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Abstract

Automata Processor (AP) is a special implementation
of non-deterministic finite automata that performs pat-
tern matching by exploring parallel state transitions.
The implementation typically contains a hierarchical
switching network, causing long latency. This paper
proposes a methodology to split such a hierarchical
switching network into multiple pipelined stages, mak-
ing it possible to process several input sequences in par-
allel by using time-division multiplexing. We use a new
resistive RAM based AP (instead of known DRAM or
SRAM based) to illustrate the potential of our method.
The experimental results show that our approach in-
creases the throughput by almost a factor of 2 at a cost
of marginal area overhead.

Key words— time-devision multiplexing, au-
tomata, parallel processing

1 Introduction

Finite State Automata (FSA) is a commonly used com-
puting model to match sequences with predefined pat-
terns; examples are network security [1], bioinformat-
ics [2], and artificial intelligence [3]. It can also be
used for other functions, such as edit distance calcula-
tion [4, 5], tree structure traversal [6], and path recog-
nition [7]. However, executing FSA using von Neumann
machines such as CPUs and GPUs is generally not ef-
ficient. For example, applications such as Snort [1] and
Protomata [2] contain thousands of predefined patterns,
which easily exceed the size of first-level caches. More-
over, they have a bad data locality as states can transit
to any other state. In addition, automata processing
is difficult to parallelize due to a strong input sequence
dependency [8]. Hence, there is a need of dedicated and
efficient FSA hardware implementations.

Many solutions have been proposed. FPGA-based
accelerators [9, 10] are still limited by the FPGA’s ar-
chitecture and capacity. Therefore, their throughput is

∗This work was supported by the European Unions Hori-
zon 2020 Research and Innovation Program through the project
MNEMOSENE (Grant 780215).

low and their scalability is limited as compared to ASIC
designs [11]. Custom hardware accelerators [11, 12] for
FSA can avoid such problems by providing a large mem-
ory and having customized optimizations. For instance,
Micron Automata Processor (MAP) (based on DRAM
technology) [11] stores up to 48k states on a single chip,
which is large enough for configuring the automata of
most applications including Snort and Protomata [13].
It processes one input symbol in each cycle [11]. For
pattern matching applications, this means that all the
patterns are matched simultaneously. As a result, these
accelerators achieve a much higher throughput as com-
pared with CPU or GPU implementations [12, 13]. Uni-
fied Automata Processor (UAP) [12] contains multiple
cores that are simplified for automata processing. It
processes multiple input streams simultaneously to in-
crease the throughput. For each input stream, how-
ever, it processes activated states sequentially. There-
fore, its throughput degrades when many states are ac-
tive. HAWK [14] and HARE [15] use logic gates for
matching. They process multiple input symbols of a
single input stream in each clock cycle, thus achiev-
ing a higher throughput. However, they are designed
for regular expression matching only. To the best of
our knowledge, Cache Automaton [16] has the high-
est single-stream throughput reported. It is based on
SRAM technology and is much faster than DRAM-
based MAP [11]. Cache Automaton uses a two-stage
pipeline to process an input symbol. One of these
stages contains a hierarchical switching network that
consists of global and local routers; the switching net-
work implements the automata’s state transitions. It
is relatively complex as the number of states can be
huge. Therefore, this pipeline stage is the bottleneck
that limits Cache Automaton’s speed and throughput.
RRAM-AP concept [17] shows the potential of build-
ing an automata accelerator using Resistive Random
Access Memory (RRAM) arrays, which are even faster
than SRAM arrays. However, a complete design was
not given.

In this paper, we further improve the throughput of
automata accelerators. The main contributions of this
paper are:
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Figure 1: General architecture of Automata Proces-
sors [17].

• It proposes a methodology to process multiple in-
put streams simultaneously with a higher frequency
using Time-Division Multiplexing (TDM). We real-
ize this by pipelining the hierarchical switching net-
work and adding multiplexing circuitry. At any mo-
ment, each stage processes a symbol of a different in-
put stream without affecting the other streams. Al-
though the processing time for a single input stream
remains nearly the same, multiple input streams are
processed in parallel. Therefore, the overall through-
put is increased significantly at the cost of marginal
area overhead.

• It implements an RRAM-based automata accelera-
tor and integrates the proposed TDM methodology
in it. Note that the methodology can be imple-
mented with any technology (DRAM, SRAM and
RRAM).

• It evaluates the performance and area overhead of
the TDM RRAM-based automata accelerator. In
addition, it compares the automata accelerator to
existing solutions.

