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Abstract Recycling steel at scale is hindered by tramp
elements such as Cu and Sn, which degrade material
properties. Atomistic simulations using foundational
machine-learned interatomic potentials (MLIPs) trained on
large databases, such as Materials Project, Alexandria, and
OMAT, offer a promising approach to study the effects of
these impurities. However, fine-tuning these models to
specific systems can lead to catastrophic forgetting—the loss
of general chemical knowledge acquired during pretrain-
ing. Here, we evaluate forgetting in three foundational
MLIPs: CHGNet, SevenNet-O, and MACE, by fine-tuning
on a data set of bcc-based structures, with Fe atoms only.
When evaluated on a subset of the Materials Project data
set with a learning rate of 0.0001, the fine-tuned MLIPs of
CHGNet and SevenNet-O exhibited only a minor increase
in RMSE of 0.047 and 0.022 eV/atom, respectively, indi-
cating markedly minor forgetting. In contrast, fine-tuned
MACE exhibited catastrophic forgetting, despite a range of
additional strategies such as layer freezing and data set
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replay. We attribute the catastrophic forgetting to archi-
tectural sensitivity. These results highlight the importance
of fine-tuning hyperparameters, model architecture, and
data set design, with fine-tuned models of CHGnet and
SevenNet-O showing some potential for efficient and
transferable modeling of recycled steels.

Keywords CHGNet - fine-tuning - iron - machine learned
interatomic potentials - MACE - SevenNet-O

1 Introduction

Transitioning to more sustainable steel manufacturing
requires increased utilization of scrap steel. Scrap steel
often introduces so-called tramp elements, such as Cu from
electrical parts in car bodies, into the steel production
process. Other common tramp elements that affect the
quality of the final product are Sn, Cr, and Ni.!'! Currently,
the detrimental effects of these elements are controlled by
diluting them with pure iron. However, this strategy
imposes a limitation on the volume of scrap steel that can
be effectively recycled during steel production. Improving
the use of scrap steel requires a deeper understanding of the
detrimental effects of the tramp elements. Atomistic sim-
ulations are a promising method for gaining such insights.

Conventionally, atomistic simulations have been per-
formed using density functional theory (DFT) or empirical
interatomic potentials. These two methods come with their
own advantages and disadvantages. DFT is accurate but is
computationally expensive, practical systems are limited to
only a few hundred atoms.>™ On the other hand, simu-
lations employing empirical potentials can deal with mil-
lions of atoms, but these potentials are limited to the
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specific systems for which they have been developed."

Each new impurity or alloying element in steel requires
painstaking development of a new potential, a process that
becomes even more complicated for multi-component
systems. This is where machine-learned interatomic
potentials (MLIP) show promise. MLIPs have been fit to
data generated using density functional theory (DFT),
approaching the level of accuracy of DFT. However,
MLIPs, especially for systems with many electrons, can
yield energies and forces orders of magnitude faster than
DFT. Since these MLIPs are built on local atomic envi-
ronments, they can be scaled up to model larger length
scales in a manner comparable to empirical potentials.
Over the years, various MLIPs have been developed each
targeting higher accuracy and lower computational
cost.[0™!

Numerous machine-learning interatomic potentials
(MLIPs) have been developed for iron and iron-based
alloys.""®! Many of these MLIPs use explicitly con-
structed, physics-informed descriptors of the local atomic
environment as inputs to the fitting procedure.!'” Some of
these MLIPs also incorporate magnetism,!'>"'>?% which is
important for systems involving iron. However, such
descriptor-based MLIPs (e.g., GAP, MTP, ACE) face
scaling limitations with increasing number of chemical
species due to the combinatorial growth of descriptor terms
and the amount of required training data.''®’ This combi-
natorial growth poses a practical challenge when modeling
realistic steels that contain numerous alloying elements.

Recently, MLIPs utilizing graph-based neural networks
(GNNs) have gained popularity owing to their broad
applicability across a wide range of material systems. This
is achieved by training on data from large databases, such
as the Materials Project,m] Alexandria?® and OMAT,[B]
each containing millions of structures, molecules and
compounds. M3GNet,”*! CHGNet,'>! MACE,*®! Seven-
Net—O,m] GRACE,[28] Mattersim!®®’ and qu2[3O] are
some of the potentials in this category.

In materials science, MLIPs are used to study defects
such as vacancies, dislocations, and grain boundaries,
which are critical to material behavior and must be accu-
rately captured in simulations. While MLIPs are trained on
energy per atom to normalize the loss function, defect
energies are calculated as energy differences between
configurations—for example, the vacancy formation energy
= E)% — ”—?E,’ff (where E)% is the
energy of the supercell with one vacancy and E,’ff is the bee
Fe reference supercell with n atoms). As a result, even
small per-atom errors (~ 1 meV) can lead to large inac-
curacies in defect energies, especially for larger supercells
where 7> 100.2"*?! Various studies have now reported
this limited applicability of out-of-the-box universal
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potentials to defect properties,
tuning. >

Fine-tuning is a transfer learning technique where a pre-
trained model is adapted to a new task.”*®*”! The model is
first pretrained on a large data set containing a wide variety
of elements and compounds to capture general element
interactions and structure—property relationships. It is then
fine-tuned using a data set tailored to the specific applica-
tion to deliver accurate energy predictions for the target
system. Fine-tuning has proven to be data-efficient; #5401
Radova et al.*”! reported that using only 10-20% of the
training samples was sufficient to achieve an accuracy
comparable to that of a model trained on the full dataset.
Despite these advantages, a major challenge during fine-
tuning of foundational models is catastrophic forget-
ting.**!! This is particularly relevant when the application
of an MLIP relies on knowledge acquired during its pre-
training. For instance, in the case of steels, preserving the
learned interactions with various alloying elements from
the pretraining allows the model to handle impurities
absent during fine-tuning.

