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Summary

This thesis analyzes the effectiveness of bias-aware filtering techniques, particularly
the Colored-noise Kalman Filter, in addressing parameter and bias estimation in
data assimilation problems. The research explores the ability of this method to
differentiate between the impacts of bias and parameter uncertainty, focusing on
how the concept of feedback within the filtering process influences the estimation of
both bias and parameters.

The study uses the Lorenz-96 model to conduct twin experiments, investigating
various scenarios involving parameter estimation, bias estimation, and combined
parameter and bias estimation. The experiments reveal that in a feedback filter
configuration, where the bias directly influences the Ordinary Differential Equation
system, the forcing parameter F' of the Lorenz-96 model becomes indistinguishable
from the bias. Conversely, a non-feedback filter configuration allows for the inde-
pendent estimation of both the parameter and the bias.

In addition, the research highlights the challenges and considerations in imple-
menting a flexible data assimilation framework, particularly in managing state aug-
mentation, stochastic updates, and bias representation. It emphasizes the impor-
tance of carefully considering the feedback mechanism in bias-aware filtering, as it
significantly impacts the estimation of parameters and bias.

The findings of this thesis offer valuable insights into the application of bias-aware
filtering techniques in the presence of parameter uncertainty and provide a founda-
tion for future research in developing robust and versatile data assimilation frame-
works. The study encourages further exploration of these methods in real-world
applications and with more complex bias structures to advance our understanding

and ability to address uncertainties in dynamic systems effectively.

Keywords: Data Assimilation, Model Bias, Parameter Estimation, Lorenz-96, Bias-

aware Filtering, Ensemble Kalman Filter, Colored-noise Kalman Filter
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Introduction

Data Assimilation (DA) plays an essential role in numerous fields where it is nec-
essary to combine model predictions with observational data to improve forecast-
ing accuracy. Applications of this discipline are, for instance, found in Numerical
Weather Prediction (NWP), chemical transport models, ocean circulation, earth-
quake modeling, and more [1, 2, 3].

In general, DA methods can be classified between variational and sequential ap-
proaches. The main difference is how the observations are incorporated to correct
the model predictions, even though they can be shown to be equivalent in particu-
lar (generally linear) scenarios. Perhaps the most known example of a variational
approach is the 4-Dimensional Variational data assimilation (4D-Var), and of a se-
quential approach is the Ensemble Kalman Filter (EnKF), a popular variation of
the Kalman Filter (KF).

Most of these DA techniques rely on strong assumptions about the statistical
properties of errors and uncertainties. In addition, real-world applications often
face challenges such as model biases, uncertain parameters, discretization errors,
missing physics, or wrong assumptions when developing the model [4, 5].

Typically, the forward model incorporates an additional Gaussian white noise
process to account for these sources of error in the numerical model. However, the
actual model error rarely satisfies this assumption, and, in this case, the prediction
model would be biased. In addition, it is well known that when the error processes in
the model are not purely random, the analysis estimates of traditional DA techniques
will be sub-optimal [6, 4, 7]. Yet, providing a more accurate description of the error
processes is often challenging. An alternative is to estimate the biases directly in
the DA process, also known as bias-aware DA.

In the context of bias-aware DA, the concept of bias can (generally) refer to
either model or observation bias, the former being the main focus of attention in
this work. Moreover, the effects of uncertain parameters in the model can be easily
confused with model or observation bias, as their impacts on the observed data are

hard to distinguish [8]. The main objective of this thesis is to analyze how different
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1. Introduction

bias-aware filtering techniques perform under various forms of uncertainty.

In the literature, the biases are usually treated as extra parameters to estimate |6,
7, 9], but are sometimes assumed to follow a more complex forward model than the
simple random walk model frequently used for parameter estimation [10, 8]. Other
approaches also include modeling more complex noise processes in the model, e.g.,
colored noise, and use this approach to account for the “missing” parts of the model
[7, 11, 12]. This is known as the Colored-noise Kalman Filter (ColKF), and it is the
main bias-aware method used throughout this work.

This project originated from the idea of exploring how parameter uncertainty in-
fluences these bias estimation methods. Specifically, we aim to investigate whether
bias-aware filters can differentiate between the effects of bias and parameter uncer-
tainty depending on how the bias is fed back into the system. This distinction is
explored through two approaches: feedback and no-feedback bias formulations (see
Section 3.3.1).

Thus, this thesis aims to answer the following questions:

1. How can bias-aware filtering techniques be employed to distinguish between

the effect of parameter uncertainties and systematic biases?

2. How does the concept of feedback in bias-aware filtering affect the estimation

of both bias and parameters?

3. Which practical considerations must be addressed to implement a flexible

(bias-aware) data assimilation framework?

To answer these questions, we created twin experiments for parameter estimation,
bias estimation, and combined scenarios involving feedback and no feedback with
a ColKF, using the well-known Lorenz-96 model. This model was selected for two
main reasons: first, this model has been widely used by the DA community as a test
case [13], and second, because its unique forcing parameter acts similarly to a bias
estimation with feedback, which makes for an intriguing setting about comparing
these different forms of bias, and when they can be distinguished. Nonetheless, it
should be possible to identify these quantities separately in a no-feedback approach.

In summary, by the end of this thesis, we aim to examine how bias-aware filters
can be effectively employed in the presence of parameter uncertainty. Moreover, a
side product of this work is to implement a flexible library in Python to perform
DA experiments. No Python libraries to conveniently perform bias-aware DA were
found, as the augmentation of the model and system state is often done by the end
user and not by the framework itself. This library is intended to support future
research, particularly in the context of state, parameter, and bias estimation.

This thesis is structured as follows:



1. Introduction

Chapter 2: Literature Review reviews some of the existing research on DA,
parameter estimation, bias-aware DA methods, and some of their applications.
Chapter 3: Theory explains the theoretical background of the methods and
models used throughout this thesis, including the KF, the EnKF, and the
ColKF. Additional concepts, such as covariance localization, state augmenta-
tion for parameter estimation, and testing models, are also presented.
Chapter 4: Methods dives into more details about some of the considerations
needed when implementing a flexible DA library, what are the advantages
of the current implementation, how to set up twin experiments, and which
experimental design was followed for the results.

Chapter 5: Results presents all the results obtained throughout the project,
including the validation twin experiments for each model. These include state
estimation, state and parameter estimation, state and bias estimation, and all
combined.

Chapter 6: Discussion € Conclusion discusses the results and concludes the

project, including some considerations for future research.
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Literature Review

2.1 Data Assimilation

The significance of DA methods cannot be overlooked. Since the end of the last
century, they have played a central role in improving forecasts of numerical models
based on real observation data. These methods are often classified as variational
and sequential [14, 15].

Variational DA mainly focuses on estimating system states, parameters, or initial
conditions by solving a global optimization problem that minimizes the distance
between all observed data and the numerical model predictions over a time window
in one go [16]. This approach is usually expensive in terms of computational costs
since the global optimization solution is not trivial and often requires the calcula-
tion of an adjoint of the numerical model, which is not always available or feasible.
An overview of variational methods in recent years is presented by Bannister [16],
where the author summarizes and clarifies various methods, focusing on combining
variational and ensemble techniques and hybrid approaches. In addition, he pro-
vides derivations of popular schemes, details common localization representations,
and discusses potential future developments. Variational approaches have been used
in numerous application fields, such as hydrology [17], hemodynamics [18], oceanog-
raphy [19, 20], atmospheric transport models [21, 22, 23, 24], seismology [25], ocean
circulation models [26, 27, 28], and more.

Sequential DA, on the other hand, corrects the state based on each new obser-
vation in chronological order [29]. In this manner, the information is propagated
forward in time, which is an advantage when compared with variational methods
since no calculation of the adjoint model is required, making this approach more ver-
satile for any model [30]. Sequential DA methods have found application in many
fields, for instance, oceanography [30, 20|, reservoir engineering [31] and atmospheric
transport [32, 33, 34]. In the case of linear dynamics (and Gaussian errors), the opti-
mal sequential DA filtering estimator is the KF [35, 29]. The importance of this filter

cannot be overlooked, especially not only in the context of DA. The next section
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will present a more detailed collection of references about this topic.

Furthermore, multiple reviews of the theory and applications of DA techniques are
already available in the literature. Navon [36] provided a review of DA applications
in the field of NWP, focusing mainly on the history and early development of the 4D-
Var and how these approaches gained importance and were implemented in several
NWP centers worldwide. Additionally, Sandu and Chai [37] presented an overview
of both variational and sequential DA methods applied to the optimal representation
of the atmosphere’s chemical composition and air quality modeling. They highlight
the algorithms used in operational systems and the challenges associated with DA
in this field.

In the field of geosciences, Carrassi et al. [29] provided a comprehensive overview
of DA techniques and their theoretical foundations, highlighting their interdisci-
plinary nature across statistics, dynamical systems, and numerical optimization.
The authors first established the framework of DA, using probability density func-
tions to describe model and observational errors. They then introduced three
key problems in DA: prediction, filtering, and smoothing. The KF and Kalman
Smoother (KS) are introduced as exact solutions for linear systems with Gaussian
errors and variational methods for nonlinear cases. Ensemble methods are presented
as practical alternatives for high-dimensional systems, including the EnKF and En-
semble Kalman Smoother (EnKS). In addition, the authors presented a few selected
topics to showcase the challenges associated with applying DA in geosciences. These
include DA for chaotic dynamics such as the atmosphere or the ocean, DA for non-
Gaussian cases, DA for chemical constituents of the atmosphere, and an example of

operational DA system for an ice-ocean model.

Another review on DA techniques was presented by Montzka et al. [38]. It dis-
tinguishes four types of DA approaches based on the scales used on the assimilation
framework and data, namely, acknowledging that different scales and types of data
can be assimilated concurrently. The authors highlight the advantages and disad-
vantages of assimilating various data types and scales, concluding that it is beneficial
in the general case. However, a better understanding of multiscale DA methods is
still needed.

Several books and compilations are available in the literature. They usually pro-
vide a more detailed and theoretical description of the general DA methods. For
instance, Lahoz, Khattatov, and Menard [39] present a comprehensive overview of
current practices and future prospects in DA. The book is structured into six parts:
theory and methods; sources and types of observational data; applications in meteo-

rology and atmospheric dynamics; chemical data assimilation; broader applications

6



2. Literature Review

beyond meteorology, including oceans, land surfaces, and ionospheric models; and
future directions.

Additionally, Park and Xu [40] gathered a collection of papers that mix theoreti-
cal and practical research. The methodological aspects include variational methods,
ensemble methods, particle filtering, genetic algorithms, and more. Some applica-
tions include parameter estimation, radar/satellite assimilation, DA for land surface
and water balance modeling, oceanic and meteorological DA, and radar rainfall
estimates.

Evensen [41] introduces the formulation and solution of the data assimilation
problem, focusing on methods that allow models to contain errors with evolving
error statistics over time. There is a particular emphasis on the EnKF and similar
techniques, highlighting their popularity due to their simple implementation, ease
of interpretation, and effectiveness with nonlinear models. The book also includes
a detailed list of publications that use the EnKF up to the date of publication.

The book by Chui and Chen [12] shows a detailed and theoretical formulation of
the KF and some of its extensions. Among these are the colored noise filter (similar
to the ColKF), square-root algorithms, Extended Kalman Filter (EKF), and more.
The book also presents several examples in real-time applications, such as tracking
systems, satellite navigation, trajectory estimation, and beyond.

Recently, Evensen, Vossepoel, and Leeuwen [1] provided a unified approach and
formulation to various modern assimilation techniques, using the authors’ combined
experience in research and applications. In addition, the book is also suitable for
advanced courses, providing detailed explanations and maintaining a modest math-
ematical level. Finally, the books by Asch, Bocquet, and Nodet [2] and Fletcher [3]
are worth highlighting, as they provide a very detailed explanation of the concepts

leading to modern and more advanced DA techniques.

2.2 Kalman Filtering

The KF is an algorithm by Kalman [42] and Kalman and Bucy [43] that provides
estimates of the state of a discrete stochastic linear system from a series of incomplete
and noisy measurements. It operates in a two-step process: forecast and analysis.
In the forecast step, the filter uses a numerical model to predict the state at the next
time step, along with the associated uncertainty. The analysis step incorporates new
observations to correct the predicted state, reducing uncertainty.

It is widely used in various research and applied fields, such as navigation, control

and tracking of vehicles [44, 45, 46], sensor fusion [47, 48], signal processing [49, 50],

7
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robotics [51], and econometrics. The review presented by [52] provided an overview

of applications of the KF in five different industrial fields.

