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ABSTRACT
Background and aim. Adaptive reuse enhances circularity by repurposing buildings, reducing carbon emissions, and 
preserving heritage. However, decision-making is complex due to stakeholder conflicts, regulations, and uncertainties. 
This study introduces an integrated framework combining Cross-Impact Balance (CIB) analysis, the Analytic Hierarchy 
Process (AHP), and Fuzzy-TOPSIS to support structured, participatory decision-making.

Methods and Data. A mixed-method approach integrates CIB for scenario development, AHP for stakeholder-driven 
prioritization, and Fuzzy-TOPSIS for ranking reuse scenarios. A hypothetical case study demonstrates the framework’s 
applicability.

Findings. The integration of CIB, AHP, and Fuzzy-TOPSIS provides a structured decision-making approach that 
enhances scenario coherence, aligns decisions with stakeholder priorities, and improves scenario ranking robustness. The 
framework enables systematic exploration of adaptive reuse scenarios, ensuring alignment with stakeholder objectives. 

Theoretical / Practical / Societal implications. Theoretically, this study advances scenario-based decision-making by 
integrating scenario development and decision-making approaches, addressing gaps in adaptive reuse decision 
frameworks. Practically, it provides policymakers, urban planners, and developers with a structured tool to navigate 
complex decision-making in adaptive reuse projects. Societally, it supports sustainable and inclusive urban development 
by fostering consistent, long-term strategies that balance environmental, economic, and social considerations.

KEYWORDS: Adaptive Reuse, Circularity, Cross-Impact Balance (CIB) Analysis, Multi-criteria Decision-Making, 
Scenario Planning, 

1 INTRODUCTION
The adaptive reuse of buildings has become a cornerstone 
strategy for promoting circularity in the built environment
(Foster, 2020). By repurposing existing structures, 
adaptive reuse significantly reduces CO₂ emissions, curbs 
the extraction of virgin materials, and conserves valuable 
resources (Shahi et al., 2020). This approach directly 
supports global sustainability goals and addresses critical 
urban challenges, including resource scarcity and 
environmental degradation (Conejos, 2013). However, 
despite its promise, adaptive reuse decision-making 
processes remain complex and uncertain (Yung & Chan, 
2012). These projects often involve a diverse set of 
stakeholders with conflicting interests and must navigate 
a range of regulatory, economic, and technical constraints
(Wilkinson, 2014). Consequently, the strategies chosen 
for adaptive reuse are often limited to short-term 

perspectives and a narrow set of options, hindering their 
potential to achieve long-term sustainability and 
circularity (Greco et al., 2024; Vardopoulos et al., 2021).
To address the intricacies and uncertainties of adaptive 
reuse decision-making, a range of tools and 
methodologies has been developed (Nedeljkovic et al., 
2023). Among these, multi-criteria decision-making 
(MCDM) models have gained considerable traction for 
evaluating adaptive reuse projects (Nadkarni & 
Puthuvayi, 2020). These models provide a structured 
framework for assessing and comparing alternatives by 
incorporating multiple criteria (Love et al., 2023). 
However, existing decision-making approaches tend to 
adopt either overly generalized frameworks; focused 
solely on functional reuse, or overly specific ones, which 
prioritize granular design considerations (van Laar et al., 
2024). Both approaches often overlook the broader, long-
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term objectives required to achieve true sustainability and 
circularity. Furthermore, most frameworks rely either on 
quantitative methods like cost-benefit analyses (Sanchez 
et al., 2019), and lifecycle assessments (Foster, 2020), or 
on generic qualitative approaches to evaluate the 
feasibility of proposed interventions (Wilkinson, 2014). 
While these methods offer valuable insights into resource 
efficiency and financial viability, they often fail to 
account for nuanced, context-specific factors or integrate 
forward-looking scenario planning essential for 
addressing the dynamic nature of urban development. 
Scenarios are particularly valuable for adaptive reuse 
decision-making because they offer comprehensive, 
future-oriented perspectives. They enable decision-
makers to explore how various reuse strategies might 
perform under different environmental, social, and 
economic conditions (Weimer-Jehle, 2023). This 
foresight helps ensure that decisions are robust, flexible, 
and aligned with long-term sustainability and community 
goals (Bottero et al., 2022). Normative scenarios, which 
outline pathways to achieve specific objectives (van 
Notten et al., 2003), are especially relevant for adaptive 
reuse. They help stakeholders collaboratively develop a 
broad range of desirable futures, ensuring that decisions 
reflect shared values and strategic priorities. Despite their 
potential, scenario-based methods are underutilized in 
adaptive reuse (van Laar et al., 2024), often resulting in 
decisions that fail to anticipate future challenges or 
opportunities. 
There is a pressing need for decision-making frameworks 
that are both future-oriented and capable of addressing the 
inherent uncertainty and complexity of adaptive reuse 
projects. Such frameworks must enable the development 
of nuanced, context-specific scenarios that incorporate 
normative objectives, reflect stakeholder priorities, and 
facilitate the ranking of alternatives based on quantitative 
and qualitative criteria. To address these gaps, this study 
introduces an integrated decision-making framework that 
combines Cross-Impact Balance (CIB) analysis with the 
Analytic Hierarchy Process (AHP) and Fuzzy-TOPSIS 
methods.  
This research highlights the strength of combining these 
methodologies into a cohesive, stepwise framework, 
demonstrating how they can guide adaptive reuse 
decision-making in a structured yet flexible manner. 
Using a hypothetical adaptive reuse project, the study 
showcases how this approach facilitates scenario 
development, interdependency analysis, and the 
evaluation of alternatives under uncertainty. The main 
finding illustrates how these tools can be integrated into a 
systematic process that supports stakeholders in 
collaboratively designing and prioritizing adaptive reuse 
scenarios. This framework offers a practical pathway for 
addressing the complexity of adaptive reuse while 
aligning decisions with long-term sustainability and social 
responsibility goals. 