In this study we evaluate catastrophic forgetting in
foundational models, namely CHGNet,IzS] MACE"®®! and
SevenNet-O,”! by fine-tuning them to a data set contain-
ing pure Fe structures only (referred to as the “Fe data set*
below). The performance of the fine-tuned MLIPs was then
tested by predicting the binding energies of various ele-
ments in the bce Fe matrix, a task that requires retention of
information from the pretraining.

thus requiring fine-

2 Methods
2.1 Machine Learned Interatomic Potentials

Graph-based neural networks (GNNs) represent material
structures as graphs, with nodes corresponding to atoms
and edges capturing their connections to neighbouring
atoms. This allows a GNN to learn the representation of the
material structure and its relationship to properties during
training instead of relying on crafted features or fixed
descriptors.”**! These models rely on message passing to
extract information from the neighbouring atoms, allowing
incorporation of more than two body interactions. Some
models, such as MACE, further enforce many-body terms
directly in the message passing while also accounting for
invariance and equivariance.*®’

Here, we select the models CHGNet, MACE and
SevenNet-O for fine-tuning (CHG2-FT, MACE-FT,
Sevenn-FT). We choose CHGNet as it directly incorporates
magnetic moments in the architecture, which is important
for magnetic systems such as Fe.'**! Although, CHGNet is
trained only on the absolute values of the magnetic
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moments, Deng et al.*> demonstrated its usefulness by
identifying the oxidation state of transition metal ions in
compounds. Specifically, V4* and V3* were identified in
Nay V,(POy);3 through the magnetic moments.”>! CHGNet
is then compared with MACE, and SevenNet-O, each of
them trained on the same Materials Project (MPTRJ) data
set. This choice is made to make a fair comparison with the
CHGNet model although there exists MACE and Seven-
Net-O models trained on larger data sets.

2.1.1 CHGNet

Crystal Hamiltonian Graph neural network abbreviated as
CHGNet'*! is a GNN based MLIP. It is constructed such
that it consists of two graphs, the atom graph and the bond
graph. The atom graph captures the non-directional bond-
ing information, whereas the bond graph captures the
directional bonding information. The message passing,
referred to as the interaction block in the CHGNet, incor-
porates the many body interactions. Unlike other MLIPs,
CHGNet predicts absolute magnetic moments after three
layers of message passing from the atom embedding. This
information is then used to infer local charge redistribution
in ionic systems. In this study we use the ‘0.2.0” version of
the CHGNet (referred to as CHG?2) as it was observed that
the ‘0.3.0° model (CHG3) performed poorly for the Fe

2.1.2 MACE

MACEY® is another GNN based MLIP which uses
spherical harmonics and radial basis functions to generate
descriptors for atomic environments. The design of MACE
enables it to gather the important features from neighbours
with just two message-passing layers, making it fast and
scalable. Various versions of the model trained on different
data sets are available. Here, we use the updated model
trained on the MPTRIJ data set named ‘mace-medium-mp-
0b3’.

2.1.3 SevenNet-O

SevenNet-O is a MLIP based on the NequIP**! architec-
ture with a focus on scalability. The E(3)-equivariant'
representation in Nequlp allows SevenNet-O to accurately
capture the atomic interactions while respecting the
equivariance constraints. SevenNet-O implements a paral-
lelization strategy that allows simulation of large supercells

! E(3)-equivariance ensures that scalar quantities such as energies
remain invariant, while vector quantities like forces transform exactly
as they should under rotations, translations, and reflections.

using multiple GPUs. Here we use the 11July2024 model
that was trained on the MPTRIJ data set.

2.2 Fine-Tuning the MLIP

We use foundational models pretrained on large data sets
covering 94 elements from the periodic table and fine-tune
them to better fit the specific case of iron. We compare how
different models, pretrained on the same data set, perform
during fine-tuning. For proper comparison, all foundational
models were fine-tuned using the same training, validation,
and test datasets.

There are numerous hyperparameters that influence the
fine-tuning. Here we focus on different learning rates as
they dictate the change in trainable parameters. Three
learning rates 0.01, 0.001 and 0.0001 were used. All other
hyper-parameters were kept same as those used during the
pretraining. The MLIPs were fit to energy and force during
fine-tuning, for CHGNet magnetic moments were used as
well.

Various strategies are available to minimize forgetting
during fine-tuning,'*"! such as freezing layers, replaying the
original data set, employing sub-networks, or using
dynamic architectures. Freezing layers reduces forgetting
by keeping part of the trainable parameters fixed during
subsequent fine-tuning,"**! while data set replay incorpo-
rates all or part of the original data set into the fine-tuning
process.!*> Sub-networks restrict training to smaller parts
of the model, and dynamic networks expand the architec-
ture by adding new parameters to accommodate new
tasks.** A key limitation of architecture-based methods is
that they are best suited for clearly separated tasks; they
cannot accommodate scenarios where both old and new
knowledge must be combined for a single prediction. An
alternative is the use of regularization-based approaches,
such as elastic weight consolidation (EWC).*9) In this
technique, fine-tuning is guided by penalizing changes to
parameters deemed important for the original task, thereby
preserving prior knowledge without explicitly having a
need for the original training data. However, in comparison
to other continual learning approaches regularization-based
methods perform worse.[*”!

Here, we examine two strategies: (1) with all parameters
trainable, referred to as naive fine-tuning, and (2) freezing
of layers. For MACE, we additionally evaluated as a third
strategy the multi-head replay strategy.'*®! This strategy
allows for learning at multiple levels of theory while
maintaining transferability across systems. Specifically,
MACE employs two readout layers, or “heads”: one ded-
icated to the new task and the other to the original task,
with 99% of the trainable parameters shared between them.
During fine-tuning, one head is trained on the new data set
while the other is simultaneously trained on a subset of the

@ Springer
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original data set to minimize forgetting. This strategy was
applied using the implementation available in the MACE
PyPI release (version 0.3.12).[49]

2.2.1 Freezing of layers

The considered MLIPs contain numerous layers with
trainable parameters. These layers are designed to emulate
underlying physical laws; however, due to the black-box
nature of the models, it is difficult to verify whether they
capture such behavior. The MLIPs begin by encoding the
element information in the first layer. It could be expected
that the model learns to differentiate the elements in this
layer and then during message passing learns the interac-
tions with neighbouring atoms. The MLIP then predicts the
energy for each atomic site and next sums it to predict the
energy of the supercell.

