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Abstract Recycling steel at scale is hindered by tramp

elements such as Cu and Sn, which degrade material

properties. Atomistic simulations using foundational

machine-learned interatomic potentials (MLIPs) trained on

large databases, such as Materials Project, Alexandria, and

OMAT, offer a promising approach to study the effects of

these impurities. However, fine-tuning these models to

specific systems can lead to catastrophic forgetting–the loss

of general chemical knowledge acquired during pretrain-

ing. Here, we evaluate forgetting in three foundational

MLIPs: CHGNet, SevenNet-O, and MACE, by fine-tuning

on a data set of bcc-based structures, with Fe atoms only.

When evaluated on a subset of the Materials Project data

set with a learning rate of 0.0001, the fine-tuned MLIPs of

CHGNet and SevenNet-O exhibited only a minor increase

in RMSE of 0.047 and 0.022 eV/atom, respectively, indi-

cating markedly minor forgetting. In contrast, fine-tuned

MACE exhibited catastrophic forgetting, despite a range of

additional strategies such as layer freezing and data set

replay. We attribute the catastrophic forgetting to archi-

tectural sensitivity. These results highlight the importance

of fine-tuning hyperparameters, model architecture, and

data set design, with fine-tuned models of CHGnet and

SevenNet-O showing some potential for efficient and

transferable modeling of recycled steels.

Keywords CHGNet � fine-tuning � iron � machine learned

interatomic potentials � MACE � SevenNet-O

1 Introduction

Transitioning to more sustainable steel manufacturing

requires increased utilization of scrap steel. Scrap steel

often introduces so-called tramp elements, such as Cu from

electrical parts in car bodies, into the steel production

process. Other common tramp elements that affect the

quality of the final product are Sn, Cr, and Ni.[1] Currently,

the detrimental effects of these elements are controlled by

diluting them with pure iron. However, this strategy

imposes a limitation on the volume of scrap steel that can

be effectively recycled during steel production. Improving

the use of scrap steel requires a deeper understanding of the

detrimental effects of the tramp elements. Atomistic sim-

ulations are a promising method for gaining such insights.

Conventionally, atomistic simulations have been per-

formed using density functional theory (DFT) or empirical

interatomic potentials. These two methods come with their

own advantages and disadvantages. DFT is accurate but is

computationally expensive, practical systems are limited to

only a few hundred atoms.[2–4] On the other hand, simu-

lations employing empirical potentials can deal with mil-

lions of atoms, but these potentials are limited to the
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specific systems for which they have been developed.[5]

Each new impurity or alloying element in steel requires

painstaking development of a new potential, a process that

becomes even more complicated for multi-component

systems. This is where machine-learned interatomic

potentials (MLIP) show promise. MLIPs have been fit to

data generated using density functional theory (DFT),

approaching the level of accuracy of DFT. However,

MLIPs, especially for systems with many electrons, can

yield energies and forces orders of magnitude faster than

DFT. Since these MLIPs are built on local atomic envi-

ronments, they can be scaled up to model larger length

scales in a manner comparable to empirical potentials.

Over the years, various MLIPs have been developed each

targeting higher accuracy and lower computational

cost.[6–9]

Numerous machine-learning interatomic potentials

(MLIPs) have been developed for iron and iron-based

alloys.[10–18] Many of these MLIPs use explicitly con-

structed, physics-informed descriptors of the local atomic

environment as inputs to the fitting procedure.[19] Some of

these MLIPs also incorporate magnetism,[13,15,20] which is

important for systems involving iron. However, such

descriptor-based MLIPs (e.g., GAP, MTP, ACE) face

scaling limitations with increasing number of chemical

species due to the combinatorial growth of descriptor terms

and the amount of required training data.[19] This combi-

natorial growth poses a practical challenge when modeling

realistic steels that contain numerous alloying elements.

Recently, MLIPs utilizing graph-based neural networks

(GNNs) have gained popularity owing to their broad

applicability across a wide range of material systems. This

is achieved by training on data from large databases, such

as the Materials Project,[21] Alexandria[22] and OMAT,[23]

each containing millions of structures, molecules and

compounds. M3GNet,[24] CHGNet,[25] MACE,[26] Seven-

Net-O,[27] GRACE,[28] Mattersim[29] and eqV2[30] are

some of the potentials in this category.

In materials science, MLIPs are used to study defects

such as vacancies, dislocations, and grain boundaries,

which are critical to material behavior and must be accu-

rately captured in simulations. While MLIPs are trained on

energy per atom to normalize the loss function, defect

energies are calculated as energy differences between

configurations–for example, the vacancy formation energy

is obtained from Ef
vac ¼ Evac

n�1 � n�1
n Eref

n (where Evac
n�1 is the

energy of the supercell with one vacancy and Eref
n is the bcc

Fe reference supercell with n atoms). As a result, even

small per-atom errors (� 1 meV) can lead to large inac-

curacies in defect energies, especially for larger supercells

where n� 100.[31,32] Various studies have now reported

this limited applicability of out-of-the-box universal

potentials to defect properties, thus requiring fine-

tuning.[33–35]

Fine-tuning is a transfer learning technique where a pre-

trained model is adapted to a new task.[36,37] The model is

first pretrained on a large data set containing a wide variety

of elements and compounds to capture general element

interactions and structure–property relationships. It is then

fine-tuned using a data set tailored to the specific applica-

tion to deliver accurate energy predictions for the target

system. Fine-tuning has proven to be data-efficient;[34,38–40]

Radova et al.[39] reported that using only 10–20% of the

training samples was sufficient to achieve an accuracy

comparable to that of a model trained on the full dataset.

Despite these advantages, a major challenge during fine-

tuning of foundational models is catastrophic forget-

ting.[36,41] This is particularly relevant when the application

of an MLIP relies on knowledge acquired during its pre-

training. For instance, in the case of steels, preserving the

learned interactions with various alloying elements from

the pretraining allows the model to handle impurities

absent during fine-tuning.

