
Topology optimization 
as architectural form 

finding

  Rick van Dijk     4373618
  Master ’s thesis 02/06/20



Topology optimization as architectural form finding

Master’s thesis by Rick van Dijk | 4373618 
02/07/2020

Master thesis comittee:

dr. ir. Pirouz Nourian   Architectural Engineering + Technology, Design Informatics

dr. ir. Matthijs Langelaar Precision and Microsystems Engineering (3mE)

 

Delft University of Technology

Faculty of Architecture and the Built Environment



Working with new materials requires new methods on how geometry 
can be shaped. This research is a step towards the holy grail for 
computational designers; an algorithm that fully designs a building. 
From shape to bricklaying patterns. The chair of design informatics 
gave me the chance to contribute to this holy grail by researching the 
subject of Topology Optimization.

This mathematical process is mostly used in mechanical engineering 
and aerospace engineering. The hypothesis of this research is that 
architecture could benefit from this process as well, mostly because it 
can also be used in the 3D space. Giving the computer a few inputs and 
retrieving a shape that is structurally strong and satisfy the constraints 
of the design. That is the goal of this research. 

I hope this research shows the possibilities of Topology Optimization 
in architecture and explains to readers how the process takes shape. 
Opening the ‘black box’ and looking what happends in each step. I 
think understanding how a calculation is performed, is essential in 
using it properly and up until its full potential.

I want to thank Pirouz Nourian for his enthousiasm in the subject, in 
the trust that he put in me and his clear remarks on my work. I want to 
thank Matthijs Langelaar for taking the time to explain most subjects 
where he has a profound knowledge. I learnt a huge amount and still 
am deeply interested in the subject. If possible I would love to spend a 
few extra years on the topic.

I hope this research finds you interested,

Rick van Dijk



Index

Foreword
Acknowledgements

1 Research framework
>>>1.1 Background and motivation    6
>>>1.2 Problem statement     7
>>>1.3 Research objective     8 
>>>1.4 Research questions     9
>>>1.5 Research scope and limits    10
>>>1.6 Methodology      11
>>>1.7 Proposed design methodology   12
>>>1.8 Planning and organisation    13

2 Literature results
>>>2.1 Introduction      14
>>>2.2 What is topology optimization   14
>>>2.3 Topology optimization (Nomenclature)   15
 >>>2.3.0 Reading guidelines   16
 >>>2.3.1 The procedure of TopOp   17
 >>>2.3.2 Finite element Anaysis   18
 >>>2.3.3 Sensitivity analysis    22
 >>>2.3.4 Optimality criteria    23
 >>>2.3.5 Updating design variables  23
>>>2.4 Topology optimization in architecture  24
>>>2.5 Density dependent forces in TopOp  25

3 Algorithm design
>>>3.1 Introduction      28
>>>3.2 Algorithms in the literature
 >>>3.2.1 A 99 line topology optimization code 28
 >>>3.2.2 Explanation of the code   29
 >>>3.2.3 3D Topology optimization   32
 >>>3.2.4 Creation of the Python code  35
>>>3.3 Methodology     35
>>>3.4 The toy problems  
 >>>3.4.1 Setting up an algorithm   36
 >>>3.4.2 Implementing density dependent forces 37
 >>>3.4.3 Translating in 3D    38



>>>3.5 Solving the toy problems
 >>>3.5.1 Toy problem 1: The cyclist tunnel   40
 >>>3.5.2 Toy problem 2: The building   44
 >>>3.5.3 Toy problem 3: A small earthy house  48
 >>>3.5.4 Toy problem 4: The igloo    52
 >>>3.5.5 Toy problem 5: The busstation   57
 >>>3.5.6 Toy problem 6: A small house   60
>>>3.6 Architectural implementations    62
>>>3.7 Code optimization      68
>>>3.8 Plugin development      71

4 Conclusions
>>>4.1 General conclusions      74
>>>4.2 Applicability       72

References        78

Appendix A: 2D topology optimization
Appendix B: 3D topology optimization



6

01Introduction

This first chapter will describe the research framework that was 
created to guide the research. It provides an overview of the whole 
research by introducing the problem, the objective and the research 
questions to answer. It will cover the boundaries of this research, the 
chosen scope and the motivations behind most of the choices. Lastly 
it will cover the methodology of the research and the planning that 
comes along with the chosen methodology.

>>>1.1 Background and motivation
Building more sustainable is the primary challenge within Building 
Technology and has many different ways of pursuing the goal of more 
sustainable buildings. When looking into these different approaches 
most vary a lot, from the design of a building to very complicated 
details. One thing these approaches have in common, is the way that 
the building is considered. To build sustainable, one has to consider the 
full life of a building, from the cost of materials and the function of the 
building to the waste and/or possibilities to re-use the building (John 
et al., 2005).

 On a material level, one sustainable approach is that of building 
with clay as a material. With new techniques, complex shapes can be 
generated to work very efficient with this form of masonry. As clay 
can be reduced to earth and water, the material cost and waste is 
very low, while the material can last for a long time (Wienerberger, 
2020). Considering masonry, the techniques used to create the shapes 
are essential for masonry to work as efficient as it does. Therefore, 
sustainable building is not only a new way of designing, but more a 
integration of architecture and different engineering approaches, such 
as electrical, mechanical and structural engineering (John et al., 2005).
 When focusing on these techniques, topology optimization is 
a technique commonly used in mechanical and structural engineering 
to create complex geometry. The goal in this process is to generate a 
high stiffness, while pursuing the lowest amount of volume. While this 
sounds promising, the technique is very little used in architecture, while 
this might be a very efficient way to develop designs.

 

Figure 1: Earth as material

Figure 2: Example of topology 
optimization in a hinge



7

>>>1.2 Problem statement
The previous chapter already spoke of the possibility of integrating 
topology optimization in architecture, this chapter will further define 
the problem and the scope that this research will be in. As previously 
said, topology optimization is an efficient way to generate shapes that 
maximize the stiffness, while trying to reduce the volume. Currently 
there are very little implementations of topology optimization in 
architecture, while this is quite promising. Architecture follows most of 
the conceptual boundaries that topology needs, while it also needs a 
lot of adjusting.
 The main idea behind topology optimization is to calculate 
what voxels (or pixels) in an element are important for the stiffness and 
what voxels can be removed. Because there is no preconceived shape, 
topology optimization can create innovative and high-performance 
shapes (Liu & Tovar, 2014). Usually topology optimization is performed 
on small objects like beams, hinges or connection pieces. When looking 
at architecture, the result should be a big structure, which requires a 
different approach on how to apply topology optimization.
 When looking at a building, the forces working are given by the 
force that lies on a floor and the weight of the structure itself, self-weight. 
As Bruyneel and Duysinx wrote in their research, it is not easy to apply 
self-weight to topology optimization, because the density will influence 
multiple variables (Bruyneel & Duysinx, 2005).  Placing an element will 
increase the stiffness, but the self-weight can cause the structure to 
result in a lower stiffness. So, to apply topology optimization, self-weight 
has to be applied in order to give meaningful results. Other important 
additions that need to be made are found in a roofconstraint, area 
loads and snowloads.
 There are several topology optimization and FEM software 
programs available, but most are not open source or accessible for 
students. The result of this research should be accessable for everyone 
and usable in computational processes. It is preferred to only use 
open-source programs or languages, like Python. Another problem 
that arises often in topology optimization is the calculation time. As a 
lot of calculations have to performed per iteration, calculations usually 
are long. Focusing on calculation time will also enlarge the usability of 
the code.

 As the main audience for this research consists of students 
in the field of Architecture, the aim for this research is also to be as 
explicit as possible when explaining the maths behind the process. It 
can be assummed that most people reading this research, have little 
understanding of FEA and similar problems as this one. 

 In conclusion the problem is written as “Topology optimization 
is an often-used method to generate complex shapes with a maximized 
stiffness and little volume. Implementations in (masonry) architecture 
look promising, but require the implementation of force dependent 
loads”



8

Figure 3: QNCC, one of the few 
applications of TO in architecture

>>>1.3 Research objective
The main objective of this research is to implement self-weight in 
topology optimization, and apply this algorithm to buildings. When 
applying topology optimization to buildings, interesting insights might 
be given on how to build with sustainable materials. This is a step into 
applying topology optimization further in architecture, which might 
lead to material saving while having strong structural properties. As 
the focus is on masonry, it is assumed that when applying self-weight 
on the structure, the structure will be compression-only. Ideally, this 
should result in an algorithm, without the use of commercial software, 
that is easy accessible for architects and students. One big factor in this 
is the calculation time, which will decrease the possibilities a lot.

 To achieve this objective, first small sub-objectives are created 
that will lead into a successful result. To implement self-weight in the 
topology optimization process, first the methodology behind topology 
optimization has to be understood. Therefore the first sub-objective is 
to create a working topology optimization methodology and translate 
this in the form of an algorithm.

 When this is understood and working, the implementation 
of self-weight can be made. This requires a strong understanding 
of the mathematical methodology to be properly used. Secondly a 
roof constraint and snowloads are essential to solving the system 
without initial forces. Therefore the second objective is to implement 
architectural adjustments in the methodology and in the algorithm.

 Lastly, to retrieve any results that can be used in architecture, the 
translation to the 3D space has to be made. When the methodology 
is done precise, the translation can be easily made. It can be seen that 
a proper methodology in the first sub-objective is key to achieving 
the other sub-objectives. The final sub-objective of this research is to 
generalize the methodology and apply the algorithm to the 3D design 
spaces.
 The focus of this research is mainly towards applying topology 
optimization in architecture. Topology optimization comes in many 
different variants, it can work with forces and heat transfer, but also 
on hydraulic networks (Bathe, 2006). In this research, the focus will 
only be on structural topology optimization. Therefore, whenever 
in this research “topology optimization” or “TO” is mentioned, 
structural topology optimization is assumed. When applying topology 
optimization to architecture, many different approaches can be taken. 
This research will follow previously performed research by Ivan Avdic 
and courses at the TU Delft, which focusses on masonry buildings. As 
the scope will be limited to masonry buildings, topology optimization  
without adjustments will not suffice when applied. The self-weight of 
the structure and the fact that masonry must be compression-only 
can not be ignored and have to be implemented to give meaningful 
results.



9

 Some interesting approaches will not be looked at, while they 
offer interesting insights to topology optimization in architecture. For 
instance the use of multi-materials (Huang & Xie, 2009), the placement 
of components (Zhang et al., 2012) and the optimal layout for topology 
optimization will not be looked at. Also, this research will go in depth on 
the methodology behind topology optimization and will not focus on 
the implementation in the design methodology.

 This research will be performed mostly in Python, as this is easy 
to implement in different software packages, especially focusing on 
Grasshopper.  When looked at architecture, two case studies will be used 
from a graph-theory level and it is looked at what topology optimization 
could mean for the design of a building. Also, the several toy problems 
that are introduced are fictional, but the constraints are based on a real 
life situation. In these toy problems several simplifications are made, but 
these will be discussed later. Lastly, the algorithm is going to take a long 
time to calculate, so optimization of the algorithm should be looked at. 
However, having a proper result is more important than calculation time.

>>>1.4 Research questions
This research follows the very broad, almost philosophical, question: 
“How can topology optimization be implemented in architecture?”. As 
this research will not be able to answer this question, the focus has 
been placed on masonry buildings and the methodological challenges 
that follow. Therefore the main research question is:

 “How can we design structures for masonry buildings using topology 
optimization?”

From this main research questions several sub-questions arise:

“How does topology optimization work, both in mathematical methodology 
and in programming?”

“How can topology optimization be utilized in designing in masonry 
buildings?”

“How can topology optimization transform the design process of masonry 
buildings, particularly their configuring and shaping processes?”

 Many other questions can be asked towards the application of 
topology optimization in architecture, the question if it is even a viable 
approach arises for instance. These questions, and other questions will 
mainly be discussed in the reflection.



10

>>>1.5 Research scope and limits
This research combines three scientific disciplines in an interesting way. 
Architectural design, mechanical engineering and computer science 
are an excellent intersection for new and innovative research. Shown 
in the diagram of figure 4, the scope of this research is an integration 
between parametric design, numerical analysis and material behaviour. 
In this research, the focus will first be mainly about the combination 
of mechanical engineering and computer science, followed by the 
parametric translation. Lastly the focus will be put on the implementation 
in the field of architecture.

 As this research is based from the architectural field, the 
audience is assumed to be architecture focussed. Concepts from 
computer science and structural research will therefore be more 
broadly explained. In contradiction to many architectural research, this 
research will not contain a main design. The main objective is to create 
a methodology and algorithm for architectural purposes. Testing this 
computationally and the use of TOY problems will be the main method 
of pursuing this. 

 While this thesis relates to the following subjects in some ways, 
they fall out of the scope for this research:
- Derivation and modifications of the stiffness matrix
-  Verified calculations with SI-units
-  Layout optimization
- Architectural design methodology

Figure 4: Euler diagram of this research

Figure 5: Methodology of this research



11

>>>1.6 Methodology
This chapter will explain the proposed methodology in answering the 
main research question while firstly solving the sub-goals. It will also 
discuss main challenges and approaches on how to solve these. A visual 
representation of the proposed methodology can be seen in figure 5. 
 First it is important to note that this research is not an exact research 
and the deliverable will not contain any validated data. However, this 
research will focus on designing a methodology to implement topology 
optimization in architecture. As there is a distinctive objective in this 
research, the main process will cover the following steps, as described 
by (Peffers et al., 2007).

- Problem identification and motivation
- Objective of the solution
- Design and development
- Demonstration
- Evaluation
- Communication

This research will follow these steps, where previously already the 
problem identification and motivation are described. To achieve the 
solution, the objective has to be stated in combination with the proposed 
methodology. As communication is the scientific publication, the rest of 
the process can be summarized as (Peffers et al., 2007):

- Build 
- Evaluate
- Theorize
- Justify

In this research, the build-phase exists of two different steps, namely 
building the mathematical model, and the design of the algorithm. 
As these steps are quite different in approach, they will be handled 
separately. The next step contains the verification and validation of the 
design and providing feedback for the previous steps. This feedback 
should be implemented in the previous steps, up until a level where the 
design is properly validated and conclusions can be drawn. The process 
is also represented in figure 5. 



12

>>>1.7 Proposed design methodology
The proposed design methodology, as shown in figure 6, is divided in 
four phases. The first phase is the retrieval of the inputs, the topology 
optimization procedure, including FEA and MMA, the application of 
selfweight and snowloads and then the evaluation. Figure 6 is the basis 
of the algorithm that is going to be written in Python and is the main 
objective of this research.

 Initializing the inputs is the start to make proper calculations in 
the design space. Figure 6 shows these inputs. First, the design space 
is created as a large volume in which the algorithm has the freedom to 
place or remove mass. For numbering purposes, this is usually assumed 
to be a cube with integer sizes. Assuming a voxel size of 1 unit, the cube 
will be initialized with the amount of voxels that are in the cube. Each 
voxel is called an element with 8 nodes on itself and each node has 
three degrees of freedoms (or two in 2D problems). Keeping a proper 
administration of these node IDs and the DoF IDs is very important in 
the algorithm. The voids are the second input, which are pieces of the 
cube in no mass can be placed. Lastly, loads and supports are given 
as input and translated to the force vector [F] and displacement vector 
[U]. To make it easy for final users, making an inituitive environment is 
very important.

 Secondly the inputs are translated into the topology optimization 
procedure, proposed by Bensoe and Sigmund (1995). As this procedure 
is already known, the main challenge will be the translation to the 3D 
field. A broad understanding of this procedure will ensure that the 
translation in Python can be made. Topology optimization consists of 
five main steps; the Finite Element Analysis, calculating the sensitivities, 
applying mesh-independency filters, calculating the constraints and 
then the optimization, using the Method of Moving Asymptotes. These 
steps will be explained in chapter 2.3.

 Then, the self-weight gets implemented in the algorithm. 
Depending on an material property, the force vector [F] gets another 
value. This introduces many difficult problems over the procedure by 
Bendsoe and Sigmund. When the compliance is minimized, the final 
densities are given as an output.

 The last step is to verify these output densities, to see if they 
show similar results with other software. As this is purely to verify and 
evaluate the algorithm, the final product will not contain this step. Overall 
all the computational parts will be written in Python, using libraries 
like NumPy and SciPy. Verification will be performed by exporting the 
design space to ANSYS and comparing the results. When this works, 
the implementation to Grasshopper’s IronPython could be made using 
a proxy server (as Grasshopper does not support NumPy).

Figure 6: Design methodology of this 
research

Figure 7: Visualization of the inputs 
by Ivan Avdic



13

>>>1.8 Planning and organization
Figure 8 shows the proposed planning for this research, following the methodology as proposed in figure 
5. The first step in this methodology is to create a broad understanding about topology optimization, 
which was done in the first weeks. After the first objectives were states, research was done to how topology 
optimization works and how the algorithms work. Before P2, the research framework was written, and with 
feedback edited in the weeks following P2. 

 In the weeks after P2 the mathematical methodology was written, to ensure a broad understanding 
how topology optimization works in every step. Understanding how it works on this level will generate 
enough knowledge to easily implement this in an algorithm. Also, literature was needed to understand 
this, but more importantly to implement self-weight. 

 After week 15 it this methodology is finished and the focus can be placed on the computational 
methodology. Writing an topology optimization code that contains self-weight is the first objective. When 
this is working, the translation can be made towards 3D. Abaqus is an program that might make this step 
easier, but more important, save computational time. Lastly, any architectural lessons of the algorithm will 
be drawn, and the research questions answered. P4 phase focusses more on implementing the algorithm 
to toy problems and drawing conclusions therefrom. This building phase is the most important phase as 
the final product is developed.

 After the toy problems are properly designed, conclusions can be drawn from them and the total 
algorithm is written. When the algorithm, which is the final product, is completed, some test can be run 
with it in order to answer the research questions.

Figure 8: Planning of this research



14

02Topology optimization

>>>2.1 Introduction
As mentioned in chapter 1, the build phase exist of two different steps, 
the mathematical design and the algorithm design. This section of the 
report will follow the mathematical approach on topology optimization. 
This chapter will establish a foundation on which the later design is 
based, this foundation will be based on the literature and can also be 
seen as the literature study. It introduces the most common approach 
on solving topology optimization, discuss possible applications in 
architecture and solutions how to make these applications more useful. 
Creating a structured mathematical basis is key in writing a well working 
algorithm. 

>>>2.2 What is topology optimization?
As mentioned in chapter 1, the build phase exist of two different steps, 
the mathematical design and the algorithm design. This section of the 
report will follow the mathematical approach on topology optimization. 
This chapter will establish a foundation on which the later design is 
based, this foundation will be based on the literature and can also be 
seen as the literature study. It introduces the most common approach 
on solving topology optimization, discuss possible applications in 
architecture and solutions how to make these applications more useful. 
Creating a structured mathematical basis is key in writing a well working 
algorithm. 

To understand topology optimization, lets see the different versions 
op beam optimization. Figure 9 shows a beam that will be structurally 
optimized, using three different methods (Sigmund, 2001). 

Size optimization
Method A (fig 9) increases the size of some elements in this truss 
structure, following known properties and behavior of these types 
of beams. The final structure will always follow the prescribed (truss) 
structure. 

Shape optimization
Method B optimizes the shape that is given and is able to generate a 
new mesh that ensures a maximized stiffness, while still following the 
defined shape. 

Topology optimization
The last method is topology optimization, where the only inputs are 
the design space and the loads/supports. The method generates the 
most ideal shape that maximizes the stiffness in this beam. Note that 
the variable in this beam is the stiffness but many more variants of 
topology optimization exist. Heat transfer and fluid flow are often-used 
applications of topology optimization as well, although this research 
will only focus on structural topology optimization.

Figure 9: Structural optimization of 
a beam



15

>>>2.3 Nomenclature

-  Topology optimization
Very simplified, topology optimization is the reduction of voxels (or pixels) 
in a given design space, in order to maximize the stiffness. Figure 10 
shows this in a small beam, where the loads and supports are given 
and an optimized structure is generated. The figure contains the same 
amount of inputs and outputs as later used problems. Therefore the user 
inputs are:

- The design space
The design space is defined as an area that consists of voxels (or pixels) 
in which a freeform can be generated. The voxel-size will influence the 
preciseness of the final result largely.

- Loads 
The problem should always contain one or multiple loads, or the calculation 
does not make sense. There is no limit on the amount or direction of the 
loads. Usually in topology optimization SI-units are not used, as it is a 
model.

- Supports
Lastly the problem contains one or multiple loads. For supports it is 
important to note that the direction in which the support is attached, has 
to be configured. A roller support behaves differently than a fixed support. 

When these inputs are defined, the first step in topology optimization is 
completed, namely defining the problem. This chapter will further explain 
each step more thoroughly. To better understand these explanations, 
some terms are explained first.

- Compliance
For a single spring the compliance is the inverse of stiffness. For the system 
that is solved in topology optimization it can be described as the degree in 
which the structure strains due to the applied forces.

- Penalization power
A variable that will round values to their closest binary value. The higher 
the penalization power, the faster this happends. Page 19 will explain 
penalization a bit clearer.

- Degrees of Freedom (DoF)
The amount of directions that a node can move in. In 2D this is 2, 
horizontally and vertically and in 3D this value is 3 per node.

Figure 10: Basics of topology 
optimization

Figure 11: Visualization of the user 
inputs by Ivan Avdic



16

Listing 1: Pseudocode name

>>>2.3.0 Reading guidelines
To assist the reader in understanding this research this chapter 
will describe how this thesis should be read. As there are a lot of 
equations and pseudocodes, properly reading them will lead to a 
better understanding of these.
 
Equations are written in LaTeX which is the standard notation 
for mathemetical equations. Each equation has a number to be 
references with, shown as [x]. In the citations also a paragraph about 
equations, showing the sources behind all the equations.

Figures are also referenced in one list in the citations sections. Each 
figure number has its source to be found there. 

Flowcharts are used as well, following basic rules of flowcharts. Most 
notably is that the rectangles corrospond to computational processes, 
rectangles with rounded edges to human processes and diamonds to 
inputs. All flowcharts are made using the program Draw.IO.

Lastly pseudocodes have a few rules that need to be known and are 
specific to this research. When a piece of the algorithm is mentioned 
in text it will be written in courierNew. Further information can be 
retrieved from how it is written, where red text means an input. Bold 
text represents a matrix and italic text represent a vector.