The rest of the paper is organized as follows. In Sec-
tion 2, we explain the basic principle of a popular au-
tomata accelerator type. Section 3 presents the TDM
methodology and how it can be integrated in an RRAM-
based automata accelerator. Section 4 evaluates the
performance and the area overhead of the TDM RRAM-
based automata accelerator. Section 5 contains a brief
discussion. Finally, 6 concludes the paper.

2 Background

In this section, we provide a background on automata
processors and highlight their performance bottleneck.

2.1 Automata Processors

The TDM methodology proposed in this paper can
only be applied to a specific type of automata ac-
celerators, referred to as Automata Processors (APs);
they have similar working principle as MAP. MAP is
one of the most successful hardware implementations
of Non-deterministic Finite Automata (NFA), whose

high efficiency has been proved by many researches [2–
7, 12]. Recent works such as Cache Automaton [16] and
RRAM-AP [17] intend to improve MAP by using dif-
ferent memory technologies while maintaining its basic
structure. These designs have the following features in
common:

• They all model homogeneous automata; in these
automata, a state can only be reached by tran-
sitions with the same input symbol(s). Any
NFA can be translated into its equivalent homoge-
neous automaton and therefore implemented using
APs [11].

• They all use memory arrays in the implementation.
MAP uses DRAM, Cache Automaton uses SRAM,
and RRAM-AP uses RRAM.

• They all use hierarchical switching networks for im-
plementing the state transitions.

The generalized architecture of APs is shown in
Fig. 1 [17]. An input symbol I is processed using three
major steps:

1 Input symbol matching. In this step, all states
that have an incoming transition occurring on I
are identified. The N states are presented by
column vectors called State Transition Elements
(STEs) which are pre-configured based on the tar-
geted automaton. Each input symbol activates
one wordline and the content in an STE cell spec-
ifies for that particular state whether the current
input symbol has an incoming transition. The re-
sult of this step is mapped to a vector called Sym-
bol Vector s.

2 Active state processing. It generates: (1) all
the possible states that can be reached from the
current active states (stored in Active Vector a)
based on the transition function (stored in the
routing matrix), and stores the result in the Fol-
low Vector f ; (2) the next active states (i.e., Active
Vector) by bit-wise ANDing s and f .

3 Output identification. In order to decide
whether the input sequence is accepted or not, the
intersection of a and pre-configured Accept Vec-
tor c is checked; it contains the states that the
automaton accepts.

Among these steps, Step 2 is the most critical and
time consuming. In the existing designs, this step is
implemented using a routing matrix. In the next sub-
section, we explain its working principle.
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Figure 2: Adapting the hierarchical switching network
for TDM.

2.2 Routing Matrix

As the STE matrix can be huge, it is fragmented across
the entire chip and we refer to each fragment as a tile.
To determine the next states, existing AP designs use
hierarchical switching networks to implement the rout-
ing matrix. For example, Cache Automaton uses a net-
work that consists of global and local switches as shown
in Fig. 2a [16]. If the communication takes place inside
a tile, only local routing is used; otherwise, global rout-
ing is used as well.

In the figure, the Active Vector a is divided into sev-
eral groups. Each group has some signals that enter
global switches (represented by the box G in the fig-
ure) which are used for inter-tile communication. The
outputs of the global switches combined with the initial
vector a forms a vector (referred to as Global Vector g)
and is used as the input to the local switches, which
are presented by boxes L1, L2, and L3. The outputs of
local switches form the Follow Vector f . As the global
switches are used to form an interconnection between
the different tiles, they suffer from long global wires.
They affect the latency of the active state processing
step (Step 2 in Section 2.1) as it is determined by the
sum of the latency of global and local switches. It is the
performance bottleneck of MAP and Cache Automaton.
In the following section, we will show how to improve
its performance using pipelining and TDM.

3 Time-Division Multiplexing
AP

In this section, we first introduce the TDM methodol-
ogy. Thereafter, we present the hardware implemen-
tation required to support TDM. Finally, we provide
the implementation details of the RRAM-AP combined
with TDM.