In this study we evaluate catastrophic forgetting in

foundational models, namely CHGNet,[25] MACE[26] and

SevenNet-O,[27] by fine-tuning them to a data set contain-

ing pure Fe structures only (referred to as the ‘‘Fe data set‘‘

below). The performance of the fine-tuned MLIPs was then

tested by predicting the binding energies of various ele-

ments in the bcc Fe matrix, a task that requires retention of

information from the pretraining.

2 Methods

2.1 Machine Learned Interatomic Potentials

Graph-based neural networks (GNNs) represent material

structures as graphs, with nodes corresponding to atoms

and edges capturing their connections to neighbouring

atoms. This allows a GNN to learn the representation of the

material structure and its relationship to properties during

training instead of relying on crafted features or fixed

descriptors.[42] These models rely on message passing to

extract information from the neighbouring atoms, allowing

incorporation of more than two body interactions. Some

models, such as MACE, further enforce many-body terms

directly in the message passing while also accounting for

invariance and equivariance.[26]

Here, we select the models CHGNet, MACE and

SevenNet-O for fine-tuning (CHG2-FT, MACE-FT,

Sevenn-FT). We choose CHGNet as it directly incorporates

magnetic moments in the architecture, which is important

for magnetic systems such as Fe.[43] Although, CHGNet is

trained only on the absolute values of the magnetic
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moments, Deng et al.[25] demonstrated its usefulness by

identifying the oxidation state of transition metal ions in

compounds. Specifically, V4þ and V3þ were identified in

Na2 V2(PO4)3 through the magnetic moments.[25] CHGNet

is then compared with MACE, and SevenNet-O, each of

them trained on the same Materials Project (MPTRJ) data

set. This choice is made to make a fair comparison with the

CHGNet model although there exists MACE and Seven-

Net-O models trained on larger data sets.

2.1.1 CHGNet

Crystal Hamiltonian Graph neural network abbreviated as

CHGNet[25] is a GNN based MLIP. It is constructed such

that it consists of two graphs, the atom graph and the bond

graph. The atom graph captures the non-directional bond-

ing information, whereas the bond graph captures the

directional bonding information. The message passing,

referred to as the interaction block in the CHGNet, incor-

porates the many body interactions. Unlike other MLIPs,

CHGNet predicts absolute magnetic moments after three

layers of message passing from the atom embedding. This

information is then used to infer local charge redistribution

in ionic systems. In this study we use the ‘0.2.0’ version of

the CHGNet (referred to as CHG2) as it was observed that

the ‘0.3.0’ model (CHG3) performed poorly for the Fe

system.[35]

2.1.2 MACE

MACE[26] is another GNN based MLIP which uses

spherical harmonics and radial basis functions to generate

descriptors for atomic environments. The design of MACE

enables it to gather the important features from neighbours

with just two message-passing layers, making it fast and

scalable. Various versions of the model trained on different

data sets are available. Here, we use the updated model

trained on the MPTRJ data set named ‘mace-medium-mp-

0b3’.

2.1.3 SevenNet-O

SevenNet-O is a MLIP based on the NequIP[44] architec-

ture with a focus on scalability. The E(3)-equivariant1

representation in NequIp allows SevenNet-O to accurately

capture the atomic interactions while respecting the

equivariance constraints. SevenNet-O implements a paral-

lelization strategy that allows simulation of large supercells

using multiple GPUs. Here we use the 11July2024 model

that was trained on the MPTRJ data set.

2.2 Fine-Tuning the MLIP

We use foundational models pretrained on large data sets

covering 94 elements from the periodic table and fine-tune

them to better fit the specific case of iron. We compare how

different models, pretrained on the same data set, perform

during fine-tuning. For proper comparison, all foundational

models were fine-tuned using the same training, validation,

and test datasets.

There are numerous hyperparameters that influence the

fine-tuning. Here we focus on different learning rates as

they dictate the change in trainable parameters. Three

learning rates 0.01, 0.001 and 0.0001 were used. All other

hyper-parameters were kept same as those used during the

pretraining. The MLIPs were fit to energy and force during

fine-tuning, for CHGNet magnetic moments were used as

well.

Various strategies are available to minimize forgetting

during fine-tuning,[41] such as freezing layers, replaying the

original data set, employing sub-networks, or using

dynamic architectures. Freezing layers reduces forgetting

by keeping part of the trainable parameters fixed during

subsequent fine-tuning,[39] while data set replay incorpo-

rates all or part of the original data set into the fine-tuning

process.[45] Sub-networks restrict training to smaller parts

of the model, and dynamic networks expand the architec-

ture by adding new parameters to accommodate new

tasks.[34] A key limitation of architecture-based methods is

that they are best suited for clearly separated tasks; they

cannot accommodate scenarios where both old and new

knowledge must be combined for a single prediction. An

alternative is the use of regularization-based approaches,

such as elastic weight consolidation (EWC).[46] In this

technique, fine-tuning is guided by penalizing changes to

parameters deemed important for the original task, thereby

preserving prior knowledge without explicitly having a

need for the original training data. However, in comparison

to other continual learning approaches regularization-based

methods perform worse.[47]

Here, we examine two strategies: (1) with all parameters

trainable, referred to as naive fine-tuning, and (2) freezing

of layers. For MACE, we additionally evaluated as a third

strategy the multi-head replay strategy.[48] This strategy

allows for learning at multiple levels of theory while

maintaining transferability across systems. Specifically,

MACE employs two readout layers, or ‘‘heads’’: one ded-

icated to the new task and the other to the original task,

with 99% of the trainable parameters shared between them.

During fine-tuning, one head is trained on the new data set

while the other is simultaneously trained on a subset of the

1 E(3)-equivariance ensures that scalar quantities such as energies

remain invariant, while vector quantities like forces transform exactly

as they should under rotations, translations, and reflections.
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original data set to minimize forgetting. This strategy was

applied using the implementation available in the MACE

PyPI release (version 0.3.12).[49]

2.2.1 Freezing of layers

The considered MLIPs contain numerous layers with

trainable parameters. These layers are designed to emulate

underlying physical laws; however, due to the black-box

nature of the models, it is difficult to verify whether they

capture such behavior. The MLIPs begin by encoding the

element information in the first layer. It could be expected

that the model learns to differentiate the elements in this

layer and then during message passing learns the interac-

tions with neighbouring atoms. The MLIP then predicts the

energy for each atomic site and next sums it to predict the

energy of the supercell.

