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ABSTRACT

Background and aim. Adaptive reuse enhances circularity by repurposing buildings, reducing carbon emissions, and
preserving heritage. However, decision-making is complex due to stakeholder conflicts, regulations, and uncertainties.
This study introduces an integrated framework combining Cross-Impact Balance (CIB) analysis, the Analytic Hierarchy
Process (AHP), and Fuzzy-TOPSIS to support structured, participatory decision-making.

Methods and Data. A mixed-method approach integrates CIB for scenario development, AHP for stakeholder-driven
prioritization, and Fuzzy-TOPSIS for ranking reuse scenarios. A hypothetical case study demonstrates the framework’s
applicability.

Findings. The integration of CIB, AHP, and Fuzzy-TOPSIS provides a structured decision-making approach that
enhances scenario coherence, aligns decisions with stakeholder priorities, and improves scenario ranking robustness. The
framework enables systematic exploration of adaptive reuse scenarios, ensuring alignment with stakeholder objectives.

Theoretical / Practical / Societal implications. Theoretically, this study advances scenario-based decision-making by
integrating scenario development and decision-making approaches, addressing gaps in adaptive reuse decision
frameworks. Practically, it provides policymakers, urban planners, and developers with a structured tool to navigate
complex decision-making in adaptive reuse projects. Societally, it supports sustainable and inclusive urban development
by fostering consistent, long-term strategies that balance environmental, economic, and social considerations.

KEYWORDS: Adaptive Reuse, Circularity, Cross-Impact Balance (CIB) Analysis, Multi-criteria Decision-Making,
Scenario Planning,

1 INTRODUCTION perspectives and a narrow set of options, hindering their
) o potential to achieve long-term sustainability and
The adaptive reuse of buildings has become a cornerstone circularity (Greco et al., 2024; Vardopoulos et al., 2021).

strategy for promoting circularity in the built environment
(Foster, 2020). By repurposing existing structures,
adaptive reuse significantly reduces CO- emissions, curbs
the extraction of virgin materials, and conserves valuable
resources (Shahi et al., 2020). This approach directly
supports global sustainability goals and addresses critical
urban challenges, including resource scarcity and
environmental degradation (Conejos, 2013). However,
despite its promise, adaptive reuse decision-making
processes remain complex and uncertain (Yung & Chan,
2012). These projects often involve a diverse set of
stakeholders with conflicting interests and must navigate
a range of regulatory, economic, and technical constraints
(Wilkinson, 2014). Consequently, the strategies chosen
for adaptive reuse are often limited to short-term

To address the intricacies and uncertainties of adaptive
reuse decision-making, a range of tools and
methodologies has been developed (Nedeljkovic et al.,
2023). Among these, multi-criteria decision-making
(MCDM) models have gained considerable traction for
evaluating adaptive reuse projects (Nadkarni &
Puthuvayi, 2020). These models provide a structured
framework for assessing and comparing alternatives by
incorporating multiple criteria (Love et al., 2023).
However, existing decision-making approaches tend to
adopt either overly generalized frameworks; focused
solely on functional reuse, or overly specific ones, which
prioritize granular design considerations (van Laar et al.,
2024). Both approaches often overlook the broader, long-
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term objectives required to achieve true sustainability and
circularity. Furthermore, most frameworks rely either on
quantitative methods like cost-benefit analyses (Sanchez
et al., 2019), and lifecycle assessments (Foster, 2020), or
on generic qualitative approaches to evaluate the
feasibility of proposed interventions (Wilkinson, 2014).
While these methods offer valuable insights into resource
efficiency and financial viability, they often fail to
account for nuanced, context-specific factors or integrate
forward-looking scenario planning essential for
addressing the dynamic nature of urban development.
Scenarios are particularly valuable for adaptive reuse
decision-making because they offer comprehensive,
future-oriented perspectives. They enable decision-
makers to explore how various reuse strategies might
perform under different environmental, social, and
economic conditions (Weimer-Jehle, 2023). This
foresight helps ensure that decisions are robust, flexible,
and aligned with long-term sustainability and community
goals (Bottero et al., 2022). Normative scenarios, which
outline pathways to achieve specific objectives (van
Notten et al., 2003), are especially relevant for adaptive
reuse. They help stakeholders collaboratively develop a
broad range of desirable futures, ensuring that decisions
reflect shared values and strategic priorities. Despite their
potential, scenario-based methods are underutilized in
adaptive reuse (van Laar et al., 2024), often resulting in
decisions that fail to anticipate future challenges or
opportunities.

There is a pressing need for decision-making frameworks
that are both future-oriented and capable of addressing the
inherent uncertainty and complexity of adaptive reuse
projects. Such frameworks must enable the development
of nuanced, context-specific scenarios that incorporate
normative objectives, reflect stakeholder priorities, and
facilitate the ranking of alternatives based on quantitative
and qualitative criteria. To address these gaps, this study
introduces an integrated decision-making framework that
combines Cross-Impact Balance (CIB) analysis with the
Analytic Hierarchy Process (AHP) and Fuzzy-TOPSIS
methods.

This research highlights the strength of combining these
methodologies into a cohesive, stepwise framework,
demonstrating how they can guide adaptive reuse
decision-making in a structured yet flexible manner.
Using a hypothetical adaptive reuse project, the study
showcases how this approach facilitates scenario
development, interdependency analysis, and the
evaluation of alternatives under uncertainty. The main
finding illustrates how these tools can be integrated into a
systematic process that supports stakeholders in
collaboratively designing and prioritizing adaptive reuse
scenarios. This framework offers a practical pathway for
addressing the complexity of adaptive reuse while
aligning decisions with long-term sustainability and social
responsibility goals.
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2 BACKGROUND LITERATURE

Scenario development and Multi-Criteria Decision
Making (MCDM) analysis are two complementary
methodologies extensively used in decision-making
processes involving complex systems, such as adaptive
reuse. Scenario development enables the exploration of
possible futures by considering various uncertainties
(Weimer-Jehle, 2023), while MCDM provides a
structured framework for evaluating and ranking
alternatives against multiple criteria (Saaty, 1990). The
integration of these methodologies has gained significant
attention, for its potential to improve decision-making
outcomes by combining qualitative and quantitative
insights (Stewart et al., 2013).