By freezing some of the layers it would retain the
information the model learned during the pretraining.
Radova et al.”*! found freezing the first four layers to be
optimal for MACE, hence we used the same strategy for
MACE. For CHGNet, layers were frozen based on their
function in the network, while the first embedding layer
was always kept frozen. As training models for various
conditions are quite computationally intensive, only
MACE and CHGNet models were chosen for frozen
learning.

2.2.2 Complementing MP data set

The training data set plays an important role during the
training of the NNs. Various methods are used in the lit-
erature to generate data, such as active learning,[s"’sn
sampling configurations from ab-initio MD," "' or designed
configurations that target defect and other properties. Each
strategy comes with its own advantages and limitations.
Active learning involves performing molecular dynamics
(MD) simulations with an uncertainty measure in the
MLIP. The uncertainty measure is used to determine if a
prediction is out-of-distribution. When an out-of-distribu-
tion structure is encountered, it is evaluated using DFT and
subsequently incorporated into the training database. This
is used for MLIPs such as ACE,W MTP!"! and GAP.®? For
graph based MLIPs, generating an uncertainty measure is
not straightforward. The common approach is bootstrap-
ping, where an ensemble of models are trained with dif-
ferent hyper-parameter initializations or using different
training, validation and test sets.l>*! The uncertainty is then
quantified using the standard deviation of the predictions
across the ensemble models. This is computationally
expensive, as multiple models are required for predictions.

Another way is to generate data sets by running ab-initio
MD simulations and extracting configurations from various
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time steps. The shortcoming with this approach is the
absence of configurations that correspond to rare events
such as vacancy formation or vacancy migration. In such
cases, it is necessary to bias the system towards these rare
events or explicitly incorporate them in the data set, as
done by Meng et al.''!! for studying hydrogen in iron. This
data set allows studying fracture in bce-Fe in the presence
of hydrogen because it contains various configurations
covering a large sample space of vacancies, grain bound-
aries, free-surfaces and deformed cells.

Similar to Meng’s data set, we generated a DFT data set
corresponding to pure Fe with input parameters consistent
with the MPTRIJ data set. This approach was adopted to
prevent errors that could result from energy discrepancies
caused by varying DFT convergence criteria. Vienna
ab initio simulation package (VASP)®¥ was used to run
the ab-intio simulations. For consistency, the input files
were generated using MPMetalRelaxSet implemented in
Pymatgen package.”> The calculations were performed
using the Perdew—Burke—Ernzerhof (PBE) functional
within the generalized gradient approximation (GGA).!*®!
The number of valence electrons used for the Fe pseu-
dopotential was 8.

A subset of the original MPTRIJ data set consisting of
90000 structures (~ 10%) was used to evaluate the catas-
trophic forgetting in the MLIPs. It was generated by ran-
domly sampling from the MPTRIJ data set.!”” It is referred
to as MPTRJ validation set from here on. Root Mean
Square Error (RMSE) metric was then used as an estimate
of the validation error.

2.3 Testing performance on selected Fe properties

Defects such as vacancies, dislocations, and grain bound-
aries are of particular interest to materials scientists
because they play a crucial role in determining the
macroscopic properties and overall behavior of materials.
However, as discussed earlier, discrepancies between the
fitting procedures of MLIPs and the prediction of defect
energies often lead to significant errors in the latter.*'**!

One approach to address this issue is to incorporate
defect energies directly into the loss function, requiring the
MLIP to be trained on defect energies rather than supercell
energies—something not feasible when fine-tuning founda-
tional models. Alternatively, defect structures can be
assigned higher weights during training. In this work, we
emphasize defects by including a large number of similar
defect configurations in the training data set, effectively
increasing their weight and improving the model’s accu-
racy for the defects in the Fe system.

The MLIPs after fine-tuning were then validated on the
properties of bcc Fe such as elastic properties, vacancy
formation energy, vacancy migration energy, surface
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energies and grain boundary energies. For all validation
simulations the Atomic Simulation Environment (ASE)[Sg]
package was used.

The elastic tensor was determined using the stress—strain
method as per.’>%°! Six strain tensors (¢) with four mag-
nitudes each were applied to a relaxed bcc Fe configura-
tion. Then, with the predicted stress(o), Hookes’ law was
used to calculate the elastic tensor (¢ = Ce, where C is the
stiffness tensor). For evaluating cubic elastic stability the
bulk modulus(B), and Cs and C’ shear moduli are
considered.

The linear coefficient of thermal expansion («) and the
constant-pressure specific heat (Cp) were determined from
MD simulations in the NPT ensemble. Due to computa-
tional cost of MLIPs a smaller supercell with 432 atoms
was used and MD simulations were run for 100000 steps
with a time step of 1 fs. The average volume and enthalpy
were measured at temperatures between 200 K and 1000 K
in 100 K increments. Cubic-spline interpolations of vol-
ume and enthalpy as function of temperature, V(T) and
H(T), were constructed, and their derivatives at 300 K,
(dV/dT)|p and (dH /dT)|p, were used to evaluate o and Cp,
respectively.

To calculate the vacancy formation energy, a supercell
with 128 Fe atoms was generated corresponding to the
equilibrium lattice parameter. An atom was then removed
to introduce a vacancy, the atoms in the supercell were
allowed to relax but the dimensions of the supercell were
kept fixed. The vacancy formation energy was determined
using:

—1
L EFe,)
n

EL, = E[Fe, 0] — (Eq 1)
where E[Fe, 0] is the energy of the relaxed supercell
containing a vacancy with n — 1 Fe atoms and E™ [Fe,] is
the energy of the relaxed supercell containing n Fe atoms.

The climbing image nudged elastic band (CI-NEB)
method, as implemented in the ASE package, was used to
determine the nearest-neighbour vacancy migration energy.