By freezing some of the layers it would retain the

information the model learned during the pretraining.

Radova et al.[39] found freezing the first four layers to be

optimal for MACE, hence we used the same strategy for

MACE. For CHGNet, layers were frozen based on their

function in the network, while the first embedding layer

was always kept frozen. As training models for various

conditions are quite computationally intensive, only

MACE and CHGNet models were chosen for frozen

learning.

2.2.2 Complementing MP data set

The training data set plays an important role during the

training of the NNs. Various methods are used in the lit-

erature to generate data, such as active learning,[50,51]

sampling configurations from ab-initio MD,[11] or designed

configurations that target defect and other properties. Each

strategy comes with its own advantages and limitations.

Active learning involves performing molecular dynamics

(MD) simulations with an uncertainty measure in the

MLIP. The uncertainty measure is used to determine if a

prediction is out-of-distribution. When an out-of-distribu-

tion structure is encountered, it is evaluated using DFT and

subsequently incorporated into the training database. This

is used for MLIPs such as ACE,[8] MTP[7] and GAP.[52] For

graph based MLIPs, generating an uncertainty measure is

not straightforward. The common approach is bootstrap-

ping, where an ensemble of models are trained with dif-

ferent hyper-parameter initializations or using different

training, validation and test sets.[53] The uncertainty is then

quantified using the standard deviation of the predictions

across the ensemble models. This is computationally

expensive, as multiple models are required for predictions.

Another way is to generate data sets by running ab-initio

MD simulations and extracting configurations from various

time steps. The shortcoming with this approach is the

absence of configurations that correspond to rare events

such as vacancy formation or vacancy migration. In such

cases, it is necessary to bias the system towards these rare

events or explicitly incorporate them in the data set, as

done by Meng et al.[11] for studying hydrogen in iron. This

data set allows studying fracture in bcc-Fe in the presence

of hydrogen because it contains various configurations

covering a large sample space of vacancies, grain bound-

aries, free-surfaces and deformed cells.

Similar to Meng’s data set, we generated a DFT data set

corresponding to pure Fe with input parameters consistent

with the MPTRJ data set. This approach was adopted to

prevent errors that could result from energy discrepancies

caused by varying DFT convergence criteria. Vienna

ab initio simulation package (VASP)[54] was used to run

the ab-intio simulations. For consistency, the input files

were generated using MPMetalRelaxSet implemented in

Pymatgen package.[55] The calculations were performed

using the Perdew–Burke–Ernzerhof (PBE) functional

within the generalized gradient approximation (GGA).[56]

The number of valence electrons used for the Fe pseu-

dopotential was 8.

A subset of the original MPTRJ data set consisting of

90000 structures (� 10%) was used to evaluate the catas-

trophic forgetting in the MLIPs. It was generated by ran-

domly sampling from the MPTRJ data set.[57] It is referred

to as MPTRJ validation set from here on. Root Mean

Square Error (RMSE) metric was then used as an estimate

of the validation error.

2.3 Testing performance on selected Fe properties

Defects such as vacancies, dislocations, and grain bound-

aries are of particular interest to materials scientists

because they play a crucial role in determining the

macroscopic properties and overall behavior of materials.

However, as discussed earlier, discrepancies between the

fitting procedures of MLIPs and the prediction of defect

energies often lead to significant errors in the latter.[31,32]

One approach to address this issue is to incorporate

defect energies directly into the loss function, requiring the

MLIP to be trained on defect energies rather than supercell

energies–something not feasible when fine-tuning founda-

tional models. Alternatively, defect structures can be

assigned higher weights during training. In this work, we

emphasize defects by including a large number of similar

defect configurations in the training data set, effectively

increasing their weight and improving the model’s accu-

racy for the defects in the Fe system.

The MLIPs after fine-tuning were then validated on the

properties of bcc Fe such as elastic properties, vacancy

formation energy, vacancy migration energy, surface
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energies and grain boundary energies. For all validation

simulations the Atomic Simulation Environment (ASE)[58]

package was used.

The elastic tensor was determined using the stress–strain

method as per.[59,60] Six strain tensors (�) with four mag-

nitudes each were applied to a relaxed bcc Fe configura-

tion. Then, with the predicted stress(r), Hookes’ law was

used to calculate the elastic tensor (r ¼ C�, where C is the

stiffness tensor). For evaluating cubic elastic stability the

bulk modulus(B), and C44 and C0 shear moduli are

considered.

The linear coefficient of thermal expansion (a) and the

constant-pressure specific heat (CP) were determined from

MD simulations in the NPT ensemble. Due to computa-

tional cost of MLIPs a smaller supercell with 432 atoms

was used and MD simulations were run for 100000 steps

with a time step of 1 fs. The average volume and enthalpy

were measured at temperatures between 200 K and 1000 K

in 100 K increments. Cubic-spline interpolations of vol-

ume and enthalpy as function of temperature, V(T) and

H(T), were constructed, and their derivatives at 300 K,

ðdV=dTÞjP and ðdH=dTÞjP, were used to evaluate a and CP,

respectively.

To calculate the vacancy formation energy, a supercell

with 128 Fe atoms was generated corresponding to the

equilibrium lattice parameter. An atom was then removed

to introduce a vacancy, the atoms in the supercell were

allowed to relax but the dimensions of the supercell were

kept fixed. The vacancy formation energy was determined

using:

Ef
h ¼ E½Fen�1h� � n� 1

n
Eref ½Fen� ðEq 1Þ

where E½Fen�1h� is the energy of the relaxed supercell

containing a vacancy with n� 1 Fe atoms and Eref ½Fen� is

the energy of the relaxed supercell containing n Fe atoms.

The climbing image nudged elastic band (CI-NEB)

method, as implemented in the ASE package, was used to

determine the nearest-neighbour vacancy migration energy.