2.1 SCENARIO DEVELOPMENT

Scenario development is a structured approach for
envisioning possible future states of a system under
uncertainty. Scenarios, described as: coherent, consistent,
and plausible descriptions of potential futures, are
categorized as exploratory, predictive, or normative (van
Notten et al., 2003). Exploratory scenarios examine
possible futures based on varying assumptions, aiding in
visualizing outcomes. Predictive scenarios forecast likely
futures based on current trends, while normative scenarios
prescribe pathways to achieve specific goals (van Notten
et al., 2003). The normative approach is particularly
valuable for adaptive reuse decision-making, where
alignment with sustainability goals and community values
is essential (Gassner & Steinmiiller, 2018). Scenario
development methods can be categorized into
quantitative, qualitative, and mixed-method approaches,
each suited to different needs. Quantitative methods rely
on mathematical modeling for precision but often limit
stakeholder involvement and are less effective over long-
term projections, as they tend to extrapolate trends and
may give a false sense of certainty (Amer et al., 2013). In
contrast, qualitative methods, like Intuitive Logics (IL),
excel in addressing complex issues through nuanced,
context-specific insights. However, they can oversimplify
systems by focusing on a limited number of uncertainties,
potentially overlooking critical factors (Rowe et al.,
2017).

Mixed-method approaches effectively combine the
strengths of both, integrating data-driven analysis with
stakeholder input to foster comprehensive discussions
about future possibilities (Symstad et al., 2017). An
example is Cross-Impact Balance (CIB) analysis, a semi-
quantitative method that uses systems theory to model
integrative and holistic scenarios (Weimer-Jehle, 2006).
By employing formal logic to structure quantitative and
qualitative inputs, CIB generates internally consistent
narrative scenarios based on interactions among drivers of
change, making it particularly suitable for complex socio-
technical systems (Weimer-Jehle, 2023).



2.2 MULTI-CRITERIA DECISION-MAKING

Multi-Criteria Decision-Making (MCDM) methods, such
as AHP (Analytic Hierarchy Process), Fuzzy TOPSIS,
PROMETHEE, and VIKOR, are widely used for
evaluating and ranking alternatives across multiple
conflicting criteria (Sahoo & Goswami, 2023). AHP
excels in hierarchically structuring complex problems,
prioritizing criteria through pairwise comparisons, and
aggregating stakeholder preferences into a unified priority
structure, fostering consensus while respecting diverse
perspectives (Saaty, 1990). Fuzzy TOPSIS, which
extends the classical TOPSIS method, -effectively
manages vagueness and subjectivity by using fuzzy set
theory to rank alternatives based on their closeness to
ideal and negative ideal solutions (Chen, 2000).
Combining AHP and Fuzzy TOPSIS enhances decision-
making by integrating AHP’s hierarchical structuring and
consistency checks with Fuzzy TOPSIS’s capacity for
handling uncertainty (Efe, 2016). This hybrid approach is
particularly ~ valuable  for  complex, uncertain
environments, as it provides a structured yet flexible
evaluation framework (Mathew et al.,, 2020). Such
integrations have been applied successfully in fields like
supply chain management (Patil & Kant, 2014), and
urban planning (Dang et al., 2019), demonstrating their
versatility and effectiveness. While the combination of
AHP and Fuzzy TOPSIS effectively ranks uncertain
alternatives based on stakeholder preferences, it often
relies on externally provided options, highlighting the
need for an integrated approach that develops and ranks
scenarios concurrently.

2.3 INTEGRATION OF SCENARIO
DEVELOPMENT AND MULTI-CRITERIA
DECISION ANALYSIS

The integration of scenario development and MCDM
addresses the limitations of each methodology when
applied independently. Scenario development often lacks
a structured mechanism to prioritize options within each
scenario, while MCDM can be overly deterministic
without considering the broader context of future
uncertainties (Sahoo & Goswami, 2023). By combining
these methods, decision-makers can evaluate the
robustness of alternatives across different scenarios,
incorporate qualitative and quantitative dimensions of
uncertainty, and enhance stakeholder engagement by
providing a more holistic view of decision impacts (Sahoo
& Goswami, 2023).

Numerous frameworks integrate scenario development
with multi-criteria decision-making (MCDM), typically
following one of two approaches. The scenario-driven
MCDM approach develops scenarios first and applies
MCDM to rank alternatives within each scenario (Bottero
etal., 2022). In contrast, the MCDM-driven approach uses
MCDM criteria to shape scenarios, aligning them with
decision priorities (Della Spina, 2020). These frameworks
have been applied in various fields, including urban
planning, supply chain management, and engineering .
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However, these studies often face limitations, such as
relying on a limited number of scenarios that fail to
capture the full range of possibilities. Many frameworks
lack consistency calculations, reducing the coherence and
realism of the scenarios (Weimer-Jehle, 2006).
Additionally, there is an overemphasis on predictive
scenarios and mathematical models, prioritizing
quantitative precision over qualitative insights and
stakeholder perspectives (Weimer-Jehle, 2023). These
shortcomings diminish the robustness and practical
applicability of the scenarios in addressing complex
challenges.

The Cross-Impact Balance (CIB) method overcomes
these challenges by generating numerous consistent and
plausible scenarios through a combination of qualitative
and quantitative inputs (Weimer-Jehle, 2023). This makes
it particularly effective for exploring complex systems.
However, CIB has not been fully integrated with MCDM
methods like AHP or Fuzzy TOPSIS, which excel at
prioritizing and ranking alternatives. Combining these
approaches offers significant potential, enabling the
systematic creation, evaluation, and prioritization of
scenarios within a unified framework. In a participatory
setting, this integration enhances stakeholder engagement
by involving them in the entire process, from scenario
development to ranking, ensuring scenarios are aligned
with diverse preferences and easing the adoption of the
chosen scenario through consensus and trust in the
outcomes.

