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I. Introduction
Modern aircraft rely heavily on a wide array of sensors for navigation and flight control, including air-data, Global

Positioning System (GPS), and inertial sensors. Proper functioning of such sensors is crucial for maintaining flight

safety. Hence, in-flight identification and correction of potential sensor faults constitutes an important topic in aerospace.

The typical industry approach to sensor fault identification (FI) is through hardware redundancy [1]. A monitoring

algorithm compares redundant sensors to detect and isolate the source of the fault, and prevents the use of faulty data in

flight control computers. However, ensuring safety with hardware redundancy increases the overall cost and weight of

an aircraft, which are typically under strict constraints [2]. In addition, some recent flight accidents show that hardware

redundancy has limitations [3–5]. In 2023, a military jet crashed on the western coast of South Korea due to GPS and

inertial measurement unit (IMU) failure [3]. In another incident [4, 5], the failure of the air-data inertial reference unit

caused a flight upset that injured 11 passengers. Consequently, these incidents emphasize the need to explore alternative

methods for IMU sensor FI.

The search for alternative approaches led to the development of analytical redundancy methods, which are

subcategorized as model-based and data-driven [2]. Some recent studies focus on aircraft IMU FI using model-based

techniques, employing deterministic and stochastic methods [6–10]. Most of these papers utilize a nonlinear kinematic

process model to eliminate the impact of aerodynamic model uncertainties on state and fault estimation. The state and

details of various fault identification techniques developed in the last two decades are available in [1, 2, 11, 12].

This Note provides three primary contributions. First, it introduces a novel fault identification and state estimation

strategy for step, incipient, and oscillatory IMU faults, by combining an optimal two-stage extended Kalman filter

(OTSEKF) [13] and a higher-order sliding mode (HOSM) differentiator [14–16]. This combination tackles two important

problems in the IMU FI framework, which are noise amplification and sensitivity to initial conditions. As subsection

III.B explains, the flatness property of systems allows demonstrating that IMU faults are related to the drift in state

variables through first-order differentiation and algebraic relations. As a result, this enables the identification of IMU

faults by differentiating the drift in state variables. However, since differentiation amplifies noise, the use of HOSM

differentiator facilitates noise rejection and provides accurate IMU fault estimates. Furthermore, incorporating sliding
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mode reduces the sensitivity of OTSEKF to initial conditions [17]. In previous research [18], OTSEKF has been

shown to be highly sensitive to initial conditions due to the linearization of the filter, leading to large deviations in

fault estimates. The existing solution to this problem is to use an "iterated" linearization step. However, although this

improves the performance, it does not solve the issue completely and adds computational load. Conversely, using a

non-recursive and algebraic HOSM structure solves this problem with minimal computational burden. This makes

OTSEKF-HOSM a powerful combination for online state estimation and fault identification.

Secondly, it proposes an active sensor fault-tolerant control system for a flying-wing aircraft by combining the

introduced IMU FI strategy with incremental nonlinear dynamic inversion (INDI). Since INDI controllers require

accurate rate gyro measurements, uncorrected IMU faults can cause performance degradation. In this approach, IMU

faults identified through the OTSEKF-HOSM are used to correct IMU measurements and to maintain the performance

of the INDI controller. The INDI and the aircraft outer loop controllers both use the states estimated with the OTSEKF

under IMU faults.

Lastly, this study considers turbulence as a perturbing effect. To this end, it utilizes a kinematic model based on

ground speed that accounts for changing wind for state and fault estimation. This improves the suitability of the method

for real-life implementation. In earlier research, a similar kinematic model was used to account for wind in offline

simulations [8]. However, this Note proposes a modified approximate kinematic model that uses fault estimates and

incorporates wind in-flight.

The structure of the Note is as follows: Section II outlines the approximate kinematic model with IMU faults. Section

III introduces the IMU FI structure that includes the optimal two-stage extended Kalman filter and the higher-order

sliding mode differentiator. Section IV presents the IMU FI results under turbulent flight conditions. Section V discusses

the active sensor fault-tolerant control structure and presents a performance comparison. Lastly, Section VI provides the

conclusions and reiterates key findings.

II. Approximate Aircraft Kinematic Model with IMU Faults
The kinematic model used for state and fault estimation is based on ground speed to account for turbulence. In the

past, a similar kinematic model with exact process equations has been proposed for the same purpose [8]. However, this

section offers a modified kinematic model with non-exact process equations that accounts for the wind, performs fault

observation, and minimizes couplings between IMU faults.

A general nonlinear aircraft kinematic model can be written as the following:

¤𝒙 ≈ 𝒇
(
𝒙(𝑡), 𝒖𝑚 (𝑡), 𝒇̂

𝑖 (𝑡)
)
+ G (𝑥(𝑡))𝝎(𝑡) (1)

𝒚𝑚 (𝑡) = 𝒉 (𝒙(𝑡), 𝒖𝑚 (𝑡), 𝑡) + 𝝂(𝑡) (2)
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where 𝒙 denotes the state vector, 𝒖𝑚 represents the measured input to the system, 𝒇̂ 𝑖 indicates the estimated input faults,

𝒚𝑚 signifies the measured output, G is the noise distribution matrix, 𝒉 is the measurement model, and 𝝎 and 𝝂 are

zero-mean Gaussian input and measurement noise vectors, respectively. All variables are contained in R. For this

modified kinematic model based on ground speed with IMU faults, these variables are expressed as follows [8]:

𝒙 =

[
𝑢𝑏
𝐺𝑆

𝑣𝑏
𝐺𝑆

𝑤𝑏
𝐺𝑆

𝜙 𝜃 𝜓

]𝑇
(3)

𝒖𝑚 =

[
𝐴𝑥𝑚 𝐴𝑦𝑚 𝐴𝑧𝑚 𝑝𝑚 𝑞𝑚 𝑟𝑚

]𝑇
=

[
𝐴𝑥 𝐴𝑦 𝐴𝑧 𝑝 𝑞 𝑟

]𝑇
+ 𝝎 + 𝒇 𝑖 (4)

