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Abstract

Protein-based biopharmaceuticals require high purity before final formulation to

ensure product safety, making process development time consuming. Implementa-

tion of computational approaches at the initial stages of process development offers

a significant reduction in development efforts. By preselecting process conditions,

experimental screening can be limited to only a subset. One such computational

selection approach is the application of Quantitative Structure Property Relationship

(QSPR) models that describe the properties exploited during purification. This work

presents a novel open-source Python tool capable of extracting a range of features

from protein 3D models on a local computer allowing total transparency of the calcu-

lations. As open-source tool, it also impacts initial investments in constructing a QSPR

workflow for protein property prediction for third parties, making it widely applicable

within the field of bioprocess development. The focus of current calculated molecular

features is projection onto the protein surface by constructing surface grid represen-

tations. Linear regression models were trained with the calculated features to predict

chromatographic retention times/volumes. Model validation shows a high accuracy

for anion and cation exchange chromatography data (cross-validated R2 of 0.87 and

0.95). Hence, thesemodels demonstrate the potential of the use ofQSPR to accelerate

process design.

KEYWORDS

chromatography, protein features, Quantitative Structure Activity Relationship (QSAR), Quanti-
tative Structure Property Relationship (QSPR), retention prediction

1 INTRODUCTION

The market for protein-based biopharmaceuticals, such as protein

subunit vaccines and therapeutic antibodies, developed rapidly over

recent years.[1] Opposed to chemical synthesis to manufacture small-

molecule drugs, protein-based biopharmaceuticals are produced by

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2024 The Authors. Biotechnology Journal published byWiley-VCHGmbH.

living host cells. During downstream processing (DSP) the target

product is separated from host cell impurities, which is of major

importance to guarantee patient safety and drug efficacy. To attain

sufficient purity, chromatography is a method of choice due to its

specificity and versatility.[2–4] However, the vast variety of commer-

cially available resin types (e.g., ion exchange (IEX) or hydrophobic
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interaction chromatography (HIC)) and experimental conditions (e.g.,

salt concentrations, buffers, and pH) results in extensive experi-

mental screening to obtain optimal separation conditions, driving

both cost and development time. In-silico preselection of resins

and conditions prior to experimentation would allow a decrease in

costs and development time by narrowing the empirical screening

space.

Chromatographic separation is based on the difference in physic-

ochemical properties between the product and impurities. For pro-

teins, physicochemical properties are determined by the amino acid

sequence (1D) and the 3D structure. Quantitative Structure Prop-

erty Relationship (QSPR) aims to relate physicochemical properties to

specific behavior (e.g., chromatographic retention time).[5] For QSPR,

physicochemical properties are described as numerical features and

subsequently used in predictive machine learning models as input

variables. To build a QSPR workflow, experimental data of known

proteins is split in a training and test set. Numerical features are cal-

culated from the proteins in the training set and selected to train a

machine learning model (e.g., linear regression, partial least squares

(PLS), or neural networks) which predicts the behavior of interest.

The resulting model is tested using the numerical features obtained

from the proteins in the test set, to assess the model accuracy for

new data. When the model provides sufficiently accurate predictions,

the property of proteins unknown to the model can be predicted

(Figure 1).

The simplest QSPR approach is to calculate protein features based

on the amino acid sequence. From the amino acid sequences, one can

derive properties such as residue counts, hydrophobicity scores, over-

all charge, and the isoelectric point. Although these properties are

indicative, such features consider the contribution of each residue as

equal since topological information onwhether the residue is buried or

accessible for resin ligands is lacking. This information can be obtained

from 3D protein structure models. Developments in protein structure

prediction allow accurate prediction of protein structures from amino

acid sequences, the current state-of-the-art being Alphafold2.[6,7]

PROFEAT[8] and ProtDCal[9] offer webserver interfaces where struc-

ture files can be analyzed to calculate protein features needed as

input for QSPR model approaches. Both tools calculate a list of gen-

eral numerical features based on the 1D and 3D protein structure.