3 STEPWISE APPROACH FOR
COMBINING CROSS-IMPACT
BALANCE ANALYSIS, AHP AND THE
FUZZY TOPSIS METHODS

This section outlines a structured, multi-step framework
tailored for decision-making in normative, uncertain, and
complex contexts such as adaptive reuse projects (Figure
1). By integrating Cross-Impact Balance (CIB) analysis,
the Analytic Hierarchy Process (AHP), and Fuzzy-
TOPSIS methodologies, this approach effectively
addresses the uncertainties inherent in adaptive reuse. It
enables stakeholders to collaboratively assess, develop,
and prioritize reuse scenarios, demonstrating its
application through a hypothetical example of an adaptive
reuse project.

3.1 STEP 1: DEFINE THE AIM AND
OBJECTIVES

The first step establishes the foundation for the decision-
making process by ensuring a clear understanding of the
project's scope and goals. To create normative scenarios;
future pathways that are achievable (van Notten et al.,
2003), this step focuses on defining objectives that will
guide subsequent scenario development. Stakeholders
collaborate to articulate the overarching goal and themes,
identify desired objectives, and determine the criteria
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necessary to evaluate progress toward these objectives. To
balance adequacy and completeness in the scenario
analysis, it is recommended to include 9—15 objectives for
the development of descriptors and variants in Step 2, in
line with the methodological guidelines of Weimer-Jehle,
(2023). By addressing these critical elements, this step
provides a structured and goal-oriented process fostering
clarity, alignment, and a shared vision among all
stakeholders.

Step 1: Define the Aim and objectives

Step 2: Develop
descriptors and
ATt relationships
Cross-Impact
—— Balance Analysis
(c1B)
% Analytical
Step 5: Detennoitr;jlzcgﬁt‘l’neeswelghts of the | Hierarchy Process
(AHP)
Step 7: Nomalize
the weighted the weighted
fuzzy decision fuzzy decision
matrix matrix
Step 8: Determine the fuzzy positive-
ideal solution (FPIS) and fuzzy negative- ——  FUZZY Topsis
ideal solution (FNIS)
Step 9: Calculate 2
Step 10: Obtain
t::c:‘it:ennc: n?: the closeness
coefficients of
from::llss B each scenario

Figure 1: Stepwise approach for combining cross-impact
balance analysis (CIB), AHP and the Fuzzy TOPSIS methods

3.2 STEP 2: DEVELOP DESCRIPTORS AND
VARIANTS

The CIB method uses systems theory and formal logic to
create internally consistent scenarios based on interacting
drivers of change, integrating both qualitative and
quantitative inputs (Weimer-Jehle, 2006). A key step in
this process is identifying descriptors; ‘critical factors
defining the system’ and their associated variants, which
represent specific states these factors can assume
(Weimer-Jehle, 2023). Descriptors should be developed
at a high aggregation level (Weimer-Jehle, 2023), with
each descriptor representing one objective, that can be
supported by related criteria and / or a narrative that
explains the descriptor's role and significance within the
system. Variants then enable systematic exploration of

https://doi.org/10.52202/080684-0007
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scenarios by capturing the range of possible outcomes for
each descriptor. For example, in adaptive reuse projects,
"Environmental impact" could be a descriptor for the
objective: ‘Reducing environmental impact of the
building’, with variants such as "Low," "Medium," and
"High." Stakeholders are encouraged to assign descriptive
names and narratives to variants for clarity and effective
communication, keeping 2—4 variants per descriptor as
recommended by (Weimer-Jehle, 2023). The CIB
analysis requirements of completeness (descriptor
variants must cover all possible futures), mutual
exclusivity (each development aligns with only one
variant), and absence of overlap (variants of different
descriptors must address distinct topics) should also be
taken into account when developing variants (Weimer-
Jehle, 2023).

Although the CIB methodology supports variants with
various characteristics (ordinal, nominal, or ratio) this
paper focuses on descriptors with ordinal measurement
scales. For instance, "user demand" as a descriptor might
include ordinal variants like "Low," "Medium," and
"High," reflecting their ranked importance. This approach
simplifies the system, making it possible to translate
qualitative ordinal variants into linguistic variables
essential for integration with the Fuzzy TOPSIS method.
Using ordinal descriptors ensures consistency in both the
CIB analysis and fuzzy TOPSIS methods, enabling
structured evaluation of interactions and their influence
on adaptive reuse scenario outcomes.

3.3 STEP 3: IDENTIFY RELATIONSHIPS
BETWEEN DESCRIPTORS AND VARIANTS

Identifying the interrelationships between descriptor
variants is critical in Cross-Impact Balance (CIB)
analysis, as it ensures the logical coherence and
plausibility of the scenarios generated (Weimer-Jehle,
2023). These interrelationships capture how one variant
influences or is influenced by another, reflecting the
underlying dynamics of the system. Without this step, the
analysis risks inconsistencies or contradictions,
undermining the reliability of the scenarios (Weimer-
Jehle, 2023).

To identify these relationships, the scale recommended by
(Weimer-Jehle, 2006) provides a structured and
systematic approach. This scale uses a range from -3 to +3
to denote the influence of one variant on another: +3
indicates a strong positive impact, 0 signifies no impact,
and -3 represents a strong negative impact. These values
are assigned within a cross-impact matrix, ensuring all
potential interactions are considered (Table 1). This
elicitation of data can be conducted in a participatory
group setting with stakeholders, fostering collaboration
and shared understanding. Alternatively, other methods
such as expert surveys (Weimer-Jehle et al., 2012), Delphi
techniques (Tori et al., 2023), or literature reviews
(Weimer-Jehle, 2023), can be employed to gather the
required input systematically. By following this method,
the CIB process produces scenarios that are not only
internally consistent but also reflective of the real-world,



project-specific dynamics among the factors studied
(Weimer-Jehle, 2023).

