
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Neural Session Recommendation

Author:
Jesse Harte

Supervisor:
Dr. Asterios Katsifodimos

Company supervisor:
Dr. Marios Fragkoulis

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

Student number: 5637848
Thesis commitee: Dr. Asterios Katsifodimos

Dr. Merve Gürel
Dr. Marios Fragkoulis

November 23, 2023

http://www.tudelft.nl
https://scholar.google.com/citations?user=99x1KQ0AAAAJ&hl=en&oi=sra
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

i

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Neural Session Recommendation

by Jesse Harte

In this thesis we aim to research and design different neural models for session rec-
ommendation. We investigate the fundamental neural models for session recom-
mendation, namely BERT4Rec [87], SASRec [47] and GRU4Rec [40, 39] and subse-
quently use our findings to design a simpler but performant neural model.

Firstly, we address methodological errors made in the training and evaluation
process of BERT4Rec, SASRec and GRU4Rec [38, 37, 71, 73, 52, 64] in order to create a
fair comparison of the models’ performance. We analyze the effect of several design
decisions other than the architecture, and subsequently standardize these design
decisions for all neural models. In the process, we discover that we can enhance the
performance of the original implementations up to 250% in NDCG@10.

Having isolated the effect of the model architecture, we find that models are more
similar in performance than previously reported [87, 47]. In addition, there is no
consistently superior model. Moreover, we find that frequently-omitted non-neural
baselines like SKNN [44, 64] and ItemKNN [81] can be extremely competitive and
outperform our neural models on 2 out of 4 datasets. The neural models significantly
outperform the non-neural baselines on the remaining 2 datasets.

Furthermore, we compare the recommendation behaviour between different neu-
ral models, and find that the recommendation behaviour of different models is both
similar and predictable depending on the dataset. We use our baseline models to
explain the behaviour of the models, and find that up to 80% of the top-ranked rec-
ommendations were also recommended by ItemKNN [81] or a simple first-order
Markov Decision Process (MDP) [83].

Therefore, we explore how much performance we can maintain while simplify-
ing the model architectures. We propose a simple embedding-based model, and find
that it can equal or even outperform the neural models with up to 48% on NDCG@10
on 3 out of 4 datasets while being significantly easier to understand, faster to train
and easier to tune. Moreover, the results show that we can capture almost all perfor-
mance with a small subset of the original architectural components.

Our optimized implementations are open-sourced as part of our publication on
using a large-language model to initialize item embeddings in [32].

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

ii

Contents

Abstract i

1 Introduction 1
1.1 Motivation for recommender systems 1
1.2 Recommendation tasks . 1
1.3 Collaboration with Delivery Hero Research 2
1.4 Evaluating recommender systems . 3
1.5 Models for recommendation . 3
1.6 Motivation and scope . 3
1.7 Research questions . 4
1.8 Thesis outline . 4

2 Background and related work 5
2.1 Matrix-based recommendation . 5
2.2 Sequential and session recommendation 6
2.3 Models for session recommendation . 6
2.4 Reproducibility issues . 17

3 Preliminaries 19
3.1 Datasets . 19
3.2 Train-validation-test split . 22
3.3 Evaluation setup . 23
3.4 Hyperparameter optimization . 26

4 Model comparison 28
4.1 Baselines . 28
4.2 Hyperparameters and search space . 29
4.3 Implementation details . 31
4.4 Evaluation results . 37

5 Recommendation analysis 40
5.1 How much do the recommendations overlap? 40
5.2 How does the K parameter affect model behaviour? 43
5.3 How does item popularity affect model behaviour? 45
5.4 How does session length affect model behaviour? 48
5.5 How do items at different positions in the sessions affect the recom-

mendations? . 49
5.6 Discussion . 55

6 Simplifying models 56
6.1 Last item optimization . 56
6.2 Exploiting non-last items . 65
6.3 Discussion . 71

iii

7 Conclusion 74

8 Discussion 76

Bibliography 78

iv

List of Figures

1.1 The checkout page of Delivery Hero Greece. 2

2.1 GRU4Rec’s session-parallel mini batch construction. 8
2.2 GRU4Rec’s architecture and training task. 9
2.3 SASRec’s architecture and training task. 12
2.4 BERT4Rec’s conversion of a training session into input sessions. 13
2.5 BERT4Rec’s architecture and training task. 15

3.1 Distribution of session lengths of our dataset suite. 21
3.2 Distribution of item popularity of our dataset suite. 21
3.3 Train-validation-test split for open datasets. 22
3.4 Train-validation-test split for Delivery Hero datasets. 23
3.5 Metric score against ground-truth rank. 25
3.6 The correlation between GRU4Rec’s fold and test performance. 27

4.1 Performance trajectory of GRU4Rec on the DH Greece dataset. 33
4.2 A visualization of the conjecture on why whole-session batches are

better to train GRU4Rec. 36

5.1 The models’ recommendation similarities 41
5.2 The models’ session-correct similarities 41
5.3 The models’ recommendation similarity per rank. 44
5.4 The models’ recommendation similarity per rank on correctly-predicted

sessions. 45
5.5 The models’ number of recommendations against item popularity. . . 46
5.6 The models’ precision against item popularity. 47
5.7 The models’ HitRate against session length. 48
5.8 The models’ NDCG against maximum session length. 50
5.9 The models’ recommendation similarity with their last-item recom-

mendations against maximum session length. 50
5.10 The models’ trivial recommendation overlap against position. 52
5.11 The models’ session-correct similarity with the trivial recommender

against position. 53

6.1 A visualization of the LastEmbedding model. 58
6.2 HitRate@10 against last-item popularity. 60
6.3 The learned positional weights for the next-item prediction by the

model defined by Equation 6.5. 68

v

List of Tables

3.1 Statistics of our dataset suite. 20

4.1 Hyperparameters and their search space for the neural models. 30
4.2 Hyperparameters and their search space for SKNN. 31
4.3 Preliminary results on negative sampling with SASRec. 34
4.4 Preliminary results on various loss functions for GRU4Rec. 35
4.5 Preliminary results on the batch design for GRU4Rec. 35
4.6 The evaluation results of our vanilla neural models and the non-neural

baselines. 38

5.1 The evaluation results of an ensemble model. 43
5.2 Example calculation of the trivial recommendation overlap per position 52
5.3 The total trivial recommendation overlap with the last 10 positions. . . 54
5.4 The average session-correct similarity with the trivial recommendations 54

6.1 Evaluation results of the homogeneous and heterogeneous variants of
LastEmbedding and NextPopular. 59

6.2 The best NDCG@10 attained on the last item by the vanilla neural
models. 61

6.3 Evaluation results of embedding dropout on the LastEmbedding model. 61
6.4 Evaluation results of a bias on the LastEmbedding model. 62
6.5 Evaluation results of a linear transformation on the LastEmbedding

model. 63
6.6 Evaluation results of NextPop (3) . 64
6.7 Evaluation results of token dropout on the LastEmbedding model. . . 64
6.8 Evaluation results of the model defined by Equation 6.5 where W = 1. 66
6.9 Evaluation results of the model defined by Equation 6.5 where W is

bidirectional and is learned through backpropagation. 67
6.10 Evaluation results of the model defined by Equation 6.5 where W is

unidirectional and is learned through backpropagation. 67
6.11 Evaluation results of the model defined by Equation 6.5 where W is

defined by Equation 6.6. 69
6.12 The learned values for α from the results in Table 6.11. 69
6.13 Evaluation results of W(α) with layer normalization. 70
6.14 The final evaluation results of our vanilla neural models, the non-

neural baselines and our simplified embedding models. 73

vi

List of Symbols

General symbols
s A session.
t A timestep. It can be used to index a session s, so that st represents the item

at timestep t in session s.
u A user.
i An item.
U The set of users.
I The set of items.
Ns All neighbouring sessions of session s. These are all sessions that have an

item in common with session s.
1 The indicator function.

Symbols related to the neural models
N The uniform length of the sessions to be fed to a neural model. In this thesis,

all neural models process their sessions to be length N. Shorter sessions
contain special padding items at the start of the session. Longer sessions
are truncated so that only the last N items are kept.

R A matrix of shape (N, |I|) where each entry Rt,i denotes the predicted score
that item i is the item at timestep t + 1. In this thesis, the vector RN has
special significance because it denotes the predicted scores for the item at
timestep N + 1. The items with the highest scores in RN will be recom-
mended to the user.

e The embedding dimension.
E The item embedding matrix of shape (|I|, e). All neural models represent

items through an embedding.
ei The embedding of item i.
Es The embeddings of the items in session s in matrix format.
W A weight matrix.

Symbols related to transformer-based models
l A transformer layer.
S The output of a layer in a transformer. We use S0 to denote to the output of

the embedding layer of the transformer. Similarly, we use Sl to denote the
output of transformer layer l.

Symbols related to GRU-based models
ht The hidden state vector of a GRU layer on timestep t.
ĥt The candidate hidden state vector of a GRU layer on timestep t.
zt The update gate vector of a GRU layer on timestep t.
rt The reset gate vector of a GRU layer on timestep t.

vii

Glossary

The following list consists of the most important terms that are used extensively
throughout the thesis. The list is sorted alphabetically.

Bi/uni - directionality The directionality of a neural model indicates whether
it is restricted during training to exploit items suc-
ceeding timestep t to produce their predictions Rt for
timestep t. A unidirectional model can only use the
items at timesteps t and before. A bidirectional model
can use all timesteps except t itself.

Context A general term for the circumstances surrounding an
item interaction. It could represent anything like the
user’s intent, temporal aspects like time of year, or the
availability of an item. Since we only consider ses-
sions as the source of information, context can only be
deduced from the item interactions themselves.

Homo/hetero - geneity A characteristic of a neural model. A homogeneous
neural model assumes that item i is a good recom-
mendation for item j if item j is a good recommen-
dation for item i. In contrast, a heterogeneous model
assumes that this implication does not hold.

Embedding The numerical representation of an item or position,
typically learned through backpropagation by the
neural models. A session embedding is the numerical
representation of a session computed from the items
in the session, so note that these are not stored like
the item embeddings. All neural models introduced
in this thesis differ in how they compute the session
embedding, but all of them simply multiply the ses-
sion embedding with the item embedding matrix to
produce scores for each item.

Interaction An interaction between a user and item. It is a gen-
eral term to refer to anything like a click, purchase or
watching a video for longer than x seconds. We use
an interaction as a signal of preference of a user for an
item.

Interaction vector A binary multi-hot vector of dimension |I| that indi-
cates the items that a user or session interacted with.
Note that this representation does not contain infor-
mation on the ordering of the interactions.

Item catalogue The set of all items, denoted by I .

viii

Next item The withheld last item of the session. We evaluate
models by checking whether the next item is in the
recommendation slate for the session. The next-item
objective is the training task that trains a neural model
to predict the item st+1 at position t with its output Rt.

Offline/online The context in which models are evaluated. Online
evaluation entails measuring business metrics from
a recommender system in production. Offline eval-
uation entails evaluating models by comparing their
recommendation slates with withheld items from the
evaluation sessions. Offline evaluation is used as a
proxy to estimate online performance.

Popularity The amount of times an item appeared in the set of
training sessions.

Rank The rank of an item in a recommendation slate is the
index at which it appears in the list. A rank of 1 in-
dicates the recommended item with the highest confi-
dence by the model.

Recency The recency of an item interaction refers to the relative
position of the item interaction in the session. A recent
item is an item that appears later in the session. In
contrast, old or historical item interactions appeared
earlier in the session. Recent items are generally more
indicative of the next item.

Session An ordered sequence of interactions. An input session
is session in the form that it is fed to a neural model.
A training session is an input session to be used for
training a model. Likewise, an evaluation session is an
input session to be used for evaluation. The models
are tasked with predicting the identity of the withheld
last item of the evaluation session.

Slate A ranked list of recommendations. The item at index 1
in the slate indicates the recommended item with the
highest confidence by the model.

Target item A term to refer to the ground-truth item for prediction
Rt at timestep t. Rt is compared with the one-hot vec-
tor indicating the target item in order to compute the
loss. In the next-item objective, the target item for po-
sition t is item st+1. In the Cloze objective, the target
for position t is item st.

Timestep The index of an interaction in the session. We use st to
denote the item interaction at timestep t in session s.
For example, s1 is the first item of the session.

1

Chapter 1

Introduction

A Recommender System (RS) is a system that selects a subset of items from a cata-
logue to be presented to the user. In this definition, item is used as a general term
and refers to anything that we might want to recommend to the user. For exam-
ple, a recommender system on an e-commerce platform recommends products to
buy whereas a recommender system on a streaming platform recommends movies
to watch. In its simplest form, a recommender system bases its recommendation
decisions on the previously consumed items by the user. This thesis will focus on
using neural networks for session recommendation, which is a specific recommen-
dation task that aims to predict the next item interaction given only a short ordered
sequence of previously interacted items.

1.1 Motivation for recommender systems

Recommender systems are necessary to condense or filter the item catalogue to a
subset whose size is presentable to the user. Simply presenting every item in the cat-
alogue typically overwhelms the user simply due to the large number of items avail-
able [78]. Business psychologists refer to this phenomenon as information overload or
the paradox of choice, and consense that having an excessive number of choices leads
to worse decision-making and user well-being in general [82, 86, 80]. Hence, rec-
ommender systems are inherently necessary to facilitate the user’s decision-making
process. From a business perspective, recommender systems are also effective tools
to increase item consumption [1], as users are more likely to consume items that re-
late to their preferences. Moreover, the user experience is also enhanced, resulting
in more user retention and more item consumption in the long run [1].

1.2 Recommendation tasks

Recommendations are typically computed using the user’s previous item interac-
tions. The specific definition of an interaction depends on the use-case, but examples
include a click on the item, a purchase of the item, or watching the item (a short
video) longer than x seconds [107]. Given the set of interactions from a user, we can
then compute recommendations by exploiting the interactions from users with sim-
ilar interactions. The problem of computing recommendations using only the set of
item interactions is commonly referred to as collaborative filtering.

In recent years, more elaborate problem formulations came into existence, most
importantly including sequential recommendation. In sequential recommendation,
the order at which a user interacted with the items is also known, which allows for
modelling dynamic user preferences and behaviours [87]. A subvariant of sequential
recommendation is session recommendation, where the system does not have access

Chapter 1. Introduction 2

to all historic user interactions, but instead only to the interactions from the current
session, i.e. the most recent ones [40]. In this thesis, a shopping cart will be the prime
example of a session. The purchased products are then the items in the session, and
the ordering of the session is the ordering at which the products were added to the
shopping cart. Important to note is that the user is anonymous in session recom-
mendation, and so all the system can exploit for computing the recommendations is
a short sequence of interactions. The rationale behind session recommendation op-
posed to sequential recommendation is that the recommendations are usually more
relevant to the user’s current intent. Furthermore, as the system can not bias towards
recommending older historic interactions1, diversity and exploration of the items is
enhanced [103].

1.3 Collaboration with Delivery Hero Research

This thesis was written in collaboration with Delivery Hero Research. This collabo-
ration allows us to evaluate recommendation models on real session datasets. Our
unified goal is to improve the performance of recommendations on their checkout
pages, visualized in Figure 1.1. Hence, in this use-case sessions represent shopping
carts. The rationale for session recommendations holds for this use-case as well,
namely that session recommendation focuses on the user’s current intent, which in
turn enhances diversity and exploration of the items. Furthermore, we believe it to
be good practice to optimize CTR with a minimal amount of information as possible
(the current session) before adding other sources of information like user identity or
historical user interactions.

FIGURE 1.1: The checkout page of DH Greece. The left figure shows
an order to be paid. The right figure shows the recommendations
at the bottom of the same page. The thesis will aim to improve the

quality of these recommendations.

1We have found the Previously-bought baseline to be an extremely competitive baseline.

Chapter 1. Introduction 3

1.4 Evaluating recommender systems

Given a set or sequence of item interactions, the recommendation model is tasked with
computing a ranked TOP-K 2 list of items that the user will likely be interested in, the
so-called recommendation slate. In an ideal scenario, we would compute and present
the recommendation slates online to actual users in order to test the quality of a
model. However, this may be costly, as bad recommendations may harm user expe-
rience and decrease profit directly [1]. Instead, recommender systems are typically
first evaluated offline. To emulate the online setting, we typically withhold a subset
of a user’s interactions from the input to the recommender system, and compute
offline metrics by comparing the TOP-K recommendation slate with the withheld
subset of interactions. The core assumption of offline evaluation is then that good
recommender systems will have the withheld items in their recommendation slates.
We will further formalize the recommendation task in chapter 2 and discuss offline
metrics in detail in section 3.3.

1.5 Models for recommendation

Traditionally, approaches like Matrix Factorization [42, 51] and k-Nearest Neigh-
bours [81] have been at the center of the research field and served as the core of
many successful variants [88]. Later, the advent of deep learning reached the field
of recommender systems, and many neural-based recommender models were in-
troduced [11, 33, 14]. For sequential recommendation, we observe a strong pattern
where innovations in Natural Language Processing (NLP) are adapted to fit the se-
quential recommendation task. For example, the invention of the GRU layer [12]
was adapted for sequential recommendation in GRU4Rec [40]. Once the novel trans-
former architectures were introduced for NLP [93, 16], SASRec [47] and BERT4Rec
[87] were proposed. The publications behind these models have each claimed supe-
riority over their respective baselines, and have thus sparked a multitude of varia-
tions that again claim to be state-of-the-art.

1.6 Motivation and scope

However, numerous studies have pointed out methodological errors in many of the
aforementioned studies, and found that traditional models often outperform neural
models when properly tuned [71, 64, 37, 38, 84, 24]. As a result, there is no consensus
on what can be considered the state-of-the-art. Therefore, the first goal of this thesis
will be to establish the state-of-the-art for session recommendation. We will focus on
the fundamental neural models for this use-case, namely GRU4Rec [40], SASRec [47]
and BERT4Rec [87] in addition to the competitive baselines SKNN [64], ItemKNN
[81] and a first-order Markov Decision Process (MDP) [83]. Moreover, some of the
methodological errors in evaluation can be attributed to the complexity of the mod-
els, which might cause researchers to adopt faulty third-party implementations of
baselines out of convenience [37] and/or do not properly tune all hyperparameters
for each baseline [37, 84]. Therefore, the second goal of this thesis is to expose the
inner workings of the three vanilla models in order to explain why and when (i.e.

2Naturally, the value of K depends on the use-case. For example, in next-track music recommen-
dation, models are specialized in TOP-1 recommendation, as a user can only listen to one song at the
time. In contrast, a user can usually view multiple products on an e-commerce webpage, and so higher
values for K (i.e. 10) are more suitable.

Chapter 1. Introduction 4

on what datasets) these models are effective. Lastly, we aim to leverage these new
insights to devise simpler models while maintaining or improving performance.

1.7 Research questions

Given the motivation and scope, we devise the following research questions.

1). What are the methodological errors made in the design and evaluation of the
models, and how can we create an evaluation setup that does not suffer from
these issues?

2). What models are most effective for sequential recommendation on our datasets?

3). How do these models’ recommendations compare on various dimensions?

4). Given these findings, can we devise simpler models while maintaining or im-
proving performance?

1.8 Thesis outline

The rest of this thesis is structured as follows. We discuss the background on the
recommendation tasks, incumbent session-based recommendation models and their
variants, and reproducibility studies in chapter 2. We then introduce our setup
for evaluating the recommendation models in chapter 3. We then discuss all steps
necesssary to produce a fair evaluation of the models, including the implementation
details, hyperparameters, their search space and baselines, and a discussion on the
results in chapter 4. We then continue with an analysis of the models’ recommen-
dations in chapter 5. Given these results, we create a performant but simple model
called LastEmbedding, which we then use to analyze the performance contribution
of several architectural components from the original models in chapter 6.

5

Chapter 2

Background and related work

We prelude our background work with a general introduction to the various recom-
mendation tasks, including sequential and session recommendation. We then con-
tinue by introducing the current state-of-the-art (SOTA) session-based recommenda-
tion models, namely SKNN [44, 64], GRU4Rec [40], SASRec [47] and BERT4Rec [87].
The aforementioned models are the ones we will implement, analyze and aim to im-
prove. We will discuss these models and the formulas that govern them in depth, as
these specificities will facilitate our analyses in chapter 5 and chapter 6.

2.1 Matrix-based recommendation

Explicit feedback In its infancy, the research field of recommender systems was
concerned with rating prediction. This entails predicting the missing values in a
rating matrix of shape (|U |, |I|), where U denotes the set of users and I denotes
the set of items. Each user has rated a subset of the items on a certain numerical
scale. This type of feedback is called explicit feedback, because the user has explicitly
and consciously provided the ratings on the items. The recommendation task is then
to predict the numerical rating the user would give to items he/she has not rated,
with the end goal of recommending the unrated items with high predicted ratings
to the user [88]. Algorithms like ItemKNN [81] and Matrix Factorization [42, 51]
have proven to be very successful at this task [88], and rating prediction is generally
considered to be solved by the community [33].