Furthermore, the KF has been extended to handle nonlinear systems through
variants like the EKF [53, 54] and the Unscented Kalman Filter (UKF) [55, 56].
In addition, Verlaan and Heemink [57] proposed the Reduced Rank Square Root
Kalman Filter (RRSQRT) to address some of the computational issues associated
with the exact formulation by using a reduced rank approximation of the error

covariances based on square root factorization and applied to a tidal flow forecasting.

Numerous books in the literature address the KF. Some of these references include
the works by Jazwinski [53], Cohn [58], Bain and Crisan [59], Catlin [60], Grewal
and Andrews [61], Chui and Chen [12], Govaers [62], and Schuppen [63].

However, in the context of geophysics and large-scale models, the exact formula-
tion of the KF is usually not applied [64]. The reason is twofold. First, the size of the
state vector is significantly larger (usually from 10* to 10°) compared to other appli-
cation areas. This makes computing and storing some of the mathematical objects
in the KF recursions computationally unfeasible. Second, these models are typically
nonlinear, adding an extra complication by linearizing or using more sophisticated
filtering approaches, as is the case for the EKF or the UKF.

Hence, an approximation was made: the EnKF. Proposed originally by Evensen
[65], this approach uses an ensemble of perturbed individual realizations of the model
(often called ensemble members) to represent the uncertainty and uses a Monte Carlo
approach to approximate the state mean and error covariance [66, 64]. As it will be
presented later (see Section 3.2.2), the standard formulation of the EnKF assumes
a linear observation model. Although extensions for nonlinear observation models
have been proposed, e.g., in [67, 68, 69], for the objectives of this work, a linear

observation model is assumed.

Applications of the EnKF exist in several research fields, such as chemical trans-
port models [70, 34, 71], soil moisture [72], ocean models [73, 74, 75] and reservoir
engineering [76, 77, 31, 78]. Finally, the EnKF has been applied in several oper-
ational systems agencies. Examples of these have been documented in the works
by Houtekamer et al. [79], Wei et al. [80], Bonavita, Torrisi, and Marcucci [81],
El Serafy and Mynett [82], Houtekamer, Mitchell, and Deng [83], McMillan et al.
[84], Houtekamer et al. [85], and Rafieeinasab et al. [86].

8
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2.3 Parameter Estimation

Sequential DA methods have been applied to estimate uncertain parameters of for-
ward models. Evensen, Dee, and Schroter [10] presented a general introduction to
the estimation of parameters for dynamical models from a theoretical standpoint. In
addition, Evensen [64] discusses the EnKF and how it can also be used for parameter
estimation.

Ruiz, Pulido, and Miyoshi [8] presented a thorough review of the use of ensemble-
based methods in parameter estimation. The authors also highlight how DA can
overcome common problems with traditional parameter estimation techniques, such
as multiple local minima and sophisticated optimization methods to avoid them, and
how increasingly expensive computationally this becomes. Moreover, The authors
show how most DA approaches use some form of state augmentation approach for
online parameter estimation, usually assuming that parameters are constant during
the model forecast step. They are only updated during the assimilation of new
observations. More in the particular context of this work, the authors argue that
bias estimation can be regarded as a specific case of parameter estimation and that
further research is still needed to evaluate how parameter estimation techniques can
be mixed methods that correct other sources of model error, such as model bias, in
a DA framework.

There have been multiple applications of parameter estimation using DA in the
literature. Some examples are presented. Akter et al. [78] showcased a modified
tunning version for an EnKF to estimate both state and parameters in the presence
of model uncertainty in a reservoir context. Moreover, Sueki et al. [87] evaluated
the precision and convergence speed of the EnKF for parameter estimation in an
atmospheric model. Canuto et al. [88] applied an EnKF as well for estimation of
patient-specific parameters in a three-dimensional cardiovascular flow simulation.
Furthermore, a climate application of parameter estimation using the EnKF was
shown by Annan et al. [89]. In the context of hydrological models, Moradkhani
et al. [90] showed an EnKF to perform joint state and parameter estimation. Lastly,
Zhang et al. [91] reviewed the applications of Coupled Data Assimilation (CDA)

and parameter estimation to coupled ocean-atmosphere models.

2.4 Bias-Aware Data Assimilation

In the context of DA, “bias” can refer to different types, but they can be (generally)

classified between model and observation bias. Model bias, sometimes called forecast
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bias, refers to errors with nonzero mean in the forecast model; they are often caused
by systematic errors in the model, such as discretization errors, wrong assumptions,
outdated parameters, or faulty boundary conditions [6]. Moreover, observation bias
refers to nonzero mean errors in observed data due to, for instance, defective mea-
surement equipment or differences in frames of reference when acquiring data [4].
In the early work by Dee and Da Silva [6], they showed that if either (or both) the
model and observations are biased, the estimation scheme produced by the KF will

result in a biased analysis state.

Early works addressing sequential data assimilation while explicitly acknowledg-
ing bias date back to Jazwinski [53] and Friedland [92]. The former is one of the early
books on stochastic processes and filtering theory, and the author already suggests
a state-augmentation approach to estimate system errors simultaneously with the
state in the filtering procedure. Moreover, in the latter, Friedland derived the first
version of what is known nowadays as the Separate-bias Kalman Filter (SepKF),
corresponding to the version without feedback. The derivation assumes that the bias
is constant, and it was performed for both continuous- and discrete-time filtering.
This approach has been extended in subsequent publications to include nonlinear
and stochastic bias [93, 94, 95, 96, 97]. However, this approach assumes that the
forecast is independent of the estimated bias or bias-blind, as later appointed by Dee
and Da Silva [6]. In that same reference, the authors take Friedland’s (and the sub-
sequent papers) theoretical framework and make the forecast no longer bias-blind
by introducing a feedback loop from the biased estimator to the original analysis

system.

The paper by Drécourt, Madsen, and Rosbjerg [7] applied two variations of bias-
aware KF's to a groundwater model. In this work, only the concept of model bias is
addressed, and the authors proposed the idea of feedback in the context of bias-aware
filtering. Then, a summary of the ColKF and the SepKF, both with unified notation,
is presented. These formulations also include an additional “switch” matrix F (see
Section 3.3.1), which determines explicitly in the equations if the bias-aware filter
uses feedback or not. As part of the conclusion of this work, the authors claim that
the feedback versions of bias-aware filters (following [6]) are more versatile for more
complicated forms of bias, as they address the drift (derivative) of the bias, rather
than bias value itself (the case of a no feedback formulation). This paper provided

vital concepts that were used throughout this thesis.

Similarly, Rasmussen et al. [98] evaluate the performance of both the ColKF and
SepKF for correcting observation bias in integrated hydrological modeling. The

experiments were conducted using synthetic and real observations, and significant
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improvements were found compared to a bias-blind experiment. In general, ColKF
showed faster convergence to the bias values, albeit needing a larger ensemble size
than the SepKF. The authors also found that both filters usually underestimated

the bias, and parameters could not be estimated optimally in the real setting.

Baek et al. [99] discuss modifications to the Local Ensemble Kalman Filter
(LEKF) to address forecast model bias in atmospheric state estimation. The au-
thors propose augmenting the atmospheric state with model bias estimates, and
they explore three different ways to parameterize the model bias: accounting for
feedback, no feedback, or both (albeit the authors do not explicitly refer to it as
feedback). Through numerical experiments using the Lorenz-96 model, the study
demonstrates that effectively parameterizing the model bias can significantly im-
prove forecast accuracy. It presents a method that allows for correlations between
forecast state uncertainties and biases, enhancing the computational efficiency of
the LEKF approach. In addition, the feedback version proposed in this study works
directly on the Ordinary Differential Equation (ODE), in contrast to the typical bias
formulation that affects the state only after discretization. This will motivate part

of the aspects discussed in Section 4.1.2.

Another state augmentation approach was recently showcased by Diab Montero
[9]. The author added a forcing vector directly in the ODE formulation to account
for unresolved model errors and used DA to estimate the augmented state. This ap-

proach showed successful results for the Lorenz-96 model and an earthquake model.

Furthermore, Ménard [100] presents the derivation of multiple DA approaches to
estimate both observation and model bias based on theoretical developments made
around the time of that manuscript. The derivations are presented in variational
and sequential form, as well as static and dynamic cases (offline and online). The
author also discusses two different forms of detecting if bias is present in the model:
through innovations or analysis increments. The paper concludes that distinguishing
between model and observation biases using innovation statistics remains a signifi-

cant challenge. Currently, additional information is needed to address this.

This approach was later used by Glegola, Hanea, and Kaleta [101] in application
in reservoir characterization. In addition to the application-specific results, the
study also concludes that the presence of bias can be determined by examining the
innovations in a bias-blind experiment. However, additional information is needed
to determine the source of bias (model, observation, or both). Finally, they also
concluded that if bias is estimated in a parameter estimation setup, the estimated
parameters have a more significant uncertainty (variance) when compared to a bias-

blind experiment.

11
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Lorente-Plazas and Hacker [102] explore the effects of simultaneous observation
or model biases on a synthetic experimental setup. Their approach uses a state aug-
mentation that includes observation and model bias vectors and uses an Ensemble
Adjustment Kalman Filter (EAKF) to perform the assimilation. A critical aspect
of their approach is that they feed back the estimated bias directly to the contin-
uous model, which is an essential part of the discussion that will be carried out in
this thesis, especially when considering the specific form that the forcing takes in

conjunction with the model bias.

More recently, Novoa, Racca, and Magri [5] identified two main limitations with
most sequential bias-aware techniques when the nature of the bias is unknown: the
uniqueness of bias and the parameterization of the bias model. The former refers to
how a bias estimation procedure is not always constrained or unique, yielding esti-
mations that do not necessarily improve the analysis. Moreover, the latter refers to
how most bias-aware methods require a parametric form of the bias to be assumed
a priort so that the model parameters can be estimated in the assimilation process.
However, to overcome these limitations, the authors proposed using a regularized
bias-aware Ensemble Kalman Filter (r-EnKF) in combination with an Echo State
Network (ESN) as the bias model. The former addresses the issue of uniqueness, as
it introduces an extra Lo-like regularization (similar to a Tikhonov regularization) of
the bias vector to the cost function of the EnKF. The latter removes the need for a
specific functional form of the bias: since ESNs are generalized nonlinear autocorre-
lation functions [103], which are universal approximators [104], any particular form
of model error (bias) can be, theoretically, represented, given that the network is
trained correctly. The methodology proposed was successfully tested using two mod-
els of nonlinearly coupled oscillators with and without time delay and considering

different types of bias perturbations: linear, nonlinear, and time/state-dependent.

Moreover, this paper is a continuation of two papers by the same research group,
namely [105, 106], which uses a similar approach specifically for the case of ther-
moacoustic DA. These works showed the ESN-based method to forecast bias for
the first time, but no regularized version of the EnKF was developed yet. They
performed experiments to show that the proposed approach can correctly estimate

state, parameters, and bias.

The paper by Névoa, Racca, and Magri [5] is state-of-art, so there are still some
limiting factors before a method like this can be applied in another setting. The novel
method opens an exciting intersection between recent machine learning methodolo-
gies and DA. However, the method still has too many “hyperparameters” that would

need tuning before an approach like this can be extended into an operational setting.
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More research is still missing in this aspect.

A different procedure was recently proposed by Tamang et al. [107]. They present
an advanced DA technique designed for high-dimensional nonlinear dynamical sys-
tems. This technique, known as Ensemble Riemannian Data Assimilation (EnRDA),
leverages the optimal mass transport theory and Wasserstein distances. Unlike tra-
ditional methods, EnRDA does not assume Gaussian distributions, allowing it to
handle systematic biases more effectively. The proposed approach was tested using
a chaotic Lorenz-96 model and a two-layer quasi-geostrophic atmospheric circula-
tion model. The paper also claims that despite its computational complexity, this

method is promising to enhance the predictability of large-scale dynamical systems.

Another approach worth mentioning is the low-frequency filtering approach ini-
tially discussed by Asher et al. [108]. The primary purpose of this bias filter is
to correct gradually long frequency trends on the model, the so-called “unresolved
drivers”, that induce an error between the simulated water level from a hydrody-
namics model and the actual observations. The basic idea is that the filtering is
performed on a moving average space, i.e., both state forecast and real observations
are averaged over time windows, and the state is corrected using this averaged anal-
ysis, accounting for a low-frequency offset of the model. However, these corrections
are made to the pressure field above the water level to ensure longer-term corrections
on the state. The methodology was successfully tested using a large-scale hydrody-
namic model of the Caribbean Sea and assimilating storm-surge observations during

hurricane Matthew.