3.1 Methodology

In this section, we first examine the data flow of an AP
without pipelining and then apply TDM on it. We use

Fig. 3a to explain Cache Automaton’s working prin-
ciple. Each row of the table represents a clock cycle
(CC), while the columns contain the values of the in-
put symbol I and key vectors introduced in Section 2
(i.e., s, a, g, and f). The arrows indicate the data flow;
for example, the arrow from I1 to s1 means that I1 de-
termines the value of s1, and the arrows from s1 and
f1 to a1 mean that the value of a1 is derived based on
those of s1 and f1. Dashes (–) represent don’t cares. It
is important to note that the vector g is generated be-
tween each two cycles; e.g., in Fig. 3a, a0 is initialized
at CC = 1, s1, f1, and a1 are generated at CC = 2,
while g1 is generated between CC = 1 and CC = 2.

To increase the clock frequency of the AP, we can con-
vert the routing matrix into a pipeline by processing the
vector g in a full clock cycle. However, without other
necessary modifications, the AP will produce wrong re-
sults as shown in Fig. 3b. When both the global and
local switches work as successive pipeline stages, the
Follow Vector, e.g. f1, is only ready two cycles after the
Active Vector a0. Meanwhile, two input symbols (I1
and I2) have entered the AP. Therefore, the dependency
between the two input symbols has been destroyed. As
a result, all the values colored in red (underline) are
incorrect, including a1, a2, and a3.

We can solve this problem by decreasing the input
frequency as shown by Fig. 3c. If an input symbol
is processed every two cycles instead of every cycle,
then it can match the speed of the switching network.
The dependency among all the values are the same as
Fig. 3a. Therefore, the results are correct. However, it
requires more cycles to process all the three input sym-
bols (which is not completely shown in Fig. 3c). All
the stages make meaningful use (and produce results)
of only half of the cycles; e.g., local switches produce
outputs f1 and f2 at CC = 3 and 5 while they are idle
at CC = 4 and 6.

To make full use of the hardware, we use TDM
methodology and insert another input sequence to the
original one as shown in Fig. 3d. The values related
to the second sequence are marked with a prime and
colored in blue, e.g., I ′1. Both sequences do not inter-
fere with each other as there are no arrows connecting
black and blue values. The switches process one input
sequence in odd cycles and one in even cycles.

Fig. 3 clearly shows that the TDM methodology may
improve the performance. Both Fig. 3a and Fig. 3d
process one symbol every cycle; nevertheless, the clock
frequency of the implementation in Fig. 3d can be much
higher. The length of the clock period for Fig. 3d
equals the latency of a single switching operation (i.e.
the worse case latency between the global and local
switches), while the one for Fig. 3a is approximately
twice as long (sum of global and local switches). Al-
though we use a two-phase switching network as an ex-
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CC I s a g f
1 I1 – a0 –

g1

2 I2 s1 a1 f1
g2

3 I3 s2 a2 f2
g3

4 – s3 a3 f3

(a) No pipline

CC I s a g f
1 I1 – a0 – –

2 I2 s1 a1 g1 –

3 I3 s2 a2 g2 f1

4 – s3 a3 g3 f2

(b) Naive pipeline

CC I s a g f

1 – – a0 – –

2 I1 – – g1 –

3 – s1 a1 – f1

4 I2 – – g2 –

5 – s2 a2 – f2

6 I3 – – g3 –

(c) Slow pipeline

CC I s a g f

1 – – a0 – –

2 I1 – a′
0 g1 –

3 I′1 s1 a1 g′
1 f1

4 I2 s′1 a′
1 g2 f ′1

5 I′2 s2 a2 g′
2 f2

6 I3 s′2 a′
2 g3 f ′2

(d) TDM pipeline

Figure 3: Pipelining of global and local switches for
APs.

ample, the TDM can be generalized for networks with
more phases. The number of different active input se-
quences equals the number of switching phases. Note
that the proposed TDM scheme is independent from the
memory technology it uses; therefore, it can be applied
to MAP (based on DRAM), Cache Automaton (based
on SRAM), and RRAM-AP (based on RRAM).

3.2 Hardware Adaption

To support TDM in APs, we need to modify several
components of the architecture as indicated by the red
colored (bold) components in Fig. 4. First, a multi-
plexer (MUX) is added prior to Step 1 (input symbol
matching). Assuming the switching network works in
M phases, the MUX merges M input streams into a
single one by fetching in each cycle a symbol from an
input stream in a round-robin fashion. For example,
the example provided in Fig. 3d shows that the MUX
of Fig. 4 will have two input streams I and I ′. The
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port TDM in AP.

merged sequence will be decoded and processed in the
same way as executed in a normal AP.