𝒚𝑚 =

[
𝑢𝐺𝑆𝑚 𝑣𝐺𝑆𝑚 𝑤𝐺𝑆𝑚 𝜙𝑚 𝜃𝑚 𝜓𝑚

]𝑇
=

[
𝑢𝐺𝑆 𝑣𝐺𝑆 𝑤𝐺𝑆 𝜙 𝜃 𝜓

]𝑇
+ 𝝂 (5)

𝒇 𝑖 =
[
𝑓𝐴𝑥 𝑓𝐴𝑦 𝑓𝐴𝑧 𝑓𝑝 𝑓𝑞 𝑓𝑟

]𝑇
(6)

𝝎 =

[
𝜔𝐴𝑥

𝜔𝐴𝑦
𝜔𝐴𝑧

𝜔𝑝 𝜔𝑞 𝜔𝑟

]𝑇
(7)

𝝂 =

[
𝜈𝑢𝐺𝑆

𝜈𝑣𝐺𝑆
𝜈𝑤𝐺𝑆

𝜈𝜙 𝜈𝜃 𝜈𝜓

]𝑇
(8)

where 𝑢𝑏
𝐺𝑆

, 𝑣𝑏
𝐺𝑆

, 𝑤𝑏
𝐺𝑆

are the components of the ground speed expressed in the body frame, 𝜙, 𝜃, 𝜓 are the attitude

angles, 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 are the true linear accelerations, 𝑝,𝑞,𝑟 are the true rotational rates, and 𝑢𝐺𝑆𝑚 , 𝑣𝐺𝑆𝑚 , 𝑤𝐺𝑆𝑚 are

the GPS ground speed measurements. Based on this set of definitions, the measured input is expressed as a linear

combination of true values, IMU sensor noise, and true IMU faults. The input faults for the IMU sensors are contained

in 𝒇 𝑖 .

Now that the system is fully defined, the next step is developing the process model. In previous studies focusing on

state and fault identification problems [8–10, 19], the process models have been defined as exact. However, defining

the exact equations requires complete knowledge of IMU faults, which is unrealistic because if real fault information

is readily available, the fault identification process becomes unnecessary. Instead, this section proposes a modified

kinematic model with non-exact process equations that utilizes fault estimates, which is given as follows:

¤𝑢𝑏𝐺𝑆 ≈ 𝑣𝑏𝐺𝑆 (𝑟𝑚 − 𝑓𝑟 ) − 𝑤𝑏
𝐺𝑆 (𝑞𝑚 − 𝑓𝑞) + 𝐴𝑥𝑚 − 𝑔 sin 𝜃 (9)

¤𝑣𝑏𝐺𝑆 ≈ −𝑢𝑏𝐺𝑆 (𝑟𝑚 − 𝑓𝑟 ) + 𝑤𝑏
𝐺𝑆 (𝑝𝑚 − 𝑓𝑝) + 𝐴𝑦𝑚 + 𝑔 cos 𝜃 sin 𝜙 (10)

¤𝑤𝑏
𝐺𝑆 ≈ 𝑢𝑏𝐺𝑆 (𝑞𝑚 − 𝑓𝑞) − 𝑣𝑏𝐺𝑆 (𝑝𝑚 − 𝑓𝑝) + 𝐴𝑧𝑚 + 𝑔 cos 𝜃 cos 𝜙 (11)

¤𝜙𝑝 ≈ 𝑝𝑚 + (𝑞𝑚 − 𝑓𝑞) sin 𝜙 tan 𝜃 + (𝑟𝑚 − 𝑓𝑟 ) cos 𝜙 tan 𝜃 (12)

¤𝜃𝑝 ≈ 𝑞𝑚 cos 𝜙 − (𝑟𝑚 − 𝑓𝑟 ) sin 𝜙 (13)

¤𝜓𝑝 ≈ (𝑞𝑚 − 𝑓𝑞)
sin 𝜙

cos 𝜃
+ 𝑟𝑚

cos 𝜙
cos 𝜃

(14)

One reason for constructing the model this way is for separating the fault contribution of each IMU sensor to each
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state variable. For example, looking at equation 9, it is possible to notice that estimate fault contributions 𝑓𝑟 and 𝑓𝑞

are subtracted from their corresponding IMU sensor measurements, whereas 𝑓𝐴𝑥 is not subtracted and is contained in

𝐴𝑥𝑚. This ensures that the drift in the state variable ¤𝑢𝑏
𝐺𝑆

is predominantly caused by 𝑓𝐴𝑥 and not by the faults in other

sensors, which minimizes the coupling between IMU faults, and holds as long as the estimated faults closely match

the true faults, 𝑓 ≈ 𝑓 . All process equations follow the same structure. The IMU fault driving the drift in the ground

speed components is preserved in the accelerometer measurements 𝐴𝑥𝑚, 𝐴𝑦𝑚, 𝐴𝑧𝑚, while it is retained in the rate gyro

measurements 𝑝𝑚, 𝑞𝑚, 𝑟𝑚, for the attitude angles.

Fundamentally, by structuring the model this way, the predicted states are allowed to drift in a restricted way

compared to the true or measured states. This may seem counterintuitive at first, but as explained in the next section, the

drift in predicted states plays an important role within the optimal two-stage extended Kalman filter framework. This is

because the fault information enters into the system as a drift in state variables, which follows from Eq. 20 as 𝒙̄𝑘 |𝑘−1 is

allowed to drift before being corrected in the subsequent stages of the filter. To complete the system definition, the noise

distribution matrix and the measurement model are defined as follows [8]:

G(𝑥(𝑡)) =



−1 0 0 0 𝑤𝑏
𝐺𝑆

−𝑣𝑏
𝐺𝑆

0 −1 0 −𝑤𝑏
𝐺𝑆

0 𝑢𝑏
𝐺𝑆

0 0 −1 𝑣𝑏
𝐺𝑆

−𝑢𝑏
𝐺𝑆

0
0 0 0 −1 − sin 𝜙 tan 𝜃 − cos 𝜙 tan 𝜃
0 0 0 0 − cos 𝜙 sin 𝜙

0 0 0 0 − sin 𝜙/cos 𝜃 − cos 𝜙/cos 𝜃


(15)

[
𝑢𝐺𝑆𝑚 𝑣𝐺𝑆𝑚 𝑤𝐺𝑆𝑚

]𝑇
= 𝑇𝐸𝐵

[
𝑢𝑏
𝐺𝑆

𝑣𝑏
𝐺𝑆

𝑤𝑏
𝐺𝑆

]𝑇
+
[
𝜈𝑢𝐺𝑆

𝜈𝑣𝐺𝑆
𝜈𝑤𝐺𝑆

]𝑇
(16)

𝜙𝑚 = 𝜙 + 𝜈𝜙 (17)

𝜃𝑚 = 𝜃 + 𝜈𝜃 (18)

𝜓𝑚 = 𝜓 + 𝜈𝜓 (19)

where 𝑇𝐸𝐵 is a transformation matrix that converts the body frame into the Earth-centered, Earth-fixed (ECEF) frame

under the assumption that Earth is flat and non-rotating.