The bce surfaces (100), (110) and (111) for Fe were
generated using the ASE package with the equilibrium
lattice parameter predicted by each corresponding MLIP. A
10 Avacuum gap is added to the simulation supercell to
prevent interactions between surfaces caused by periodic
boundary conditions (PBC). During relaxation, only the
atom positions were relaxed keeping the dimensions of the
supercell fixed. The surface energy is then calculated using:

E[Fe,] — LE™[Fe,
DA

ElF = (Eq 2)

where EY[Fe,] is the energy of the supercell with the
surface with normal [ijk] and n Fe atoms, E™/[Fe,,] is the

energy of the bee Fe supercell with m atoms and A% is the
area of the free surface.

Grain boundaries (GBs) are an important class of defects
in polycrystalline materials. Mechanical properties such as
hardness, yield strength and brittleness are directly influ-
enced by GBs.!°" To study realistic systems using MLIPs it
is important to evaluate their performance on grain
boundary energies. However, ab-initio studies are limited
to low X symmetric GBs due to the complexity of grain
boundaries combined with the limitations of the supercell
size and the PBC in ab-initio methods. We evaluate the
MLIP on X3, 25, £7 and X9 symmetric grain boundaries
and compare it with the values obtained in the literature.!**!
The GB structures were extracted from the Materials Pro-
ject Database, the atom positions in these structures were
relaxed keeping the supercell fixed. Then the GB energy
was determined using:

_ EgplFe,] — 2E[Fe,)]

Egp = Eq 3
GB YA (Eq 3)

where Egp[Fe,| is the energy of the supercell with the grain
boundary containing n Fe atoms, E™[Fe,,] is the energy of
the bee Fe supercell with m atoms, and Agp is the area of
the GB plane.

2.4 Evaluation of solute-solute interactions

Substitutional atoms affect the properties of steel through
various mechanisms, such as grain size refinement, solid
solution hardening, and precipitation hardening.'®*! This is
in turn affected by the tendency of these elements to seg-
regate. Their segregation tendency is estimated using their
nearest neighbour interactions. Here, we calculate the
solute-solute interactions for the first five nearest neigh-
bours for various substitutional atoms. In addition to Cu, Ni
and Sn we also consider other commonly found elements in
steel: Al, Ti, Zn, Mo, Nb and V. Equation 4 was used to
calculate the binding energies for each of these configu-
rations, where X and Y are substitutional atoms. E[Fe,_;X]
and E[Fe, Y] is the energy of supercell containing 1
substitutional atom X or Y in the Fe supercell and E' [Fe]
is the reference energy of supercell containing n Fe atoms.

EY = E[Fe, ,XY] + E™/[Fe,] — (E[Fe,_1X] + E|[Fe,_,Y))
(Eq 4)

Interstitial solutes such as C, N and O are important in steel
and affect its properties, even at low concentrations. Due to
their small size they occupy the octahedral interstices in the
lattice. For simulations involving diffusion of these inter-
stitial atoms, it is important that the MLIPs predict the
octahedral site to be the stable configuration and the
tetrahedral site as a saddle point during diffusion./®*]

@ Springer
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Hence, we used the MLIP to predict the energy of con-
figurations with a solute atom in the octahedral interstices
and tetrahedral interstices. The difference in energy
(AE,¢;—1er) Was then used to identify the stable site in the
lattice. In addition, the migration barrier was also deter-
mined using the CI-NEB for the elements C, O and N.

3 Results and Discussion
3.1 Fine-tuning the MLIPs

The performance of the foundational models was initially
evaluated on the Fe data set, see Fig. 1. All foundational
models reproduced the DFT data set poorly, under-pre-
dicting the energies for most of the structures. This is in
accordance with previous work reporting that models
trained only on near-equilibrium structures exhibit sys-
tematic softening.** Furthermore, even though the data set
was generated using the MPMetalRelaxset, there is an
offset in the energies for all the foundational models.

Figure 2 presents the performance of the models on the
MPTRJ validation set introduced in Sect. 2.2.2, after being
fine-tuned on the Fe data set. The foundational models
CHG2, MACE, and SevenNet-O show good fit to the
MPTRIJ validation set with RMSEs of 0.063, 0.043 and
0.040 eV/atom respectively (Sect. A.1). After fine-tuning,
the MLIPs show an increase in the RMSE values signifying
forgetting in the models. The models were trained for 50
epochs. Possibly, the models do not need the full 50 epochs
to achieve a good fit to the Fe data set. However, since the
focus of this work is on catastrophic forgetting, it is ben-
eficial to examine how extended training over more epochs
influences forgetting.

After fine-tuning, both naive and replay MACE models
(Sect. 2.2), exhibit high RMSE values of 4.63 eV/atom and
0.605 eV/atom on the MPTRIJ validation set. The large
error of the naive model indicates that transfer learning

CHG2. (RMSE: 0.212)

MACE. (RMSE: 0.172)

does not occur effectively and that the model largely for-
gets the knowledge gained during initial training.

The MACE model trained with the replay approach
preserves most of the learned information; however, a few
configurations show significant deviations. As RMSE was
employed as the evaluation metric, these outlier configu-
rations disproportionately influence the reported error.
Both CHG2 and SevenNet-O show less forgetting than
MACE, as evidenced by the minor increase in the RMSE to
0.111 eV/atom and 0.062 eV/atom, respectively. The
majority of data lies clustered close to the ground truth
prediction. For simulations involving structural relaxations,
dynamical processes, and kinetic processes, MLIPs must
accurately predict the forces. Figure 3 shows the perfor-
mance of the CHG2-naive, SevenNet-O, MACE-naive and
MACE-replay on the forces after fine-tuning. For CHG2
and SevenNet-O, similar to the energy predictions, the
performance appears similar to the foundational model
(Fig. 9) however there is an increase in the RMSE to 0.397
and 0.267 eV/A, respectively. On the contrary, the per-
formance of the MACE-replay model is poor with a drastic

increase in the RMSE to 1.730 eV/ A. It is noted that the
force errors for all the fine-tuned models are too large to be
useful for simulations involving structural relaxations,
kinetics, or dynamics.