Next, the routing matrix (implemented by a hierar-
chical switching network) needs to be updated as shown
in Fig. 2b for two phases (M=2). The control signals
of global and local switches (not shown in the figure)
should be changed due to the additional M−1 pipelines.
Extra buffer stages have to be inserted between the Ac-
tive Vector a and the local switches in order to balance
all paths between Active Vector a and Follow Vector f
to two clock cycles.

Finally, a demultiplexer (DEMUX) is added to split
the acceptance bit stream into multiple ones as shown
in Fig. 4. Each output stream corresponds to the input
stream that is provided two cycles earlier, due to one
cycle latency of Step 1 to produce a and one cycle
latency of Step 3 to produce Acceptance. Therefore,
DEMUX can share the same control signals with MUX
but delayed with two buffers.

3.3 RRAM-based Implementation

We develop an RRAM-based AP to demonstrate the
proposed TDM methodology. Its top level struc-
ture is shown in Fig. 2b, which generally follows the
performance-optimized design used in Cache Automa-
ton [16]:

• The chip contains 64 tiles, 8 global switches, and
the circuitry enabling TDM (a multiplexer, a de-
multiplexer, and two buffers between them; see also
Fig. 4).

• A tile consists of an STE array (containing 256
STEs and a decoder), a local switch, an Accept
Vector, a bit-wise AND gate, and a buffer (storing
256 bits).

• The sizes of global and local switches are 128×128
and 280× 256, respectively.

The STE arrays, global and local switches, and the Ac-
cept Vector are all implemented with one-Transistor-
one-RRAM (1T1R) arrays. These arrays compute a
vector-matrix product where the binary vector is ap-
plied as input to the word lines and the binary configu-
ration matrix is stored in RRAMs [17]. This operation

4
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is performed by special read instructions. For example,
for the RRAM array in a local switch as shown in the
dashed box in Fig. 5, this operation is between Global
Vector g and the array’s configuration L. During a read
operation, the bit lines are first precharged to a high
voltage. Subsequently, g is applied to the word lines;
note that multiple word lines can be activated simulta-
neously. Each column computes the inner product of
g and a column vector of L. If at least one RRAM
cell is configured as a low resistance (logic 1 in the con-
figuration matrix) and its word line is active (logic 1
in the input vector), then the bit line discharges to a
low voltage; otherwise, the bit line remains high. Note
that before any processing, the RRAM arrays must be
configured.

In this paper, we present the design of a local switch
as an example. The STE arrays and global switches are
implemented in a similar way. Fig. 5 illustrates our im-
plementation of the local switch. It consists of a 1T1R
memory array and peripheral circuits around it. Its bit
line (BL) and source line (SL) are connected to column
voltage drivers. The logic block of Fig. 5 is responsible
for providing control signals and setting up the circuit
in one of the two modes: configurable mode or opera-
tional mode; this depends on the input control signals
shown in Table 1. In the configurable mode, the write
enable (WE) signal is 1, and the local switch is initial-
ized (i.e., configured) based on the targeted automa-
ton. During the configuration, either SET or RESET
voltages (VSET and VRESET) are applied to the RRAM
device by the column voltage drivers based on the val-
ues in Data signal. As word line (WL) is long (256-bit
wide), we assume a single word is written in multiple
cycles (e.g., 64 bits a time) by using a column select
signal. In case the column select value is zero, the cells
in those lines are kept floating during writing. In the
operational mode, WE = 0 and the memory is used for
reading; i.e., it generates the value of the next Follow
Vector based on the Global Vector (see Section 3.1).

It is worth noting that the Accept Vector is imple-
mented together with the local switches using an extra

Table 1: Column and Row voltages in a Local Switch

Inputs Outputs

WE Column sel. Data VSL VBL VWL

1
1

1 GND VSET Row

0 VRESET GND decoder

0 – Float Float output

0 – – GND VRead Global Vector

column in the array. As there are 64 tiles, the outputs of
these columns in all the tiles together are used to gener-
ate the acceptance bit via a 64-to-1 OR operation. This
operation is implemented using three levels of 4-input
NOR, NAND, and OR gates.