III. IMU FI Framework
This section introduces the complete IMU fault identification strategy that utilizes the nonlinear aircraft kinematic

model. The strategy simultaneously addresses the state estimation problem under time-varying IMU faults and

reconstructs them. State estimation is performed through an optimal two-stage extended Kalman filter (OTSEKF),

whereas a higher-order sliding mode (HOSM) differentiator complements the OTSEKF and reconstructs the IMU

faults. Figure 1 gives the schematic of this framework. In this figure, 𝒇 𝑖 indicates the true IMU faults, x̄𝑘 |𝑘−1 and
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Fig. 1 Schematic of the fault identification framework

x̄𝑘 |𝑘 respectively represent the predicted and corrected states under IMU faults without treating the faults, which

means the states are allowed to drift at this step, 𝝁̂𝑖 denotes the estimated drift in state variables, 𝒙̂𝑘 |𝑘 signifies the

final drift-corrected state estimate, and 𝒇̂
𝑖 symbolizes the estimated IMU faults. Note that in reality, the modified

fault-neglecting state estimator and fault-inclusive drift estimator run in parallel; they only appear here sequentially for

the sake of demonstration.

A. Optimal Two-Stage Extended Kalman Filter

This Note essentially addresses an input fault identification problem since the IMU measurements act as inputs to

the nonlinear kinematic model. In the Kalman filter framework, the typical way to deal with this is to consider faults or

biases as part of the system state and to perform the state and parameter estimation simultaneously in a single stage,

leading to the augmented state Kalman filter (ASKF). However, this causes a large state vector and, consequently, high

computational complexity, i.e., O((𝑛 + 𝑏)3) where n is the dimension of the states and b of the faults [8]. Friedland [20]

proposes decomposing the single-stage filter into two parallel filters as a separate fault-free state estimator and a state

drift estimator. Although this reduces the computational complexity to O(𝑛3 + 𝑏3), the decomposition of the filter is

only optimal for constant faults. In case of random or time-varying faults, the decomposition is only optimal if the

correlation between the state and fault noises satisfies an algebraic constraint [21]. Keller and Darouach [22] provide a

formulation that is able to optimally decouple the filter under time-varying faults by using a modified fault-free state

estimator. Under constant faults, this structure is equivalent to that of Friedland’s. Following this, Hsieh and Chen

[13] derive an optimal two-stage Kalman Filter (OTSKF) in the minimum mean square error sense that eliminates the

necessity of satisfying the algebraic constraint and is stable as long as the modified fault-free state covariance matrix

Q̄𝑘−1 is positive semidefinite. Many other researchers contributed to the extension of Friedland’s two-stage formulation

to nonlinear systems [23–26]. Some of them even showed earlier applications to fault-tolerant navigation [27, 28] and

target tracking problems [29].

This Note adopts the structure proposed by [13] for the OTSEKF part of the IMU FI framework, which is also used
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in [8]. This later is combined with a HOSM differentiator to minimize sensitivity to initial conditions, and to obtain

accurate fault estimates through differentiation. The equations used in this section are mainly based on [8] and are

modified where necessary for the purposes of this work.

1. Modified Fault-Neglecting State Estimator

This first part of the OTSEKF performs state prediction while neglecting the input faults that exist in the IMU

measurements. It is given by the following set of equations, based on [8]:

𝒙̄𝑘 |𝑘−1 = 𝒙̄𝑘−1 |𝑘−1 +
∫ 𝑡𝑘

𝑡𝑘−1

𝒇 (𝒙̄(𝑡), 𝒖𝑚 (𝑡), 0, 𝑡) 𝑑𝑡 + 𝒖̄𝑘−1 (20)

𝒙̄𝑘 |𝑘 = 𝒙̄𝑘 |𝑘−1 + 𝑲 𝑥̄
𝑘

(
𝒚𝑚,𝑘 − H𝑘 𝒙̄𝑘 |𝑘−1

)
(21)

P𝑥̄
𝑘 |𝑘−1 = 𝚽𝑘−1P𝑥̄

𝑘−1 |𝑘−1𝚽
𝑇
𝑘−1 + Q̄𝑘−1 (22)

𝑲 𝑥̄
𝑘 = P𝑥̄

𝑘 |𝑘−1H𝑇
𝑘

(
H𝑘P𝑥̄

𝑘 |𝑘−1H𝑇
𝑘 + R𝑘

)−1
(23)

P𝑥̄
𝑘 |𝑘 =

(
I − 𝑲 𝑥̄

𝑘H𝑘

)
P𝑥̄
𝑘 |𝑘−1 (24)

where x̄𝑘 |𝑘−1 is the predicted state vector, 𝑲 𝑥̄
𝑘

is the state Kalman gain, P𝑥̄
𝑘 |𝑘−1 is the predicted state covariance

matrix. Furthermore, the discrete system transition matrix, 𝚽𝑘−1, the discrete noise distribution matrix, 𝚪𝑘−1, and the

observation matrix, H𝑘 are defined as follows:

𝚽𝑘−1 = 𝑒F𝑘−1Δ𝑡 =

∞∑︁
𝑛

F𝑛
𝑘−1 (Δ𝑡)

𝑛

𝑛!
, Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 (25)

F𝑘−1 =
𝜕 𝒇 (𝒙(𝑡), 𝒖𝑚 (𝑡), 0)