2 BACKGROUND LITERATURE 
Scenario development and Multi-Criteria Decision 
Making (MCDM) analysis are two complementary 
methodologies extensively used in decision-making 
processes involving complex systems, such as adaptive 
reuse. Scenario development enables the exploration of 
possible futures by considering various uncertainties 
(Weimer-Jehle, 2023), while MCDM provides a 
structured framework for evaluating and ranking 
alternatives against multiple criteria (Saaty, 1990). The 
integration of these methodologies has gained significant 
attention, for its potential to improve decision-making 
outcomes by combining qualitative and quantitative 
insights (Stewart et al., 2013).  

2.1 SCENARIO DEVELOPMENT 
Scenario development is a structured approach for 
envisioning possible future states of a system under 
uncertainty. Scenarios, described as: coherent, consistent, 
and plausible descriptions of potential futures, are 
categorized as exploratory, predictive, or normative (van 
Notten et al., 2003). Exploratory scenarios examine 
possible futures based on varying assumptions, aiding in 
visualizing outcomes. Predictive scenarios forecast likely 
futures based on current trends, while normative scenarios 
prescribe pathways to achieve specific goals (van Notten 
et al., 2003). The normative approach is particularly 
valuable for adaptive reuse decision-making, where 
alignment with sustainability goals and community values 
is essential (Gassner & Steinmüller, 2018). Scenario 
development methods can be categorized into 
quantitative, qualitative, and mixed-method approaches, 
each suited to different needs. Quantitative methods rely 
on mathematical modeling for precision but often limit 
stakeholder involvement and are less effective over long-
term projections, as they tend to extrapolate trends and 
may give a false sense of certainty (Amer et al., 2013). In 
contrast, qualitative methods, like Intuitive Logics (IL), 
excel in addressing complex issues through nuanced, 
context-specific insights. However, they can oversimplify 
systems by focusing on a limited number of uncertainties, 
potentially overlooking critical factors (Rowe et al., 
2017). 
Mixed-method approaches effectively combine the 
strengths of both, integrating data-driven analysis with 
stakeholder input to foster comprehensive discussions 
about future possibilities (Symstad et al., 2017). An 
example is Cross-Impact Balance (CIB) analysis, a semi-
quantitative method that uses systems theory to model 
integrative and holistic scenarios (Weimer-Jehle, 2006). 
By employing formal logic to structure quantitative and 
qualitative inputs, CIB generates internally consistent 
narrative scenarios based on interactions among drivers of 
change, making it particularly suitable for complex socio-
technical systems (Weimer-Jehle, 2023). 
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2.2 MULTI-CRITERIA DECISION-MAKING 
Multi-Criteria Decision-Making (MCDM) methods, such 
as AHP (Analytic Hierarchy Process), Fuzzy TOPSIS, 
PROMETHEE, and VIKOR, are widely used for 
evaluating and ranking alternatives across multiple 
conflicting criteria (Sahoo & Goswami, 2023). AHP 
excels in hierarchically structuring complex problems, 
prioritizing criteria through pairwise comparisons, and 
aggregating stakeholder preferences into a unified priority 
structure, fostering consensus while respecting diverse 
perspectives (Saaty, 1990). Fuzzy TOPSIS, which 
extends the classical TOPSIS method, effectively 
manages vagueness and subjectivity by using fuzzy set 
theory to rank alternatives based on their closeness to 
ideal and negative ideal solutions (Chen, 2000). 
Combining AHP and Fuzzy TOPSIS enhances decision-
making by integrating AHP’s hierarchical structuring and 
consistency checks with Fuzzy TOPSIS’s capacity for 
handling uncertainty (Efe, 2016). This hybrid approach is 
particularly valuable for complex, uncertain 
environments, as it provides a structured yet flexible 
evaluation framework (Mathew et al., 2020). Such 
integrations have been applied successfully in fields like 
supply chain management (Patil & Kant, 2014),  and 
urban planning (Dang et al., 2019), demonstrating their 
versatility and effectiveness. While the combination of 
AHP and Fuzzy TOPSIS effectively ranks uncertain 
alternatives based on stakeholder preferences, it often 
relies on externally provided options, highlighting the 
need for an integrated approach that develops and ranks 
scenarios concurrently. 

2.3 INTEGRATION OF SCENARIO 
DEVELOPMENT AND MULTI-CRITERIA 
DECISION ANALYSIS 

The integration of scenario development and MCDM 
addresses the limitations of each methodology when 
applied independently. Scenario development often lacks 
a structured mechanism to prioritize options within each 
scenario, while MCDM can be overly deterministic 
without considering the broader context of future 
uncertainties (Sahoo & Goswami, 2023). By combining 
these methods, decision-makers can evaluate the 
robustness of alternatives across different scenarios, 
incorporate qualitative and quantitative dimensions of 
uncertainty, and enhance stakeholder engagement by 
providing a more holistic view of decision impacts (Sahoo 
& Goswami, 2023). 
Numerous frameworks integrate scenario development 
with multi-criteria decision-making (MCDM), typically 
following one of two approaches. The scenario-driven 
MCDM approach develops scenarios first and applies 
MCDM to rank alternatives within each scenario (Bottero 
et al., 2022). In contrast, the MCDM-driven approach uses 
MCDM criteria to shape scenarios, aligning them with 
decision priorities (Della Spina, 2020). These frameworks 
have been applied in various fields, including urban 
planning, supply chain management, and engineering . 