Pseudocode will look like the following:

 #This is an example of pseudocode

 input = 1

 for ilist in randomMatrix:
   result = input * ilist
   add result to resultMatrix

The final algorithm can be found in appendix A (2D) and in appendix 
B (3D).



17

>>>2.3.1 The procedure of topology optimization
The commonly used methodology of topology optimization is 
developed by Bendsoe and Sigmund and is often used as the basis 
for further research. This methodology is shown in figure 12, where 
the first step is already described in the last paragraph. 
 The main objective of topology optimization is “to find the 
material distribution that minimizes the structures deformation” (Liu & 
Tovar, 2014). Usually this is described as minimizing the compliance, 
which is the mathematical definition of the objective. This can be written 
as (Sigmund, 2001):

Or in other worlds, the goal is to minimize the compliance, which is 
dependent on x. Where x is a vector of all the densities of the elements:

 The compliance can be rewritten with U, the global displacement vector 
and K, the global stiffness matrix. This formula is further described 
paragraph 2.3.2. This can only be solved when the following are true:

The first section tells that the volume of the total beam, should always 
be a set fraction (the user variable volfrac) of the design space (V0). In 
TO this is the main constraint, which means only results are given that 
fulfill this formula.

The second section is a very basic formula in physics, namely that the 
stiffness (N/mm) is equal to the force over the displacement. The next 
chapter will show further how this works on the global scale.

The third section is focusing on x, and how it should be used. Where x is 
a value per element that somewhat functions like a boolean, it contains 
a 0 or an 1. A 0 means the voxel is not important for the whole design 
and can be removed, an 1 means it has great importance. Also, values 
in between will occur and for these the closer to 1, the more important 
it is. An important note is that x can never be 0, to avoid singularity and 
unsolvable fractions, but 0 will be replaced with a very small xmin, usually 
around 0,001. 

subject to :



























V (x)
V0

= volfrac

KU = F

0 < xmin ≤ x ≤ 1

[0]

[1]

Figure 13: Procedure of topology optimization (Sigmund, 2001)

Figure 12: Example for this 
explanation

min
x

C(x) = 〈U,F〉 = U
T
KU

x = [xi]n×1



18

>>>2.3.2 Finite element analysis
The first step in topology optimization is the finite element analysis, 
where the displacements of each element are calculated. This paragraph 
will cover what happens in this step. To calculate what happens in each 
element when under pressure is the very basis of topology optimization. 
Finite element analysis is the simulation of a physical phenomenon using 
numerical computing on a discrete design space, where this research 
focusses on a load and its stresses. To explain how finite element analysis 
works a small example is presented in figure 14 that is based on a pixeled 
beam.

Numbering
The first important thing to note is how each element and node are 
numbered. Each element (pixel or a voxel) will be numbered from top 
to bottom and left to right. These numbers aren’t specifically important, 
but for computational reasons and for explanations, they will receive 
an index. What is more important is the nodes of the elements. Each 
element will be defined as a space between 4 (in 2D) or 8 (in 3D) nodes, 
each with it’s own index. The numbering of these nodes is important, as 
it influences the efficiency of the algorithm. This will be of later focus and 
can be read in chapter 3.4. Each node will receive an index, but also has 
degrees of freedom. These degrees of freedom will be used later on in 
the calculations in stead of the nodes themselves. It is important that the 
numbering of the DoFs follows the index of the nodes. Another way of 
numbering is to write the index and the direction, such as U1, x and U1, y. 
This is harder to program in a later phase, so the DoF index is used.

Finite element analysis
The main idea behind FEM is to calculate the displacement in each node, 
using the stiffness of this node and the force(s) that work on the space. 

Or: The stiffness times the displacement is the force. This also works for 
matrices, when they are configured correctly. The following paragraph 
will go over the construction of the individual matrices, their shape and 
their values.

The displacement vector U
For each degree of freedom the displacement should be calculated, to 
give a good overview how the node behaves. Therefore, a vector should 
be created with the size of the degrees of freedom; or:

The vector is filled with unknowns, namely the displacement at each DoF. 
For some DoFs the displacement is known to be 0, at the supports. A 
cylinder support only has this at the vertical DoF, a fixed support for both 
DoFs. For the example that was created in figure 14, the displacement 
vector has 0 in DoFs 6,7,38 and 39. 

[2]

[3][1× ((nelx+1)·(nely+1)·(nelz+1))]

KU = F

Figure 14: Numbering of the 
example



19

[4]

The force vector F
The force vector is defined as the prescribed force at each DoF. In most 
cases, the value of the force is 0 at the DoF, except for the DoF where a 
force is directly applied. It has an equal size as [U], as it is also a vector 
and the length is the size of the DoFs. Note that not only one force can 
be applied, but theoretically each DoF can have a force. Distributed 
loads should be divided over the DoFs, also shown in figure XX.

The K-matrix
The last piece of the FEM is the most challenging to solve, as the x, 
the density of an element, plays a role in this matrix. To explain how 
this works, first let us take a look at one element. Each element has 
its own element stiffness matrix, Ke, which defines the behavior of the 
element. The construction of Ke is based on shape functions, which 
are described by de Orio as functions that “… interpolates the solution 
between the discrete values obtained at mesh nodes“ (de Orio, 2008).  
Figure XX shows element nodes and their shape functions. At a node, 
the function is always 1, while being 0 at other nodes. From these shape 
functions the element stiffness matrix can be retrieved, however the 
derivation of the matrix or how these shape functions determine the Ke 
falls outside the scope of this research.

 The Ke would look something like figure 18, containing values in 
an 8x8 matrix (note that for 3D the element stiffness matrix is of size 
24 x 24, as each node has 3 DoFs). When deriving element stiffness 
matrices, the values are stiffnesses, often in the form of EA/L. In topology 
optimization the size of each element is assumed to be 1 and also the 
Young’s modulus does not need to be definite. For this research, Ke 
matrices will be used that are created by Sigmund (2001) and Liu and 
Tovar (2014), they can be found in appendix A. These matrices are not 
dependent on Young’s moduli, but on the poissons ration, which is 
equal for all elements.  

 The Ke will be constructed for each element, and multiplied by 
its density. This is important, as an element with density 0, should not 
influence the stiffness of the whole structure. When multiplying with the 
density, the penalization power, p, is also taken into account. This is an 
input variable, usually between 1 and 3, that influences how much non-
binary values are allowed. The higher the penalization power, the more 
the algorithm gets punished for using non-binary values.

The formula to calculate the Ke is now:
 

Ke = x
p
·Ke

Figure 16: Examples of shape 
functions depending on the nodes

Figure 17: Influence of a higher 
penalization power

Figure 15: Distributed load F



20

In the example the focus will be on element i and its Ki. Following the 
matrix by Sigmund, found at appendix A, the matrix will look like the 
following:

k(1) = 1/2 - v/6
k(2) = 1/8 + v/8
k(3) = -1/4 - v/12
k(4) = -1/8 + 3v/8
k(5) = -1/4 + v/12
k(6) = -1/8 - v/8
k(7) = v/6
k(8) = 1/8 - 3v/8

with v as the poisson ratio

It can be seen that this matrix is symmetric and only has 8 different 
values, a 3D matrix has a different approach on building this, which can 
be seen in appendix B, lines 71 - 119. This makes hardcoding easy and 
usually this is performed in topology optimization. 
 Now that the element stiffness matrix, Ke, is created, the next step 
is to create the global stiffness matrix K. Each element has its own Ke and 
they have to be properly placed into the larger global stiffness matrix. 
This matrix is a squared matrix with equal length as the DoFs. To place 
the Ke in K, a coordinate system is used, with the DoFs as coordinates. 
For example, in K1 in figure 14, the DoFs are known to be [0, 1, 2, 3, 8, 9, 
10, 11]. Ke,1,1 = 0.495 and Ke,9,10 = 0.0137. These coordinates pass on in the 
global stiffness matrix, as seen in figure 19. A lot of DoFs exist in more 
than one element, in that case the values can be added. This process 
results in the global stiffness matrix K.

Figure 18: Values for k

Figure 19: Translation from Ke to the global stiffness matrix K



21

Solving the system
When the three elements are properly configured, the solution can be 
found by solving F = KU. The global stiffness matrix K is at this moment 
fully symmetric and singular, therefore no solution can be found. It is 
important that some values of [U] are 0 (because of supports) so a 
solution can be found.  By setting these values to 0, values will be 
removed from K, allowing for the solve. The solve is performed by 
solving Ax = b, which is a common formula to solve. Doing this by 
hand is a very hard and tedious process, so this is performed by the 
computer using preset functions. Later chapters will cover these solvers. 
The output will be a displacement vector with the displacements for 
each DoF.

The Compliance
Now that we have the displacement vector U and the stiffness matrix 
K, the compliance can be calculated, as it was formulated in equation 
[0]. It makes sense that the equation to calculate the compliance is [0], 
as it is the inverse of K. K is the same as (FU)-1, or, when inverting the 
matrices, UTF.
 Another notation of the total compliance, is given in equation 
[5], which is noted as the som of the compliance at each DoF. In this 
new equation, also [4] is combined to create the compliance with less 
equations. Note that in this equation, the K is not the global stiffness 
matrix, but the element matrix, Ke.

 As this is the “first” iteration, this will give the compliance for 
the system, where all the densities are equal and there has been no 
optimization. In order to optimize the system, the densities need to 
be changed and the compliance minimized. The next paragraph will 
further elaborate on the method of finding the values for x where the 
compliance is minimal.

[5]C =

nele
∑

e=1

−xpUT
e Ke Ue



22

>>>2.3.3 Sensitivity analysis
In this next step the sensitivity analysis is performed. This means that 
for each element it needs to be known how much it will influence the 
compliance. Let’s pretend the compliance functions like a random 
function f(x) and looks like figure 20. When looked at a value of x, the 
slope of f(x) will tell how much the result will change when x changes. This 
also applies for the compliance, when the slope of C(x) is large, the final 
compliance will change a lot when the value of x is changed. Or: when 
the derivative of C(x) is large for a value of x, this element is important to 
the structure and therefore has a high chance of being placed. 
 The derivative of the compliance, [6] is given by (Bendsøe & 
Sigmund, 2004) as follows:

This results in a matrix with size of nele, but in stead of the compliances, 
it gives the influence on the compliance for each element. 

Mesh-independency
It is important to ensure that the results are independent of the mesh 
and filtering the sensitivities is a efficient way of solving this. “This means 
modifying the design sensitivity of a specific element, based on the 
weighted average of the element sensitivities in a fixed neighborhood” 
(Bendsøe & Sigmund, 2004). This means that the sensitivities will be 
updated, after they are calculated but before optimizing, which will go 
as follows:

In this formula, Hi is the weight factor and nele the number of elements. 
Note that this is the the calculation for element k, and in the formula the 
density of its neighbour is calculated. Therefore element xi is dependent 
on its neighbor, xk. Hi is defined as follows:

Rmin is an input variable that is the radius in of this weighted average. The 
distance is the straight line distance between two elements. When the 
elements are further away from each other than Rmin, nothing is added, 
as they are not neighbors.

∂C

∂x
= −p · xp−1UT

e Ke Ue [6]

[7]

[8]

∂C

∂xk
=

1

xi
∑nele

i=1 Hi

·

nele
∑

xi

Hixi
∂C

∂xi

Hi = rmin − dist(k, i)

Figure 20: f(x) with the derivative at 0.5



23

>>>2.3.4 Optimality criteria
To find the new values of xnew, a classical approach is taken called 
optimality criteria (OC). This method assumes a certain optimal 
condition, called Be, that is optimal when Be = 1, where:

In here, λ is the Lagrange multiplier, that is associated with constraint 
v(x). Bensoe proposed the following method to update the value of xnew, 
depending on XeBe:

In this formula, m is a certain (positive) move-limit and η is a numerical 
damping coefficient. Usually in minimum compliance problems, values 
of m = 0.2 and η = 0.5 are used. Because the Lagrange multiplier is the 
only unknown, the constraint can be ignored and Be  can be rewritten 
as:

To find the value of the Lagrange multiplier, the bisection method is 
used to find the value of λ. To do this, two values of λ are chosen, both 
on the outside of the possible values of λ. For minimum compliance 
problems, λ1 = 0 and λ2 = 10^5 are enough. In the bisection method, 
λmid is initialized, being the average of λ1 and λ2. The values of xe are 
updated with this new Lagrange multiplier, resulting in new values of 
xnew. One of the constraints in chapter 2.3.1 was that: 

so therefore, the Lagrange multiplier is correct when the sum of xnew 
is equal to volfrac * V(0). A loop is started that halves the domain to 
approach the correct value of λ. When the difference between λ1 and 
λ2 is small, usually something like 0.001, the optimal values of xnew are 
found. 

>>>2.3.5 Updating the design variables
After the values of xnew are found, these can be implemented again 
at the start of the loop. A new FE analysis is performed with the new 
values of x. Slowly the compliance should drop to a lower and lower 
level. When the values of x are not changing anymore (or after a set 
amount of loops) the algorithm stops and gives the final values of x. 
These are the densities of each element and therefore the likeliness that 
have to exist. Some postprocessing can be done to show the grayscales 
better, but this is seen as unnecessary for this chapter.

[8]

[9]

[10]

[11]

Be = −

∂C(x)

∂xe
(λ
∂v(x)

∂xe
)−1

x
new

e
=







if : xeB
η

e
≤ max(0, xe −m) : max(0, xe −m)

if : xeB
η

e
≥ min(1, xe −m) : min(1, xe +m)

else : xeB
η

e

Be = −

∂C(x)

∂xe
(λ)−1

V (x)

V0
= volfrac

Figure 20: Bisection method



24

>>>2.4 Topology optimization in Architecture
The previous chapter explained how the standard procedure, following 
Bensoe and Sigmund, is performed. This research will focus on the 
question “How can we design structures for masonry buildings using 
topology optimization?”, so the translation to architecture has to be 
made. How could architecture take advantage of the possibilities of 
topology optimization? This chapter will shortly cover any approaches 
found in literature that could be implemented in topology optimization 
for architectural models.

3D topology optimization
Chapter 2.3 spoke about topology optimization in the 2D field, with a 
design divided into pixels. As architecture is a research field that focusses 
on 3D challenges, this translation is an important step towards the main 
objective of this research. Translating from 2D to 3D does not change 
in the methodology, the math behind 3D topology optimization is the 
same behind 2D. However, some changes have to be made to create a 
working 3D model. 

Selfweight
The implementation of self-weight makes a lot of sense to introduce 
into topology optimization. Usually, the self-weight of each element 
is very small in comparison with the force applied on the design. In 
architecture however, each element is the main source of forces and 
therefore, placing an element always influences the forces distributed 
in the design. This asks for a more complicated algorithm, as another 
variable is introduced in the system. This research will focus mainly 
on masonry buildings, where self-weight is even more important. It is 
expected that implementing self-weight in the methodology, will result 
in compression-only methods. This translates the system easier into a 
masonry building. A lot can be found in literature about the selfweight, 
so this will be described in the following chapter.

Snowload
Buildings will always have a force on its roof, caused by diverse forces, 
but usually this is mainly caused by snow. This force is not set on a 
specific place, but will be placed on the roof. This force is dependent 
on the total shape and requires a similar approach as the selfweight. 
Implementing snowload isn’t seen as part of the literature study and will 
therefore be discussed in chapter 3.5.

Roof constraint
Usually there are very limited direct forces that are present in the design 
space. Topology optimization can only function properly if there are at 
least forces to optimize the system with. One constraint that can be 
added is the fact that each void has to have a closed roof above it. 
Adding this constraint will allow the algorithm to create geometry, 
without preset forces. As this is also seen as a product of this research, it 
will be discussed in chapter 3.5.

Figure 21: 3D topology optimization



25

>>>2.5 Density dependent forces in topology optimization
Implementing density dependent forces follows the same procedure as 
previously described. A design space consisting of elements is created 
with supports and loads. Both the K-matrix and the displacement 
vector U are created on the same ways as in chapter 2.3.2. The main 
difference is that the force vector F gets created each iteration of its 
own. For each DoF, the force of the selfweight has to be calculated 
by multiplying the density of an element by a certain force value. This 
force should depend on the size of the grid in comparison to the force, 
something that will be figured out later. Figure 22 shows an element, xi, 
that has a density of 1. The elements nodes will have ¼ of the forces in 
the y direction. The forces at the DoFs are added and the force vector 
is created. 

Sensitivity analysis
Bruyneel and Duysinx (2001) described how to perform the sensitivity 
analysis when applying density dependent forces. As there are multiple 
variables, the sensitivity analysis from chapter 2.3.3 does not apply 
anymore. Instead, the following steps have to be taken to get the 
sensitivity of the compliance.

Given is that the compliance is:

Also, it’s known that KU = F, so the compliance can be rewritten as:

where λ is a lagrange multiplier that will be defined later, but where 
λ(KU – F) = 0.

When taking the derivative of this function:

Using the chain rule to be able to choose λ, so that δU is removed from 
the equation:

if FT + λTK = 0, then δU is removed. It is known that KU = F, so λ is 
chosen as λ = - U. Then the derivative is:
 
 

The derivative from equation [x] can be rewritten as:

Figure 22: Element xi with self-
weight

C = UTKU [12]

[13]

[14]

[15]

[16]

[17]

C(xe) = F TU + λ(KU − F )

∂ ˜C

∂x
=

∂F

∂x

T

· U + F T
·

∂U

∂x
+ λT (

∂K

∂x
· U +K ·

∂U

∂x
−

∂F

∂x
)

∂ ˜C

∂x
= (F T + λTK)

∂U

∂x
+

∂F

∂x

T

· U + λT (
∂K

∂x
· U)− λT

∂F

∂x

∂ ˜C

∂x
=

∂F

∂x
· U − UT

∂K

∂x
U + UT

∂F

∂x

∂ ˜C

∂x
= 2UT

∂F

∂x
− UT

∂K

∂x
U



26

When looked at this sensitivity, it can be shown that when F is not 
dependent on x, the sensitivity is UT δK U, which is conform the previous 
chapter, see equation [5]. Now that the force is density dependent, the 
sensitivity can be rewritten as:

This is where the main problem of self-weight comes in. Equation [x] is 
always negative and behaves monotonic and can therefore be easily 
analyzed. In the topology optimization code of Bensoe and Sigmund, 
this property is exploited to generate easy and fast solutions. This also 
makes sense, as equation [18] is technically an equation of f(x) = xp, 
which will always have an easy to find minimum, as long as p is inside the 
domain of [1,3]. In the case of equation [19] the force is dependent on the 
density and this creates harder to generate solutions. Equation [19] can 
be both positive and negative, so a change in the density of an element, 
can result in a larger compliance. This asks for more complicated ways of 
finding the minimum compliance (Bruyneel & Duysinx, 2001).

Finding the minimum compliance for non-monotonic functions
The non-monotonic behaviour of the function asks for a different 
solver than when there are no density dependent forces. This solver is 
found in a very popular optimizer in topology optimization, called the 
Method of Moving Asymptotes (MMA). MMA is “a method of non linear 
programming in (structural) optimization, characterized by an iterative 
process where a new strictly convex subproblem is generated and solved 
per iteration” (Blackman & Miller, 2014). MMA follows the following steps 
in order to solve a function f(x): 

The first step is an initial guess, on iteration k = 0, where the value of f(xk) 
is returned. Then the gradients for the constraints are calculated. Next, an 
subproblem is generated, that exists of convex functions, based on the 
gradients for the constraints and on information of the previous iteration. 
This subproblem can now be solved, which results in a new point. This 
point is now the new, local, optimum and will be xk + 1 (Svanberg, 1987). 

Figure 23 shows an objective function (black) and the initial guess x0. 
From the x0 a subproblem is generated in the blue line. The optimizer 
adjusts the asymptotes in order to create the red line, which is the convex 
approximation. This subproblem is solved in order to find the new local 
optimum. For the second iteration the previous solution is taken, until 
the convergence criteria is met (Blackman & Miller, 2014).  

[18]

Figure 23: Simplification of the MMA

C(xe) = −px
p−1

U
T

e
KeUe + U

T

e
Fe



27



28

>>>3.1 Introduction
The building phase of this process exists of two methodologies, which are 
the mathematical design and the algorithm design. The main difference 
is that the mathematical design focusses on the techniques and math 
behind Topology Optimization and its theoretical methodology. This 
chapter will build further on that foundation, translating it into useful 
code. There are already some known algorithms that form the basis 
of further adjustments towards an algorithm that is more broadly 
applicable on architecture. There is a standard structure, developed by 
Sigmund, that is usually taken as the basis for Topology Optimization 
code. This structure and its lines will be discussed and explained. Then, 
other algorithms that are used in this process are described and looked 
at. These algorithms mainly contain methods of optimization and 
implementing 3D in Topology Optimization. Then, the methodology 
is described to include architectural models in topology optimization. 
For this process, 6 fictional case studies are created, each with it’s own 
problems to solve. Through these cases, most of the architectural 
challenges should be solved.

>>>3.2.1 A 99 line topology optimization code
One of the first papers that was published about a Topology Optimization 
code, was written by Sigmund. His paper includes a 99 line code that 
solves topology optimization problems in the 2D field. The paper creates 
a standard procedure that has already been discussed at chapter 2.3.1. 
The procedure that Sigmund proposed, has been the basis for many 
other variants of the script. To understand later changes and variants on 
the script, lets first look at the structure of this script. Sigmund wrote the 
script in MATLAB, but this thesis will focus on Python as programming 
language, due to the implementation in Grasshopper. 

Several translations have been made to Python. Initially the version of 
COMPAS was used, written by the ETH Zurich. COMPAS is a python 
library that is created for Rhino and Blender, to implement topology 
optimization, dynamic relaxation and several other numerical process.  
COMPAS’ implementation with Grasshopper geometry is a bit harder, 
as most geometry has to be translated into specific COMPAS geometry 
(COMPAS, 2020). As the goal of this research is to write a Grasshopper-
specific, this can be greatly improved. The input of the algorithms are 
matrices, and it is more efficient to write the translation in Python. 

Another Python implementation is written by Liu and Tovar, where they 
add 3D into their own translation of Sigmund’s procedure. This code is 
focussing on the 3D translation, but also includes some improved lines 
for faster calculations (Liu & Tovar, 2014).

