sinusoidal velocity field
(i.e. a single Fourier component of the turbulence in (2.17)),

u∞i = S∞i exp{i(KjXj )}, (4.6)

as it impacts onto a circular (or a parabolic) surface (which is the trough or peak of
the surface (4.1))

Ys = ±Hk2X2/2 = X2/
(
2R2

c

)
, (4.7)

over a distance 1 � |kX|, where 1 � k. The non-dimensional radius of curvature
is Rc = 1/(Hk2). Note that the radius of curvature is negative on the peak of the
undulation. The solution to (4.3) can be obtained in polar coordinates (r, θ) subject
to the boundary condition

∂Φ

∂R
= −S∞1 sin θ exp{i(K1X̃ cos θ + K3Z)}

+ S∞2 cos θ exp{i(K1X̃ cos θ + K3Z)} on N = 0, (4.8)

where X̃ and Ỹ are the intrinsic coordinates along and normal to the surface,
respectively. Note that X̃ = θRc and Ỹ =Rc − R; R = r/(Hk2).

Seeking a perturbation expansion in terms of 1/(KRc), it follows that

Φ =

(
Φ̂ (0)(K , Ỹ ) +

1

KRc

Φ̂ (1)(K , Ỹ ) · · ·
)

exp{i(K1X̃ + K3Z)}, (4.9a)

where (for the idealised fluctuation of (4.6))

K =
[
K2

1 + K2
2 + K2

3

]1/2 ∼ 1, (4.9b)

and (
∂2

∂Ỹ 2
− K2

13

)
Φ̂ (0) = 0, (4.9c)

subject to the boundary condition

∂Φ̂ (0)

∂Ỹ
= +S∞2 exp{i(K1X̃ + K3Z)}. (4.9d)

The solution of this problem may be expressed as

Φ̂ (0) = −S∞2

K13

exp{−K13Ỹ }, (4.10)

where K13 =
√

K2
1 + K2

3 .
For the next order in the perturbation expansion, we must solve Laplace’s equation

in cylindrical coordinates, (
∂2

∂Ỹ 2
− K2

13

)
Φ̂ (1) = −K

∂Φ̂ (0)

∂Ỹ
(4.11)

subject to the boundary condition

∂Φ̂ (1)

∂Ỹ
= −KRcS∞1θ exp{iK1X̃} on Ỹ = 0. (4.12)

Substituting (4.10) into (4.11) we obtain(
∂2

∂Ỹ 2
− K2

13

)
Φ̂ (1) = −KS∞2 exp{−K13Ỹ }. (4.13)
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The general solution for (4.13) is

Φ̂ (1) = −(AỸ exp{−K13Ỹ } + B exp{−K13Ỹ }), (4.14)

where

A =
KS∞2

2K13

.

To satisfy the boundary condition on N =0 from (4.12)

∂Φ̂ (1)

∂Ỹ

∣∣∣∣
Ỹ=0

= −A + BK13 = −KRcS∞1θ.

Since θ = X̃/Rc, we obtain

B = − X̃S∞1K

K13

+
S∞2K

2K2
13

. (4.15)

Since in the source region u = u∞ − ∇Φ , the Fourier component for the horizontal
component u1 at Ỹ = 0 is obtained from substituting the results (4.14), (4.15) into
(4.9a)

S1 = S∞1 +
iK1S∞2

K13

− X̃S∞1

RcK13

+
iK1S∞2

2RcK
2
13

. (4.16)

Hence on the centreline at x̃ = 0, the variances are

|S1|2 = |S∞1|2 + |S∞2|2
(

K2
1

K2
13

)(
1 +

1

RcK13

)
, (4.17a)

and

|S3|2 = |S∞3|2 + |S∞2|2
(

K2
3

K2
13

)(
1 +

1

RcK13

)
. (4.17b)

This shows that there is an extra term arising due to curvature, namely 1/Rc|K13|,
which is only valid for |K1| > |Rc|−1 (i.e. for eddies with wavelength less than the
length between the peaks and troughs of the undulation).