However, these studies often face limitations, such as 
relying on a limited number of scenarios that fail to 
capture the full range of possibilities. Many frameworks 
lack consistency calculations, reducing the coherence and 
realism of the scenarios (Weimer-Jehle, 2006). 
Additionally, there is an overemphasis on predictive 
scenarios and mathematical models, prioritizing 
quantitative precision over qualitative insights and 
stakeholder perspectives (Weimer-Jehle, 2023). These 
shortcomings diminish the robustness and practical 
applicability of the scenarios in addressing complex 
challenges. 
The Cross-Impact Balance (CIB) method overcomes 
these challenges by generating numerous consistent and 
plausible scenarios through a combination of qualitative 
and quantitative inputs (Weimer-Jehle, 2023). This makes 
it particularly effective for exploring complex systems. 
However, CIB has not been fully integrated with MCDM 
methods like AHP or Fuzzy TOPSIS, which excel at 
prioritizing and ranking alternatives. Combining these 
approaches offers significant potential, enabling the 
systematic creation, evaluation, and prioritization of 
scenarios within a unified framework. In a participatory 
setting, this integration enhances stakeholder engagement 
by involving them in the entire process, from scenario 
development to ranking, ensuring scenarios are aligned 
with diverse preferences and easing the adoption of the 
chosen scenario through consensus and trust in the 
outcomes. 

3 STEPWISE APPROACH FOR 
COMBINING CROSS-IMPACT 
BALANCE ANALYSIS, AHP AND THE 
FUZZY TOPSIS METHODS 

This section outlines a structured, multi-step framework 
tailored for decision-making in normative, uncertain, and 
complex contexts such as adaptive reuse projects (Figure 
1). By integrating Cross-Impact Balance (CIB) analysis, 
the Analytic Hierarchy Process (AHP), and Fuzzy-
TOPSIS methodologies, this approach effectively 
addresses the uncertainties inherent in adaptive reuse. It 
enables stakeholders to collaboratively assess, develop, 
and prioritize reuse scenarios, demonstrating its 
application through a hypothetical example of an adaptive 
reuse project. 

3.1 STEP 1: DEFINE THE AIM AND 
OBJECTIVES 

The first step establishes the foundation for the decision-
making process by ensuring a clear understanding of the 
project's scope and goals. To create normative scenarios; 
future pathways that are achievable (van Notten et al., 
2003), this step focuses on defining objectives that will 
guide subsequent scenario development. Stakeholders 
collaborate to articulate the overarching goal and themes,  
identify desired objectives, and determine the criteria 
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necessary to evaluate progress toward these objectives. To 
balance adequacy and completeness in the scenario 
analysis, it is recommended to include 9–15 objectives for 
the development of descriptors and variants in Step 2, in 
line with the methodological guidelines of Weimer-Jehle, 
(2023). By addressing these critical elements, this step 
provides a structured and goal-oriented process fostering 
clarity, alignment, and a shared vision among all 
stakeholders. 
 

3.2 STEP 2: DEVELOP DESCRIPTORS AND 
VARIANTS 

The CIB method uses systems theory and formal logic to 
create internally consistent scenarios based on interacting 
drivers of change, integrating both qualitative and 
quantitative inputs (Weimer-Jehle, 2006). A key step in 
this process is identifying descriptors; ‘critical factors 
defining the system’ and their associated variants, which 
represent specific states these factors can assume 
(Weimer-Jehle, 2023). Descriptors should be developed 
at a high aggregation level (Weimer-Jehle, 2023), with 
each descriptor representing one objective, that can be 
supported by related criteria and / or a narrative that 
explains the descriptor's role and significance within the 
system. Variants then enable systematic exploration of 

scenarios by capturing the range of possible outcomes for 
each descriptor. For example, in adaptive reuse projects, 
"Environmental impact" could be a descriptor for the 
objective: ‘Reducing environmental impact of the 
building’, with variants such as "Low," "Medium," and 
"High." Stakeholders are encouraged to assign descriptive 
names and narratives to variants for clarity and effective 
communication, keeping 2–4 variants per descriptor as 
recommended by (Weimer-Jehle, 2023). The CIB 
analysis requirements of completeness (descriptor 
variants must cover all possible futures), mutual 
exclusivity (each development aligns with only one 
variant), and absence of overlap (variants of different 
descriptors must address distinct topics) should also be 
taken into account when developing variants (Weimer-
Jehle, 2023). 
Although the CIB methodology supports variants with 
various characteristics (ordinal, nominal, or ratio) this 
paper focuses on descriptors with ordinal measurement 
scales. For instance, "user demand" as a descriptor might 
include ordinal variants like "Low," "Medium," and 
"High," reflecting their ranked importance. This approach 
simplifies the system, making it possible to translate 
qualitative ordinal variants into linguistic variables 
essential for integration with the Fuzzy TOPSIS method. 
Using ordinal descriptors ensures consistency in both the 
CIB analysis and fuzzy TOPSIS methods, enabling 
structured evaluation of interactions and their influence 
on adaptive reuse scenario outcomes. 

3.3 STEP 3: IDENTIFY RELATIONSHIPS 
BETWEEN DESCRIPTORS AND VARIANTS 

Identifying the interrelationships between descriptor 
variants is critical in Cross-Impact Balance (CIB) 
analysis, as it ensures the logical coherence and 
plausibility of the scenarios generated (Weimer-Jehle, 
2023). These interrelationships capture how one variant 
influences or is influenced by another, reflecting the 
underlying dynamics of the system. Without this step, the 
analysis risks inconsistencies or contradictions, 
undermining the reliability of the scenarios (Weimer-
Jehle, 2023).  
To identify these relationships, the scale recommended by 
(Weimer-Jehle, 2006) provides a structured and 
systematic approach. This scale uses a range from -3 to +3 
to denote the influence of one variant on another: +3 
indicates a strong positive impact, 0 signifies no impact, 
and -3 represents a strong negative impact. These values 
are assigned within a cross-impact matrix, ensuring all 
potential interactions are considered (Table 1). This 
elicitation of data can be conducted in a participatory 
group setting with stakeholders, fostering collaboration 
and shared understanding. Alternatively, other methods 
such as expert surveys (Weimer-Jehle et al., 2012), Delphi 
techniques (Tori et al., 2023), or literature reviews 
(Weimer-Jehle, 2023), can be employed to gather the 
required input systematically. By following this method, 
the CIB process produces scenarios that are not only 
internally consistent but also reflective of the real-world, 

Figure 1: Stepwise approach for combining cross-impact 
balance analysis (CIB), AHP and the Fuzzy TOPSIS methods 

66https://doi.org/10.52202/080684-0007



 

 
 
 

 

project-specific dynamics among the factors studied 
(Weimer-Jehle, 2023).  
 