Several sources can also be found in the field of bias-aware DA, particularly in
the case of observation bias. Although this topic is beyond the scope of this thesis,
some sources are worth mentioning. Derber and Wu [109] present an observation
bias correction scheme based on linear models for satellite radiance observations
aiding a NWP model. The coefficients of said linear models are included in the
analysis scheme, similar to a parameter estimation approach. Moreover, Fertig et
al. [110] present a Local Ensemble Transform Kalman Filter (LETKF) to correct
the same type of observations, with a state augmentation approach and assuming
a persistence model for the bias evolution. In addition, Eyre [111] explores how
biases in the observations can lead to bias in both the forecast and analysis state
estimations in NWP models. Furthermore, Ridler et al. [112] propose a bias-aware
Ensemble Transform Kalman Filter (ETKF) to estimate and correct bias in the
observations in a complex groundwater model. Finally, Jin et al. [22] proposed a
machine learning approach to correct dust storm observations when assimilated into

a chemical transport model. This study concludes that assimilation in a bias-blind
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setting can lead to worse results than standard forecast and that, as expected, the

best results are obtained when using machine learning-based bias-aware assimilation.

2.4.1 Colored-noise Kalman Filter (ColKF)

The ColKF (and similar state augmentation methods) is probably one of the most
common approaches to bias estimation. Often, DA literature does not explicitly
refer to it as a colored noise approach. For instance, Evensen [66] explained how to
implement an Auto-Regressive (AR) error process to account for model error in an
EnKF.

Erdal, Neuweiler, and Wollschlager [11] investigates the use of a feedback ColKF
to account for unresolved structure in unsaturated zone modeling. The authors
find that introducing bias corrections in the EnKF can significantly improve the
predictive capability of a simplified model. The study highlights the importance
of considering model inadequacy in data assimilation for unsaturated zone model-
ing, particularly due to unresolved structure. Moreover, the authors emphasize the
importance of imposing spatial correlation when generating the noise process for
the bias forecast. Otherwise, the filter cannot properly correct the bias terms at
locations where observations are not available.

Additionally, Sgrensen and Madsen [113] use an approach similar to the ColKF
but with different underlying methods to perform the assimilation. This paper
investigates the sensitivity of three filter schemes: the EnKF, the RRSQRT, and
the Steady-State Kalman Filter (SSKF), in assimilating water levels in a three-
dimensional hydrodynamic model of shelf seas. The paper incorporates a stochastic
propagation operator that includes the numerical and an AR(1) model to model
system errors. This process is used to incorporate the errors in boundary conditions
and wind velocity. The study explores the sensitivity of error covariance matrices
within the Kalman filter schemes and their impact on assimilation performance,
aiming to ensure these schemes perform well under parameter uncertainty.

Da Silva and Colonius [114] proposes a bias-aware EnKF estimator to handle
biases in both forecast and observation models for aerodynamic flows. The authors
suggest a method that decomposes the bias into slow and fast components, modeling
the former as colored noise processes and the latter as white-noise processes. Ad-
dressing both discretization and model-form errors improved the accuracy of state
estimations in fluid systems.

Furthermore, Chumchean, Seed, and Sharma [115] explores a KF method to ad-
just radar rainfall estimates by correcting mean field bias in real time. They model

the logarithmic mean bias as an AR(1). This model assumes that the error in the
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radar estimates is not only spatially invariant but also exhibits Markovian depen-
dence, meaning the current error is correlated with the past errors in a predictable
manner. This statistical technique allows for dynamic adjustment of the bias, im-
proving the accuracy of the radar rainfall estimates over time.

Moreover, Raboudi et al. [116] focus on EnKF techniques in systems with colored
observation noise. The authors introduce two algorithms, extensions of existing KF
methods, specifically designed to accommodate colored noise scenarios. They argue
that incorporating temporal autocorrelation leads to a more accurate representation
of the underlying processes. Although observation noise is not treated in this work,
the concept of ColKF can also be extended to accommodate observation bias.

Finally, the book by Chui and Chen [12, Ch. 5] on Kalman filtering presents
a slightly different approach to including a colored-noise process into a KF. The
authors assume that the system and observation models are affected only by colored-
noise processes. While the same state augmentation approach as the ColKF is
followed, the derivation shows that modified versions of the initialization of the
filter, state and covariance recursions, and Kalman gain are obtained. While this
approach is interesting from a theoretical standpoint, the simpler formulation of the

ColKF proposed by Drécourt, Madsen, and Rosbjerg [7] was used in this thesis.

2.4.2 Separate-bias Kalman Filter (SepKF)

Although the SepKF is not used in this work, it is still one of the most used method-
ologies to perform sequential bias-aware DA, and it has been employed in various
research disciplines. Thus, some of the references in the literature are worth men-
tioning.

Cao et al. [117] implemented a SepKF to correct system bias of a soil moisture
model. The experiments were tested using constant- and sinusoidal-type bias in a
synthetic experiment and finally in a real setting using on-site observations from
Northwest China. Moreover, Nerger and Gregg [118] implemented the same two-
stage filter for state and bias estimation in an ocean-biochemical model (specifically
for estimating surface chlorophyll concentrations). Their approach uses a local Sin-
gular Evolutive Interpolated Kalman (SEIK) filter for data assimilation, in contrast
with the commonly used KF (or EnKF). Furthermore, Chepurin, Carton, and Dee
[119] used a SepKF for a tropical Pacific Ocean circulation model, and Deng, Tang,
and Wang [120] applied this filter to assimilate temperature and salinity in a prim-
itive equation model of the Pacific Ocean.

In the works by De Lannoy et al. [121] and De Lannoy et al. [122], the authors

explore the estimation of state and bias in a soil moisture model. In particular,
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[121] focuses on the estimation performance based on the assimilation experiment
setup (e.g. assimilation frequency and density), while [122] focuses on the bias esti-
mation pipeline. Given its systematic approach to testing variations of the SepKF,
the latter work’s importance must be highlighted. In particular, the authors pro-
pose five variations of the two-stage filter approach, depending on how the forecast
and analysis states are computed and how the forward model is re-initialized after
analysis. These approaches also explicitly describe whether state and bias update
is performed and if the filter coincides with a feedback or no feedback formulation.

Another variation of the SepKF was presented by Pauwels et al. [123], where
they simultaneously estimate model and observation bias, as well as system state,
in a scheme similar to the one already proposed by Dee and Da Silva [6], and us-
ing an EnKF. The central assumption for the derived filtering scheme is that the
observation and forecast errors are independent of each other and of the error of
the unbiased model state variables. This is not the case for other state augmenta-
tion techniques. Although the derivations are presented for a linear case, a hybrid
approach (by [122]) is followed in the test cases: the state uses an EnKF whereas
the bias filters use an exact KF to perform the analysis. Finally, despite the setup
assumptions, reasonable results can still be obtained in a rainfall-runoff model in
both a synthetic and real data assimilation experiment.

Draper et al. [124] introduce a two-stage filter that dynamically estimates and
removes systematic observation-minus-forecast (O-F) biases from observations, en-
abling the correction of model errors at sub-seasonal scales. This approach parallels
the SepKF developed by Dee and Da Silva [6]. Still, it differs from the original by
Friedland [92] in optimizing an analysis equation that includes the estimated bias,
obtaining a modified Kalman gain. This method is demonstrated by assimilating
geostationary skin temperature observations into the Catchment land surface model.

Although not directly for bias estimation, another similar idea to the SepKF
was presented by Yang and Delsole [125] for parameter estimation. In their work,
the authors show that in two particular cases of parameter structure (additive and
multiplicative), the analysis can be performed with two separate filters, one for the

state and one for the parameters.
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Theory

This chapter contains the theoretical background, methods, and testing models used
throughout this study. Firstly, a brief introduction to discrete-time dynamical sys-
tems is provided, followed by a general description of the filtering problem in the
context of sequential data assimilation. Then, sequential data assimilation (KF') and
ensemble methods (EnKF) are presented. Afterward, the concept of bias in data as-
similation systems is discussed, and a detailed description of the selected bias-aware
filtering technique is given (ColKF'). The chapter concludes by introducing the main

testing models used for experimentation.

3.1 The Dynamic Model

Processes are often nonlinear in real-world applications, making these models a
central topic of interest when utilizing DA techniques. While the original derivations
of these methods are typically presented for linear cases, various extensions have
been developed to handle nonlinear dynamics [54, 56, 51]. Among these extensions,
ensemble methods have emerged as a superior alternative since they can effectively
propagate nonlinear dynamics while still performing “optimal” linear corrections
[65, 35, 66]. This work provides a comprehensive theoretical background, including
linear filtering, to ensure the study is self-contained.

In general, a discrete-time stochastic system can be described as

Xpi1 = My (Xk, ug; 0) + W, (3.1a)
Vi = Hi(Xx) + Vi, (3.1b)
xo ~ G(pg, Po) (3.1c)
Wy, ~ G(0,Qy), Yk € Z,, (3.1d)
vi ~ G(0,Ry), Yk € Z, (3.1e)

where My, : R™ x R™ — R"™ is a nonlinear forward operator (with parameter

vector @ € R™) that takes the state x; with input u, from the time step k& to
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k+ 1, and Hy : R™ — R™ is a general observation operator that extracts the
observable output y from the state at time k. The vectors w; and vy represent the

process and observation noise, respectively, which, by the specification above, are

both time-uncorrelated Gaussian processes with covariance matrices Qy € RZ;SE""
and Ry € R:gsény, Vk € Z,, respectively. Finally, gy, € R™, and Py € Rp™

represent the mean and covariance of the initial state of the dynamic system.

In the context of DA in geophysics, the model (3.1) is often referred to as the
forward, prediction, or forecast model since it is the numerical approximation of a
real-world phenomenon that is used to predict the state until the following observa-
tion is available for assimilation. Moreover, it is essential to mention that a system
like (3.1) is often the result of a time-discretization of an ODE, generally in the state

space form of

x(t) = f(x(1),u(t); ), (3.2a)
y(t) = h(x(t)), (3.2b)

which, at the same time, in the context of geophysics, is often the result of a spatial
discretization of a Partial Differential Equation (PDE). The noise processes wy, and
v in (3.1) are a way to add the uncertainty of the system, resulting from modeling
errors, uncertain parameters, discretization errors, etc. The discrete-time formu-
lation in (3.1) allows for easier manipulation and estimation of said stochasticity,
which would not be the case if uncertainty is directly considered in (3.2). The latter
case would take us to a Stochastic Differential Equation (SDE), which is known to

be more challenging to treat.

Finally, the subscript k& used throughout this thesis, e.g., in eq. (3.1), refers to
a discrete-time index. However, in the context of DA, it usually refers to the so-
called assimilation time, which is the instant at which the model prediction will be
corrected by the DA framework. Formally, suppose the continuous model runs on a
time interval [0, T'], then the subscripts k refer to finite sub-sequence {t; }X_, C [0, T
of assimilation times. This will be better explained in Section 4.1.1. This is done
mainly to keep the notation simple since the results in sequential DA are (generally)

the same, independently of the time between observations.
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3.2 Sequential Data Assimilation

3.2.1 Kalman Filter (KF)

This section gives an overview of the filtering problem for a linear Gaussian system
for which the solution results in the well-known KF. This section is based on ideas
presented by Lewis, Lakshmivarahan, and Dhall [126] and Schuppen [63]. The
traditional KF is realistically not applicable in many DA applications, including
the object of this work. However, this result is used by many other sequential DA

methods, and its importance cannot be overstated.

Hence, consider the following discrete-time linear Gaussian system

X1 = Mgxy + Brug + wy, (3.3)
Vi = Hipxy, + vy,

where the initial condition xq, and processes w;, and vy, follow the same specification
as eqs. (3.1c) to (3.1e) respectively. Additionally, the matrix M € R™*"= ig the
state-transition matrix, By, € R™*"» maps the inputs to the states, and Hy €
R™*" is the observation model, and in general, all of these matrices may depend
on time, thus the subscript. Note that system (3.3) is a particular case of (3.1)
by setting My (xx, ur;0) = Myxi + Bruy, and Hi(xi) = Hixi. Note that the
parameter vector @ is left out from (3.1) for two reasons: first, this simplifies the
notation for this section. Second, if the parameter vector 8 were uncertain and its
estimation were needed, the formulation (3.3) would no longer be linear, and the

KF would no longer be applicable (see Section 3.2.4).

Nevertheless, the linear filtering problem can then be formulated as follows: given
that the state xj, evolves according to (3.3) and given that set of observations Yy :=
{ys : 1 < s < k — 1} is available, the objective is to find an estimate X; of the
actual state of the system x; that minimizes the conditional mean squared error
E |(x — %) (%1 — %e)[Yia | [126].