Implicit feedback However, explicit feedback is generally difficult to gather as it
requires explicit effort from the user. Instead, research has shifted towards implicit
feedback, which is a form of feedback that is unconsciously provided by the user
[33]. It works on the basis of interactions between users and items, which could be
anything ranging from clicks, purchases or watching a video longer than x seconds
[107].

Evidently, implicit feedback is more readily available as it takes no additional
effort for the user to indicate their preferences [33]. However, this type of feedback
is noisy in the sense that an interaction does not necessarily imply that the user likes
the item. Conversely, the absence of an item interaction does not imply that the user
dislikes the item, as it could very well be the case that the user is unaware of the item.
Furthermore, though implicit feedback provides more information per user and item
than explicit feedback in absolute terms, the scale at which recommender systems
are deployed has grown substantially too. For example, large e-commerce sites can
nowadays have catalogues of millions of items [104]. As a result, recommender
systems must find relevant recommendations from larger pools of candidates with
relatively less information [43]. Moreover, processing data at such scales demands

Chapter 2. Background and related work 6

more compute and memory requirements. These demands render many traditional
machine learning techniques infeasible, as they will be too demanding for typical
hardware [43].

In matrix-based recommendation, implicit feedback is stored as a matrix where
an entry on row (user) u and column (item) i is a binary variable to indicate whether
user u has interacted with item i. The task for matrix-based recommendation with
implicit feedback is roughly similar to the task of rating prediction in the sense that
the matrix needs to be reconstructed so that the items with the highest predicted
entries will then be recommended to the user.

2.2 Sequential and session recommendation

However, this matrix-based representation of implicit feedback disregards the order-
ing in which these interactions occurred. In some use-cases this ordering might be
informative, which necessitated the formalization of a new recommendation task,
namely sequential recommendation. Given an ordered item-interaction sequence
s = (s1 . . . sn) of n timesteps, sequential recommendation models are tasked with
producing the probability over all the items for the identity of the item on timestep
n + 1, denoted P(sn+1|s) [87]. In recommendation literature, the item on timestep
n + 1 is commonly referred to as the next item. To reiterate, the items with the high-
est predicted probability will be recommended to the user.

The task formalization of session recommendation is exactly the same, but the
lengths of the sequences are typically shorter because they include only the most
recent interactions of a user. Still, there is no precise definition on what differentiates
session from sequential recommendation from a formalization perspective, and we
find that models are typically evaluated on both long and short sequences [87, 23,
47]. Therefore, we decide to adopt a variety of datasets to cover both sequential and
session recommendation in chapter 3.

2.3 Models for session recommendation

2.3.1 SKNN

Session-k-Nearest-Neighbours (SKNN) [44, 64] finds items to recommend by con-
sidering sessions similar to the input session. The model considers the top-K most
similar neighbours n ∈ Ns of a session s with a given similarity function sim(n, s),
and computes the score of an item i with

score(i, s) = ∑
n∈Ns

sim(n, s) · 1(i ∈ n) (2.1)

Here, 1 denotes the indicator function. The scores from Equation 2.1 can be nor-
malized to produce the probability distribution P(sn+1|s). Though the similarity
function is intentionally left general, cosine similarity between the sessions’ binary
interaction vectors has proven to work well in practice, and is therefore considered
to be the default similarity function. SKNN has been shown to work well with rel-
atively few data points and can therefore also be leveraged to model trends by only
considering recent sessions [44].

Several variations of SKNN have been proposed [44, 64], including

• Sequential SKNN (S-SKNN). This variant considers the ordering of the items.
It weighs the indicator function using the relative position of the item i in the

Chapter 2. Background and related work 7

neighbouring session n with weight w(ix, n) = ix/|n|, where ix is the position
of i in session n, and |n| denotes the length of the session.

• Vector Multiplication SKNN (V-SKNN). This variant also exploits the ordering
of the items in the session by weighing down items earlier in the session in the
interaction vector. As a result, the later (more recent) items gain more influence
on the similarity score between two sessions.

• Sequential-Filter (SF-SKNN). This variants filter items from the recommenda-
tion slates if it has not occured directly after the last item of the session at least
once in the training data.

K-Nearest-Neighbours has repeatedly been shown that it is a very competitive
baseline, and often beats neural models if properly tuned [66, 44]. In fact, we will see
how SKNN is also a competitive recommendation model for our use-cases, despite
its relative simplicity in chapter 4.

2.3.2 GRU4Rec

Arguably the first work to use a deep learning method for the session-based recom-
mendation use-case, GRU4Rec [40] employs a recurrent neural network based on
the Gated Recurrent Unit (GRU) [12]. We visualize GRU4Rec in Figure 2.2. We first
introduce the training task of GRU4Rec before we can discuss the architecture.

Training task GRU4Rec is trained by sequentially processing sessions, where on
each timestep it must use the current item in the session to predict the item at the
next timestep. Hence, the input to the model at each timestep t is the current item in
the session st. Its output is then a score for each item, which we will denote by Rt for
the remainder of this thesis. So, Rt represents the model’s confidence for each item
that it will be the item in the session on timestep st+1. Using Rt we can compute loss
or, by taking the items with the TOP-K scores on the last timestep, compute next-item
recommendations. Instead of training on a single session at a time, Hidasi et al. [40]
construct session-parallel mini-batches so that GRU4Rec can train on multiple sessions
in parallel. We explain the session-parallel mini batch construction by means of an
example in Figure 2.1.

Chapter 2. Background and related work 8

FIGURE 2.1: GRU4Rec’s session-parallel mini batch construction. Fig-
ure from [40]. Sessions 1, 2 and 3 are initially sampled and their first
items make up the first mini-batch (input). GRU4Rec is then tasked
with predicting the second item of each session (output). The second
batch consists of the second item of each session, with the task of pre-
dicting the third item of each session. Session 2 only has two items
and is therefore replaced by session 4 in the third batch. Note that the
last item of each training session can not be used as input, since there

does not exist a next-item for the last item in the training set.

Architecture The precise architecture of GRU4Rec is kept general in [40], but it es-
sentially consists of an item embedding layer, one or multiple GRU layers and a
prediction network.

The item embedding layer consumes the item ID st at the current timestep t and
returns its associated embedding est from the item embedding matrix E. This item
embedding matrix is of shape (|I|, e), where we use e to denote the embedding
dimension.

The embedding est is fed to a GRU layer [12]. A GRU layer is stateful, meaning
that it maintains a hidden state ht while processing a session. This allows the model
to use information from the previously seen items s0. . . t−1 next to item st to predict
st+1. To compute ht, the GRU layer does not only use st, but also its previous hidden
state ht−1 (which contains information on previously-seen items). We present the
equations that govern the GRU layer in Equation 2.2. We refer to the vectors zt as
the update gate, ĥt as the candidate activation and rt as the reset gate.

ht = (1 − zt)⊗ ht + zt ⊗ ĥt

zt = σ(Wzest + Uzht−1)

ĥt = tanh(West + U(rt ⊗ ht−1)

rt = σ(Wrest + Urht−1)

(2.2)

Here, Wz, Hz, W, U, Wr and Hr denote different weight matrices and ⊗ denotes
the Hadamard (element-wise) product. At each timestep, the prediction network
consumes the hidden state ht to produce the scores Rt for the target items.

In [40], a simple feed-forward network is suggested for the prediction network,
where the last layer’s output is Rt of dimension |I|. However, no exact specification
of the prediction network is given in [40].

Chapter 2. Background and related work 9

Loss and negative sampling Besides the architecture, the loss function is also kept
general. Hidasi et al. [40] experiment with standard categorical cross-entropy, Bayesian
Personalized Ranking [77] and TOP1 loss [40]. In all cases, the target vector at timestep
t is a one-hot vector indicating the ground-truth item st+1. The ground-truth item is
also commonly referred to as the positive item. All other items are referred to as the
negative items for which the target is zero.

Note that for small datasets it is feasible to produce the score Rt for each item in I .
However, on larger datasets this becomes a scalability bottleneck. Instead, negative
sampling is used to train GRU4Rec. This entails sampling a subset of the negative
items and only computing Rt for this subset. As a result, the loss and backpropa-
gation become much faster to compute because their computational load becomes
independent of the number of items in the dataset.

FIGURE 2.2: GRU4Rec’s architecture and training task. At mini-batch
2, we feed the model with the items s1

2 and s2
2. In addition, the state

resulting from mini-batch 1 is fed to the GRU layers during mini-
batch 2.

2.3.3 GRU4Rec variants

Vanishing gradients Hidasi and Karatzoglou [39] revisit GRU4Rec and address the
limitations of the initial version proposed in [40]. They find that the BPR and TOP1
loss functions suffer from vanishing gradients so that learning prematurely stops,
and propose the adjusted BPR-Max and TOP1-Max as mitigations. It was also found
that cross-entropy is most consistently a good loss function when no negative sam-
pling is used. Furthermore, they reduce model size and overfitting by re-using the
item embedding matrix E to compute the output target scores, which effectively re-
places the last layer of the prediction network. GRU4Rec is now commonly used to
refer to the variant in [39] instead of [40].

Exploiting future timesteps NARM (Neural Attentive Recommendation Machine)
[56] enhances GRU4Rec by not only using the current activation ht for predicting

Chapter 2. Background and related work 10

Rt, but also the weighted average of other timesteps ∑t′ at′tht′ . The weights at′t are
calculated from an attention mechanism between h′t and ht. Given the current acti-
vation and the weighted average of other activations, their concenation is then fed
to the prediction network to compute Rt. Tan, Xu, and Liu [89] also try to improve
the exploitation of other timesteps by randomly dropping items in the sessions. In-
tuitively speaking, dropping item st makes the model learn a stronger connection
between items st−1 and st+1, which can be beneficial for sparse datasets. They also
train a GRU model with the reversed sessions, and use its predictions for Rt as a tar-
get vector to soften the loss for the forward model. This effectively allows the model
to exploit information from timesteps after t.

Ensembling GRU4Rec with SKNN Jannach and Ludewig [44] find that the origi-
nal GRU4Rec model (from [40]) is often outperformed by a properly-tuned SKNN
model [44, 64]. However, a weighted ensemble between GRU4Rec and SKNN is
more effective than the standalone models, supporting the hypothesis that GRU4Rec
(and neural models in general) can be leveraged to learn patterns beside simple co-
occurence counts like in SKNN [44, 64].

2.3.4 SASRec

SASRec (Self-Attentive Sequential Recommendation) [47] is the first transformer ar-
chitecture [93] designed for the sequential recommendation task. We visualize the
model in Figure 2.3.

Training task First of all, transformer architectures require their input to be rectan-
gular. Therefore, Kang and McAuley [47] introduce hyperparameter N, so that all
sessions are either truncated to only contain the last N items, or left-padded (added
to the start of the session) to become length N with special <padding> items. Like
GRU4Rec, the model is trained by predicting the identity of st+1 for each timestep t,
but in contrast to GRU4Rec, SASRec computes R (of shape (N, |I|)) for all timesteps
t ∈ [1, N] at once. As a result, SASRec’s training batches consist of whole (but pro-
cessed to be length N) sessions. The last item of each training session can not be
used as input, since there does not exist a next-item for the last item in the training
set (See Figure 2.3). We will refer to this training task as the next-item objective.

Architecture The architecture of SASRec consists of an embedding layer, one or
multiple transformer layers, and a prediction network. The transformer layers are
based on the encoder stack introduced in [93]. In short, each of the L transformer
layers consists of a self-attention and a feed-forward module. We will first introduce
the two different modules, after which we will explain how they are used in the
transformer layer. Furthermore, we will denote the output of each transformer layer
l with Sl (of shape (N, e)). Likewise, we denote the output of the embedding layer
with S0.

Self-attention module We can now detail the self-attention module SA, which is
described by Equation 2.3. Given a sequence S, either from the embedding layer or
a preceding transformer layer, the self-attention module SA is governed by Equa-
tion 2.3.

Chapter 2. Background and related work 11

SA(S) = Attention(SWQ, SWK, SWV)

Attention(Q, K, V) = softmax
(

CausalMask
(QKT
√

d

))
V

(2.3)

Here, WQ, WK, WV are called the query, key and value matrices respectively, and
are all of the shape (e, e). The intuition behind Equation 2.3 is that the self-attention
module essentially takes a weighted average of all the embeddings in the sequence,
for each timestep in the sequence. To see this, note that softmax

(QKT
√

d

)
(the attention

matrix) is a matrix of shape (N, N). These weights are then multiplied with S, which
constitutes taking the weighted average. The result is finally projected with matrix
WV . The CausalMask operator sets all attention weights above the diagonal to zero,
which is necessary to ensure causality and prevent information leakage. Without
this constraint, the model can cheat by using the embedding at timestep t + 1 on
timestep t to predict the item at timestep t + 1. In Figure 2.3, the CausalMask was
responsible for removing the arrows from s2 to timestep 1 and the arrows from s2
and s3 to timestep 2.

Positional embeddings Furthermore, note that the multi-head attention module is
inherently unable to recognize position, as QKT = (SWQ)T(SWK) is invariant to
the ordering of the rows. The entry i, j in the attention matrix only depend on Si
and Sj, but not on the specific values of i and j. Intuitively speaking, this should
be sub-optimal, as neighbouring items in a sequence should be more related. To
inject positional information into the module, the embedding layer of SASRec adds
a learnable positional embedding matrix P to Es.

Feed-forward module The feed-forward module is defined by Equation 2.4. Given
a sequence of embeddings S, it processes each embedding Si at position i separately
with a shared two-layer feed-forward network.

FFN(Si) = ReLU(SiW(1) + b(1))W(2) + b(2) (2.4)

Transformer layer Given the definitions of the self-attention and feed-forward mod-
ules, every transformer layer l transforms the sequence Sl−1 into a new sequence Sl

following Equation 2.5.

Sl = g(FFN, g(SA, Sl−1))

g(f , x) = x + Dropout(f (LayerNorm(x)))
(2.5)

Hence, besides the core component of each module, every module additionally
contains layer normalization [4], dropout and a residual connection. These compo-
nents are necessary to reduce overfitting [47].

Prediction network Given the output sequence of embeddings SL of the last trans-
former layer, the prediction network of SASRec projects this sequence into scores
over all the items. To do this, the prediction network reuses the item embedding
matrix E from the embedding layer, and computes item scores according to 2.6.

R = SLET (2.6)

Chapter 2. Background and related work 12

Here, R is a NxI matrix, where Rt,i denotes the models’ confidence that item i
will be the item at position t + 1. For next-item prediction, we therefore use RN ,
which denotes the vector containing the scores across items to be the item succeeding
the last item in the session. Note that RN is computed from SL

N . At this point, we
note that both SASRec and GRU4Rec compute an embedding (the hidden state hN
for GRU4Rec, SL

N for SASRec) that is eventually multiplied with the transpose item
embedding matrix. In recommendation literature, this embedding is referred to as
the session embedding. All publications that we discuss in this chapter essentially
assume that the models learn to contain all information about the session into this
session embedding, after which a simple dot-product similarity computation is used
to compute the scores Rt and the TOP-K recommendation slate.

Loss SASRec is trained using binary crossentropy (BCE) [29], using the positive
sample and a single negative sample. So, for each timestep t, we take the score for
the item st+1 at Rt,st+1 (the positive sample), and the score for a random item i at Rt,i
(the negative sample). The negative sample is necessary to have a downward foce
on the scores, as without it, the model could simply learn to always output 1 for all
items with zero loss.

FIGURE 2.3: SASRec’s architecture and training task. Figure from
[47]. To predict item s3, SASRec can use the item embedding from
items s1 and s2, but not s3 (or potentially s4) itself because this con-
nection is prohibited by the CausalMask operator. Important to note
is that the FFN is shared across timesteps, and that the residual con-
nections, dropout and layer normalizations are not visualized in the

figure.

2.3.5 BERT4Rec

Motivated by the success of BERT for NLP tasks [16], BERT4Rec (Bidirectional En-
coder Representations from Transformer for Recommendation) [87] applies BERT’s
innovations to the sequential recommendation problem. We visualize the model in
Figure 2.5.

Chapter 2. Background and related work 13

Training task In essence, BERT4Rec is very similar to SASRec. The main difference
is that BERT4Rec drops the causality constraint in the attention module, and instead
masks items in the input. More specifically, BERT4Rec is trained using the Cloze ob-
jective [92, 16], which involves masking random items in the sessions by replacing
them with special <mask> items 1. The model is then tasked with predicting the iden-
tity of the items at the masked positions. The Cloze objective allows BERT4Rec to use
items succeeding a masked item to predict its identity without suffering from infor-
mation leakage. This makes BERT4Rec a bidirectional model, as opposed to SASRec
which is a unidirectional model due to the causality constraint.

Every training epoch, we convert a training session into one or multiple input ses-
sions 2 with randomly-masked items. This requires two additional hyperparameters,
namely the masking probability ρ at which an item is masked, and the number of
randomly-masked input sessions. The latter is not further specified in the paper, but
in the official open-source implementation3, we find that its equal to 10 by default.

Sun et al. [87] note that the Cloze task does not directly correspond to the predic-
tion task. During evaluation we have access to all items in the session instead of the
masked session during training. Therefore, Sun et al. [87] also add an input session
where only the last item is masked in order to emulate the evaluation setting. We vi-
sualize this construction in Figure 2.4. Note that during prediction, the <mask> item
is simply appended to the sequence.

In [87], Sun et al. explain that the Cloze objective yields more training inputs
than the conventional next-item objective (in SASRec and GRU4Rec). As such, they
hypothesize it alleviates overfitting and thus adds to performance. To confirm this,
Sun et al. [87] construct an experiment where only one item per training session is
masked (thus yielding as much / fewer training inputs than the next-item objective),
and still observe a performance improvement in comparison to SASRec. We will
later revisit this conclusion in chapter 4.

FIGURE 2.4: BERT4Rec’s conversion of a training session into input
sessions. Every training session is converted into one or multiple in-
put sessions with randomly masked items, and a single input session

where only the last item is masked.

Architectural differences with SASRec Besides the new training objective, BERT4Rec
is slightly different from SASRec in terms of architecture. Most notably, BERT4Rec
uses multi-head attention. This involves a slight adaptation of Equation 2.3 so that

1The Cloze objective is more commonly-known as "Fill in the gaps", and originally designed for
sentence reconstruction. Given a sentence, "Jesse did not feel like _ his thesis, so he grabbed some _ for
motivation", the task of Cloze is to predict the missing works, namely "writing" and "coffee".

2With input sessions we mean sessions in the format that they are expected by the model.
3https://github.com/FeiSun/BERT4Rec/blob/master

https://github.com/FeiSun/BERT4Rec/blob/master

Chapter 2. Background and related work 14

SA(S) = concat([SA1(S). . . SAh(S)])WO

SAi(S) = Attention(SWQ
i , SWK

i , SWV)

Attention(Q, K, V) = softmax
(

QKT
√

d

)
V

(2.7)

where each SAi represents one of the h attention heads. In order to ensure SA(S)
has shape (N, e), each attention head has shape (e/h, e/h) meaning their respec-
tive query, key and value matrices have this shape. The concatenation of the atten-
tion heads’ outputs then results in the correct dimensions for SA(S). Intuitively, the
multi-head attention mechanism should enable the model to look at different parts
of the session, making the model more expressive and thus enhancing performance
[87].

A small detail is that BERT4Rec uses a slightly different transformer architecture,
as the ordering of the layer normalization, dropout and residual connection is dif-
ferent. In BERT4Rec, the function g from Equation 2.5 is replaced by the definition
in Equation 2.8..

g(f , x) = LayerNorm(x + Dropout(f (x)) (2.8)

Lastly, the prediction network in BERT4Rec is slightly more involved. Equa-
tion 2.9 shows it contains an additional feed-forward layer and a bias, next to the
reuse of the item embedding matrix like SASRec.

Rt = softmax(GeLU(SL
t W + bp)ET + bo) (2.9)

Note that we define Rt (the predictions for timestep t), not R (predictions for all
timesteps), as BERT4Rec only predicts for masked positions. Also, GeLU (Gaussian
Error Linear Unit) is a smoother variant of the ReLU activation function [36].

In chapter 4, we will examine the effects of these architectural differences on the
model performance.

Loss In contrast to SASRec, BERT4Rec does not use negative sampling and instead
computes categorical cross-entropy (Softmax) loss over all the items for all masked
positions. A seemingly-minor but vital detail is that for timestep t, the scores Rt
represent the model’s confidence on the identity of masked item st, instead of st+1 in
SASRec.

Chapter 2. Background and related work 15

FIGURE 2.5: BERT4Rec’s architecture and training task. Figure
adapted from [47]. BERT4Rec needs to predict all masked items, in
this case s2 and s4. Since these items are masked, there is no informa-
tion leakage and the attention module can attend to all items in the
session. Important to note is that the FFN is shared across timesteps,
and that the residual connections, dropout and layer normalizations

are not visualized in the figure.