Table 1: Example of a cross-impact balance judgement section 

 Political and Community 
support 

Environmental 
Impact 

High Medium  Low 

Low 3 2 -2 
Medium 2 1 -1 
High -3 -1 2 

 
-3 Strongly hindering     0 Neutral      Strongly promoting +3  

 

3.4 STEP 4: CONSTRUCT SCENARIOS 
In Cross-Impact Balance (CIB) analysis, constructing 
scenarios involves generating combinations of descriptor 
variants and assessing their internal consistency. The 
consistency of each scenario is determined using the 
impact sum, which quantifies the cumulative influence of 
all variants in a scenario on one another (Weimer-Jehle, 
2006). This sum, derived from the cross-impact matrix, 
indicates whether the combination of variants aligns with 
the specified interdependencies among descriptors. 
Without considering interdependencies, any combination 
of descriptor variants could form a scenario. While the 
CIB methodology tolerates marginal inconsistencies due 
to the qualitative nature of input data (Weimer-Jehle, 
2023), high inconsistency values suggest contradictions, 
whereas low values indicate internally consistent and 
plausible scenarios. To determine the acceptable 
inconsistency threshold the following Equation (1) can be 
used (Weimer-Jehle, 2023), in which  is the acceptable 
inconsistency value and  is the number of descriptors:  
 

 
 

(1) 
 

The calculation process can be facilitated using the 
ScenarioWizard software1, which automates the 
assessment of consistency across all possible 
combinations of descriptor variants. The software 
produces a scenario tableau as an outcome of this 
calculation. The tableau displays all consistent scenarios, 
highlighting the selected variants for each descriptor, and 
serves as input for the decision analysis in Steps 6–10. 
This structured representation enables researchers and 
stakeholders to identify and analyse the most plausible 
scenarios, ensuring that the results are both rigorous and 
actionable. By employing this method, CIB analysis 
supports the systematic exploration of potential futures 
and aids decision-making processes based on robust, 
internally consistent scenarios. 

 
1 https://www.cross-impact.org/english/CIB_e_ScW.htm  

3.5 STEP 5: DETERMINING THE WEIGHTS OF 
THE OBJECTIVES 

To pick the most appropriate scenario for a project, it is 
important that the preferences of the stakeholders are 
reflected in the outcomes of the decision model. The 
Analytical Hierarchy Process (AHP) is a robust method 
for multicriteria decision-making that ensures decisions 
align with stakeholder priorities through a structured 
stepwise approach. The process begins with pairwise 
comparisons, where stakeholders evaluate the relative 
importance of the objectives from step 2, using Saaty’s 9-
point Likert scale, ranging from equal importance (1) to 
extreme superiority (9) (Saaty, 1990). These comparisons 
populate a matrix that reflects the relative weights of each 
objective, following Equation (2). 
 

 

 
 

(2) 

 

Once the matrices are completed, weights are calculated 
by normalizing the values within each column to reflect 
the relative importance of the objective. This involves 
summing the values in each column  for , dividing 
each objective  by the total of its column, and then 
averaging the normalized scores for each row. The weight 
for each objective, is computed using Equation (3): 
 

 

 
 

(3) 

 

where is the number of objectives. This structured 
normalization process aggregates the scores to derive the 
final weights, ensuring a systematic approach that 
integrates both qualitative judgments and quantitative 
analysis into the decision-making framework. 
The AHP then employs the Consistency Ratio (CR) to 
assess the coherence of decision-makers' judgments. The 
CR is determined by comparing the Consistency Index 
(CI) to the Random Index (RI), which represents the 
average consistency expected by chance for matrices of a 
given size (Saaty, 1990). If the CR exceeds a commonly 
accepted threshold, typically 0.10, it signals that the 
judgments are not adequately consistent and may need to 
be revised or reevaluated to ensure reliability. 
For instance, if a stakeholder considers ‘Environmental 
Impact’ more important than: ‘Cost’, and ‘Cost’ more 
important than: ‘Social Impact’, it is logically expected 
that ‘Environmental Impact’ would also be prioritized 
over ‘Social Impact’. The Consistency Ratio (CR) 
quantifies the coherence of such pairwise comparisons. A 
CR below 0.10 indicates a satisfactory level of 
consistency in the judgments, while a CR exceeding 0.10 
suggests inconsistencies that require revision. This 
evaluation should be performed independently for each 
matrix and stakeholder to ensure precision and reliability 
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in the decision-making process. The CR is calculated 
using Equation (4): 
 

 

 
 
 

(4) 
 

The Consistency Index (CI) is a key metric in the AHP 
used to measure the logical coherence of judgments in 
pairwise comparison matrices, while the Random Index 
(RI) represents the average CI derived from 500 
reciprocal matrices populated with values from Saaty’s 
fundamental 1–9 scale (Saaty, 1990). The RI varies based 
on the number of criteria in a matrix, as outlined in Table 
(2). The CI is calculated using Equation (5):  
 

 

 
 
 

(5) 
 

where is the maximum eigenvalue of the 
comparison matrix, and  is the number of objectives. To 
compute the eigenvalue for a pairwise comparison matrix 
in AHP, multiply the pairwise comparison matrix by 
the priority vector  using Equation (6): 
 

 

 
 
 

(6) 
 

Here,  represents the normalized priority weights of the 
criteria. For each row  in the resulting matrix 

computed by using Equation (7): 
 

 
 
 

(7) 

 

Where  is the element of the resulting vector, 
and  is the  element of the priority vector. The 
maximum eigenvalue of the comparison matrix is then 
calculated by taking the average value of all , Where  
is the number of objectives using Equation (8): 
 

 

 
 
 

(8) 
 

The consistency check is essential to ensure that 
judgments are logically consistent, as inconsistencies can 
compromise the validity of the decision-making process, 
leading to unreliable outcomes. This process reinforces 
robust decision-making by encouraging stakeholders to 
critically evaluate their judgments, ensuring coherence 
and reliability throughout the analysis. 
 