For feature calculations using a local machine, the drug discovery

software platform Molecular Operating Environment (MOE) is widely

applied.[10–16] An alternative package is Schrödinger’s BioLuminate

Suite, which has recently been expanded by including features based

on the protein sequence, 3D structure, and surface patches.[17] A

comprehensive overview can be found elsewhere.[18]

Using structural protein features to predict protein retention times

was first described in 2001 by Mazza et al., who calculated protein

features using the transferable atom equivalent method[5,19,20] and

the proprietary software platform MOE. By applying a genetic algo-

rithm for feature selection, a PLSmodel was trained, capable to predict

retention times for ion exchange chromatography from protein struc-

ture models. Applying the same feature calculation methods, support

vectormachine regressions for both feature selection and the final pre-

dictive model have also been applied for successful protein retention

prediction in ion exchange, hydrophobic interaction and mixed mode

chromatography.[10–16] As the chromatographic resin interacts with

the amino acid residues on the protein surface, Malmquist et al. imple-

mented a grid representation of the protein surface to map protein

properties.[21] By applying distance functions to project charge and

hydrophobicity onto the surface grid points, protein features were cal-

culated and used in a PLS model to predict retention times for anion

and cation exchange columns. As charge and hydrophobicity are usu-

ally not uniformly distributed over the protein surface, binding orien-

tations play important roles in protein-resin binding affinities.[22,23] To

account for such orientations inQSPRmodels, Hanke et al. described a

method to sample the surface in neighborhoods and uses this for HIC

retention time predictions.[24] These neighborhoods are defined as the

surface within a specific distance of a central surface point (7 and 14 Å

distances were described). Alternatively, Kittelmann et al. used prop-

erty projections on a plane, sampling different orientations.[25,26] By

projecting the properties onto a plane, this method considers steric

hindrance on the surface. This results in penalizing the area of surface

cavities, which are located at a greater distance from the projection

plane.

Most of the described studies use proprietary or in-house soft-

ware to perform feature calculations and model training. As a result,

reproducing these studies is near to impossible. Therefore, direct com-

parison between different approaches by minimizing the variables

cannot be performed, hindering benchmarking opportunities and sci-

entific progress. Additionally, the lack of open source tools limits

software availability for new users and customizability to solve a wide

variety of development challenges. We aim to close this gap, and in

this work, we provide an open source Python tool that is able to cal-

culate 3D protein features. The current implemented operations and

features aim to consolidate the most often described protein features

from literature.[16,21,25,26] The validity of the features for chromato-

graphic process development was shown by training multiple linear

regression (MLR)models predicting retention times/volumes for cation

and anion chromatography resins obtained from literature. To promote

transparency and scientific reproducibility, the software developed for

this study is freely available open source at https://dx.doi.org/10.5281/

zenodo.10369949.

2 METHODS

2.1 Protein charge

Protein charge is the key property that governs separation in ion

exchange chromatography. Protein charge is dependent on the proto-

nation state of the titratable groups. Residues Arginine (Arg, R), Lysine

(Lys, L), and Histidine (His, H) can have positively charged sidechains

when fully protonated, while Aspartic acid (Asp, D), Glutamic acid

(Glu, E), Cysteine (Cys, C), and Tyrosine (Tyr, T) can be negatively

charged when deprotonated. Additionally, the C and N termini of

the protein can also be negatively or positively charged, respectively.
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F IGURE 1 Schematic representation of a Quantitative Structure Property Relationship (QSPR) workflow for chromatographic retention
prediction. The first step to build a QSPRmodel is data acquisition. Here, a set of known proteins is used to construct a dataset containing
experimentally determined properties (e.g., retention times). The experimental property dataset is split into a train and test set. The training set is
used for model building. The physicochemical properties for each protein are calculated using the corresponding 3D structure. The
physicochemical properties are expressed as numerical features. The number of features is reduced using dimension reductionmethods such as
principal component analysis or variance filtering, and themost descriptive features are selected by feature selection to train a predictivemodel.
The resultingmodel is tested on the test set to assess the accuracy for unseen proteins. Predictivemodels with good accuracy can be applied to
predict the properties of uncharacterized proteins.