The bcc surfaces (100), (110) and (111) for Fe were

generated using the ASE package with the equilibrium

lattice parameter predicted by each corresponding MLIP. A

10 Åvacuum gap is added to the simulation supercell to

prevent interactions between surfaces caused by periodic

boundary conditions (PBC). During relaxation, only the

atom positions were relaxed keeping the dimensions of the

supercell fixed. The surface energy is then calculated using:

Eijk
s ¼

Eijk½Fen� � n
m E

ref ½Fem�
2Aijk

ðEq 2Þ

where Eijk½Fen� is the energy of the supercell with the

surface with normal [ijk] and n Fe atoms, Eref ½Fem� is the

energy of the bcc Fe supercell with m atoms and Aijk is the

area of the free surface.

Grain boundaries (GBs) are an important class of defects

in polycrystalline materials. Mechanical properties such as

hardness, yield strength and brittleness are directly influ-

enced by GBs.[61] To study realistic systems using MLIPs it

is important to evaluate their performance on grain

boundary energies. However, ab-initio studies are limited

to low R symmetric GBs due to the complexity of grain

boundaries combined with the limitations of the supercell

size and the PBC in ab-initio methods. We evaluate the

MLIP on R3, R5, R7 and R9 symmetric grain boundaries

and compare it with the values obtained in the literature.[62]

The GB structures were extracted from the Materials Pro-

ject Database, the atom positions in these structures were

relaxed keeping the supercell fixed. Then the GB energy

was determined using:

EGB ¼
EGB½Fen� � n

m E
ref ½Fem�

2AGB

ðEq 3Þ

where EGB½Fen� is the energy of the supercell with the grain

boundary containing n Fe atoms, Eref ½Fem� is the energy of

the bcc Fe supercell with m atoms, and AGB is the area of

the GB plane.

2.4 Evaluation of solute-solute interactions

Substitutional atoms affect the properties of steel through

various mechanisms, such as grain size refinement, solid

solution hardening, and precipitation hardening.[63] This is

in turn affected by the tendency of these elements to seg-

regate. Their segregation tendency is estimated using their

nearest neighbour interactions. Here, we calculate the

solute-solute interactions for the first five nearest neigh-

bours for various substitutional atoms. In addition to Cu, Ni

and Sn we also consider other commonly found elements in

steel: Al, Ti, Zn, Mo, Nb and V. Equation 4 was used to

calculate the binding energies for each of these configu-

rations, where X and Y are substitutional atoms. E½Fen�1X�
and E½Fen�1Y� is the energy of supercell containing 1

substitutional atom X or Y in the Fe supercell and Eref
n ½Fe�

is the reference energy of supercell containing n Fe atoms.

EXY
be ¼ E½Fen�2XY � þ Eref ½Fen� � ðE½Fen�1X� þ E½Fen�1Y �Þ

ðEq 4Þ

Interstitial solutes such as C, N and O are important in steel

and affect its properties, even at low concentrations. Due to

their small size they occupy the octahedral interstices in the

lattice. For simulations involving diffusion of these inter-

stitial atoms, it is important that the MLIPs predict the

octahedral site to be the stable configuration and the

tetrahedral site as a saddle point during diffusion.[64,65]
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Hence, we used the MLIP to predict the energy of con-

figurations with a solute atom in the octahedral interstices

and tetrahedral interstices. The difference in energy

(DEoct�tet) was then used to identify the stable site in the

lattice. In addition, the migration barrier was also deter-

mined using the CI-NEB for the elements C, O and N.

3 Results and Discussion

3.1 Fine-tuning the MLIPs

The performance of the foundational models was initially

evaluated on the Fe data set, see Fig. 1. All foundational

models reproduced the DFT data set poorly, under-pre-

dicting the energies for most of the structures. This is in

accordance with previous work reporting that models

trained only on near-equilibrium structures exhibit sys-

tematic softening.[34] Furthermore, even though the data set

was generated using the MPMetalRelaxset, there is an

offset in the energies for all the foundational models.

Figure 2 presents the performance of the models on the

MPTRJ validation set introduced in Sect. 2.2.2, after being

fine-tuned on the Fe data set. The foundational models

CHG2, MACE, and SevenNet-O show good fit to the

MPTRJ validation set with RMSEs of 0.063, 0.043 and

0.040 eV/atom respectively (Sect. A.1). After fine-tuning,

the MLIPs show an increase in the RMSE values signifying

forgetting in the models. The models were trained for 50

epochs. Possibly, the models do not need the full 50 epochs

to achieve a good fit to the Fe data set. However, since the

focus of this work is on catastrophic forgetting, it is ben-

eficial to examine how extended training over more epochs

influences forgetting.

After fine-tuning, both naive and replay MACE models

(Sect. 2.2), exhibit high RMSE values of 4.63 eV/atom and

0.605 eV/atom on the MPTRJ validation set. The large

error of the naive model indicates that transfer learning

does not occur effectively and that the model largely for-

gets the knowledge gained during initial training.

The MACE model trained with the replay approach

preserves most of the learned information; however, a few

configurations show significant deviations. As RMSE was

employed as the evaluation metric, these outlier configu-

rations disproportionately influence the reported error.

Both CHG2 and SevenNet-O show less forgetting than

MACE, as evidenced by the minor increase in the RMSE to

0.111 eV/atom and 0.062 eV/atom, respectively. The

majority of data lies clustered close to the ground truth

prediction. For simulations involving structural relaxations,

dynamical processes, and kinetic processes, MLIPs must

accurately predict the forces. Figure 3 shows the perfor-

mance of the CHG2-naive, SevenNet-O, MACE-naive and

MACE-replay on the forces after fine-tuning. For CHG2

and SevenNet-O, similar to the energy predictions, the

performance appears similar to the foundational model

(Fig. 9) however there is an increase in the RMSE to 0.397

and 0.267 eV=�A, respectively. On the contrary, the per-

formance of the MACE-replay model is poor with a drastic

increase in the RMSE to 1.730 eV=�A. It is noted that the

force errors for all the fine-tuned models are too large to be

useful for simulations involving structural relaxations,

kinetics, or dynamics.