Table 2: Random Index (RI) for different numbers of objectives 
(Saaty, 1990) 
 

Number of criteria  Random Index (RI) 
2 0 
3 0.58 
4 0.90 
5 1.12 
  

3.6 STEP 6: CONSTRUCT THE WEIGHTED 
FUZZY DECISION MATRIX 

Following the elicitation of decision-makers' preferences 
through the AHP method, the subsequent step involves 
conducting decision analysis utilizing the Fuzzy TOPSIS 
method. The Fuzzy TOPSIS method is an extension of the 
traditional Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) that incorporates 
fuzzy set theory to handle uncertainty and vagueness in 
decision-making (Chen, 2000). This approach is 
particularly useful when preferences are expressed in 
qualitative terms, such as linguistic variables, which are 
subjective and imprecise by nature, such as with scenarios 
in the CIB analysis. Fuzzy sets enable the representation 
of linguistic variables such as "Low," "Medium," and 
"High" as fuzzy numbers. Among the different forms of 
fuzzy sets, triangular fuzzy numbers (TFNs) are most 
commonly used due to their simplicity and computational 
efficiency (Chen, 2000). A triangular fuzzy number is 
represented as  where is the lower 
bound,  is the most likely value, and   is the upper 
bound, forming a triangular membership function. A 
fuzzy number on is defined as a triangular fuzzy 
number (TFN) it its membership function 

 is expressed as follows in Equation (9): 
 

 

 

 
 

(9) 

 

To convert linguistic variables into fuzzy numbers, a 
predefined fuzzy scale should be developed which assigns 
specific TFNs to each linguistic term based on expert 
judgment or domain knowledge. This allows qualitative 
assessments to be transformed into quantitative data that 
can be processed within the Fuzzy TOPSIS framework, 
enabling a more nuanced and flexible evaluation of 
scenarios under uncertainty. A fuzzy scale is employed to 
transform the qualitative ordinal variants from the 
consistent scenarios in Step 4 into fuzzy numbers, which 
are subsequently used to construct the decision matrix. 
  
Following the fuzzification process, construct the fuzzy 
pairwise decision matrix by first calculating the relative 
importance of each objective ( ) following step 5, using 
Equation (10):  
 

 

 
 
 

(10) 
 

The overall weighted fuzzy decision matrix can then be 
constructed using Equation (11), Where:  is the number 
of scenarios, and  is the number of objectives.  
 
 

 

 (11) 
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3.7 STEP 7: NORMALIZE THE WEIGHTED 
FUZZY DECISION MATRIX 

To normalize the weighted fuzzy decision matrix , each 
objective  =  is normalized based on the 
type of objective (benefit or cost).   
For benefit objectives (higher values are preferred) 
Equation (12) can be used: 
 

 

 
 
 

(12) 
 

For the cost criteria (lower values are preferred) Equation 
(13) is used: 
 

 

 
 
 

(13) 
 

Where  is the maximum upper bound for the  
objective, and  is het minimum lower bound for the 

 

3.8 STEP 8: DETERMINE THE FUZZY 
POSITIVE-IDEAL SOLUTION (FPIS) AND 
FUZZY NEGATIVE-IDEAL SOLUTION 
(FNIS) 

In the Fuzzy TOPSIS method, the FPIS (Fuzzy Positive 
Ideal Solution) represents the optimal fuzzy values for 
each objective, while the FNIS (Fuzzy Negative Ideal 
Solution) reflects the least desirable outcomes. These are 
determined by identifying the best and worst fuzzy scores 
across all scenarios for each objective. Scenarios are 
ranked based on their proximity to the FPIS and distance 
from the FNIS, with the closest scenario to the FPIS and 
farthest from the FNIS considered the best choice. 
If  represents the fuzzy evaluation of the i-th alternative 
with respect to the j-th objective, the FPIS for each 
criterion can be represented as: 
 

 
 

 
 
 

(14) 

 

Conversely, If  represents the fuzzy evaluation of the i-
th alternative with respect to the j-th objective, the FNIS 
for each objective can be represented as: 
 

 
 

 
 
 

(15) 

 

3.9 STEP 9: CALCULATE THE DISTANCE OF 
EACH SCENARIO FROM FPIS AND FNIS 

The distances from each scenario to the FPIS ( ) and 
FNIS ( ) are calculated using the fuzzy distance 
measure: Euclidian distance using Equation (16).   
The distance d between two fuzzy numbers 

is: 
 

 
 

(16) 

 

To calculate the distances from FPIS and FNIS to each 
scenario the following Equations (17&18) can be used: 
 
Distance from FPIS:  
 

 

( ) :   
 
 

(17) 

 
Distance from FNIS 
 

 

( ):  
 
 

(18) 

 

Here, n is the number of objectives,  is the fuzzy score 
of the i-th scenario on the j-th objective, and  is the 
score of the FPIS on the j-th objective, and  is the score 
of the FNIS on the j-th objective. Using these distances, 
each scenario’s relative closeness to the ideal solution is 
calculated, which is used to rank the scenarios. The 
alternative with the shortest distance to the FPIS and the 
longest distance from the FNIS is considered the optimal 
choice. 