Figure 4 shows the change in the MPTRJ RMSE as the
fine-tuning progresses for CHG2-naive, SevenNet-O and
MACE-FT-replay. The MPTRJ RMSE increases for all
models, though only marginally for CHG2. Fine-tuning is
influenced by numerous hyper-parameters, with the learn-
ing rate being a key factor. To investigate the impact of
learning rate on forgetting, we examine three learning
rates: 0.01, 0.001, and 0.0001. Both CHG2 and SevenNet-
O exhibit a drastic increase in RMSE when trained with
higher learning rates; in particular, at a learning rate of
0.01, the RMSE rises by orders of magnitude for both
models. In contrast, at lower learning rates, the RMSE
values plateau and remain stable with continued training.

Sevenn. (RMSE: 0.187)
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Fig. 1 Performance of the foundational models on the pure Fe data set before fine-tuning
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CHG2-naive. (RMSE: 0.111)

MACE-naive. (RMSE: 4.466)
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For MACE-replay, as the training progresses the
MPTRJ RMSE increases drastically reaching 0.6 eV/atom
after 50 epochs. As for the learning rate, there does not
appear to be an observable effect on the forgetting of the
information for the MACE model. All models end with
high RMSE values (0.4 eV/atom) after 50 epochs. For
CHG2 the MPTRJ RMSE only increases to 0.111 eV/atom
although the MPTRIJ data set was not replayed.

For learning rates 0.001 and 0.0001 the Fe RMSE
decreases for all models as the fine-tuning progresses
(Fig. 12), signifying an improved fit to Fe data set. The
models achieve RMSE values of less than 10 meV / atom
after 10 epochs for the Fe data set. This aligns with the
findings of,°”! which demonstrated that fine-tuning foun-
dational models can be highly data-efficient, achieving
high accuracy using only 664 training configurations. Here,

as we use 10,400 training data, fewer epochs were required
to reach an RMSE below 10 meV/atom for the Fe data set.

Freezing of layers during fine-tuning is one of the
strategies for minimizing catastrophic forgetting. For
CHG2 freezing the layers generally resulted in MPTRJ
RMSE values comparable to or higher than those from the
naive approach (Sect. A.2). The only exception occurred
when only the convolution layers were trained—that is,
when all layers were frozen except the atom and bond
convolution layers. To further validate the observations,
two additional fine-tunings were carried out with random-
ized training, validation and test set for the best model
(only convolution layers trainable). The mean MPTRIJ
RMSE for the three models was 91 meV/atom with a
standard deviation of 0.001 eV/atom. This confirms that the
reduced forgetting seen in the model was not a random
occurrence. For MACE, freezing layers did not lead to a
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notable reduction in RMSE, which remained high at 4.59
eV/atom on the MPTRJ validation set (Sect. A.2). This
outcome may reflect suboptimal layer selection for freez-
ing; however, unlike CHG2 and SevenNet-O naive models,
the MACE models already exhibited high RMSE values
even without freezing, showing lower applicability for the
current transfer learning strategy. Consequently, this
approach was not pursued further.

RMSE reflects the quality of a fit to a given data set, but
it is not optimal for materials simulations, where accuracy
in properties like vacancy formation and elastic tensor is
critical. Hence, we further evaluated the MLIPs on bcc-Fe
properties; the best models of CHG2 (frozen) and MACE
(MACE-replay) after fine-tuning were considered. Since
the fine-tuned CHG2 and SevenNet-O models exhibit
comparable performance on the MPTRIJ dataset, we focus
on CHGNet in the main discussion. This choice is moti-
vated by CHG2’s additional capability to predict magnetic
moments alongside energies and forces. For completeness,
the results for SevenNet-O are provided in the Sect. A.5.1.
The fine-tuned CHG2 and MACE models would be refer-
red to as CHG2-FT and MACE-FT from here on. For both
CHG?2 and MACE, five models were fine-tuned with ran-
domized train, test and validation sets to measure the
standard deviation in predictions.

3.2 Validation on Fe Properties

Figure 5(a) shows the energy volume curve for bcc Fe as
predicted by the MLIPs. All MLIPs, predict the equilib-
rium volume per atom for a bce unit cell in the range of

11.3 — 11.4A atom of DFT

(11.3;\3at0m). As the foundational models are trained on
near equilibrium structures they accurately predict the
equilibrium volume. However, the curvature of the energy
volume curve deviates largely for MACE, which is
reflected in the predicted bulk modulus (Fig. 5b). After
fine-tuning, the energy volume curves are comparable to
that of DFT for both CHG2-FT and MACE-FT.

Table 1 shows the bulk properties of Fe as predicted by the
MLIPs, they are compared with the DFT values calculated in
the present study and from literature.""! For simulations
involving structural relaxations, MLIPs must predict the
elastic properties accurately. The performance of founda-
tional models on Fe elastic properties were evaluated in
previous work.*>! It was observed that for elastic properties
the foundational models performed poorly with CHGNet
version ‘0.3.0’ (CHG3) being the worst. CHG3 predicted bcc
Fe to be mechanically unstable(C’ <0), hence was not con-
sidered in this study. The MACE foundational model (mp-
0b3) used in this study is a more recent model, but it performs
worse than the version used by Echeverri Restrepo et al.l>!

comparable to that

After fine-tuning, all models accurately predict the elastic
properties with an error < 10%. This is expected as the fine-
tuning data set contains various deformed cells that allows
the MLIP to capture the elastic deformation accurately.
CHG2 and MACE both before and after fine-tuning repro-
duce well the DFT literature values for the coefficient of
linear thermal expansion and the specific heat Cp. CHG2
yields a bulk magnetic moment of 2.35 g, which decreases
to 2.19 up after fine-tuning bringing it closer to the reported
literature value of 2.17 5.1

Because the local atomic environments of defects differ
from those in perfect crystals, vacancy structures represent
an extrapolation for foundational models trained only on
near-equilibrium configurations. This is seen in the
vacancy formation energy predicted by the foundational
models (Table 1). After fine-tuning with the Fe-data set,
both CHG2 and MACE predict a vacancy formation energy
of 2.13 eV and 2.23 eV respectively, comparable with the
DFT value. Similar observations were also seen for
vacancy migration barriers, with MACE’s error reducing to
0.08 eV and 0.04 eV for CHG2.