4 Evaluation

In this section, we first present the simulation setup.
Subsequently, we present the performance results and
area overhead. Note that the latency of each step listed
in Section 2.1 can be divided into several parts:

1 Input symbol matching. It equals to the la-
tency of an STE array operation, which includes
symbol decoding and the operation of RRAM ar-
ray;

2 Active state processing. It consists of global
switching phase and local switching phase. The
former includes the latency of an AND gate, signal
transferring via a global wire, and a global switch.
The later includes global wire transmission and a
local switch;

3 Output identification. It consists of the latency
of Accept Vector (= local switch) and 64-to-1 OR
operations.

4.1 Simulation Setup

We conducted SPICE simulation to measure the la-
tency of these operations mentioned above. We assume
that each memory cell of the 1T1R array contains an
Pd/Al2O3/HfO2/NiOx/Ni RRAM device [18], with a
high and a low resistance of 109 and 103 Ω, respec-
tively. Its top and bottom electrodes are connected to
the bit line and the pass transistor and have a width
of 40 nm and 80 nm, respectively. The RRAM device
is simulated using the ASU model [19] configured using
the device characteristics of [18].

For the CMOS part of the AP implementation, we use
TSMC 40 nm technology. To simplify and speed up the
simulation, only one complete row and column of the
STE arrays, global, and local switches are simulated. In
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Figure 6: SPICE simulation result of the local switch.

such columns, only one cell is configured to a low resis-
tance. During the computation of an inner product, this
configuration results in the highest discharge time [17]
and therefore, it determines the minimum clock period.
To guarantee a correct sense amplifier output, we need
to make sure that the difference between the bit line
and reference voltage VRef is larger than ∆Vmin, which
is the minimum voltage difference that the sense am-
plifier requires to operate correctly. When the RRAM
cells in a column are all configured as logic 0, the voltage
drop in the bit line is negligible due to the high resis-
tance of the RRAM devices. As a result, we set Vdd =
1.1 V, VRef = 0.95 V, and ∆Vmin = 150 mV. The sense
amplifier design is adopted from [20]. With respect to
the latency of global wires, we follow the assumption
of [16]; i.e., their pitch and length are 1 µm and 1.5 mm,
respectively, with a latency of 66 ps/mm. Therefore,
the latency introduced by the global wire is 99 ps.

We use Cadence Virtuoso [21] to place and route the
sense amplifier, column and row drivers, and the buffer,
and measure their area. The area of the other digital
components, including the AND gate and the decoders,
are acquired from Cadence Genus [21]. For example,
we describe the behavior of the peripheral circuit in
Table 1 using Verilog and subsequently synthesize it
using Genus. Note that Genus reports only the total
area of the cells. To be on the safe side, we add a 25 %
extra overhead to account for routing.

4.2 Performance Results

Fig. 6 shows the simulation result of an operation in the
local switch, i.e., the inner product between the Global
Vector g and a configuration vector. The bit line is
first precharged to Vdd, which is controlled by the active
low signal Precharge. Then, g is used to activate the
word lines. As a result, the bit line starts to discharge
as one cell has a low resistance path. After a while,
the sense amplifier is enabled and it finally generates a
positive output. The period between the rising edges
of g and sense amplifier’s output is the latency of the
local switch; it is approximately equal to 178 ps.

STE array Local switchGlobal switch
0

0.5

1

1.5

2
·104

Area
(µm2)

RRAM cell

Sense amplifier

Column decoder

Row decoder

Figure 7: Area breakdown of STE array and switches.

Similarly, other simulation shows that the latency of
an STE array, an AND gate, a global switch, and a
64-to-1 OR gate are 258 ps, 11 ps, 129 ps, and 32 ps,
respectively. Therefore, the latency of each step can be
decided:

1 258 ps.

2 Global switching phase: 11 +99 +129 =239 ps. Lo-
cal switching phase: 99 +178 =277 ps.

3 178 +32 =210 ps

The clock period of TDM RRAM-AP is determined
by the pipeline stage with the highest latency. With-
out TDM, RRAM-AP’s clock period is the sum of the
latency of the global and local switching phases, i.e.,
239 +277 =516 ps. With TDM, the clock period equals
the latency of the local switching phase, i.e., 277 ps.
Therefore, the TDM methodology leads to a frequency
and throughput improvement of 1.86×.

4.3 Overhead

Implementing TDM requires additional hardware. In
this subsection, we evaluate this overhead. NVSim [22]
estimates the area of a 1T1R cell using the following
equation:

Area1T1R = 3(W/L + 1)(F 2)

where W/L = 3 is the width-length ratio of the ac-
cess/pass transistor and F = 80 nm the feature size.