𝜕𝒙

����
𝒙=𝒙̂𝑘−1|𝑘−1

, H𝑘 =
𝜕𝒉 (𝒙(𝑡), 𝒖𝑚 (𝑡))

𝜕𝒙

����
𝒙=𝒙̂𝑘−1|𝑘−1

(26)

𝚪𝑘−1 =

∫ 𝑡𝑘

𝑡𝑘−1

𝚽𝑘−1G
(
𝒙̄𝑘−1 |𝑘−1

)
𝑑𝑡 (27)

Q𝑘 = 𝐸
{
𝝎(𝑡)𝑇𝝎(𝑡)

}
, R𝑘 = 𝐸

{
𝝂(𝑡)𝑇𝝂(𝑡)

}
(28)

From these sets of equations, one may realize that the modified fault-neglecting state estimator is similar to the discrete

formulation of the conventional extended Kalman filter. The difference comes from Q̄𝑘−1 and 𝒖̄𝑘−1, which are coupling

terms that are outlined in the following subsections.

2. Fault-Inclusive Drift Estimator

The purpose of this part of the OTSEKF is to estimate the drift in the predicted states caused by IMU faults. For the

ground speed based kinematic model, the estimated drift is defined as the following:
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𝝁̂𝑖 =

[
ˆ̃𝑢𝑏
𝐺𝑆

ˆ̃𝑣𝑏
𝐺𝑆

ˆ̃𝑤𝑏
𝐺𝑆

ˆ̃𝜙 ˆ̃𝜃 ˆ̃𝜓
]𝑇

(29)

The estimation of drift serves two purposes: firstly, to correct the predicted states that are allowed to drift during the

first stage of the filter, thereby yielding final state estimates that are corrected for drift; secondly, for the reconstruction

of IMU faults using a HOSM differentiator. The main equations of this section are modified from [8] and written as

follows:

𝝁̂𝑖
𝑘 |𝑘−1 = 𝝁̂𝑖

𝑘−1 |𝑘−1 (30)

P𝝁𝑖

𝑘 |𝑘−1 = P𝝁𝑖

𝑘−1 |𝑘−1 + Q𝝁𝑖

𝑘−1 (31)

𝑲𝝁𝑖

𝑘
= P𝝁𝑖

𝑘 |𝑘−1S𝑇
𝑘

(
H𝑘P𝒙̄

𝑘 |𝑘−1H𝑇
𝑘 + R𝑘 + S𝑘P𝝁𝑖

𝑘 |𝑘−1S𝑇
𝑘

)−1
(32)

𝝁̂𝑖
𝑘 |𝑘 = 𝝁̂𝑖

𝑘 |𝑘−1 + 𝑲𝝁𝑖

𝑘

(
𝒚𝑚,𝑘 − H𝑘 𝒙̄𝑘 |𝑘−1 − S𝑘 𝝁̂

𝑖
𝑘 |𝑘−1

)
(33)

P𝝁𝑖

𝑘 |𝑘 =

(
I − 𝑲𝝁𝑖

𝑘
S𝑘

)
P𝝁𝑖

𝑘 |𝑘−1 (34)

where P𝝁𝑖

𝑘 |𝑘−1 is the fault covariance matrix, 𝑲𝝁𝑖

𝑘
is the Kalman gain of the faults, Q𝝁𝑖

𝑘−1 is the fault noise covariance

matrix. In addition, some auxiliary definitions are written as:

𝒖̄𝑘 =
(
Ū𝑘+1 − U𝑘+1

)
𝝁̂𝑖
𝑘 |𝑘 (35)

Q̄𝑘 = 𝚪𝑘Q𝑘𝚪
𝑇
𝑘 − Q𝒙𝝁𝑖

𝑘
Ū𝑇

𝑘+1 − U𝑘+1

(
Q𝒙𝝁𝑖

𝑘
− Ū𝑘+1Q𝝁𝑖

𝑘

)𝑇
(36)

Ū𝑘 = 𝚽𝑘−1V𝑘−1 + 𝚪𝑘−1 (37)

S𝑘 = H𝑘U𝑘 (38)

U𝑘 = Ū𝑘 +
(
Q𝒙𝝁𝑖

𝑘+1 − Ū𝑘Q𝝁𝑖

𝑘−1

) (
P𝝁𝑖

𝑘 |𝑘−1

)−1
(39)

V𝑘 = U𝑘 − 𝑲 𝒙̄
𝑘S𝑘 (40)

where U𝑘 and V𝑘 are called blending matrices, while Q𝒙𝝁𝑖

𝑘
is the covariance matrix that describes the correlation

between process and fault noise and is equal to zero in the case of constant faults. This completes the drift estimator.

The following section combines the outputs of the modified fault-neglecting state estimator and the fault-inclusive drift

estimator to obtain the final state estimate and its covariance.

7



3. Drift-Corrected State Estimation

This final stage combines the output of the first two stages and provides the corrected state estimates and its

covariance, as written below [8]:

𝒙̂𝑘 |𝑘 = 𝒙̄𝑘 |𝑘 + V𝑘 𝝁̂
𝑖
𝑘 |𝑘 (41)

P𝒙
𝑘 |𝑘 = P𝒙̄

𝑘 |𝑘 + V𝑘P𝝁𝑖

𝑘 |𝑘V𝑇
𝑘 (42)

From Equation 41, it is possible to observe that the final corrected estimate is a linear combination of the modified

fault-neglecting state estimator output, 𝒙̄𝑘 |𝑘 , and the fault-inclusive drift estimator output, 𝝁̂𝑖
𝑘 |𝑘 . Hence, through the

OTSEKF, the estimates are corrected for IMU faults without explicitly identifying them. The next section addresses the

IMU fault identification problem by making use of the state drift calculated through the filter.

B. IMU FI using HOSM Differentiation

So far, this Note covers the problem of maintaining performance in state estimation under input faults. This

subsection explains the relationship between the drift estimator of the OTSEKF and the IMU fault identification. Recall

that 𝒇̂
𝑖 is the vector of IMU fault estimates, whereas 𝝁̂𝑖 contains estimated drift in the predicted states. Now the final

part of the problem is to calculate 𝒇̂
𝑖 using 𝝁̂𝑖 , which is closely related to the flatness property of nonlinear systems.