Other defects important for materials simulation are
surfaces and grain boundaries. Figure 5(c) shows the pre-
dicted energies for symmetric tilt GBs. Both foundational
models under-predict the GB energies, although they cap-
ture the DFT trends. They predict £3(112) as the lowest
energy GB in accordance with DFT.[°” Similar observa-
tions were also seen for symmetric twist grain boundaries
(Fig. 15). The quantitative predictions improve after fine-
tuning with an error of 0.139 and 0.119 Jmm =2 for CHG2-
FT and MACE-FT respectively. X3(111) and X7(111)
twist grain boundaries show the largest deviation.

Additionally we evaluate the models on the (100), (110)
and (111) bee Fe surfaces. Figure 5(d), shows the surface
energy predicted by the MLIPs. The surface energies pre-
dicted by the foundational models deviate by more than 1
Jmm~2. However, after fine-tuning the error decreases to
0.027 Jmm~2 for CHG2-FT and 0.042 Jmm > for MACE-
FT respectively. It was found that irrespective of the per-
formance of the foundational models, after fine-tuning all
MLIPs fit the Fe properties well.

3.3 Fe-impurity interactions

Substitutional impurities: As the MLIPs have only been
fine-tuned on the Fe data set, they rely on the foundational
models training to predict the solute-solute interactions.
Here we look at the binding energy as predicted by the
CHG2-FT and MACE-FT for the first five nearest neigh-
bours for pairs of substitutional atoms. Figure 6 shows the
binding energies for a subset of combination of elements
Al, Cu, Ni, Nb and Sn. The binding energies predicted by
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error bars for fine-tuned models were determined with five different
models fine-tuned on randomized dataset. The DFT values for GB and
surfaces are taken from'*! and'”! respectively, the other DFT values
are calculated in the present work

Table 1 Properties of bec Fe as

predicted by DET, CHG2., Properties CHG2 CHG2-FT MACE MACE-FT DFT (this study)  DFT

II\J’ITACE’ CHG2-FT and MACE- A 284 283 284  2.83 2.83 2.8311
B GPa 182 189 + 6 49 196 + 1 197 19911
o GPa 55 74 +£2 5 64 £ 1 67 7301
Cus GPa 55 104 £ 1 54 105 £ 1 105 10514
« (300 K)! 1073 1.08 128+ 0.10 .10 1.33£0.11 1021681
Cp (300 K) J/(mol K) 26.03 25554 0.89 2240 2571 +0.74 23301681
ik L 235 214 - - 2.18 2,187
E, eV 073  213+001 049 223 +0.01 2.19 2.20"1
E" eV 0.65 0.67+001 040 0.71 £ 0.01 0.651%

vac

Linear coefficient of thermal expansion

the MLIPs are compared with the DFT calculations per-
formed in the present study. The binding energies for other
combinations of elements are given in Sect. A.6.

For all elements, the MLIPs faithfully reproduce the
trend of binding energies as a function of increasing
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nearest-neighbour distance. CHG2 and MACE have an
RMSE of 0.073 and 0.117 eV, respectively, after fine-
tuning the error slightly increases for CHG2-FT to 0.084
eV. However, the deviation of these predictions from the
CHG?2 model predictions is minimal.
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Fig. 6 Binding energies for the first five nearest neighbours subset of elements

Unlike CHG2-FT, the forgetting during fine-tuning
observed for MACE is visible in the binding energy pre-
dictions of MACE-FT, with a RMSE of 0.361 eV. Further,
for Al-Al, Al-Nb, Al-Sn, Cu-Nb, Nb-Nb, and Nb-Sn
MACE-FT incorrectly predicts the interactions as attrac-
tive. This is despite replaying the MPTRIJ data set during
the fine-tuning of MACE.

Vacancy impurities interaction: Next we look at vacancy-
solute interactions. It is expected that the addition of vacancy
structures during fine-tuning improves the relaxation for
defect structures. This is evident with the decrease in RMSE
from 0.134 eV to 0.067 eV for CHG2-FT. As MACE-FT
does not capture the interactions accurately, there was no
improvement noted in the RMSE (Fig. 7).

@ Springer



J. Phase Equilib. Diffus.

Model
#® DFT O CHG2 { MACE @® CHG2-FT ¢ MACE-FT
Al-vac Cu-vac Nb-vac
0.1 § <> 0.2 Q
A
0.0
v é % ©) o)
Sog |G ¢ * e 00 6 vl < o0 ® 8 g ———————————— '
) o 2 ’ - 0 é
g 02 ¢ B-01 (0 @ ¢ é 8., @ : ¢
2 -03 |gg 2 % 2
o [0 (0]
2 04 2 02 2 -04 @
B 2 |8 =
a8~ 3 3
-0.6 03 ’ 6 -0.6
-0.7 ¢ ¢
1 > 3 4 5 1 2 3 4 5 1 2 3 4 5
nn nn nn
Ni-vac Sn-vac vac-vac
0.05 g 0.0 & g ~~~~~~~~~~~ & 0.10 o ©
0.00 o 0 ‘ ——————————— e @ 0.05 8 o
B -0.05 8 @ 3 02 8 é & 3 00 [5G ‘ 2 g
> > >
3 -0.10 > 3 -0.05 6
5 & o g -04 g ®
& -0.15 5 S -0.10
()] ()] ()]
é 02 | é -06 |® é 015 198
S 025 s 8 5 020 |§ &
-0.30 } o 0 -0.25 ¢
-0.30
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
nn nn nn
Fig. 7 Binding energies for the first five nearest neighbours for vacancy-solute interactions
Table 2 The difference in AE
energy between octahedral and ocrter
tetrahedral site for interstitial Solute CHG?2 CHG2-FT MACE MACE-FT DFT
atoms C, N and O
C —0.515 —0.262 —0.262 0.479 —0.86,1°51 —0.9419 _0 86!
N —0.142 —0.0001 —0.000 —0.12 —0.87% —0.731"1
0 0.224 —0.043 —0.043 0.747 —0.577% 052171

Interstitial impurities: In addition to substitutional
impurities, steel also has interstitial impurities like C, O
and N. To identify the preferred interstitial sites, the dif-
ference in energies of the tetrahedral and octahedral
interstitial sites for these elements are determined using the
MLIPs (Table 2). The interstitial atoms prefer octahedral
sites if E,¢—e; <0. For carbon, CHG2, MACE and CHG2-
FT correctly predict the octahedral site as the stable site
which is consistent with DFT. However, the predicted

AE,¢_1er 1s significantly lower in magnitude. AE,q,
determines the energy barrier for diffusion, with the
tetrahedral site acting as the saddle point. Thus, a
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significantly underestimated AE,. ., leads to extreme
overestimation of diffusivities in simulations. MACE-FT
wrongly predicts the tetrahedral site to be stable, a patho-
logical feature. As with C, all MLIPs underestimate the
AE, ;. for N, but consistently identify the octahedral site
as the most stable. For O, however, CHG2 and MACE-FT
incorrectly predict the tetrahedral site as stable.