3.10 STEP 10: OBTAIN THE CLOSENESS 
COEFFICIENTS OF EACH SCENARIO 

In the Fuzzy TOPSIS method, the closeness indicator is a 
metric for ranking scenarios by measuring their proximity 
to the Fuzzy Positive Ideal Solution (FPIS) and their 
distance from the Fuzzy Negative Ideal Solution (FNIS). 
This ranking provides decision makers with a clear 
understanding of which scenario best aligns with their 
preferences and objectives. By summarizing each 
scenario's performance across all objectives, the closeness 
indicator supports informed, consensus-driven decisions, 
highlighting not only the best options but also how closely 
each one approaches the ideal conditions. The closeness 
indicator is calculated by using the following Equation 
(19): 
 

 
 

 
 

(19) 

 

Where  is the distance of the -th alternative from the 
FPIS, and  is its distance from the FNIS. The closeness 
indicator, , ranges from 0 to 1, where a value closer to 
1 indicates that the scenario is closer to the FPIS and 
farther from the FNIS, making it a more preferable option.  

4 HYPOTHETICAL EXAMPLE 
The application of the newly introduced mixed-method 
approach is demonstrated using a hypothetical example of 
an adaptive reuse project.  
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4.1 STEP 1: DEFINE THE AIM AND 
OBJECTIVES 

For the hypothetical example we have developed the 
following aim, objectives and criteria. For the selection of 
the objectives and criteria we have drawn inspiration from 
van Laar et al., (2024), who conducted an extensive 
literature review on criteria and objectives in the decision-
making process of adaptive reuse. For practical reasons 
we have limited the number of objectives to five. 
 
Table 3: The project aim and objectives of the hypothetical 
example 

Project 
Aim 

The aim of this project is to adaptively reuse an 
existing building to meet functional, environmental, 
and social needs while preserving its historical, 
significance. 

Objectives  
 

O1) To increase social impact 

O2) To reduce environmental impact 

O3) To reduce cost 

O4) To improve the physical quality and durability 
of the building 
O5) To preserve the historic and cultural value of 
the building 

  

4.2 STEP 2: DEVELOP DESCRIPTORS AND 
VARIANTS 

Based on the objectives chosen, comprehensive 
descriptors and variants were developed that included 
names, description, objective and criteria (Appendix A).  
For all descriptors, 3 ordinal variants were drawn up: a  
strong variant in which the objective within the descriptor 
is definitely reached, a medium variant in which the 
objective is partially reached, and a weak variant in which 
the objective is not reached.  
The same linguistic variables were chosen for each 
objective to simplify the FUZZY translation in Step 6.  

An example for the descriptor Social impact is provided 
in Table (4). 
 
Table 4: The descriptor: "Social Impact" and its corresponding 
variants 

Descriptor: 
Social Impact Variants 

Objective 

To 
increase 
social 
Impact 

A1: Social Heaven (strong variant) 
The adaptive reuse project enhances 
social impact by addressing socio-
economic factors like house prices, 
gentrification, and perceived safety 
while boosting neighbourhood 
liveability. It fosters social cohesion by 
serving as a community hub and 
improves surrounding public spaces. 

Criteria 

Social 
cohesion 
Public 
spaces 

Liveability 
Socio-

economic 
conditions 

A2: Socially Acceptable (medium 
variant) 
The adaptive reuse project avoids 
negative socio-economic impacts, with 
some focus on enhancing public spaces 
and liveability. While not central to 
fostering community, it offers spaces for 
social interaction. 
A3: Socially Limited (weak variant) 
The adaptive reuse project negatively 
impacts socio-economic conditions, 
potentially raising housing prices and 
driving gentrification. It fails to 
improve liveability, public spaces, or 
social cohesion. 

   

 

4.3 STEP 3: IDENTIFY RELATIONSHIPS 
BETWEEN DESCRIPTORS AND VARIANTS 

We have mapped the interactions between all descriptor-
variant combinations using the scale from Weimer-Jehle, 
(2006). This resulted in the following Cross-impact 
balance matrix (Table 5): 
 
 
Table 5: The completed CIB matrix for the hypothetical example 
 

CIB Matrix A) Social Impact  
B) 
Environmental 
Impact 

 C) Cost  D) Physical 
quality  E) Historic and 

Cultural value 

A1 A2 A3  B1 B2 B3  C1 C2 C3  D1 D2 D3  E1 E2 E3 
A) Social Impact:                    
A1) Social heaven 

 
 3 2 -2  1 0 0  0 0 0  3 2 -2 

A2) Socially acceptable  2 1 -1  0 0 0  0 0 0  2 1 -1 
A3) Socially limited  -2 -1 2  -1 0 1  0 0 0  -2 0 2 
B) Environmental Impact:                    
B1) Sustainability heaven 2 1 0  

 
 -3 -1 3  0 0 0  0 -1 0 

B2) Environmentally friendly 0 0 0   -1 0 1  0 0 0  1 1 -1 
B3) Environmentally unfriendly -2 -1 1   -1 1 -1  0 0 0  1 0 0 
C) Cost:                    
C1) Cost Efficient 1 1 -1  -1 2 1  

 
 3 2 1  -2 -1 2 

C2) Moderately costly 0 0 0  -1 2 1   1 0 -1  1 1 0 
C3) Very costly -2 -1 1  2 -2 2   2 1 -2  -3 -1 3 
D) Physical quality:                    
D1) Strong and Durable 1 0 0  3 2 0  2 -1 -2  

 
 3 2 -2 

D2) Sufficiently durable 0 0 0  2 1 0  1 1 -1   2 1 0 
D3) Poor building quality  0  0  1  -2  0  1  -2  1  2   -3 -1  2 
E) Historic/Cultural value                    
E1) Preserving History  2  1 -1  -1  0  0  -2 -1  2   3  2 -2   
E2) Attention to history  1  0  0   0  0  0  -1  0  1   2  1 -1  
E3) Ignoring history -2 -1  2   1  0  0   1  0 -1  -1  0  2  
                    
Impact Sum 6 3 -2  4 6 -1  -2 -3 3  6 4 -1  4 2 -2 
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4.4 STEP 4: CONSTRUCT SCENARIOS 
The consistency analysis was performed using the 
ScenarioWizard software, with a consistency value of 1  
following Equation (1). This resulted in 4 consistent 
scenarios that are included for decision analysis (Figure 
2). Each scenario consists of a consistent combination of 
variants that is characterised by strong (green), medium 
(yellow), or weak (red) in relation to the objective of the 
descriptor.  