The protonation states of these residues can be described by the

Henderson–Hasselbalch Equation[27]:

pH = pKa + log

(
[A−]
[AH]

)
, (1)

where AH is the protonated and A− is the deprotonated form of the

titratable group. Therefore, titratable residue sidechains are deproto-

nated when the pH is higher than their pKa and protonated when the

pH is lower than their pKa resulting in charges of +1, 0, or −1. Alter-

natively, the overall charge can be calculated for negative and positive
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F IGURE 2 Protein representation for feature calculation. (A) shows all atom representation using the coordinates for each atom. (B) shows
the Solvent Accessible Surface Area. (C) shows the surface grid representation withmapped electrostatic potentials. (D) shows the plane
projection of one orientation.

charges as follows:

Charge =
−1

1 + 10pKa−pH
[e] (2)

and

Charge =
1

1 + 10pH−pKa
[e] , (3)

respectively. By default, pKa values are assigned based on a scale docu-

mented in Leninger Principles of Biochemistry[28] with the exception

of Arginine, which is set to 14.[29] Alternatively, custom pKa values

(predicted by e.g., PROPKA,[30,31] H++,[32,33] WHAT-IF[34]) can be

assigned to specific residues using a json object, allowing improved

description of the charge. To describe charge distribution, the dipole

moment of the protein can be calculated which is defined as the

magnitude of the dipole vectorD, calculated as:

D = 4.803 ∗
∑
i

(ri − rp) ∗ qi [D] , (4)

where rp is the protein center and ri is a vector containing the 3D

coordinates of the atom.[35,36]

2.2 Surface definition

Interactions of proteins with their environment often take place at the

protein surface. To rationalize these interactions using protein mod-

els, accurate representations of the surfaces are required. The Solvent

Accessible Surface Area (SASA) is the most common for surface esti-

mation that represents the protein surface which can be occupied

by water molecules, and was first described by Lee and Richards[37]

(Figure 2B). A number of tools specifically designed for the determina-

tion of the SASA are available.[38–40] A spherical probe, representing

a solvent molecule, is rolled over the protein atoms tracing the acces-

sible area using the center of the solvent. We adopted the method of

Shrake and Rupley[41] where each surface sphere is represented by a

set of sample points. The number of sample points is scaled accord-

ing to the surface sphere radius and are distributed by a Fibonacci

sphere,[42] to obtain a distribution of 2 points per Å2. The fraction of

each amino acid occupying the surface canbe calculatedbydividing the

number of surface points of a residue by the total number of surface

points.

2.3 Property projection

Projection of properties onto the surface allows for assessing struc-

tural attributes where the interactions occur. A surface grid repre-

sentation is composed by constructing grid cells of 1 Å3 containing

the surface. Using connected component labeling connecting the grid

points occupied by the surface, a surface grid representation with a

distribution of 1 point per Å3 is composed (Figure 2C). Projection of

charge, resulting in simplified electrostatic potential (EP), is performed

by:

EP =

∑
i

qi
𝜀di

[v] , (5)

where d represents the distance between atom i and the grid point, q is

the charge of atom i and ε the dielectric constant of a protein, which is
assumed to be 4.[43]

To represent a chromatographic resin, charges are mapped onto

planes (Figure 2D). A total of 120 planes are equally distributed using

a Fibonacci sphere and scaled to a distance of ≥1 Å to any of the pro-

tein atoms. Since the charge is now mapped through multiple media, ε
is defined as:

𝜀 =

𝜀p × dp + 𝜀w × dw
d

𝜀0 [−] , (6)

where subscript p indicates protein, w the solvent and 0 the conduc-

tivity in a vacuum. The distance through the protein and solvent is

estimated using the solvent accessible surface.

Hydrophobicity of proteins is another important factor which

governs interactions. Many different scales describing the contribu-

tion of each respective amino acid to hydrophobic phenomena have
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TABLE 1 Dataset 1, retention times of specific proteins described
by Hou and Cramer [12] for Q Sepharose Fast Flow. Superscript 1
indicates the protein models used as test set.