2.3.6 SASRec and BERT4Rec variants

There is a variety of work that build upon the transformer-based SASRec and BERT4Rec
models. We roughly categorized the different streams into variations that (1) intro-
duce architectural improvements, (2) introduce training and loss improvements, and
lastly, (3) employ contrastive learning. We also note there is a plethora of works on
exploiting side-information for sequential recommendation using transformer ar-
chitectures [108, 106, 75, 76, 9, 98, 60, 55, 105, 91], but for the sake of brevity and
relevance we refrain from discussing those here.

Architectural improvements LSAN [59] aims to reduce the parameterization and
complexity of SASRec. First of all, an item embedding is the sum of several shared
base embeddings, where the base embedding matrix is much smaller than the origi-
nal item embedding matrix of SASRec. Instead of multiple transformer layers, they
use a single self-attention and convolutional head, allowing for a focus on both long-
term and short-term context respectively. We will confirm that reducing the param-
eterization may enhance performance in chapter 6. Similar to LSAN, Locker [35]
aims to promote short-term context in BERT4Rec by replacing some heads in the
multi-head attention mechanism with other mechanisms focusing on exploiting lo-
cal information. In recommendation literature, the local context is often used to refer
to the items close to the current timestep, whereas the global context is often used to
refer to the whole session. The proposed mechanisms in [35] include a GRU encoder
[12], a fixed mask between distant items, an initialization approach to promote zero
attention between distant items, and an additional neural network to make the at-
tention mechanism more expressive. We present similar ideas to reduce the effect of
distant items in chapter 6.

Chapter 2. Background and related work 16

Rec-Denoiser [8] is a plugin for the transformer models that learns a binary but
differentiable attention masking mechanism. As such, the model can effectively set
attention weights close to zero to actual zero values, effectively denoising the atten-
tion scores. Similarly, [54] STRec only keeps the TOP-L attention scores for a given L
for both accuracy and memory gains. This is similar to Locker [35] in the sense that it
reduces the amount of items included in the attention, but Locker focuses attention
on items in the proximity of the timestep, whereas STRec focuses attention on the
most-similar items.

In another line of work, CORE [41] adapts the transformer architecture to output
a sequence of weights, after which the session embedding is the weighted average of
the item embeddings. This is in contrast with SASRec, which produces the session
embedding from the transformer architecture directly.

Similarly, ElecRec [10] also outputs weights, but in their application the weights
represent the model’s confidence that the item was part of the sequence. ElecRec is
trained with a combination of the original sessions and sessions where some items
have been replaced with a random item. The TOP-K recommendations can be com-
puted by taking the items with the highest confidence in the last position of the
sequence.

To model the uncertainty of the relevance of an item in a session, DT4SR (Distribution-
based Transformer for Sequential Recommendation) [22] learns elliptical Gaussian
distributions as item embeddings. This entails learning two separate embeddings
per item, namely the mean and covariance embedding, which are then processed
by two separate transformers. The session embedding of the mean and covariance
transformer are then used to find recommendations with 2-Wasserstein distance [3].
Fan et al. [23] improve upon DT4SR with STOSA (Stochastic Self-attention), which
introduces a Wasserstein self-attention layer. This mechanism is more appropriate
for calculating the self-attention as it satisfies the triangle inequality [13]4.

Training and loss improvements RSS (Recency-based Sampling of Sequences) [72]
improves the accuracy and training time of GRU4Rec and SASRec by devising a new
training task. Instead of letting the model predict the item at position t given the
items at positions 1. . . t − 1, RSS extracts items from the input sequence proportional
to their position. Hence, more recent items are more likely to be extracted from
the sequence. The new task is then to predict the items that were withheld. Besides
Binary Cross-Entropy, Petrov and Macdonald [72] experiment with LambdaRank [6]
which exhibits better performance for some datasets.

In parallel with our work in chapter 4, two very recent publications [49, 73] inde-
pendently discovered that the single negative sample in SASRec is not sufficient for
training, and that SASRec can attain similar or even better accuracy than BERT4Rec
using the Softmax loss function without negative sampling. We will reconfirm this
finding in chapter 4. Since cross-entropy over all the items can become a scabil-
ity bottleneck for large datasets, Petrov and Macdonald [73] additionally deduce a
variant of BCE that takes the number of negative samples into account, significantly
improving both accuracy and training time.

ASReP (Augmenting Sequential Recommendation with Pseudo-prior items) [62]
notes that the model performance improves as the length of a session increases, and
hence proposes to enhance the input sequences with pseudo prior items. This is done
by first training SASRec in the reverse direction to augment sequences with items

4Intuitively, the advantage of a similarity measure that satisfies the triangle inequality is that if
embedding e1 is considered similar to e2, and e2 is considered similar to e3, then e1 is also considered
similar to e3 by the model. This typically enhances convergence.

Chapter 2. Background and related work 17

that would likely precede the sequence, after which the pre-trained SASRec and the
augmented sequences are used in the conventional training phase of SASRec. We re-
visit the motivation for ASReP in chapter 5, where we find that on some datasets the
session length is not exclusively correlated with performance of transformer models.
Instead, we will find that longer sessions are easier to predict for in general.

Contrastive learning A prominent stream of work is on the application of con-
trastive learning (CL) to the transformer-based sequential recommenders [74, 18,
99, 108, 63, 68, 102]. Contrastive learning is a self-supervised machine learning tech-
nique that aims to pull the representation of positive pairs closer, and push the rep-
resentation of negative pairs further away [30]. For the application of CL in a par-
ticular domain and model, the definitions of representation, positive pairs, negative
pairs and the push/pull mechanism need to be defined. In the case of transformers,
the representations always regard the sequence embedding of the last layer SL. Pairs
are considered to be pairs of input sessions. The novelties in [74, 18, 99, 108, 63, 68]
constitute innovations in the construction of positive and negative pairs, or innova-
tive loss functions to pull or push the sequence embeddings closer or further away.
Having a secondary signal to learn the embeddings besides the standard training
objective should alleviate overfitting and make the models more effective on sparse
datasets [74].

Models that build upon SASRec using CL typically duplicate each sequence s in
the mini-batch and apply several non-deterministic augmentation techniques to the
two duplicates, resulting in s′ and s′′ [99, 63]. The two, now slightly different, du-
plicates are considered to be a positive pair, whereas all other pairs with either s′ or
s′′ are considered to be a negative pair. The specific augmentation techniques con-
sist of random cropping5, item masking, random reordering [99], and additionally
item substitution or insertion [63]. Qiu et al. [74] have a slightly different approach,
where for each sequence in the batch they sample a sequence with the same last item
to form positive pairs. CBiT [18] is the first out of the aforementioned CL approaches
that uses BERT4Rec as the base model, and leverages the randomly-masked sessions
from the Cloze objective as positive pairs. In [18, 74], additional dropout stimulates
different representations of positive pairs, which are then drawn together. In all
cases, the contrastive loss (added to the standard training loss) promotes similarity
in the sequence embeddings of the positive pairs relative to the negative pairs [99,
63, 74, 18].

Ma et al. [68] create positive pairs by splitting sequences on a particular position
into a preceding and a succeeding subsequence. They propose a contrastive loss to
compare the sequence embeddings according to their similarity in intention. The in-
tentions behind a subsequence are computed by mapping the sequence embeddings
SL to K-dimensional vectors, where K represents the number of intentions.

In this thesis we will not consider any possible improvements with contrastive
learning and will instead focus on simplifying the architecture of the sequential rec-
ommendation models.

2.4 Reproducibility issues

Most of the publications in subsection 2.3.6 claim superiority over their baselines
and the GRU4Rec, SASRec and BERT4Rec models. However, recent studies [71, 64,
37, 38, 84, 24] have shown that there exist widespread flaws in the evaluation of new

5Random cropping refers to extracting a contiguous subsequence of the session.

Chapter 2. Background and related work 18

recommendation models and question to what degree these flaws have affected the
field’s notion of the current state-of-the-art. We continue this section by discussing
the publications on reproducibility specific to the sequential and session recommen-
dation domain.

Petrov and Macdonald [71] observe that BERT4Rec’s superiority over SASRec in
accuracy is not consistently shown throughout the aforementioned studies. BERT4Rec
was superior in 85 out of 134 comparisons, it was a tie in 16 comparisons, and SAS-
Rec was superior in 32 out of 134 comparisons. Though some inconsistencies may
be explained by differences in datasets, there are also inconsistencies in comparisons
where the dataset is exactly the same. Petrov and Macdonald [71] attribute this to
poor default configurations of the open-source implementation of BERT4Rec. They
then properly tune BERT4Rec and show similar or superior performance compared
to the models introduced in [74, 15, 21, 60]. Therefore, it is unclear whether the
increased performance of the model variations presented in subsection 2.3.6 actu-
ally substantiate. Similar conclusions on BERT4Rec’s performance were drawn in
[27]. For GRU4Rec, Hidasi and Czapp [37] found that its poor performance in fol-
lowing works is likely to be the result of a combination of poor hyperparameter
tuning and faulty third-party implementations. Lastly, Ludewig and Jannach [64]
show that simpler session-based models like SKNN often reach similar or superior
performance compared to neural approaches depending on the dataset, and should
therefore always be included as a baseline in order to ensure progress.

19

Chapter 3

Preliminaries

In this chapter, we introduce the preliminaries required for evaluating and tuning
our models. We will introduce the datasets used in section 3.1 and their train-
validation-test splits in section 3.2. We then detail our evaluation setup in section 3.3
and finally our hyperparameter optimization process in section 3.4.

3.1 Datasets

In this section, we introduce and discuss the datasets that will be used throughout
this thesis. We will discuss the open datasets in subsection 3.1.1 and the proprietary
Delivery Hero datasets in subsection 3.1.2. Finally, we present several dataset statis-
tics in subsection 3.1.3.

3.1.1 Open datasets

We adopt two sequential recommendation datasets often used in the literature, namely
Amazon Beauty [69] and MovieLens-1M [31]. Amazon Beauty is a dataset consist-
ing of reviews on the Amazon Beauty catalogue. It has been processed so that the
presence of a review is considered an interaction. All interactions by a single re-
viewer constitute a single session [69]. Similarly, MovieLens-1M is a dataset consist-
ing of ratings by users on the MovieLens platform, where each rating is considered
an interaction. All interactions of a single user constitute a single session [31]. Be-
sides their widespread adoption, the Beauty and ML-1M dataset have very different
dataset characteristics, which will allow us to provide a more comprehensive view
on the performance and behaviour of the models. We will further discuss these char-
acteristics in subsection 3.1.3.

Preprocessing We preprocess the Beauty and ML-1M dataset exactly as [87], namely
with a 5-filter. This constitutes removing all users and items with less than five in-
teractions. This is the most common preprocessing technique for the two datasets,
and widely adopted BERT4Rec, SASRec and their variants [87, 47, 23, 62, 18].

Discussion We note that these datasets have shortcomings. Most importantly, the
sessions in both datasets virtually span an unlimited time period. For example, the
longest time span of a session in our processed Beauty dataset is almost 14 years.
We argue that the relatedness of two consecutive interactions decreases with their
time interval, so that these datasets may be limited in indicating a model’s ability
to exploit short-term context for recommendation. Still, both of these datasets can
be considered the most popular benchmarks for evaluating sequential and session-
based recommender systems [47, 73, 87, 23, 18, 62]. We therefore choose to include
these datasets to allow for reproducibility and comparison with previous works.

Chapter 3. Preliminaries 20

3.1.2 Proprietary datasets

From Delivery Hero we use two datasets from different countries, appropriately
named DH Greece and DH Singapore. The sessions in these datasets represent shop-
ping carts from their Q-Commerce platform. The items in the session represent the
purchased products, and the ordering of the session is the ordering in which the
products were added to the shopping cart.

Preprocessing We do not process these datasets in order to represent reality as
much as possible.

Timeframe In contrast to the open datasets, we can select the amount of data our-
selves. For DH Greece and DH Singapore we take 3 months and 1 month of data
respectively. These timeframes were found by evaluating our models on increas-
ingly larger timeframes until all models’ performance stabilized. We do not choose
longer timeframes because it does not improve performance, most likely because of
seasonality effects. For example, a seasonality effect could be that ice cream is much
more often bought in the summer. Hence training data from the winter, where ice
cream is bought less often, is less relevant and might even reduce a model’s accu-
racy. On the other hand, our process for choosing the timeframes itself is not utterly
robust, since larger models (than the ones we used to choose the timeframe) might
benefit from even more data in order to converge. In an ideal case we would include
the timeframe as a hyperparameter to model training, but this added too much over-
head in terms of implementation and hyperparameter tuning. However, we believe
the models’ performance on the chosen timeframes to be very close to optimal.

3.1.3 Data statistics

We summarize the data statistics of the four datasets in Table 3.1 below. Further-
more, we visualize the session length distribution in Figure 3.1 and the item popu-
larity distribution in Figure 3.2.

Dataset # Sessions # Items # Interactions Avg. length Density
Beauty 40.226 54.542 353.962 8.8 0.016%

ML-1M 6.040 3.416 999.611 165.5 4.845%
DH GR 387.270 6.872 2.061.278 5.3 0.077%

DH SI 258.710 38.246 1.474.658 5.7 0.015%

TABLE 3.1: Statistics of our dataset suite.

Chapter 3. Preliminaries 21

FIGURE 3.1: Distribution of session lengths of our dataset suite.

FIGURE 3.2: Distribution of item popularity of our dataset suite.

We selected the Beauty and ML-1M dataset because of the strong differences in
dataset characteristics. The Beauty dataset is characterized by its low density and
short sequences. In contrast, the ML-1M is characterized by a high density and long
sequences. By adopting both in our dataset suite, we hope to gain and provide a
comprehensive view of model recommendation performance and prevent ourselves
from tailoring experimental models to specific dataset characteristics.

Our proprietary datasets are generally short. The DH Greece dataset is denser
than the DH Singapore dataset because of improved product standardization through-
out Q-Commerce vendors. This is also reflected in the item popularity distribution,
where DH Singapore shows a much longer tail of low-popularity items. Unsur-
prisingly, the session length distributions of the proprietary datasets are roughly
the same because for both datasets, sessions represent Q-Commerce shopping carts.

Chapter 3. Preliminaries 22

Throughout this thesis we will see how the subtle differences in the characteristics of
the two proprietary datasets can affect recommendation performance significantly.

3.2 Train-validation-test split

In order to evaluate our models, we need to separate our datasets into (a) validation
set(s) and a test set. Both of these sets contain subsets of sessions for training and
evaluating models. We train and evaluate models on the validation set(s) for finding
an optimal hyperparameter configuration. We train and evaluate models on the test
set for reporting model performance given the optimal configuration found with
the validation set. The way the validation set(s) and test set are constructed differs
between the open and DH datasets. For the the open datasets, our main goal is to
facilitate reproduction. For the DH datasets, our main is to represent reality as much
as possible.

3.2.1 Open datasets

For Beauty [69] and ML-1M [31], we follow [87] and take the last item of each ses-
sion as the test ground-truth item, and the second-to-last item of each session as the
validation ground-truth item. Hence, in the validation phase, we train the model
on all sessions with their last two items withheld, and evaluate them by predicting
the second-to-last item with the preceding items as input. Then, during the testing
phase, we train the model on all sessions with the last item withheld, and evaluate
them by making them predict the last item with the preceding items as input. We
visualize the approach below.

FIGURE 3.3: Train-validation-test split for open datasets. For evalu-
ation in the testing and validation phase, we highlight the input ses-

sion with blue and the ground-truth next-item with orange.

Discussion A shortcoming of this train-validation-test split is that there is a dis-
crepancy between the average lengths of the sessions between the validation and
testing phase. If the original sessions are on average length X, then the sessions on
which the models are trained during the validation phase are on average length X -
2. As a result, the hyperparameter configuration that we find to be optimal for ses-
sions of average length X - 2 might not be optimal for sessions of average length X.
Furthermore, the train-validation-test split only results in one validation split. As a
result, we will not be able to evaluate the variance of a model’s performance before
testing. On the other hand, the split is deterministic which facilitates reproduction.
This is important because there have been some cases where non-deterministic splits

Chapter 3. Preliminaries 23

seem manufactured by hand, or at least extremely unlikely [24]. The split is also the
most data efficient out of all conventional train-validation-test splits, since we use
every available session during evaluation.

3.2.2 Delivery Hero datasets

Next, we process the sessions of the DH datasets into multiple validation sets and
a test set. For both DH datasets, we perform a global timesplit to split the sessions
for training/validation and testing. More specifically, for the DH Greece dataset we
withhold the last two weeks of sessions for evaluation (roughly 50.000 sessions), and
use all preceding sessions for training. Similarly, for the DH Singapore dataset, we
withhold the last week of sessions for evaluation (also roughly 50K sessions). This
is the best approximation of a model’s performance in production, as the model is
trained on sessions up to a certain point in time, and subsequently deployed without
any retraining.

For validation, we use cross-validation with three validation folds, meaning we
create three pairs of (train, evaluation) sets of sessions. We do not make use of tem-
poral information here, and simply create the folds with random sampling. The
reasoning behind not using a temporal split for our validation phase is because it is
not possible to create more than one mutually-exclusive fold with a temporal split.
We want multiple validation folds in order to increase the robustness of our results.

FIGURE 3.4: Train-validation-test split for DH datasets. We highlight
the sessions for training with green and the sessions for evaluation
with purple. The main difference with Figure 3.3 is that sessions are
not shared between the validation and test set. We feed the model
with all but the last item of an evaluation session (highlighted in
blue), and make it predict the withheld last item (highlighted in or-

ange).

3.3 Evaluation setup

In this section we introduce our approach to evaluating the models’ performance.
We discuss the widespread but flawed sampled metrics evaluation task and its method-
ologically correct alternative of full ranking in subsection 3.3.1. We then continue
with the accuracy metrics in subsection 3.3.2, and finally discuss the beyond-accuracy
metrics in subsection 3.3.3.

Chapter 3. Preliminaries 24

3.3.1 Evaluation task

On sampled metrics We divert from the task setting in [87] due to the criticism on
sampled metrics in recent publications [61, 52, 15, 38, 7]. In short, sampling metrics
refers to an alternative way of evaluating models by making each model rank 101
items from the item catalogue. The first 100 are items sampled uniformly or pro-
portional to their popularity (excluding items that are already in the session). The
101-th item is the ground-truth item. The "TOP-K" items are then considered to be
the TOP-K items of this ranked list. This process was originally designed to speed
up evaluation as it does not require sorting the item scores of all items in the cata-
logue, and can instead be computed in constant time independent of the number of
items. This evaluation task has been adopted extensively in various works, includ-
ing BERT4Rec [87, 71], SASRec [47], several suggested improvements for BERT4Rec
and SASRec [18, 63, 74, 22], and other influential works on recommendation [34, 91,
20, 50]. Publications criticizing this approach show that sampling metrics could lead
to arbitrary model leaderboards, especially for target sets containing just 101 items
[61, 52, 15, 38, 7]. To foreshadow, we took the original SASRec implementation and
trained it on the Beauty dataset. Whereas SASRec outperformed all models in [47]
, we find that the original implementation barely beats the popular baseline on the
full ranking recommendation task.

Full ranking Instead, we evaluate our models by ranking all items in the catalogue,
excluding those already in the session. This is inherently the most consistent method
for evaluating models [52]. In addition, it is a proper representation of recommen-
dation performance in production, as models recommend the TOP-K items from the
whole item catalogue.

3.3.2 Ranking metrics

For each evaluation session, the model produces a TOP-K recommendation slate.
There are several metrics available to evaluate the quality of the recommendation
slate, and by extension the model that produced the recommendation slates. The
main accuracy metrics are Normalized Discounted Cumulative Gain (NDCG), Mean
Reciprocal Rank (MRR) and HitRate (HR) [64]. For a given TOP-K recommendation
slate and a ground-truth item, all metrics evaluate to zero if the ground-truth item
is not included in the recommendation slate. Otherwise, the metrics are calculated
with the formula below, given the relative rank x of the ground-truth item in the
TOP-K recommendation slate. The top-ranked item gets rank 1, the lowest-ranked
item gets rank K.

HR(x) = 1
MRR(x) = 1/x

NDCG(x) = 1/ log2(x + 1)
(3.1)

Note that these formulas are simplified variants from their conventional formu-
las [46]. The simplification is possible because there is only one ground-truth, and
the graded relevance score of an item is simply 0 (not ground-truth) or 1 (the ground-
truth). We visualize the formulas in Figure 3.5.

Chapter 3. Preliminaries 25

FIGURE 3.5: Metric score against ground-truth rank. In this figure,
K = 10, meaning we only consider the TOP-10 recommendations
from a model. If the ground-truth has a higher rank than K, a score is

considered zero.