Figure 4 shows the change in the MPTRJ RMSE as the

fine-tuning progresses for CHG2-naive, SevenNet-O and

MACE-FT-replay. The MPTRJ RMSE increases for all

models, though only marginally for CHG2. Fine-tuning is

influenced by numerous hyper-parameters, with the learn-

ing rate being a key factor. To investigate the impact of

learning rate on forgetting, we examine three learning

rates: 0.01, 0.001, and 0.0001. Both CHG2 and SevenNet-

O exhibit a drastic increase in RMSE when trained with

higher learning rates; in particular, at a learning rate of

0.01, the RMSE rises by orders of magnitude for both

models. In contrast, at lower learning rates, the RMSE

values plateau and remain stable with continued training.

Fig. 1 Performance of the foundational models on the pure Fe data set before fine-tuning
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For MACE-replay, as the training progresses the

MPTRJ RMSE increases drastically reaching 0.6 eV/atom

after 50 epochs. As for the learning rate, there does not

appear to be an observable effect on the forgetting of the

information for the MACE model. All models end with

high RMSE values (0.4 eV/atom) after 50 epochs. For

CHG2 the MPTRJ RMSE only increases to 0.111 eV/atom

although the MPTRJ data set was not replayed.

For learning rates 0.001 and 0.0001 the Fe RMSE

decreases for all models as the fine-tuning progresses

(Fig. 12), signifying an improved fit to Fe data set. The

models achieve RMSE values of less than 10 meV / atom

after 10 epochs for the Fe data set. This aligns with the

findings of,[39] which demonstrated that fine-tuning foun-

dational models can be highly data-efficient, achieving

high accuracy using only 664 training configurations. Here,

as we use 10,400 training data, fewer epochs were required

to reach an RMSE below 10 meV/atom for the Fe data set.

Freezing of layers during fine-tuning is one of the

strategies for minimizing catastrophic forgetting. For

CHG2 freezing the layers generally resulted in MPTRJ

RMSE values comparable to or higher than those from the

naive approach (Sect. A.2). The only exception occurred

when only the convolution layers were trained–that is,

when all layers were frozen except the atom and bond

convolution layers. To further validate the observations,

two additional fine-tunings were carried out with random-

ized training, validation and test set for the best model

(only convolution layers trainable). The mean MPTRJ

RMSE for the three models was 91 meV/atom with a

standard deviation of 0.001 eV/atom. This confirms that the

reduced forgetting seen in the model was not a random

occurrence. For MACE, freezing layers did not lead to a

Fig. 2 The MLIP predicted and DFT energy per atom for the MPTRJ validation data set for MLIPs trained with learning rate of 0.0001,

(a) CHG2 fine-tuned naive, (b) MACE fine-tuned naive, (c) MACE fine-tuned with replay, (d) SevenNet-O fine-tuned naive
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Fig. 3 The MLIP predicted force and DFT force for the MPTRJ validation data set, (a) CHG2-naive, (b) MACE-naive, (c) MACE-replay, and

(d) SevenNet-naive, respectively

Fig. 4 Effect of training epochs

on forgetting in MACE-replay,

CHG2-naive, and SevenNet-O-

naive models across three

different learning rates, lr-10�2,

lr-10�3 and lr-10�4 correspond

to learning rates 0.01, 0.001 and

0.0001 respectively. The

figure is cropped at 0.7 as the

errors from CHG2 and

SevenNet-O with learning rate

of 0.01 were orders of

magnitude higher
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notable reduction in RMSE, which remained high at 4.59

eV/atom on the MPTRJ validation set (Sect. A.2). This

outcome may reflect suboptimal layer selection for freez-

ing; however, unlike CHG2 and SevenNet-O naive models,

the MACE models already exhibited high RMSE values

even without freezing, showing lower applicability for the

current transfer learning strategy. Consequently, this

approach was not pursued further.

RMSE reflects the quality of a fit to a given data set, but

it is not optimal for materials simulations, where accuracy

in properties like vacancy formation and elastic tensor is

critical. Hence, we further evaluated the MLIPs on bcc-Fe

properties; the best models of CHG2 (frozen) and MACE

(MACE-replay) after fine-tuning were considered. Since

the fine-tuned CHG2 and SevenNet-O models exhibit

comparable performance on the MPTRJ dataset, we focus

on CHGNet in the main discussion. This choice is moti-

vated by CHG2’s additional capability to predict magnetic

moments alongside energies and forces. For completeness,

the results for SevenNet-O are provided in the Sect. A.5.1.

The fine-tuned CHG2 and MACE models would be refer-

red to as CHG2-FT and MACE-FT from here on. For both

CHG2 and MACE, five models were fine-tuned with ran-

domized train, test and validation sets to measure the

standard deviation in predictions.

3.2 Validation on Fe Properties

Figure 5(a) shows the energy volume curve for bcc Fe as

predicted by the MLIPs. All MLIPs, predict the equilib-

rium volume per atom for a bcc unit cell in the range of

11:3 � 11:4�A
3
atom comparable to that of DFT

(11:3�A
3
atom). As the foundational models are trained on

near equilibrium structures they accurately predict the

equilibrium volume. However, the curvature of the energy

volume curve deviates largely for MACE, which is

reflected in the predicted bulk modulus (Fig. 5b). After

fine-tuning, the energy volume curves are comparable to

that of DFT for both CHG2-FT and MACE-FT.

Table 1 shows the bulk properties of Fe as predicted by the

MLIPs, they are compared with the DFT values calculated in

the present study and from literature.[11] For simulations

involving structural relaxations, MLIPs must predict the

elastic properties accurately. The performance of founda-

tional models on Fe elastic properties were evaluated in

previous work.[35] It was observed that for elastic properties

the foundational models performed poorly with CHGNet

version ‘0.3.0’ (CHG3) being the worst. CHG3 predicted bcc

Fe to be mechanically unstable(C0\0), hence was not con-

sidered in this study. The MACE foundational model (mp-

0b3) used in this study is a more recent model, but it performs

worse than the version used by Echeverri Restrepo et al.[35]

After fine-tuning, all models accurately predict the elastic

properties with an error \10%. This is expected as the fine-

tuning data set contains various deformed cells that allows

the MLIP to capture the elastic deformation accurately.