Protein PDB-ID Retention time [min]

Lectin 2PEL 12.35

Phosphorylase 1GPB1 12.56

Conalbumin 1AIV 15.31

Transferrin 1A8E 15.63

Trypsin Inhibitor 1AVU 16.19

a-Lactalbumin 1F6R 18.63

Glutamic Dehydrogenase 1NR7 21.29

Ovalbumin 1OVA 21.47

Lipoxydase 1F8N 23.02

Human SerumAlbumin 1AO6 23.19

Adenosine Deaminase 1VFL 25.00

B-Lactoglobulin B 1BSQ1 26.26

Lipase 3TGL 26.51

B-Lactoglobulin A 1BSO 29.16

Cellulase 1EG1 29.71

Amyloglucosidase 1LF6 36.61

been published.[44] The Cowan–Whittaker[45] and the Miyazawa–

Jernigan[46] scales have been reported to give highest correlation

for HIC retention prediction.[47] In this work, we use the Miyazawa–

Jernigan[46] scale, which was scaled using a min-max-scaler to values

ranging from −1 to 1. Hydrophobicity values are projected onto the

surface grid to obtain the molecular hydrophobic potential (MHP)

using:

MHP =

∑
i

fie−di [−] , (7)

where fi indicates the hydrophobicity value of the residue, based on

the work of Fauchére et al.[48] with a cut-off of 10 Å.

A list of all current supported features can be found in Table S1.

2.4 Dataset composition and feature calculation

Two datasets with known retention behavior for Q Sepharose FF

and SP Sepharose HP were required from literature, set 1[12] and

set 2[16] respectively (Tables 1 and 2). For both datasets, structures

were extracted from the PDB and used to generate homology mod-

els by SWISS-MODEL[49,50] to resolvemissing atoms. Duplicate chains

were removed for all protein models to obtain monomer structures

which were used in the feature calculation. To calculate the protona-

tion states, the default pKa valueswere used for the titratable residues.

Building the surface grid was performed using a sphere radius of 1.4 Å

to represent water.

TABLE 2 Dataset 2, retention volumes of specific proteins at
different pHs described by Yang et al.[16] for sulfopropyl Sepharose
high performance. Superscript 1 indicates the pH used as test set (6).

Retention volume [mL]

Protein PDB-ID pH 4 pH 5 pH 61 pH 7 pH 8

Carbonic anhydrase 1V9E 7.86 3.51

Conalbumin 1OVT 6.18 3.21 1.52

Pyruvate kinase 1A49 7.48 2.37

Bovine trypsin 1S81 6.94 3.82 2.37 2.14 1.15

Bee phospholipase A2 1POC 11.83 8.01 5.64 3.35 1.37

Elastase 1LVY 5.80 3.81 2.47 2.51 2.29

Trypsinogen 1TGB 7.17 4.27 3.34 3.34 2.90

Ribonuclease A 1RBX 13.12 9.23 5.72 4.96 3.66

α-Chymotrypsin 5CHA 8.93 6.87 5.95 5.87 5.19

α-Chymotrypsin A 2CGA 8.55 6.64 5.87 5.95 5.34

Bovine cytochromeC 2B4Z 17.55 10.91 8.39 8.47 7.86

Horse cytochromeC 1HRC 17.63 10.91 8.39 8.47 7.93

Lysozyme 1AKI 14.12 10.83 9.54 9.16 8.01

Avidin 1VYO 19.54 14.96 12.36 10.73 9.77

Aprotin 1PIT 14.35 11.29 10.68 10.68 10.53

Lactoferrin 1BKA 26.87 25.34 24.96 24.81 23.89

2.5 Linear regression modeling

After splitting the data in train and test sets, a correlation filter was

applied for the removal of features with a high Pearson correlation

coefficient (0.99). Deciding which features should remain was based

on the Pearson correlation with the protein retention times/volumes,

making this a supervised feature filter. Next the feature list was further

reduced based on the Pearson correlation with the retention times,

removing 30% and 10% of the features with lowest correlation for

dataset 1 and dataset 2, respectively. Sequential forward feature

selection was used for selecting the features for the linear regression

model. Selected feature sets were validated using a repeated 2-fold

cross-validation and leave-one-out cross-validation. Feature impor-

tancewas assessed according to regression coefficients and by feature

permutation.

3 RESULTS AND DISCUSSION

To evaluate the performance of the developed Python tool, two

datasets were obtained from literature containing protein retention

times/volumes for ion-exchange chromatography columns. The first

dataset contains protein retention for Q Sepharose FF, and the second

for SPSepharoseHP. For bothdatasets, predictivemodelswere trained

relating protein structure to retention time or volume. To determine

the validity of the selected features, the regression coefficient and
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TABLE 3 Overview of features selected for the linear regression
model for Q Sepharose FF and the corresponding regression
coefficient and cross-validated R2 of permutationmodels.