In this work we will be presenting the HR and NDCG ranking metrics with
K = 10. The HR and NDCG metric together provide a view of the models’ abil-
ity to retrieve (recall) relevant items and their ability to rank these relevant items
respectively. We prefer NDCG over MRR because the tail of the curve of NDCG is
less steep. Intuitively, we assume that if a user will scroll through the recommenda-
tions (beside the first few that are shown by default), the user will view all. Hence
we want the scores of the lower ranks to be roughly equal. This intuition is best
reflected by the NDCG metric. The value of 10 is chosen for K because it is both
conventional in recommendation literature, and it is the maximum amount of items
shown on the checkout pages of Delivery Hero.

3.3.3 Beyond-accuracy metrics

Besides the ranking metrics, we consider the following beyond-accuracy metrics to ob-
tain a more comprehensive picture of the performance and behaviour of the models
and their configurations: catalog coverage, serendipity, and novelty. Catalog cov-
erage represents the fraction of catalog items that appeared in at least one TOP-K
recommendation slate [45]. Serendipity measures the average number of correct
recommendations for each user that are not recommended by the popularity base-
line [28]. Novelty computes the negative log of the relative item popularity [109].
Formally, denoting a recommendation slate with r and an item i’s popularity with
p(i), novelty is computed using Equation 3.2.

Novelty(r) = ∑
i∈r

− log
(

p(i)
∑j∈I p(j)

)
(3.2)

Chapter 3. Preliminaries 26

3.4 Hyperparameter optimization

To properly evaluate and compare our models’ performance, we have to hypersearch
(optimize) the hyperparameters. To do this, we employ Optuna [2] for its flexibil-
ity in defining search spaces and built-in visualizations. We optimize the average
NDCG@10 on the validation folds1. For the sake of completeness, we discuss the
optimizing process in detail in subsection 3.4.1 and our approach to pruning in sub-
section 3.4.2.

3.4.1 Optimizing process

We navigate the search space by first sampling 20 random hyperparameter configu-
rations from the search space and evaluating their performance (in hyperparameter-
search terminology, the process of evaluating a single hyperparameter configuration
is called a trial). We then continue with 70 configurations from a TPE sampler [5]2.
The TPE sampler is a data-efficient sampler available in Optuna that supports multi-
variate optimization. Hence, it is able to take the relations of variables into account.
For example, the optimal size of a model is dependent on the optimal amount of reg-
ularization and vice versa, and this can only be exploited if multivariate optimiza-
tion is applied. In short, the TPE sampler uses Gaussian Mixture Models to model
the parameter configurations that resulted in a high objective value in g(x), and sim-
ilarly to model parameter configurations that resulted in a low objective value l(x).
It then proposes the configuration that maximizes g(x)/l(x). We precede the TPE
sampling with random trials in order to prevent premature convergence to a local
optimum.

We use average NDCG@10 across the folds as the objective value, and consider
the hyperparameter configuration with the highest average NDCG@10 as the opti-
mal model configuration after the maximum number of trials has been reached. We
will then use this optimal configuration to evaluate the model on the test set.

3.4.2 Pruning trails

To save time we make use of the pruning functionality of Optuna [2]. Pruning
refers to stopping unpromising trials early-on before evaluating the model on all
folds. From Figure 3.6 it is evident that the performance on the first fold is already
a reasonable indicator of final test performance, so that it is safe to prune the worst-
performing trials. Hence, after each fold we check whether the average NDCG@20
so far is not in the bottom 20% of trials. If it is, we prune the trial. Of course, we have
multiple folds to increase the robustness of our hypersearch, but we have found that
the performance of a model configuration after a single fold is very correlated with
the final test performance. Hence, if a trial is in the bottom 20% of trials in terms of
average NDCG@10 so far, we can already conclude that it will most likely not be the
top-performing configuration. Note that our academic datasets only have one fold,
so it is not possible to do any pruning there.

1Some configurations were actually found by optimizing NDCG@20. Given that NDCG@20 and
NDCG@10 are extremely correlated, we decided to not re-run these hypersearches because of the costs
of hypersearching parameters.

2We also stop a hypersearch if the objective value has not sufficiently increased for 20 trials.

Chapter 3. Preliminaries 27

FIGURE 3.6: The correlation between GRU4Rec’s fold and test per-
formance on the DH Greece dataset. It shows that the performance
on the first fold is already a reasonable indicator of final test perfor-
mance, so that it is safe to prune the worst-performing trials. In ad-
dition, the variance indicates that a single fold is not sufficient to find

the optimal configuration. Figure created with Optuna [2].

28

Chapter 4

Model comparison

In this chapter, we will evaluate the models on our dataset suite. The main goal of
this chapter is to produce a fair comparison between models by (1) addressing the
methodological errors in implementation and hyperparameter optimization, and (2)
standardizing implementation between the different models in order to isolate the
benefit of each architecture. We will first discuss our baselines in section 4.1 and the
hyperparameter search space in section 4.2. With the hyperparameter optimization
process fully specified, we introduce the implementation details and make some
preliminary design decisions in section 4.3. Finally, we present the evaluation results
in section 4.4.

4.1 Baselines

Besides SKNN [44, 64], we include three other non-neural baselines, namely Most-
Popular, ItemKNN [81] and NextPopular [83], which we briefly discuss below.

4.1.1 MostPopular

MostPopular always recommends the TOP-K most popular items in order of their
popularity. For the sake of clarity, the most popular items are the items with the
most interactions in the training data.

4.1.2 ItemKNN

ItemKNN [81, 95] disregards the ordering of the items in the session, and instead
uses item-item similarities to compute recommendations. It returns the items with
the highest scores defined by Equation 4.1.

score(i, s) = ∑
j∈s

rirj

∥ri∥
∥∥rj

∥∥ (4.1)

Here, the vector ri ∈ {0, 1}|S| for an item i is a multi-hot vector indicating the ses-
sions that contain item i. Intuitively speaking, ItemKNN recommends the items that
appeared most often with the items in the session. To clarify, ItemKNN uses item-
item similarities to find recommendations, whereas SKNN [44, 64] uses session-
session similarities to find recommendations.

4.1.3 NextPopular

Our last baseline is NextPopular, a simplification of the Markov Decision Process
(MDP) defined in [83]. NextPopular recommends the TOP-K items that have most
often been observed as direct neighbours of the last item of the session. Hence,

Chapter 4. Model comparison 29

for each item i, NextPopular counts how often item j occurs as a direct neighbour
(meaning it either directly precedes or succeeds in a session) of item i in a session.
At prediction time, NextPopular takes the last item of a session and recommends the
items that most often neighboured the last item, in the order of the counts. NextPop-
ular will be vital to our analyses in chapter 5 and chapter 6.

4.2 Hyperparameters and search space

We now define the hyperparameters and the search space for BERT4Rec [87], SASRec
[47], GRU4Rec [40, 39] and SKNN [64, 44]. All hyperparameters are invariant to the
design decisions we will make later in section 4.3.

4.2.1 Limitations of original publications

We note that the search space of the original publications is limited. In [87, 47],
BERT4Rec and SASRec’s optimal configuration are found through a grid search for
various values of the embedding dimension, weight decay and dropout rate. How-
ever, hyperparameters like the number of transformer layers, the number of heads,
learning rate and the batch size are fixed. After the optimization, the authors vary
the number of transformer layers in an ablation study. In [40], GRU4Rec is opti-
mized by fixing the hidden dimension of the model and optimizing the auxiliary
hyperparameters1. The optimal auxiliary hyperparameters are then used to search
the hidden dimension. Though methodologically sound, all three approaches to op-
timization are biased towards the values of the fixed hyperparameters, namely the
number of transformer layers and the hidden dimension. To illustrate, we found that
there is a strong interplay between optimal regularization and size of the model. By
optimizing regularization with a fixed model size, the optimal model size with the
found hyperparameter values for regularization will be biased towards the previ-
ously fixed values for model size.

Instead, we rely on the TPE sampler to efficiently sample from all parameters at
the same time, which will result in an unbiased optimal configuration of hyperpa-
rameters.

4.2.2 Neural model hyperparameters and search space

The precise search space for each model is defined in Table 4.1.

1It was not specified what hyperparameters are actually being optimized in [40].

Chapter 4. Model comparison 30

Hyperparameter BERT4Rec SASRec GRU4Rec
Learning rate 1e-4 - 1e-2 1e-4 - 1e-2 1e-4 - 1e-2
Weight decay 1e-5 - 1e-1 1e-5 - 1e-1 1e-5 - 1e-1
Batch size 32 - 512 32 - 512 32 - 512
Embedding dim. (e) 16 - 512 16 - 512 16 - 512
Drop rate 0 - 0.9 0 - 0.9 0 - 0.9
transformer layers (L) 1 - 4 1 - 4
heads (h) 1 - 4 1 - 4
Transformer layout {FDRN, NFDR} {FDRN, NFDR}
Masking probability 0.05 - 0.9
Hidden dim 16 - 512
N 95% 95% 95%
random train cases 10

TABLE 4.1: Hyperparameters and their search space for the neural
models. A missing entry indicates that the hyperparameter does not
apply to the model. A single value indicates that the hyperparameter

is fixed to the given value.

Shared hyperparameters In short, we have the learning rate, weight decay, batch
size, embedding dimension and dropout rate as shared hyperparameters for all three
models. The dropout rate is applied to the embedding layer and the output of each
transformer/GRU layer.

Transformer hyperparameters The transformer models have additional hyperpa-
rameters for the number of transformer layers (L), number of heads (h) and trans-
former layout. The transformer layout indicates what the precise ordering is of the
components inside the transformer layout (See subsection 2.3.4). The original SAS-
Rec implementation [47] uses NFDR (Normalization, Function, Dropout, Residual),
meaning it first applies the layer normalization, then the function (MHA or FFN),
then the dropout and then the residual connection. The original BERT4Rec imple-
mentation [87] uses FDRN (Function, Dropout, Residual, Normalization). Instead of
fixing to a single layout, we let the hypersearch decide the layout. Also, we note that
we do allow for multiple heads in SASRec as opposed to the original publication
[47], as multi-head attention generalizes single-head attention anyway.

Masking probability Compared to SASRec, BERT4Rec has one additional hyper-
parameter, namely the masking probability. This is the probability that an item
is masked in the generation of the randomly-masked input sessions (See subsec-
tion 2.3.5). We have preliminarily experimented with various values for the number
of random train cases (the randomly-masked input sessions), and found that perfor-
mance stabilized for all datasets for all configurations before 10 random train cases.
To limit the search space and training time of BERT4Rec, we therefore fixed the pa-
rameter to a value of 10.

Hidden dimension GRU4Rec has an additional hidden dimension hyperparameter
that defines the dimension of the GRU layer. This is the dimension of the weights
and the output ht of the GRU layer.

Chapter 4. Model comparison 31

Length of sessions (N) All three models use the whole-session batches, and we
fix the length of the sessions to the 95% percentile of the session length distribu-
tion. This means that roughly 5% of sessions are truncated. For Beauty, the 95%
percentile is 20 items, for ML-1M 556 items, for DH Greece 11 items and for DH Sin-
gapore 15 items. We actually found that increasing the percentile did not improve
performance, while it did increase training time significantly due to the outliers in
session lengths. We assume this is because the longest sessions contain more noise,
so that they are less informative for training purposes.

4.2.3 SKNN hyperparameters and search space

For completeness we also provide the SKNN hyperparameters and search space in
Table 4.2. We note that we adopt the implementation provided by Delivery Hero
Research.

Hyperparameter SKNN
Sequential weighting {true, false}
Sequential filter {true, false}
Sample size 500 - 2000
Sampling {random, recent}
Similarity measure {dot, cosine}
IDF-weighting {true, false}
k 50 - 500

TABLE 4.2: Hyperparameters and their search space for SKNN.

Sequential weighting defines whether the score for an overlapping item between
sessions increases with the item’s position in the session (S-SKNN, V-SKNN [64]).
Sequential filter defines whether no items may be recommended that have not di-
rectly succeeded the last item of the session (SF-SKNN [64]). The sample size de-
fines the number of sessions for which we calculate the similarity with the session
at hand. These can be sampled uniformly at random, or sampled proportional to
their recency [64]. The similarity measure defines whether we use dot-product or
cosine similarity for the similarity computation. Parameter k defines the number of
most-similar sessions from the sampled sessions that are used to compute the recom-
mendations. IDF-weighting defines whether the weight of an item in the similarity
computation should be proportional to its Inverse Document Frequency value [79].
In session recommendation, the frequency of an item is the amount of times it ap-
pears in a session in the training data.

4.3 Implementation details

There are differences between our implementation of BERT4Rec, SASRec and GRU4Rec
and their original open-source implementations. Our motivation for these differ-
ences is two-fold. Firstly, we found that each model contains various details that are
not necessarily dictated by their main architecture. This complexifies implementa-
tion [37] and prevents us from drawing solid conclusions on the architecture itself.
Secondly, we found that seemingly-minor details can have significant effect on the
performance. An example of this is that BERT4Rec claimed superiority over SASRec
because of its bidirectionality [87], but we will find that it is actually the loss func-
tion that made BERT4Rec superior in the original evaluation. Therefore, we aim to

Chapter 4. Model comparison 32

standardize the implementation of the models as much as possible to allow for an
analysis on their main architecture, namely the bidirectional or unidirectional trans-
formers and the GRU layer.

We prelude with standardizing the mechanism for training termination in sub-
section 4.3.1. We then discuss two major differences that positively impact the per-
formance of our implementations, namely the loss function of SASRec and GRU4Rec,
and the batching mechanism of GRU4Rec in subsection 4.3.2 and subsection 4.3.3
respectively. Furthermore, we will discuss more minor implementation details in
subsection 4.3.4.

4.3.1 Training termination

The approach to determining when to stop training of BERT4Rec, SASRec and GRU4Rec
in their respective publications are either erroneous or arguably, wasteful. In [40, 39],
the number of epochs for GRU4Rec is simply treated as a hyperparameter. Though
this is methodologically sound, it disregards the fact that model performance can
be measured across epochs in a single run. By ignoring this, GRU4Rec might be
trained and evaluated multiple times with the same model configuration but with a
different number of epochs, whereas the model performance across different epochs
could have been extracted from a single run. In BERT4Rec and SASRec [87, 47],
this is erroneously addressed by evaluating the model on the test set every single
epoch. Given the random oscillations in the evaluation metrics throughout epochs
2, this direct involvement of the test set in the training phase allows for opportunis-
tically choosing coincidentally-high evaluation metrics [38, 53]. This effect is further
amplified by the randomness of the sampled metrics approach [53].

Early stopping Instead, we choose to withhold a subset of sessions from the train-
ing data and validate the model performance on this early-stopping-validation set ev-
ery epoch. Hence, we sacrifice 10% of the training sessions to solve the issue of
having to choose the number of epochs. We measure our target metric NDCG@10
on the early-stopping-validation set and stop training if this metric has not increased
for a fixed number of epochs, the patience. When we terminate training, we restore
the model weights of the epoch with the highest NDCG@10 on the early-stopping-
validation set. By measuring a metric on the data from our training set, we do not
use any information from the test set, making it methodologically sound. Further-
more, early stopping allows us to remove the number of epochs as a hyperparameter,
making our model training and hyperparameter-search process more efficient. We
do not hypersearch the patience hyperparameter, and instead fix it to the value of 5.
From preliminary experiments we found that higher values did not result in better
evaluation metrics on any of the datasets. Lower values for the patience resulted in
premature stopping.

Reducing the learning rate Now that we can estimate model performance with the
early-stopping-NDCG@10, we can reduce the learning rate when the performance
plateaus 3. Reducing the learning rate has often been shown to enable convergence

2Random oscillations in performance throughout epochs are inherently caused by the random
batching process.

3We have found that the loss is often still decreasing while the early-stopping-NDCG@10 has
plateaued, indicating that the loss is not a suitable estimator for deciding when to reduce the learning
rate. We assume the absence of a good performance estimator is why the original implementations did
not make use of this mechanism.

Chapter 4. Model comparison 33

to a better minimum [17]. We reduce the learning rate by a factor of 10 when early-
stopping-NDCG@10 has not improved for 4 epochs. Admittedly, while the main
goal of this thesis is to simplify models instead of adding even more components,
we found this well-known, easily-implementable 4 mechanism to directly improve
performance. For example, Figure 4.1 shows the performance trajectory of GRU4Rec
on the DH Greece dataset. Evidently, lowering the learning rate on plateau in-
creases performance. An initial learning rate of 1.9e-4 resulted in worse performance
demonstrating that GRU4Rec benefits from a high initial learning rate to escape bad
local minima from the random initialization, but requires a lower learning rate to
fully converge.

FIGURE 4.1: Performance trajectory of GRU4Rec on the DH Greece
dataset. It illustrates how lowering the learning rate on plateau in-
creases performance. Since early-stopping-validation and test ses-
sions are drawn from different distributions in terms of time, the
early-stopping-validation NDCG is slightly higher. This also demon-
strates why choosing longer timeframes for the DH datasets does not

necessarily result in higher performance.

4.3.2 Loss functions (SASRec, GRU4Rec)

We recall from subsection 2.3.4 that SASRec and GRU4Rec are trained with binary
cross-entropy (BCE) using negative sampling, which entails including the positive
sample (the ground-truth item) and a number of negative samples sampled uni-
formly at random. Instead, we propose to adopt the loss function of BERT4Rec,
which is the categorical cross-entropy loss (Softmax) loss, over all the items. This
essentially means that we use all items except the ground-truth as negative samples.
The original motivation for a fixed number of negative samples is that the loss com-
putation time is independent of the number of items, and hence allows for training
models on larger datasets [47]. In turn, training becomes less demanding compute
and memory-wise, but may result in sub-optimal performance [73, 49]. However,
we note that it is still feasible to compute the Softmax loss using all items on our
suite of datasets. Thus, to fairly compare GRU4Rec and SASRec with BERT4Rec, we
implement Softmax loss for these models as well.

4ReduceLROnPlateau can be implemented in 2 lines of code in TensorFlow 2.10.

Chapter 4. Model comparison 34

SASRec We will first hypersearch both SASRec variants on the open datasets and
summarize the results in Table 4.3.

Dataset Model HR ↓NDCG CatCov Ser Nov
SASRec (Softmax) .039 .021 .106 .033 12.1
SASRec (1 sample) .012 .006 .002 .005 10.3Beauty
Popular .012 .005 .000 .001 9.7
SASRec (Softmax) .307 .176 .677 .300 10.7
SASRec (1 sample) .210 .110 .660 .205 10.8ML-1M
Popular .016 .008 .003 .000 8.5

TABLE 4.3: Preliminary results on negative sampling with SASRec.
We find that Softmax loss over all items performs considerably better.

The table is sorted by NDCG@10.

Evidently, the Softmax loss on SASRec results in better performance. While SAS-
Rec with only 1 negative sample still significantly outperforms the popular baseline
on ML-1M, the same model barely beats the popular baseline on Beauty. The low
catalog coverage and novelty indicate that SASRec with a single negative sample
degenerates to consistently recommending popular items. Surprisingly, two very
recent parallel works to ours have made the same observation [73, 49]. The analysis
in [73] shows that the single negative sample is not enough downward force on the
output of the model, so that for every session there are much more than TOP-K items
that receive a score very close to one. On a dataset like Beauty with a large item cata-
logue, this makes the model recommend predominantly popular items, which have
a slightly higher score than all other highly-scored items. Petrov and Macdonald
[73] call this behaviour overconfidence. SASRec suffers less from overconfidence on
the ML-1M dataset because ML-1M has a smaller item catalogue than Beauty. There-
fore, the items for which SASRec is usually overconfident are more often drawn to
zero with the negative samples.

Furthermore, the extreme performance difference between Table 4.3 and the orig-
inal SASRec evaluation [47] highlights the inadequacy of sampled metrics to evalu-
ate a model. Whereas on the full ranking evaluation task SASRec barely surpasses
the popular baseline, SASRec outperformed all its baselines on the sampled metrics
evaluation task in [47]. Lastly, both Petrov and Macdonald [73] and Klenitskiy and
Vasilev [49] state that BERT4Rec’s original superiority over SASRec can be solely
attributed to the Softmax loss. We will further discuss this statement in section 4.4.

GRU4Rec Though the loss function for GRU4Rec is not specified in [40, 39], Hidasi
and Czapp [37] note that Softmax loss or BPR-max loss introduced in [39] clearly
outperform all other loss functions on their datasets. Therefore, we hypersearch the
GRU4Rec variants with the two different loss functions, and summarize the results
in Table 4.4 below.

Chapter 4. Model comparison 35

Dataset Model HR ↓NDCG CatCov Ser Nov
GRU4Rec (Cross) .028 .015 .649 .028 14.6
GRU4Rec (BPR-max) .027 .015 .759 .027 15.8Beauty
Popular .012 .005 .000 .001 9.7
GRU4Rec (Cross) .194 .100 .953 .190 11.9
GRU4Rec (BPR-max) .135 .067 .816 .133 12.5ML-1M
Popular .016 .008 .003 .000 8.5

TABLE 4.4: Preliminary results on various loss functions for
GRU4Rec. The table is sorted by NDCG@10.