Table 1: Example of a cross-impact balance judgement section

Political and Community

support
Environmental High  Medium Low
Impact
Low 3 2 2
Medium 2 1 -1
High -3 -1 2
-3 Strongly hindering 0 Neutral ~ Strongly promoting +3

3.4 STEP 4: CONSTRUCT SCENARIOS

In Cross-Impact Balance (CIB) analysis, constructing
scenarios involves generating combinations of descriptor
variants and assessing their internal consistency. The
consistency of each scenario is determined using the
impact sum, which quantifies the cumulative influence of
all variants in a scenario on one another (Weimer-Jehle,
2006). This sum, derived from the cross-impact matrix,
indicates whether the combination of variants aligns with
the specified interdependencies among descriptors.
Without considering interdependencies, any combination
of descriptor variants could form a scenario. While the
CIB methodology tolerates marginal inconsistencies due
to the qualitative nature of input data (Weimer-Jehle,
2023), high inconsistency values suggest contradictions,
whereas low values indicate internally consistent and
plausible scenarios. To determine the acceptable
inconsistency threshold the following Equation (1) can be
used (Weimer-Jehle, 2023), in which IC; is the acceptable
inconsistency value and n is the number of descriptors:

1
vn — 1

ICS:E

(M
The calculation process can be facilitated using the
ScenarioWizard software!, which automates the
assessment of consistency across all possible
combinations of descriptor variants. The software
produces a scenario tableau as an outcome of this
calculation. The tableau displays all consistent scenarios,
highlighting the selected variants for each descriptor, and
serves as input for the decision analysis in Steps 6—10.
This structured representation enables researchers and
stakeholders to identify and analyse the most plausible
scenarios, ensuring that the results are both rigorous and
actionable. By employing this method, CIB analysis
supports the systematic exploration of potential futures
and aids decision-making processes based on robust,
internally consistent scenarios.

! https://www.cross-impact.org/english/CIB e ScW.htm
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3.5 STEP 5: DETERMINING THE WEIGHTS OF
THE OBJECTIVES

To pick the most appropriate scenario for a project, it is
important that the preferences of the stakeholders are
reflected in the outcomes of the decision model. The
Analytical Hierarchy Process (AHP) is a robust method
for multicriteria decision-making that ensures decisions
align with stakeholder priorities through a structured
stepwise approach. The process begins with pairwise
comparisons, where stakeholders evaluate the relative
importance of the objectives from step 2, using Saaty’s 9-
point Likert scale, ranging from equal importance (1) to
extreme superiority (9) (Saaty, 1990). These comparisons
populate a matrix that reflects the relative weights of each
objective, following Equation (2).

aiq
M=[;

An1

a}n {1/9 Sai'jﬁgifi'vj} )
ann ai,j=1, lfl = ]

Once the matrices are completed, weights are calculated
by normalizing the values within each column to reflect
the relative importance of the objective. This involves
summing the values in each column }; a, ; for 7, dividing
each objective ai; by the total of its column, and then
averaging the normalized scores for each row. The weight
for each objective, is computed using Equation (3):

3)
i=1Qij

1% agj
Wy = E Zzn— fOT'k = 1,2,3,...,Tl
Jj=1

where n is the number of objectives. This structured
normalization process aggregates the scores to derive the
final weights, ensuring a systematic approach that
integrates both qualitative judgments and quantitative
analysis into the decision-making framework.
The AHP then employs the Consistency Ratio (CR) to
assess the coherence of decision-makers' judgments. The
CR is determined by comparing the Consistency Index
(CI) to the Random Index (RI), which represents the
average consistency expected by chance for matrices of a
given size (Saaty, 1990). If the CR exceeds a commonly
accepted threshold, typically 0.10, it signals that the
judgments are not adequately consistent and may need to
be revised or reevaluated to ensure reliability.
For instance, if a stakeholder considers ‘Environmental
Impact” more important than: ‘Cost’, and ‘Cost’ more
important than: ‘Social Impact’, it is logically expected
that ‘Environmental Impact’ would also be prioritized
over ‘Social Impact’. The Consistency Ratio (CR)
quantifies the coherence of such pairwise comparisons. A
CR below 0.10 indicates a satisfactory level of
consistency in the judgments, while a CR exceeding 0.10
suggests inconsistencies that require revision. This
evaluation should be performed independently for each
matrix and stakeholder to ensure precision and reliability
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in the decision-making process. The CR is calculated
using Equation (4):

Cl

CR:H

“)

The Consistency Index (CI) is a key metric in the AHP
used to measure the logical coherence of judgments in
pairwise comparison matrices, while the Random Index
(RI) represents the average CI derived from 500
reciprocal matrices populated with values from Saaty’s
fundamental 1-9 scale (Saaty, 1990). The RI varies based
on the number of criteria in a matrix, as outlined in Table
(2). The Cl is calculated using Equation (5):

cl = Amax —-n

e )
where A4 1S the maximum eigenvalue of the
comparison matrix, and 72 is the number of objectives. To
compute the eigenvalue for a pairwise comparison matrix
in AHP, multiply the pairwise comparison matrix M by
the priority vector w using Equation (6):

M x w Amax *w

(6)
Here, w represents the normalized priority weights of the
criteria. For each row i in the resulting matrix A *
w computed by using Equation (7):
(A * w);

A- =
L Wi

(7

Where (A * w); is the i-th element of the resulting vector,
and w; is the J-th element of the priority vector. The
maximum eigenvalue of the comparison matrix is then
calculated by taking the average value of all 4;, Where n
is the number of objectives using Equation (8):

oA
Amax = lnl :

®)
The consistency check is essential to ensure that
judgments are logically consistent, as inconsistencies can
compromise the validity of the decision-making process,
leading to unreliable outcomes. This process reinforces
robust decision-making by encouraging stakeholders to
critically evaluate their judgments, ensuring coherence
and reliability throughout the analysis.