 

Figure 2: The scenario tableau for the hypothetical example 

4.5 STEP 5: DETERMINING THE WEIGHTS OF 
THE OBJECTIVES 

We determined the weights of the objectives through the 
AHP methodology by using the Saaty’s 9-point Likert 
scale (Saaty, 1990). The relative importance of the 
objectives is displayed in the pairwise comparison matrix:  
 

 (20) 

 

The pairwise comparison matrix was normalized by 
dividing each entry by the sum of its column using 
Equation (3), which results in the normalized pairwise 
comparison matrix: Equation (21). 
 

 

 

 
 

(21) 

The relative weight  of each objective was calculated 
by averaging the normalized values across each row. 
Table (6). presents the final weights. The objective “To 
reduce cost” is the most important, while the objective 
“To increase social impact” is the least important. 

Table 6: The weights for each objective following AHP 

Objective (  Weight (   
To reduce cost (  0.476 
To preserve the historic & cultural 
value of the building (  

0.253 

To improve the physical quality/ 
durability of the building (  

0.134 

To reduce environmental impact ( ) 0.067 
To increase social impact ) 0.045 
  

To ensure the judgments were consistent, the largest 
eigenvalue was computed using Equation (22) along with 
the Consistency Index (CI); Equation (23) and 
Consistency Ratio (CR); Equation (24): 
 

Largest Eigenvalue: 
 

 

 
= 

 
 

(22) 

 

Consistency Index (CI): 
 

 

 
 

(23) 
 

The Random Index (RI) value with 5 objectives is: 1.12 
(Table 2). 
 

Consistency Ratio (CR) 
 

 

 
 

(24) 
 

The Consistency Ratio (CR) = 0.074 is below the 
threshold of 0.1, indicating that the pairwise comparison 
matrix is acceptably consistent. 

4.6 STEP 6: CONSTRUCT THE WEIGHTED 
FUZZY DECISION MATRIX 

The decision matrix  with linguistic variables is 
constructed based on the outcome of the consistency  
analysis from Step 4 (Figure 2), with  being the 
scenarios; Equation (25). 
 

 
 

 

 

(25) 

 

To transform the linguistic decision matrix into a fuzzy 
matrix, the following conversion scale is used that 
incorporates triangular fuzzy numbers (Table 7).  

Table 7: The linguistic variable conversion table 

Linguistic variable Corresponding triangular fuzzy 
numbers  

Weak (1,3,5) 
Medium (3,5,7) 
Strong (5,7,9) 
  

After conversion the following fuzzy decision matrix  
was constructed using Equation (26): 
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(26) 

To arrive at the weighted fuzzy decision matrix the 
relative weights of the objectives  were multiplied with 
the triangular fuzzy numbers (Table 8): 

4.7  STEP 7: NORMALIZE THE WEIGHTED 
FUZZY DECISION MATRIX 

Using Equation (12) we can then normalize the weighted 
fuzzy decision matrix (Table 9). 
 

Table 8: The weighted fuzzy decision matrix for the hypothetical example 
 

Scenario 1  Scenario 2  Scenario 3  Scenario 4  
Social Impact  (0.225, 0.315, 0.405) (0.045, 0.135, 0.225) (0.045, 0.135, 0.225) (0.045, 0.135, 0.225) 
Environmental impact  (0.335, 0.469, 0.603) (0.067, 0.201, 0.335) (0.335, 0.469, 0.603) (0.067, 0.201, 0.335) 
Cost  (0.476, 1.428, 2.380) (1.428, 2.380, 3.332) (0.476, 1.428, 2.380) (1.428, 2.380, 3.332) 
Physical quality  (0.670, 0.938, 1.206) (0.670, 0.938, 1.206) (0.670, 0.938, 1.206) (0.134, 0.402, 0.670) 
Historic/ cultural value  (1.265, 1.771, 2.277) (0.759, 1.265, 1.771) (0.253, 0.759, 1.265) (0.253, 0.759, 1.265) 
     

Table 9: The normalized weighted fuzzy decision matrix for the hypothetical example 
 

Scenario 1  Scenario 2  Scenario 3  Scenario 4  
Social Impact  (0.095, 0.132, 0.170) (0.014, 0.041, 0.068) (0.019, 0.057, 0.095) (0.014, 0.041, 0.068) 
Environmental impact  (0.141, 0.197, 0.253) (0.020, 0.060, 0.101) (0.141, 0.197, 0.253) (0.020, 0.060, 0.101) 
Cost  (0.200, 0.600, 1.000) (0.429, 0.714, 1.000) (0.200, 0.600, 1.000) (0.429, 0.714, 1.000) 
Physical quality  (0.282, 0.394, 0.507) (0.201, 0.282, 0.362) (0.282, 0.394, 0.507) (0.040, 0.121, 0.201) 
Historic/ cultural value  (0.532, 0.744, 0.957) (0.228, 0.380, 0.532) (0.106, 0.319, 0.532) (0.076, 0.228, 0.380) 
     

4.8 STEP 8: DETERMINE THE FUZZY 
POSITIVE-IDEAL SOLUTION (FPIS) AND 
FUZZY NEGATIVE-IDEAL SOLUTION 
(FNIS) 

Using the normalized weighted fuzzy decision matrix 
from Step 7 (Table 9), the FPIS and FNIS were calculated 
for each objective using Equation 14 and 15 resulting in 
Table (10).  
 