CHG2 and MACE both before and after fine-tuning repro-

duce well the DFT literature values for the coefficient of

linear thermal expansion and the specific heat CP. CHG2

yields a bulk magnetic moment of 2.35 lB, which decreases

to 2.19 lB after fine-tuning bringing it closer to the reported

literature value of 2.17 lB.[66]

Because the local atomic environments of defects differ

from those in perfect crystals, vacancy structures represent

an extrapolation for foundational models trained only on

near-equilibrium configurations. This is seen in the

vacancy formation energy predicted by the foundational

models (Table 1). After fine-tuning with the Fe-data set,

both CHG2 and MACE predict a vacancy formation energy

of 2.13 eV and 2.23 eV respectively, comparable with the

DFT value. Similar observations were also seen for

vacancy migration barriers, with MACE’s error reducing to

0.08 eV and 0.04 eV for CHG2.

Other defects important for materials simulation are

surfaces and grain boundaries. Figure 5(c) shows the pre-

dicted energies for symmetric tilt GBs. Both foundational

models under-predict the GB energies, although they cap-

ture the DFT trends. They predict R3ð1�1�2Þ as the lowest

energy GB in accordance with DFT.[62] Similar observa-

tions were also seen for symmetric twist grain boundaries

(Fig. 15). The quantitative predictions improve after fine-

tuning with an error of 0.139 and 0.119 Jmm�2 for CHG2-

FT and MACE-FT respectively. R3ð111Þ and R7ð111Þ
twist grain boundaries show the largest deviation.

Additionally we evaluate the models on the (100), (110)

and (111) bcc Fe surfaces. Figure 5(d), shows the surface

energy predicted by the MLIPs. The surface energies pre-

dicted by the foundational models deviate by more than 1

Jmm�2. However, after fine-tuning the error decreases to

0.027 Jmm�2 for CHG2-FT and 0.042 Jmm�2 for MACE-

FT respectively. It was found that irrespective of the per-

formance of the foundational models, after fine-tuning all

MLIPs fit the Fe properties well.

3.3 Fe-impurity interactions

Substitutional impurities: As the MLIPs have only been

fine-tuned on the Fe data set, they rely on the foundational

models training to predict the solute-solute interactions.

Here we look at the binding energy as predicted by the

CHG2-FT and MACE-FT for the first five nearest neigh-

bours for pairs of substitutional atoms. Figure 6 shows the

binding energies for a subset of combination of elements

Al, Cu, Ni, Nb and Sn. The binding energies predicted by
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the MLIPs are compared with the DFT calculations per-

formed in the present study. The binding energies for other

combinations of elements are given in Sect. A.6.

For all elements, the MLIPs faithfully reproduce the

trend of binding energies as a function of increasing

nearest-neighbour distance. CHG2 and MACE have an

RMSE of 0.073 and 0.117 eV, respectively, after fine-

tuning the error slightly increases for CHG2-FT to 0.084

eV. However, the deviation of these predictions from the

CHG2 model predictions is minimal.

Fig. 5 Comparison of DFT, CHG2, MACE, CHG2-FT and MACE-

FT predictions. (a) Energy volume curve for bcc Fe (b) Elastic

properties of bcc Fe (c) Symmetric tilt grain boundary energies of bcc

Fe (d) bcc Fe surface energies for (100) (110) and (111) surfaces. The

error bars for fine-tuned models were determined with five different

models fine-tuned on randomized dataset. The DFT values for GB and

surfaces are taken from[62] and[67] respectively, the other DFT values

are calculated in the present work

Table 1 Properties of bcc Fe as

predicted by DFT, CHG2,

MACE, CHG2-FT and MACE-

FT

Properties CHG2 CHG2-FT MACE MACE-FT DFT (this study) DFT

alat Å 2.84 2.83 2.84 2.83 2.83 2.83[11]

B GPa 182 189 ± 6 49 196 ± 1 197 199[11]

C’ GPa 55 74 ± 2 5 64 ± 1 67 73[11]

C44 GPa 55 104 ± 1 54 105 ± 1 105 105[11]

a (300 K)1 10�5 1.08 1.28± 0.10 1.10 1.33± 0.11 1.02[68]

CP (300 K) J/(mol K) 26.03 25.55 ± 0.89 22.40 25.71 ± 0.74 23.30[68]

lbulk lB 2.35 2.14 - - 2.18 2.18[59]

Ef
vac

eV 0.73 2.13 ± 0.01 0.49 2.23 ± 0.01 2.19 2.20[11]

Em
vac eV 0.65 0.67 ± 0.01 0.40 0.71 ± 0.01 0.65[69]

1Linear coefficient of thermal expansion
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Unlike CHG2-FT, the forgetting during fine-tuning

observed for MACE is visible in the binding energy pre-

dictions of MACE-FT, with a RMSE of 0.361 eV. Further,

for Al-Al, Al-Nb, Al-Sn, Cu-Nb, Nb-Nb, and Nb-Sn

MACE-FT incorrectly predicts the interactions as attrac-

tive. This is despite replaying the MPTRJ data set during

the fine-tuning of MACE.

Vacancy impurities interaction:Next we look at vacancy-

solute interactions. It is expected that the addition of vacancy

structures during fine-tuning improves the relaxation for

defect structures. This is evident with the decrease in RMSE

from 0.134 eV to 0.067 eV for CHG2-FT. As MACE-FT

does not capture the interactions accurately, there was no

improvement noted in the RMSE (Fig. 7).