Table 2: Random Index (RI) for different numbers of objectives
(Saaty, 1990)

Number of criteria Random Index (RI)
2 0
3 0.58
4 0.90
5 1.12

5 (Lig * Wy, Mg * Wa, Usgq * W1)
V H

(L * Wy, My * Wy, Uy * We)
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3.6 STEP 6: CONSTRUCT THE WEIGHTED
FUZZY DECISION MATRIX

Following the elicitation of decision-makers' preferences
through the AHP method, the subsequent step involves
conducting decision analysis utilizing the Fuzzy TOPSIS
method. The Fuzzy TOPSIS method is an extension of the
traditional Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) that incorporates
fuzzy set theory to handle uncertainty and vagueness in
decision-making (Chen, 2000). This approach is
particularly useful when preferences are expressed in
qualitative terms, such as linguistic variables, which are
subjective and imprecise by nature, such as with scenarios
in the CIB analysis. Fuzzy sets enable the representation
of linguistic variables such as "Low," "Medium," and
"High" as fuzzy numbers. Among the different forms of
fuzzy sets, triangular fuzzy numbers (TFNs) are most
commonly used due to their simplicity and computational
efficiency (Chen, 2000). A triangular fuzzy number is
represented as Zl-]- = (lij,mij, uij) where [ is the lower
bound, m is the most likely value, and u is the upper
bound, forming a triangular membership function. A
fuzzy number A on R is defined as a triangular fuzzy
number (TFN) it its membership function p5 (x):R >
[0,1] is expressed as follows in Equation (9):

x—1
_— [<x<m
m-—1
Hax) = u—x' m<x<u ©)
u—m
tO, Otherwise

To convert linguistic variables into fuzzy numbers, a
predefined fuzzy scale should be developed which assigns
specific TFNs to each linguistic term based on expert
judgment or domain knowledge. This allows qualitative
assessments to be transformed into quantitative data that
can be processed within the Fuzzy TOPSIS framework,
enabling a more nuanced and flexible evaluation of
scenarios under uncertainty. A fuzzy scale is employed to
transform the qualitative ordinal variants from the
consistent scenarios in Step 4 into fuzzy numbers, which
are subsequently used to construct the decision matrix.

Following the fuzzification process, construct the fuzzy
pairwise decision matrix by first calculating the relative
importance of each objective (w;) following step 5, using
Equation (10):

Vo= Ay xowy = (ly=wysmy < wpug = w;) - (10)
The overall weighted fuzzy decision matrix can then be
constructed using Equation (11), Where: m is the number

of scenarios, and n is the number of objectives.

(1n



3.7 STEP 7: NORMALIZE THE WEIGHTED
FUZZY DECISION MATRIX

To normalize the weighted fuzzy decision matrix V, each
objective V;; = (I;j,m;j,u;;) is normalized based on the
type of objective (benefit or cost).

For benefit objectives (higher values are preferred)
Equation (12) can be used:

lij mij uij

Rij = ( (12)

=
U U uj

For the cost criteria (lower values are preferred) Equation
(13) is used:

17 m: u-
R.. = (2 L
Ry = G D) (13)

Where uf is the maximum upper bound for the j — th

objective, and [; is het minimum lower bound for the j —
th objective.

3.8 STEP 8: DETERMINE THE FUZZY
POSITIVE-IDEAL SOLUTION (FPIS) AND
FUZZY NEGATIVE-IDEAL SOLUTION
(FNIS)

In the Fuzzy TOPSIS method, the FPIS (Fuzzy Positive
Ideal Solution) represents the optimal fuzzy values for
each objective, while the FNIS (Fuzzy Negative Ideal
Solution) reflects the least desirable outcomes. These are
determined by identifying the best and worst fuzzy scores
across all scenarios for each objective. Scenarios are
ranked based on their proximity to the FPIS and distance
from the FNIS, with the closest scenario to the FPIS and
farthest from the FNIS considered the best choice.

If x;; represents the fuzzy evaluation of the i-th alternative
with respect to the j-th objective, the FPIS for each
criterion can be represented as:

A = max;x;; if the objective is beneficial
i {minixi]- if the objective is non — beneficial (14)
Conversely, If x;; represents the fuzzy evaluation of the i-
th alternative with respect to the j-th objective, the FNIS
for each objective can be represented as:

A min;x;; if the objective is beneficial
i {maxixi]- if the objective is non — beneficial

(15)

3.9 STEP 9: CALCULATE THE DISTANCE OF
EACH SCENARIO FROM FPIS AND FNIS

The distances from each scenario to the FPIS (d;) and

FNIS (d;) are calculated using the fuzzy distance

measure: Euclidian distance using Equation (16).

The distance d between two fuzzy numbers A, =

(L, my,uy) and &, = (I, my,u,) is:
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O 1
d(4,,4;) = 3= [l = 1)? + (my —my)?

(16)

+ (w —up)?]

To calculate the distances from FPIS and FNIS to each
scenario the following Equations (17&18) can be used:

Distance from FPIS:

(@) df |XhaRij — A)? (17)
Distance from FNIS
(d7): di /2;11(&; - A7)? (18)

Here, n is the number of objectives, x;; is the fuzzy score
of the i-th scenario on the j-th objective, and A;' is the
score of the FPIS on the j-th objective, and 4} is the score
of the FNIS on the j-th objective. Using these distances,
each scenario’s relative closeness to the ideal solution is
calculated, which is used to rank the scenarios. The
alternative with the shortest distance to the FPIS and the
longest distance from the FNIS is considered the optimal
choice.

3.10 STEP 10: OBTAIN THE CLOSENESS
COEFFICIENTS OF EACH SCENARIO

In the Fuzzy TOPSIS method, the closeness indicator is a
metric for ranking scenarios by measuring their proximity
to the Fuzzy Positive Ideal Solution (FPIS) and their
distance from the Fuzzy Negative Ideal Solution (FNIS).
This ranking provides decision makers with a clear
understanding of which scenario best aligns with their
preferences and objectives. By summarizing each
scenario's performance across all objectives, the closeness
indicator supports informed, consensus-driven decisions,
highlighting not only the best options but also how closely
each one approaches the ideal conditions. The closeness
indicator is calculated by using the following Equation

(19):

di

cC; =
Ydf+d;

(19)

Where d} is the distance of the /-t alternative from the
FPIS, and d; is its distance from the FNIS. The closeness
indicator, CC;, ranges from 0 to 1, where a value closer to
1 indicates that the scenario is closer to the FPIS and
farther from the FNIS, making it a more preferable option.