03Algorithm design



29

The last Python implementation forms the basis of the code of this 
script. It is written by Arjen Deetman in combination with a MMA solver. 
Chapter 2.6 already explained the need of another solver, in stead of 
Optimality Criteria. Deetman developed the MMA solver for Python and 
also added a topology optimization script. This script is a translation of 
Sigmund’s script with the addition of the MMA solver. This script will be 
described in pseudocode in the following chapter.

>>>3.2.2 Explanation of the code
This chapter is included in this thesis, as it is meant to open the black 
box and explain what happens in the code. The code that Arjen Deetma 
developed exists of 195 lines, including both the Optimality Criteria and 
MMA solver. The main program of the solver follows several stages to 
solve the topology optimization problem. These stages are shown in 
the figure 24.

User input
The first stage is always the user input and translating it into useful data. 
Eventually all of the input should be translated into the matrices. There 
are several possible inputs to solve the problem. The first input is always 
the amount of elements in the x and y direction (nele, nely and 
nelz). The second input are the volume fraction, the minimum 
radius (see eq. 8) and the penalization power. When these 
values are known, matrices can be created of the right size to use later 
on, see Pseudocode 1.

The values nele and nDof are created and are respectively the 
number of elements and the number of degrees of freedom. It has 
to be noted that chapter 2.3.2 explains the rules of numbering, which 
is why in 3D, this value has 3 DoF’s at each node. An vector with the 
volfrac is created for x, as the final sum of the elements should be 
equal to a fraction of the volume. The empty array dc is created and 
will be filled later with the sensitivities. 
The second piece of user input is usually embedded in the code. 
To solve the FEA, forces and supports are needed. The forces and 
supports working in the design are vectors with the length of nDof. For 
forces, the force is indicated with its strength at the degree of freedom. 
This can work in both vertical and horizontal directions and usually is 
determined with a 1. A list of supports is created as a vector fixed, 
and also results in a list of free, the DoF’s that are free to move.

 x = volfrac.repeat(nele)
 dc = makeMatrixOfZeros(shape =(nelx,nely))  
 #Create supports
 fixed = [support1, support2, .... supportn]
 free = listOfDofs.remove(fixed)
 #Set forces:
 f = emptyVector(shape = nele)
 f[force1, force2, ... forcen] = 1

Figure 24: Stages of the algorithm

Pseudocode 1: Configuration of user input



30

Initializing
The next step is to initialize the user input and develop some matrices 
and vectors that are needed to start the loop. As figure 24 showed, the 
following steps are the FEA and the sensitivity analysis. For the FEA the 
stiffness matrix needs to be created. Chapter 2.3.2 showed that this is 
usually done with shape functions, but this is very hard to calculate and 
asks for more computational time. Usually the element stifness matrix is 
hard-coded into the algorithm, this algorithm calls the lk() function. This 
generates a 8 x 8 element stiffness matrix (or 64 x 64 in a 3D problem). 
Both the hardcoded KE matrixes can be found in appendix A.

To create the global stiffness matrix, a matrix needs to be created with the 
DoF indexes, corresponding to the element index. Following the node 
numbering of chapter 2.3.2, a matrix is generated with all the DoF’s per 
element index. This is retrieved by taking the 4 nodes of the element en 
4 nodes of the element on the right of it. The order of the values is very 
important for the numbering. For the example the edofMat of this beam 
is printed in figure 25.

 edofMat = makeMatrixOfZeros(shape=(nele,8))
 for each element:
  ID = (nely + 1) * xvalue * yvalue
  ID

right
 = (nely + 1) * (xvalue + 1) * yvalue

  edofMat =[2*ID+2, 2*ID+3, 2*ID
right

+2, 2*ID
right

+3,
   2*ID

right
, 2*ID

right
+1, 2*ID, 2*ID+1]

 

 
Another matrix that is initialized before the loop starts, is the H matrix. 
The H matrix is important to ensure mesh-independency, also as stated 
in chapter 2.3.3. This chapter showed the weight factor is equal to:

Code Listing

1 Code examples

1 #asdf

Listing 1: Create supports and forces

1 #Create supports

2 dofs = np.arange (2*( nelx +1)*(nely +1))

3 fixed = [supp1 , supp2 ... suppn]

4 free = np.setdiff1d(dofs ,fixed)

5 #Set force

6 f = np.zeros((ndof ,1))

7 f[1,0] = -1

Listing 2: Create supports and forces

1 def lk():

2 E = 1

3 nu = 0.3

4 k = np.array ([1/2 -nu/6 ,1/8+nu/8,-1/4-nu/12 , -1/8+3*nu/8,-1/4+nu

/12,-1/8-nu/8,nu/6 ,1/8 -3*nu/8])

5 KE = E/(1-nu**2)*np.array([ [k[0], k[1], k[2], k[3], k[4], k

[5], k[6], k[7]],

6 [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],

7 [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],

8 [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],

9 [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],

10 [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],

11 [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],

12 [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]] ]);

13 return (KE)

Listing 3: Definition to create the element stiffness matrix

1

Hi = rmin − dist(k, i)

Pythoncode 2: Defenition to create the element stiffness matrix

Pseudocode 3: Creating the edofMat array

Figure 25: Example of edofMat for 
the beam

print edofMat

[2 3 10 11 8 9 0 1]
[4 5 12 13 10 11 2 3]
[6 7 14 15 12 13 4 5]
[10 11 16 17 18 19 8 9]
...
[30 31 36 37 38 39 29 28]



31

The H matrix is generated using a coo matrix, with is a matrix based on 
coordinates. Using a complicated for loop, the proper row and column 
coordinates are created. The value is stored in the sH vector, which is 
based on the rmin. Chapter 2.3.3 showed that the weight factor is 
equal to the rmin minus the distance between two elements. In the 
lines, this is shown in line 7.

Lastly empty matrices for the displacement U, the total compliance ce 
and the sensitivities dc are created with the element sizes. Also, the 
loop counter and the elasticity values are set.  

 #Set loop counter and gradient vectors
 loop = 0
 u  = zeros(size = ndof)
 dv = ones(size = nele)
 dc = ones(size = nele)
 ce = ones(size = nele)

Finite Element Analysis
Now the loop starts, each loop first the Finite Element Analysis is 
performed, to calculate the displacements. To perform this, the global 
stiffness matrix has to be created, which is done by first calculating 
the element stiffness matrix for all the elements, sK. Then, the stifness 
matrix, K, is assembled into a matrix, where iK and jK are the row 
and column indexes. Lastly, the constrained DoF’s are removed from 
K, to only take values that are used. Now that K and F are known, the 
displacements of each DoF can be calculated into U, where the fixed 
DoF’s are replaced with 0’s.

1 # Filter: Build (and assemble) the index+data vectors for the

coo matrix format

2 nfilter = int(nelx*nely *((2*( np.ceil(rmin) -1)+1) **2))

3 iH = np.zeros(nfilter)

4 jH = np.zeros(nfilter)

5 sH = np.zeros(nfilter)

6 cc = 0

7 for i in range(nelx):

8 for j in range(nely):

9 row = i*nely+j

10 kk1 = int(np.maximum(i-(np.ceil(rmin) -1) ,0))

11 kk2 = int(np.minimum(i+np.ceil(rmin),nelx))

12 ll1 = int(np.maximum(j-(np.ceil(rmin) -1) ,0))

13 ll2 = int(np.minimum(j+np.ceil(rmin),nely))

14 for k in range(kk1 ,kk2):

15 for l in range(ll1 ,ll2):

16 col = k*nely+l

17 fac = rmin -np.sqrt (((i-k)*(i-k)+(j-l)*(j-l)))

18 iH[cc] = row

19 jH[cc] = col

20 sH[cc] = np.maximum (0.0,fac)

21 cc = cc+1

22 # Finalize assembly and convert to csc format

23 H = coo_matrix ((sH ,(iH,jH)),shape=(nelx*nely ,nelx*nely)).tocsc

()

24 Hs = H.sum (1)

Listing 5: Creation of the H matrix

1 # Set loop counter and gradient vectors

2 loop = 0

3 change = 1

4 Emin = 1e-9

5 Emax = 1.0

6 u = np.zeros ((ndof ,1))

7 dv = np.ones(nely*nelx)

8 dc = np.ones(nely*nelx)

9 ce = np.ones(nely*nelx)

Listing 6: Final values to start the loop

1 # Setup and solve FE problem

2 sK = ((KE.flatten ()[np.newaxis ]).T*(Emin+(xPhys)**penal*(Emax -Emin)

)).flatten(order=’F’)

3 K = coo_matrix ((sK ,(iK,jK)),shape=(ndof ,ndof)).tocsc()

4 # Remove constrained dofs from matrix

5 K = K[free ,:][:, free]

6 # Solve system

7 u[free ,0] = spsolve(K,f[free ,0])

Listing 7: Solving FEA

1 # Objective and sensitivity

2 ce[:] = (np.dot(u[edofMat ]. reshape(nelx*nely ,8),KE) * u[edofMat

]. reshape(nelx*nely ,8) ).sum(1)

3 obj = ((Emin+xPhys ** penal*(Emax -Emin))*ce ).sum()

Listing 8: Sensitivity analysis

2

1 # Filter: Build (and assemble) the index+data vectors for the

coo matrix format

2 nfilter = int(nelx*nely *((2*( np.ceil(rmin) -1)+1) **2))

3 iH = np.zeros(nfilter)

4 jH = np.zeros(nfilter)

5 sH = np.zeros(nfilter)

6 cc = 0

7 for i in range(nelx):

8 for j in range(nely):

9 row = i*nely+j

10 kk1 = int(np.maximum(i-(np.ceil(rmin) -1) ,0))

11 kk2 = int(np.minimum(i+np.ceil(rmin),nelx))

12 ll1 = int(np.maximum(j-(np.ceil(rmin) -1) ,0))

13 ll2 = int(np.minimum(j+np.ceil(rmin),nely))

14 for k in range(kk1 ,kk2):

15 for l in range(ll1 ,ll2):

16 col = k*nely+l

17 fac = rmin -np.sqrt (((i-k)*(i-k)+(j-l)*(j-l)))

18 iH[cc] = row

19 jH[cc] = col

20 sH[cc] = np.maximum (0.0,fac)

21 cc = cc+1

22 # Finalize assembly and convert to csc format

23 H = coo_matrix ((sH ,(iH,jH)),shape=(nelx*nely ,nelx*nely)).tocsc

()

24 Hs = H.sum (1)

Listing 5: Creation of the H matrix

1 # Set loop counter and gradient vectors

2 loop = 0

3 change = 1

4 Emin = 1e-9

5 Emax = 1.0

6 u = np.zeros((ndof ,1))

7 dv = np.ones(nely*nelx)

8 dc = np.ones(nely*nelx)

9 ce = np.ones(nely*nelx)

Listing 6: Final values to start the loop

1 # Setup and solve FE problem

2 sK = ((KE.flatten ()[np.newaxis ]).T*(Emin+(xPhys)**penal*(Emax -Emin)

)).flatten(order=’F’)

3 K = coo_matrix ((sK ,(iK,jK)),shape=(ndof ,ndof)).tocsc()

4 # Remove constrained dofs from matrix

5 K = K[free ,:][:, free]

6 # Solve system

7 u[free ,0] = spsolve(K,f[free ,0])

Listing 7: Solving FEA

1 # Objective and sensitivity

2 ce[:] = (np.dot(u[edofMat ]. reshape(nelx*nely ,8),KE) * u[edofMat

]. reshape(nelx*nely ,8) ).sum(1)

3 obj = ((Emin+xPhys ** penal*(Emax -Emin))*ce ).sum()

Listing 8: Sensitivity analysis

2

Pythoncode 4: Creating the mesh-independency filter (Deetman, 2019)

Pseudocode 5: Setting up values before the iteration



32

 #Build the row and column indeces
 iK = repeatEntireMatrix(edofMat, 8)
 jK = repeatEachValue(edofMat, 8)
 
 #Build the K-matrix, see 2.3.2
 K = makeCooMatrix(rows=iK, columns=jK, data=KE*x^p)
 K = K.removeOtherThan(free)

 U[free] = solve(K, f)

Sensitivity analysis
Now that all the matrices are known and calculated in the loop, the 
objective and the sensitivities can be calculated. The objective is to find 
the lowest total compliance, that is achieved with the set volume fraction. 
To find this, the gradient of the compliance has to be calculated for each 
element. The sensitivity and the compliance are calculated and the main 
input for the solver. 

#Objective and sensitivity
ce = (U[edofMat].transform * KE) * U[edofMat]
ce = sumof(ce, axis=horizontal)
obj = sumof( xp * ce)
dc = - p * xp-1 * ce

Solving the system
Deetman’s code includes 2 different solvers, Optimality Criteria and the 
Method of Moving Asymptotes. The method of OC has been briefly 
discussed in chapter 2.3.4, and is usually a faster way of solving the 
system. MMA is a slower solver, but is not limited to monotonous 
functions. Both need their own setup, but will return the values chosen 
for x, which are the input for the next loop. 

>>>3.2.3 3D Topology optimization
Chapter 3.2.1 already spoke of the 3D topology optimization code, 
written by Liu and Tovar. This code, written in MATLAB, forms the base of 
the translation to the 3D field. Liu and Tovar show that this translation is 
possible to make, but requires an good indexing system. As the system 
transitions from 2D to 3D, also many matrices will translate into 3D. When 
working with Python, this has to be handled properly. Liu and Tovar have 
rewritten Sigmund’s code and made some additions to translate the 
code in 3D.

The first important thing that forms the basis of an accurate translation, 
is the numbering of the nodes and DoF’s. Liu and Tovar propose the 
node ID’s as shown in figure 24. When the numbering is right and edited 
all throughout the algorithm, not many problems should arise. This is, 
as Liu and Tovar showed in their paper, because the structure of the 

Figure 26: Node numbering

Pseudocode 6: Solving the system

Pseudocode 7: Calculating the obj (compliance) and dc (sensitivities)



33

Figure 27: Example of edofMat

The input is identical to the 2D, only that nelz is added. The supports 
and forces are placed on the DoF’s on the same way. The node ID’s 
are arranged in an array called edofMat, which shows the DoF’s per 
element. As each element has 24 DoF’s attached to it, the size of this 
array is nele x 24. This matrix is a lot harder to write, and is partially 
hardcoded in the repeatingMatrix matrix. This is done by the 
following lines, translated from Matlab into Python:

The main reason that this array is created, is to assemble the global 
stiffness matrix, K. Just as in 2D, the K matrix is constructed by creating 
the row and column indexes and a separate matrix, sK, for the element 
stiffness matrices. Sigmund’s code needed for-loops to retrieve the 
rows and columns, Liu and Tovar avoid these loops with the Kronecker 
product, which saves quite some time (Liu and Tovar, 2014). This is also 
already applied in pseudocode 8. Eventually the matrix K is created as a 
sparse matrix, as a lot of values in the matrix are 0’s, especially when the 
translation to 3D is made. The size and shape of this matrix is important 
for the efficiency of the algorithm, but chapter 3.8 will go more in depth 
about efficiency.

In the 3D problem, solving the system follows the same rules as the 
2D problem, so that the force-vector and the K-matrix have the same 
length. This will result in a displacement-vector, which is calculated for 
each DoF.

2 ce[:] = (np.dot(u[edofMat ]. reshape(nelx*nely ,8),KE) * u[edofMat

]. reshape(nelx*nely ,8) ).sum (1)

3 obj = ((Emin+xPhys ** penal *(Emax -Emin))*ce ).sum()

Listing 8: Sensitivity analysis

1 #create proper IDs

2 nodegrd = np.reshape(np.arange (0,(nely +1)*(nelx +1) ,1), [nelx+1,nely

+1]).transpose ()

3 newitems = np.transpose(nodegrd [:-1]) [: -1]. transpose ()

4 nodeids = np.reshape(newitems ,[nely*nelx ,1])

5 nodeidz = np.arange (0,(nelz -1)*(nely +1)*(nelx +1)+1,(nely +1)*

6 (nelx +1))

7

8 nodeids = np.repeat(nodeids , len(nodeidz), axis =1) +

9 np.repeat(nodeidz ,len(nodeids), axis =0).reshape(nelx ,nelx*nely)

.transpose ()

10

11 edofVec = (3 * np.reshape(np.transpose(nodeids) ,-1) + 4)

12

13 repeatedVec = np.repeat(edofVec , 24, axis =0)

14 .reshape(len(edofVec) ,24)

15 repeatingMatrix = [

16 0,1,2,(3*nely +3),

17 (3* nely +4) ,(3*nely +5) ,(3*nely +0) ,(3*nely +1),

18 (3* nely +2) ,-3,-2,-1,

19 (3*( nely +1)*(nelx +1)+0) ,(3*( nely +1)*(nelx +1)+1) ,(3*( nely +1)*(

nelx +1)+2) ,(3*( nely +1)*(nelx +1)+3* nely + 3),

20 (3*( nely +1)*(nelx +1)+3* nely + 4) ,(3*( nely +1)*(nelx +1) +3* nely +

5) ,(3*( nely +1)*(nelx +1) +3* nely + 0) ,(3*( nely +1)*(nelx +1) +3* nely

+ 1),

21 (3*( nely +1)*(nelx +1)+3* nely + 2) ,(3*( nely +1)*(nelx +1) -3) ,(3*(

nely +1)*(nelx +1) -2) ,(3*( nely +1)*(nelx +1) -1)

22 ]

23

24 repeatedMat = np.repeat(repeatingMatrix , nele , axis =0)

25 .reshape(len(repeatingMatrix),nele).transpose ()

26 edofMat = np.add(repeatedMat , repeatedVec)

Listing 9: Creation of the edofMat array

1 #Translating from Matlab to Python requires 1 less index value

2 edofMatSI = edofMat - 1

3

4 #Objective and sensivitivies

5 ce = np.sum(np.multiply(U[edofMatSI],

6 (np.dot(U[edofMatSI], KE))), axis =1).reshape ([5 ,5 ,5])

7 obj = sum(sum(sum((Emin+xP**penal *(E0-Emin))

8 .reshape ([5,5 ,5])*ce)))

9 dc = np.reshape(-penal *(E0-Emin)*xP**(penal -1), [5,5,5]) * ce

Listing 10: 3D Objective and sensitivities

3

Pythoncode 8: Construction of the edofMat array (Liu & Tovar, 2014)

print edofMat[element1]

[3 4 5 9 10 11 6 7 8 0 1 
2 32 33 34 38 39 40 35 36 
37 29 30 31]



34

Translating these displacements into the sensitivities is identical as in 2D, 
as K is an 2D array and both U and f are 1D. It is important to note that 
the edofMat vector was designed for Matlab, so therefore all the values 
have to be subtracted by 1. The following lines define the objective and 
its sensitivities, which are identical to pseudocode 7:
 
edofMat = edofMat - 1
#Objective and sensitivity
ce = (U[edofMat].transform * KE) * U[edofMat]
ce = sumof(ce, axis=horizontal)
obj = sumof( xp * ce)
dc = - p * xp-1 * ce

Lastly, the values are updated using the optimizer to give new values of x 
and get into the next loop. Overall, the 3D approach doesn’t change very 
much from the 2D approach, the biggest change is the indexing of the 
nodes and having a proper administration of these. When the translation 
of the design space to the matrices can be made, the calculations can be 
made, and the matrices can be translated back to geometry. 

>>>3.2.4 Alterations of these codes
In his paper, Sigmund already wrote several other options and alterations 
that can be implemented in his script. Of course, his goal was to let 
his code work with as many problems as possible, therefore the forces 
and supports are created as a user input. Sigmund shows different 
possible force and support options to solve corresponding problems. 
Sigmund does also elaborate on the addition of multiple forces. When 
applying multiple loads on the system, Sigmund argues that in this case 
the F-vector becomes a vector with n columns, where n is the amount 
of loads. The objective becomes the sum of the compliances, as the 
resulting compliance will be a vector with n columns as well. It has to be 
noted that later versions of Sigmund’s code (written by Andreassen and 
Deetman) already implement this in their code. 
A second function that Sigmund added was the implementation of 
active and passive elements. In the problem sometimes several elements 
should never exist, or should always exist. Sigmund added a passive 
array with the size of nelx x nely which includes 1’s at places that should 
be passive. After the x is updated, as shown in listing 12, the elements 
following the passive array, are set to 0.001. This ensures the element 
will always be a void. The opposite can be done as well, with a separate 
active array. The following lines are from the Matlab code, written by 
Sigmund:

voidlist = [void1, void2, .... voidn]
voids = zeros(size=nele)
voids[voidlist] = 1
....
x = where(voids = 1, x = 0.001, else x = x) 

Pseudocode 9: Calculating the obj (compliance) and dc (sensitivities) for 3D

Pseudocode 10: Implementing voids



35

>>>3.2.5 Creation of the Python code
In order to understand each line better, the code that COMPAS used was 
first thoroughly examined, line-by-line. This made sure each step of the 
algorithm was properly understood and adjustments could be made 
easier. Due to the implementation of MMA, in the rest of the process 
the code, written by Deetman, was used as the basis. As the algorithm 
will work within Grasshopper, the main definition is transformed into a 
linear algorithm, with the initialization of the variables as a first step. Also 
some lines are added in order to quickly add voids, forces and supports 
from Grasshopper. In order to show the calculations, matplotlib is used 
to plot the results.

The algorithm include both OC and MMA, where OC is written in a 
definition on its own, and is only called when xsolv is set to “OC Method”. 
Otherwise the MMA algorithm is used, which uses an imported library. 
This library is also written by Deetman, a Python version of Svanbergs 
MMA-code. Two definitions are used from this library, mmasub and 
subsolve. As importing libraries into Grasshopper can be quite hard, 
these subroutines are added as a definition on the bottom of the script. 
This way, only Numpy has to be added from GhPython. 

>>>3.3 Methodology
This research is focused on finding topology optimization methodologies 
that are applicable in architectural problems. The objective was stated 
in chapter 1.3 as to implement density dependent forces in topology 
optimization and apply this algorithm to buildings. To achieve this 
objective, several sub-objectives were defined, in order to achieve 
this objective. The first objective, to create and understand a topology 
optimization algorithm and translate this in Python, has already been 
spoken of in chapters 2, 3.1 and 3.2. 