The derivation of the filter is omitted, but the reader can refer to [127] for a
comprehensive derivation from a least-squares approach and to [63] for a conditional

distribution approach. The KF is then given by the forecast (prediction) recursions

X£+1 = Mk)A(k + Bkuk (34)
P, = M,P,M! +Q, (3.5)
%o = ty, Po =Py,

19



3. Theory

and the assimilation (analysis) recursions

-1
K, = P[H] (H,P[H] + Ry) (3.7)
P.= (I, — KH,) P/ (3.8)

where I, represent the identity matrix of size n x n, and the estimated state and

covariance respectively satisfy

Xk |Yi1],

X, =E
pk =K |:<Xk — )A(k)(Xk — )A(k)T’Yk,I}
E

Additionally, note how the analysis equation (3.6) can be rewritten as
X = (L, — KiHy) i + Ky,

which resembles a linear interpolation formula between two points. The analysis
equation can be interpreted as a weighted sum between the observations and the
state forecast to produce a corrected prediction, on which the weight is given by
the Kalman gain K;. The resulting analysis X is an unbiased minimum variance
estimate of the state. Moreover, the KF recursions result in what is known as a Best
Linear Unbiased Estimate (BLUE), even without the Gaussian assumptions [2, 29].
Finally, the concept of innovation is usually mentioned when talking about the
KF'. In this work, the innovation process is assumed to refer to the difference between
the analysis and the real measurement, i.e., y, — HyX;. Moreover, it is well-known
that the Kalman update guarantees that this error is a white noise process [63]

specified by
vi — Hi%, ~ G (0, HP,HY + Ry) . (3.9)

This result will be used later to assess the filter’'s performance. An innovation
process whose expected value is significantly different than zero strongly indicates

systematic bias in the model.

3.2.2 Ensemble Kalman Filter (EnKF)

Although the KF provides a closed optimal form for the filtering problem, the size

of the state vectors makes the KF recursions computationally unfeasible for use
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in an operational setting, particularly the storage and propagation of the forecast
covariance matrix P£ in (3.5). Moreover, the KF is formulated as the solution to the
filtering problem in linear Gaussian systems, yet most forecast models are nonlinear,
as (3.1).

The main idea of the EnKF is to use an ensemble of states that are propagated
independently to create a sample containing the stochastic component of the filter.
From this sample, the forecast state X,{ and covariance matrix P£ can be estimated
during the assimilation step. This makes the implementation more computationally
efficient, as the explicit update for P£ is replaced by a simple sample covariance

estimator using the ensemble states [65, 67].

To allow for a comparison with the traditional KF, the linear case of the EnKF
will first be introduced. That is, for a system in the form of (3.3). This section is
mainly inspired by the formulation presented by Lewis, Lakshmivarahan, and Dhall
[126], although the EnKF was presented first by Evensen [65].

First, each member éo,m 1 =1,..., N of the ensemble is initialized by drawing
a sample from the initial state Gaussian distribution G(p,, Py). Now, let 5{71. and
é,w- denote the forecast and analysis state vectors of the i-th ensemble member,

respectively, at time k. The time updates are now given by

&l =My, +Boup +wy, Vi=1,2,..., N (3.10)
1 N
xf =+ 2 &L (3.11)
i=1
f L N pr o\ (ef  oP\T
P = N —1 (Ek,i - Xk) (€k,i - Xk) ; (3.12)

i=1

where each wy,; is a sample of G(0, Qy), and the analysis (assimilation) updates are

given by
€= &L+ Ki (v +vii —Hig[,), Vi=12,.. N (3.13)
1 X,
X = Zjl&k (3.14)
- 1 X N\ /2 AT
Py = N —1 Z (Sk,i - Xk) (fk,z' - Xk) (3.15)

=1

where each vy ; is a sample of G(0,Ry), and where K, is the given by (3.7), same
as for the exact KF. Note that in steps (3.10) and (3.13) lay a major difference
with respect to the exact KF. These steps perform what is known as stochastic

updates: adding realizations of the system and observation error processes (wy and
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vy, respectively).

In particular, (3.13) uses the so-called wirtual observations, which refer to the
perturbation of y; with the associated observation error process vy inside the paren-
thesis. These perturbed observations are required to maintain consistency of this
formulation with the traditional KF [128, 126]. Meaning that, as the ensemble size
N — oo, the EnKF converges to the KF' in the case of linear dynamics. However,
the so-called square-root schemes proposed in the literature avoid perturbing the
measurements by preserving the exact covariance in the update [29]. Examples of
these methods include the ETKF [129, 130}, EAKF [131], the Maximum Likelihood
Ensemble Kalman Filter (MLEKF) [132], and the Deterministic Ensemble Kalman
Filter (DEnKF) [133].

Finally, another noteworthy remark is that the estimators provided in (3.12) and
(3.15) are typical unbiased estimators of a sample covariance matrix, in this case
of Pg and Py, respectively. However, in theory, this step can be replaced by any
sample covariance estimator, like covariance shrinkage estimation [134, 135, 136] or

other methodologies.

One significant advantage of the EnKF is that it only uses the state transition
matrix My when forecasting the ensemble. This allows the framework to be ex-
tended naturally to a model similar to (3.1). In the context of nonlinear models,
the traditional KF can still be applied by computing the Jacobian of the nonlinear
model My, ~ % This is known as the EKF.

dx °
However, in the EnKF, (3.1) can be used directly to forecast the next state.
Therefore, assuming the observation model is still linear, the EnKF procedure re-

mains unchanged, with the exception of (3.10), which is replaced with
££+1,i = Mk(ék,,uk; 0) + wi, (3.16)

which corresponds to a nonlinear stochastic prediction step for the i-th ensemble
member. Consequently, through the remainder of this work, the observation opera-
tor in (3.1b) is assumed to be linear, that is, Hi(-) = Hy € R™*"  Vk. Since the
analysis step explicitly requires the observation matrix, the complication of comput-
ing the Jacobian of Hj, is avoided by making this assumption. Moreover, since the
matrix M, is no longer required for computing Pﬁ, the state can still be propagated

using the nonlinear model. In summary, EnKFs work with a system in the form

X1 = Mg (X, ug; 0) + wy, (3.17a)
ye = Hixy + vy, (3.17b)
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where the initial condition xq, and processes w;, and vy, follow the same specification
as (3.1c), (3.1d), and (3.1e), respectively. Unless otherwise specified, this is the

forecast model assumed for the remainder of this work.

3.2.3 Covariance Localization

This section gives a short introduction to the concept of covariance localization.
Since the EnKF is a Monte Carlo approximation of the exact KF, the size of the
ensemble determines how accurate the estimation of the state mean and covariance
is. However, computational resources limit the number of ensemble members, which
is often low compared to the number of states. This results in problems such as
undersampling, inbreeding, filter divergence, and spurious correlations [137]. One of

the strategies to overcome these problems is covariance localization.

Covariance localization [138, 139, 130] is a process by which the covariance of
“distant” states is cut off in the forecast covariance matrix Pg. It is typically done by
applying a Hadamard (Schur) product between the forecast error covariance matrix
PJ and a localization matrix ¥ € R™*™ (sometimes called the mask). Firstly,
the Hadamard product, also known as element-wise product, between two matrices
A, B € R"™" denoted A ® B, is given by

(A ® B)’LJ == AijBij7 VZ,] = 1, o, N
Secondly, the elements of the localization matrix ¥ satisfy
‘Ifij = 1/1(2@'), VZ,j = 1, Lo, Ny (318)

where z;; is the distance between the grid points associated with the states x; and
x; in the physical space, and where 1 is a local correlation function. Hence, the

Kalman gain (3.7) is replaced by
-1
K, = (voP{)H] (H,(VoP)H +R;) . (3.19)

during the analysis step. It can be proved that W is also a covariance matrix, and
thus, so is ¥ ® PJ. The reader is referred to the dissertation by Petrie [137], which

provides a detailed description of localization for the EnKF.

One typical local correlation function v is the 5*-order piecewise rational function
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with compact support proposed by Gaspari and Cohn [140], given by

() 3 () () -3 (5) 0<ld<e
= () () 1 () 3 (2) s (B) vai(g) <l

0, 2] > 2¢,

and where ¢ is a length scale defined such that the correlation reduces to zero after
more than twice this distance and following a Gaussian-like bell curve within this
scale. A plot of the local correlation function is shown in Fig. 3.1 for different values

of c.

c=15

c =30

1.0

0.8 1

0.6 1

0.4+

0.2

0.0

—40 ~920 0 20 40
z

Figure 3.1: Local correlation function v for different length scales c.

However, this function is more common in geophysical applications, where an Eu-
clidean distance exists between the grid cells in the state [137]. Since this work only
focuses on the synthetic case scenario using a Lorenz-96 model, we use a Gaussian
decay approach. This approach was recently used by Diab Montero [9] to create a
localization mask for the model based on the state indices rather than physical dis-
tance. His implementation was modified to include the cyclic nature of the boundary
of the Lorenz-96 model.

The pseudocode of this procedure is presented in Algorithm 1. In this procedure,
the matrix D; € R™*™ represents a matrix with ones on the i-th off-diagonal
entries. In this manner, 7 > 0 represents diagonals above the main diagonal, and

i < 0 represents diagonals below the main diagonal. As a reference, Dy = 1,, .
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Algorithm 1 Localization mask generation.

Input: r € Z; > The covariance influence radius

Input: ny € Z, > The size of the state vector
L U <= 0, xn, > Initialize the mask
2: for i =1 to 3r do
3 Q<= exp (— (7’/7‘)2)
4: V<=U+a(D;+D,, ) > Upper diagonals
5 V<U+aD;+D;,,) > Lower diagonals
6: V<=V +1,,

Output: ¥ e R™*"x > The localization mask

This procedure is depicted in Fig. 3.2 for a test case with ny, = 8 cells and a
covariance influence radius of r = 2. Note how the off-diagonal entries are progres-
sively filled with the Gaussian decay coefficient in the nearest and furthest points,
correctly accounting for the cyclic boundary of the Lorenz-96 model. The last panel

shows the resulting covariance mask.
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Figure 3.2: Sequential construction of the covariance mask for localization using
Gaussian decay. Experiment with ny = 8 cells and a covariance influence radius of
r=2.

25



3. Theory

3.2.4 Parameter and State Estimation

The forecast model is an abstraction of natural processes. It includes parameters
representing real-world factors that may not be directly measurable or rely on as-
sumptions that may not be entirely correct. Therefore, parameter estimation is
commonly part of the DA workflow so that models can closely align with actual
conditions. This, in turn, leads to better simulations and more reliable forecasts,

improving our ability to produce valid estimates.

For parameter estimation in a filtering setting, the basic idea is that the pa-
rameters are deemed “variable” in time @ — 6, and they are considered part of
an augmented state vector. The parameters are assumed to follow a random walk
model [10], given by

Orp1 = 0, + w2, (3.20)

where wf ~ @ (O, QZ), and where Q) € Ry%1" such that Q) = diag (0,371, e >‘71%,n9)'

Usually, in an applied setting, all parameter forecast errors are taken as zero (QZ =
0, Vk € Zy) to represent a persistent model (constant parameter) at the forecast
step [8]. This means that the parameters are only updated in the analysis step
as a consequence of the learned covariance between them and the state through
the observation assimilated. However, we assume that QZ can be non-zero to keep

generality in the formulation.

This specification leads to an augmented formulation of (3.17) as

Xpt1 = My (Xp, ug; Or) + W, (3.21a)
Ori1 = 01 + WY, (3.21D)
Yi = Higxy + vy, (3.21¢)

which can be summarized into a new stochastic system formulation, using an aug-

T
mented state vector zy, := {XZ Oﬂ as

Zjt1 = ./\/lk(zk, llk) + Wi, (322&)
yi = Hyzp + vy, (3.22Db)
where
~ M ,uy; 6 . .
M (g, uy) = [ {3, k)] , Wi = [Wz] , and Hy, = [Hk 0} ;
Ok W

and this is just a new form of (3.17) that can be used with an EnKF scheme to
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perform DA.

3.3 Bias-Aware Data Assimilation

3.3.1 Bias & Feedback

Several sources in the literature discuss how the KF remains optimal as long as,
among other assumptions, the conditions (3.1d) and (3.le) are satisfied [6, 4, 7].
Therefore, in the presence of model bias, the error of the state x; would not meet
this requirement. In this manner, if an estimate of the model bias b, € R" is

available, one could compute an unbiased state vector
)N(k, = X — bek, (323)

and perform DA using Xz, where HP € R™*™ ig a map from the bias state to the
system state in a case where they are not of the same length.

In this sense, if we assume that the dynamics driving by, also satisfy the Gaussian
white noise requirements, one could theoretically achieve optimality using the KF.
However, when and how the state should be corrected within the DA procedure
is still an open question. To address this, Drécourt, Madsen, and Rosbjerg [7]
presented the concept of having feedback and no feedback in the bias-aware filter.
Although they did not introduce this concept, they provided a unified formulation
that included both cases. The initial formulation without feedback was introduced
by Friedland [92], while the feedback version was introduced later by Dee and Da
Silva [6]. These concepts are hereby discussed.