Feature Coefficient

CV R2

permutation

Intercept 36.76 –

Negative surface EPb median (formal)a −31 −0.352

Number of surface points with positive

EPb (formal)a
18.17 0.563

Valine surface fraction −5.75 0.733

aCharge calculated using formal charge (+1, 0, or−1).
bElectrostatic potential.

cross-validated R2 of a permutation model, where each feature is

scrambled, are discussed.

3.1 Protein retention prediction for Q Sepharose
FF

To develop a simple model with high interpretability, a MLR model

was trained on protein retention times for the anion exchange resin Q

Sepharose FF (Table 3). The dataset that was used (Table 1) was com-

posed of 16 proteins, of which two were selected for testing while the

remaining 14were used formodel training.[12] As overfitting can be an

issue for linear regressionmodels, a ratio of five datapoints per feature

should be maintained, resulting in three features for this dataset.[51]

The model’s predictability was considered sufficient, with a cross-

validated R2 of 0.87, a RMSE of 2.23, and RMSEtest of 2.50 (Figure 3).

The two most important features are the median negative surface EP

(regression coefficient of −31 and permutated CV R2 of −0.352) and

the number of positive electrostatic surface grid points (regression

coefficient of 18.17 and a permutated CV R2 of 0.563), both calculated

using the formal charge (Table3). Anegative regression coefficient indi-

cates an inverse correlation with the retention time of the protein and

vice versa. In alignment with the mode of action of the anion exchange

resin, the negative surface potential is the most important feature, as

it has the highest regression coefficient and permutation of this fea-

ture yields a model uncapable of predicting retention times (Figure

S1A). The second feature, number of surface points with a positive EP,

shows a positive correlation with protein retention time. This is not

in line with the mode of action as a positive protein surface should

be repelled by the anion exchange resin. Permutation of this feature

reduces the performance of the model to a cross-validated R2 of 0.563

(Figure S1B). The selection of this feature might be due to the current

absence of local surface descriptors. The affected proteins might still

contain areas on the surface which are negatively charged that could

interact with the anion exchange ligands. The final feature, the valine

surface fraction, is of the lowest importance, with a regression coeffi-

cient of −5.75. The permutation of this feature results in a model with

a cross-validated R2 of 0.733.

3.2 pH-dependent protein retention prediction
for SP Sepharose HP

The applicability of the Python tool for a different chromatography

mode and varying process conditions was tested using a second set

of protein retention volumes reported in literature.[16] The second set

consists of retention volumes of 16 different proteins for the cation

exchange resin SP Sepharose HP. In contrast to the previous dataset,

the proteins were measured at a pH range from 4 to 8, yielding a

total of 72 datapoints. The obtained numerical features were filtered

and subsequently selected using forward feature selection, shown in

Table 4. The final MLR model is composed of 10 features and has good

predictability with a cross-validated R2 of 0.95, a RMSE of 1.37, and

RMSEtest of 1.14 (Figure 4).

Six of the 10 selected features are directly related to the protein

charge and are inherently interconnected. The featurewith the highest

regression coefficient of 31.24, and therefore deemedmost important,

is the minimum surface EP. The positive coefficient indicates that an

F IGURE 3 Prediction of Q Sepharose FF retention times. (A) shows the leave-one-out cross-validation (gray circles) and test set (white
triangles) results of themodel. (B) shows the predicted retention times volumes for the external test set (Table 1).
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TABLE 4 Overview of features selected for the linear regression
model for SP sepharose HP and the corresponding regression
coefficient and cross-validated R2 of permutationmodels.

Feature Coefficient

CV R2

permutation

Intercept −3.78 –

Minimum surface EPc (average)b 31.24 0.822

Total charge (average)b −27.77 0.861

Dipole vector length 20.72 0.842

Isoelectric point 12.02 0.769

Standard deviation of positive EPc shell

projections

11.07 0.934

Lysine surface fraction −7.42 0.919

Mean negative surface EPc (formal)a −5.48 0.934

Standard deviation of negative surface

hydrophobicity

5.46 0.934

Cysteine surface fraction 5.12 0.888

Surface shapemax −1.21 0.946

aCharge represented as formal charge (+1, 0, or−1).
bCharge calculated using Equations (2) and (3).
cElectrostatic potential.

increase in minimum surface EP leads to a higher retention volumes,

which is in line with the mode of action of the cation exchange resin.