The area breakdown of the area of STE, local switch
and global switch is shown in Fig. 7. For each memory,
the area of the RRAM cells, sense amplifiers, and the
column and the row decoder are included. Note that
the drivers and combinational logic are considered as
part of the decoders. We first observe that the area of
the STE array and local switch are similar, as they have
approximately the same number of rows and columns.
Second, the RRAM cells only contribute to a small pro-
portion of the total area due to the small RRAM feature
size. Third, the column decoder is relatively large as it
also contains the control logic block shown in Fig. 5.

Based on the result of Fig. 2b, we can estimate the
total area of our AP design; it is given in Table 2. The

6



Table 2: Component Area of TDM RRAM-AP

Component Array size
Area

(µm2)
#

Total area

(mm2)
%

Global switch 128 × 128 7842 8 0.063 2.5 %

MUX+* 1 × 8 134.6 1 0.000 0.0 %

STE array 256 × 256 17907 64 1.146 45.4 %

Local switch 280 × 256 19168 64 1.227 48.6 %

Accept Vector 280 × 1 59.74 64 0.004 0.2 %

AND gate 1 × 256 271.0 64 0.017 0.7 %

Buffer* 1 × 256 1091 64 0.083 2.8 %

* Overhead introduced by TDM Sum 2.527 100 %

first column lists the name of the components, and the
second and third columns indicate the size and area
of the component, respectively. The fourth and fifth
columns present how many of them are used in our AP
chip and their combined area. The relative area of the
components with respect to the whole chip area is listed
in the last column. The first row (MUX+) represents
the multiplexer, demultiplexer, and the buffers between
them. The buffers are inserted between the AND gates
and the local switches (see Fig. 2b). The other rows
contain the memories described above and the global
wires.

The area overhead introduced by TDM includes the
area of the MUX+ circuits and the buffers (denoted by
a star (*) in the table), and does not exceed 2.8 %. The
total area of our AP chip would be 3.16 µm2 considering
25 % routing overhead.

5 Discussion

5.1 TDM Methodology

Introducing TDM to APs increases their throughput
significantly. The RRAM-AP design presented in Sec-
tion 4.2 has a shortest path of 277 ps. Assuming that
the chip operates at a frequency of 3.0 GHz, its through-
put will be 24.0 Gbps as each input symbol is 8 bit
wide. This RRAM-AP design outperforms the state-
of-the-art designs as indicated by Table 3. Compared
to Cache Automaton, a throughput increase of 53 % can
be achieved at 26 % less area.

TDM can be applied to APs with any memory tech-
nology. In Cache Automaton, which is based on SRAM
technology, the latency of the global and local switch
phases equal 227 ps and 263 ps, respectively [16]. When
TDM is applied to it, a similar frequency and through-
put improvement of 1.86× can be expected due to a
similar design1.

1In Cache Automaton, four STEs share an SA to save area.
Therefore, the input symbol matching step (Step 1 in Sec-
tion 2.1) has a much longer latency than the local switching phase.

Here, we assume no SA sharing and Step 1 ’s latency is smaller

Table 3: Comparison Between TDM RRAM-AP and
The State-of-the-Art

Designs
Freq. Throughput Area
(GHz) (Gbps) (mm2)

HARE (w=32) [15] 1.0 3.9 80
UAP [12] 1.2 5.3 5.67

Cache Automaton [16] 2.0 15.6 4.3
TDM RRAM-AP (this work) 3.0 24.0 3.16

The area overhead introduced by TDM is marginal.
This is because that TDM only requires several minor
modifications to the hardware, such as additional multi-
plexer and buffers. The majority of the design, such as
the STEs, global, and local switches remains the same.
Therefore, we expect that TDM’s energy overhead is
marginal as well.

5.2 Applicability

Many FSA applications require the processing of mul-
tiple input streams. Their throughput can be improved
by using the TDM methodology. For instance, Snort
is a network security application which matches data
packages with particular patterns (called rules) to de-
tect viruses and attacks [1]. The processing of multiple
input sequences (i.e., data packages) is common when
it is deployed to protect a local network. Similarly,
Protomata analyzes protein samples against amino acid
patterns called motifs [2]. Usually, there are many sam-
ples to be analyzed. Other examples include natural
language processing [3], string matching [4], and path
recognition [7]. This methodology can also be used in
conjunction with Subramaniyanet’s method to acceler-
ate a single input stream [8].

6 Conclusion

In this paper, we proposed a methodology of pipelining
APs with TDM technique to improve their throughput.
We developed an RRAM-based AP design to prove the
concept. This prototype exhibits 1.86× performance
improvement with 2.8% area overhead. The proposed
methodology can be applied to all the AP designs and
may benefit a wide variety of applications.
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