Fig. 6 Binding energies for the first five nearest neighbours subset of elements
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Interstitial impurities: In addition to substitutional

impurities, steel also has interstitial impurities like C, O

and N. To identify the preferred interstitial sites, the dif-

ference in energies of the tetrahedral and octahedral

interstitial sites for these elements are determined using the

MLIPs (Table 2). The interstitial atoms prefer octahedral

sites if Eoct�tet\0. For carbon, CHG2, MACE and CHG2-

FT correctly predict the octahedral site as the stable site

which is consistent with DFT. However, the predicted

DEoct�tet is significantly lower in magnitude. DEoct�tet

determines the energy barrier for diffusion, with the

tetrahedral site acting as the saddle point. Thus, a

significantly underestimated DEoct�tet leads to extreme

overestimation of diffusivities in simulations. MACE-FT

wrongly predicts the tetrahedral site to be stable, a patho-

logical feature. As with C, all MLIPs underestimate the

DEoct�tet for N, but consistently identify the octahedral site

as the most stable. For O, however, CHG2 and MACE-FT

incorrectly predict the tetrahedral site as stable.

3.4 Discussion

n this study, we observe that fine-tuning foundational

models is not a straightforward task. The model

Fig. 7 Binding energies for the first five nearest neighbours for vacancy-solute interactions

Table 2 The difference in

energy between octahedral and

tetrahedral site for interstitial

atoms C, N and O

DEoct�tet

Solute CHG2 CHG2-FT MACE MACE-FT DFT

C �0.515 �0.262 �0.262 0.479 �0.86,[65] �0.94[70] �0.86[71]

N �0.142 �0.0001 �0.000 �0.12 �0.8[70] �0.73[71]

O 0.224 �0.043 �0.043 0.747 �0.57[70] �0.52[71]
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architecture plays an important role during fine-tuning, as

seen in the case of CHGNet, MACE and SevenNet-O. The

foundational models evaluated here were trained on the

same MPTRJ data set and further fine-tuned on the same Fe

data set. However, each model behaves differently after

fine-tuning. All models display catastrophic forgetting

though to different degrees. Both CHGNet and SevenNet-

O show a reduced tendency to forget as the learning rate is

lowered, with minimal forgetting observed at a learning

rate of 0.0001. In contrast, for both the naive and replay

strategy in MACE, lowering the learning rate does not lead

to a reduction in forgetting, with the naive strategy show-

ing the worst performance. It is possible that the training

strategy used here is not the best suited for MACE, as

numerous other hyper-parameters could influence the fine-

tuning.[72]

IWhile the replay strategy in MACE provides a more

effective mitigation of forgetting compared to naive training,

its performance remains inferior to that of CHGNet and

SevenNet-O. A downside of the replay strategy is the need

for replaying the old data set every time the model is fine-

tuned, this both increases the training cost and data set size

for fine-tuning. It was seen that replaying does not guarantee

a good fit to the forces after fine-tuning (RMSE 1.7 eV=�A),

limiting its applicability to structural relaxations.

When the layers of CHGNet were frozen to mitigate catas-

trophic forgetting, it was observed that updating only the con-

volutional layers yielded the lowest error rates. In contrast,

training other layers resulted in errors comparable to those from

naive training. This is likely due to the key role convolutional

layers play in extracting environmental features for each atom;

selectively fine-tuning these parameters may enable the model

to better adapt to new atomic environments. Verifying this

however requires more in depth study which is not within the

scope of the current article.

Irrespective of the performance of the foundational

models on the Fe properties, the models after fine-tuning fit

accurately to the properties of Fe. This was seen with the

improvement in the vacancy formation energy, elastic

properties, grain boundary energies and surface energies

for all fine-tuned models.

Forgetting in models during fine-tuning directly influ-

ences the binding energy prediction of substitutional atoms.

CHGNet predicted binding energies that were comparable to

those of the foundational model, agreeing with the minimal

catastrophic forgetting observed earlier. In the case of

vacancy defect interactions, minor improvements were

observed due to the presence of the Fe vacancy configura-

tions in the training data set. This indicates that foundational

models pre-trained on large data sets can be effectively fine-

tuned using data specific to a new application, while main-

taining their generalization to other systems. In the case of

steel, this facilitates simulations of the combined effects of

multiple elements–an area of study that was previously

inaccessible through computational approaches.

In contrast to substitutional impurities, the model shows

poor performance for interstitial atoms. This is likely due

to the distinct atomic environments for interstitial solute

atoms. Substitutional atoms occupy lattice sites where their

surroundings resemble those of pure Fe, which are well

represented in the training data. However, interstitial atoms

are placed in between lattice sites, creating configurations

not present in the fine-tuning data set. Moreover, while

foundational models were trained on Fe-carbides, they

lacked representations of carbon as an interstitial in a bcc

Fe lattice. Thus, predictions for such configurations involve

extrapolation, leading to significant errors.

4 Conclusions

This study investigates catastrophic forgetting in fine-tun-

ing foundational machine learning interatomic potentials

(MLIPs) for the Fe system, comparing CHGNet, SevenNet-

O, and MACE. Our findings reveal that learning rates

below 0.0001 significantly mitigate forgetting in CHGNet

and SevenNet-O, enabling effective adaptation to system

specific data while retaining broad prior knowledge. In

contrast, MACE exhibits greater sensitivity to fine-tuning,

with higher forgetting rates despite strategies like freezing

and data set replay, likely due to architectural differences

that limit its robustness and transferability. Additionally,

all models showed poor performance for interstitial atoms,

for steels a critical issue. It highlights the critical need for

including relevant configurations in fine-tuning data sets.

These findings are particularly relevant for industrial

applications, where reliable prediction of impurity inter-

actions is essential for designing steels with improved

recyclability and performance. Although the present study

is limited to single-phase bcc Fe and a restricted set of

substitutional elements, the results demonstrate that care-

fully tuned MLIPs can preserve both data efficiency and

transferability, while also highlighting directions for

improving their applicability to more complex systems.