Interestingly, the GRU4Rec version with cross-entropy clearly outperforms the
BPR-Max version on ML-1M, but there is no notable performance difference on
Beauty. Therefore, we will adopt the same Softmax loss we use for BERT4Rec and
SASRec for the remainder of this thesis. Admittedly, our preliminary analysis is not
sufficient to conclude that cross-entropy will result in higher performance on any
dataset, but this standardization does allow us to isolate the effect of the architec-
ture. We leave the exploration of various loss functions for future work.

4.3.3 Batch format (GRU4Rec)

Our GRU4Rec implementation differs from the original in its batch format. We recall
from subsection 2.3.2 that the original GRU4Rec uses session-parallel mini-batches.
Sessions are processed one-by-one, one item per batch, while maintaining an internal
state throughout batches. The motivation behind this design decision is that session
lengths may be broadly distributed. For example, one dataset used in [40] has ses-
sion lengths ranging from 2 to a few hundred. However, from Figure 3.1, we can see
that the session lengths of our datasets are mostly short, especially on the Delivery
Hero datasets. Therefore, we implement GRU4Rec with whole-session batches sim-
ilar to SASRec and BERT4Rec. To reiterate, this means that we process sessions to be
length N, either by truncation or the addition of special padding items. Processing
sessions as a whole greatly simplifies implementation. With whole-session batches,
we do not have to maintain a hidden state across batches during training, and we
can infer recommendations from a single batch during prediction. We hypersearch
both GRU4Rec variants and summarize the results in Table 4.5.

Dataset Model HR ↓NDCG CatCov Ser Nov
GRU4Rec (w.s.) .052 .029 .231 .048 12.9
GRU4Rec (s.p.) .028 .015 .649 .028 14.6Beauty
Popular .012 .005 .000 .001 9.7
GRU4Rec (w.s.) .339 .203 .816 .331 10.7
GRU4Rec (s.p.) .194 .100 .953 .190 11.9ML-1M
Popular .016 .008 .003 .000 8.5

TABLE 4.5: Preliminary results on the batch design for GRU4Rec. We
use (w.s.) to refer to GRU4Rec with whole-session batches, whereas
we use (s.p.) to refer to GRU4Rec with session-parallel batches. The

table is sorted by NDCG@10.

Evidently, using whole-session batches produces much better results than session-
parallel mini-batches. We have found very little literature on this finding. In [49],

Chapter 4. Model comparison 36

Klenitskiy and Vasilev note that they implemented GRU4Rec by replacing the trans-
former layer of their SASRec implementation with a GRU layer. Since the transform-
ers use whole-session batches, we believe this GRU4Rec implementation to be very
close to ours. The evaluation results show that their GRU4Rec implementation is
much more performant on the exact same datasets as many other publications that
use GRU4Rec as a baseline [87, 23, 47]. However, no comments are made on these
specific results. Moreover, a popular variation of GRU4Rec is NARM [57]. This
model adds a bidirectional attention mechanism as a global encoder next to the unidi-
rectional GRU layer. This attention mechanism necessitates the use of whole-session
batches. Given our results and the results in [49], we believe that part of NARM’s ad-
ditional performance over GRU4Rec may be attributable to the batch design instead
of the global encoder.

Conjectures We propose several conjectures on why whole-session batches gener-
ally perform better. First of all, when processing a session one-by-one, the hidden
state becomes out-of-sync because the weights that produced this hidden state are
updated at each timestep. This might harm the integrity of the information stored
in the hidden state, similar to how federated learning may suffer from instability
[58]. Furthermore, in whole-session batches, the feed-forward propagation is still
unidirectional, but the gradients are bidirectional. We visualize this conjecture in
Figure 4.2. To illustrate, suppose we have a session where the first part of the ses-
sion is very informative on the second part of the session, with two random noisy
items in the middle separating these parts. Upon arriving at the noisy items, the
GRU4Rec (s.p.) variant will learn to reset the hidden state as much as possible, since
the first part of the session is not at all informative to the recommendations for the
noisy items. In contrast, the gradients of GRU4Rec (w.s.) have a full view on the ses-
sion (since they are calculated for sessions as a whole), and will incorporate the fact
that the hidden state is informative for the items after the noisy items. This should
lessen the degree to which it will learn to reset the hidden state. As a result, we
believe the whole-session batch design to be more robust against noise.

FIGURE 4.2: A visualization of one of our conjectures on why whole-
session batches are better to train GRU4Rec. We highlighted "infor-

mative" items in blue, and highlighted "noisy" items in orange.

Chapter 4. Model comparison 37

Lastly, the special padding items may act as a means to inform the model on the
position of an item. In the case of whole-session batches, the hidden state can theo-
retically act as a counter for the number of special padding items until it reaches an
actual item and subsequently leverage this information to make better recommen-
dations. In the case of session-parallel batches, these special padding items do not
exist and the hidden state is zero when the first item of a session is processed. In this
thesis, we will refrain from exploring the validity of these conjectures, and instead
focus on the analyzing the architectures.

4.3.4 Other details

Two minor differences between our implementation and the original publications
are the prediction network and the optimizer. We briefly discuss both below.

Prediction network BERT4Rec’s prediction network is slightly different from the
one in SASRec. In BERT4Rec, the embeddings SL produced by the last transformer
layer are fed to a dense layer, then multiplied with the transpose of the item embed-
ding matrix, and finally, the results are fed through a bias layer. In SASRec, SL is
immediately multiplied with the transpose of the item embedding matrix without
any bias. GRU4Rec does not actually specify its prediction network, but requires
at least one dense layer to project the sequence embedding of shape (N, ehidden) to
shape (N, eitem). Therefore, we adopt the prediction network of BERT4Rec for all
three models for consistency.

Optimizer Both BERT4Rec and SASRec use the Adam optimizer [48]. GRU4Rec in
[40] uses the AdaGrad optimizer [19]. We briefly experimented with various opti-
mizers, and found Adam to consistently provide the best results. This is in line with
conclusions drawn from other domains where deep learning is applied [85]. Besides
the learning rate and weight decay, all other auxiliary hyperparameters of the Adam
optimizer are fixed to their default value in TensorFlow.

4.4 Evaluation results

Finally, we can compare the model performance in their optimal configuration. We
summarize the results in Table 4.6.

Chapter 4. Model comparison 38

Dataset Model HR ↓NDCG CatCov Ser Nov
SKNN .064 .037 .540 .058 12.6
ItemKNN .052 .030 .741 .048 13.9
GRU4Rec .054 .030 .231 .048 12.9
BERT .047 .026 .226 .043 13.2
NextPop .041 .026 .664 .039 13.5
SASRec .039 .021 .106 .033 12.1

Beauty

Popular .012 .005 .000 .000 9.7
GRU4Rec .339 .203 .816 .331 10.7
SASRec .307 .176 .677 .300 10.7
BERT .309 .171 .633 .303 10.6
NextPop .200 .114 .723 .194 10.5
SKNN .154 .077 .502 .148 9.8
ItemKNN .053 .026 .060 .038 8.7

ML-1M

Popular .016 .008 .003 .000 8.5
GRU4Rec .155 .090 .443 .128 10.1
SASRec .153 .090 .486 .128 10.3
BERT .150 .086 .375 .121 9.9
NextPop .140 .083 .796 .120 10.5
SKNN .131 .077 .785 .112 10.5
ItemKNN .117 .065 .697 .083 9.4

DH GR

Popular .052 .024 .001 .000 7.5
ItemKNN .175 .100 .362 .136 10.0
BERT .171 .097 .125 .139 10.4
SKNN .159 .094 .361 .131 10.4
GRU4Rec .156 .089 .375 .129 11.0
SASRec .158 .088 .292 .128 10.7
NextPop .114 .067 .335 .089 10.6

DH SI

Popular .049 .024 .000 .000 7.5

TABLE 4.6: The evaluation results of our vanilla neural models and
the non-neural baselines, sorted by NDCG@10.

Non-neural vs. neural model performance Overall, we find that the neural models
generally perform better on DH Greece and ML-1M, whereas the non-neural mod-
els perform better on DH Singapore and Beauty. We explain this with the density
of the datasets. From Table 3.1, we find that DH Singapore and Beauty are rela-
tively sparse with 0.015% density, whereas DH Greece and ML-1M are relatively
dense with 0.077% and 4.8% density respectively. The sparsity of DH Singapore
and Beauty seems to prevent our neural from outperforming the non-neural base-
lines. Recall that we chose the timeframe for the DH Singapore dataset by evaluating
our models on increasingly larger timeframes until performance stabilized, imply-
ing that it is not a lack of data that is causing the inferiority of the neural models
on this dataset. The superiority of the non-neural baselines on the sparse datasets
also indicate that they can be considered competitive and should therefore always
be included as baselines. For example, none of the published evaluation results on
the Beauty dataset in [87, 47, 23, 18, 74, 99, 39] uses SKNN as a baseline, while it is
the most performant by far.

Inconsistency in neural model ranking Furthermore, we do not find a consistent
model ranking between the neural models, even on DH datasets. It demonstrates

Chapter 4. Model comparison 39

that there is no single model that is consistently better than all baselines, as opposed
to what is often suggested when a model is introduced [87, 47, 40, 23, 18, 74, 99]. This
is to be expected, since each neural architecture has unique properties that make it
more suitable for certain datasets. We will discuss these properties in chapter 5.

Performance difference DH Greece and DH Singapore Interestingly, we also find
that the accuracy of each model is generally higher on DH Singapore than on DH
Greece. This is counter-intuitive, as DH Singapore is a sparser dataset than DH
Greece, which generally speaking should result in lower accuracy by the models.
Unfortunately, Table 4.6 does not provide an immediate reason for this performance
difference. Recalling that the main reason for DH Singapore’s sparsity is the lack of
product standardization, we believe that this might have resulted in less noise in the
user-item interactions, which in turn resulted in higher accuracy values.

Beyond-accuracy metrics Looking at the beyond-accuracy metrics, we find that our
neural models tend to have low catalog coverage on Beauty and SH Singapore in
comparison to the non-neural models, presumably because of the sparsity. From
Figure 3.2 we see that the majority of items have less than 10 interactions, and we
assume that that these items are largely ignored by the neural models. We con-
firm this hypothesis in chapter 5. Serendipity seems to be strongly correlated with
HitRate, indicating that models do not degenerate to a popularity baseline. The ex-
ception here is ItemKNN, which has a relatively higher share of correctly-predicted
popular items than unpopular items.

40

Chapter 5

Recommendation analysis

We can get a deeper insight into the behaviour of the models by analyzing their
recommendations. Firstly, in section 5.1 we compute the pairwise overlap between
the recommendations of each model. We then continue with an analysis on several
dimensions, namely the value K in section 5.2, item popularity in section 5.3, session
length in section 5.4 and item position in section 5.5. The aforementioned analyses
act as our motivation for our upcoming experiments in chapter 6. Moreover, the
analyses will provide us more insight on how the open datasets are different from
the Delivery Hero datasets, and therefore highlight promising avenues of research
for Delivery Hero that are arguably underrepresented in the field of research on
recommender systems.

We exclude SKNN from our analyses and visualizations below because the main
goal of this section is to explain the behaviour of the neural models. We do this
by comparing the neural models with ItemKNN and NextPopular because of their
relative simplicity in comparison with SKNN.

5.1 How much do the recommendations overlap?

To get a first impression of the models’ behaviour, we compare the models’ recom-
mendations to each other. We do this in two ways, namely by directly computing
the overlap between the recommendations per session (recommendation similarity),
and by computing the overlap in the sessions that each model correctly predicted
(session-correct similarity). To be exact, the first approach entails computing the num-
ber of items that appear in recommendation slates of both models on the same ses-
sion, averaged over all sessions. We then normalize by dividing by K = 10, which
defines the size of the slates, and therefore also the maximum amount of items that
can appear in both recommendation slates. For the second approach, given two
models m1 and m2, we compute the number of sessions that both m1 and m2 got
correct, normalized by the amount of sessions that m1 got correct. For both cases,
we compare the self-similarity of a model by training a model with the exact same
configuration, and subsequently comparing the recommendations and sessions cor-
rect with the original model. The results of the two approaches are visualized in
Figure 5.1 and Figure 5.2 respectively.

Chapter 5. Recommendation analysis 41

FIGURE 5.1: The models’ recommendation similarities.

FIGURE 5.2: The models’ session-correct similarities.

Chapter 5. Recommendation analysis 42

Recommendation similarity Firstly, we find that recommendation similarity is very
dependent on the dataset. For Beauty, we have recommendation similarities of at
most 15% between different models, and 27% between the same model (SASRec).
Surprisingly, the recommendations between the two trained GRU4Rec or BERT4Rec
models are almost indiscernable from other pairs of neural models. This indicates
that the models are highly unstable on this dataset. On the denser datasets ML-1M
and DH Greece we do find that instances of the same model and configuration be-
have similarly, but the difference in recommendation-similarity between the same
model and two different models is surprisingly small.

Causes for instability Of course, we have introduced some inherent instability by
randomly withholding 10% of the training sessions for early-stopping validation,
but in the worse case 80% of the training sessions are the same for any two models.
We performed an experiment where we set the seed for making the early-stopping-
validation set deterministic, and found no considerable difference to the results in
Figure 5.1. Therefore, the non-determinism of the early-stopping-validation set is
not responsible for the low self-similarity. The two other sources of randomness in
model training, namely the random initialization and the random batching process,
appear to play a much larger role in final model behaviour. We will enhance self-
similarity and in turn, performance, in chapter 6.

Session-correct similarity At the same time, we have that the session-correct sim-
ilarity is much higher than the recommendation similarity. Still, it appears that
session-correct similarity between two instances of the same model is not signifi-
cantly distinguishable from the session-correct similarity between different neural
models. This indicates that there is some shared driver behind performance. We
will further explore this statement in chapter 6.

In addition, we find that the session-correct similarity between the neural models
and ItemKNN is close to the neural models’ self-similarity on Beauty and DH Sin-
gapore. The same holds for the neural models and NextPopular on DH Greece. This
demonstrates the flexibility of the neural models, in the sense that they can mimic
non-neural models depending on what works best on a given dataset. Given that
NextPopular only uses the last item in a session, whereas ItemKNN uses all items in
a session, we are interested in how the position of an item in the session affects its
influence on the recommendations. We will explore this in section 5.5.

Ensembling models The fact that session-correct similarity is much higher than
recommendation similarity indicates that consensus between models on a recom-
mended item is a good predictor for the correctness of this recommended item.
Therefore, we create an ensemble where the rank of an item is determined by the
amount of models (excluding NextPop and Popular) that recommended the item.
The results of this ensemble are summarized in Table 5.1.

Chapter 5. Recommendation analysis 43

Dataset HR NDCG
Beauty 0.065 (101%) 0.038 (102%)
ML-1M 0.337 (99%) 0.191 (90%)
DH GR 0.158 (102%) 0.090 (100%)
DH SI 0.186 (106%) 0.104 (104%)

TABLE 5.1: The evaluation results of an ensemble model where the
rank of an item is determined by the amount of models (excluding
NextPop and Popular) that recommended the item. The percentages
in parentheses indicate the metric’s value in comparison to the top
model per dataset in Table 4.6. The ensemble surpasses the perfor-
mance of the best model on Beauty, DH Greece and DH Singapore.

Indeed, an ensemble allows us to improve performance of the best model on
Beauty, DH Greece and DH Singapore. Unfortunately, an ensemble is not desirable
in production as it requires to run multiple models in parallel, where the slowest
model will determine the latency. This does not weigh against the marginal im-
provement by the ensemble.

5.2 How does the K parameter affect model behaviour?

In the previous section we did not differentiate on the model’s confidence (a recom-
mended item’s rank in the slate). While the value of 10 is most often used as the
value for K in the offline evaluation of recommender systems, other use-cases like
next music track recommendation might require a different value for K. Therefore,
to generalize the results from section 5.1, we aim to explore a model’s behaviour in
terms of the rankings in the recommendation slates. We do this by taking the value
for K into account.

Rank similarity We aim to provide a view similar to Figure 5.1 and Figure 5.2 while
taking K into account. For a pair (m1, m2) of models, a given rank r and a session,
we check whether the recommendation by model m1 on rank r is present anywhere
in the TOP-K recommendation slate of model m2. We then take the average of these
binary variables. We visualize the result in Figure 5.3. For discernability we only
visualize the pairs (m1, m2) where m1 is neural and m2 is not, with the exception
BERT as m2 to show the interplay between the neural models.

Chapter 5. Recommendation analysis 44

FIGURE 5.3: The models’ recommendation similarity per rank. We
use colour to denote model m1, and we use the linestyle to denote

model m2.

General observations Expectedly, we find that there is a strong negative correlation
between the rank of an item and the probability that it appears in another model’s
recommendation slate. So, for all datasets there is more consensus on the highly-
ranked items than the lower-ranked items. We find this effect to be the strongest
in the proprietary datasets, where more than 75% of the top-rank items can be ex-
plained by the extremely simple NextPopular model. In addition, we find that the
ordering between NextPopular and ItemKNN as predictors of a neural models’ rec-
ommendation slate is not consistent across datasets, and instead find that it matches
the ordering in the evaluation results of Table 4.6. To illustrate, ItemKNN outper-
forms NextPopular on DH SI in Table 4.6 and it appears to be a better predictor of
the neural recommendation slates on the same dataset. In contrast, NextPopular
outperforms ItemKNN on DH GR, and therefore seems to be a better predictor of
the slates on this dataset. This highlights the fluidity of the neural models in the
sense that they can mimic a variety of models.

Effect of bidirectionality Furthermore, we can see that BERT4Rec is inherently
more similar to ItemKNN than the other models, which can be explained by the
fact that BERT4Rec is bidirectional. This means it is not restricted by the relative dis-
tance between two items to learn associations, like ItemKNN. On the other hand, the
unidirectional SASRec and GRU4Rec can only learn an association from an item i to
item j if item j succeeds item i. As a result, they can not fully mimic ItemKNN. Since

Chapter 5. Recommendation analysis 45

ItemKNN is the most performant model on DH Singapore, the additional perfor-
mance of BERT4Rec on this dataset can be partially explained by the bidirectionality.
We will further analyze the benefit of bidirectionality in section 6.2.

Rank similarity on sessions correct Besides comparing recommendations directly,
we can filter our statistics to only include sessions that m1 correctly predicted and
present the results in Figure 5.4

FIGURE 5.4: The models’ recommendation similarity per rank on
correctly-predicted sessions, meaning we compute recommendation
similarity on sessions that model m1 got correct. We use colour to de-

note model m1, and we use the linestyle to denote model m2.

.
Evidently, the consensus is much larger on recommendation slates where m1 cor-

rectly predicted the ground-truth item. On DH GR we find that close to 90% of the
top-ranked items were also recommended by the NextPopular baseline, and roughly
85% on DH SI by the ItemKNN baseline. This refers back to our discussion in sec-
tion 5.1, where we found that item consensus is a good predictor for performance.
With this figure we can conclude that this holds for all ranks roughly to the same
degree.

5.3 How does item popularity affect model behaviour?

The most straightforward and well-studied dimension on which we can compare
recommendations is item popularity. In recommender system literature, an item’s

Chapter 5. Recommendation analysis 46

popularity refers to its number of interactions in the training data. It is crucial to un-
derstand a model’s behaviour on different item popularities, as it can significantly
affect the health of the system as a whole. For example, when users primarily rely
on a recommender system to find items, a popularity bias could cause a reinforcing
effect to the point where users only see the most-popular items, which in turn be-
come more popular [25]. Therefore, we explore how item popularity affects model
behaviour in multiple ways, namely item recommendation frequency against item
popularity in subsection 5.3.1 and item precision against item popularity in subsec-
tion 5.3.2.

5.3.1 Item recommendation frequency against item popularity

In our initial simplest approach, we compare the number of times an item is rec-
ommended by each model against the number of times it occured in the training
data (its item popularity). For visibility we group items into five equally-sized groups
according to their popularity. The result is visualized in Figure 5.5.

FIGURE 5.5: The models’ number of recommendations against item
popularity, where the item popularities have been grouped into five
equally-sized bins. We added a small amount of horizontal jitter for

visibility. We converted the y-ticks to use scientific notation.

General observations We find very little difference in the behaviour of the neu-
ral model on different item popularities. The only outlier is SASRec on Beauty,
which appears to be recommending relatively more popular items. This is due to
the fact that the optimal embedding dimension for SASRec on Beauty is only 32,
which means that it is much harder to differentiate between different items. As a
result, the best option for SASRec to minimize its loss is to recommend the popular
items, as these will generally occur more often as the ground-truth item.