1. Flatness Property

Theorem 1 ([30]) A system is considered flat if there exists an output, 𝒚 𝑓 such that all states and inputs, (𝒙, 𝒖) can be

expressed by the output and a finite number of its derivatives. This output is then called a flat output.

This implies that the nonlinear system defined in Eqs. (1-2), is only flat if the following definitions hold [10]:

𝒙 = Ψ1 (𝒚 𝑓 , ¤𝒚 𝑓 , ¥𝒚 𝑓 , ..., 𝒚
𝑘−1
𝑓 ) (43)

𝒖𝑚 = Ψ2 (𝒚 𝑓 , ¤𝒚 𝑓 , ¥𝒚 𝑓 , ..., 𝒚
𝑘
𝑓 ) (44)

where Ψ1 and Ψ2 are algebraic functions that describe smooth vector fields within the manifold, and 𝑘 is the degree

of differentiation. Recall the variable definitions for the nonlinear kinematic model defined in Eqs. (3-8). Based on

these, it is possible to choose a candidate flat output as: 𝒚 𝑓 =

[
𝑢𝑏
𝐺𝑆

𝑣𝑏
𝐺𝑆

𝑤𝑏
𝐺𝑆

𝜙 𝜃 𝜓

]𝑇
. The advantage of this flat

output choice is that the equality given in Eq. 43 is automatically satisfied as 𝒙 = 𝒚 𝑓 . For the input, it is straightforward

to notice that the derivatives of the flat outputs ¤𝒚 𝑓 =

[
¤𝑢𝑏
𝐺𝑆

¤𝑣𝑏
𝐺𝑆

¤𝑤𝑏
𝐺𝑆

¤𝜙 ¤𝜃 ¤𝜓
]𝑇

are related to the measured inputs

𝒖𝑚 =

[
𝐴𝑥𝑚 𝐴𝑦𝑚 𝐴𝑧𝑚 𝑝𝑚 𝑞𝑚 𝑟𝑚

]𝑇
through algebraic relations. In essence, this means that the output is related to the

states through a first-degree differentiation and algebraic relations, demonstrating that the system is flat.
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Now that the system is shown to be flat, one might decompose the state and measured inputs as 𝒙 = 𝒙𝑝 + 𝝁𝑖 and

𝒖𝑚 = 𝒖 + 𝝎 + 𝒇 𝑖 , leading to the following definitions:

𝒙𝑝 + 𝝁𝑖 = Ψ1 (𝒚 𝑓 , ¤𝒚 𝑓 , ¥𝒚 𝑓 , ..., 𝒚
𝑘−1
𝑓 ) (45)

𝒖 + 𝝎 + 𝒇 𝑖 = Ψ2 (𝒚 𝑓 , ¤𝒚 𝑓 , ¥𝒚 𝑓 , ..., 𝒚
𝑘
𝑓 ) (46)

where 𝝁𝑖 represents the true drift in states caused by IMU faults. Given that 𝒖𝑚 and ¤𝒙 = ¤𝒚 𝑓 have an algebraic

relationship, it follows that ¤𝝁𝑖 and 𝒇 𝑖 , which are contained within ¤𝒙 and 𝒖𝑚, are similarly algebraically related.

Fundamentally, this demonstrates that it is possible to identify IMU faults simply by differentiating the drift in the

state variables expressed in the body frame. However, since differentiation by nature is a noise amplifier, it is important

to choose a strategy that rejects noise while maintaining accuracy.

2. HOSM Differentiation

According to [8], the performance of the OTSEKF degrades when the system is nonlinear and leads to significant

estimation errors during the initial stage of fault identification. To overcome this, the authors proposed an iterated

OTSEKF to improve the linearization of the observation model. Although this mainly resolved the deviations, close

inspection reveals that even with this additional step, some spikes are observed around the initial condition. In addition,

repeated linearization increases the computational load. To alleviate these problems, this study introduces a sliding-mode

fault reconstruction approach. In the past, sliding mode has been applied to the inertial reference unit FDD problem

[10]. However, this application only used a first-order sliding mode differentiator and did not investigate state estimation

as part of the problem. In addition, the application was limited to a single fault case of a yaw-rate sensor. Hence,

this section proposes higher-order sliding mode differentiation as a complementary tool to OTSEKF that allows for

reconstructing IMU faults in an online setting under turbulent conditions.

Sliding mode differentiators are advantageous due to their inherent robustness to noise, high accuracy [14–16], and

potentially low sensitivity to initial conditions [17]. Despite their ability to eliminate most noise, the output might

exhibit low-amplitude high-frequency oscillations. This occurs because of a phenomenon called chattering, which is the

rapid discontinuous switching of the function to keep the states close to the sliding surface. A possible strategy for

mitigating this is using higher-order sliding modes, where the switching action affects not only the first-order derivative,

but also the higher-order functions. This reduces the aggressiveness of the switching and provides a smoother derivative.

The sliding mode differentiator used in this study is given by the following set of equations in discrete and
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non-recursive form:

𝑧0 (𝑡𝑘+1) = 𝑧0 (𝑡𝑘) − 𝜆0 |𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠) |3/4𝑠𝑖𝑔𝑛(𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠))Δ𝑡 + 𝑧1 (𝑡𝑘)Δ𝑡 (47)

𝑧1 (𝑡𝑘+1) = 𝑧1 (𝑡𝑘) − 𝜆1 |𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠) |2/3𝑠𝑖𝑔𝑛(𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠))Δ𝑡 + 𝑧2 (𝑡𝑘)Δ𝑡 (48)

𝑧2 (𝑡𝑘+1) = 𝑧2 (𝑡𝑘) − 𝜆2 |𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠) |1/2𝑠𝑖𝑔𝑛(𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠))Δ𝑡 + 𝑧3 (𝑡𝑘)Δ𝑡 (49)