For the following objectives the following chapter will give a detailed 
methodology, based on several case studies. Each objective is cut into 
two practical examples that need to be solved. Each problem is chosen 
in a way, so that it tackles a few problems at the time and works towards 
solving the individual sub-objective. As there are three sub-objectives, 
six toy problems are developed and later on solved. The following 
chapter will discuss these problems, and what the problems/objectives 
of each one is. 

To ensure a systematic approach, each problem is individually looked 
at following the methodology as proposed in chapter 1.6. The process 
can be summarized as (Peffers et. al., 2007):
 - Build
 - Evaluate
 - Theorize
 - Justify 
One step before this process is the problem identification and 
motivation, which is performed in this chapter.



36

>>>3.3.2 Setting up an algorithm
The first sub-objective is to “create and understand a topology optimization 
algorithm and translate this in Python”. To achieve this, two toy problems 
are created and initiated in this chapter.

TOY1: The cyclist tunnel
The first toy problem is shown in figure 28 and represents a section of a 
tunnel, that is used for cyclists. This problem is a standard problem that 
has not many variables or difficulties. The main objective for this toy 
problem is to get the algorithm running and trying to apply some basic 
constraints and solve it with both OC and MMA. 

As shown in figure 28, there is a single force on the roof of the tunnel, 
pointing downwards. The full ground can be used as a support, except 
for the voids. Adding the void for the cyclist to pass is important to check 
if voids work properly and if it is processed successfully in the loop. As 
the inputs don’t really change that much in other toy problems, this 
problem will also process the Grasshopper inputs. Later on, this code is 
translated to a Grasshopper plugin, but this is discussed in chapter 3.8.

TOY2: The building
The second toy problem is a section of a building, with several rooms 
as shown in figure 29. The goal of this problem is to further extend the 
possibilities of the algorithm, and add some new possibilities. A more 
complex building is chosen, as this raises some new problems.

Support stay the same, as the ground is chosen (or at least a foundation 
that lies beneath it). The building has three floors and there are three voids. 
Properly handling these voids and generating these within Grasshopper 
is important for this problem. This script should also be able to deal with 
more complex design spaces. Another thing that changes significantly is 
the way forces are distributed on the roof. In architecture it’s very unlikely 
a single force exists in the design space, but usually a distributed load 
lies on the roof in the form of snow. Also, all the voids are now rooms 
and therefore also have their own force on the lowest pixel of the void. 
Implementing distributed loads and a load in the middle of the design 
space are the objective to solve this Toy problem.Figure 29: TOY problem 2

Figure 28: TOY Problem 1



37

>>>3.3.3 Implementing density dependent loads
The second sub-objective is to implement density dependent forces in 
the methodology and in the algorithm. Where the first two toy problem 
were mostly about implementing code that was written by others, in 
this chapter new code has to be written. 

TOY3: A small earthy house
The third toy problem focusses on implementing selfweight on a very 
small and simple house. This house is made of clay and therefore the 
building has a large weight that is working like a force downward. The 
algorithm will need a point to start with, there needs to be a force 
on which the selfweight can react. Again, the ground counts as the 
supports with the exclusion of the voids. 

It is important to look at the behavior of the self-weight and what it 
does to the design. Questions about the weight of the self-weight 
should be asked, as well as the placement of these forces. The house 
is in 2D, so no doors or windows are added yet. It is expected that the 
section should look like the picture of figure 31, which is a dynamic 
relaxed building.

TOY4: An igloo
An igloo has to withstand large portions of snow on its roof, while also 
supporting its own weight. This is also true with the small earthy house, 
as there still is a force on the roof. This force is not set on a place, but 
just on the highest point of the roof. This also has influence on the 
shape of the design and will work like another density dependent force.
  
Another piece that has to be looked at is the igloo needs to be covered, 
to maintain heat inside. There can be no holes in the roof. The optimizer 
should only consider solutions that have a full roof over the voids. As 
MMA is used, constraints can be implemented, which is what needs to 
added to the algorithm in this toy problem.

Figure 32: TOY problem 4

Figure 31: Dynamic relaxed building

Figure 30: TOY Problem 3



38

>>>3.3.4 Translating into 3D
The third sub-objective is to generalize the methodology and apply the 
algorithm to the 3D design spaces and implement the previously written 
toy problems. This will partially done by the paper and code written by 
Liu and Tover and taking their translation as a reference. 

TOY5: The bus station
Toy problem 5 focusses on creating geometry in the 3D field with 
topology optimization. A small bus station is created with a small waiting 
area for people to wait in. A bus station is chosen because it needs to 
have an open wall for passengers to enter the bus. This is a problem 
that is specific for 3D problems, as a section of this would not be able to 
generate in 2D. There is a distributed load on the roof (so that the roof 
is flat) and again, the ground counts as a support. In this toy problem it 
is important to create a working indexing system, that properly handles 
the voids. 

TOY6: A more complex house
The last toy problem combines all the previous toy problems together, 
in order to form a small house. The house is also made of clay and 
self-weight needs to be taken into account. No forces are placed on 
the design space, the algorithm should make the full geometry itself. 
No holes may appear in the roof. Lastly, windows and doors should be 
placed in the design as well, in order for the voids to be accessible. 
Whenever this works properly, variants of this toy problem can be 
created, for instance to access multiple floors, in order to research more 
into its architectural properties.

Figure 34: TOY problem 6

Figure 33: TOY Problem 5



39



40

Pseudocode 11: Accessing numpy in Grasshopper

>>>3.5 Solving the toy problems
This chapter will follow all the steps into developing (building) the 
algorithm so that it functions as the description in chapter 3.3 is met. 
Note that this is a process and the toy problems are merely the smaller 
steps to achieve the main objective. 

>>>3.5.1 Toy problem 1: The cyclist tunnel
The objective of this toy problem is to get the algorithm that Deetman 
wrote, running in Grasshopper and make sure we can edit the inputs. 
Chapter 3.2.4 already showed some changes that were made into the 
code in order to get it to run in Grasshopper. 

This script cannot function well in Grasshopper, because running this 
requires NumPy. This is a library that is not included in the Python that 
Grasshopper works with. Grasshopper uses IronPython, in which you 
can’t install other libraries like NumPy. There are only a very few ways 
to get around this problem and the most common one is to use a Proxy 
server. With these server NumPy is accessed from outside Grasshopper, 
so that packets of NumPy can be used. This is essential, as the NumPy 
library contains a lot of matrix transformations that are needed in 
topology optimization.

COMPAS is a library that is made for GhPython and includes such a 
Proxy server. A Proxy server is started by the following lines (COMPAS, 
2020):

This starts a local server that accesses NumPy for the duration of the 
script. When NumPy is only used once, XFunc is another function in 
COMPAS that does something similar as Proxy (COMPAS, 2020). But 
in stead of starting the server for the duration of the script, it starts it 
for each line. Therefore, Proxy is much quicker and easier to setup.   

Now that the script is working the toy problem can be solved. In order 
to solve the problem, first the inputs have to specified. To solve this 
specific problem the following values for the variables are chosen:

topop(nelx,nely,volfrac,penal,rmin) with topop(100,100,0.3,1.5,3.0)

This ensures that the design space will have 100 x 100 elements in the 
end result and this should give an accurate view of the generated 
design. The other values are standard values that are described 
in chapter 2. Another way to determine the elements is to draw a 
surface in Rhino and divide it into elements. This way, specific design 
spaces can be imported and a VoxelSize can be chosen. 

1 while (l2 - l1) / (l1 + l2) > 0.001:

2 lmid = 0.5 * (l2 + l1)

3 sdv = sqrt(np.abs(dc) / dv / lmid)

4 min1 = minimum(x + move , x * sdv)

5 x = np.where(voids , 0.001 , x)

6 xn = maximum(0, maximum(x - move , minimum(1, min1)))

Listing 12: Update lines

1 from compas.rpc import Proxy

2 ###As numpy is needed , we build a server that access numpy from

outside GHPython

3 np = Proxy(’numpy ’)

4 array = np.zeros (10 ,1)

Listing 13: 3D Objective and sensitivities

1 # SUPPORTS

2 dofs = np.arange (2*( nelx +1)*(nely +1))

3 fixed = []

4 counter = 0

5 for element1 in range(0,nelx +1,1):

6 node = int(element1 * (nely +1) + nely)

7 counter = counter + 1

8 fixed.append (2* node)

9 fixed.append (2* node +1)

10

11 free = np.setdiff1d(dofs ,fixed)

Listing 14: 3D Objective and sensitivities

Listing 15: 3D Objective and sensitivities

Listing 16: 3D Objective and sensitivities

Listing 17: 3D Objective and sensitivities

Listing 18: 3D Objective and sensitivities

4

Figure 35: Toy problem 6



41

Pseudocode 12: Configuring the ground as supports

The other needed inputs are the forces, supports and voids, which will be 
retrieved from Grasshopper. This allows for easy initialization and a way 
to play around with the algorithm. The nodes are placed in Grasshopper 
from the center point (0,0) and into a rectangle until the coordinates of 
(nelx + 1, nely + 1). It is important to note that ID of the node at (0,0) 
is not 0, but has the ID of (nely + 1). This has to be taken into account 
when doing any translation from and to Rhino geometry. 

To translate the forces to a vector, the user can take Rhino points and 
use these as an input. The coordinates of the point can be retrieved and 
translated in to the corresponding DoF, on which the force should be 
placed. Another piece of information is the direction of the force, this 
is performed by a vector with a True value when it is in this direction. 
A [1, 0] vector means vertical and a [0, 1] means horizontal. The same 
principle goes for individual support points. Figure 36 shows an example 
of a simple cantilevered beam that is created with supporting points 
and a point load. Another component is created in order to show where 
loads and supports are. This model is very important in later plugin 
development, chapter 3.6 will further go into this subject. 

Listing 14 also contains a simple way of showing the final generated 
geometry. The output of the algorithm, x¸ can be translated in a True 
and False list, which is True for each value of x over 0,3. When culling the 
initial geometry with this list, the generated geometry is received.

The toy problem states that the ground should be the full support of this 
tunnel, and foundations are made wherever needed. To do this, inside 
the algorithm the following lines are added: 

 #Setting floor as support
 allDoFs = arange(0::nDoFs)
 fixed = emptyList
 for element in range(0:nelx + 1):
  nodeID = element * (nely + 1) + nely
  fixed.addtolist(2*nodeID)
  fixed.addtolist(2*nodeID+1)
 freeDoFs = allDoFs.subtract(fixed) 

Each nodeID with the y-coordinate equal to nely+1 should be a 
support.  This is added as a possibility, so when the variable suppGround 
is equal to True, this is activated.

The last thing that has to be added are the voids, which should be 
created in Rhino. To do this, the design space is drawn as a surface and 
the outline of the void is drawn as a curve. The library Rhino.Geometry 
contains Curve.Contains(point), which returns True when the point is 
inside the curve. The following lines are added around the element 
creation from the lines at pseudocode 13.

Figure 36: TO in Grasshopper



42

Two arrays are generated, one with the nodeIDs of all the elements, 
and one with the nodeIDs of the voids. This second list works 
somewhat the same as Sigmund’s passive list, as shown in chapter 3.2. 
It is important to also cull the ID’s at the supports, as in the FEA these 
still count as supports. This is done with the lines:

 insideList = emptyList
 for element in allElements:
  currentPoint = rg.Point3D(xvalue, yvalue, 0)
  isInside = curve.Contains(currentPoint)
  if isInside == Inside:
   insideList.append(indexofPoint)

When all the elements above are added and the right inputs are 
given the following is the result. This is calculated using optimality 
criteria and shows the created geometry. It can be seen that the void 
is properly neglected and that around the force the geometry is 
present. It seems that it has properly transformed into an optimized 
geometry. 

The algorithm took around 4 minutes (using MMA) to get into the 
needed equilibrium (100 loops) and the graph at figure 30 shows how 
the compliance behaved in this process. As expected, this happens at 
a quick rate early on but slowly gets into very little differences. Further 
optimization and calculation time results are found in chapter 3.5.

Figure 37: Compliance over the 
iterations

Figure 36: Result of toy problem 1

Pseudocode 12: Get points inside curve



43

Lastly the models will be compared with another piece of software, 
in order to see if they are giving feasible results. The comparison is 
made with Ansys, an extensive program that includes static structural 
calculations, as well as topology optimization. As only the student 
license is available, the number of elements in this model is restricted. 
Because of this reason, the models can be a little inaccurate, but 
overall provide good reason of validating the results.

In order to solve these problems in Ansys, first the engineering data 
have to be initiated. In the toy problems always E-values of 1 are 
chosen and the same goes for variables like the volume and forces. 
Then geometry is drawn using SpaceClaim that corrospond to the 
design problem. In 2D problems, the geometry is drawn in the XY 
plane and no geometry is drawn in the Z direction. Then, the model 
is created by first meshing the geometry. The mesh is linear divided 
in a way that squares are created. If the license allows it, the mesh 
is divided in the same number of squares as there are number of 
elements in the problem. Eventually this gives the following results:

The first toy problem is shown in figure 37 and shows the result from 
Ansys, using the same geometry. A square is created with a hole for 
the cyclepath. The geometries are very similar and show the same 
behaviour. An A-shape is created with a hole above the design space. 
The ground shows a bit different, which is possible because of how 
Ansys defines the loads. Because the full surfaces of the design space 
are set as supports, the elements connected to these surfaces are 
automaticly rendered. The algorithm that is created does not do that, 
which results in this difference.

Figure 38: Comparison with the results (left) with a calculation made by ANSYS (right)



44

>>>3.5.2 Toy problem 2: The building
The second toy problem focusses on more complicate versions of the 
script that is created in 3.4.1. There are four main objectives that need 
to be solved in this toy problem. Area loads, more voids, complex 
design spaces and forces inside the design space. Implementing these, 
allow for more sections that make sense in architecture.

The methodology that was proposed in 3.4.1 for the voids seems to 
work as well for multiple voids. The only change that has to be made 
is that for each curve that is given as an input, all the points have to be 
checked. A very slight change to the line below has made, in order to 
ensure the possibility of multiple outlines.

 insideList = emptyList
 for element in allElements:
  currentPoint = rg.Point3D(xvalue, yvalue, 0)
  isInside = listOfCurves.Contains(currentPoint)
  if isInside == Inside:
   insideList.add(indexofPoint)

Complex design spaces are possible in this algorithm as well and 
require a smart way of dealing with this. The method that is used is to 
take the design space as a surface. The outer edge of this surface is 
treated like a curve and divided in points. The point with the highest 
x-coordinate and y-coordinate is chosen, and a rectangle is created 
with the size x + 1 and y + 1. This ensures the design space is fully in 
the new rectangle. Then, this rectangle is divided in elements, where 
elements outside the design space are culled. Another method is 
not viable, as the element indexes need to be in a form that matrices 
understand. Also, this is in the initializing phase and should not add to 
computational time.

 points = surface.outline.divideInPoints
 x, y = points.getPointWithHighestCoordinates[x, y, 0]
 designSpace = rectangle(shape=x+1, y+1)
 elements = designSpace.divideInPixels(x+1, y+1)
 for each element in elements:
  surface.outline.Contains(element)
  if isOutside == Outside:
   voidList.add(element)

Figure 39: Toy problem 2

Pseudocode 13: Get point in any curve

Pseudocode 14: Implement complex design spaces



45

Figure 41: Area load and voids in toy 
problem 2

Pseudocode 16: Implementation of floor forces

Figure 40: Area loads on a roof

Pseudocode 15: Area loads on a roof

Next area loads are added. A similar approach as with the ground 
indexing is used, where all the points are selected with the 
y-coordinate is equal to 0. It has to be noted that the first and the 
last node only get half the force. Also the force on each DoF should 
depend on the chosen size of the force, divided over all the elements. 
This can be done with the following lines to define the force: 

 forceValue = 0.01
 for roofelement in range(nelx + 1):
  nodeLeft = roofelement * (2* (nely+1)) + 1
  nodeRight = (roofelement+1) * (2* (nely+1))+1 
  f[nodeLeft, nodeRight] = forceValue / 2

Impementing the area load and the voids results in the geometry 
shown in figure 41. Lastly, placing forces inside the design space 
behave the same as area loads, but instead on them being on the 
roof, they exist on the element that is directly beneath a void. Each 
void can be assumed to be some kind of room and will deliver a force 
on the floor. The way to place these forces is to check all the elements 
that are voids and see if the next one (when counting from the 
bottom down) is a void as well. When that is not the case, the next 
element is always the floor of that void. An force is placed on each of 
the DoF’s corresponding to that element.

 #Voidlist contains indexes of the voids 
 forceValue = 0.01
 for void in voidslist:
 if void + 1 is not in voidlist:
   nodetopleft = xvalue * 2*(nely+1)
       + 2 * yvalue +1
  nodetopright = (xvalue+1) * 2*(nely+1)
       + 2 * yvalue + 1
  f[nodetopleft,nodetopright]= forceValue/ 2



46

All these changes are applied to a new design space, that follows 
the shape of the building as shown in figure 39. The voxelSize was 
increased to 2, in order to save some computational size. The design 
space that was created had a nelx of 100 and a nely of 150. All the voids 
are created in their own list and the forces are applied on their floors, 
as well as on the roof. Figure 42 shows the voids in the system and 
how they are placed. Finally, the calculation was made and the result is 
shown in figure 43. 

The final geometry clearly ignores the voids and no voids are filled. 
The roof clearly has an area force downwards and so do the voids. The 
final result has a clear vertical direction, which makes sense as there are 
only vertical loads. Especially the right voids starts to look like a section 
of an old church, with its high arch. Another architectural principle that 
is created is that of hollow core floors, especially on the bottom most 
void. In stead of filling in the area, holes are made in the floor in order 
to save material. 

Figure 43: Result of toy problem 2

Figure 42: Voids in the system



47

The second toy problem is shown in figure 42 and will be compared 
with the result of an identical design space in Ansys. In Ansys, a design 
space is created in the XY plane with identical dimensions and voids. 
The geometry is meshed into squares, with as much faces as the 
student license allows to have. The result of the Ansys optimization 
can be seen in figure 44.

Figure 44 shows that both geometries clearly represent the same 
solution. Both geometries have high arches around the voids and very 
similar shapes. The geometry that was generated in Python seems 
tho have rounder arches above two of the voids. The main difference 
is to be seen in the left corner, where the algorithm removes material, 
while Ansys doesn’t. This probably has to do with the way Ansys 
registeres supports, where a voxel that is registered as support always 
gets material. Interesting is also that both geometries include the 
hollow core floors, which is remarkable.

Figure 44: Comparison toy problem 2 with ANSYS



48

>>>3.5.3  A small earthy house
The house exists of one space with very few constraints, there are no 
windows or doors. The only constraints that are important is that the 
ground counts as a support, there is self-weight and the void should be 
closed off at the top. Implementing self-weight is the main issue of this 
toy problem and should be fixed in this chapter. 

Chapter 2.6 explained why selfweight is quite hard to implement, 
because a new variable arises. Placing an element will no longer 
influence the stiffness positively, but can also increase the compliance. 
A few things have to happen in order for this to work and this is shown 
by a simple example of this design space. Figure 45 shows the design 
space without self-weight. Self-weight can be defined as a force that 
is placed on each element that exists, shown in figure 46. Or in other 
words, the value of x multiplied by some factor. This is described by 
Bruyneel & Duysinx as the following (Bruyneel & Duysinx, 2001):

fi,j = xi,j   ag   Vi   /  4

Where the bodyforce f is equal to the density of an element, multiplied 
by a factor a, which determines the strength of the selfweight. This 
should be dependent on the total volume. This is multiplied by the 
volume of the element V, which in this case is equal to 1. This force is 
divided by the 4 nodes and placed on the vertical DoF. In this research 
the force on each node is defined as: 

fi,j = xi,j   selfweight / 4 

To determine the selfweight forces, a selfweight value is calculated, 
based on the function that Bruyneel and Duysinx created. This 
selfweightfactor a is divided over the nodes that are corrosponding to 
the vertical DoF’s. These vertical DoF’s can be retrieved from the matrix 
edofMat, created in pseudocode 3. From this matrix, only the even 
indices are taken, to only take the vertical DoF’s, creating the matrix 
yVertedOf.

Figure 47 shows the result when applying the selfweight directly on 
the algorithm, without a threshold. In iteration 1 all the values are 
given the value volfrac, and will generate selfweight. These selfweights 
will combine and create this a result that looks more like a forest. To 
counter this, values that are closer to 0, should be penalised in order 
to not to gain selfweight, where values closer to 1 should create 
selfweight.

Introducing the selfweight in equation [21], the density is powered with 
a penalisation power, xself. 

fi,j = xi,j 
p
  selfweight / 4

Figure 46: Selfweight on an element

Figure 47: Selfweight without a 
threshold

Figure 45: Toy Problem 3 [19]

[20]

[21]



49

Pseudocode 17: Derivative of selfweight

Several calculations show that even with a very high p, the result 
is not ideal, and the tree effect still happens. This is due to the fact 
that the optimizer will try to set the value of the density so, that the 
selfweight is minimized. It will choose the densities to be grey, in stead 
of black and white. Even with a p = 99, the optimizer will always try 
to find grey densities, as this will significantly lower the compliance. A 
solution was found in the use of an heaviside smooth function (Huang 
& Deng, 2018):

This function returns a 1 for all the values that are larger than a, while 
returning a 0 for all the values smaller than this mark. Calculating this 
value for all the values of x will return a rounded value that is either 
0 or 1. When multiplying this with the selfweight value, the selfweight 
can be calculated. In this function, the value of s is the slope, in 
which a smaller number equals a more steep slope. But just as the 
power function, putting this into the sensitivity is not preffered, as the 
optimizer will choose grey values. 

When the forces are applied to the DoF’s, the sensitivity has to be 
adjusted. Chapter 2.6 showed a new sensitivity in order to solve self-
weight problems. This sensitivity is now:

This new sensitivity exists of the displacement vector and the 
derivative of the force, that is caused by the selfweight. Eq. [20] shows 
that this force is the density, multiplied by some constant factors. 
As we need to find the derivative of F over x and the smooth step 
function is not taken in the sensitivity, the derivative of [17] is equal to:

Where dF/dx is a vector with selfweight / 4 on all the vertical DoF-
indexes, as selfweight can only occur in these vertical DoFs. This is 
very easy to create using the following line, where swfactor is a user 
input:

 selfweightvector[1::2] = swfactor/(volfrac * n)/4

Lastly it should be important to note that MMA has to be used when 
solving self-weight problems. OC can not handle non-monotonous 
functions and is therefore not usable. Looking at the vector that is 
created at pseudocode 17 it can easily been seen that result of a 
multiplication with the displacement vector can result in positive 
values. Therefore the whole senstivity can result to be positive.
 