Expected distribution Unsurprisingly, we find that the bulk of recommendations
entail the top-80% percent of items for all datasets. Assuming that the training
sessions are representative of the test sessions, a well-fitted model should roughly
recommend items proportional to the amount of times it appears in the training
data. We should therefore observe a linear correlation in Figure 5.5. We note that
the grouping process has slightly distorted this trend, but we generally find that all
models adhere to this correlation with the exception of ItemKNN. Since ItemKNN
recommends the items that have most-often occurred with all items in the session,

Chapter 5. Recommendation analysis 47

it is more prone to a popularity bias. ML-1M consists of long sequences, and so the
effect is amplified on this dataset. Virtually no recommendations are made for the
first 80% of items.

5.3.2 Item precision against item popularity

Furthermore, we are interested in item precision againt item popularity 1. The preci-
sion of an item is calculated by the number of times an item was correctly predicted
to be the ground-truth divided by the number of times the item was recommended.
The result is visualized in Figure 5.6.

FIGURE 5.6: The models’ precision against item popularity, where
the item popularities have been grouped into five equally-sized bins.
Precision is calculated by the number of times an item was correctly
predicted to be the ground-truth divided by the number of times the
item was recommended. We added a small amount of horizontal jitter

for visibility.

General observations On Beauty and ML-1M, we observe a stable upward trend
in precision by the neural models, meaning that the probability of a recommended
item to be correct is roughly proportional to its popularity. Naturally, when more
data is available for a given item a model can learn to better predict its suitability
as the next-item for a given session. However, we see the opposite on the Delivery
Hero datasets. In fact, we see that this probability drops significantly, meaning that
all models are overconfident in recommending popular items.

Popularity bias While this popularity bias is often attributed to deep learning mod-
els for recommender systems [11], we also see that our non-neural baselines suffer
from the same performance degradation. We attribute this to the fact that the pop-
ular items in DH Greece and DH Singapore have a higher relative popularity. For
example, the most popular item in DH Greece constitutes roughly 0.75% of item
interactions, whereas on Beauty the most popular item constitutes roughly 0.2% of
item interactions. Therefore, we believe these items occur more often as noise in the
training data, to the degree where the models mis-recommend these items relatively
more often during the evaluation phase.

1We do not visualize the HitRate of an item against its popularity because it is strongly correlated
with the number of times it is recommended. The precision of an item is independent of the number
of times it is recommended, and therefore provides a more complementary view to Figure 5.5.

Chapter 5. Recommendation analysis 48

Mitigating popularity bias This indicates that reducing this overconfidence (debi-
asing) might lead to performance gains. Therefore, we suggest the implementation
of models that address this problem to Delivery Hero. For example, RPβ [70] is an
ItemKNN variant that reduces overconfidence in popular items by scaling the score
for each item by their popularity raised to the power of β. For neural models, the
main stream of work to address popularity bias is through customized loss functions
that weigh scores based on popularity [97], or advanced negative sampling strate-
gies [33, 73]. On the other hand, while ItemKNN is most prone to a popularity bias
according to Figure 5.5, this same bias also makes it the most effective model on the
DH Singapore dataset in Table 4.6. In this thesis, we will not focus on debiasing our
models explicitly, given that we focus on the architecture of the models, but we do
note that some of our simple models introduced in chapter 6 will be more robust
against popularity bias.

5.4 How does session length affect model behaviour?

Besides item popularity, a fundamental dimension on which we can compare mod-
els is on session length. Session length is an important statistic that balances between
the amount of information available to make the recommendations and the amount
of noise by historical interactions that might disturb the quality of the recommen-
dations [96]. To explore how session length affects performance on our datasets,
we group sessions by their length by taking each 20th percentile as a bin2. We then
calculate HitRate for each model per group of sessions. The result is visualized in
Figure 5.7.

FIGURE 5.7: The models’ HitRate against session length, where the
session lengths have been grouped into five equally-sized bins.

General observations We observe inconsistency in the trends across datasets. On
Beauty, performance seems to decrease slightly on longer sessions for the ItemKNN
model, whereas the neural models and NextPopular seem to increase in perfor-
mance. On ML-1M, performance decreases with session length for all models. On
our proprietary datasets, we find that the models are generally most performant on
single-item sessions. Interestingly, we have that performance decreases significantly

2We also enforce that the groups are mutually exclusive by ensuring that the bin size is at least
1. This was necessary for the Beauty dataset, where the both the 20th and the 40th percentile of the
sessions lengths is 4.

Chapter 5. Recommendation analysis 49

with session length on DH SI, but on DH GR this only holds for ItemKNN. The rest
of the models seem to be stable or even increase in performance.

Short-term and long-term context At this point, we would like to recall the gen-
eral belief in the field of recommender systems that the GRU encoder is suitable for
short-term context modelling [40, 56, 100], whereas the transformer layers are better
at long-term context modelling [87, 47, 100, 62]. While this may be true for their orig-
inal applications like machine translation [12, 16, 93, 90], Figure 5.7 shows that it
does not hold for our session recommendation datasets. For example, GRU4Rec is
most performant on ML-1M, while ML-1M is most often referred to as the dataset
that measures a model’s ability to model long-term context [87, 100, 101]. Moreover,
SASRec outperforms GRU4Rec on DH Singapore on the 60% of lower item popular-
ities, after which GRU4Rec seems to outperform SASRec on the 40% of higher item
popularities, completely opposing the aforementioned supposition.

NextPopular’s invariance to session length From the results on NextPopular, we
can conclude that the last item is less indicative of the next item on DH Singa-
pore than on DH Greece. We can draw the opposite conclusion for Beauty, where
NextPopular’s performance increases with the length of the session. We believe the
latter is due to the fact that Beauty is actually a review dataset with a large timespan.
Longer sessions imply that the relative time between reviews may be shorter, so that
the relatedness between the last item and next item increases. This would explain
the higher performance of NextPopular on the longer sessions. Interestingly, a sim-
ilar effect can be observed for DH Greece, because the curve of NextPopular is very
similar to the curve of the neural models. This indicates that on this dataset, the
dip in performance in the middle segments of session lengths can not be caused by
the session length itself. Instead, session length seems to be correlated with the last
item’s relatedness to the next-item. We leave an analysis on the root cause of this
phenomenon to future work at Delivery Hero.

As a side note, our observations with NextPopular are relevant to the motivation
of ASReP [62], which uses the same curve of Beauty visualized in Figure 5.7 to state
that transformers specifically are worse on short sessions and conversely, better on
longer sessions. However, we found that this is inherent to the dataset instead of the
transformer models specifically, since the performance of NextPopular also increases
with session length.

5.5 How do items at different positions in the sessions affect
the recommendations?

Given the surprising results on the session length, we aim to explain these results
further by analyzing how item position plays a role in the computation of the rec-
ommendations. We design two approaches to measure each position’s effect on the
model recommendations, namely session truncation in subsection 5.5.1 and trivial
recommendation overlap in subsection 5.5.2.

5.5.1 Session truncation

Motivated by the finding that the models seem to mimic certain non-neural algo-
rithms (NextPopular and ItemKNN), we are interested in how much the recommen-
dations are affected when only feeding a truncated part of a session. For example,

Chapter 5. Recommendation analysis 50

given session (s1, s2, s3), we first feed (s3), then (s2, s3) and so forth. We visual-
ize NDCG@10 against the maximum number of items in the session in Figure 5.8.
Furthermore, we want to measure how much the recommendations change when
we increase the maximum session length. Hence, we visualize the recommendation
overlap of the models to their recommendations if only fed the last item in Figure 5.9.

FIGURE 5.8: The models’ NDCG against maximum session length,
so that all sessions are truncated to be at most the maximum session
length. The dashed lines indicate the models’ NDCG@10 using all

items of the session.

FIGURE 5.9: The models’ recommendation similarity with their last-
item recommendations against maximum session length. In short, we
first let the model produce recommendations feeding only the very
last item of the sessions and compute the overlap with the recom-

mendations when the truncated session was provided.

General observations The NDCG@10 attained using just the last item depends on
the dataset. On DH Greece we have that the NDCG@10 of the models on just the last
item is within 20% of the overall NDCG@10. In contrast, on ML-1M we have that
the optimal NDCG@10 is not even within 90% of the overall NDCG@10. Moreover,
the maximum session length of 10 does not even approach the overall NDCG@10
yet. This means that the models need more items in order to compute good recom-
mendations on ML-1M.

Chapter 5. Recommendation analysis 51

Training N vs. Prediction N Also, we find that on Beauty, the performance of the
models sometimes exceed the overall NDCG@10, meaning that the truncation in
this case improves performance. This is counter-intuitive, as we initially chose our
parameter N (the maximum session length in all other experiments, and also the
maximum session length for the overall NDCG@10) by performing a preliminary
hypersearch on this parameter. However, the crucial insight here is that N implicitly
balances between the amount of training data a model receives (positive) and the
amount of noise it receives during prediction (negative). Hence, the models seem to
benefit from a longer N to learn more from the data, but during prediction the mod-
els seem to be incapable of properly filtering the noise that comes from the tails of
the sessions. As a result, we recommend to split the N hyperparameter to N(training)

and N(prediction), where the former denotes the session lengths during training and
the latter denotes the session lengths during prediction. Having a lower N(prediction)

than N(training) is also positive in the sense that we reduce inference time.

Long vs. short term modelling Again we find that GRU4Rec seems to be more suit-
able for long-term preference modelling, as its performance up until the maximum
session length of 10 is the same as BERT4Rec and SASRec, but subsequently appears
to climb to a much higher NDCG using the older items in the session as well.

Ranking vs. recall In addition, we find that the plateau of the recommendation
overlap in Figure 5.9 is reached faster than the plateau of optimal NDCG@10 in Fig-
ure 5.8. The plateau in Figure 5.9 indicates the maximum session length at which
roughly all items in the recommendation slate are determined, because the recom-
mendation overlap does not change. Since these maximum session lengths are lower
than the maximum session lengths at which NDCG@10 plateaus in Figure 5.8, we
can conclude that the figures indicate that the last items are predominantly used for
the recall of the recommended items, after which the tail of the session is used to
improve the ranking of these recommended items.

5.5.2 Trivial recommendation overlap

Furthermore, we design an orthogonal way to measure an item’s effect on a model’s
recommendations, in the hopes of explaining the recommendations that were not
accounted for in Figure 5.1, and subsequently explain what behaviour causes the
performance increase of the neural models compared to the non-neural models. To
do this, we compute a fixed set of trivial recommendations per item, and compare
the overlap between a model’s recommendation and the fixed set of recommenda-
tions for each item in a session. Hence, for each position in a session, we get the
average overlap between the final model recommendations and the fixed set of rec-
ommendations of the items that appeared on that position. Being a first-order MDP
(meaning it only depends on one item), NextPopular is the obvious choice for gen-
erating the trivial recommendations. We visualize the design of the experiment in
Table 5.2. Lastly, we also compute the session-correct similarity between the mod-
els’ and the trivial recommendations. The result of this experiment is visualized in
Figure 5.11 3.

3We note that the HitRate@10 of the trivial recommender in Figure 5.11 is not the HitRate@10 of
NextPopular in Table 4.6. This is due to the fact that the trivial recommender does not remove items
that are already in the session, while NextPopular does.

Chapter 5. Recommendation analysis 52

Position →
Session 1. Bananas 2. Spaghetti 3. Beer 4. Peanut butter

Trivial rec’s
1. Apples
2. Pears
3. Oranges

1. Tomato sauce
2. Ground beef
3. Salt

1. Wine
2. Heineken
3. Coca-cola

1. Nutella
2. Strawberry jam
3. Bread

Model rec’s
1. Nutella
2. Strawberry jam
3. Apples

Overlap 1 0.0 0.0 2

TABLE 5.2: Example calculation of the trivial recommendation over-
lap per position. In this simplified example, K = 3.

FIGURE 5.10: The models’ trivial recommendation overlap against
position. Position -1 denotes the position of the last item. The y-
axis denotes the trivial overlap, which is the average number of items
in the TOP-K recommendation slate that were also recommended by
the trivial recommender on each position. Since NextPopular is the
trivial recommender itself, we do not visualize its overlap on position

-1, which would be K = 10.

Chapter 5. Recommendation analysis 53

FIGURE 5.11: The models’ session-correct similarity with the trivial
recommender against position. Position -1 denotes the position of
the last item. We compute the sessions that the trivial recommender
got correct on each position, and compute the overlap in the sessions
correct at each position. We account for duplicates by only counting a
session correct for a position if later positions did not correctly predict
this session. The y-axis denotes the HitRate@10, which is the number
of correctly-predicted sessions normalized by the total amount of ses-

sions.

General observations Evidently, the neural models are very similar in how much
their recommendations overlap with the trivial recommendations, and all three seem
to adapt to using trivial recommendations from previous positions when these triv-
ial recommendation improve performance on a given dataset. Figure 5.10 also par-
tially explains the HitRate against session length distribution for DH Greece in Fig-
ure 5.7 and the relatively high recommendation overlap plateau in Figure 5.9, be-
cause the models seem to have relatively low overlap with the trivial recommender
on other positions than the last. This explains why the models seem invariant to

Chapter 5. Recommendation analysis 54

the session length in Figure 5.7. However, this is also to be expected, as Figure 5.11
shows that the trivial recommender has a low HitRate@10 on the other positions
than the last anyway.

Interestingly, the trivial recommender has a steeper decline in HitRate@10 on
ML-1M than on Beauty and DH Singapore. This is in sharp contrast with the re-
sults on session truncation on ML-1M in Figure 5.8 that shows that the models need
relatively more items to approach their overall NDCG@10. So, these older items
are apparently necessary to compute good recommendations, but their trivial rec-
ommendations are not necessarily good recommendations. This indicates that the
models are capable of exploiting some form of context instead of simply choosing
from the trivial recommendations. However, ML-1M is the only dataset on which
the models exhibit this behaviour.

Explaining recommendations From the offset from the NextPopular line on the
Beauty, ML-1M and DH Singapore datasets in Figure 5.10, we can apparently ex-
plain some additional recommendations because they originate from the trivial rec-
ommendations for the older items in the session. Table 5.3 and Table 5.4 provide a
more precise view.

Dataset BERT4Rec SASRec GRU4Rec
Beauty 15.9% 15.5% 16.9%
ML-1M 60.7% 58.4% 51.3%
DH GR 59.7% 60.1% 56.6%
DH SI 61.7% 60.0% 56.1%

TABLE 5.3: The total trivial recommendation overlap with the last
10 positions. We accounted for duplicates, which is why the overlap
is not directly the area under the curve of Figure 5.10. In short, this
is the recommendation similarity between the neural models and a
model that recommended 10 ∗ K = 100 items, where every 10 items

are trivial to a given position.

Dataset BERT4Rec SASRec GRU4Rec
Beauty 66.1% 69.0% 67.9%
ML-1M 73.4% 73.1% 69.3%
DH GR 79.7% 80.6% 78.3%
DH SI 80.5% 81.8% 82.6%

TABLE 5.4: The average session-correct similarity with the trivial rec-
ommendations. In short, this is the share of sessions that each neural
model got correct that were also correctly recommended by our trivial
recommender. The trivial recommender recommended 10 ∗ K = 100

items, where every 10 items are trivial to a given position.

Interestingly, we find that around 60% of all recommendations by the neural
models on the DH datasets can be explained by the trivial recommendations. In
fact, we find that the numbers in Table 5.3 are similar or higher than the recom-
mendation self-similarity from Figure 5.1. If we take the share of sessions that each
model got correct that were also recommended correctly by the trivial recommender,
we reach up to 80% similarity on the DH datasets. The increase between recommen-
dation similarity and session correct similarity with the trivial recommender is most

Chapter 5. Recommendation analysis 55

significant on the Beauty dataset, where we go from 16% to almost 70%. Hence,
the recommendations that were not accounted for by the trivial recommender have
a much lower precision, because there is a significant difference between Table 5.3
and Table 5.4.

Exploiting trivial recommendation overlap Lastly, we note that the large overlap
with this deterministic, trivial recommender has many uses. For example, when
training with negative sampling, we can use the trivial recommendations as hard
negatives during training [67], or we can speed up inference by only sampling the
scores in Rt for the items recommended by the trivial recommender. Other publica-
tions like [40] resort to sampling popular items, but this naturally introduces a bias
in the recommendations towards the popular items.

5.6 Discussion

In general, we find that the neural models are very similar in behaviour. We have
found that two trained instances of the same model are almost as similar in recom-
mendation behaviour as two trained instances from two different neural models.
Moreover, we find that the non-neural models are good predictors of the recommen-
dations by a neural model, especially on the top-ranked items. Lastly, we find that
on other dimensions like session length, item popularity and trivial recommenda-
tion overlap there is very little difference in the behaviour of the models. All our re-
sults in this chapter essentially indicate the presence of a core driver of performance.
Therefore, in chapter 6, we aim to constructively create a model that captures this
core driver of performance while keeping the number of architectural components
to a minimum. Moreover, we will explore how we can exploit the finding from Fig-
ure 5.11 that a significant amount of performance can be obtained by focusing on
trivial recommendations.

56

Chapter 6

Simplifying models

Given the results in chapter 5 that the neural models behave very similar, we hy-
pothesize that that there is a shared driver behind performance. Therefore, we also
hypothesize it is possible to simplify the models while maintaining performance.
We note that the publications on BERT4Rec [87] and SASRec [47] do perform an ab-
lation study, but this was done by removing components individually. Instead, we
believe that the existing model designs might be in a local minimum in terms of
performance, so that each ablation of a component did mitigate the effects of over-
parameterization, but the architecture overall is still sub-optimal. Instead, we will
construct the models by adding different components incrementally in the hopes of
converging to a simpler but more performant model. Simultaneously, we aim to
identify the effect of each component. In section 6.1, we optimize our simple model
to only use the last item of a session during prediction. The motivation for this initial
focus is the finding that the last item is most indicative of the next item in Figure 5.11.
In section 6.2, we will subsequently compare increasingly complex ways of exploit-
ing non-last items. Here, we will focus on exploiting the trivial recommendations
from other positions.

6.1 Last item optimization

In chapter 5, we found that most of the models’ performance can be attributed to
the last item on some datasets. Moreover, the non-neural NextPopular model ap-
proaches the performance of the other models in Table 4.6, implying that the last
item is indeed the most indicative of the next item. As such, we might not actually
need the complex transformer or GRU layers that were designed to merge informa-
tion from other parts of the session. Therefore, this section is intended to optimize
a model operating only on the last item of a session. In subsection 6.1.1 we intro-
duce LastEmbedding, a model that computes recommendations with the embed-
ding of the last item only. We will provide our interpretation to this model in sub-
section 6.1.2. We then discuss the results of this model in subsection 6.1.3. Finally, we
evaluate the various architectural components from the vanilla neural models that
can be applied in the context of last-item optimization in subsection 6.1.5. Lastly, we
demonstrate that our learned item associations are close to optimal with a variation
on our standard training task in subsection 6.1.6.

6.1.1 Neural base model (LastEmbedding)

We start from a model that simply learns embeddings governed by Equation 6.1
called LastEmbedding. Recall that the scores for each item on each timestep, R is of
shape (N, |I|), the item embedding matrix E is of shape (|I|, e), and the embeddings
of the items in the session Es is a submatrix of E and of shape (N, e).

Chapter 6. Simplifying models 57

R = EsET (6.1)

Note that Rt = Est ET, where Est is the embedding of item st on timestep t in ses-
sion s. The approach to model training is exactly the same as SASRec and GRU4Rec,
where on position t the models are tasked with predicting the identity of the item on
position t + 1 (See Figure 2.3).

Therefore, RN , the prediction for the next-item, is only dependent on the last
item sN . Like the models in chapter 4, we use the Softmax loss to train LastEmbed-
ding. A major benefit of LastEmbedding is that the recommendation slate can be
precomputed per last item. As a result, it is highly scalable.

Reusing item embeddings Also note that LastEmbedding uses its embedding ma-
trix for both input and output items. Re-using the item embedding matrix this
way reduced model size and improved the performance of GRU4Rec, SASRec and
BERT4Rec [39, 47, 87]. Our preliminary experiments also show that this greatly im-
proves performance on three out of four datasets. The intuition behind using these
homogeneous embeddings is that if item i is a good recommendation for item j, then
item j would be a good recommendation for item i (commonly referred to as symmet-
ric item transitions). In contrast, the motivation for heterogeneous embeddings, where
the input and output embeddings are different matrices, would be that it supports
assymetric item transitions. So, i might be a good recommendation for j, but j might
not be a good recommendation for i. To give an example of such a scenario, the pur-
chase of a screw-driver might be often succeeded by the purchase of a screw-driver
set, in case that the user is content with the initial individual screw-driver. How-
ever, by looking at individual shopping carts we have concluded that such scenarios
are rare at the least in the context of Q-Commerce. This explains why sacrificing
asymmetry for a model size reduction results in better performance. Therefore, with
LastEmbedding we refer to the homogeneous version of the embedding model. We
include the results of the heterogeneous model in Table 6.1.