𝑧3 (𝑡𝑘+1) = 𝑧3 (𝑡𝑘) − 𝜆3𝑠𝑖𝑔𝑛(𝑧0 (𝑡𝑘) − 𝜇̂𝑖 (𝑠))Δ𝑡 (50)

where 𝜇̂𝑖 (𝑠) ∈
[

ˆ̃𝑢𝑏
𝐺𝑆

ˆ̃𝑣𝑏
𝐺𝑆

ˆ̃𝑤𝑏
𝐺𝑆

ˆ̃𝜙 ˆ̃𝜃 ˆ̃𝜓
]𝑇

and 𝜆0,1,2,3 are chosen to achieve finite-time convergence and desirable noise

rejection properties through trial and error. In this set of equations, 𝑧0 (𝑡𝑘+1) gives a filtered version of 𝜇̂𝑖 (𝑠), which is

the signal that is being differentiated; 𝑧1 (𝑡𝑘+1) represents the first derivative of 𝑧0 (𝑡𝑘+1) and signifies the IMU fault that

is targeted for calculation. Lastly, 𝑧2 (𝑡𝑘+1) and 𝑧3 (𝑡𝑘+1) are the higher derivatives. Hence, the final expression for the

estimated IMU faults is written as:

𝑧1 (𝑡) ∈ 𝒇̂
𝑖
=

[
𝑓𝐴𝑥

𝑓𝐴𝑦
𝑓𝐴𝑧

𝑓𝑝 𝑓𝑞 𝑓𝑟

]𝑇
(51)

This indicates that a fault on any of the IMU sensors is identified by differentiating the drift it causes on the corresponding

state variable. The next section outlines the results of the state estimation and fault identification under turbulence.

IV. Identifying IMU Faults in Turbulent Conditions
This section presents the results of state estimation and fault identification under the effect of turbulence. It is

assumed that faults in the rate gyro and linear accelerometer do not happen simultaneously. This minimizes the couplings

between the faults and allows for a distinct evaluation of each fault scenario. The simulation model used in this Note

belongs to the Flying-V aircraft of Delft University of Technology. The aerodynamics are represented by a 6-DOF,

force-moment based model with a linear structure given in Eq. 52.

𝐶∗ = 𝐶∗0 + 𝐶∗𝛼 (𝛼) + 𝐶∗𝛽 (𝛽) + 𝐶∗𝑝∗ (𝑝
∗) + 𝐶∗𝑞∗ (𝑞

∗) + 𝐶∗𝑟∗ (𝑟
∗) + 𝐶∗𝛿𝐶𝑆𝑘

(𝛿𝐶𝑆𝑘
) (52)

𝐶∗ stands for the force and moment coefficients 𝐶𝑋, 𝐶𝑌 , 𝐶𝑍 , 𝐶𝐿 , 𝐶𝑀 , 𝐶𝑁 , whereas 𝛼 is the angle-of-attack, 𝛽 sideslip

angle, 𝑝∗, 𝑞∗, 𝑟∗ are scaled angular rates, and 𝛿𝐶𝑆𝑘
denotes the control surface deflections. The aircraft has five

independent control surfaces, i.e., four elevons, and two coupled rudders. Further details including the outer and inner

loop characteristics, actuators, aerodynamic model, and control surface layout can be found in [31, 32]. The sensors

in this model are replaced with a set of commercial-of-the-shelf alternatives to achieve more realistic performance,

the parameters of which are given in Table 1. Atmospheric turbulence is simulated using a Dryden Turbulence model.
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Table 1 Sensor Parameters, based on [33]

Sensor Sampling rate, Hz Noise Standard Deviation Unit
𝑢𝐺𝑆𝑚 , 𝑣𝐺𝑆𝑚 , 𝑤𝐺𝑆𝑚 10 0.030 m/s

𝑉𝑡𝑚 100 0.005 m/s
𝛼𝑚, 𝛽𝑚 100 2.7 · 10−4 rad
𝜙𝑚, 𝜃𝑚 100 8.7 · 10−5 rad
𝜓𝑚 100 1.7 · 10−4 rad

𝐴𝑥𝑚, 𝐴𝑦𝑚, 𝐴𝑧𝑚 100 6.9 · 10−4 m/s2

𝑝𝑚, 𝑞𝑚, 𝑟𝑚 100 4.1 · 10−6 rad/s

The turbulence remains active for all the following simulations. Figure 2 gives the time histories of the turbulence

components expressed in the body-fixed reference frame. For all results presented in subsequent sections, the Flying-V

model is initialized from a steady-symmetric trimmed state in cruise condition.

Fig. 2 Turbulent windspeed components expressed in the body frame

A. Accelerometer Fault Identification

This subsection focuses on accelerometer fault identification results in turbulent flight conditions. Table 2 outlines

the details of the fault scenarios. As seen in the table, there are three types of faults that act on the accelerometers for

two 20-second intervals. Across all sensors, the types of faults and their magnitudes differ between intervals. The

Table 2 Accelerometer fault cases

Time interval, s Fault Affected sensor Magnitude Unit
Step 𝐴𝑥 2 m/s2

(10,30) Incipient 𝐴𝑦 −0.1(𝑡 − 10) m/s2

Sinusoidal 𝐴𝑧 2 sin(0.5𝜋𝑡) m/s2

Sinusoidal 𝐴𝑥 2 sin(𝜋𝑡) m/s2

(35,55) Step 𝐴𝑦 1 m/s2

Incipient 𝐴𝑧 0.1(𝑡 − 35) m/s2
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results of accelerometer fault identification are depicted in Figure 3. For all accelerometers 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 , the estimated

faults follow the true values quite closely, indicating a successful identification. From the 𝑓𝐴𝑥 plot, it is possible to see

that even during severe oscillations in the second interval, the estimation works sufficiently fast to keep track. This

indicates that the OTSEKF successfully estimates the drift in state variables and the HOSM differentiator performs a

robust differentiation while retaining good exactness. Moreover, in contrast to the earlier offline application by [18],

even though the filter omits the "iterated" step, the estimates remain stable and do not diverge at the beginning of the

simulation. Based on these, the state estimates are expected to remain close to the true values as well because correcting

the drift on the states requires accurate drift estimates. Figure 4 shows the estimated states and compares them with the

measured and true states. From the figure, it is clear that all states are accurately estimated, with no noticeable drift.