[22]

[17]

[18]

xrounded =
1

2

1

π
arctan(

x− a

s
)

C =
∑

nele

xe − U
T

e
KeUe − 2UT

e
Fe

Ce

xe
= −pxp−1

e
− UT

e

δKe

δxe
Ue − 2UT

e

δFe

δxe



50

In the algorithm the calculation of the selfweight is performed in the 
beginning of the main loop. It forms the basis of the force vector, 
where any preset forces are added right after. Pseudocode 18 shows 
this and also shows that it is necessary to reset the force vector each 
iteration, as all the values change each iteration. Any preset forces will 
also be added in this position in the iteration.  

 selfweightvector[unevenIndexes] = swFactor / (volfrac*n*4) 
 start iteration:
 f[all] = 0
 xrounded = smooth_step(x)
 f[verticalDoFs] = xrounded * selfweightvector
 f[presetIndex] = valuesOfF
  
 U = solve(K,f)

 optimize the system 
 

An important note that has to be made is that in this research precise 
and validated results are not calculated. This research is mainly 
focussing on shape generation and could give a basis for these results. 
It is important to balance the factors of the selfweight, there should be 
a logical relation between all the forces. By default these forces are now 
put on balances values, chapter 3.9 will futher discuss how to handle 
these factors and user inputs.

Results 
This page contains some of the results that are created with the 
implementation of selfweight in the algorithm. It is important to first 
check if the algorithm works with different amounts of elements, 
volfracs and placement of loads and supports.

Figure 48 shows a standard beam that was introduced in toy problem 
1, which is a cantilevered beam with a force going downwards. Jain 
& Saxena preformed topology optimization on this beam and their 
results will be taken as validation to check if the result is believable. 
In their research, the effect of selfweight on topology optimization is 
researched, mainly towards the size of this selfweight (Jain & Saxena, 
2018).

Comparing the result for the cantilevered beam, the result that was 
gotten shows great similarity with the result of Jain and Saxena. Both 
show a V in between the supports and similar shapes towards the 
force. Small differences are probably caused by the difference of the 
amount of elements. Also the beam, shown in figure 47, is compared 
with Jain and Saxena, and shows similarities. The shape is very similar 
and shows identical properties. A central, thicker, V-shape is generated 
which is the basis of the beam. The outer geometry is thicker as well, 
with thinner trusses in the middle.

Figure 49: Result of the same beam in 
this algorithm

Figure 48: Conditions and result of the 
beam by (Jain & Saxena, 2018)

Pseudocode 18: Implementation of selfweight in the total algorithm



51
Figure 52: Result of toy problem 3 Figure 53: Ansys analysis of toy problem 3

Figure 51: Selfweight over iterations

Figure 50: Selfweight in a beam

Figure 50 shows the result for this toy problem. It is fully placed on the 
ground as was the case with this toy problem. The force is placed on 
DoF [10363] (presetIndex), which is right above the void. The ratio 
between the force and the selfweight is 1:4, or when looked at the 
pseudocode the swFactor is 4 and the valuesOfF is 1. 

Figure 52 shows the result of this calculation, using these variables. 
The result looks a lot like a catenary curve that divides the force over 
the possible supports. This makes sense, as this probably results in 
the lowest amount of stresses. Towards the top of the void, the shape 
seems to follow a catenary curve, or at least a close approximation of 
this. Above the void, a triangle is created in order to divide the force 
evenly to both the sides. As the selfweight in this triangle is way lower 
than the force F, it looks like the selfweight has much less influence, 
resulting in a more straight “cap” on the shape.

The graph in figure 51 shows the compliance over the iterations and 
shows how the solver handles the non-monotonous problem. The 
graph follows the shape that was predicted in the paper by Bruyneel 
and Duysinx, which is also shown in the figure (Bruyneel & Duysinx, 
1997). Implementing a more complex system of optimizing the system 
could increase the speed of the algorithm. The result should not 
change much, therefore this results is considered as sufficient. 

Also an analysis is performed on the shape in ANSYS, calculating 
von Mises stresses and strains in the system. Note that the shape 
as shown in figure 53 has been simplified into a single surface and 
some inaccuracies exist. The result of the calculation shows that the 
triangle on top is most vulnerable for the forces, which makes sense, 
as this is not following the catenary curve.  The beam in between has 
most of the stresses and its deformation causes stress in the rest of 
the geometry. Because of the force, the geometry is not optimal and 
it would be beneficial to figure out how to generate geometry only 
based on selfweight.   



52

>>>3.5.4  The igloo
The main problem when only using selfweight is the initial shape. 
On iteration 0, all the values are 0,3 and will remain that, as there is 
nothing to solve. When there is 1 force, there is a solution to the system 
and there is something to optimize. When there is only self-weight 
this is way harder to solve. In buildings, usually the forces on floors 
will make sure there are forces to calculate with, but this toy problem 
doesn’t have those. Another constraint has to be used, where the roof 
could be this constraint. When the void is placed, it has to have a roof 
over it, otherwise it will not be optimal. This will not change in any 
iteration, so it is important to keep checking if there are holes in the 
roof. 

As MMA is used, another constraint can be added that the optimizer 
has to take care of. This constraint is developed following the guidelines 
of M. Langelaar (Langelaar, 2020). To check if the roof has holes, the 
sum of all the elements above all the voids should be larger than 1. In 
that case, it can be assumed it has a roof and this is preferred by the 
optimizer. This can be rewritten as:

for all columns where a void exists. If the set of columns with a void is 
written as K, [24] can be rewritten as a constraint function, g:

Using a n-number of constraints is not preferable for the optimizer, 
so all the constraints are combined in a KS function. This function 
combines several constraints and translates them all into one 
constraint. This means that when all but one constraint are fulfilled, 
the function will still output the failed constraint. This ensures that all 
constraints are met and a proper output is given. This KS function looks 
like the following (Martins & Poon, 2005):

Where P is a factor that approximates the accuracy, chosen to be 10. 
Implementing this constraint in the MMA optimizer is very handy 
and not hard to do. Until now, the main constraint was the volume 
constraint, which was given as input fval to the optimizer. Now this 
fval becomes a column vector with the volume constraint and the 
roofconstraint.

To properly implement the roof constraint further, the sensitivity of the 
constraint, dfdx, has to be added. This sensitivity of [24] can be written 
as: 

[24]

[25]

[26]

[27]

[28]

∑

(xk,i) ≥ 1

gk = 1
∑

columnk

xk,i

gk ≤ 0 k ∈ K

KS(x) =
1

P

ln(
∑

k∈K

e
Pgk) ≤ 0

δgk

δxk,i
= −1



53

The sensitivity of [28] can be rewritten as:

Combining these 2 sensitivities will give (Langelaar, 2020):

Equation 29 shows the final sensitivies for all the elements that are in 
a column with a void in it, as K is a list of all the columns with voids in 
it. For all the other elements the sensitivity is 0, as there is no void in 
the column, and therefore no roof has to be placed. 

Implementing this sensitivity in the MMA optimizer follows the same 
procedure where dfdx is concenated into a column vector. Getting 
these senstivities in the algorithm follows the following pseudocode: 

 voidcolumns = columnindex(sum(voidsMatrix)>1)
 invertedarea = 1 - voids[voidscolumns]

 epgk = e ^ (10 * sumofcolumns(x ^ p))
 gcolumns = np.log(sum(epgk))/10

 dcroof = epgk / gcolumns
 dcrc[voidcolumns] = tile(dcroof, nely) * invertedarea
 

A matrix with 1’s at the void-indexes is summed up around its 
columns. When that sum is at least 1, it means a void exist and its 
column is added. Then the inverted area is created with a value of 1 
above the voids. After dcroof is created, the values are tiled vertically 
and multplied by the invertedarea, in order to set the value to 0 at the 
voids. A penalization power has been introduced as well, in order to 
filter out low values summing up to be more than 1. For clean results 
a value of p = 5 is chosen. 

Figure 54 shows the algorithm running at iteration 11 and shows how 
the optimizer doesn’t see a proper roof and adds values above the 
voids. A large square above the void is definitely not optimal for the 
optimizer, so it shrinks it. Finally, the result is shown in figure 55, which 
is at iteration 498. The only force in this system is the selfweight and 
a result is retrieved, which was the goal of this implementation. It 
looks very dynamicly relaxed, but is very thin, as the least amount of 
material causes the least amount of forces and displacements.

[29]

[30]

[31]

δg̃

δgk
=

1

P

1
∑

k∈K
ePgk

PePgk =
ePgk

∑

k∈K
ePgk

δg̃

δxk,i
=

δg̃

δgk

δgk

δxk,i
= −

ePgk

∑

k∈K
ePgk

δg̃

δxk,i
=

{

if k ∈ K :− e
Pgk

∑

k∈K e
Pgk

if k /∈ K : 0

Pseudocode 19: Calculation of the roofconstrain (gcolumns) and its sensitivity (dcrc)

Figure 54: The roofconstraint working 
on iteration 11

Figure 55: Final result roofconstraint



54

One key element to igloos and buildings overall, is the existence 
of a snowload. Each building will have a force on its roof, which is 
dependent on the shape of the roof.  When a roof exists, the top 
voxel should gain an extra force. Or in other words: if the sum of the 
values above an element, including the element, is equal to 1, then the 
element will gain a new force. First a new function, y, is created that is 
the sum of values of a column (Langelaar, 2020):

 
 
Now, only values of y that are 1 should return 1, values larger or 
smaller should return a 0. Values that are nearly 0 or values that are 
e.g. 0.2 should be neglected (as they are not a roof ) and therefore a 
penalization power will be implemented, just as with the constraint. To 
also counter this, the load will be divided over elements with y values 
of 0.5 < y < 1.5. The optimizer will then prefer single elements over 
multiple elements, which will result in a more black/white roof. Figure 
56 shows as system with certain densities, which result in a grey roof. 
Figure 57 are the y values of the elements, according to equation 31, 
resulting in 3 elements that have values in the range 0.5 < y < 1.5 and 
therefore will recieve the snowload. 

This is not optimal, so the optimizer will try and reduce the amount of 
elements that will receive the snowload. To do this the sensitivity of the 
sum of elements is needed. First a function needs to be found that sets 
the y values to 1 between 0.5 < y < 1.5.

In order to pursue this two smooth-heaviside functions are used, to get 
the graph as shown in figure 58. Values from 0 > 0.5 and larger than 
1.5 will result in a 0. The function will look like this (Langelaar, 2020):

 
SH is the smooth-heaviside function which can be written as (Huang & 
Deng, 2018):

or together:

Where s is the slope of the step, which is chosen at 0.01, in order to get 
a very steep step. This graph is plotted at figure 58. When calculating 
the example of figure 56, the values turn are calculated in figure 57. 
Three values turn into 1 and will therefore get a force on its vertical 
DoFs. 

[31]

[32]

[33]

[34]

yi,j =

nele
∑

k=j

x[i,k]

xi,j yi,j

0 0
0.01 0.01
0.1 0.11
0.4 0.51
0.4 0.91
0.5 1.41
0.8 2.21
1 3.21

SH(yi,j) dfdx

0 0.011
0 0.011
0 0.077
1 15.9
1 0.011
1 -0.4
0 -0.007
0 -0.007

Figure 56: Example for snowload

Figure 57: Example for snowload

Figure 58: Smooth step function

f(y) = SH(y − 0.5)− SH(y − 1.5)

SH(x) =
1

2
+

1

π
(arctan(

x

s
))

f(y) =
1

π
(arctan(

y − 0.5

s
))−

1

π
(arctan(

y − 1.5

s
))



55

To calculate the force for Fe, the maximum snowload for each element 
is divided by 4 and then placed on the DoFs. For the element the 
force is: 

For an element the total force that is playing can be noted as follows: 
 

Where Fpreset is both the preset point and roof loads. In order to 
calculate the compliance, the total force, Fe, has to be taken. This is 
easy to compute as it is the sum of all the other forces in equation 
[36]. It is important to look at the sensitivities, as this is less easy.

Fpreset is not dependent on x and therefore the derivative of Fpreset is 
0. The derivative of Fselfweight has been calculated in the previous toy 
problem. The derivative of Fsnowload has to be calculated as well. The 
derivative of the snowload can be written as: 

Or in other words; the value of dydx is 1 when the sum of elements 
above the element (excluding the current element) is smaller than the 
element itself. Using this, only values that are above the roof are given 
a sensitivity and generated geometry cannot . The second piece of 
the derivation is:

This is implemented in the system, together with the roofconstraint 
and the selfweight. It is expected that the geometry is a bit thicker, as 
result of the selfweight problem was to add less weight and follow the 
catenary curve. Figure 59 shows the final result that was generated 
including the snowload. The result looks very similar in shape as 
compared with figure 55, but there is an obvious increase in volume. 
The arch still looks a lot like a catenary curve, but is flattened out a 
bit. The final compliance is a bit higher than expected, which is due to 
scattered material in the void. The following page will contain some 
analysis on the results.

[35]

[37]

[38]

[39]

[40]

[36]

Fnodesof [i,j] =
snowFactor

4
f(y[i,j])

Fe = Fpreset + Fself + Fsnow

δFe[i,j]

δx[i,j]
=

snowFactor

4

δf

δy[i,j]

δy[i,j]

δx[i,k]

δy[i,j]

δx[i,k]

{

1 k ≥ j

0 k < j

δf

δy[i,k]
=

δHS

δy
(y − 0.5)−

δHS

δy
(y − 1.5)

δf

δy[i,k]
=

100

(π ∗ (10000 ∗ ((y[i,k] − 0.5)2) + 1))
−

100

(π ∗ (10000 ∗ ((y[i,k] − 1.5)2) + 1))



56

First the result of the selfweight is exported to Rhino and an average 
surface is made by using the control point curve. This surface is 
then exported to Ansys and placed in the XY plane. In the model is 
meshed using linear meshing and fixed supports are added. Lastly 
the global gravity is added and because Ansys needs at least 1 force, 
a force is place with a very small value on the top of the arch. The 
calculated stresses can be seen in figure 61, which are actually quite a 
few. Especially halfway the arch, quite large stresses arise, which leads 
to some deformation of the arch. This is explainable by the fact that 
the algorithm will try and find the absolute lowest compliance, which 
is found at the lowest force. So minimizing the material in a way that 
almost no forces exist anymore, is a valid solution, but might not be 
realistic. To make the arch a bit more realistic, the snowload is added.

The result of adding the snowload results in more material and a 
thicker construction. As there are now extra loads that can play on the 
system and this requires more material. Having to carry a load with 
little material will result in a higher displacement. As the displacement 
is directly influencing the compliance, this is very bad for the system. 
The result shown in figure 62 only adds around 1/16th of the total 
selfweight, which seems realistic to real scenarios. 

It has to be noted that figure 62 has been slightly modified, as there 
was a lot of scattered material in the rest of the design space. When 
all the elements with an density higher than 0.8 were chosen, figure 
62 was the result. Also, the snowload seems to behave very weird 
with certain values of snowFactor and often resulting in a very bad 
solution.

Figure 60: Result of adding selfweight Figure 61: Stresses in the result

Figure 62: Shape under selfweight and 
extra forces



57

>>>3.5.5 The bus station
Now that the possibilities of the 2D algorithm is tested and developed, 
the algorithm is translated into 3D. Chapter 3.2.3 already summarized 
the changes that Liu and Tovar made in their paper, in order to write a 
Matlab code. This chapter will further elaborate on these changes and 
the next will discuss the implementation of selfweight and snowload as 
well. Working with this algorithm is more tricky, as test could take very 
long. During the development also some optimization was performed, 
of which the details can be found in chapter 3.7. 

The first step in order to retrieve useful results is to translate the basic 
script, that was used in TOY-problem 1, to 3D. Liu and Tovar (2014) 
wrote a translation of this code in MATLAB and together with the 
developed code, based on Deetman (Deetman, 2019). Overall can 
be said that the algorithm functions the same way and 2D arrays are 
made 3D. The main difference between the two translations is the 
indexing system, which is key to solving 3D problems. 

The basis of this indexing system is the way that numpy.reshape 
handles the translation from a vector to a 3D array. Following this 
indexing method is the most convenient and fastest way to translate 
the many vectors that are used in FEA, to the 3D field. Figure XX shows 
how the translation from a vector to an array is made and the result of 
the numbering. Chapter 3.2.3 discussed how Liu and Tovar solved most 
of the indexing issues, and how the translation to Python was made. 

Configuring the inputs correctly is essential into getting good results 
and later on further developing the algorihm. The loads and supports 
will be configured the same way as in 2D topology optimization, where 
a force-vector is created and fixedDoF-vector. The force vector will 
contain values of 1 at the DoF where force is placed. A force can have 
all the directions, but usually only vertical forces are used. The same 
goes for the loads, which are configured as in 2D. The formula for 
calculating the corrosponding DoF is done as follows:

nodeID = z*(nelx + 1)(nely + 1)+ x(nely + 1)+ nely-y

The DoFs can be retrieved and follow the following table. 
Direction DoF-ID
X 3 * nodeID+1
Y 3 * nodeID
Z 3 * nodeID-1

Using these vectors, the first algorithm can be tested with some values 
comparing with the results that Liu and Tovar created. Figure 64 shows 
a simple beam with a single force and the 4 lower corners as supports. 
It looks to be a very stiff and is very believable to be an optimized 
beam.  

Figure 64: 3D beam using TO



58

The next step is to implement the voids and area loads, as was also 
performed in TOY problem 2. After the system is optimized by MMA, 
the element density is a vector with the length of nele. Because of 
this property, a list of voids can be created (in Rhino) and imported 
in the algorithm. In Rhino it is important to follow the same indexing 
order to check if a point is inside the chosen void. The following 
pseudocode shows the proper order:

 voidList = [ ]
 for each element in the designspace:
 isPointInside = void.contains(element) 
 nodeID = yvalue*((nelx)*(nely)) + xvalue*(nelz) 
     + (-nelz + nely)-1
 if isPointInside == True:
  voidList.addtoList(nodeID)

The output of this algorithm is a list of nodes that will be implemented 
with the following lines in pseudocode 21. This is identical to the 2D 
solution for voids.

 voids[voidslist]=1
 where voids = 1, x = 0.001
 else: x = x   

The following pictures show some 3D examples of geometry, using 
voids inside the designspace. Figure 65 shows a cantilevered beam 
with a round void in the middle of the beam. Figure 66 shows some 
exploration that was done with a small house, to figure out how doors 
and windows could work. 

Pseudocode 20: Creating list of voidIDs

Pseudocode 21: Setting voids to the minimum values

Figure 65: Voids in a cantilevered beam

Figure 66: Example of voids being used as doors and windows



59

In order to further develop architectural geometry, area loads have 
to be added. Implementing area loads follow the same rules as in 2D 
and the same procedure. Of all the void groups, the values with the 
lowest Y-coordinates will be selected and their bottom nodes retrieved. 
A force is placed on all the vertical DoFs. In order to check if the area 
load is applied correctly, a roofconstraint is applied on a design space 
with a size of 3:1:10 (y,x,z). The supports are placed somewhat like the 
QNCC in Qatar, which is the largest building created with Topology 
Optimization (Naboni, 2018). 

It can be seen that the roof correctly takes the area load, as it is 
distributed over the full roof. This leads to a thick slab under the load, 
which is comparable with figure 67. Two supports were set and from 
there two arms arise. Both are symmetric, which makes sense as the 
whole system is symmetric. As the QNCC has many more variables and 
another way of calculating, the shape is different. But overall the shape 
is very simililar.

Lastly, all previously described additions of the algorithms are 
combined in order to design a small busstation with it. The supports 
are set to the full XY plane and void is added on the side of the design 
space. Above the void, at Y = nely, an area force is placed that will act 
downwards on the void. This force can be seen as a temporary roof 
constraint. Figure 69 shows the final result from the front side, where 
figure 70 shows a section. The force is distributed very interestingly, 
which the section shows clearly. One array of columns takes the force 
to the outer edge of the design space, while the other goes inwards. 
Figure 69 shows that behind the void, this is also shown. Also above 
the void, no material is placed directly, which saves a lot of material. 
Lastly is it interesting that the front is generated, but only as a sort 
of fake facade. Most likely forces close to the front edges will be 
transferred in this piece of geometry

Figure 66: Example of voids being used as doors and windows

Figure 67: QNCC, worlds largest TO
building

Figure 68: Comparable design using 
this research

Figure 69: Front of the busstation design Figure 70: Section of the busstation design



60

>>>3.5.6 A small house
In this last TOY problem selfweight, the roofconstraint and the 
snowload are introduced to the 3D algorithm. All of them will follow 
the same theories that are described in toy problem 3 and 4, this 
chapter will discuss the implementation and its outcomes and 
limitations. 

First the selfweight is introduced, following the same formula as in 
chapter 3.5.3, equation [21]. Note that the force is divided over 8 
elements in stead of 4. The density is, just as in 2D, a 1D vector and 
adding selfweight isn’t that hard because of this reason. Finding the 
derivative of the selfweight also follows chapter 3.5.3, as the derivative 
of the compliance is:

 

Where dFdx is a vector with the selfweight on its vertical DoFs. The 
only change that has to be made is to create a vector with every third 
value of the selfweight:

 selfweightvector[1::3] = swfactor/volfrac*nele/8

Figure 72 shows toy problem 5 with selfweight, which shows a very 
comparable geometry as in the toy problem. The main difference in 
the front is that a lot of unnecessary densities are removed an the 
whole building has become a lot more round and organic, which is 
shown in figure 73.

Secondly the roofconstraint is implemented, in order to not need 
preset forces anymore. Due to the numbering and indexing of 3D, 
the method that was created in TOY problem 4, isn’t usable anymore. 
Mathemetically, the constraint is the same as in 2D:

 

Due to the numbering of the 3D space, x can only be reshaped 
into a nely,nelx,nelz array, in order to keep all the values at the right 
space. Where previously a list could be made of the columns, now 
this list is an array. Due to this being much harder to implement, 
another approach is taken. A new matrix is created with the shape 
nely,nelx,nelz, which is called aboveVoid. This value contains values of 
1 directly above the void, and 0’s elsewhere. Using this matrix values 
outside this area can always be set to 0. Pseudocode 22, on the next 
page, shows how it is further performed.