6.1.2 Interpretation

Intuitively, LastEmbedding now simply consists of items as points in an e-dimensional
space, and draws items together if they appear successively in a training session.
During prediction, the model simply returns the items closest (in terms of dot-product
similarity) to the last item in the e-dimensional space. We visualize the workings of
the base model in Figure 6.1.

Chapter 6. Simplifying models 58

FIGURE 6.1: A visualization of the LastEmbedding model. Each item
is represented by a point (embedding) in a multi-dimensional space,
which has been simplified to 2 dimensions (e1 and e2) in this figure.
Given the training sessions on the left, the model draws the embed-
dings of successive items closer. Note that the figure is slightly mis-
leading, as the model aims to optimize the dot-product similarity be-
tween two embeddings. Therefore, the gradients are not actually in
the same direction as the arrows. In this figure, the arrows merely

indicate that the model learns the association.

6.1.3 Non-neural base model (NextPopular)

We note that we had already integrated the idea of homogeneity in our original ver-
sion of NextPopular. By counting neighbours instead of directly succeeding items,
we have that the count for item j on item i is the same as the count for item i on item
j. As a result, NextPopular constitutes the non-neural equivalent of LastEmbedding.
For reference, we also include the results of the heterogenous version of NextPop-
ular in Table 6.1. To clarify, this version only counts directly succeeding items, and
recommends the items that have most often succeeded the last item of the session.

6.1.4 Results

We summarize the results of the homogenous and heterogeneous version of the em-
bedding and NextPopular models in Table 6.1. We note that we did optimize the
hyperparameters of the embedding models, but found that the embedding models
are very resilient against its hyperparameters. Therefore, we simply continue with
the configuration e = 256, learning rate = 1e − 3, and batch size = 256 for the rest
of this chapter unless stated otherwise.

Chapter 6. Simplifying models 59

Dataset Model HR ↓NDCG CatCov Ser Nov
LastEmb .056 (87.5%) .034 (91.9%) .707 .053 14.0
NextPop .041 (64.1%) .026 (70.3%) .664 .039 13.5
LastEmb (he) .040 (62.5%) .024 (64.9%) .574 .036 13.0

Beauty

NextPop (he) .033 (51.6%) .022 (59.5%) .595 .031 13.4
NextPop (he) .227 (62.7%) .136 (62.7%) .577 .224 10.6
NextPop .210 (58.0%) .119 (54.8%) .529 .206 10.5
LastEmb (he) .156 (43.1%) .101 (46.5%) .330 .152 9.7

ML-1M

LastEmb .151 (41.7%) .088 (40.6%) .486 .146 10.8
LastEmb .143 (92.9%) .084 (93.3%) .797 .124 10.6
NextPop .140 (90.9%) .083 (92.2%) .796 .120 10.5
LastEmb (he) .140 (90.9%) .083 (92.2%) .708 .119 10.4

DH GR

NextPop (he) .135 (87.7%) .082 (91.1%) .785 .117 10.6
LastEmb .129 (73.7%) .073 (73.0%) .380 .099 10.4
NextPop .114 (65.1%) .067 (67.0%) .335 .089 10.6
LastEmb (he) .113 (64.6%) .063 (63.0%) .283 .083 10.1

DH SI

NextPop (he) .100 (57.1%) .059 (59.0%) .294 .077 10.6

TABLE 6.1: Evaluation results of the homogeneous and heteroge-
neous variants of LastEmbedding and NextPopular. The percentages
in the HR and NDCG column denote how close the result is to the top

value in Table 4.6.

General observations First of all, we find that the LastEmbedding model outper-
forms the the neural models on the Beauty dataset (but not yet SKNN), evidencing
that reducing the parameterization of the neural architectures may be beneficial on
certain datasets. The opposite is true for the ML-1M dataset, where the last item is
apparently not indicative enough of the next-item to be competitive with the neu-
ral models. Interestingly, LastEmbedding approaches the top performance on DH
Greece, but does not on DH Singapore. We find that the performance of LastEm-
bedding is very much correlated with the performance of its non-neural equivalent
NextPopular. In chapter 5 we had already established that other items than the last
are relatively more indicative of the next-item in DH Singapore than DH Greece,
which explains the difference in performance of LastEmbedding.

Benefits of a neural model The results between NextPopular and LastEmbedding
also demonstrate the benefit of a neural approach to session recommendation. While
both are trained very similarly by associating direct neighbours with each other, we
find that LastEmbedding outperforms NextPopular on Beauty, DH Greece and DH
Singapore. The exception here is ML-1M, where NextPopular is shown to be much
more performant. We can explain the performance difference between NextPopu-
lar and LastEmbedding by analyzing the models’ accuracy against the popularity
of the last item in the session. The last item is the only source of information for
both LastEmbedding and NextPopular, so the last-item popularity is a dimension on
which we can fairly compare the models’ efficiency. We visualize the performance
against last item popularity in Figure 6.2.

Chapter 6. Simplifying models 60

FIGURE 6.2: HitRate@10 against last-item popularity of GRU4Rec,
LastEmbedding and NextPopular. This figure only includes the bot-

tom 50% of items in terms of popularity.

We observe that the superiority of LastEmbedding over NextPopular can mainly
be attributed to the performance on low-popularity last items. We find that LastEm-
bedding outperforms NextPopular on low-popularity items (< 500 interactions), af-
ter which their behaviour becomes very similar on popular items. Since Beauty only
has unpopular items in absolute terms, we find that the performance difference be-
tween LastEmbedding and NextPopular is the greatest on this dataset. In contrast,
DH Greece has a relatively small amount of unpopular items, causing only a small
performance difference.

NextPopular needs relatively more interactions to learn a stable top-K recom-
mendation slate per item because it only relies on co-occurence counts. On the other
hand, LastEmbedding (and neural models in general) can leverage information from
other items through similarity in the embedding space, leading to a stable top-K rec-
ommendation slate with much fewer interactions. This finding also motivates us to
investigate whether we can use more than just the direct neighbours in the session
to improve performance. We will explore this question in subsection 6.1.6.

Unfortunately, we also find that relying on similar items worsens performance
on ML-1M. For ML-1M we have already found that the context in which movies
were rated is extremely important1 (see our session-truncation experiment in sub-
section 5.5.1 for example). As a result, interactions from similar items might act as
noise to the LastEmbedding model, causing the inferior performance.

Beyond-accuracy metrics Also, we find that the homogeneous LastEmbedding ver-
sion has more desirable beyond-accuracy metrics than the heterogeneous version
and the vanilla neural models. Its catalog coverage reaches up to double the catalog
coverage by the vanilla neural models, and its novelty is consistently higher than
all other models, with the exception of GRU4Rec on DH Singapore. On DH Greece
we find that the serendipity of LastEmbedding is 97% of the top Serendipity in Ta-
ble 4.6, meaning that the majority of the gains by the neural models in comparison
to LastEmbedding are gains made by correctly predicting the top-10 most popular
items.

1To give a concrete example of different contexts in which movies could be rated, a rating for
"Mamma Mia!" could be a user rating his/her favorite movies starring Meryl Streep, but it could also
be a user rating his/her favorite comedies. Since Meryl Streep acts in many different genres, the inter-
actions from either context could be very misplaced in the other context.

Chapter 6. Simplifying models 61

Comparison with session truncation Furthermore, from our experiment on session
truncation in subsection 5.5.1 we can conclude that LastEmbedding significantly
outperforms the neural models on all datasets if only the last-item is provided to
the models. For convenience, we present the best NDCG@10 attained with just the
last item in Table 6.2. The result implies that the vanilla models are less suitable
for recommending items for sessions of unit length, in exchange for the ability to
provide better recommendations on longer sessions.

Dataset Vanilla models (last) Vanilla models (all) LastEmbedding
Beauty .024 .030 0.034
ML-1M .020 .203 0.088
DH GR .078 .090 0.084
DH SI .065 .097 0.073

TABLE 6.2: The best NDCG@10 attained by the vanilla neural mod-
els using the last item in our session truncation experiment in sub-
section 5.5.1. All values were attained by the BERT4Rec model. We
also add the top NDCG@10 attained by the neural models when pro-
vided with the whole session, and add the NDCG@10 column of
the LastEmbedding results from Table 6.1. This table illustrates that
LastEmbedding is more data-efficient and learns better item embed-
dings, because LastEmbedding only operates on the last item of a

session.

6.1.5 Architectural improvements

Having established a surprisingly performant model that only operates on the last
item, we now continue with optimizing this model while maintaining its indepen-
dence from other items in the session than the last. We will iteratively add compo-
nents taken from or inspired by the original models. The goal of this subsection is
to evaluate the performance contribution of various architectural components that
were introduced in either BERT4Rec [87], SASRec [47] or GRU4Rec [40].

Embedding dropout The simplest way to improve performance is by adding em-
bedding dropout [26]. This technique randomly sets entries of Es to zero and rescales
the rows of the matrix to retain its L2 norm. It is used by all three vanilla mod-
els. Similar to our implementations of these models, we add the hyperparameter
drop_rate , and tune it with the rest of the parameters fixed. We will denote a matrix
with the superscript D if we pass it through a dropout layer to avoid the cluttering
of subsequent equations.

R = ED
s ET (6.2)

Dataset HR NDCG CatCov Ser Nov
Beauty .056 (0.0%) .034 (0.0%) .676 .053 13.8
ML-1M .189 (+25.1%) .107 (+21.6%) .595 .184 10.5
DH GR .143 (0.0%) .084 (0.0%) .783 .124 10.5
DH SI .129 (0.0%) .073 (0.0%) .375 .099 10.4

TABLE 6.3: Evaluation results of embedding dropout on the LastEm-
bedding model. The percentages indicate the performance difference

with the LastEmbedding model in Table 6.1.

Chapter 6. Simplifying models 62

Interestingly, we find that the embedding dropout is only effective on ML-1M,
and it barely affects performance of all other datasets. To be fair, this is likely be-
cause the default value for the embedding dimension that we are using in these
experiments is 256, which is likely too large for a small dataset like ML-1M. How-
ever, this result does show the effectiveness of embedding dropout to mitigate this
overfitting.

Bias Secondly, we can add a simple bias. A bias increases the expressiveness of
a model by learning a predisposition towards items that might appear in various
contexts that can not be sufficiently captured by embeddings alone. The current
model is specified by Equation 6.3. Note that the bias b is shared across positions,
so we define Rt instead of R as a whole. The results of this model can be found in
Table 6.4.

Rt = ED
st

ET + b (6.3)

Dataset HR NDCG CatCov Ser Nov
Beauty .058 (3.6%) .035 (2.9%) .660 .054 13.7
ML-1M .200 (5.8%) .113 (5.6%) .635 .195 10.5
DH GR .145 (1.4%) .084 (0.0%) .673 .121 10.1
DH SI .129 (0.0%) .073 (0.0%) .302 .097 10.0

TABLE 6.4: Evaluation results of a bias on the LastEmbedding
model. The percentages indicate the performance difference with the

LastEmbedding model in Table 6.3.

We find that the bias slightly improves performance on Beauty and DH Greece.
Still, the effect is very limited. The main performance gains are made on ML-1M,
where we find an increase in accuracy metrics of roughly 5%. This indicates that the
predecessor of an item is not a sufficient source of information alone, and instead we
need a popularity bias to start converging towards the performance of the models
in Table 4.6. The beyond-accuracy metrics also highlight the effect of the bias on our
proprietary datasets. While performance increases slightly in terms of HitRate, we
sacrifice catalog coverage, serendipity and novelty. This is the expected behaviour
of the bias of course, but it highlights how seemingly minor architectural additions
can affect the behaviour of the model significantly.

Linear transformation Recalling our discussion in subsection 4.3.4, we originally
decided to adopt the prediction network of BERT4Rec to allow all three models
to have the same prediction network. Since the prediction network is position-
independent, we can analyze its effect on our LastEmbedding without having to
include non-last items. Since we feed embeddings directly into the prediction net-
work, a non-linear activation would only reduce the representative capacity of the
embedding. Therefore, we only apply the linear transformation W of the prediction
network.

R = ED
s WET + b (6.4)

Chapter 6. Simplifying models 63

Dataset HR NDCG CatCov Ser Nov
Beauty .041 (-29.3%) .024 (-31.4%) .373 .037 12.8
ML-1M .212 (6.0%) .122 (8.0%) .522 .206 10.4
DH GR .142 (-2.1%) .084 (0.0%) .736 .120 10.3
DH SI .117 (-9.3%) .066 (-9.6%) .351 .086 10.2

TABLE 6.5: Evaluation results of a linear transformation on the
LastEmbedding model. The percentages indicate the performance

difference with the LastEmbedding model in Table 6.4.

Interestingly, we find that using a linear transformation mostly harms perfor-
mance. The performance on the sparse datasets is significantly worse, and the only
dataset where performance improves is ML-1M. We can partly attribute this find-
ing to the fact that the dense layer introduces asymmetry back into our model, as
eiWeT

j ̸= ejWeT
i unless W is symmetric. As such, the performance of LastEmbedding

with a prediction network should be correlated with the performance of LastEm-
bedding with heterogeneity (See Table 6.1). When we enforce W to be symmetric
we find that we mitigate the performance degradation on Beauty and DH Singa-
pore, but any linear transformation still reduces performance in general. All three
of our vanilla models enforce that the embeddings are passed through some linear
transformation, which implies we might be able to increase or maintain performance
while removing such transformations. Moreover, our finding empirically supports
the motivation for CORE [41] that the session embedding should fall into the space
spanned by the item embeddings. We will further discuss the relatedness of our
work to CORE in section 6.2.

At this point we observe a trend where the additional components introduced in
the original publications only seem to enhance accuracy on ML-1M, whereas they do
not affect or even harm performance on other datasets. Given that the linear trans-
formation generally harms performance, we do not use this variant in upcoming
experiments.

6.1.6 Training improvements

Having exhausted different architectural additions without much effect, we aim to
improve the training task of the model. A shortcoming of our current model is that
items only directly learn from their direct successors and predecessors in the ses-
sions. However, we hypothesize that items could still learn from other items in the
session, especially in the case of sparse datasets where there will only be a few ses-
sions where the item occurs. To illustrate why this might improve performance of
LastEmbedding, we found that NextPopular can be enhanced by not only counting
the successors and predecessors of an item, but also the super-successor. This results
in a model we denote with NextPop (3) whose results are summarized in Table 6.6.

Chapter 6. Simplifying models 64

Dataset HR NDCG CatCov Ser Nov
Beauty .045 (9.8%) .029 (11.5%) .671 .043 13.4
ML-1M .207 (-1.4%) .121 (1.7%) .701 .202 10.5
DH GR .142 (1.4%) .084 (2.4%) .784 .120 10.3
DH SI .120 (5.3%) .071 (6.0%) .342 .094 10.5

TABLE 6.6: Evaluation results of NextPop (3). It indicates that count-
ing other items than only the direct predecessor and successor can be
beneficial to the performance of a first-order MDP. The percentages
indicate the performance difference with the homogeneous NextPop-

ular model in Table 6.1.

Hence, the results in Table 6.6 show that models might benefit from learning
associations between non-neighbouring items. Currently, give a session (s1, s2, s3),
our LastEmbedding model draws the embeddings of item s1 and s2 closer and draws
the embeddings of items s2 and s3 closer. Therefore, it may very well be the case that
the model already sufficiently learns the connection between items s1 and s3 through
s2. Still, we aim to explore whether a more direct coupling between s1 with s3 will
enhance performance.

Background Petrov and Macdonald [72] have already explored this idea to some
degree by training BERT4Rec and SASRec with LambdaRank [6]. LambdaRank is
a loss function that includes multiple items as targets in its loss computation. As a
result, the model is stimulated to draw the item representations closer. Promisingly,
Petrov and Macdonald [72] found that LambdaRank resulted in significant perfor-
mance gains for the transformer models. Our motivation is also similar to the one
presented for DropoutNet [94], which encourages the model to use side-information
for unpopular items while disregarding side-information for popular items through
a similar dropout mechanism.

Token dropout Similar to DropoutNet [94], we add token dropout before we feed
the session to the model. In other words, we drop an item from a session with
a fixed probability. For example, if we drop s2 from (s1, s2, s3), we feed (s1, s3) to
the model. This would allow the model to learn the association between s1 and s3
with our current next-item training task and standard cross-entropy loss. Beside the
fact that DropoutNet is applied to the matrix-completion recommendation task, the
conceptual difference is that we want to use token dropout to encourage our model
to use other items in the session to learn better representations of unpopular items.
The results of LastEmbedding with token dropout (t) are summarized in Table 6.7
below.

Dataset HR NDCG CatCov Ser Nov
Beauty .059 (1.7%) .036 (2.9%) .556 .056 13.4
ML-1M .147 (-26.5%) .083 (-26.4%) .699 .141 10.8
DH GR .144 (-0.7%) .084 (0.0%) .779 .123 10.4
DH SI .131 (1.6%) .074 (1.4%) .359 .102 10.5

TABLE 6.7: Evaluation results of token dropout on the LastEmbed-
ding model. For these results we used a dropout probability of 0.3.

Interestingly, we only slightly improve performance on Beauty and DH Singa-
pore, which are the datasets with the highest share of low-popularity items. The

Chapter 6. Simplifying models 65

fact that it harms accuracy on DH Greece or ML-1M indicates that associations with
other items from the session are superfluous, or even noisy. We note that we did
find a slight performance increase on the lowest-popularity last-items, but appar-
ently this does not outweigh the performance decrease on the popular items. As a
result, some ensemble would be possible where you use token dropout only on the
lowest popularity items, but on higher popularities (after a 10 interactions already),
it is better to use the models trained without token dropout.

In short, our datasets are too dense to significantly benefit from token dropout,
but our results indicate that the technique would be effective on sparser datasets.
Furthermore, this negative result indicates that we have optimized the quality of the
item embeddings already, given that additional signals (between distant items in the
session) did not improve performance.

6.1.7 Discussion

In this section we have explored to what degree we can exploit the last item in a ses-
sion as the only source of information to predict the next-item. The degree to which
we can approach the performance of the models in Table 4.6 with just embeddings
depends on the dataset. We outperform the vanilla neural models on Beauty, come
close to their performance on DH Greece, but have significantly worse performance
on ML-1M and DH Singapore. To some degree this is to be expected, as Figure 5.10
indicates that other positions than the last are also indicative of the next-item. Archi-
tectural components used in the vanilla models other than the embeddings do not
seem to add any performance, except on the ML-1M dataset. This illustrates that
the embeddings themselves are already expressive enough to capture most of the
patterns in the sessions.

Lastly, in subsection 6.1.6 we have seen that using other items than the direct suc-
cessors to train an item’s embedding is only effective on extremely low-popularity
items, which are quite rare in our dataset suite. Therefore, we believe that through
the current combination of training task and homogeneous embedding architecture,
we have approached the maximum performance that can be reached with the last
item alone.

6.2 Exploiting non-last items

We now continue with exploiting other items than the last. In chapter 5 we found
that most of the performance of the models can be attributed to the last item, but
every model still improves when we include older items. Furthermore, ItemKNN
proves to be an extremely competitive baseline while disregarding the ordering of
the items in the session. Hence, the next obvious step in constructing our model
is by exploiting non-last items. The way that a model includes other items in the
session is the unique differentiator, where GRU4Rec uses the GRU layer, SASRec
uses a unidirectional transformer and BERT4Rec uses a bidirectional transformer.
In this section, we will gradually converge to both types of layers to uncover what
precisely enables their superior performance on the remaining datasets.

6.2.1 Positional weights

Our first step in moving towards the full architecture of the neural models will be
the inclusion of other items in the session through weighted summation. Our moti-
vation for this is our finding that the trivial recommendations from other positions

Chapter 6. Simplifying models 66

already appear to be good recommendations in Figure 5.11. This means that we do
not have to take interaction effects between the items into account, and that we can
instead rely on something simple like weighted summation to exploit the non-last
items. More specifically, we want to define a matrix W of shape (N, N) so that the
current model is defined by Equation 6.5. Clearly, the session embedding WEs is a
weighted summation of the embeddings. We constrain W so that the superdiagonal
is zero (∀t∈{1...N}Wt,t+1 = 0) because item st+1 is the target for Rt in our training task.

R = (WEs)
DET + b (6.5)

When we take W = 1 with zeros on the superdiagonal, we disregard ordering
and simply use the sum of the embeddings of the items in the session to predict the
next-item. This is the architectural design of CORE-ave in [41], which was initially
shown to be outperformed by the vanilla models. However, they train their model
by only computing the loss on RN instead of all timesteps 2. Instead, we will train
our variant where we train on all timesteps in order to maximize data usage.

Dataset HR ↓NDCG CatCov Ser Nov
Beauty .055 (-5.2%) .031 (-11.4%) .392 .049 12.2
ML-1M .067 (-66.5%) .018 (-84.1%) .277 .027 9.1
DH GR .097 (-33.1%) .052 (-38.0%) .561 .063 9.1
DH SI 0.154 (19.4%) .086 (17.8%) .241 .115 9.5

TABLE 6.8: Evaluation results of the model defined by Equation 6.5
where W = 1. The percentages indicate the performance difference

with the LastEmbedding model in Table 6.4.