In concise terms, in a no-feedback filter, the estimated bias does not directly affect
the model dynamics. It only influences the state during the filtering update, making
it well-suited for settings where the bias is relatively constant. Whereas a feedback
filter interacts directly with the model dynamics, which can result in more complex
behavior.

In more technical terms, in a bias-aware filter where there is no-feedback, the
forward model uses the biased state vector x as input to produce a forecast state.
This method is ideal for scenarios where the bias’s nature is partially understood
or remains relatively stable over the assimilation run time. Moreover, when there is
feedback, the forward model uses the bias-corrected estimate of the state vector X,
as input to produce a forecast state. As the state is corrected at every integration
time step, the estimated process by, represents the bias’ time derivative, allowing for

more complex forms of bias that can be estimated [7]. However, two versions of the
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feedback filter can be distinguished, depending on how the model is corrected using
the bias estimate, as it can be done at either the continuous or discrete formulation
of the forward model.

Additionally, Drécourt, Madsen, and Rosbjerg [7] also introduced the feedback
matrix F € R™>*™ to the mathematical formulation of the bias-aware filters. In
particular F = 0 means that there is no feedback, whereas F = I, if there is
feedback. The same notation is maintained in this work. A graphical representation
of the feedback switch in the filtering process is presented in Fig. 3.3, and its effects
on the dynamics are presented in Fig. 3.4a in the case of feedback and in Fig. 3.4b

for the no-feedback case.

X, State State + Xl
model " |Kalman filter

Feedback
switch (F)

infarmation

b, | Bias/Drift | Bias/mrift o1
. model "|Kalman filter ]
Time step k Time step k+1

Figure 3.3: Inclusion of the feedback switch on the state and bias estimation
process. Figure by Drécourt, Madsen, and Rosbjerg [7].

Xpt1

Iruth =

) o
!

Xk+1

(a) State dynamics in a feedback setting. (b) State dynamics in a no-feedback setting.
The unbiased state X is used as an initial The biased state x is used as an initial con-
condition to forecast the next state. dition to forecast the next state.

Figure 3.4: Illustrations of the concept of feedback for bias-aware filters, based on
the ones presented by Baek et al. [99].

In light of these concepts, and inspired by the formulation of Drécourt, Madsen,

and Rosbjerg [7], a general formulation of a bias-aware discrete stochastic system
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with uncertain parameters is proposed in the form

Xpr1 = My (Xp, uy; 0,) — FHPby, + wy, (3.24a
bjs1 = Gi(xXk, br) + Wy, (3.24b
Ori1 = 01 + WY, (3.24c¢

)
)
)
yi = Hyx, + (F — 1,,) HLHPb, + vy, (3.24d)
where b, € R™ represents the bias state at time k, which is propagated through the
parameterization G, : R™ x R™ — R™ . Moreover, the process Wlk) ~ G (O, Q}:),
and where QF € Rggsﬁnb. The matrix F € R™>"x is the feedback matrix, i.e.
F € {0,1, }. In practice, the parameterization for the bias propagation Gg(-) is
typically taken as a persistence model, similar to how parameters are modeled. In

the case of the ColKF, Gy (-) represents the AR model.

Nonetheless, a point must be made about how the bias is fed back to the model
in a feedback implementation. Based on (3.24), in a feedback formulation, that is
F =1,,_, the bias by, corrects the output of the forward model My, directly. However,
this bias could be used inside the forward model. This issue is raised again in Section

4.1.2, specifying how it can interact with the model before time discretization.

3.3.2 Colored-noise Kalman Filter (ColKF)

One of the main assumptions of the KF is that the model and observation error
processes are uncorrelated Gaussian noise with mean zero, as specified in (3.1d)
and (3.1e). However, in the presence of systematic errors (biases) not considered
explicitly in the model, these processes may no longer satisfy these assumptions.
Thus, some approaches have considered more complex forms of uncertainty in the

eIrrors.

The ColKF extends the KF, allowing for a correlated error process on both model
and observations. Following the methodology presented by Drécourt, Madsen, and
Rosbjerg [7], an assumption is made: the colored noise process affects only the fore-
casting model. This assumption aligns with this work since we focused on addressing

model bias (systematic errors) and parameter uncertainty in the forecasting model.

Again, the methodology in the case of a linear system is first described. However,

their formulation of the linear ColKF is extended to include the HP mapping for
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situations where ny, # ny. Consider the following linear stochastic model

Xkt+1 = Mka — Fbek + Wi
bk+1 = Akbk + W}E (325)
yi = Higxy, + (F — L) HtH by, 4 vy,

where the processes wy and vy, also satisfy (3.1d) and (3.1e) respectively, and simi-
larly wlk’ ~ G(0, Q',?), Vk € Z,. Processes wj, and WE are assumed to be uncorre-
lated, that is E [waﬂ = 0. The process by, represents a first-order multivariate AR
model, with coefficients given by the diagonal matrix A, and the matrix F € R"x

is constant.

Typically, the coefficients in A, of the AR model are constrained to be less or
equal to 1. In the context of time series and linear stochastic systems, this ensures
that the process is weakly stationary (see, e.g., [141]). However, the update on
the KF will prevent the process’s divergence [7]; thus, this assumption is no longer

necessary.

Moreover, in theory, the matrix F € R™ can take any value, but, following the
description of feedback presented in Section 3.3.1, only the cases F = 0 (no-feedback)
and F = I, (feedback) are considered. The initial condition of the AR(1) process
b_; can be initialized using an educated initial guess or just as zero. However, if
this is the case, the mean of the AR(1) will remain zero until the first filter update.
The mean of the AR (bias estimate) can only be changed in an assimilation step [7].
In addition, the term —FHPb, is taken as negative in the propagation of the state

x to more intuitively resemble (3.23).

This case’s derivation of the KF is straightforward. The process starts by making
T
the system uncorrelated by introducing an augmented state vector z;, := [xf bf] €

R™ " and defining the system as

Zg11 = Mz, + qk (3.26)
Vi = Crzi + vy,

where

. M, —-FHP
Mk:[ F

, Ok = [WE] , and C, = [Hk (F — Inx)HkHb} ’
Wi
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and applying the KF recursions (3.4)-(3.8), as follows

Zk+1 = Mkik 327)
Pl , = M,P,M! + U, (3.28)
R P, O
o= | M| Py= " ,
E [bo] 0 Vb
where
Q. O
Uk =K q:q = ’
] - |3 &
and the analysis recursions
K, = P[C] (C,P[C] +R,) . (3.30)
P, = (I, — K;C) P/ (3.31)

Alternatively, in the notation of (3.25), we have

x{| _ [Mp —FHP| [

Y 0 A | b
‘M, —FH| . M7 0 Q. O

P£+1 = Pk kb T T + s
0 Ay | U |-(FHP)T A] 0 Q,

" ED]T " [0 Vb

S [ f

Xk X

[BJ = bﬁ; + Ky, (yx — Hix{ — (F — 1,,) HyHb])
|~k

where

K,= P[[H, (F-1I,) HkHb]T <Rk +[H, (F-1L,)HH°|P[[H, (F-I,) HkHb}T)i :

This presented formulation follows a KF approach, and it illustrates how to convert

the colored noise process into a white one. However, in practice, the same augmented

state process can be followed with a nonlinear forecast model, using an EnKF to

perform the assimilation. This enables the filter to perform nonlinear updates (see

Section 3.2.2) while keeping the colored noise modeling approach [66, 7].
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3.4 Testing Models

3.4.1 Linear Harmonic Oscillator (LHO)

A simple Linear Harmonic Oscillator (LHO) will initially be used to test the filter-
ing techniques. In simplified notation, the driving ODE associated to a (possibly
damped) LHO is given by

§(t) — Oay(t) — O1y(t) = 0, (3.32)

where 601,60, < 0. This formulation can be translated into a more typical state-space

form

x(t) = (901 912) x(t), (3.33)

where x(t) = [y(t) y(t)]", and both states are assumed to be observable, i.e., y(t) =
Ibx(t). Furthermore, this system’s advantages are its simplicity and linearity. The
latter allows us to guarantee that Kalman-based analysis produces optimal estimates

and validate the implemented methods.

3.4.2 The Lorenz-96 Model

The Lorenz-96 model is a simple nonlinear dynamical system that simplifies at-
mospheric phenomena to study nonlinear interactions and chaotic behavior. The
model was initially presented in 1996 by E. N. Lorenz during an European Centre
for Medium-Range Weather Forecasts (ECMWF') workshop on predictability [142,
13], but officially published in 2006 [143] as part of a book in predictability of weather

and climate.

The model was developed to study how the error grows along with prediction
time in the context of meteorological and atmospheric phenomena. It has allowed
researchers to gain insight into problems and nonlinear interactions that often arise
with larger models closer to reality [13]. The Lorenz-96 has been broadly used in
topics like chaos (e.g. [144, 145, 146, 13]), predictability (e.g. [147, 148, 143]), and
data assimilation (e.g. [149, 99, 150, 107, 9]), the latter being the main focus of this

work.

The Lorenz-96 belongs to a more general class of dynamical systems extensively

studied by Lorenz, namely, the Forced Dissipative Systems (FDS) with quadratic

32



3. Theory

terms [151, 13]. In general, these systems are in the form

th(t) = Z ajklxk(t)xl(t) - Z bjkl‘k(t) + Gy, j = 1, vy Ny (334)
k=1 k=1

The Lorenz-96 model was first studied in four dimensions by Lorenz [144] when he
was searching for the simplest FDS that exhibits chaotic behavior. The Lorenz-96
model is completely determined by the equation of the j-th state, namely,

#(1) = 1 (1) (0 () — 2ya(0) — () 4 B j=1,...nx  (335)

with the ‘boundary’/cyclic condition x;_, (t) = xjin, (t) = z;(t), Vj = 1,..., nx,
and where F' € R is a constant parameter (forcing) term. The Lorenz-96 model
has been widely used in DA applications, mainly as a model to perform synthetic
experiments [13], given its simplicity, and yet it exhibits chaotic behavior. Moreover,
this model was also selected as it only includes one forcing parameter (F'), and the
nature of the dynamics depends heavily on it [142, 152, 13]. For instance, low values
of F' lead to asymptotically stable solutions, while F' = 8 yields chaotic trajectories.
In addition, Lorenz and Emanuel [152] and Sun, Miyoshi, and Richard [153] discuss
that if the values of all states over a long period of time are considered, then it can
be proved that their mean lies in the interval [0, F], and their standard deviation in
the interval [0, F/2].

This thesis assumes N = 20 and observability of all Lorenz-96 states. Following
the ideas presented by Erdal, Neuweiler, and Wollschlager [11], in the case of bias
estimation in a model like Lorenz-96, if not all states are observable, the spatial
correlation of the bias terms needs to be carefully chosen for the Kalman update
actually to perform proper estimation of the bias. Thus, this situation is avoided

simply by assuming that all states are observable.
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Methods

This chapter bridges the theory presented in Chapter 3, and the implementation
and experimentation. In particular, we first present an overview of details to be
considered when developing a DA application. We then move to the current state of
the code and its capabilities, and we finish the chapter by summarizing some parts

of the experimental design followed to obtain the results.

4.1 The Data Assimilation Framework

This section will discuss some practical aspects and remarks relevant to implement-
ing a flexible sequential (bias-aware) data assimilation framework. These consid-
erations result from a combination of the theory and challenges encountered when
implementing the code for this work. They will be described in a general manner,
and at the end of the section, they will be summarized more explicitly, even though

some are closely related or consequences of each other.

4.1.1 The Practical Setup

As a reference, we will consider that the DA framework acts on a nonlinear black-box
system. For the illustrative purpose of this section, we assume that the dynamics of

the state of the system can be reduced to a state-space in the form

x(t) = f(t,x(t), u(t); ), (4.1)

where x is the state of the system and u is an external input. For instance, this
formulation could result from a spatial discretization of a PDE.

This equation is then discretized and integrated in time through some numerical
method, which we address as the Integrator, that takes the system from some initial
state x (1) at the initial time ¢; to some new state x(3) at some specified final time
to, using an integration time step of At (assumed constant for simplicity). This

Integrator can be generally described by Algorithm 2, where step : R, x R™ — R"x
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is a single step of the numerical integration of f, and the notation X[:, 7] represents

the indexing of a tensor in the implementation using NumPy [154].

Algorithm 2 Explicit Integrator associated to (4.1).