The normal component as Ỹ → 0 is obtained from (4.9a), (4.14) and (4.15), so that
the normal velocity relative to the surface is

�S2 = − dY

dX
S1 = +S∞2K13Ỹ +

1

KRc

(
AỸK13 − BK13 + BK2

13Ỹ
)
. (4.18a)

Thence, using (4.16), the spectrum of the Reynolds stress term relative to the surface
is given by

1
2
|S+

1 �S2 + S1�S+
2 | ∼ −S2

∞1

X̃

Rc

ỸK13. (4.18b)

(Note that for isotropic free-stream turbulence
∣∣S+

∞1S∞2

∣∣ = 0.) Therefore near the
crest or trough, since K13 ∼ 1,

u1u2 ∼ −
(

1

Rc

)2

u2
∞1

X̃Ỹ

Rc

∼ −
(

1

Rc

)2

u2
∞1

x̃ỹh(2π)2

Λ2L∞
. (4.19)

Note x̃ � L∞ for validity of the analysis. Thence u1u2 ∼ −u2
∞1(L∞h/Λ2).

From these Fourier coefficients, the variances can be estimated as in §§ 2 and 3. By
inspection of (4.17a) and (4.17b), it follows that the horizontal variances u1

2 and u3
2
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(parallel to and perpendicular to the contours of the undulation) are increased by
O(L∞/Rc) by the curvature at the bottom of the undulation and reduced at the top
of the undulation (where the radius of curvature is negative and the right-hand side
of (4.11) changes sign). The Reynolds shear stress −u1u2 is negative for s > 0, and
decreases to zero at n= 0.

These results are qualitatively different to those analysed in § 3, where it was shown
that gradients of mean Reynolds shear stress normal to a rigid surface develop
when the free-stream turbulence is anisotropic, with a finite Reynolds shear stress
(u∞1u∞2 �= 0). Here we have shown that, over a rigid surface with finite positive or
negative radius of curvature, the gradients of the normal and shear Reynolds stresses
develop even when the free stream is isotropic.

Another way of looking at this result is to note that for large-scale eddies whose
wavelength is much greater than Rc, the blocking is an average effect. However, since
the wavelength is finite, the variations in the curvature of the surface ensure that
local blocking induces small local misalignments between the normal to the surface
and the major principal axis of the Reynolds stress. These are sufficient to generate
a finite shear stress within a distance L∞ from the wall. Physical situations can exist
where both the anisotropic-slope and isotropic curvature effects operate, as shown in
§ 4.2.

This result can also be understood physically by considering a degenerate form of
free-stream ‘turbulence’, consisting of randomly positioned and sparsely distributed
line vortices with initial orientation (a) parallel and (b) perpendicular to the contours
of the undulating surface. Because of their assumed sparse spacing, they interact only
with the surface. For both type (a) and type (b) the blocking effect of the wall is

greater/less at the troughs/peaks with correspondingly greater/less values of u2
1 near

the surface.

4.2. Calculation of the mean velocity field over the undulating surface

It is assumed that in (2.5c) the integral scale of the turbulence L∞ is small compared
to the wavelength Λ and the radius of curvature (Λ2/h), and that the slope is small
(i.e. h/Λ � 1). Then the integral of the mean vorticity Ωz in the source layer is given
by the mean velocity U = Ũ = (Ũ , Ṽ , 0) (outside the viscous layer, viscous stresses are
negligible):

∂

∂t

∫ ∞

ỹ

Ωz dỹ = +
∂

∂t

{
Ũ

(
ỹ

L∞

)
− Ũ

(
ỹ

L∞
→ ∞

)}
=

(
− ∂

∂x̃
u2

1 +
∂

∂ỹ
(−u1u2)

)(
ỹ

L∞

)
.