4 HYPOTHETICAL EXAMPLE

The application of the newly introduced mixed-method
approach is demonstrated using a hypothetical example of
an adaptive reuse project.
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4.1 STEP 1: DEFINE THE AIM AND
OBJECTIVES

For the hypothetical example we have developed the
following aim, objectives and criteria. For the selection of
the objectives and criteria we have drawn inspiration from
van Laar et al., (2024), who conducted an extensive
literature review on criteria and objectives in the decision-
making process of adaptive reuse. For practical reasons
we have limited the number of objectives to five.

Table 3: The project aim and objectives of the hypothetical
example

The aim of this project is to adaptively reuse an

Project existing building to meet functional, environmental,
Aim and social needs while preserving its historical,
significance.
O1) To increase social impact
02) To reduce environmental impact
Objectives  03) To reduce cost

04) To improve the physical quality and durability
of the building

0O5) To preserve the historic and cultural value of
the building

4.2 STEP 2: DEVELOP DESCRIPTORS AND
VARIANTS

Based on the objectives chosen, comprehensive
descriptors and variants were developed that included
names, description, objective and criteria (Appendix A).
For all descriptors, 3 ordinal variants were drawn up: a
strong variant in which the objective within the descriptor
is definitely reached, a medium variant in which the
objective is partially reached, and a weak variant in which
the objective is not reached.

The same linguistic variables were chosen for each
objective to simplify the FUZZY translation in Step 6.

An example for the descriptor Social impact is provided
in Table (4).

Table 4: The descriptor: "Social Impact" and its corresponding
variants

Descriptor:

Social Impact Variants

Al: Social Heaven (strong variant)
The adaptive reuse project enhances

social impact by addressing socio-
To . . .
increase economic factors like house prices,
Objective . gentrification, and perceived safety

social . . .

Tmpact while boosting neighbourhood
liveability. It fosters social cohesion by
serving as a community hub and
improves surrounding public spaces.
A2: Socially Acceptable (medium
variant)

The adaptive reuse project avoids
. negative socio-economic impacts, with

Social . .

N some focus on enhancing public spaces
cohesion . . .
R and liveability. While not central to

Public . .

spaces fostering community, it offers spaces for

Criteria Liviabili ; social interaction.
Socio- y A3: Socially Limited (weak variant)
. The adaptive reuse project negatively
economic . . : =
o impacts socio-economic conditions,
conditions

potentially raising housing prices and
driving gentrification. It fails to
improve liveability, public spaces, or
social cohesion.

4.3 STEP 3: IDENTIFY RELATIONSHIPS
BETWEEN DESCRIPTORS AND VARIANTS

We have mapped the interactions between all descriptor-
variant combinations using the scale from Weimer-Jehle,
(2006). This resulted in the following Cross-impact
balance matrix (Table 5):

Table 5: The completed CIB matrix for the hypothetical example

. B) . D) Physical E) Historic and

CIB Matrix A) Social Impact :Zi;l;larcotnmental ©) Cost ql)lalit))]f Czlltural value

Al A2 A3 Bl B2 B3 Cl C2 C3 D1 D2 D3 El E2 E3
A) Social Impact:
Al) Social heaven 3 2 -2 1 0 0 0 0 0 3 2 -2
A2) Socially acceptable 2 1 -1 0 0 0 0 0 0 2 1 -1
A3) Socially limited -2 -1 2 -1 0 1 0 0 0 -2 0 2
B) Environmental Impact:
B1) Sustainability heaven 2 1 0 -3 -1 3 0 0 0 0 -1 0
B2) Environmentally friendly 0 0 0 -1 0 1 0 0 0 1 1 -1
B3) Environmentally unfriendly 2 -1 1 -1 1 -1 0 0 0 1 0 0
C) Cost:
C1) Cost Efficient 1 1 -1 -1 2 1 3 2 1 -2 -1 2
C2) Moderately costly 0 0 0 -1 2 1 1 0 -1 1 1 0
C3) Very costly -2 -1 1 2 -2 2 2 1 -2 -3 -1 3
D) Physical quality:
D1) Strong and Durable 1 0 0 3 2 0 2 -1 -2 3 2 -2
D2) Sufficiently durable 0 0 0 2 1 0 1 1 -1 2 1 0
D3) Poor building quality 0 0 1 2 0 1 -2 1 2 -3 -1 2
E) Historic/Cultural value
E1) Preserving History 2 1 -1 -1 0 0 2 -1 2 3 2 -2
E2) Attention to history 1 0 0 0 0 0 -1 0 1 2 1 -1
E3) Ignoring history -2 -1 2 1 0 0 1 0 -1 -1 0 2
Impact Sum [6 T3 T2 | [4 Je T-1t 1 [=2 T3 13 1 JT6 T[4 JTa 1 [4 J2 =2
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4.4 STEP 4: CONSTRUCT SCENARIOS

The consistency analysis was performed using the
ScenarioWizard software, with a consistency value of 1
following Equation (1). This resulted in 4 consistent
scenarios that are included for decision analysis (Figure
2). Each scenario consists of a consistent combination of
variants that is characterised by strong (green), medium
(yellow), or weak (red) in relation to the objective of the
descriptor.