Input: ¢, > The initial time
Input: x(t;) > The initial state
Input: ¢, > The final time
Input: At > The integration time step

1: ng <= Ltz tlJ

2: X <=0 e R™>m™ > Store states

3: X[:, 0] < x(t1)

4: fori=0tony —1do

5: X[:, i+ 1] < step (iAt, X[:, i])

Output: X > The computed states between t; and t,

For instance, in the case of a 4th order Runge Kutta (RK4) scheme, step would
be given by

(4.2)

ki + 2k, +2ks + k
step(t,x):x+At< s s 4),

6

where

A x 4k 4 u(t+At),0),
X+k2 u<t+m),0),
(t+At x + ksAt,u(t + At); 0),

J{t:x.u(0):0),
e
f(
f

and where f, u and @ are as given in (4.1). Thus, in a DA context, the forward
(background) model would run between assimilation steps, using the analysis step
from the previous iteration as an initial condition. In this manner, the framework
would have (in a base case) two time sequences: one for integration and one for
assimilation (a subset). A simple diagram in Fig. 4.1 shows the difference between
the assimilation and integration steps. Note also how the assimilation runs on the
index k, while the model integration runs on a finer scale with a time step of At.
In summary, this approach results in a discrete dynamical system like (3.17), where

the forward model operator M, represents the model integrator.

4.1.2 Considerations and Challenges

First, the framework should be able to perform automatic state augmentation.
Whether the state is augmented with extra uncertain parameters, bias terms, or

both, the size of the state vector can change depending on the setup desired by the
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Figure 4.1: Integration vs. assimilation time steps.

end user. This has some consequences. First, all the objects related to the Kalman

filter should be augmented as

X < [X{ bg 0T1|T,
M) < MO G0)T 6]

H, < [H, 0 0],

Q: + diag (Qi, Q}. Q7).

Second, the estimated model parameters in the state vector 6, should also update
the parameters inside the forward model before the next prediction. Both of these
remarks imply that the augmented state vector needs to be constructed at the be-
ginning of each assimilation step, concatenating the real system’s state, the current
value of the bias state, and the current uncertain parameter values. Moreover, in
theory, the forward model can be any dynamical system (black box), which ranges
from an explicit ODE to any model product of an implementation in any software
external to the DA framework. These models have their own “solver”, responsi-
ble for discretizing time and solving the dynamics at every integration step (for
instance, a Runge-Kutta method). Still, the dynamics for the parameters and the
bias are inherently different. For example, in the case of a ColKF, the AR model is
a discrete model that can easily be propagated, which means that the augmented
system can have several “solvers” acting simultaneously to produce the augmented
state forecast, and this also means that the models cannot be integrated one after
the other, as possible coupling between them is possible, particularly, in the case of
a feedback filter.

Regarding this last point, a feedback implementation of a filter translates to using
the unbiased estimate of the state X; (see Section 3.3.1) as input of the forward

model. However, in a general case, implementing the bias back into the system can
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be done in several ways. We distinguish two main approaches: first, the formulation
presented in Section 3.3.1, namely, equations (3.24a-3.24d) explicitly account for the
bias in the discrete-time model, thus, after using an integrator. This approach is
referred to as discrete bias. Second, motivated by the ideas presented by, for instance,
Baek et al. [99] and Diab Montero [9], the bias term can be added as an extra forcing
that affects the dynamics explicitly, namely %(t) = f(t,x(¢),u(t); ) — HPb. This
implies that the bias correction acts before the discretization in time. This approach
is referred to as continuous bias. Note that this last approach modifies the dynamic
model explicitly, which may be a complication in the case of black-box forward

models.

Moreover, the basic formulation of the EnKF, particularly (3.10), implies that a
stochastic update of the forecast state is performed at every assimilation time instant
k. However, in practice, these stochastic updates can be performed, for instance,
at every integration step instead, namely, every At of the integrator (see Section
4.1.1). This situation may be desirable in cases where the ensemble spread is not
large enough and the filter collapses too soon. In a flexible DA library, it should be
up to the end user to decide which approach to take.

As a final remark, we should also consider how to estimate the state forecast
covariance matrix in a no-feedback filter. In (3.24), in the case of no-feedback F = 0
and it is clear that the state is corrected when observing the output y,. In a filter
formulation, this translates to the correction in the analysis equation. However, the
equation for the Kalman gain Ky, in (3.7) uses P{. The literature on bias filters
without feedback fails to specify if this covariance matrix should be computed using
the state forecast xj or if the bias-corrected state X; can be used instead. One
would expect the latter to estimate the background covariance better, although the
formulation of bias-aware filters seems to favor the former approach [7]. This can be
another possible option that the user can specify when working with a bias-aware
filter without feedback.

Some additional considerations will now be described, though they were not dealt
with in this project’s scope. First, we assume the observation model is linear, which
may not always be accurate. Evensen [41, Appendix A.1] addresses this issue for
the case of the EnKF as long as the observation model is monotone in the state
and not too nonlinear. Moreover, throughout the experiments carried out in this
work, we also assume that the observation model is constant and observations come
at a constant frequency. However, this can no longer be the case if, for instance,
measurements are available at different times or rates. A possible approach to

overcome this situation is performing asynchronous filtering, where the analysis is
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run at particular time steps and assimilating all the data that became available in

one go [155].

4.2 Twin Experiments

A twin experiment is a controlled setup to evaluate and refine DA techniques. It
involves creating one forecast model run, including realizations of the noise processes,
that serves as the “truth” and then using it as observation measurements with a
DA method. The observational data is generated from the truth model and then
deliberately perturbed with noise to simulate real-world measurement errors. These
perturbed observations are then assimilated into the guess model. The goal is to
see how well the DA method can adjust the forecast model to recover the “truth”
model [156]. Consequently, the performance of the data assimilation process can
be assessed by comparing the output of the assimilated guess model with the truth
model. In summary, twin experiments are essential for validating data assimilation

techniques before applying them to actual observational data in real-world scenarios.

The procedure to conduct a twin experiment can be broken down into four gen-
eral steps: (1) perform a run of the prediction model (“truth”), (2) sample synthetic
observations (with added noise) from this simulation, (3) assimilate the sampled ob-
servations into a different run of the prediction model with varying realizations of
noise (e.g. with different Random Number Generator (RNG) seed) or perturbed ini-
tial, forcing or boundary conditions, and (4) evaluate performance. Moreover, twin
experiments can also be classified as identical and non-identical twin experiments.
The former refers to a setup in which the synthetic true observations are generated
by the same model to which the DA is applied, only perturbing the initial /boundary
conditions or forcing terms [157]. The latter refers to the case of having different
model types between the one that generates the observations and the one used in the

DA loop [156], since in some cases studying how robust the methods are is desired.

Moreover, the procedure for estimating bias in a twin experiment is similar. The
only difference is that the model is perturbed with the predefined bias before the
synthetic observations are generated. For instance, assume we have a discrete model
that evolves according to (3.17a) and that we have a discrete bias function by that
we would like to estimate (or account for) using the bias-aware method. Then,
depending on whether it is a feedback (F = 1,,) or a no feedback (F = 0) filter, the
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model used to generate the synthetic observations is

X1 = My (Xp, ug; 0) + Fbekza
yr = Hi(xi + (I, — F)H by,)

whereas the forward model used within the DA experiment would be

Xpr1 = Mp(xp, ug; 0),

yvi = Hpxy

so that the effect of by is recovered using the DA method.

4.3 Implementation Details

The code was developed in Python 3.12, and it is publicly accessible via the GitHub
repository https://github.com/Daples/master-thesis.

One of the main advantages of the current implementation is its versatility in
supporting multiple filtering algorithms. Currently, it includes the KF, the EnKF
(with optional covariance localization), and the ColKF with an underlying EnKF
for the augmented system, and with a flag for feedback or no feedback. Thus, the
implementation can be customized to specific application needs, and the architecture
allows for more convenient implementation of other filtering techniques.

The implementation is designed to work smoothly with any nonlinear ODE model,
provided the observation model is linear (see Section 3.2.2). Moreover, the architec-
ture enables any solver for the forward model to be connected without significant
reconfiguration. Another advantage is the flexibility to modify this model in various
ways, such as allowing inputs u and adjusting continuous offsets s¢, discrete offsets

5%, and observation offsets s°. More explicitly, the code extends any system like

(4.1) to the modified form

x(t) = f(t,x(t),u(t); 8) + s°(t), (4.3a)
Xk+1 = Mk(Xk, Ug; 0) + Sd(k) + Wi, (43]1))
yvi = Hy (x + s°(k)) + vi, (4.3¢)

where s¢: R, — R™ represent a continuous offset to the state-space formulation of
the system, s? : Z, — R™ is an offset after the integrator performs discretization
in time, and s° : Z, — R™ is an offset that is applied to the state before being

observed. In our case, for bias-aware filters, these offsets represent different forms
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of bias, and, in particular, s¢ and s¢ correspond to feedback forms of bias, and s° to
a no-feedback form.

Note also that system (4.3) includes the ODE and the discretization of the dy-
namics of the state vector x, i.e. My(+) is (4.1) after performing time discretization,
following the concepts presented in Section 4.1.1. Both equations are shown only
for explanatory purposes. In this manner, the model can be easily modified to
meet our needs. For instance, the formulation of the ColKF presented in (3.24) can
be easily achieved by adding the dynamics for the bias by, and setting s°(¢) = 0,
sl(k) = —FHPby, and s°(k) = (F — I, )HPb,. Whereas, if the bias is desired to
affect the ODE directly, then s¢(t) = —FHPb, and s%(k) = 0 instead.

In addition, the code supports estimating any number of parameters specified in
the model. The model can be built explicitly with parameter instances, each with
a flag that tells the framework to estimate it or not. The state is automatically
augmented accordingly. Furthermore, the implementation offers different ways to
manage uncertainty within the model, parameters, and bias. In particular, for
every dynamical model, the user can specify whether stochastic updates should be
performed and with which frequency. This can be done at either the integration step,
the assimilation step, or none. Finally, the framework also includes functionality for
standardized results gathering and plot generation for single or multiple filtering

runs.
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Results

This chapter presents the general results of this project. All numerical integration
was performed using a RK4 method. In addition, the RNG is seeded, meaning that
all experiments are reproducible under the same conditions. Finally, unless otherwise
specified, we assume that the EnKF by default performs stochastic updates to the

state only at each assimilation step.

5.1 Twin Experiments

The procedure to follow to perform a twin experiment was explained in a general
setting in Section 4.2. This section presents the results for the twin experiments
run on the LHO and Lorenz-96 models. These experiments were conducted for two
main reasons: first, they help validate the implementation developed, and second,

they also serve as a reference for later experiments.

5.1.1 Linear Harmonic Oscillator

We first tested the EnKF for the LHO model by running a twin experiment. To
this end, we used the experimental parameters presented in Table 5.1, where 6,
and 0, are as specified in (3.33), T is the final simulation time, K is the final
assimilation time, At is the integration time step, and Ak is the assimilation time
step. Moreover, note that x refers to the initial state used by the “true” run, while
W, is the expected value of that initial state, used to initialize the EnKF. Moreover,
note that this application of the EnKF does not require covariance localization.
The reason for this is two-fold: first, as the state vector is only comprised of two
variables, these are expected to be correlated (also given the explicit formulation of
the LHO). Second, covariance localization is applied only when the state variables
have a spatial connotation, which this model does not have.

For illustration purposes, assume that the model is described in the international

system of units (time in seconds). This setup means that this experiment runs on
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the time interval from 0 to 20 seconds, integrating the model every 0.01 seconds and
performing assimilation every 1 second until 15 seconds. In the last 5 seconds, the
model is run without Kalman update. Finally, note we assume that all states are

observable y. = xp.

Table 5.1: Parameters for EnKF twin experiment with LHO model.

Nx 91 92 Hk Ho = Xo PD ka Rk T K At Ak N
2 -2 05 I, [ 657 05I, 0.1I, 03I, 20 15 001 1 40

We then perturb the mean of the initial state p, by adding —2 - 1, and apply
the EnKF. Fig. 5.1 shows the assimilation results for xy in the twin experiment.
In particular, Fig. 5.1a presents the estimated state, ground truth, and synthetic
observations (an additional run without DA was also added for reference). In ad-
dition, Fig. 5.1b shows the innovations at each analysis step (stems), the baseline
(horizontal continuous line) corresponds to the average across all innovations in the
interval [0, K|, and the dashed line corresponds to a moving average with the spec-
ified window. Note that both figures include a vertical dashed pink line indicating
the end of the assimilation window, i.e., only the forward model is run afterward.
This is done to showcase the model’s prediction capabilities without assimilation.

The same scheme is used for the remaining results.

Truth x Observations —— Assimilation —— No assimilation

0.0 25 5.0 75 10.0 12.5 15.0 17.5 20.0

(a) State estimation (blue), synthetic observations (black), and ground truth (dashed).