Table 10: The FPIS and FNIS values for each objective in the 
hypothetical example 

Objectives   FNIS  

Social Impact  (0.095, 0.132, 
0.170) 

(0.014, 0.041, 
0.068) 

Environmental impact 
 

(0.141, 0.197, 
0.253) 

(0.020, 0.060, 
0.101) 

Cost  (0.429, 0.714, 
1.000) 

(0.200, 0.600, 
1.000) 

Physical quality  (0.282, 0.394, 
0.507) 

(0.040, 0.121, 
0.201) 

Historic/ cultural value 
 

(0.532, 0.744, 
0.957) 

(0.076, 0.228, 
0.380) 

   

4.9 STEP 9: CALCULATE THE DISTANCE OF 
EACH SCENARIO FROM FPIS AND FNIS 

Using the Euclidean distance each scenario from the FPIS 
and FNIS were computed using Equation (16). Distances 
were calculated for each scenario based on the FPIS 

and FNIS  (Table 11). 
 

Table 11: The distance from each scenario to the FPIS and FNIS 

Scenario   (FPIS Distance) 
Scenario 1  0.543 0.802 
Scenario 2  0.786 0.617 
Scenario 3  0.643 0.732 
Scenario 4  0.849 0.503 
   

4.10 STEP 10: OBTAIN THE CLOSENESS 
COEFFICIENTS OF EACH SCENARIO 

Once the distances from FPIS and FNIS are determined, 
the Closeness Coefficients can be obtained using 
Equation (27). An example calculation for Scenario 2 is 
given: 
 

 

 
 

(27) 
 

This results in the following scenario ranking, with 
scenario 1 ultimately ranking on top (Table 12). 

Table 12: The Closeness Coefficient for each scenario 

Scenario  Closeness Coëfficiënt Rank 
Scenario 1  0.596 1 
Scenario 2  0.440 3 
Scenario 3  0.532 2 
Scenario 4  0.372 4 
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5 CONCLUSION AND REMARKS 
This study has introduced an integrated decision-making 
framework that combines Cross-Impact Balance (CIB) 
analysis, the Analytic Hierarchy Process (AHP), and 
Fuzzy-TOPSIS to enhance scenario development and 
multi-criteria evaluation in adaptive reuse projects. By 
incorporating scenario-based methodologies within a 
structured decision-making process, this approach enables 
stakeholders to systematically explore future-oriented 
reuse options while addressing uncertainty, complexity, 
and competing priorities. The framework was 
demonstrated through a hypothetical adaptive reuse 
project, illustrating how these methods interact to 
generate, assess, and rank consistent scenarios. 
The findings highlight the benefits of integrating different 
methodologies to strengthen decision-making. CIB 
analysis ensures scenario consistency, reducing the 
likelihood of incoherent or contradictory planning 
outcomes. AHP provides a structured means to weight 
stakeholder preferences, ensuring that diverse 
perspectives are reflected in the evaluation process. 
Meanwhile, Fuzzy-TOPSIS offers a robust ranking 
mechanism that accounts for uncertainty, allowing 
decision-makers to prioritize alternatives more 
effectively. The integration of these methods enhances 
future-oriented decision-making by ensuring that adaptive 
reuse strategies consider long-term sustainability, 
economic feasibility, and social impact rather than being 
constrained by immediate limitations. Additionally, the 
approach fosters stakeholder engagement and 
transparency by actively involving participants in 
defining objectives, developing descriptors, and 
evaluating scenarios, leading to a more inclusive and 
aligned decision-making process. The structured 
methodology also enhances practical applicability, 
making it adaptable for real-world projects where trade-
offs must be assessed, and priorities established. 
Despite its advantages, certain limitations should be 
acknowledged. The methodology relies significantly on 
subjective inputs, particularly in scenario development 
and the conversion of linguistic variables in the Fuzzy-
TOPSIS method. Its effectiveness depends on the ability 
of stakeholders and experts to define meaningful 
descriptors and variants, assess interactions accurately, 
and translate qualitative insights into quantitative 
measures. Any inconsistencies or biases in these 
subjective judgments could influence the final rankings. 
Moreover, for the methodology to function effectively, it 
is crucial to ensure active stakeholder participation at 
multiple stages, including defining objectives, developing 
scenario descriptors, weighting criteria, and ranking 
scenarios. Without sufficient engagement, the approach 
risks overlooking critical real-world considerations and 
diminishing the legitimacy of its outcomes. Future 
research should explore participatory mechanisms to 
strengthen stakeholder involvement and ensure a balanced 
representation of perspectives. 

5.1 FUTURE RESEARCH DIRECTIONS 
To further validate the proposed approach, real-world 
case studies should be conducted to test its practical 
applicability. Future research could also focus on: 

 Improving the linguistic variable conversion 
process by developing standardized fuzzy scales 
that minimize subjectivity. 

 Automating parts of the methodology to reduce 
the complexity of data input and improve 
usability. 

 Exploring hybrid decision-support tools that 
integrate participatory scenario development 
with computational methods to enhance 
consistency and scalability. 

The proposed framework demonstrates the potential of 
integrating scenario planning and multi-criteria decision-
making, yet its full impact can only be realized through 
real-world applications. As the built environment 
continues to evolve, future efforts should focus on 
refining participatory methods and optimizing decision-
support tools to promote practical applicability, ensuring 
that adaptive reuse strategies are data-driven, inclusive, 
and aligned with long-term sustainability goals. 
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