3.4 Discussion

n this study, we observe that fine-tuning foundational
models is not a straightforward task. The model
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architecture plays an important role during fine-tuning, as
seen in the case of CHGNet, MACE and SevenNet-O. The
foundational models evaluated here were trained on the
same MPTRJ data set and further fine-tuned on the same Fe
data set. However, each model behaves differently after
fine-tuning. All models display catastrophic forgetting
though to different degrees. Both CHGNet and SevenNet-
O show a reduced tendency to forget as the learning rate is
lowered, with minimal forgetting observed at a learning
rate of 0.0001. In contrast, for both the naive and replay
strategy in MACE, lowering the learning rate does not lead
to a reduction in forgetting, with the naive strategy show-
ing the worst performance. It is possible that the training
strategy used here is not the best suited for MACE, as
numerous other hyper-parameters could influence the fine-
tuning.!’?!

IWhile the replay strategy in MACE provides a more
effective mitigation of forgetting compared to naive training,
its performance remains inferior to that of CHGNet and
SevenNet-O. A downside of the replay strategy is the need
for replaying the old data set every time the model is fine-
tuned, this both increases the training cost and data set size
for fine-tuning. It was seen that replaying does not guarantee

a good fit to the forces after fine-tuning (RMSE 1.7 ¢V/ A),
limiting its applicability to structural relaxations.

When the layers of CHGNet were frozen to mitigate catas-
trophic forgetting, it was observed that updating only the con-
volutional layers yielded the lowest error rates. In contrast,
training other layers resulted in errors comparable to those from
naive training. This is likely due to the key role convolutional
layers play in extracting environmental features for each atom;
selectively fine-tuning these parameters may enable the model
to better adapt to new atomic environments. Verifying this
however requires more in depth study which is not within the
scope of the current article.

Irrespective of the performance of the foundational
models on the Fe properties, the models after fine-tuning fit
accurately to the properties of Fe. This was seen with the
improvement in the vacancy formation energy, elastic
properties, grain boundary energies and surface energies
for all fine-tuned models.

Forgetting in models during fine-tuning directly influ-
ences the binding energy prediction of substitutional atoms.
CHGNet predicted binding energies that were comparable to
those of the foundational model, agreeing with the minimal
catastrophic forgetting observed earlier. In the case of
vacancy defect interactions, minor improvements were
observed due to the presence of the Fe vacancy configura-
tions in the training data set. This indicates that foundational
models pre-trained on large data sets can be effectively fine-
tuned using data specific to a new application, while main-
taining their generalization to other systems. In the case of

steel, this facilitates simulations of the combined effects of
multiple elements—an area of study that was previously
inaccessible through computational approaches.

In contrast to substitutional impurities, the model shows
poor performance for interstitial atoms. This is likely due
to the distinct atomic environments for interstitial solute
atoms. Substitutional atoms occupy lattice sites where their
surroundings resemble those of pure Fe, which are well
represented in the training data. However, interstitial atoms
are placed in between lattice sites, creating configurations
not present in the fine-tuning data set. Moreover, while
foundational models were trained on Fe-carbides, they
lacked representations of carbon as an interstitial in a bcc
Fe lattice. Thus, predictions for such configurations involve
extrapolation, leading to significant errors.

4 Conclusions

This study investigates catastrophic forgetting in fine-tun-
ing foundational machine learning interatomic potentials
(MLIPs) for the Fe system, comparing CHGNet, SevenNet-
O, and MACE. Our findings reveal that learning rates
below 0.0001 significantly mitigate forgetting in CHGNet
and SevenNet-O, enabling effective adaptation to system
specific data while retaining broad prior knowledge. In
contrast, MACE exhibits greater sensitivity to fine-tuning,
with higher forgetting rates despite strategies like freezing
and data set replay, likely due to architectural differences
that limit its robustness and transferability. Additionally,
all models showed poor performance for interstitial atoms,
for steels a critical issue. It highlights the critical need for
including relevant configurations in fine-tuning data sets.
These findings are particularly relevant for industrial
applications, where reliable prediction of impurity inter-
actions is essential for designing steels with improved
recyclability and performance. Although the present study
is limited to single-phase bcc Fe and a restricted set of
substitutional elements, the results demonstrate that care-
fully tuned MLIPs can preserve both data efficiency and
transferability, while also highlighting directions for
improving their applicability to more complex systems.

Appendix

Performance of foundational models on MPTR]J
dataset

Figures 8 and 9 show the performance of foundational

models for energies and forces evaluated on the MPTRIJ
dataset.