Fig. 3 True and estimated accelerometer faults

Fig. 4 Measured, estimated and true states under accelerometer faults
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The measured ground speed components come from GPS measurements, which are represented in an Earth-centered,

Earth-fixed frame under the assumption that Earth is flat and non-rotating. However, estimates are the ground speed

components expressed in the body-fixed frame. Hence, a post-estimation transformation converts them into the Earth

frame to align with the sensor measurements for proper comparison.

B. Rate Gyro Fault Identification

This subsection focuses on rate gyro fault identification results in turbulent flight conditions. The fault scenarios are

defined similarly to accelerometer faults, and are given in Table 3. A comparison of the true and estimated gyro faults is

given in Figure 5. It is clear from the figure that the estimation of rate gyro faults is successful. One might notice,

compared to accelerometer fault estimates, gyro estimates follow the true values more closely with lower noise. This is

because the attitude sensor has a significantly larger update rate than GPS and better noise characteristics. Furthermore,

once again compared to the previous offline application [18], the estimates are free of divergent behavior. Figure 6

presents the estimated states and compares them with the measured and true states. Although the estimation of the

Table 3 Rate gyro fault cases

Time interval, s Fault Affected sensor Magnitude Unit
Sinusoidal 𝑝 (𝜋/180) sin(𝜋𝑡) rad/s

(10,30) Incipient 𝑞 0.1(𝜋/360) (𝑡 − 10) rad/s
Step 𝑟 −𝜋/360 rad/s

Incipient 𝑝 −0.125(𝜋/360) (𝑡 − 35) rad/s
(35,55) Step 𝑞 1.5𝜋/360 rad/s

Sinusoidal 𝑟 (𝜋/180) sin(0.5𝜋𝑡) rad/s

attitude angles seems satisfactory, a small drift is observed in ground speed estimates. This outcome is peculiar because

one might anticipate that since the gyro faults are accurately estimated, this would imply that the drift in the state

variables is also estimated correctly. The explanation lies with the approximate nature of the kinematic model. From the

process equations defined in (9-14), if a fault occurs on one of the accelerometers, it does not affect the other sensors. For

example, 𝑓𝐴𝑥 only appears in ¤𝑢𝑏
𝐺𝑆

as part of 𝐴𝑥𝑚 and not in any other equation. However, this is not true for gyro faults

since they exhibit cross-couplings and bleed into other equations. This is due to 𝒇̂
𝑖 not being exactly equal to 𝒇 𝑖 , leading

to some residual terms that affect the state estimation. Unlike accelerometer faults, gyro faults cause some degree of

drift in all states. Cross-couplings do not cause issues in attitude angle estimation because for a steady-symmetric flight

condition in cruise, 𝜙 and 𝜃 are typically small; hence the residuals diminish through trigonometric relations. Thus, the

estimation remains stable and the drift between the true and estimated states appears to be small in magnitude.
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Fig. 5 True and estimated gyroscope faults

Fig. 6 Measured, estimated and true states under gyro faults

V. Active Sensor Fault-Tolerant Control System
This section combines the IMU fault identification method proposed in this Note with an INDI-based flight control

system to design an active fault-tolerant flight controller for the Flying-V. The details of the Flying-V simulation model

and the flight controller used in this study are available in [32, 33].

INDI is a sensor-driven feedback linearization technique that uses angular acceleration feedback to derive incremental

control inputs, linearizing the system. Using sensors, INDI reduces aerodynamic model dependencies and increases

robustness against model mismatches. Based on [34], if the control variables are defined as angular rates 𝝎 =
[
𝑝 𝑞 𝑟

]
,

this leads to

¤𝝎 = ¤𝝎0 + J−1 (M𝛿)d𝜹 (53)

where M𝛿 contains the moments generated by the control deflections, J is the moment of inertia matrix, and 𝜹 are the

control deflections. Equation 53 only holds when the time-scale separation is valid, meaning when the actuators are
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sufficiently fast such that the controls change much faster than the states. Defining a pseudocontrol input as 𝝂 = ¤𝝎, and

rewriting to obtain incremental control deflections leads to the following linearizing law:

d𝜹 = M−1
𝛿 J(𝝂 − ¤𝝎0) (54)

This formulation assumes that ¤𝝎0 comes either directly from the sensors or is calculated using sensory measurements.

Following this, the total control deflection is computed at each step as:

𝜹(𝑡𝑘+1) = 𝜹(𝑡𝑘) + d𝜹 (55)

Considering this brief INDI derivation, one may notice that for linearization to be exact, angular acceleration

measurements must be perfect, i.e., free of noise, bias, time delay, and most importantly faults. In addition, most aircraft,

including the Flying-V model considered in this study, do not possess separate rotational accelerometers. Hence, the

rotational accelerations are calculated from rate gyro measurements through differentiation. At this point, IMU fault

identification and correction becomes highly relevant for an INDI controller because faults in rate gyros propagate into

rotational accelerations through the differentiation process, causing performance degradation. To this end, this Note

proposes the structure outlined in Figure 7 to minimize the impact of IMU faults on the INDI controller.

Fig. 7 Active sensor FT control structure

The performance of this is assessed by comparing the response of the aircraft to the tracking commands with and

without IMU fault correction. This is done separately for accelerometer and gyroscope faults using the same fault cases

defined in the previous section. Based on [32], this version of the Flying-V simulation model accepts 𝐶∗ for longitudinal,

roll rate ¤𝜙 for lateral, and sideslip 𝛽 for directional commands as inputs. The 𝐶∗ parameter is a combination of load

factor and pitch rate, commonly defined as 𝐶∗ = 𝑛𝑧 + (𝑉𝐶𝑂/𝑔)𝑞. Hence, the tracking commands are chosen to be

simultaneous 𝐶∗ and roll rate commands to simulate a coordinated turn. Details on the nature of the tracking signals are

available in [33].
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A. Tracking with Accelerometer Faults

This subsection presents the results under accelerometer faults, including tracking, fault identification, and state

estimation. Figure 8 shows the tracking results. From the figures, the roll rate response of the aircraft seems unaffected

(a) Roll rate responses for accelerometer faults (b) 𝐶∗ responses for accelerometer faults

Fig. 8 Tracking performance under accelerometer faults

by the faults since both corrected and uncorrected responses are able to follow the commanded input closely. The

difference is more apparent in the 𝐶∗ response. The uncorrected response shows clear oscillations and drift, failing

to follow the commanded input. On the other hand, although the corrected response follows the target quite nicely

during the second fault interval, it also exhibits oscillations, albeit smaller, during the first interval. This indicates that

correction of incipient and step faults is satisfactory, whereas sinusoidal faults persist even after correction.