Figure 72: The busstation under 
selfweight

Figure 73: The busstation 
under selfweight

Figure 71: TOY Problem 6 Ce

xe
= −pxp−1

e
− UT

e

δKe

δxe
Ue − 2UT

e

δFe

δxe

[27]KS(x) =
1

P

ln(
∑

k∈K

e
Pgk) ≤ 0



61
Figure 75: A void with door and window under selfweight Figure 76: Section of figure 74, showing the dome liks structure

Figure 74: Above the voids the 
roofconstraint is set

Pseudocode 22: 3D roofconstraint and its sensitivities

invertedVoids = 1 - voids
voidColumns = tile(bottomOf(voids), shape=nely,nelx,  
           nelz)
onesAboveVoids = invertedVoids * voidColumns
#Calculate constraint and sensitivities 
epgk = e ^ (10 * (1 - x ^ p))
gcolumns = log ( sumAll(epgk)) / 10

#Construct final matrices
repeatDc = repeat(epgk / gcolumns, amount = nely)
dcrc = repeatDc * onesAboveVoids

Implementing the constraint decreases the speed of the algorithm 
significantly. Therefore, the constraint factor has been lowered to 
0.001, as it seems to still provide believable results. Figure 74 shows a 
design space where the constraint is in function.

Combining selfweight and the roofconstraint will lead to a design, 
whenever at least a void is placed. Assuming that the supports are the 
vertical DoFs in the entire XY plane, the roofconstraint will fill up the 
area above the voids. The next iteration, this filled up area will gain 
selfweight and this is processed to the supports. This should result in 
an, as much as possible, compression only building. 
 
Lastly the snowload is added, which causes more calculations to 
be made and an even slower algorithm. Due to the fact that a 
high resolution is preferred over the existance of snowload, further 
calculations don’t include the snowload. Implementing the snowload 
will follow the identical steps as in 2D, where it is important to take the 
sum of the elements over axis = 0. 



62

>>>3.6 Architectural implementations
In this chapter the 3D algorithm is taken and several inputs are 
explored. The inputs, mainly consisting of voids and forces, are 
configured in a way that represent architectural cases. Voids are 
considered as living spaces, doors and windows. This chapter will 
provide insights in how these shapes are generated and what is to 
learn from them
 
A small house: 
The previous page already showed the house that was generated using 
a void with two extruded voids, functioning as a window and door. The 
final result can be seen in figure 75 and 76. Figure 75 shows the overall  
shape of the building with the colored voids. As the middle void was 
quite small in comparison with the design space, the window and 
floor are quite long. The door has become a small hallway, of which 
figure 77 is a small detail. The outside shape shows and arch shape but 
probably due to the square shape of the void, the inside looks quite 
sharply cut off. The inner section of figure 76 shows that around the 
entry to the window, and extra arch seem to be placed. This shape 
seem to have an arch on the inside, but the resolution of the voxels is 
too low to conclude from this. Also the section shows that the hallway 
is quite shaply cutoff, but in the beginning some arch is formed. The 
results shows that cubic voids are not ideal, as also the edges of the 
voids show by cutting through the dome. A wall constraint could be an 
option, but will mostly decrease the strength of the building. Masonry 
building doesn’t go well together with cubic shapes.

The section in figure 76 does also show the overall section of the 
building, which represents the shape of a dome. As domes are usually 
constructed for compression only masonry buildings, this is a quite 
interesting result, which shows that the algorithm gives quite reliable 
outcomes. 

Figure 75: A void with door and window under selfweight Figure 76: Section of figure 74, showing the dome liks structure



63

Domes and arches are very interesting architectural elements as they 
are used for so long and still today many buildings are built using 
them. In compression-only buildings, they are the key element in 
making roofs and often are really beautiful. 

To futher research the creation of domes in topology optimization, 
a dome is generated with a higher resolution, namely 50x50x30. A 
higher resolution will better show how generated domes could look 
like and how they could be the output of this algorithm.

Figure 78 shows the section of the dome which looks very convincing 
the shape of a masonry dome. The critical point is where the squared 
void touches the dome and cuts a bit in the domes shell. The 
thickness of the structure is only 1 voxel at this point which is probably 
a very poor structural design. The geometry seems to counter this by 
having a mainly vertical direction in this area and the beam staying on 
roughly the same column. 

The geometry can be seen as two parts, the columns on all of the 
sides and the dome on top of the void. Due to the shape of the 
square, the columns are parrallel to the void, which is unusual for 
domes. Usually on the corners these columns are placed and the 
areas parrallel to the shape are offset much more than in this case. 

The dome above the void is octogonal and looks in section very 
much alike regular domes. The gradient is very similar to known 
architectural examples. The geometry follows rules of masonry 
building, but with the limitation of rectangular voids, domes aren’t 
generated in an optimal shape.

Figure 78: Octogonal pattern in the big dome Figure 79: Perspective of the dome, showing the columns 
parrallel to the void

Figure 77: Section of the larger generated 
dome



64

A 2 story complex house 
To explore the extents of the algorithm, a complex house is analysed. 
The design, shown in figure 80, is developed by Ivan Avdic (2019) and 
gives several difficult to solve problems in one design. The design 
space exist of a rectangle that represent a two story house. The bottom 
floor has two rooms, of which one is extracted to the roof. Above the 
other void is another story, which is accessed by a gallery with a stairs. 

Challenges in this design are the proper configuration of the voids, the 
forces that raised voids have, the difference between stacked voids and 
extruded voids and the implementation of the doors. Overall, it is an 
complex building that when solved, should prove that the algorithm 
works sufficiently. 

Using an area load on the roof will give the result as shown in figure 
83. All the voids are configured correctly and the main force, the area 
load, seems to be transferred correctly to the ground. The sides of the 
design, as seen in both perspectives, look optimized for the force. In 
the outer walls holes appear where no material is needed and in the 
large void no facade is placed. This makes sense, as it is more optimal 
to combine the load from the roof and try place it on two walls in stead 
of 4.

Sections show that voids are properly placed and the hallway is cut out 
properly. Doors inbetween voids are also left open and even are higher 
than needed. Below the hallway the design space is empty, but this is 
optimized by culling out material. For the voids on ground level, this 
cull is half a dome, which makes sense as selfweight is implemented in 
the design. 

The main problem in this design is the area load, as it is place just right 
above the voids, resulting in a flat roof. This is not optimal, so this area 
load is replaced with a roofconstraint.

Figure 80: Configuration of a 2 story 
complex house

Figure 81: Section through the 2 
stacked voids

Figure 82: Section through the large 
void

Figure 83: Perspective of the complex house Figure 84: Perspective of the back of the complex house



65

 
Implementing this roofconstraint follows the steps explained in toy 
problem 6. Figure 87 shows the perspective of the resulting geometry, 
which seems to follow the voids properly. The stair is generated 
according to the void, shown in figure 86, and also the hallway is 
placed correctly. The force above the hallways seems to have been 
incorrectly, as a flat roof is built and this roof is pushed through the 
space above the void. This inaccuracy can also be seen below the 
hallway which seems to not be optimized. This is most likely caused 
by how the roofconstraint is calculated and that raised voids arent 
calculated properly. Nevertheless all the voids have a roof over its 
elements so the roofconstraint is fullfilled.

When looked at figure 86 and 87 all the voids have a roof above them 
and they are shaped as small domes. This is to be expected, as this is 
mean to happen. One constraint that has not been implemented is 
a roof constraint, which is clearly shown around the larger void. Not 
placing any walls is good for the volume and the forces seem to be 
transferred through the sides of the voids. A wall constraint could be 
implemented, but this shape is technically sufficient. Therefore, a wall 
can be placed, but doesn’t need to be load bearing. Material wise, it 
could be even a large window. 

Figure 85: Section of the design

Figure 86: Section of the stair and 
hallway

Figure 87: Perspective of the complex house with roofconstraint



66

Haus am Horn 
To see how the algorithm compares with architecture and to answer 
the question “How can topology optimization transform the design 
process of masonry buildings, particularly their configuring and 
shaping processes?”, an architectural example is analysed. 

The Haus am Horn, designed by Georg Muche, is a modern villa that 
is an example of Bauhaus. The building exists of one main living area 
which is raised an higher than the other rooms. Around the living area 
some smaller areas are placed with doors inbetween them. Figures 
89 and 90 show the voids and the doors in the design space. In the 
design space no forces are placed, only the roofconstraint is placed 
on the voids, which should result in a final shape. 

Figure 91 shows the final calculation, which shows all the walls being 
filled with elements and smaller domes on top of the rooms. The 
rooms being filled is also shown in figure 92, which shows a plan view 
of the building. Doors are implemented and show small arches above 
them.

Looking at the sections again it can be seen that domes are created. 
The larger and middle room is generated as a large dome and the 
much smaller rooms are arches (in figure 93) and in the corners they 
are domes (in figure 94). Overall, the modern look has been replaced 
by domes and a much larger overall shape. The layout of the design 
is intact. The overall shape could be improved by changing the voids 
to non cubic shapes.

Figure 88: Haus am Horn

Figure 89: Void in the design space

Figure 90: Doors in the design space

Figure 91: Perspective of the shape



67

Figure 92: Perspective of the shape

Figure 93: Section through the middle void

Figure 94: Section through the front voids



68

>>>3.8 Code optimization
Optimizing the code is essential in order to get this algorithm to work 
in Grasshopper. Grasshopper is more sensitive for bad written code, 
so increasing computational time is key in order to succeed. The 2D 
code works quite good, as the computational time for quite big design 
spaces are quite good. The 2D code is very efficient, mainly using 
matrix multiplications and the smart use of sparse matrices. Mainly the 
3D algorithm is very slow, which asks for optimization. This chapter 
handles this optimization and how this could work more efficient.  

In order to check the time each line takes, a profiler is used. Python 
provides a C module called cProfile, which is imported (Danjou, 2015). 
cProfile allows for an entire script to be analysed and outputs the 
cumulative time for each function. To test the speed of the algorithm, a 
large system is chosen with 500 x 500 elements and the profiler is run. 
 
In the beginning most changes are made using simple for-loops 
which, especially in 3D, are very inefficient. Initially, selfweight was 
calculated in a for loop where the value of x is checked to be some 
threshold. Especially in large systems, this takes long amounts of 
time. Implementing a heaviside smooth function, allows this system 
to quickly update the selfweight. Another improvement is made by 
calculating the preset F vector before the first iteration and saving 
the value in a new vector Fpreset. Each iteration this vector is called and 
added to the calculated F vector. Previously the Fpreset was calculated 
each iteration, which takes unnecessary amount of time.

After making these changes, the cumulative times of the algorithm are 
shown in the graph in figure 95. The largest portion of the time is spent 
by numpy.sparse.linalg.spsolve, which is the solver to solve K=F/U. 
Decreasing the time that this function takes, will greatly reduce the time 
the total algorithm takes. The first improvement that could be made 
is an more efficient numbering method, such as the minimum degree 
method. However, this is by default chosen in spsolve, so there will be 
no gain using this (Scipy.org, 2020).

Looking at the solver, SciPy offers a few other sparse solvers that could 
be used. Most notably are the generalized minimal residual solver, or 
gmres, and the conjugate gradient solver, cg. Gmres 

The conjugate gradient solver works quite alike the gradient descent 
optimization method. In gradient descent the slope is calculated at 
xk and a step is set into opposite direction of the slope. Eventually 
the optimal solution can be found (Michailidis & Maiden, 2013). In 
the conjugated gradient method the steps are chosen, such that the 
following step will lead to the minimum. A step is taken along the 
gradient, where the gradient at the following value is orthogonal and 
leads to the minimum value (Shewchuck, 1994). 

Figure 95 PIe chart of calculation 
times 

Figure 96 Conjugate gradient solver



69

In the lecture notes by Sleijpen and van Gijzen (2017) a flowchart is 
presented on what solver to use to solve Ax = b. As matrix K is both 
symmetric and larger than 0, it is best to use the conjugate gradient 
solver. 

To implement cg in the algorithm the following paramaters have to be 
configured properly in order to get the quickest results:

scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, 
M=None, callback=None, atol=None)

Configuring these parameters will greatly increase the efficiency. There 
are 3 main parameters that are important, x0, tol and M. x0 is an 
initial guess towards the result, which makes it easier to find a result. 
Tol is the tolerance for convergence, where a lower value will accept 
results quicker. Lastly M is the preconditioner.

A preconditioner is a matrix that is chosen such that: 
 

The preconditioner is a matrix that is easy to construct and will greatly 
increase the computation time. Many preconditioners exist, where this 
research will focus on two of them. Jacobi preconditioning is a very 
quick to compute matrix that follows (Sleijpen & van Gijzen, 2017):

Secondly ILU-preconditioners can be used, which are the most 
popular ‘black box’ preconditioners. Using this preconditioner, the 
matrix M will look like (Sleijpen & van Gijzen, 2017):

This preconditioner is implemented in scipy.spilu and has its own 
solver, which will be used in the test. For the cg method, the Jacobi 
preconditioner is constructed, using equation [42]. Some testing 
with the solvers showed that tol = 1e-03 will still give results which 
are accurate enough. As the main algorithm has many iterations, 
these inaccuracies will flatten out. Lasly x0 is chosen to be uk-1, the 
deformations in the previous iteration. All the possible solvers are 
tested for 20 iterations in a 500x500 system. The results are shown on 
the next page.

M
−1
Ax = M

−1
b

M = diag(A)

A = LU

[41]

[42]

[43]



70

Looking at the values that are calculated in figure  XX, it can be clearly 
stated that the conjugate gradient solver works the most efficient. All 
the solvers have a slower first iteration, as in this iteration there is no 
x0. Especially gmres is extremely slow here, where perhaps another 
preconditioner should lower this time.  
 
The difference between the conjugate gradient solver with the right 
preconditioner is also very clear to see. In the early iterations not much 
difference is seen, but once large changes in the system are gone, the 
right preconditioner seems to be the Jacobi preconditioner. Usually 
solving the system takes much longer, which results in this solver being 
even more efficient. 

Note that these timings are in seconds and a system of 502.000 DoFs 
is solved. For 2D optimization this is a very high resolution, and these 
times are similar to a cubic design space with sizes of 55. A system 
like this is expected to take another 80 seconds to solve, resulting in 
5 minutes of calculation times, purely for solving the system. Adding 
the MMA solver in this equation will increase the calculation time to 
roughly 20 minutes.

spsolve(K,f) gmres(K,f) cg(K,f,M=1/Jac) cg(K,f,M=Jac)
27.58 511.49 36.57 34.96
38.52 0.07 0.06 0.05
32.44 0.06 0.05 0.05
33.81 19.14 8.04 8.58
25.90 0.06 0.06 0.06
30.91 19.76 9.94 11.18
28.68 0.06 0.06 0.06
24.20 22.70 11.10 12.97
26.82 0.10 0.06 0.06
30.58 26.83 12.04 15.37
26.84 17.90 9.33 0.05
26.19 19.13 10.37 18.31
26.82 20.51 10.66 16.78
24.33 20.48 10.94 18.04
23.92 19.94 11.21 20.37
23.66 22.06 11.39 22.43
21.74 20.08 11.50 25.07
25.66 20.17 11.73 28.59
24.44 22.22 11.88 31.37
24.42 22.51 12.44 37.72

Total(sec)
547.44 805.96 189.43 302.07

Figure 97: Time spent calculating per solver



71

>>>3.9 Plugin development
The goal of this research was to implement topology optimization 
in architecture, or at least try to set some steps into this direction. 
Topology optimization might be a great way to generate shapes and 
should also be available to architects and architecture students. To 
achieve this availability, a plugin is written that could be installed in 
Grasshopper. Grasshopper and Rhino are programs that are used quite 
often in architectural practice and are taught at universities. Pursuing 
this goal would allow students to see the possibilities of topology 
optimization and generative design. This thesis is meant as a guideline 
in order to show what happens inside the black box.

In order to write the plugin, first a flowchart is developed in order to 
note all the functionalities that the plugin should have. Plugins like 
Karamba3D are comparable to how this plugin should be used and 
these plugins are looked at when developing this plugin. One key 
feature that Karamba3D has is a model viewer, in order to check if 
the model is properly composed before starting calculations. Chapter 
3.6 showed that computational time is the hardest factor of this 
code and the main obstruction for complex problems. Grasshopper 
has the tendency to crash (actually waiting to respond) while 
performing calculations, until the calculation is finished. Because of the 
computational time and the behavior of Grasshopper, such a model 
viewer is important to have. 

The flowchart on figure XX shows the 
steps of assembling this model and 
how the viewer should be updated. 
After the input of each element, the 
element should be added in the 
viewer and / or possible errors should 
be showed. Properly assembling the 
model is the most important thing 
and should be intuitive, When all the 
inputs are assembled and no errors 
arise, the model can be inported in the 
solver. There should be a lock that the 
solver will not work, unless no errors, 
errorcount = 0 arise. 

Figure 98: Flowchart of the plugin



72

Another output of the solver should be an estimated time that it 
takes to solve this problem.  Chapter 3.8 showed already the hefty 
calculation times that happen, especially with 3D problems. The model 
viewer could include 1 loop of the solver and check the time of this one 
loop. Assuming the solver will take around maxloops loops, the ETA 
can be calculated. Including 1 loop to solve in the model can also be 
very beneficial in the showing of any errors. The ETA is based on the 
values that were found in chapter 3.8.

Giving errors
Showing errors early on is important and allows for users to solve 
these errors more intuitively. Most errors will happen because of poor 
placements of the inputs and can be showed easily to the user. The sys 
library is used to output any errors as a text in the errors output of the 
component. When no errors arise in the input, one loop is performed 
in order to see if the first FEA is performed correctly. This loop is 
calculated using sp.solve, in order to ignore the longer calculation 
times.

Errors will most likely only happen with wrongly placed forces, supports 
and voids. These erros can be coded into the model viewer, as the 
point that will represent a force or support should always be within or 
on the edge of the design space. 

Translating geometry into matrices
Toy problem 1 included already a way to translate Rhino geometry 
into matrices and toy problem 5 did that for 3D geometry. As these 
are very different procedures and different codes, two different 
components are designed. In 2D, the design space is given as a 
surface, the voids as surfaces or lines, the support and forces as points, 
with corresponding directions. Then, some standard choices are 
included which give a offer more problems to be solved. These options 
are:

- Self-weight
- Roof area-load
- Ground as foundation
- Voids have weight 

The 3D model creator is a bit more complex to create, but in essence 
works the same. A mesh or Brep is imported as the design space and 
voids. Supports and forces are a bit harder, as they should be able to 
be imported as points and surfaces, as a preset load or area load. The 
model allows for both to happen, although two different inputs have 
to be created in order to function well. The model viewer will show 
the model as shown in figure 99, unless errors occur. It is important 
that errors are found in this stage, so that very little errors occur in the 
solving part.

Figure 99: TO in Grasshopper



73

Translating the solved system in geometry
As the voxelSize is given as an input and the design space always 
starts at the coordinate (0,0), translating the solved system is not that 
hard to do. Rhino will look at each element in x and compare it to 
a certain threshold. When the value of x is larger, it is placed with its 
correct position and size. The following pseudocode describes that for 
3D:

 counter = 0
 grid = []
 for elex,eley,elez in rangesOf(nelx,nely,nelz):
 if x[counter]>y:                 
  point = Point(nelx-elex-1,eley,
      nelz - elez - 1) 
  point2 = Point(nelx- elex, eley+1,
      nelz - elez)       
  grid.add(BoxFromDiag(point, point2) 
 counter = counter + 1
           

Grasshopper implementation
The implementation in Grasshopper is important in order to distribute 
knowledge about topology optimization around architecture students. 
Therefore, the creation of this plugin will be definitely performed, but 
falls outside the timeframe and scope of this research. Implementing 
heavy algorithms like this in Grasshopper is hard, risky and time 
consuming. Finding an alternative to the Proxy method to implement 
NumPy in Grasshopper is probably essential to run this algorithm 
fluently. 

Nevertheless, the plugin will be developed and this research should 
be the basis of that plugin. It should allow for intuitive use in order to 
generated simple, but optimized geometry.



74

4.1 Conclusions
The objective of this research was to implement design dependent loads 
in topology optimization and apply this algorithm to buildings. In order 
to fulfill this objective, several sub-objectives are created and those 
are divided into 2 smaller toy problems. Using these toy problems will 
systematic solve the problems that occur. Each problem had their own 
objectives stated and this allows for a systematic approach. Using this 
approach will also allow for a lot of feedback during each step of the 
process.

The first sub-objective was to create an algorithm that solves problems 
using topology optimization. To achieve this sub-objective, two toy 
problems were created. The first problem asked for an integration in 
Grasshopper and a simple tunnel as a problem. The implementation 
in Grasshopper was written and allowed for the first testing of the 
design. Using the Rhino geometry, the tunnel could be replicated and 
solved. To solve the system, known topology optimization codes by 
Deetman and Sigmund were edited, so the translation to Grasshopper 
could be made easier. Also the implementation of voids was added and 
the possibility of more complex design spaces. Figure 100 shows the 
solution for the second toy problem, which extended the possiblities 
of the algorithm, using more complex design spaces and multiple 
voids. Verifying this topology optimized shape with a program like 
Ansys shows that this algorithm behaves properly according to the 
constraints.

The second sub-objective was to implement design dependent loads 
in the algorithm, to make it more applicable in the architectural field. 
In architectural models, selfweight is very important, as the weight 
of the construction is usually the largest force on the design. This 
was implemented using the mathematical desciption by Duysinx and 
Bruyneel. Usually in architecture there are no direct forces on the 
building, which is a problem as topology optimization needs some kind 
of force to optimize. To counter this a roofconstraint was added, which 
told the optimizer to only accept solutions with a roof over all the 
voids. Lastly, a snowload was added, as this force will fall on the roof, 
dependent on its shape. Without these forces the optimizer will create 
thin shapes, in order to minimize the selfweight forces. Combining 
all these additions resulted in the arch that is shown in figure 101. 
Verification in Ansys showed that the geometry is quite strong, 
deforming very slightly when put under the forces.