Social Impact: Social Impact:
Social heaven Socially limited
Environmental Impact: Ei Impact: Impact: || Environmental Impact:
inabili ven i lly unfriendly ility heaven || Envil lly unfriendly
Cost: Cost. Cost: Cost.
Very costly Moderately costly Very costly Moderately costly
Physical quality: Physical quality:
Strong and Durable Poor building quality

Historic and Cultural value:
Preserving History

Historic and Cultural value:
Attention to history

Historic and Cultural value:
Ignoring history

Figure 2: The scenario tableau for the hypothetical example

4.5 STEP 5: DETERMINING THE WEIGHTS OF
THE OBJECTIVES

We determined the weights of the objectives through the
AHP methodology by using the Saaty’s 9-point Likert
scale (Saaty, 1990). The relative importance of the
objectives is displayed in the pairwise comparison matrix:

[0 0 0 0 o
0;[ NG NG G (9)}
%3 1 ® B O

M=0s102 033 1 3 () (20)
*1(0.14) (0.2) (0.33) 1 3)
s[.11) 014 02) ©33) 1]

The pairwise comparison matrix was normalized by
dividing each entry by the sum of its column using
Equation (3), which results in the normalized pairwise
comparison matrix: Equation (21).

0,
(0.520)
21(0.173)
(0.104)
*1(0.073)
(0.057)

0,
(0.545)
(0.182)
0.061)
(0.036)
0.027)

05
(0.476)
(0.286)
(0.095)
(0.032)
0.019)

0,
(0.437)
0.312)
(0.188)
(0.062)
(0.041)

0s
(0.400)
(0311)
0.222)
(0.133)
(0.089)

@n

The relative weight w;, of each objective was calculated
by averaging the normalized values across each row.
Table (6). presents the final weights. The objective “To
reduce cost” is the most important, while the objective
“To increase social impact” is the least important.

Table 6: The weights for each objective following AHP

Objective (0y) Weight (wy,)
To reduce cost (03) 0.476
To preserve the historic & cultural 0.253
value of the building (05)

To improve the physical quality/ 0.134
durability of the building (0,)

To reduce environmental impact (0,) 0.067
To increase social impact (0;) 0.045

71

To ensure the judgments were consistent, the largest
eigenvalue was computed using Equation (22) along with

the Consistency Index (CI); Equation (23) and
Consistency Ratio (CR); Equation (24):
Largest Eigenvalue:
A+ + 23+ 4+ A5
Amax = 5
5.83 + 5.78 + 551 + 5.42 + 4.07 (22)
Anax = 5
=5.333
Consistency Index (CI):
Amax — 1 5333 — 5
= = = 23
Cr == s = 0083 (23)

The Random Index (RI) value with 5 objectives is: 1.12
(Table 2).

Consistency Ratio (CR)
(24)

The Consistency Ratio (CR) = 0.074 is below the
threshold of 0.1, indicating that the pairwise comparison
matrix is acceptably consistent.

4.6 STEP 6: CONSTRUCT THE WEIGHTED
FUZZY DECISION MATRIX

The decision matrix D with linguistic variables is
constructed based on the outcome of the consistency
analysis from Step 4 (Figure 2), with S, being the
scenarios; Equation (25).

o [ S S, S, s,
1 |Strong Weak  Weak  Weak
2 |Strong Weak Strong Weak
= 2
D=0 Weak Medium Weak Medium 25
* |Strong Strong Strong Weak
> |Strong Medium Weak Weak

To transform the linguistic decision matrix into a fuzzy
matrix, the following conversion scale is used that
incorporates triangular fuzzy numbers (Table 7).

Table 7: The linguistic variable conversion table

Linguistic variable Corresponding triangular fuzzy

numbers (1, m, u)

Weak (1,3,5)
Medium (3,5,7)
Strong (5.7.9)

After conversion the following fuzzy decision matrix Dy
was constructed using Equation (26):
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51 52 53 54
(579 (135) (135 (13,5)
(579 (135) (579 (13,5)
(135 (357 (135 (357)
(579 (579 (57,9 (13,5)
(579 (357) (135 (13,5)

(26)

To arrive at the weighted fuzzy decision matrix the
relative weights of the objectives wy, were multiplied with
the triangular fuzzy numbers (Table 8):

4.7 STEP 7: NORMALIZE THE WEIGHTED
FUZZY DECISION MATRIX

Using Equation (12) we can then normalize the weighted
fuzzy decision matrix (Table 9).

Table 8: The weighted fuzzy decision matrix for the hypothetical example

Scenario 1 (S;)

Scenario 2 (S,)

Scenario 3 (S3)

Scenario 4 (S,)

Social Impact (0,)

Environmental impact (0,)

Cost (03)
Physical quality (0,)

Historic/ cultural value (05)

(0.225, 0.315, 0.405)
(0.335, 0.469, 0.603)
(0.476, 1.428, 2.380)
(0.670, 0.938, 1.206)
(1.265, 1.771,2.277)

(0.045, 0.135, 0.225)
(0.067, 0.201, 0.335)
(1.428, 2.380, 3.332)
(0.670, 0.938, 1.206)
(0.759, 1.265, 1.771)

(0.045, 0.135, 0.225)
(0.335, 0.469, 0.603)
(0.476, 1.428, 2.380)
(0.670, 0.938, 1.206)
(0.253,0.759, 1.265)

(0.045, 0.135, 0.225)
(0.067, 0.201, 0.335)
(1.428, 2.380, 3.332)
(0.134, 0.402, 0.670)
(0253, 0.759, 1.265)

Table 9: The normalized weighted fuzzy decision matrix for the hypothetical example

Scenario 1 (5;)

Scenario 2 (S,)

Scenario 3 (53)

Scenario 4 (S,)

Social Impact (0,)

Environmental impact (0,)

Cost (03)
Physical quality (0,)

Historic/ cultural value (0z)

(0.095, 0.132, 0.170)
(0.141, 0.197, 0.253)
(0.200, 0.600, 1.000)
(0.282, 0.394, 0.507)
(0.532, 0.744, 0.957)

(0.014, 0.041, 0.068)
(0.020, 0.060, 0.101)
(0.429, 0.714, 1.000)
(0.201, 0.282, 0.362)
(0.228, 0.380, 0.532)

(0.019, 0.057, 0.095)
(0.141,0.197, 0.253)
(0.200, 0.600, 1.000)
(0.282, 0.394, 0.507)
(0.106, 0.319, 0.532)

(0.014, 0.041, 0.068)
(0.020, 0.060, 0.101)
(0.429, 0.714, 1.000)
(0.040, 0.121, 0.201)
(0.076, 0.228, 0.380)

4.8 STEP 8: DETERMINE THE FUZZY
POSITIVE-IDEAL SOLUTION (FPIS) AND
FUZZY NEGATIVE-IDEAL SOLUTION
(FNIS)

Using the normalized weighted fuzzy decision matrix
from Step 7 (Table 9), the FPIS and FNIS were calculated
for each objective using Equation 14 and 15 resulting in
Table (10).