Appendix

Performance of foundational models on MPTRJ

dataset

Figures 8 and 9 show the performance of foundational

models for energies and forces evaluated on the MPTRJ

dataset.
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Fig. 8 Performance of foundational models on the MPTRJ validation set before (a) CHG2, (b) MACE, (c) SevenNet-O

Fig. 9 Performance of foundational models to MPTRJ forces (a) CHG2, (b) MACE, (c) SevenNet-O

Fig. 10 RMSE for the MPTRJ

and Fe data set set when layers

were frozen in CHGNet. The

details the layers frozen are

given in Table 3
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Freezing of layers

Figure 10 shows the performance of the CHG2 models with

some of the layers frozen. The layers were frozen based on

the named layers in CHGNet, the models corresponding to

the layers frozen are given in Table 3. The models where

only the convolution layers were allowed to be trained

showed the least forgetting while also giving a better fit to

the Fe data set.

Figure 11 shows the performance of the MACE-freeze

model on the energies for the MPTRJ validation set. The

model does not show any improvement upon freezing the

layers. Hence it was not considered for further studies.

Fit during the training

Figure 12 shows the performance of the MLIPs fine-tuned

to the full Fe data set during the training. For a learning rate

of 0.01, CHGNet does not converge or fit to the Fe data set.

SevenNet-O on the other hand does improve but saturates

with a high error of 0.05 eV/atom. When the learning rate

is reduced it is expected that more iterations are required to

improve the fit, however, here we see that MACE and

CHG2 with a learning rate or 0.0001 achieved good fit

withing the first 2 epochs (Fig. 13). Thus demonstrating

that fine-tuning is much quicker than training from scratch.

Figure 14 shows the performance on elastic tensor as the

training progresses for CHGNet. 50 epochs was sufficient

for having a good fit to C11, C12 and C44 elastic properties.

Fe properties

Twist grain boundaries

Similar to the tilt grain boundaries, the MLIPs were also

evaluated on twist GBs. Figure 15 shows the performance

of the MLIPs.

Specific heat and Coefficient of Thermal Expansion

Figure 16 presents the temperature-dependent coefficients

of thermal expansion and heat capacity, obtained through

numerical differentiation of cubic spline interpolations.

Initially, both MACE and SevenNet-O models show poor

alignment with reference data, SevenNet-O in particular

exhibits significant deviations. However, their accuracy

improves substantially after fine-tuning. While the fine-

tuned models successfully capture the general temperature-

dependent trends predicted by DFT, their values tend to be

slightly higher and more consistent with experimental

Table 3 The numbers

correspond to the layers

explained above. T indicates

that the parameters in the layers

are trainable, while F represents

the parameters in the layers kept

frozen

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Atom embedding F F F F F T

Atom convolution F F F T T T

Bond embedding T F T F F T

Bond convolution T T T T T T

Bond Basis T T T T F T

Angle embedding T F F T F T

Angle layers T T F T F T

Angle basis expansion T T F T F T

Fig. 11 Performance of MACE-freeze model for energy evaluated on

the MPTRJ validation set
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Fig. 12 RMSE for the whole Fe

data set as the training

progresses

Fig. 13 RMSE for the whole Fe

data set as the training

progresses for epochs 0–10 for

CHG2, MACE and SevenNet-O

with a learning rate of 0.0001

Fig. 14 Fit to Fe elastic tensor as the training progresses for CHGNet

Fig. 15 MLIP predictions for twist grain boundaries with DFT values

from[62]
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results.[68] Some noise is evident in the data, likely due to

the limited size of the simulation cells and the relatively

short molecular dynamics trajectories used in the MLIP

evaluations.

SevenNet-O and CHG3

Table 4 shows the properties of Fe as predicted by the fine-

tuned CHG3 and SevenNet-O. Though there are large

errors in the naive model, after fine-tuning both models

show good performance similar to MACE-FT and CHG2-

FT. Similarly, Fig. 17 shows the energy volume curve, GB

energies and surface energies as predicted by CHG3-naive

and Sevenn-naive. The coefficient of thermal expansion

and specific heat (CP) deviate for SevenNet-O before fine-

tuning. After fine-tuning the values are well within the

accepted range.

Binding energies

The binding energies of different solute element combi-

nations in bcc Fe are presented in Fig. 18 and 19. Com-

parisons are made with values reported in the

Fig. 16 (a) Coefficient of linear expansion as a function of temperature. (b) heat capacity at constant pressure as a function of temperature. DFT

values taken from Ref.[68]

Table 4 Properties of bcc Fe as

predicted by DFT, CHG3,

SevenNet-O, CHG3-FT and

Sevenn-FT

Properties CHG3 CHG3-FT SevenNet-O Sevenn-FT DFT (this study) DFT[11]

alat Å 2.84 2.83 2.84 2.83 2.83 2.83

B GPa 110 208 97 189 ± 1 197 199

C’ GPa �1.25 58 19 66 ± 1 67 73

C44 GPa 96 91 110 97 ± 1 105 105

a (300 K)1 10�5 �23.9 1.55 ± 0.26 1.02[68]

CP (300 K) J/(mol K) 13.13 26.05 ± 1.33 23.3[68]

lbulk lB 2.35 2.16 - - 2.18

Ef
vac

eV 0.82 2.08 1.29 2.23�0:01 2.19 2.20

1Linear coefficient of thermal expansion
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Fig. 17 Comparison of DFT, CHG3, SevenNet-O, CHG3-naive and

SevenNet-naive predictions. (a) Energy volume curve for bcc Fe

(b) Elastic properties of bcc Fe (c) Symmetric tilt grain boundary

energies of bcc Fe (d) bcc Fe surface energies for (100) (110) and

(111) surfaces. The DFT values for GB and surfaces are taken

from[62] and[67] respectively, the other DFT values are calculated in

the present work
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Fig. 18 Binding energy of first five nearest neighbours for various elements in bcc Fe matrix predicted by DFT, CHG2, MACE, CHG2-FT,

MACE-FT and Literature. Literature1, literature2 and literature3 correspond to[73–75] respectively
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Fig. 19 (Contd.) Binding energy of first five nearest neighbours for various elements in bcc Fe matrix predicted by DFT, CHG2, MACE, CHG2-

FT, MACE-FT and Literature. Literature1, litearture2 and literature3 correspond to[73–75]
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literature[73–75] Despite employing a replay strategy,

MACE-FT consistently yields large errors in binding

energy predictions, indicating significant catastrophic

forgetting.
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