Averaged w=6 Innovations

25 50 75 10.0 12.5 15.0 17.5 20.0

(b) Innovation process.

Figure 5.1: Twin experiment results with EnKF for xg in the LHO model.
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Now, suppose we introduce a simple bias [1 1]7 into the forward model dynamics

0 1 1
(—2 —0.5) xo)+ (1) ’
x(t),

and use the same synthetic observations from the last twin experiment to correct the

as

(1)
y(?)

misspecified model. In that case, the EnKF struggles to estimate the states between
assimilation steps, as presented in Fig. 5.2a, again, for the state xy. Note how this
perturbation in the dynamics makes the state consistently higher than the ground
truth (and even the original run) and how the Kalman update always performs a
correction in the same direction. In addition, from 5.2b, it can be observed that the
average innovations for the biased run are not particularly close to its anticipated
value of zero. In this case, we explicitly added model bias to the LHO; however,
both of these outcomes are known to be strong evidence of model bias in a general
DA experiment [4, 101].

Truth —— Unbiased model —— Biased model x Observations —— No DA
4<
2<
g
0<
_2~
0.0 2.5 5.0 75 10.0 12,5 15.0 175 20.0
¢
(a) State estimation.
_t Unbiased model _t  Biased model
3 T !
= 1
> { t !
5 l
<
72~ |
2.5 5.0 7.5 10.0 12.5 15.0 175 20.0

t

(b) Innovation process.

Figure 5.2: EnKF results for xy, with bias (purple) against the original model
(blue) in the LHO model.

Furthermore, a simple parameter estimation experiment was performed for the
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linear model. The same setup presented in Table 5.1 is used for this experiment, and
the same set of observations is assimilated. However, the parameters are initialized
as 01 = —3 and A, = 0.5, and included in the augmented state vector following
the methodology presented in Section 3.2.4, with constant forecast error standard
deviation of 0% = %2 = 0.7.

The state estimation results of this experiment are presented in Fig. 5.3. Note
how the ensemble quickly spreads out with respect to the true model, given that each
ensemble is initialized with a different set of parameters, but as new observations
are assimilated, the deviation of the ensemble from the expected behavior decreases,
showing that the DA cycle is successfully correcting the model parameters on each
ensemble. This can be better visualized in Fig. 5.4, where the estimated parameters
through time are presented. This figure shows that both parameters reach a close

estimated value to the truth (given in the dotted horizontal lines).

Truth = Observations —— Assimilation

0.0 25 50 75 10.0 12.5 15.0 175 20.0
t

(a) State estimation.

Averaged w=06 ! Innovations
1
OA ................................................................................................................................................................................................................................
25 5.0 75 10.0 12.5 15.0 17.5 20.0

(b) Innovation processes.

Figure 5.3: Estimation filtering results for x( in parameter estimation experiment
for the LHO model.

5.1.2 Lorenz-96

Similarly, a twin experiment was also constructed for the Lorenz-96 model. Table 5.2

presents the parameters used for this experiment. These parameters are motivated
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— 6 — b

Figure 5.4: Estimated parameters through time for the LHO model. The dotted
line represents the true value.

Table 5.2: Parameters for EnKF twin experiment with Lorenz-96 model.

Ny F Hk Mo = Xo PO Qk Rk T K At Ak N
20 8 I, G(0,1,) 05I, 05I, 03I, 20 15 0.05 1 40

by the ones used by Baek et al. [99] for their model setup and experiments. Note
that these parameters cause the system to exhibit chaotic behavior [13], specifically
given the value of F'. Moreover, the expression for p, means that the expected value
of the initial state was just drawn from a standard Gaussian distribution. Finally,
this initial experiment does not use covariance localization since the validation of the
EnKF’s performance is the main goal of this experiment. The impact of covariance
localization will be addressed jointly with the estimation of parameters later in this
section.

The assimilation results for xy are presented in Fig. 5.5, where the state esti-
mation results and innovation process are presented. In general, good results are
obtained. However, it can also be observed that the state forecast between analysis
times does not always match the truth. The reason for this is twofold: first, chaotic
systems are known to be highly sensitive to initial conditions [151, 142, 13|, and
since the analysis is not always a perfect match of the truth state, the dynamics
cause the system to deviate quickly. Second, the assimilation time step Ak seems
too high for the current experimental setup. In addition, the model’s predictive
capability, in this case, is none. When the assimilation ends at ¢ = 15, all ensemble
members succumb to the chaotic behavior of the system, deviating significantly from
the truth. This is also the reason why the innovation process increases heavily in

scale in the prediction stage.

Furthermore, we also add a bias to the dynamics of the Lorenz-96 of the prediction

47



5. Results

Truth * Observations —— Assimilation

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

(a) State estimation (blue), synthetic observations (black), and ground truth (dashed).

Averaged w=3 _t  Innovations

25 5.0 75 10.0 125 15.0 17.5 20.0
t

(b) Innovation process.

Figure 5.5: EnKF results for x4 on the Lorenz-96 model.

model, following the pattern also from the LHO experiments. Nevertheless, the
bias added in this case is somewhat different. We follow the perturbation model
showcased by Baek et al. [99], where the bias varies in space but stays constant over

time. Formally, each state follows the perturbed equation

ij(t) = 2j-1(t) (241 (t) — 2j-2(t)) — (1) + F + B;,

_F . (2n(j—-1)
B = - sin (N) .

where

This form of bias has the shape presented in Fig. 5.6. This means that states
corresponding to j = 5 and j = 15 are the ones affected the most by the bias. The
results of this experiment are presented in Fig. 5.7. It can be observed that even
though the bias does not directly affect x, the biased model shows different results
inside the assimilation window. In this case, it is not as straightforward as in the
LHO model, but there are still significant corrections that Kalman update needs to

account for (see, e.g., around ¢t = 5 and t = 12).
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0 5 10 15
J

Figure 5.6: Spatial variation of the bias ;.
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(b) Innovation process.

Figure 5.7: EnKF results for xy, with bias (purple) against the original model
(blue) in the Lorenz-96 model.

In the case of the Lorenz-96 model, we also performed a simple parameter estima-
tion experiment to estimate the forcing F'. Moreover, this experiment was carried
out with and without localization to illustrate its impact on the assimilation with
the Lorenz-96 model. We now present these results.

For this experiment, we initialized the parameter at F, = 4 with a constant
standard deviation of = 0.5, which represents the parameter uncertainty. The

ensemble size was purposely reduced to N = 30 to enhance the effects caused by
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small ensemble sizes and showcase the relevance of covariance localization. We set

the localization radius » = 3. The results are presented in Figs. 5.8 and 5.9.

----- Truth —— EnKF with localization —— EnKF x Observations
101
5<
g
O<
_5~
0.0 2.5 5.0 75 10.0 12,5 15.0 175 20.0
t
(a) State estimation.
_t  EnKF with localization _t  EnKF
2 54
S : :
IS . ! 3 t ! s
>
I | 1
<
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25 5.0 75 10.0 12.5 15.0 17.5 20.0
t

(b) Innovation processes.

Figure 5.8: EnKF results for xy with (blue) and without covariance localization
(purple) for Lorenz-96 model.

—— - EoKF with localization —— F - EnKF BN EnKF with localization ~ WEEE EnKF
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06 —04 —02 00 02 04 06
t Average innovations per state
(a) Estimated parameters. (b) Average innovations for all states.

Figure 5.9: Results for Lorenz-96 experiments with parameter estimation, with
and without localization.

The filtering and parameter estimation results are significantly better when using

localization. Note that the state estimates in Fig. 5.8a using the EnKF without
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localization (purple line) cannot replicate the same nature as the truth trajectory
(gray dashed line). This is closely linked to the forcing F' estimation presented in
Fig. 5.9a since it is clear that the estimated forcing without localization cannot reach
the reference value. Therefore, the prediction model being used in the assimilation
is inherently different from the one used to generate the synthetic observations.
Finally, for this example, an illustration of the covariance localization at the first
assimilation step is presented in Fig. 5.10. The first panel (a) shows the covariance
of the forecast states before localization and the resulting one after on the second
panel (b). The associated mask, generated with Gaussian decay (see Section 3.2.3),
is presented in the bottom panel (c). As expected, only the local covariance is

preserved after applying the localization mask.
0

5

10

15

0 5 10 15

Figure 5.10: Covariance of the forecast states, before (a) and after (b) localization,
using the mask presented in (c).

In summary, this last experiment showcased the importance of covariance lo-
calization when performing DA and parameter estimation using the EnKF. From
this point, all DA experiments using the Lorenz-96 are performed using covariance

localization.

5.2 Bias Estimation using ColKF

This section presents the results of applying the ColKF to estimate constant dis-

crete bias while showcasing the different approaches to update the model and bias
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stochastically. In particular, we run two different experiments for each model:

o In the first one, the stochastic update of the forward model and bias (AR
model) happens at every analysis step (every Ak). We refer to this experiment
as Analysis-Analysis update.

o In the second one, both the forward model and the AR process are stochasti-
cally updated at every integration step (every At). We refer to this experiment
as Integration-Integration update.

The two remaining experiment combinations, namely Integration-Analysis update
and Analysis-Integration update, were moved to Appendix A.

All experiments in this section follow the twin experiment for bias estimation
methodology described in Section 4.2. Moreover, we made all the biases “reachable”
in these experiments. In other words, if the model used to generate the synthetic
observations was perturbed using discrete bias, then the AR process in the ColKF
is also set to estimate discrete bias, as s?(k) in (4.3b). This allows us to establish
a reference value for the estimated bias state. Furthermore, a feedback formulation,
that is F =1, , was used for all the experiments in this section. Finally, we assume
in both models that the bias is given by by = b -1, , Vk € Z,, namely, it is
constant over time and space, and with magnitude b™"¢. Note also that this implies

that ny = ny, and HP =1, _.

5.2.1 Linear Harmonic Oscillator

For both the Analysis-Analysis update and Integration-Integration update experi-
ments with the LHO, we used the parameters presented in Table 5.3.

Table 5.3: Parameters for ColKF bias estimation twin experiments with the LHO.

ne 0, 6, H, pmy=xo P, Q. R, 7T K At Ak N A, b™ E[by) V]b] Qp
2 2 05 I, [k 057 01, 01I, 005, 15 15 001 1 40 I, -0.1 0 001, 10°°I,

The results for the Analysis-Analysis update experiment are presented in Fig.
5.11. From the state estimation plot, it is clear that the EnKF cannot properly
estimate the observations from the biased model using only the unbiased forecast
model, while the ColKF can properly account for the bias after two analysis steps. In
addition, it is clear that the ensemble spread is quite low in the EnKF run, whereas
the ColKF run shows a large spread before the bias is properly learned. This is
expected since every bias component is initialized randomly for all the ensemble
members, and thus, the trajectories start with different forcings; also, since the

stochastic updates only happen during the analysis, the uncertainty does not grow
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significantly in between assimilation times. Moreover, from Fig. 5.11c, it is clear

that the ensemble of bias for xy quickly converges to the truth value.

Truth —— ColKF —— EnKF x Observations
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(a) State estimation.
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(b) Innovation processes.
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(c) Estimated AR process (proxy for bias),
corresponding to xg.

Figure 5.11: Results for zq with the EnKF (purple) and with the ColKF (blue) for
the LHO model with added constant bias in Analysis-Analysis update experiment.

Furthermore, for the Integration-Integration update experiment, results are pre-
sented in Fig. 5.12. In this case, the uncertainty clearly grows in between analysis
steps, as both the model and AR process are being stochastically updated. Moreover,
the EnKF performs arguably better in this experiment than the Analysis-Analysis
update. A quick glimpse of Fig. 5.12b and comparing it to 5.11b shows that the

average of the innovations is lower. However, the state estimation shows that this
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improvement is only in the analysis since the same “saw tooth” kind of behavior is
still present. In the case of the ColKF, the filter shows good state estimation results
and proper estimation of bias (see Fig. 5.12c). It is clear that the AR process, in
this case, cannot converge exactly to the desired value since the stochastic updates

happen too often, but it stays around the true value.

,,,,, Truth —— ColKF —— EnKF x Observations
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(c) Estimated AR process (proxy for bias),
corresponding to zg.

Figure 5.12: Results for zy with the EnKF (purple) and with the ColKF (blue)
for the LHO with added constant bias in Integration-Integration update experiment.
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5.2.2 Lorenz-96

For both the Analysis-Analysis update and Integration-Integration update experi-
ments with the Lorenz-96, we used the parameters presented in Table 5.4. Moreover,
both the EnKF and ColKF used covariance localization with a localization radius

of r = 3, the same as presented in Section 5.1.2.