Any fault identification approach is bound by the laws of causality, meaning that the true fault must occur first for

the identification procedure to reconstruct it. For sinusoidal faults, this inevitably leads to a phase difference between

the true and estimated faults. Figure 9 shows the fault identification results for the same tracking task given in Figure

8. From the 𝑓𝐴𝑧 plot, it is seen that the estimates follow slightly behind the true values. Hence, simply removing the

estimated fault from the measurement as 𝐴𝑧𝑚 = 𝐴𝑧 + 𝜔𝐴𝑧 + 𝑓𝐴𝑧 − 𝑓𝐴𝑧 is not sufficient because the phase of 𝑓𝐴𝑧 is not

the same as 𝑓𝐴𝑧 . As a result, for sinusoidal faults, the term 𝑓𝐴𝑧 − 𝑓𝐴𝑧 leaves behind a residual signal that impacts IMU

measurements. The amplitude of the residual signal is directly related to the phase shift, where smaller phase shifts lead

to smaller amplitudes. Figure 10 shows the first 35 seconds of the 𝑓𝐴𝑧 plot and depicts the residual sinusoidal fault. As

seen in the figure, even a slight phase shift is sufficient to produce a residual. Nevertheless, since the shift is not large,

the residual is smaller than the true fault and leads to an improvement in performance, as shown in the tracking results.

Since the state estimation results comparing true, measured, and estimated states is given in the previous section, it is

not repeated here for conciseness.

Lastly, Figure 11 presents the control surface deflections during tracking. None of the surfaces approach their

saturation limit, which is set at ±25◦ for the elevons and ±30◦ for the rudder. However, the rudder exhibits some

high-frequency, low-amplitude oscillations. This is mostly likely caused by the inherently approximate nature of the

fault estimates and the high responsiveness of the actuator dynamics.
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Fig. 9 Fault identification results during tracking

Fig. 10 True, estimated, and residual faults for sinusoidal 𝑓𝐴𝑧

Fig. 11 Control surface deflections during tracking with accelerometer faults

B. Tracking with Gyro Faults

This subsection outlines the results under rate gyro faults that include the tracking, fault identification, and state

estimation. Figure 12 displays the tracking results. For rate gyro faults, the difference between the corrected and

uncorrected responses becomes more apparent. Judging from the 𝐶∗ response, when the faults begin acting on the rate

gyros, the uncorrected response shows severe drift and offset from the commanded input. In contrast, even though it is

noisier, the corrected response manages to follow the commanded signal successfully. Similarly, in roll rate tracking,

the corrected response tracks the command more closely and with smaller oscillations. As explained in the previous
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(a) Roll rate responses for gyro faults (b) 𝐶∗ responses for gyro faults

Fig. 12 Tracking performance under rate gyro faults

subsection, the small oscillations remain due to residual sinusoidal faults that cannot be mitigated with IMU correction.

Compared to the accelerometer fault case, the oscillations appear in the roll rate response for the gyro faults. This is

due to sinusoidal faults that act on the roll rate gyroscope during the first fault interval, as shown in Figure 13. One

Fig. 13 Rate gyro faults during tracking

might notice from the fault identification results that 𝑓𝑞 and 𝑓𝑟 are affected by aircraft maneuvering as they show slight

oscillations and underestimation. However, this effect appears to be small and does not negatively impact the results.

In addition, although it is not presented here to maintain conciseness, feeding the measured states into the system

instead of the estimated ones leads to a marginal decrease in the roll rate tracking performance. This occurs because the

measured states come from the GPS, which operates at a lower sampling rate. Figure 6 from the previous section presents

a representative comparison of the true, measured, and estimated states. The figure on control surface deflections is

omitted in this section since the results appear quite similar with no saturation.

C. Comparison

This section provides a final performance comparison for tracking under accelerometer and gyroscope faults with

corrected and uncorrected IMU measurements. The performance metric is chosen as the root-mean-square error

between the commanded inputs and the actual response of the aircraft. The result of the comparison is given in Table 4.
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From this table, it is possible to notice two trends. First, for almost all tracking objectives and fault conditions, the

Table 4 Performance comparison

Affected sensors Command Uncorrected (RMSE) Corrected (RMSE)
Accelerometers ¤𝜙 [deg/s] 0.4596 0.4596

𝐶∗ [-] 0.1178 0.0735
Gyroscopes ¤𝜙 [deg/s] 0.7526 0.5379

𝐶∗ [-] 0.2469 0.0487

corrected response outperforms the uncorrected, proving the effectiveness of the proposed IMU fault identification

strategy. Secondly, gyro faults appear to be more detrimental to tracking performance, since they exhibit larger RMSE

values. As discussed in Section V, the INDI controller uses rotational accelerations to design the linearizing law.

Therefore, rate gyro faults directly impact the INDI inner-loop controller.

VI. Conclusions
Online identification and mitigation of inertial measurement unit (IMU) faults is a challenging problem in flight

control, especially under turbulent flight conditions without relying on hardware redundancy. The optimal two-stage

extended Kalman filter (OTSEKF) with higher-order sliding mode (HOSM) differentiator effectively tackles this problem

while mitigating initial condition sensitivity and noise amplification issues in IMU fault identification. The nonlinear

aircraft kinematic model with non-exact process equations minimizes the cross-couplings between IMU faults and

accounts for turbulence. Establishing the flatness of the kinematic model shows that IMU faults can be estimated by

differentiating the drift in state variables. The results demonstrate the benefits of the suggested approach in IMU fault

identification, state estimation, and aircraft response to tracking objectives. Some limitations of this strategy include

sinusoidal faults leading to tracking errors due to the phase shift between the true and estimated faults, and the slight

deviations in state estimates caused by the approximate nature of the kinematic model.
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