@ Springer



J. Phase Equilib. Diffus.

CHG2. (RMSE: 0.063) a5 MACE. (RMSE: 0.043) 6 Sevenn. (RMSE: 0.040)
= P = o
g 4.7 S 47 E 4.7 e
g i L by
3 d d 102 8
3 94 s 94 3 -94 =
< it < .3
P 10t S
141 a1 2 -14.1
-14.1 9.4 -4.7 0.1 -14.1 9.4 4.7 0.1 -14.1 9.4 4.7 0.1 100
(@) Eper (eV/atom) (b) Eper (eV/atom) (c) Eper (eV/atom)
Fig. 8 Performance of foundational models on the MPTRIJ validation set before (a) CHG2, (b) MACE, (c) SevenNet-O
CHG2. (RMSE: 0.219) MACE. (RMSE: 0.093) Sevenn. (RMSE: 0.112)
150.0 150.0 150.0
//' /'/ 106
/ ./ /// 105 —_
< < 100.0 LS < 1000 o 2
> > - > i 10* 3
~ ~ ~ =)
a a a o
oE «& 500 « 500 10375'
107 g
O
10!
-0.0 -0.0
-0.0 50.0 100.0 150.0 -0.0 50.0 100.0 150.0 -0.0 50.0 100.0 150.0 100
(a) forr (eV/A) (b) forr (€V/A) (c) forr (€V/A)
Fig. 9 Performance of foundational models to MPTRIJ forces (a) CHG2, (b) MACE, (c) SevenNet-O
Fig. 10 RMSE for the MPTRJ
and Fe data set set when layers Model 1
were frozen in CHGNet. The . Model 2
details the layers frozen are Model 3
given in Table 3 ~~ Model 4
0.16

Model 5
. Model 6

E

o)

©

D 0.14 X

3

}_

a4

o

=

W 0.12

%)

= +

14 sl«— Naive
0.10

J<—— Only Convolution layers trainable

0.010 0.011 0.012 0.013 0.014
RMSE Fe (ev/atom)

@ Springer



J. Phase Equilib. Diffus.

Table 3 The numbers

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
correspond to the layers
explained above. T indicates Atom embedding F F F F F T
that the parameters in the layers .
are trainable, while F represents Atom convolution F F F T T T
the parameters in the layers kept Bond embedding T F T F F T
frozen Bond convolution T T T T T T
Bond Basis T T T T F T
Angle embedding T F F T F T
Angle layers T T F T F T
Angle basis expansion T T F T F T
01 MACE-freeze. (RMSE: 4.633) Fit during the training
103 Figure 12 shows the performance of the MLIPs fine-tuned
— = 7 . to the full Fe data set during the training. For a learning rate
g 4.7 rd % of 0.01, CHGNet does not converge or fit to the Fe data set.
- 2 .
o e 102 b SevenNet-O on the other hand does improve but saturates
% 2 o with a high error of 0.05 eV/atom. When the learning rate
a il f is reduced it is expected that more iterations are required to
~ - 4
4t o sl L2t S improve the fit, however, here we see that MACE and
ot S CHG2 with a learning rate or 0.0001 achieved good fit
ol withing the first 2 epochs (Fig. 13). Thus demonstrating
B al that fine-tuning is much quicker than training from scratch.
14.1 L 100
141 9.4 4.7 0.1 10

Eprr (eV/atom)

Fig. 11 Performance of MACE-freeze model for energy evaluated on
the MPTR]J validation set

Freezing of layers

Figure 10 shows the performance of the CHG2 models with
some of the layers frozen. The layers were frozen based on
the named layers in CHGNet, the models corresponding to
the layers frozen are given in Table 3. The models where
only the convolution layers were allowed to be trained
showed the least forgetting while also giving a better fit to
the Fe data set.

Figure 11 shows the performance of the MACE-freeze
model on the energies for the MPTRIJ validation set. The
model does not show any improvement upon freezing the
layers. Hence it was not considered for further studies.

Figure 14 shows the performance on elastic tensor as the
training progresses for CHGNet. 50 epochs was sufficient
for having a good fit to C;;, Cj and Cyy elastic properties.

Fe properties
Twist grain boundaries

Similar to the tilt grain boundaries, the MLIPs were also
evaluated on twist GBs. Figure 15 shows the performance
of the MLIPs.

Specific heat and Coefficient of Thermal Expansion

Figure 16 presents the temperature-dependent coefficients
of thermal expansion and heat capacity, obtained through
numerical differentiation of cubic spline interpolations.
Initially, both MACE and SevenNet-O models show poor
alignment with reference data, SevenNet-O in particular
exhibits significant deviations. However, their accuracy
improves substantially after fine-tuning. While the fine-
tuned models successfully capture the general temperature-
dependent trends predicted by DFT, their values tend to be
slightly higher and more consistent with experimental
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Coefficient of Thermal Expansion vs Temperature

Specific Heat Capacity vs Temperature
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Fig. 16 (a) Coefficient of linear expansion as a function of temperature. (b) heat capacity at constant pressure as a function of temperature. DFT

values taken from Ref.[®8]

Table 4 Properties of bec Fe as

predicted by DET, CHG3, Properties CHG3 CHG3-FT SevenNet-O  Sevenn-FT  DFT (this study) DFT!'!
SevenNet-O, CHG3-FT and Al A 2.84 2.83 2.84 2.83 2.83 2.83
Sevenn-FT

B GPa 110 208 97 189 + 1 197 199

C GPa —1.25 58 19 66 + 1 67 73

Cu GPa 96 91 110 97 + 1 105 105

o (300 K)!' 1073 —23.9 1.55 £ 0.26 1021681

Cp (300 K) J/(mol K) 13.13 26.05 + 1.33 2331681

bk g 235 2.16 - - 2.18

E eV 0.82 2.08 1.29 2.2340.01 2.19 2.20

vac

"Linear coefficient of thermal expansion

results.[®®! Some noise is evident in the data, likely due to
the limited size of the simulation cells and the relatively
short molecular dynamics trajectories used in the MLIP
evaluations.

SevenNet-O and CHG3

Table 4 shows the properties of Fe as predicted by the fine-
tuned CHG3 and SevenNet-O. Though there are large
errors in the naive model, after fine-tuning both models
show good performance similar to MACE-FT and CHG2-
FT. Similarly, Fig. 17 shows the energy volume curve, GB

energies and surface energies as predicted by CHG3-naive
and Sevenn-naive. The coefficient of thermal expansion
and specific heat (Cp) deviate for SevenNet-O before fine-
tuning. After fine-tuning the values are well within the
accepted range.

Binding energies
The binding energies of different solute element combi-

nations in bec Fe are presented in Fig. 18 and 19. Com-
parisons are made with values reported in the
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literature!’*~">! Despite employing a replay strategy,

MACE-FT consistently yields large errors in binding
energy predictions, indicating significant catastrophic
forgetting.
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