04Conclusions

Figure 100: Section of a building 

Figure 101: Arch under selfweight and 
snowload



75

Lastly for the last sub-objective the algorithm and the methodology 
were translated into the 3D geometry. The largest benefit in this 
translation is that most calculations are done with vectors. Translating 
between the 3D arrays and the 1D arrays was the main issue. 
Implementing a methodology created by Liu and Tovar was the 
solution for most of the issues. Also selfweight, snowloads and the 
roof constraint were implemented in the 3D algorithm which set the 
basis to discover the possibilities that are available within topology 
optimization. Figure XX shows the final result of all the solved 
problems that were met using the toy problems. 

Topology optimization showed itself to be a great tool for the 
generating of shapes. It allows for very specific implementations of 
the needed design, such as selfweight and complex design spaces. 
As topology optimization uses MMA as a solver, adding several 
constraints can push the design in a certain direction, without 
influencing the design too much. The translation to 3D is easily made, 
which is very convenient in its application within architecture.

The main problem with topology optimization is its computational 
time. Generating high-resolution 3D geometry is very costly and 
makes the implementation in Grasshopper nearly impossible. 
Choosing a good solver could save a lot of time, using the conjugate 
gradient method with good preconditioners with large systems. 
Smaller systems are much quicker calculated using the standard 
solver. Very simple systems benefit from taking the Optimality Criteria 
in stead of the MMA.

The main reseach question was “How can we design structures 
for masonry buildings using topology optimization?”. Topology 
optimization can be a great tool for early structural form finding. 
It allows for intuitive design, generating geometry following a 
predefined system. The implementation of selfweight allows this to 
be implemented in masonry buildings. The next chapter will shortly 
discuss possible applications.

Figure 102: Results of the translation 
to 3D



76

4.2 Applicability
This chapter will answer the last research question “How can topology 
optimization transform the design process of masonry buildings, 
particularly their configuring and shaping processes?”. This thesis will not 
give a final answer on this question, but this chapter will reflect on this 
question.

The algorithm that is created in this thesis is in the current state not 
usable for final designs of buildings, but the focus should be placed 
on the early structural form finding. As the focus of this research is 
mainly towards architecture, the 3D part of the algorithm is much more 
interesting and applicable.

A futuristic approach of configuring and shaping masonry buildings 
would be to import several inputs, like voids, supports and forces and 
optimize its shape. This shape being dependent on the brick that one 
is using to build with. If the shape of the brick could be used as input 
in the optimization process, the shaping of geometry could be very 
efficient and applicable to most masonry buildings. 

In this futuristic approach I think topology optimization is the core 
foundation on how masonry buildings could be configured and 
shaped. Topology optimization can be made very intuitive, as most 
inputs are basic vectors. Several constraints can be added which allow 
for specific results. Further developments in topology optimization 
could include the translation to from voxels to bricks, multi-material or 
the optimal locations of elements. 

This research shows that geometry can be shaped and that it follows 
our expectation on how geometry would eventually look like. Arches 
and domes are shaped, which are basic design elements in masonry 
architecture. This shows that it topology optimization could be used 
perfectly for masonry architecture.

The main issue with topology optimization is its calculation time. 
For early structural form-finding a low resolution is sufficient, but to 
generate more detailed geometry, a higher resolution is needed. In 3D 
increasing the resolution will exponentially increase its computational 
time. For plugins this is very unusable, but in comparison with the time 
it takes a human to design geometry, it might be very fast. Developing 
a methodology to configure the geometry is essential to solve 
problems with a very high resolution.

In conclusion, I think topology optimization can be the foundation 
of a change in how masonry buildings are shaped. It has many 
possibilities and can be a very intuitive process. The main necessity is 
the development of a methodology in order to retrieve high resolution 
and useful results.



77



78

05References

>>>5.1 Literature

Profiling Python using cProfile: a concrete case. (n.d.). Retrieved June 28, 2020, from 
https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara/ 

scipy.sparse.linalg.cg — SciPy v1.5.0 Reference Guide. (n.d.). Retrieved June 29, 2020, from 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.s
parse.linalg.cg 

Avdić, I. (2019). BIO-INSPIRED APPROACH TO EARLY STAGE STRUCTURAL FORM FINDING 
Faculty of Architecture and the Built Environment. https://doi.org/uuid:ebed5ec7-7951-
4139-b80f-eba8052c86c1 

Bathe, K. J. (2006). Finite element procedures. Second edition. In Mit. 
http://web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf 

Bendsøe, M. P., & Sigmund, O. (2004). Topology Optimization. In Topology Optimization. 
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05086-6 

Bruyneel, M., & Duysinx, P. (1997). Topology Optimization With Self-Weight Loading: 
Unexpected Problems and Solutions. 4, 1–4. 
https://www.researchgate.net/publication/277093663_Topology_optimization_with_self-
weight_loading_un-expected_problems_and_solutions 

Bruyneel, M., & Duysinx, · P. (n.d.). Struct Multidisc Optim (2005) 29: 245-256 Note on topology 
optimization of continuum structures including self-weight. 
https://doi.org/10.1007/s00158-004-0484-y 

Bruyneel, M., & Duysinx, P. (2005). Note on topology optimization of continuum structures 
including self-weight. Structural and Multidisciplinary Optimization, 29(4), 245–256. 
https://doi.org/10.1007/s00158-004-0484-y 

Cai, K. (2011). A simple approach to find optimal topology of a continuum with tension-only 
or compression-only material. Structural and Multidisciplinary Optimization, 43(6), 827–
835. https://doi.org/10.1007/s00158-010-0614-7 

Finite, T., & Previous, E. (2016). 4.1.3 Shape Function. 13–16. 
https://www.iue.tuwien.ac.at/phd/orio/node48.html 

Huang, X., & Xie, Y. M. (2009). Bi-directional evolutionary topology optimization of 
continuum structures with one or multiple materials. Computational Mechanics, 43(3), 
393–401. https://doi.org/10.1007/s00466-008-0312-0 



79

Jain, N., & Saxena, R. (20��). �ffect of self-weight on topological optimization of static loading 
structures. Alexandria Engineering Journal, 57(2), 527–5�5. 
https:��doi.org��0.�0���j.aej.20�7.0�.00� 

Jain, N., & Saxena, R. (20��). �ffect of self-weight on topological optimization of static loading 
structures. Alexandria Engineering Journal, 57(2), 527–5�5. 
https:��doi.org��0.�0���j.aej.20�7.0�.00� 

John, G., Clements-Croome, D., & Jeronimidis, G. (2005). Sustainable building solutions: A 
review of lessons from the natural world. Building and Environment, 40(�), ���–�2�. 
https:��doi.org��0.�0���j.buildenv.200�.05.0�� 

Langelaar, M. (2020) (Personal communication, June 22th 2020)  

Liu, K., & Tovar, A. (20��). An efficient �D topology optimization code written in Matlab. 
Structural and Multidisciplinary Optimization, 50(�), ��75–����. 
https:��doi.org��0.�007�s00�5�-0��-��07-x 

Martins, J. R. R. A., & Poon, N. M. K. (n.d.). 6 th World Congress on Structural and 
Multidisciplinary Optimization On Structural Optimization Using Constraint Aggregation. 

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science 
research methodology for information systems research. Journal of Management 
Information Systems, 24(�), �5–77. https:��doi.org��0.275��M�S07�2-�2222�0�02 

Saad, �., & Schultz, M. �. (����). GMR�S: A Generalized Minimal Residual Algorithm for 
Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical 
Computing, 7(�), �5�–���. https:��doi.org��0.���7�0�0705� 

Shewchu�, J. R. (����). Conjugate Gradient Method Without the Agonizing Pain. Science. 

Sigmund, �. (200�). A �� line topology optimization code written in matlab. Structural and 
Multidisciplinary Optimization, 21(2), �20–�27. https:��doi.org��0.�007�s00�5�0050�7� 

Sleijpen, G., & �an Gijzen, M. (20�7). National Master Course Numerical Linear Algebra 
Improving iterative solvers: preconditioning, deflation, numerical software and 
parallelisation. 

Svanberg, K. (n.d.). The Method of Moving Asymptotes-Modelling aspects and solution 
schemes. 



80

>>>5.2 Equations

This will list all the equations that have a source:

Bathe, 2006
[2, 5, 8]
 
Bensoe & Sigmund
[6, 7]

Bruyneel & Duysinx, 2005
[18, 19]
 
Huang & Deng, 2018:
[22, 33]

Langelaar, 2020
[13, 14, 15, 16, 17, 24, 25, 26, 28, 29, 30, 31, 32, 37, 38, 39]

Martins & Roon, 2005
[27]

Sigmund, 2001:
[0, 1, 5, 8, 9, 10, 11]
 
Sleijpen & van Gijzen, 2017 
[41, 42, 43] 

Author
[3, 4, 12, 20, 21, 34, 35, 36, 40] 

�ang, X. �., Huang, �. �., � �eng, �. �. ����8�. Single image super-resolution based on 
approximated Heaviside functions and iterative refinement. PLoS ONE, 13���. 
https://doi.org/��.��7�/�ournal.pone.��8���� 

�hang, �., �hang, �. H., �hu, �. H., � Xia, �. ������. �ntegrated layout design of multi-
component systems using XFEM and analytical sensitivity analysis. Computer Methods in 
Applied Mechanics and Engineering, 245–246, 75–89. 
https://doi.org/��.����/�.cma.����.��.��� 

�uo, �. H., � Xie, �. M. ����5�. � simple and compact �ython code for complex �� topology 
optimization. Advances in Engineering Software, 85, �–��. 
https://doi.org/��.����/�.advengsoft.���5.��.��� 

 



81

>>>5.3 Figures
The following figures contain references to the figure, unreferences 
figures are made by the author.

1: Wienerberger building solutions (2020). Retrieved 20 February 
2020 from https://www.wienerberger-building-solutions.com/Expertise/
Our-expertise/Benefits-of-building-with-clay.html.

2: Tony Abbey (2017). Retrieved 20 February 2020 from https://
www.digitalengineering247.com/article/topology-optimization/.

3:  QNCC (2019). Retrieved 20 February 2020 from http://www.
qncc.com/site/en/Newsletters/The_Sidra_Signature.aspx
 
7:  Avdić, I. (2019)

9: Sigmund, O. (2001)

11:  Avdić, I. (2019)
 
16:  De Orio (2008)

20:  Geeks for Geeks (2019), retrieved at 4 May 2020 from https://
www.geeksforgeeks.org/program-for-bisection-method/

23:  Blackman & Miller (2014)

26: Liu and Tovar (2014)

27: Liu and Tovar (2014)

31:  House Design Coffee (2012), retrieved at 20 February 2020 from 
https://www.house-design-coffee.com/catenary-arch.html

69:  Naboni, Roberto (2018).  - Architectural Morphogenesis 
Through Topology Optimization

80:  Avdić, I. (2019)

88: Archdaily (2017).  - AD Classics, Haus am Horn, retrieved at 26 
June 2020 from https://www.archdaily.com/873082/ad-classics-haus-
am-horn-germany-georg-muche



Appendix A: 2D Topology optimization code

02/07/2020

1 2D Code:

1

2 # A 165 LINE TOPOLOGY OPTIMIZATION CODE BY NIELS AAGE AND VILLADS

EGEDE JOHANSEN , JANUARY 2013

3 # MMA OPTIMIZER ADDED BY ARJEN DEETMAN , NOVEMBER 2019

4 # Architectural implementations by Rick van Dijk , July 2020

5

6 from __future__ import division

7 import numpy as np

8 from scipy.sparse import coo_matrix

9 from scipy.sparse.linalg import spsolve

10 from scipy.sparse.linalg import cg

11 from matplotlib import colors

12 import matplotlib.pyplot as plt

13 from scipy.sparse import diags

14 from scipy.linalg import solve

15

16 # MAIN DRIVER

17 def main(nelx ,nely ,volfrac ,penal ,rmin ,ft,xsolv ,sw,snow ,roofc):

18 ne = nelx * nely

19 # Max and min stiffness

20 Emin = 1e-9

21 Emax = 1.0

22 # dofs:

23 ndof = 2*( nelx +1)*(nely +1)

24 # Allocate design variables (as array), initialize and allocate

sens.

25 n = nely*nelx

26 nele = n

27 x = volfrac*np.ones(nely*nelx , dtype=float)

28 xPhys = x.copy()

29 dc = np.zeros((nely ,nelx), dtype=float)

30 # Initialize OC

31 if xsolv == 0:

32 xold1 = x.copy()

33 g = 0 # must be initialized to use the NGuyen/Paulino OC

approach

34 # Initialize MMA

35 elif xsolv == 1:

36 m = 1

37 if roofc == True:

1



38 m = 2

39 xmin = np.zeros ((n,1))

40 xmax = np.ones((n,1))

41 xval = x[np.newaxis ].T

42 xold1 = xval.copy()

43 xold2 = xval.copy()

44 low = np.ones((n,1))

45 upp = np.ones((n,1))

46 a0 = 1.0

47 a = np.zeros((m,1))

48 c = 10000* np.ones((m,1))

49 d = np.zeros((m,1))

50 move = 0.2

51 # FE: Build the index vectors for the for coo matrix format.

52 KE = lk()

53 edofMat = np.zeros((nelx*nely ,8),dtype=int)

54 for elx in range(nelx):

55 for ely in range(nely):

56 el = ely+elx*nely

57 n1 = (nely +1)*elx+ely

58 n2 = (nely +1)*(elx+1)+ely

59 edofMat[el ,:] = np.array ([2*n1+2, 2*n1+3, 2*n2+2, 2*n2

+3,2*n2 , 2*n2+1, 2*n1, 2*n1+1])

60 # Construct the index pointers for the coo format

61 iK = np.kron(edofMat ,np.ones ((8 ,1))).flatten ()

62 jK = np.kron(edofMat ,np.ones ((1 ,8))).flatten ()

63 vertedof = edofMat.reshape (-1) [0::2]. reshape ((nelx*nely , 4)) +

1 #Get the vertical dofs

64 # Filter: Build (and assemble) the index+data vectors for the

coo matrix format

65 nfilter = int(nelx*nely *((2*( np.ceil(rmin) -1)+1) **2))

66 iH = np.zeros(nfilter)

67 jH = np.zeros(nfilter)

68 sH = np.zeros(nfilter)

69 cc = 0

70

71 for i in range(nelx):

72 for j in range(nely):

73 row = i*nely+j

74 kk1 = int(np.maximum(i-(np.ceil(rmin) -1) ,0))

75 kk2 = int(np.minimum(i+np.ceil(rmin),nelx))

76 ll1 = int(np.maximum(j-(np.ceil(rmin) -1) ,0))

77 ll2 = int(np.minimum(j+np.ceil(rmin),nely))

78 for k in range(kk1 ,kk2):

79 for l in range(ll1 ,ll2):

80 col = k*nely+l

81 fac = rmin -np.sqrt (((i-k)*(i-k)+(j-l)*(j-l)))

82 iH[cc] = row

83 jH[cc] = col

84 sH[cc] = np.maximum (0.0,fac)

85 cc = cc+1

86

87 # Finalize assembly and convert to csc format

88 H = coo_matrix ((sH ,(iH ,jH)),shape =(nelx*nely ,nelx*nely)).tocsc

()

89 Hs = H.sum (1)

90

2



91 # SUPPORTS

92 dofs = np.arange (2*( nelx +1)*(nely +1))

93 fixed = []

94 #Set floor as supports

95 counter = 0

96 for element1 in range(0,nelx +1,1):

97 node = int(element1 * (nely +1) + nely)

98 counter = counter + 1

99 fixed.append (2* node)

100 fixed.append (2* node +1)

101

102 #fixed = [supp1 , supp2 , supp3 ,.... suppn]

103 free = np.setdiff1d(dofs ,fixed)

104

105 #VOIDS

106 voids = np.zeros((nele))

107 #Get the voids from the input model in Rhino

108

109 """

110 voidlist = [void1ID , void2ID , void3ID .... voidnID]

111 voids[voidlist] = 1

112 """

113

114 #Update the volfraction according to the amount of voids

115 volfrac = volfrac *(nele -len(voidlist)) / (nele)

116

117 # Solution and RHS vectors

118 f = np.zeros((ndof))

119 u = np.zeros((ndof ,1))

120 # Set loop counter and gradient vectors

121 loop = 0

122 change = 1

123 dv = np.ones(nely*nelx)

124 dc = np.ones(nely*nelx)

125 ce = np.ones(nely*nelx)

126

127 fact1 = .01 #Factors of the roofconstraint

128 fact2 = .01 #Factor of the senstivity of the roofconstraint

129

130 #Create the dFdx vector

131 swFactor = 16

132 selfweightvector = np.zeros(ndof)

133 selfweightvector [1::2] = swFactor/ (volfrac * nely * nelx) / 4

134

135 testtt = np.zeros(n)

136 uold = np.zeros(ndof)

137 dcSH = np.zeros ((nelx ,nely))

138 dcsnow = np.zeros((ndof))

139

140 while (change >0.001) and (loop <500):

141 #Step 1 is to implement self -weight

142 if sw == True:

143 currIndex = 0

144 x.reshape ((n))

145

146 for xi in x:

147 totalself =swFactor/ (volfrac * nely * nelx)

3



148 selfweight = xi * totalself / 4 #some factor

149 if selfweight >totalself/swFactor:

150 currDoF = vertedof[currIndex]

151 f[currDoF] += selfweight

152 currIndex += 1

153

154 #or use the following:

155 """

156 totalself = 8 / (volfrac * nely * nelx)/4

157 selfstep = 0.5 + np.arctan ((x - 0.4) /0.0001)/ np.pi

158 selfweights = totalself * selfstep

159 f[vertedof] += np.tile(selfweights ,(4 ,1)).T

160 """

161

162 #### PRESET F:

163 f = f.reshape (-1)

164 #f[indexF] = 1

165

166 #DeadWeight on the Roof

167 """

168 for roofelement in range(nelx):

169 topnodeleft = roofelement *(2*( nely +1)) + 1

170 topnoderight = (roofelement +1) *(2*( nely +1)) + 1

171 f[topnodeleft] = 0.01

172 f[topnoderight] = 0.01

173 """

174

175 #Set a random Force (uneven = vertical)

176 #f[[10363]]+=1

177

178 #Apply snowload

179 if snow == True:

180 snowp = 1

181 x2 = np.arctan ((x - 0.2) /0.0001)/np.pi

182 cumx = np.subtract(np.cumsum(np.power(x2.reshape(nelx ,

nely),snowp),axis =1) ,(np.power(x2.reshape(nelx ,nely),snowp)))

183 downstepcumx = np.cumsum(np.power(x2.reshape(nelx ,nely)

,snowp),axis =1)

184 SH = np.arctan (( downstepcumx - 0.5) /0.01)/np.pi - np.

arctan (( downstepcumx - 1.5) /0.01)/np.pi

185 snowForce = (0.001 / 4) * SH

186 f[vertedof] += np.tile(snowForce.reshape(n) ,(4,1)).T

187

188

189 # Setup and solve FE problem

190 sK = ((KE.flatten ()[np.newaxis ]).T*(Emin+( xPhys)** penal *(

Emax -Emin))).flatten(order=’F’)

191 K = coo_matrix ((sK ,(iK,jK)),shape=(ndof ,ndof)).tocsc()

192 # Remove constrained dofs from matrix

193 K = K[free ,:][:, free]

194

195 # Solve system with solver dependent on shape

196 if nele < 10000:

197 u[free ,0] = spsolve(K,f[free ,0])

198 else:

199 xguess = u

200 resultcgkg = cg(K,f[free], x0=xguess[free],tol=1e-04, M

4



= diags(np.divide(1,K.diagonal ())))

201 u[free ,0]= resultcgkg [0]

202

203 # Objective and sensitivities

204 ce[:] = (np.dot(u[edofMat ]. reshape(nelx*nely ,8),KE) * u[

edofMat ]. reshape(nelx*nely ,8)).sum(1)

205

206 # Configure snow sensitivities

207 if snow == True:

208 dydx = np.where(np.power(x2.reshape(nelx ,nely),snowp)>

cumx , 1,0)

209

210 dcSH1 = 100 / (np.pi *(10000* np.power(( downstepcumx -0.5)

,2)+1))

211 dcSH2 = 100 / (np.pi *(10000* np.power(( downstepcumx -1.5)

,2)+1))

212 dcSH = dcSH1 - dcSH2

213

214 dcsnowload = ((0.005 / 4) * dcSH * dydx).reshape (-1)

215 dcsnow[vertedof] += np.tile(dcsnowload.reshape(n) ,(4,1)

).T

216

217 dcselfweight = np.sum(np.squeeze(u[edofMat ]) * np.squeeze ((

selfweightvector+dcsnow)[edofMat ]) * 2,1)

218 ceselfweight = np.sum(np.squeeze(u[edofMat ])* np.squeeze(f[

edofMat ]) * 2,1)

219

220 #Calculate compliance & sensitivity

221 if sw == True:

222 obj = ((Emin+xPhys ** penal *(Emax -Emin))*ce +

ceselfweight).sum()

223 dc[:] = ((-penal*xPhys **(penal -1)*(Emax -Emin))*ce +

dcselfweight)

224 else:

225 obj = ((Emin+xPhys ** penal *(Emax -Emin))*ce).sum()

226 dc[:] = ((-penal*xPhys **(penal -1)*(Emax -Emin))*ce)

227 dv[:] = np.ones(nely*nelx)

228

229 #Roofing constraint

230 if roofc == True:

231 voidexistin = np.where(np.sum(voids.reshape(nelx ,nely),

axis =1)) #Output are the column indeces with voids in it

232 invertedarea = 1 - voids.reshape(nelx ,nely)[voidexistin

] #Inverting the area of these indeces , in order to

multiply

233

234 xroofconstraint = x.reshape(nelx ,nely)[voidexistin]

#Get the x-values at these columns

235

236 epgk = np.exp (10*(1 -np.sum(np.power(xroofconstraint ,5),

axis =1)))

237 gcolumns = np.log(np.sum(epgk))/10

238 dcrc = epgk / gcolumns

239 dcrcc = np.zeros((nelx ,nely))

240 dcrcc[voidexistin] = np.multiply(np.tile(dcrc ,(nely ,1))

,invertedarea.T).T #Sensitivity of the constraint

241

5



242 # Sensitivity filtering:

243 if ft == 0:

244 dc[:] = np.asarray ((H*(x*dc))[np.newaxis ].T/Hs)[:,0] /

np.maximum (0.001 ,x)

245 elif ft == 1:

246 dc[:] = np.asarray(H*(dc[np.newaxis ].T/Hs))[:,0]

247 dv[:] = np.asarray(H*(dv[np.newaxis ].T/Hs))[:,0]

248

249 #Update x according to the existance of voids

250 x = np.where(voids , 0.001 , x)

251

252 # Optimality criteria

253 if xsolv == 0:

254 xold1 [:] = x

255 (x[:],g) = oc(nelx ,nely ,x,volfrac ,dc ,dv ,g)

256 # Method of moving asymptotes

257 elif xsolv == 1:

258 mu0 = 0.1 # Scale factor for objective function

259 mu1 = 0.1 # Scale factor for volume constraint function

260 f0val = mu0*obj

261 df0dx = mu0*dc[np.newaxis ].T

262 volumecons = np.squeeze(mu1*np.array ([[ xPhys.sum()/n-

volfrac ]]))

263 dxvolume = mu1*(dv/(n*volfrac))[np.newaxis]

264 if roofc == True:

265 gval = gcolumns*fact1 #0.0001

266 fval = np.array ([[ volumecons] ,[gval ]])

#Constraint naar een vector maken ->fval= [volumns , gval]

267 dxroof = (dcrcc.reshape (-1)*fact2).reshape(1,n)

268 dfdx = np.concatenate ((dxvolume ,-dxroof))

269 else:

270 fval = volumecons

271 dfdx = dxvolume

272 xval = x.copy()[np.newaxis ].T

273

274 xmma ,ymma ,zmma ,lam ,xsi ,eta ,mu ,zet ,s,low ,upp = \

275 mmasub(m,n,k,xval ,xmin ,xmax ,xold1 ,xold2 ,f0val ,df0dx

,fval ,dfdx ,low ,upp ,a0 ,a,c,d,move)

276

277 xold2 = xold1.copy()

278 xold1 = xval.copy()

279 x = xmma.copy().flatten ()

280 # Filter design variables

281 if ft == 0: xPhys [:] = x

282 elif ft == 1: xPhys [:] = np.asarray(H*x[np.newaxis ].T/Hs)

[:,0]

283 # Compute the change by the inf. norm

284 change = np.linalg.norm(x.reshape(nelx*nely ,1)-xold1.

reshape(nelx*nely ,1),np.inf)

285 # Write iteration history to screen (req. Python 2.6 or

newer)

286 loop = loop+1

287 print("it.: {0} , obj.: {1:.3f} Vol.: {2:.3f}, ch.: {3:.3f}

".format(loop ,obj ,x.sum()/n,change))

288

289 #Reset all the forces

290 f = np.zeros(ndof)

6



291

292

293 # Plot result in the dirName folder

294 fig ,ax = plt.subplots ()

295 im = ax.imshow(-xPhys.reshape(nelx ,nely).T, cmap=’gray’,

interpolation=’none’, norm=colors.Normalize(vmin=-1,vmax =0))

296 plt.savefig(dirName + ’/loop’ + str(loop)+’obj’ + str(obj)+’.

png’)

297 np.savetxt(dirName+"/testingswv.csv", x , delimiter=",")

298

299 #element stiffness matrix

300 def lk():

301 E = 1

302 nu = 0.3

303 k = np.array ([1/2 -nu/6 ,1/8+nu/8,-1/4-nu/12 , -1/8+3*nu/8,-1/4+nu

/12,-1/8-nu/8,nu/6 ,1/8 -3*nu/8])

304 KE = E/(1-nu**2)*np.array ([ [k[0], k[1], k[2], k[3], k[4], k

[5], k[6], k[7]],

305 [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],

306 [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],

307 [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],

308 [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],

309 [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],

310 [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],

311 [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]] ]);

312 return (KE)

313

314 def oc(nelx ,nely ,x,volfrac ,dc ,dv ,g)... #See Deetman (2020)

315

316 def subsolv(m,n,epsimin ,low ,upp ,alfa ,beta ,p0,q0 ,P,Q,a0,a,b,c,d):

... #See Deetman (2020)

317

318 def mmasub(m,n,iter ,xval ,xmin ,xmax ,xold1 ,xold2 ,f0val ,df0dx ,fval ,

dfdx ,low ,upp ,a0 ,a,c,d,move):... #See Deetman

Listing 1: 2D Topology optimization code

7



Appendix B: 3D Topology optimization code

02/07/2020

1 2D Code:

1

2 #use python interpretor that uses python2 .7

3 #Translation of Liu and Tovar (2014) by Rick van Dijk

4 #Implementation of selfweight , roofconstrant in 3D TopOp

5

6 import numpy as np

7 import scipy

8 from scipy import sparse

9 from scipy.sparse import linalg

10 from scipy.sparse import diags # or use numpy: from numpy import

diag as diags

11 from scipy.linalg import solve # or use numpy: from numpy.linalg

import solve

12 from matplotlib import colors

13 import matplotlib.pyplot as plt

14

15 def oc(nelx ,nely ,x,volfrac ,dc ,dv ,g)... #See Deetman (2020)

16

17 def subsolv(m,n,epsimin ,low ,upp ,alfa ,beta ,p0,q0 ,P,Q,a0,a,b,c,d):

... #See Deetman (2020)

18

19 def mmasub(m,n,iter ,xval ,xmin ,xmax ,xold1 ,xold2 ,f0val ,df0dx ,fval ,

dfdx ,low ,upp ,a0 ,a,c,d,move):... #See Deetman

20

21

22 ##Inputs

23 nelx = 30

24 nely = 20

25 nelz = 40

26

27 volfrac = 0.3

28 penal = 3

29 rmin = 1.5

30

31 sw = True #sw==True -> selfweight will be applied

32 snow = False #snow==True -> snowload will be applied

33 roofc = True #roofc == True -> roofconstraint will be applied

34

35 maxloop = 100

36 tolx = 0.001

1



37 displayflag = 0

38

39 ##USER -DEFINED MATERIAL PROPERTIES

40 E0 = 1

41 Emin = 1e-9

42 nu = 0.3

43 nele = nelx*nely*nelz

44 n = nele

45 ndof = 3*( nelx +1)*(nely +1)*(nelz +1)

46 ##USER -DEFINED SUPPORT FIXED DOFs

47

48 fixed = []

49

50 for element1 in range(0,nelx +1,1):

51 for element2 in range(0,nelz +1,1):

52 node = np.multiply(element2 , (nelx + 1)*(nely + 1)) + np.

multiply(element1 , nely + 1) + np.add(np.negative (0),nely)

53 fixed.append(node)

54

55 fixeddof = [3*np.reshape(fixed ,-1)+1,3*np.reshape(fixed ,-1) ,3*np.

reshape(fixed ,-1) -1]

56

57 #VOIDS

58 voids = np.zeros ((nele))

59 #Get the voids from the input model in Rhino

60

61 """

62 voidlist = [void1ID , void2ID , void3ID .... voidnID]

63 voids[voidlist] = 1

64 volfrac = volfrac *(nele -len(voidlist)) / (nele)

65 """

66

67 ##PREPARE FINITE ELEMENT ANALYSIS

68 U = np.zeros((ndof))

69 freedofs = np.setdiff1d(np.arange(1,ndof ,1),fixeddof)

70

71 KE = []

72

73 A = np.array ([[32 , 6, -8, 6, -6, 4, 3, -6, -10, 3, -3, -3, -4, -8],

[-48, 0, 0, -24, 24, 0, 0, 0, 12, -12, 0, 12, 12, 12]], dtype

= np.float32)

74 k = (np.transpose(A[0])*1 + np.transpose(A[1]) *0.3) / 144

75

76 K1 = np.array ([[k[0], k[1], k[1], k[2], k[4], k[4]],

77 [k[1], k[0], k[1], k[3], k[5], k[6]],

78 [k[1], k[1], k[0], k[3], k[6], k[5]],

79 [k[2], k[3], k[3], k[0], k[7], k[7]],

80 [k[4], k[5], k[6], k[7], k[0], k[1]],

81 [k[4], k[6], k[5], k[7], k[1], k[0]]])

82

83 K2 = np.array ([[k[8], k[7], k[11], k[5], k[3], k[6]],

84 [k[7], k[8], k[11], k[4], k[2], k[4]],

85 [k[9], k[9], k[12], k[6], k[3], k[5]],

86 [k[5], k[4], k[10], k[8], k[1], k[9]],

87 [k[3], k[2], k[4], k[1], k[8], k[11]] ,

88 [k[10], k[3], k[5], k[11], k[9], k[12]]])

89

2



90 K3 = np.array ([[k[5], k[6], k[3], k[8], k[11], k[7]],

91 [k[6], k[5], k[3], k[9], k[12], k[9]],

92 [k[4], k[4], k[2], k[7], k[11], k[8]],

93 [k[8], k[9], k[1], k[5], k[10], k[4]],

94 [k[11], k[12], k[9], k[10], k[5], k[3]],

95 [k[1], k[11], k[8], k[3], k[4], k[2]]])

96

97 K4 = np.array ([[k[13], k[10], k[10], k[12], k[9], k[9]],

98 [k[10], k[13], k[10], k[11], k[8], k[7]],

99 [k[10], k[10], k[13], k[11], k[7], k[8]],

100 [k[12], k[11], k[11], k[13], k[6], k[6]],

101 [k[9], k[8], k[7], k[6], k[13], k[10]] ,

102 [k[9], k[7], k[8], k[6], k[10], k[13]]])

103

104 K5 = np.array ([[k[0], k[1], k[7], k[2], k[4], k[3]],

105 [k[1], k[0], k[7], k[3], k[5], k[10]] ,

106 [k[7], k[7], k[0], k[4], k[10], k[5]],

107 [k[2], k[3], k[4], k[0], k[7], k[1]],

108 [k[4], k[5], k[10], k[7], k[0], k[7]],

109 [k[3], k[10], k[5], k[1], k[7], k[0]]])

110

111 K6 = np.array ([[k[13], k[10], k[6], k[12], k[9], k[11]] ,

112 [k[10], k[13], k[6], k[11], k[8], k[1]],

113 [k[6], k[6], k[13], k[9], k[1], k[8]],

114 [k[12], k[11], k[9], k[13], k[6], k[10]] ,

115 [k[9], k[8], k[1], k[6], k[13], k[6]],

116 [k[11], k[1], k[8], k[10], k[6], k[13]]])

117

118 stack = np.vstack ([np.hstack ([K1 , K2 , K3 , K4]),np.hstack ([np.

transpose(K2), K5, K6 , np.transpose(K3)]),np.hstack ([np.

transpose(K3), K6, np.transpose(K5), np.transpose(K2)]),np.

hstack ([K4 , K3 , K2 , np.transpose(K1)])])

119 KE = 1/((nu+1)*(1-2*nu)) * stack

120

121 nodegrd = np.reshape(np.arange (0,(nely +1)*(nelx +1) ,1), [nelx+1,nely

+1])

122 newitems = np.transpose(nodegrd [: -1]) [: -1]. transpose ()

123 nodeids = np.reshape(newitems ,[nely*nelx ,1])

124 nodeidz = np.arange (0,(nelz -1)*(nely +1)*(nelx +1)+1,(nely +1)*(nelx

+1))

125

126 nodeids = np.repeat(nodeids , len(nodeidz), axis =1) + np.tile(

nodeidz , len(nodeids)).reshape ((( nelx*nely),nelz))+1

127 edofVec = (3 * np.reshape(np.transpose(nodeids) ,-1)+1)

128

129 repeatedVec = np.repeat(edofVec , 24, axis =0).reshape(len(edofVec)

,24)

130

131 repeatingMatrix = [

132 0,1,2,(3*nely +3),

133 (3* nely +4) ,(3*nely +5) ,(3*nely +0) ,(3*nely +1),

134 (3* nely +2) ,-3,-2,-1,

135 (3*( nely +1)*(nelx +1)+0) ,(3*( nely +1)*(nelx +1) +1) ,(3*( nely +1)*(

nelx +1)+2) ,(3*( nely +1)*(nelx +1)+3* nely + 3),

136 (3*( nely +1)*(nelx +1)+3* nely + 4) ,(3*( nely +1)*(nelx +1) +3* nely +

5) ,(3*( nely +1)*(nelx +1) +3* nely + 0) ,(3*( nely +1)*(nelx +1) +3* nely

+ 1),

3



137 (3*( nely +1)*(nelx +1) +3* nely + 2) ,(3*( nely +1)*(nelx +1) -3) ,(3*(

nely +1)*(nelx +1) -2) ,(3*( nely +1)*(nelx +1) -1)

138 ]

139

140 repeatedMat = np.repeat(repeatingMatrix , nele , axis =0).reshape(len(

repeatingMatrix),nele).transpose ()

141 edofMat = np.add(repeatedMat , repeatedVec) -1

142 vertedofMat = edofMat.reshape (-1) [1::3]. reshape ((nele , 8)) #Create

vertical DoFs array

143

144 iK = np.reshape ((np.kron(edofMat , np.ones ((24 ,1)))) ,[24*24*nele ,1])

145 jK = np.reshape ((np.kron(edofMat , np.ones ((1 ,24)))) ,[24*24*nele ,1])

146

147 jKnew = np.reshape(jK ,[1,len(jK)])[0]. astype(int)

148 iKnew = np.reshape(iK ,[1,len(iK)])[0]. astype(int)

149

150 ###### PREPARE FILTER

151 iHvalue = int(nele *(2*( np.ceil(rmin) -1)+1) **2)

152 iH = np.ones(( iHvalue *10 , 1))

153 jH = np.ones(len(iH)).transpose ()

154 sH = np.zeros(len(iH)).transpose ()

155 k = 0

156 counter = 0

157

158 for k1 in range(1,nelz +1):

159 for i1 in range(1, nelx +1):

160 for j1 in range(1, nely +1):

161 e1 = (k1 -1)*nelx*nely + (i1 -1)*nely+j1

162 for k2 in range(int(max(k1 -(np.ceil(rmin) -1) ,1)) ,

int(min(k1+(np.ceil(rmin) -1),nelz))+1):

163 for i2 in range(int(max(i1 -(np.ceil(rmin) -1) ,1))

, int(min(i1+(np.ceil(rmin) -1),nelx))+1):

164 for j2 in range(int(max(j1 -(np.ceil(rmin) -1) ,1)

) , int(min(j1+(np.ceil(rmin) -1),nely))+1):

165 e2 = (k2 -1)*nelx*nely + (i2 -1)*nely+j2

166

167 iH[k] = e1

168 jH[k] = e2

169 sH[k] = max(0,rmin - np.sqrt((i1 -i2)**2+(j1

-j2)**2+(k1-k2)**2))

170 k = k+1

171

172 sH = np.reshape(sH ,[1,len(sH)])

173 jH = np.reshape(jH ,[1,len(jH)])

174 iH = np.reshape(iH ,[1,len(iH)])

175

176 H = sparse.csr_matrix ((sH[0], (iH[0]-1 , jH[0]-1)), shape =(nele ,

nele))

177 Hs = np.sum(H,axis =1)

178

179 ##START OF THE ITERATION

180 x = np.tile(volfrac ,[nely , nelx , nelz])

181 loop = 0

182 change = 1

183

184 #Setting values for MMA

185 xP = x * 1.

4



186 xformma = x.reshape (-1)

187 m = 2

188 xmin = np.zeros ((n,1))

189 xmax = np.ones((n,1))

190 xval = xformma[np.newaxis ].T

191 xold1 = xval.copy()

192 xold2 = xval.copy()

193 low = np.ones((n,1))

194 upp = np.ones((n,1))

195 a0 = 1.0

196 a = np.zeros((m,1))

197 c = 10000* np.ones((m,1))

198 d = np.zeros((m,1))

199 move = 0.2

200 f = np.zeros((ndof))

201

202 #Creating dfdx

203 selfweightvector = np.zeros(ndof)

204 selfweightvector [1::3] = 16/ (volfrac * nele) / 8

205

206 ce = np.ones(nele)

207 while change > tolx and loop < 100:

208 #start setting up the forces

209 x.reshape(n)

210 currIndex = 0

211

212 if sw == True:

213 for xi in x.reshape (-1):

214 totalself =32/ (volfrac * nele)

215 selfweight = xi / 8 * totalself #some factor

216 if xi >0.5* volfrac:

217 currDoF = vertedofMat[currIndex]

218 f[currDoF] += selfweight

219 currIndex += 1

220

221 ### PRESET F:

222 f = f.reshape (-1)

223

224 #Area force on the roof

225 #f[1::3*( nely +1)] = 0.01

226

227 #Area force on a certain place

228 """

229 for i1i in range (0,10):

230 for i2i in range (11 ,32):

231 node = np.multiply(i2i , (nelx + 1)*(nely + 1)) + np.

multiply(i1i , nely + 1)

232 f[node *3] = 0.01

233 """

234

235 #f[Findex] += 1

236

237 xP = x.reshape (-1) * 1.

238

239 #Setup and solve FE problem

240 sK = ((KE.flatten ()[np.newaxis ]).T*(Emin+(xP)** penal *(E0 -Emin))

).flatten(order=’F’)

5



241 K = sparse.coo_matrix ((sK ,(iKnew ,jKnew)),shape =(ndof ,ndof)).

tocsc()

242 freedofsSI = freedofs - 1 #Because of the MATLAB translation

243

244 #FE ANALYSIS

245 K = K[freedofsSI ,:][: , freedofsSI]

246 xguess = U

247 resultcgkg = sparse.linalg.cg(K,f[freedofsSI], x0=xguess[

freedofsSI],tol=1e-03, M= diags(np.divide(1,K.diagonal ())))

248 U[freedofsSI ]= resultcgkg [0]

249

250 #OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

251 ce[:] = (np.dot(U[edofMat ]. reshape(nele ,24),KE) * U[edofMat ].

reshape(nele ,24)).sum (1)

252

253 if sw == True:

254 ceSelfweight = np.sum(np.squeeze(U[edofMat ])* np.squeeze(f[

edofMat ])* 2,1)

255 dcSelfweight = np.sum(np.squeeze(U[edofMat ]) * np.squeeze ((

selfweightvector)[edofMat ]) * 2,1)

256 dc = (-penal*(E0-Emin)*xP**(penal -1) * ce + dcSelfweight)

257 obj = ((Emin+xP** penal *(E0 -Emin))*ce + ceSelfweight).sum()

258 else:

259 obj = ((Emin+xP** penal *(E0 -Emin))*ce).sum()

260 dc = (-penal*(E0-Emin)*xP**(penal -1) * ce)

261 dv = np.ones(nele)

262

263 #FILTERING AND MODIFICATION OF SENSITIVITIES

264 dc[:] = np.asarray(H*(dc[np.newaxis ].T/Hs))[:,0]

265 dv[:] = np.asarray(H*(dv[np.newaxis ].T/Hs))[:,0]

266

267 #ROOF CONSTRAINT

268 if roofc == True:

269 tiledvoid = np.zeros(nele)

270 #tiledvoidlist is a list of all the indexes in which a

column exist.

271 tiledvoidlist = [0,1,2,3]

272 tiledvoid[tiledvoidlist ]=1

273

274 newvoids = np.around ((1- voids))

275 total = tiledvoid* newvoids #Total is a matrix with 1’s

above the void

276

277 xinshape = x.reshape (-1)[total.astype(int)]

278 xtotal = np.power(x,5)

279 xtotal = np.sum([ xtotal[i:i + nely] for i in range(0, len(x

), nely)],axis =1)

280 epgk = np.exp (10*(1 - xtotal)).reshape (-1)

281 gcolumns = np.log(np.sum(epgk))/10

282 repeateddc = np.repeat(epgk/gcolumns , nely)

283 dcrcc = np.zeros((nele))

284 dcrcc = np.multiply(repeateddc , total.astype(int))

285

286 xP = xP.reshape (-1)

287 x = x.reshape (-1)

288 x = np.where(voids , 0.001 , x)

289 if loop < 5:

6



290 x = np.where(tiledvoid ,x*1.1, x)

291

292 #### START OPTIMIZER

293 dc = dc.reshape (-1)

294 n = nele

295 mu0 = 0.001 # Scale factor for objective function

296 mu1 = 0.001 # Scale factor for volume constraint function

297 fact1 = 0.001

298

299 f0val = mu0*obj

300 df0dx = mu0*dc[np.newaxis ].T

301 volumecons = np.squeeze(mu1*np.array ([[x.sum()/n-volfrac ]]))

302 dxvolume = mu1*(dv/(n*volfrac))[np.newaxis]

303

304 if roofc == True:

305 gval = gcolumns * fact1

306 fval = np.array ([[ volumecons ],[gval ]])

307 dxroof = (dcrcc*fact1).reshape(1,n)

308 dfdx = np.concatenate ((dxvolume ,-dxroof *10))

309

310 else:

311 fval = volumecons

312 dfdx = dxvolume

313

314 xval = x[np.newaxis ].T

315

316 xmma ,ymma ,zmma ,lam ,xsi ,eta ,mu ,zet ,s,low ,upp = \

317 mmasub(m,n,loop ,xval ,xmin ,xmax ,xold1 ,xold2 ,f0val ,df0dx ,fval

,dfdx ,low ,upp ,a0,a,c,d,move)

318

319 xold2 = xold1.copy()

320 xold1 = xval.copy()

321 x = xmma.copy().flatten ()

322

323 #Reset F

324 f = np.zeros((ndof))

325 loop +=1

326 # Compute the change by the inf. norm

327 change = np.linalg.norm(x.reshape(nelx*nely*nelz ,1)-xold1.

reshape(nelx*nely*nelz ,1),np.inf)

328 # Write iteration history to screen (req. Python 2.6 or newer)

329 print("it.: {0} , obj.: {1:.3f} Vol.: {2:.3f}, ch.: {3:.3f}".

format(loop ,obj ,x.sum()/n,change))

330

331

332 fig ,ax = plt.subplots ()

333 im = ax.imshow(-x2.T, cmap=’gray’, interpolation=’none’, norm=

colors.Normalize(vmin=-1,vmax =0))

334

335 np.savetxt(dirName + "/x.csv", np.around(x,2), delimiter=",")

Listing 1: 3D Topology optimization code

7