Table 10: The FPIS and FNIS values for each objective in the
hypothetical example

Objectives (0,,) FPIS FNIS
. (0.095, 0.132, (0.014, 0.041,
Social Impact (0,) 0.170) 0.068)
Environmental impact (0.141, 0.197, (0.020, 0.060,
0,) 0.253) 0.101)
(0.429,0.714, (0.200, 0.600,
Cost (05) 1.000) 1.000)

. . (0.282,0.394, (0.040, 0.121,
Physical quality (0,) 0.507) 0.201)
Historic/ cultural value (0.532, 0.744, (0.076, 0.228,
(05) 0.957) 0.380)

4.9 STEP 9: CALCULATE THE DISTANCE OF
EACH SCENARIO FROM FPIS AND FNIS

Using the Euclidean distance each scenario from the FPIS
and FNIS were computed using Equation (16). Distances
were calculated for each scenario based on the FPIS
D*and FNIS D~ (Table 11).
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Table 11: The distance from each scenario to the FPIS and FNIS

Scenario (S,) D™ (FPIS Distance) D~ (FNIS Distance)

Scenario 1 (S;) 0.543 0.802
Scenario 2 (S,) 0.786 0.617
Scenario 3 (S3) 0.643 0.732
Scenario 4 (S,)  0.849 0.503

4.10 STEP 10: OBTAIN THE CLOSENESS
COEFFICIENTS OF EACH SCENARIO

Once the distances from FPIS and FNIS are determined,

the Closeness Coefficients can be obtained using

Equation (27). An example calculation for Scenario 2 is

given:

odr 0.617

T df+dy 0786 + 0.617

cc; = 0440  (27)

This results in the following scenario ranking, with
scenario 1 ultimately ranking on top (Table 12).

Table 12: The Closeness Coefficient for each scenario

Scenario (S,) Closeness Coéfficiént CC, Rank
Scenario 1 (S,) 0.596 1
Scenario 2 (S,) 0.440 3
Scenario 3 (S3) 0.532 2
Scenario 4 (S,) 0.372 4




5 CONCLUSION AND REMARKS

This study has introduced an integrated decision-making
framework that combines Cross-Impact Balance (CIB)
analysis, the Analytic Hierarchy Process (AHP), and
Fuzzy-TOPSIS to enhance scenario development and
multi-criteria evaluation in adaptive reuse projects. By
incorporating scenario-based methodologies within a
structured decision-making process, this approach enables
stakeholders to systematically explore future-oriented
reuse options while addressing uncertainty, complexity,
and competing priorities. The framework was
demonstrated through a hypothetical adaptive reuse
project, illustrating how these methods interact to
generate, assess, and rank consistent scenarios.

The findings highlight the benefits of integrating different
methodologies to strengthen decision-making. CIB
analysis ensures scenario consistency, reducing the
likelihood of incoherent or contradictory planning
outcomes. AHP provides a structured means to weight
stakeholder  preferences, ensuring that diverse
perspectives are reflected in the evaluation process.
Meanwhile, Fuzzy-TOPSIS offers a robust ranking
mechanism that accounts for uncertainty, allowing
decision-makers to prioritize alternatives more
effectively. The integration of these methods enhances
future-oriented decision-making by ensuring that adaptive
reuse strategies consider long-term sustainability,
economic feasibility, and social impact rather than being
constrained by immediate limitations. Additionally, the

approach  fosters  stakeholder engagement and
transparency by actively involving participants in
defining objectives, developing descriptors, and

evaluating scenarios, leading to a more inclusive and
aligned decision-making process. The structured
methodology also enhances practical applicability,
making it adaptable for real-world projects where trade-
offs must be assessed, and priorities established.

Despite its advantages, certain limitations should be
acknowledged. The methodology relies significantly on
subjective inputs, particularly in scenario development
and the conversion of linguistic variables in the Fuzzy-
TOPSIS method. Its effectiveness depends on the ability
of stakeholders and experts to define meaningful
descriptors and variants, assess interactions accurately,
and translate qualitative insights into quantitative
measures. Any inconsistencies or biases in these
subjective judgments could influence the final rankings.
Moreover, for the methodology to function effectively, it
is crucial to ensure active stakeholder participation at
multiple stages, including defining objectives, developing
scenario descriptors, weighting criteria, and ranking
scenarios. Without sufficient engagement, the approach
risks overlooking critical real-world considerations and
diminishing the legitimacy of its outcomes. Future
research should explore participatory mechanisms to
strengthen stakeholder involvement and ensure a balanced
representation of perspectives.
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5.1 FUTURE RESEARCH DIRECTIONS

To further validate the proposed approach, real-world
case studies should be conducted to test its practical
applicability. Future research could also focus on:

e Improving the linguistic variable conversion
process by developing standardized fuzzy scales
that minimize subjectivity.

e Automating parts of the methodology to reduce
the complexity of data input and improve
usability.

e Exploring hybrid decision-support tools that
integrate participatory scenario development
with computational methods to enhance
consistency and scalability.

The proposed framework demonstrates the potential of
integrating scenario planning and multi-criteria decision-
making, yet its full impact can only be realized through
real-world applications. As the built environment
continues to evolve, future efforts should focus on
refining participatory methods and optimizing decision-
support tools to promote practical applicability, ensuring
that adaptive reuse strategies are data-driven, inclusive,
and aligned with long-term sustainability goals.
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