(4.20)

Note that from (4.18) and (4.17), the second term on the right-hand side of (4.20), the
Reynolds stress term (of order v′2

∞((2π)2h/Λ2)), is larger than the normal stress term,
v′2

∞(2π)hL∞/Λ3. Also, we have shown in the previous section that for L∞ � x̃ > 0 and
0 < ỹ � L∞,

∂

∂x̃
u2

1 < 0,
∂ (−u1u2)

∂ỹ
> 0. (4.21a)

However, for ỹ � L∞, −u1u2 → 0, so that (∂/∂ỹ)(−u1u2) changes sign within L∞,
being positive near the surface and negative away from the surface. It follows that the
secondary flow Ũ (ỹ) induced by the shear stress has approximately zero net flux, and
is therefore restricted to the surface layer ỹ <L∞. However, the smaller horizontal

gradient in normal stress ∂u2
1/∂x̃ has the same sign throughout the source layer and
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therefore drives a mean velocity Ṽ within L∞ with a finite flux. This in turn sets up
a return flow outside L∞.

Hence in the source layer,

∂

∂t

{
U

(
ỹ

L∞
→ 0

)
− U

(
ỹ

L∞
→ ∞

)}
> 0 for x̃ > 0,

< 0 for x̃ < 0.
(4.21b)

Note that the other components of Ω are zero in this two-dimensional mean flow.
Note also that

Ũ ∼ tv′2
∞(2π)2h/Λ2, (4.21c)

while

Ṽ ∼ tv′2
∞(2π)3hL∞/Λ3, (4.21d)

Thus the mean velocity field parallel to the surface varies along the surface. By
continuity, it follows that a mean velocity field U (w) is set up where ỹ > L∞, with flow
into and out of the source layer driven by the finite flux of Ṽ . This external field
in the ‘wave’ layer extends over a distance of order of the wavelength Λ ( = 2π/k)
normal to the surface. The mean flow here is initially irrotational since the turbulence
is homogeneous outside the source layer, and the right-hand side of (2.5c) is zero.
Since ∇ · U (w) = 0 and ∇∧ U (w) = 0, U (w) can be expressed in terms of a streamfunction
Ψ (w),

U (w) =

(
−∂Ψ (w)

∂y
,
∂Ψ (w)

∂x
, 0

)
, (4.22a)

where Ψ (w) satisfies Laplace’s equation, i.e.

∂2Ψ (w)

∂x2
+

∂2Ψ (w)

∂y2
= 0. (4.22b)

Since ∫ ∞

y=ys

U1 dy = 0, (4.22c)

by continuity, as y/Λ → 0 and since Ψ (w) → 0 as y → ∞,

Ψ (w)(x, 0) = −
∫ ∞

0

Ũ dỹ. (4.22d)

However, (∂/∂x̃)u2
1 < 0 for 0 < ỹ. Hence

∫ ∞
0

(∂/∂x̃)u2
1 dỹ < 0, although∫ ∞

0
(∂/∂ỹ)(−u1u2) dỹ → 0.

The mean velocity component in the source layer parallel to the surface Ṽ which
is driven by the normal stress is zero at x̃ = 0, x̃ = ±Λ/2. Since it decays with y over
a distance of order L∞, its approximate form is

Ṽ  Ṽmx exp{−n/L∞} sin kx, (4.22e)

where

Ṽmx ∼ tv′2
∞(2πhL∞/Λ3). (4.22f )

(This is the leading term in a Fourier series expansion.) Therefore,∫ ∞

0

Ṽ dỹ  ṼmxL∞ sin kx. (4.23)
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The solution for Ψ that satisfies (4.22b) is

Ψ (w) = −ṼmxL∞ sin kx exp{−ky}. (4.24)

Thus the mean vertical velocity in the external wave layer is

U
(w)
2 = −2πṼmx

L∞

Λ
exp{−ky}(sin kx, cos kx, 0), (4.25)

so that U
(w)
2 is negative near the troughs and positive over the peaks, while the

horizontal component is negative on the upslopes (in a coordinate system where
dys/dx > 0) and positive on the down (negative) slopes. Note that from (4.25) the
vertical extent of the wave layer is of order Λ/π. Here, U (w) decreases to 10 % of the
maximum value, which is given by∣∣U (w)

∣∣ ∼ L∞

Λ
Ṽmx. (4.26)

Thus, U (w) in the outer wave layer is much smaller than the mean velocity in the
source layer, since L∞/Λ � 1.

In many geophysical situations where the large-scale turbulence above the
undulating surface is anisotropic, e.g. caused by thermal convection, mean flows
can also be generated up and down the slope by the anisotropy-slope mechanism
analysed in § 3.