Table 5.4: Parameters for ColKF bias estimation twin experiment with the Lorenz-
96 model.

nx F H, py=x, P, Q: R. T K At Ak N A, b™ E[b) V[b] QF
20 8 I, G(0,1,) 01I, 005, 03L, 15 15 005 05 8 I, -02 0 001, 10°L,

The results for the Analysis-Analysis update experiment are presented in Fig.
5.13. Similar to the LHO experiments, the EnKF underperforms in the presence of
model bias. This is better summarized in Fig. 5.13d, where the frequency histogram
of average innovations for the EnKF (purple) does not include values as close to
zero as the results obtained with the ColKF (blue). It is clear how well the ColKF
performs in this case. Moreover, in contrast to the LHO Analysis-Analysis update
experiment, the ensemble spread is higher in the Lorenz-96 experiment. This is due
to the high nonlinearity inherent in the system. Finally, note that the estimated bias
for zy does not exactly converge to the true value, even when stochastic updates
are happening only at the analysis times. In this case, given the high dimension
of the state (in comparison to the LHO), and given that the dynamics of a state
depend nonlinearly on the nearby states, it is possible that the effects are collectively
mitigated through corrections on the nearby states and thus, the bias is not precisely
estimated. Nevertheless, these results show that the ColKF can correctly account
for bias in this experiment. Moreover, the Integration-Integration update experiment
results are showcased in Fig. 5.14. Again, a quick look into the frequency histogram
of average innovations (in Fig. 5.14d) shows that the performance of the EnKF
actually improves when the stochastic updates happened at every integration step
when comparing with its counterpart in Fig. 5.13d. Furthermore, the estimated bias
is not as stable around the true value in comparison with the equivalent experiment
in the LHO.
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Figure 5.13: Results with the EnKF (purple) and with the ColKF (blue) for the
Lorenz-96 model with added constant bias in Analysis-Analysis update experiment.
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5.3 Joint Parameter and Bias Estimation

This section presents the central results of this work. We start by showing the
straightforward case of the model parameter not being distinguishable from bias in
a continuous feedback formulation in the Lorenz-96 model. We begin by presenting
the perturbed model used to generate the synthetic observations. The ODE of the
j-th state, 7 =1,...,ny is given by

() = zj-1(t) (2j41(t) — 2j-2(t)) — 2;(t) + F + b, (5.1)

where b € R is the added bias. It is clear from this formulation that any attempt
to estimate the bias b and the forcing F' will lead to a trade-off between the two
quantities. This is tested using a bias estimation twin experiment (see Section 4.2),
with model setup parameters shown in Tables 5.5, and the bias and forcing setup
shown in Table 5.6.

Table 5.5: Model setup for parameter and bias estimation experiment on the
Lorenz-96 model using a feedback ColKF.

Nx Hk Mo = Xo PO Qk Rk T K At Ak N
20 I, G(0,L,) 0.1L, 0.05I, 0.5, 50 50 0.01 0.5 1000

Table 5.6: Bias and parameters setup for combined estimation on the Lorenz-96
model using a feedback ColKF.

A, Ftee ptre RIR] VIR E[b] V] Q7
L 7 1 9 4 2 4 0

Additionally, to make this effect more evident, we assume that the ColKF only
adds one additional state to estimate the bias. This means that all equations are
modified using the same AR process state estimate, and therefore, n, = 1 with
HP =1,

The state estimation results were omitted since this experiment focuses only
on combined parameter and bias estimation. The performance of the ColKF was
already showcased in Section 5.2.2. The results of this experiment are summarized in
Fig. 5.15. In particular, Figs. 5.15a and 5.15b exhibit the evolution of the estimated
bias b and forcing F' through the assimilation period, and Fig. 5.15¢ shows their sum.
Just as expected, their sum is properly estimated as it converges to the anticipated
value of 8, and it can also be observed that the uncertainty of this sum decreases

significantly once the expected value is achieved (note that the standard deviation
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bands collapse around the estimated values after 10 steps). However, the individual
bias and forcing estimation show that these quantities do not particularly converge
to the true values. The uncertainty bands are still quite large compared to those of
the sum, showing that, in this case, the ColKF is not estimating bias b and forcing
F, but rather just their sum F' + b combined.

The final panel, namely Fig. 5.15d, is a better visualization of how the sum is
estimated rather than each quantity separately. The figure shows the initial bias
and forcings that were used for each ensemble member (priors, in gray dots) and the
evolution of these over time (path showed in thin gray lines). The final estimates
of these quantities (posteriors) are shown in the purple dots, and note how they all
lie in the “optimal” line F' 4+ b = 8. The truth value F' =7 and b = 1 is plotted in
orange for reference. In summary, this plot shows that the ColKF with feedback can
only estimate the sum of both quantities and generates the presence of Pareto-like
frontiers in the bias-parameter phase portrait.

Finally, we performed one last experiment, in this case with a no feedback version
of the ColKF. Note that in this case, we also followed the same methodology for bias
estimation twin experiment described in Section 4.2, but in this case F = 0 for a
no feedback filter. The experiment uses the same model setup parameters presented
in Table 5.6, but the bias and forcing setup is presented in Table 5.7. In addition,
we use the bias-corrected forecast states from the ensemble to compute the forecast
covariance matrix Pﬁ. This last remark is in line with the comment made in Section
4.1.2, regarding which state ensemble should be used to estimate P’,; (and ultimately

the Kalman gain) from the ensemble.

Table 5.7: Bias and parameters setup for combined estimation on the Lorenz-96
model using a feedback ColKF.

Ak Ftrue btrue E [FO] VvV [FO] E [bo] \% [bO] Q}v)
1 8 1 10 4 2 4 0

The obtained results are summarized in Fig. 5.16. In this case, the estimation of
F + b is no longer relevant, and this plot was omitted. Note how both the bias and
the forcing are estimated correctly (Figs. 5.16a and 5.16b) and with high confidence
(as the one standard deviation band is not visible). Moreover, from Fig. 5.16¢, it
can be observed that no Pareto-like front is obtained, and all the posterior estimates
(purple dots) in the ensemble concentrate around the true value F' = 8 and b = 1
(orange dot). This effectively implies that no feedback formulation of the ColKF
can correctly estimate both the model parameter F' and the bias b that was added

to the synthetic observations.
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Figure 5.15: Joint forcing F' and bias b estimation results for Lorenz-96 using a
feedback ColKF approach.
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Figure 5.16: Joint forcing F' and bias b estimation results for Lorenz-96 using a
no feedback ColKF approach.
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Discussion and Conclusion

In summary, this work implemented and applied a sequential bias-aware method,
the ColKF, along with the EnKF, to several synthetic test scenarios in Python. In
particular, twin experiments were conducted for the LHO and the Lorenz-96 model.
These experiments included state estimation, state and parameter estimation, state
and bias estimation, and all of these combined. The latter test addressed the ob-
jectives of this work in more detail, where the effect of combined parameters and
bias estimation could (or not) be distinguished depending on the type of bias filter
used (feedback or no feedback). Moreover, having worked on the implementation of
the DA framework from scratch, several alternatives and challenges were identified

during this process and included in this work (see Section 4.1.2).

From a practical point of view, the implementation developed offers a robust
and flexible approach to state estimation for nonlinear dynamic systems. Its sup-
port for multiple filters, adaptability to various nonlinear ODE models, capability
to explicitly modify forward models, parameter estimation, handling of temporal
correlations, management of uncertainty, and unified result generation collectively

contribute to its versatility in practical DA applications (see Section 4.3).

However, multiple challenges were encountered when working on this framework.
Of course, the question about what needs to be considered for a general implemen-
tation remains open. New challenges will always arise when working with other
DA techniques, new data types, new models, new computational requirements, and
beyond. However, in Section 4.1.2, we presented some of the technical aspects that
should be considered when implementing a general library for (bias-aware) DA. A
detailed discussion on how to address these issues in a programming language is
outside the scope of this work, and the solution to these problems often leads to
increasing the complexity of the code base. However, I hope this can kick-start
a new open-source DA framework in Python that can be used for future research
endeavors or possibly incorporate these ideas into existing libraries. There are not
a lot of libraries in Python for DA, and to the best of our knowledge, none allow for

bias estimation explicitly, making this a step towards a first implementation or the
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inclusion within existing DA packages.

The framework was validated first through the use of twin experiments involving
the EnKF for a LHO and the Lorenz-96 models. This process involved standard state
estimation tests using synthetic observations, assimilation of these same observations
but using a perturbed (biased) forecast model, and finally, using these observations
to perform parameter estimation. In particular, for the Lorenz-96 model, the pa-
rameter estimation experiment also included a comparison between performing this
experiment without and with covariance localization. This technique is found to be

essential when performing DA experiments for the Lorenz-96 model.

This project successfully constructs an experimental setup for performing joint
state, parameter, and bias estimation in one go. From a practical standpoint, it is
hard to distinguish between model errors and misspecified (uncertain) parameters in
the model, and we showed how they cannot always be confidently estimated together.
In particular, for the Lorenz-96 model, we showed how the forcing parameter F
cannot be distinguished from the bias in a feedback filter formulation, where the bias
affects the ODE system explicitly. Whereas, in the case of a filter that does not use
feedback, the parameter and the bias can be estimated independently. In addition,
the emergence of “optimal curves” (Pareto-like frontiers) in the posterior phase
portrait between parameters and bias (for all ensemble members) is evidence of these
quantities being indistinguishable. Although this situation was tested assuming a
constant and observable model bias, this outcome is an indication of the applicability

of the methodology to a wider set of problems.

Moreover, this Pareto front that appeared in the feedback ColKF is clearly iden-
tifiable mainly since we assume that the bias state is the same for all states of the
Lorenz-96, following the same behavior as the forcing F'. However, in the case of
a larger bias state, these curves may not be as easy to notice. One possible path
forward is to repeat this same setup with a larger number of bias states. This would
allow for a more compelling conclusion regarding more general bias-aware filters and

possibly larger models.

In summary, this thesis showcased how both parameters and bias can be incorpo-
rated into a filter to be estimated using DA. Both practices share a lot of similarities
in their formulation, and they even show similar effects on the resulting estimates.
Still, they cannot always be properly addressed simultaneously, as we presented in
the case of a feedback filter in the Lorenz-96 model. However, they were found to
be distinguishable in the case of a non-feedback filter. This shows that how the bias
estimate is fed back into the DA loop significantly impacts the results. This is a key

finding since the literature often resorts to feedback formulations when accounting
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for bias, and it has been shown that this can lead to combinations of parameters
and bias that can fit the biased observations. Yet, they do not correspond to the
actual values that were expected.

An additional remark needs to be made about how the Kalman gain in a non-
feedback version of a filter can be calculated in two different ways while still satisfying
the “requirements’ for it to be a non-feedback filter. In particular, the covariance
matrix can be estimated using the bias-corrected ensemble of forecast states. This
approach is still a no-feedback version, as the biased state would still be used for the
forward model. Along this same line, the feedback version of the filter also leaves
room for modifications/different approaches. As described in Section 4.1.2; the bias
that gets fed back into the state can be applied before or after time discretization.
Namely, the bias can directly affect the continuous dynamics or be added after every
integrator step is performed. On top of other factors like frequency for stochastic
updates, length of the bias state, parameterization of the bias model, initialization,
and uncertainty of bias, these variations contribute to the already myriad of possible
strategies in bias-aware filtering, like the ones discussed by De Lannoy et al. [122].
In this sense, the bias-aware technique is highly dependent on the model’s quality
and the estimates’ use.

Furthermore, the observations are taken to be “far” apart in time for the experi-
ments in this work, primarily to showcase the effect of bias and parameter estimation
and to mimic a configuration in an operational setting. However, it is known that
if observations are taken with higher frequency, the impact of having a biased pre-
diction model is mitigated on the resulting analysis [4]. This could be a path that
future research can investigate: how sensitive the results presented here are to the
frequency of observations assimilated.

Looking ahead, there are several more directions for future research. One po-
tential avenue is to explore the methodology developed in this thesis in practical,
real-world settings, which would help validate the results and conclusions of this
work for other applications in DA. Additionally, it would be beneficial to replicate
the results for more complex structures of bias, such as time-varying and state-
dependent biases, and to explore model errors that include missing components of
the model, e.g., missing states or connectedness of cells in the Lorenz-96 model.
Furthermore, investigating the efficacy of the SepKF and other bias-aware methods
could offer valuable insights into performing joint parameters and bias estimation

in a non-feedback formulation.
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Figure A.1: Results with the EnKF (purple) and with the ColKF (blue) for the
Lorenz-96 model with added constant bias in Integration-Analysis update experi-
ment.
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Figure A.2: Results with the EnKF (purple) and with the ColKF (blue) for the
Lorenz-96 model with added constant bias in Analysis-Integration update experi-
ment.
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