The total charge is the second most important feature with a regres-

sion coefficient of −27.77. This indicates that proteins with a higher

total charge to have lower retention volumes. Considering the dataset

to be retention volumes for the cation exchange resin SP Sepharose

HP, a negative correlation with the total charge is counter intuitive.

This correlation might not indicate a direct causation with the reten-

tion volume, but rather that the total charge might compensate for

other charge related features, as there is collinearity between the

charge related features. To directly assess the importance of the fea-

ture, the permutation model results in a reduced cross-validated R2 of

0.861. The permutation model for the minimum surface EP resulted in

a greater decrease in performance (cross-validated R2 of 0.822). This

indicates that the total charge is indeed less important for the final

model compared to EP.

The dipole vector length has a regression coefficient of 20.72. The

high positive regression coefficient indicates the importance of charge

polarization, and that proteins elute later with more uneven charge

distribution. The isoelectric point is the next charge-related feature

with a regression coefficient of 12.02. This feature is unaffected by

pH as it represents the pH at which the protein is neutrally charged.

Interestingly, even though the feature has only the fourth highest coef-

ficient, permutation of the feature results in a permutation model with

the lowest R2 of 0.769 (Figure S2D). As this feature has a low cross

correlation with the other features, indicating that less compensation

is possible with the remaining data. The importance of the remain-

ing features is significantly lower compared to the first four features

(Cross-validated R2 of permutation > 0.888), a detailed discussion on

these features can be found in the Supplemental material.

While the QSPR model for the first dataset is trained to predict dif-

ferent proteins at similar conditions, the second model is trained to

predict similar proteins for different pHconditions. The effect of differ-

ent pH values is captured by five of the 10 selected features which are

pHdependent (MinimumsurfaceEP, Total charge,Dipole vector length,

Standard deviation of positive shell projections andMeannegative sur-

face EP). Thus, the remaining five features are pH independent, and

therefore similar for different pH conditions. Therefore, a slight bias

might have been introduced, indicated by clustering of identical pro-

teins. The impact of this bias is considered minimal due to the greater

regression coefficients and effect of permutation of the pH-dependent

features. The increased amount of available data for the second model

is therefore thought to be the main factor driving greater accuracy

compared to the first model.

The two QSPR models are capable of the retention prediction for

Q Sepharose FF and SP Sepharose HP. All physical phenomena are

described implicitly, therefore these models would only be suitable

F IGURE 4 Prediction of SP Sepharose HP retention volumes. (A) showsmodel results of the leave-one-out cross-validation (gray circles) of
the proteins at pH 4, 5, 7, and 8 as well as the test set (white triangles) which are the proteins at pH 6. (B) shows the predicted retention volumes
for the external test set which are all proteins measured at pH 6 (Table 2).
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for describing retention behavior for these specific resins. Extending

thesemodels to predict protein retention of other resinswould require

additional data. This data can subsequently be used in a similar model

building approach as described here, yielding predictivemodels for the

new conditions.

4 CONCLUSION

Physically relevantprotein features areessential to achieve robust pre-

dictions of protein properties, like chromatographic retention behav-

ior. To mature the field of protein QSPR, adaptable and transparent

open source software for the calculation of protein features is essential

to directly benchmarkbetweendifferent tools and improve the current

state-of-the-art. Using the open source software presented here, we

were able to train models that predict the retention times/volumes for

two different ion-exchange chromatography datasets, showing appli-

cability for unknownproteins and differences in pH (cross-validatedR2

of 0.87 and 0.95, respectively). Most features selected by the forward

feature selection method have an apprehensible relation to protein

retention for specific chromatographic conditions. However, collinear-

ity betweenmultiple featureswas observed.Model performancemight

therefore benefit from feature reduction techniques such as princi-

pal component analysis or PLS regression. Nevertheless, these models

show good performance and would allow for prescreening of chro-

matographic resins. Finally, it was showed that the amount of data

available for model training is a major factor determining model accu-

racy. By increasing the available input data for protein properties like

chromatographic retention time, the true impact of the 3D protein

features and in silico property prediction for process design can be

unlocked in the future.
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