Note that, as in the analysis of § 3, the mean velocity of the secondary flow reaches
an approximately steady state, determined either by the time scale of the mean
recirculating flow, Tc = Λ/Ũmx or by TL ∼ L∞/v′

∞, whichever is the smaller. Therefore,
from (4.20) and (4.22f),

Ũmx(t ∼ Tc) ∼
(

L∞h

Λ2

)1/2

v′
∞, (4.27)

where Ũmx(t ∼ Tc) ∼ v′
∞(2πh/Λ)1/2 (only if Tc < τ ) (cf. Davidson & Hunt 1987).

5. Experimental observations
To test the theoretical predictions that secondary flows can be induced by the

distortion of turbulence as it impacts onto surfaces without mean shear, two qualitative
laboratory experiments are described. The first examines the formation of secondary
motion generated by anisotropic (axisymmetric) turbulence near a flat surface, when
the orientation of the principal axes of the turbulence are neither perpendicular nor
parallel to the surface. The second is concerned with the formation of secondary flows
when isotropic free-stream turbulence is distorted by an undulating surface (Wong
1985).

Both experiments were conducted inside a mixing tank at the Department of
Applied Mathematics and Theoretical Physics laboratory in Cambridge with quasi-
homogeneous turbulence generated by oscillating grids, one for anisotropic and the
other for isotropic turbulence. The velocity of the secondary flow is of the order of
magnitude of the r.m.s. of the longitudinal fluctuating velocity component in the free
stream, v′

∞, and is studied using the flow-visualization techniques described below.
The installation used was based on that constructed by Thompson & Turner (1975).

The mixing tank used was a cuboid box made of 0.95 cm Perspex sheet and measuring
internally 25.4 cm × 25.4 cm by 45.7 cm deep. The grids were attached to a vertical
stainless steel rod of 0.48 cm diameter which passed through bearings. The rod was
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Oscillating perforated
plate

17 cm

8.25 cm

25.4 cm

~2 cm
α = 18°

t1 = 0 s 10 s 20 s

t2 = 0 s 10 s 30 s20 s

(ii)

(i)
(b)

(a)

Figure 9. (a) Pattern of secondary flow over a flat plate surface owing to the distortion of
axisymmetric turbulence. (b) (i) One set of dye experiments showing the existence of secondary
flow down the inclined flat surface. The frequency is f = 5.5 Hz and stroke is 0.8 cm. (ii)
Control experiment showing the displacement of slightly buoyant dye over the flat surface in
still water. The time interval is indicated in each case.

located at the top and bottom of the tank. The grids were oscillated vertically by
a variable throw crank in the range 0.25 to 1.5 cm attached to the rod and driven
through a 15:1 worm gear by a 240 V alternating current electric motor. The speed
of the motor was varied by using a rheostat to reduce the voltage and measured by
a strobe disk designed to exploit the 50 cycles s−1 oscillation of an electric light. This
enabled the frequency of the grid (between 5.5 and 11 Hz) to be kept within ±3 % of
its mean value. The type and size of the grid and its position above the bottom of
the tank are described below for each experiment (see figure 9).

5.1. Anisotropic turbulence over a plane surface

In the first experiment, the stirring grid is a perforated Perspex plate with holes of
diameter 1.7 cm uniformly distributed over the plate so that the solidity of the plate is

60 %. This produces turbulence fluctuations whose vertical component (u2
2)

1/2 is about

20 % greater than (u2
1)

1/2, (u2
3)

1/2 (Townsend 1976). The grid measures 25 cm × 25 cm
by 1 cm thick and was placed about 17 cm above the bottom of the tank. Below the
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grid was an aluminium flat plate inclined at 18◦ to the horizontal with its top end
about 8.75 cm below the perforated plate. In this way, the axis of the axisymmetric
turbulence, unit vector e, created by the oscillating grid is at an acute angle (about
18◦) to the normal n to the plate.

Figure 9 shows a typical result for the flow-visualization experiments (using dye).
The exposure time is 4 s. The mean circulation occurred when the frequency was above
7 Hz. In figure 9(b) (i) we see the dye front moving from right to left driven by mean
flow over the surface. Figure 9(b) (ii) shows the control experiment in still water to
check the effect of buoyancy on dye observation. We can confirm that the dye hardly
moves in the control experiment. Therefore, we can conclude that the mean flow is
generated over the surface by the blocking of anisotropic turbulence. There are two
sets of secondary flows over the inclined plane which were approximately in a steady
state (see the sketch in figure 9a). In the stronger and larger one which dominates
most of the region between the inclined plane and the oscillating plate, the mean flow
moves downwards along the plane at a velocity of about 1/3 cm s−1 with a layer of
thickness 2 cm ∼ 2L∞, except near the upper end where the weaker one rotates in the
opposite sense to the stronger one. This is consistent with our theory, equation (3.16)
for R  1.2 and α  18◦. Since in the experiment U ∼ v′

∞, sin 2α(1 − 1/R) ∼ 0.1. This
means that in the theoretical model, the coefficient u′

∞s/v
′
∞  u′

∞s/U (which determines
the nonlinear interaction of the flow) is small ( ∼ 1/10) – as in steady-state shear flows.
Since the region at the upper end of the plate is close to the grid, the normal stress
in the axial (y) direction may be smaller than for the other components. Hence the
smaller secondary-flow eddy moves upwards along the plane in this region.

The observation from this experiment is consistent with the theoretical prediction
that secondary flow exists as a consequence of the distortion of eccentrically orientated
axisymmetric free-stream turbulence above a flat inclined surface without mean shear.

A control experiment was performed on a flat plate parallel to an isotropic grid
(described in § 2). No mean flow was observed.

5.2. Isotropic turbulence over an undulating surface

In the second experiment, the surface consists of a fixed undulating surface placed
inside a mixing tank with homogeneous turbulence created over the whole surface by
an oscillating grid. Since the secondary flow over low-amplitude surface undulation
(where h � L∞) would be too weak to be visualized, in the experiment, the amplitude
of the undulating surface was larger than those assumed in the theory of § 4 (where
h � L∞).

The grids were made of square bars having a mesh size M = 5 cm and a bar width
d = 1 cm, i.e. a solidity of 0.36. The grids were placed at about 11 cm above the
bottom of the tank. The frequency of the stroke in this experiment was greater than
7 Hz. An undulatory surface made of polycarbonate (plastic) was fixed at the bottom
of the tank, with wavelength Λ  7 cm and amplitude h  1 cm. According to the
experimental data of Thompson & Turner (1975), the integral length scale L∞ varies
linearly with the distance away from the grid. For the above arrangement, L∞ ∼ 1 cm,
so that h/L∞  1 and L∞/Λ ∼ 1/7. Also, from Thompson & Turner (1975), the r.m.s.
fluctuating velocity v′

∞ is of the order 0.2 to 0.5 cm s−1. This is the appropriate range
for flow visualization using dye or aluminium flakes. Note that the Reynolds number
Re of the turbulence (v′

∞L∞/ν) throughout the depth is approximately constant. The
range of Re in our experiments was between 20 and 50. The flakes indicated a mean
flow pattern centred on the undulation. However, by using blue dye it was possible
to observe the direction of the mean flow, if any.
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t = 10 s
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Undulatory surface Control experiment
with flat surface

Figure 10. Isotropic grid turbulence above an undulating surface. (a) A flow-visualization
experiment using food dye showing the pattern of the secondary flow and the mean-circulation
following dye release in the trough. 10 s ( 20L∞/v′

∞) after release. The frequency is 11 Hz
and stroke is 0.25 cm. (b) Comparison between a flat plate and an undulatory surface on the
dispersion of dye near the surface.

Figure 10 shows a typical result for this experiment showing how a steady mean
flow was set up, with mean flow down into the troughs and up from the crests. In
figure 10(a), the dye (black region) was initially released in the trough. The direction
of the mean flow near the crests is clearly upward and away from the crests. The
depth of the wave-layer with significant secondary flow is about 2 to 3 cm, as expected,
being 1/3 of the magnitude of Λ, and its velocity is between 0.3 and 0.8 cm s−1, which
is the same order as v′

∞(2πh/Λ) as predicted by (4.27). A further confirmation in
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figure 10(b) shows how dye released in the trough moves up the slopes and is elon-
gated, whereas over a flat surface it spreads isotropically.

These experiments showed that the secondary flow exists as a result of the distortion
of isotropic free-stream turbulence above an undulating surface without mean shear.
The results agree qualitatively with the theoretical predictions made in this paper on
the magnitude and form of the secondary flow. The tendency of shear-free turbulence
to generate a mean flow over an uneven surface towards the locations with higher posi-
tive curvature (inwards) is consistent with the experiments of Gessner & Emery (1981).

6. Conclusions
First, we have shown how the form of the spectrum and the degree and form of

anisotropy of shear-free turbulence affect the turbulence on a flat plate using linear
rapid distortion theory. The main results from this theoretical study supported by
laboratory experiments can be summarized as follows.

(a) The effects of blocking on the variances extend farther from the plate for a
low-Reynolds-number spectrum (i.e. with exponential decay), in the sense that the
normal velocity fluctuations decrease more and streamwise and spanwise velocity
fluctuations increase more than those at high Reynolds numbers. The turbulence
kinetic energy is everywhere slightly greater. However, the reduction of the streamwise
integral length scale of vertical velocity fluctuation is less with a typical low-Reynolds-
number spectrum. In this case, xL22 approaches the limit 0.4 L∞ near the surface,
whereas xL22 ∝ Y and approaches to zero in high Reynolds number turbulence. (This
is direct evidence for recommending that turbulence models should have different
parameterizations depending on the form of the spectrum, e.g. Launder & Spalding
1972). Note that at low Reynolds number, the viscous layer is much larger. In fact,

when Re � 50 it dominates the source layer and no amplification of u2
1 is expected,

as shown by the profile of u2
1 in the viscous layer obtained by this study. This is

consistent with McDougall’s (1979) mixing-box experiment.
(b) With impingement of turbulence onto a flat surface, Reynolds stress gradients

are generated normal to the surface over a distance of order L∞ if the turbulence is
anisotropic and if the principal axes are orientated at an acute angle α to the surface.
Then the curl of the Reynolds stress gradients is non-zero (in other words, a gradient
of a Reynolds stress is generated which does not occur with isotropic free-stream
turbulence). This drives a mean secondary flow which grows near the surface linearly
with time t . Its maximum value occurs at the top of the viscous layer and decreases
with distance from the surface y.

(c) Nonlinear mechanisms control the growth of the mean secondary flow U ∗ so
that it is of the order of the r.m.s. velocity of the free stream v′

∞.
Secondly, we have shown how homogeneous free-stream turbulence is distorted by

a long-wavelength undulatory rigid surface. Reynolds stress gradients are generated
that generate mean velocity gradients. In an analysis using rapid distortion theory,
three asymptotic layers were identified over the wavy surface. In the middle ‘source’
layer extending a distance L∞ from the surface, mean vorticity is driven by the
Reynolds stress gradients. If the wavelength Λ is greater than L∞, a recirculating
mean flow is driven over the length scale Λ of the undulation. This may well have
wider implications in geophysical and engineering flows, especially at gas–liquid
interfaces and at erodible solid interfaces (e.g. Bagnold 1941; Feltham et al. 2002).
The results shown here are consistent with the ‘mixing-box’ laboratory experiment of
turbulence above an undulating surface (Wong 1985) and direct numerical simulation
of convective motion over a wavy terrain by Krettenauer & Schumann (1992).
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In a turbulent boundary layer, recirculating flows with streamwise vorticity are
generated by the anisotropy of the turbulence interacting with the surface (Townsend
1976). If the lateral wavelength of these structures ( ∼ 7× boundary-layer depth) is
of the same order as that of surface undulations aligned with the flow, the wave-
modulated blocking mechanism could amplify the shear structures.
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Appendix. Source-layer profiles of variances and co-variances for turbulence
near a flat surface when the axisymmetric principal axis is at an angle α to the
surface
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