Clearly, the results are worse than our results of the LastEmbedding model of Ta-
ble 6.4 on Beauty, ML-1M and DH Greece. Of course, from Figure 5.2 we could have
already concluded that simply taking the average embedding would be too simple
as it completely disregards ordering like ItemKNN. We note that the minimum loss
by this model is not lower than the loss of the vanilla neural models, indicating that
overfitting is not the cause of the low performance. Instead, we believe that the sum-
mation of the item embeddings is too noisy for the model to differentiate the relevant
(usually more recent) items. The exception to these observations is DH Singapore,
where the model seems to improve performance over the LastEmbedding model in
Table 6.4. This is to be expected, as ItemKNN is the most performant on this dataset
in Table 4.6. Still, the model in Table 6.8 does not appear to surpass ItemKNN in
terms of accuracy. This means that the effect of the noise in the tail of the session still
limits the model to produce good recommendations.

Learning W through backpropagation Therefore, we propose to learn W through
backpropagation. This means that for each timestep t, we have a learnable vector
of weights Wt where Wt,t+1 = 0, but the weights for timesteps t′ > t + 1 are not
constrained. As a result, Equation 6.5 constitutes a bidirectional model. The results
are summarized in Table 6.9. Similarly, we train a unidirectional model. Recall that
the definition of a unidirectional model is that the predictions Rt are only dependent
on t and previous timesteps. Hence, we constrain W so that the upper diagonal are
all zeros. The results of the unidirectional model are summarized in Table 6.10.

2In the design of CORE-ave [41], the superdiagonal of W is not set to zeros, so that training on
timesteps other than N is not possible due to information leakage.

Chapter 6. Simplifying models 67

Dataset HR ↓NDCG CatCov Ser Nov
Beauty .067 (15.5%) .040 (14.3%) .649 .062 13.2
ML-1M .239 (19.5%) .130 (15.0%) .684 .233 10.5
DH GR .145 (0.0%) .084 (0.0%) .742 .116 9.9
DH SI .167 (29.5%) .093 (27.3%) .288 .132 10.1

TABLE 6.9: Evaluation results of the model defined by Equa-
tion 6.5 where W is bidirectional and is learned through backprop-
agation. The percentages indicate the performance difference with

the LastEmbedding model in Table 6.4.

Dataset HR ↓NDCG CatCov Ser Nov
Beauty .067 (15.5%) .040 (14.3%) .745 .062 13.5
ML-1M .257 (28.5%) .142 (25.7%) .696 .250 10.5
DH GR .146 (0.7%) .085 (1.2%) .718 .119 9.9
DH SI .170 (31.7%) .095 (30.1%) .304 .136 10.2

TABLE 6.10: Evaluation results of the model defined by Equation 6.5
where W is unidirectional and is learned through backpropaga-
tion. The percentages indicate the performance difference with the

LastEmbedding model in Table 6.4.

General observations We find that the performance of the unidirectional model in
Table 6.10 is either equal to or better than the bidirectional model in Table 6.9. This
supports the finding in [73] that the bidirectionality of BERT4Rec is not the under-
lying cause of its superiority over unidirectional SASRec. At this point, we find
that the unidirectional model outperforms all models on Beauty and outperforms
SASRec and GRU4Rec on DH Singapore. Allthewhile, our model is significantly
simpler to tune and implement. Moreover, it almost equals BERT4Rec in terms of
performance on DH Singapore. We could already partially explain that BERT4Rec
is better than the unidirectional models on Singapore because of its bidirectionality
in subsubsection 5.2, but from these results we find that a unidirectional model is
practically able to attain similar performance to BERT4Rec and ItemKNN. We can
therefore conclude that both SASRec and GRU4Rec are overparameterized on DH
Singapore, because this simple model outperforms them significantly while learn-
ing under the same unidirectionality constraint. For simplicity we will continue our
experiments with the unidirectional model.

Masking process Also, note that we used a bidirectional model in Table 6.9 does
not make use of the masking process from BERT4Rec. This is not necessary because
the constraint of having W with a superdiagonal with all zeros is sufficient to pre-
vent information leakage. In fact, this would also hold for BERT4Rec with a single
transformer layer. As a result, we might be able to significantly reduce training time
by removing the random train cases all together, and instead just train a single-layer
BERT4Rec with the same training task of SASRec, namely predicting the item st+1 at
timestep t. We leave this experiment for future work.

On the other hand, the fact that BERT4Rec significantly outperforms SASRec
on Beauty and DH Singapore can now only be explained by the masking process.
We eliminated all differences between SASRec and BERT4Rec in chapter 4, and be-
cause the bidirectionality has been shown to not improve performance, it must be
the masking process that allows BERT4Rec to surpass SASRec in Table 4.6.

Chapter 6. Simplifying models 68

Learned weights Naturally, we are interested in the final value of W. Therefore,
we visualize the learned weights of the last 10 positions that are used for the next-
item prediction in Figure 6.3. In other words, we visualize the values in the last 10
columns of the last row of W.

FIGURE 6.3: The learned positional weights for the next-item predic-
tion by the model defined by Equation 6.5 where W is unidirectional
and is learned through backpropagation. Essentially, we visualize the

values in the last 10 columns of the last row of W.

In general, we find that W roughly learns the weights proportional to the impor-
tance of each position in Figure 5.11. Surprisingly, we find that the model on Beauty
learns negative weights, meaning that the model actually subtracts scores for items
related to the historical item interactions in the session.

6.2.2 Constrained positional weights

We do find some instability in the learned positional weights, even on our densest
DH Greece dataset. More specifically, we have that the values of W between two
trained model instances may differ. We believe this is due to the vulnerability to the
initialization of the item embeddings matrix. If an item st and an item st′ coinciden-
tally have a high dot-product similarity at initialization time, then the model will
learn to increase Wt,t′−1 in order to exploit item st to predict item st′ . Moreover, on
Beauty we can even see that the third-to-last position is given more weight than the
second-to-last, which is a clear sign of overfitting. Therefore, we explore whether
we can address the instability and overfitting by incorporating several assumptions.
Our first assumption is that the weight of a timestep t on the predictions for another
timestep t′ should only be based on the distance t − t′ and not the specific values of
t and t′. Our second assumption is that this weight should decrease monotonically
with the distance t − t′. Therefore, instead of learning the positional weights matrix
W directly, we learn parameter α. We use this parameter to define W(α) by Equa-
tion 6.6. We will refer to the model defined by Equation 6.5 and Equation 6.6 with
W(α).

Chapter 6. Simplifying models 69

W(α)
t,t′ =

1
(t − t′)α

1(t < t′) (6.6)

Evidently, the weights are now only dependent on the distance between two
items, and the weights monotonically decrease with the distance if α > 0. The model
can control the rate at which this weight decreases with α. Unfortunately, this for-
mula does not allow for negative weights like we have seen on the Beauty dataset.
The formula was chosen by consulting Figure 5.11. We found that it is important to
initialize α with a high value (e.g. 10) so that W is close to an identity matrix at the
start of training. As a result, the focus in the first epoch of training is on learning
good embeddings before their weighted summations are taken in later epochs.

The results of the model are summarized in Table 6.11.

Dataset HR ↓NDCG CatCov Ser Nov
Beauty .073 (9.0%) .043 (7.5%) .561 .068 12.9
ML-1M .258 (7.9%) .141 (8.4%) .690 .251 10.5
DH GR .147 (1.4%) .086 (2.4%) .708 .122 10.1
DH SI .170 (1.8%) .095 (2.2%) .304 .136 10.2

TABLE 6.11: Evaluation results of the model defined by Equation 6.5
where W is defined by Equation 6.6. α is learned through backpropa-
gation. We call this model W(α). The percentages indicate the perfor-

mance difference with the model in Table 6.10.

Surprisingly, the performance on Beauty rises considerably. It illustrates how
constraining the expressiveness and parameterization of a model can sometimes
lead to better results.

Dataset Learned α

Beauty 0.64
ML-1M 1.21
DH GR 1.50
DH SI 0.40

TABLE 6.12: The learned values for α from the results in Table 6.11 by
W(α). Higher values indicate a higher importance for the last item(s).

In general the values for α in Table 6.12 coincide with the curve found in Fig-
ure 5.11. Table 6.12 also highlights the peculiarity of the ML-1M dataset, where the
last item is apparently extremely important, but our vanilla models need multiple
items to attain their overall NDCG@10. We leave the investigation of other defini-
tions for the weight matrix like in Equation 6.6 for future work.

Inference time and approximation As a side note, we would like to recall our dis-
cussion in section 6.1 that the LastEmbedding model was particularly scalable be-
cause we could precompute the recommendations for each item. Fortunately, this
is also possible for the models governed by Equation 6.5 because matrix multiplica-
tions are associative. More specifically, we can precompute EET, which is a (|I|, |I|)
matrix containing the score that each potential item in a session (row) would give
to a potential item to be recommended (column). While this would cost a signifi-
cant amount of memory, from preliminary experiments we found that for each item

Chapter 6. Simplifying models 70

we can simply precompute the top-50 items with the highest scores. This only de-
mands linear memory in terms of the number of items. At inference time we can
then take the top-50 items of each item in the session, and combine the confidence
for each item according to W. This requires much less compute (no GPU) than the
vanilla neural models. This approximation works because apparently, items that are
not in the top-50 of any item in the session rarely end up in the top-K recommenda-
tion slate anyway. Of course, you can vary 50 to be any number to balance between
scalability and the probability that you will miss an item that would end up in the
recommendation slate.

6.2.3 Layer normalization

Having explored the potential of a simple weighted summation of item embeddings,
we continue by exploring how we can further improve the performance of the W(α)

model with various architectural components from BERT4Rec [87], SASRec [47] and
GRU4Rec [40]. For brevity, we include our most successful experiment which is the
addition of layer normalization to the session embedding. Formally, we modify W(α)

with Equation 6.7, where superscript D denotes a dropout layer and superscript
N denotes a normalization layer [4]. The layer normalization ensures that the the
session embedding (WEs)DN has a zero mean and unit variance. We summarize the
results in Table 6.13. We will provide an overview of all model evaluation results
later in section 6.3.

R = (W(α)Es)
DNET + b (6.7)

Dataset HR ↓NDCG CatCov Ser Nov
Beauty .053 (-15.8%) .032 (-25.6%) .727 .049 13.8
ML-1M .203 (-21.3%) .116 (-17.8%) .665 .198 10.5
DH GR .149 (1.4%) .088 (2.3%) .794 .130 10.7
DH SI .184 (8.2%) .104 (9.5%) .327 .153 10.7

TABLE 6.13: Evaluation results of W(α) with layer normalization. The
percentages indicate the performance difference with the W(α) model

in Table 6.11.

Interestingly, we find that we further improve the performance of the W(α) model
on the Delivery Hero datasets, whereas we significantly decrease accuracy on the
Beauty and ML-1M datasets. We believe the layer normalization to be an effective
mechanism to improve performance because it allows the model to capture inter-
action effects between items. To clarify, the computation of the variance on the
weighted summation of the item embeddings involves cross-terms between the in-
dividual item embeddings, effectively allowing the model to take interaction effects
into account. At the same time, the normalization layer does remove the opportu-
nity to precompute results, since the normalization is not an associative operation.
We believe interaction effects between items to be more relevant on sessions with
a short timespan (shopping carts) in contrast sessions with a longer timespan (re-
views/ratings), which could explain why performance increases on the Delivery
Hero datasets, but decreases on the Beauty and ML-1M datasets.

Chapter 6. Simplifying models 71

6.3 Discussion

In this chapter we have explored the possibility of simplifying the neural models
while maintaining or improving performance. To ease discussion we combine all
results from chapter 4 and this chapter in Table 6.14. We include our LastEmbed-
ding model, our W(α) model, and W(α) with layer normalization (W(α) LN). For the
LastEmbedding model, we pick the best result from the version with and the version
without token dropout.

6.3.1 Hyperparameter resilience

We note that we optimized the hyperparameters for LastEmbedding, W(α), and W(α)

LN, but found that the models are generally more resilient towards the hyperparam-
eters than the vanilla neural models. The only hyperparameter that seemed to affect
the results was the embedding dimension e. This is to be expected, as this parameter
directly controls the model size and capacity for learning item associations. How-
ever, all other parameters seemed to have very little effect on the accuracy metrics.
This is a very desirable model trait, as hyperparameter optimization is generally ex-
pensive. This is demonstrated by the fact that the original publications on BERT4Rec
and SASRec only hypersearched 4 and 2 hyperparameters respectively, in contrast
to the 8 common hyperparameters we identified in Table 4.1.

6.3.2 Accuracy results

Surprisingly, we found that LastEmbedding can already be considered a strong base-
line on various datasets while only relying on the last item of each session. More-
over, the results show that W(α) and its variant with layer normalization are ex-
tremely competitive models on 3 out of 4 datasets. On our sparsest datasets, Beauty
and DH Singapore, we significantly outperform the vanilla neural models and the
non-neural baselines with up to 16% in NDCG@10 on Beauty, and 4% on DH Sin-
gapore. On DH Greece we approach the top NDCG@10 with only a 2% difference.
In addition, the recommendations of W(α) without layer normalization can be pre-
computed, making it a highly scalable and fast model. To recall our discussion
on trivial recommendation overlap in subsection 5.5.2, the W(α) model shows that
exploiting the trivial recommendations from various positions in the session can
already provide significant performance, because the W(α) model essentially com-
bines trivial recommendations from each item weighted by its position. Further-
more, we observed that layer normalization increases performance on the Delivery
Hero datasets, which we attribute to the fact that layer normalization allows for the
modelling of interactions effects between items.

6.3.3 Beyond-acuracy results

Finally, from Table 6.14 we also observe that our embedding-based models gener-
ally have more desirable beyond-accuracy metrics than the vanilla neural models.
For example, on Beauty we reach more than double the catalog coverage with W(α)

compared to GRU4Rec, BERT and SASRec. On the Delivery Hero datasets, W(α) and
W(α) LN reach higher values for novelty, meaning that these models are less prone
to the popularity bias discussed in section 5.3. While we do not surpass the neural
models on DH Greece, we do find that that W(α) LN has a higher value for serendip-
ity, meaning it correctly predicted more ground-truth items that are not part of the
top-10 of most popular items.

Chapter 6. Simplifying models 72

6.3.4 Limitations

One of the goals of this chapter was to evaluate whether the vanilla neural mod-
els were over-parameterized for the session recommendation task. While we con-
cluded that it depends on the dataset and its characteristics, the main limitation of
this chapter is that there are still a large number of architectural components be-
tween our W(α) model and the fully-parameterized vanilla neural models. For the
sake of brevity, we excluded a broad set of preliminary results on several of these
missing architectural components, but we generally found that the accuracies at-
tained by these intermediate models interpolate the accuracy of the W(α) and fully-
parameterized models. For example, a model where the positional weights in W(α)

are replaced with an attention mechanism seems to slightly surpass W(α) model on
DH Greece, but it also degrades in performance on Beauty.

Chapter 6. Simplifying models 73

Dataset Model HR ↓NDCG CatCov Ser Nov

W(α) .073 .043 .561 .068 12.9
SKNN .064 .037 .540 .058 12.6
ItemKNN .052 .030 .741 .048 13.9
LastEmbedding .059 .036 .556 .056 13.4
W(α) LN .053 .032 .727 .049 13.8
GRU4Rec .054 .030 .231 .048 12.9
BERT .047 .026 .226 .043 13.2
NextPop .041 .026 .664 .039 13.5
SASRec .039 .021 .106 .033 12.1

Beauty

Popular .012 .005 .000 .000 9.7
GRU4Rec .339 .203 .816 .331 10.7
SASRec .307 .176 .677 .300 10.7
BERT .309 .171 .633 .303 10.6
W(α) .258 .141 .690 .251 10.5
W(α) LN .203 .116 .665 .198 10.5
NextPop .200 .114 .723 .194 10.5
LastEmbedding .200 .113 .635 .195 10.5
SKNN .154 .077 .502 .148 9.8
ItemKNN .053 .026 .060 .038 8.7

ML-1M

Popular .016 .008 .003 .000 8.5
GRU4Rec .155 .090 .443 .128 10.1
SASRec .153 .090 .486 .128 10.3
W(α) LN .149 .088 .794 .130 10.7
BERT .150 .086 .375 .121 9.9
W(α) .147 .086 .708 .122 10.1
LastEmbedding .145 .084 .673 .121 10.1
NextPop .140 .083 .796 .120 10.5
SKNN .131 .077 .785 .112 10.5
ItemKNN .117 .065 .697 .083 9.4

DH GR

Popular .052 .024 .001 .000 7.5
W(α) LN .184 .104 .327 .153 10.7
ItemKNN .175 .100 .362 .136 10.0
BERT .171 .097 .125 .139 10.4
W(α) .170 .095 .304 .136 10.2
SKNN .159 .094 .361 .131 10.4
GRU4Rec .156 .089 .375 .129 11.0
SASRec .158 .088 .292 .128 10.7
LastEmbedding .120 .071 .342 .094 10.5
NextPop .114 .067 .335 .089 10.6

DH SI

Popular .049 .024 .000 .000 7.5

TABLE 6.14: The final evaluation results of our vanilla neural models,
the non-neural baselines and our simplified embedding models. The

table is sorted by NDCG@10.

74

Chapter 7

Conclusion

In this thesis we have explored the performance and behaviour of the popular neu-
ral session recommendation models on several open and several real world session
datasets. We will explicitly summarize our answer to each research question intro-
duced in chapter 1.

Research question 1: What are the methodological errors made in the design and
evaluation of the models, and how can we create an evaluation setup that does
not suffer from these issues? We identified and addressed several problems re-
lated to the original publications in the literature. Most importantly, we replaced the
sampled metrics evaluation task with a full ranking evaluation task. Furthermore,
we do not use the test set during training, and instead design an early-stopping
mechanism in order to determine when to stop training. Lastly, we do not fix any
hyperparameters during training, and instead rely on the TPE sampler to find the
optimal configuration in a freely-defined hyperparameter search space.

Research question 2: What models are most effective for sequential recommen-
dation on our datasets? Having addressed these issues, we aimed to uncover the
potential of each architecture by standardizing auxiliary design decisions like the
batch design and loss function. We found that this standardization of auxiliary
design decisions significantly improves the performance of the models, and sub-
sequently causes the models to be more similar in performance than previously re-
ported. Moreover, the precise model ranking depends on the dataset, and no clearly
superior model can be determined in general. Instead, we found that a model’s
relative performance depends on the dataset’s predisposition towards the unique
properties of that model. For example, we showed that BERT4Rec’s bidirectionality
enables it to mimic ItemKNN better, which in turn can explain some of the perfor-
mance gains of BERT4Rec in comparison to SASRec and GRU4Rec on DH Singapore.
In addition, we also found that the non-neural baselines can be extremely competi-
tive, and outperform our vanilla neural models on 2 of our 4 datasets. Interestingly,
we also identified a significant difference in model performance and behaviour be-
tween the Delivery Hero Greece and Delivery Hero Singapore dataset, indicating
that minor details in the data collection phase might already significantly affect a
model’s ability to find suitable recommendations.

Research question 3: How do these models’ recommendations compare on vari-
ous dimensions? We then analyzed the recommendation behaviour of the models
on various dimensions, including the recommendation slate size, the session length,
item popularity and overlap with trivial models. We find that the models are sur-
prisingly similar and sometimes even predictable. For example, we find that the
non-determinism in the random batching and random initialization causes a pair of

Chapter 7. Conclusion 75

two instances of the same model to be almost indiscriminable from any other pair of
models in terms of recommendation overlap. Moreover, we also find that different
models agree most on the top-ranked items, and start to differ more when the size
of the recommendation slate, K, grows. While on the open datasets the models seem
to exhibit desired behaviour in terms of recommending items from different pop-
ularities, we find that on the proprietary datasets all three models overconfidently
recommend popular items. We have a diverse set of results on session lengths, and it
appears that on some datasets the session length plays little role in the performance
of the model. Instead, it seems to be correlated with the last item’s relatedness to
the next-item. Still, the models remain very similar in their performance on different
session lengths, which opposes the general belief that GRU4Rec is more suitable for
short-term preference modelling, while the transformer models are more suitable
for long-term preference modelling. In general, the neural models exhibit fluidity in
their behaviour, and converge towards either a first-order Markov Decision Process
or ItemKNN depending on what works better for the dataset. All in all, the models’
recommendations are extremely similar and almost indistinguishable on the various
dimensions explored.

Research question 4: Given these findings, can we devise simpler models while
maintaining or improving performance? Given that the models have very differ-
ent architectures, we hypothesized that there must be a core architectural compo-
nent causing the inherent similarity, which in turn might imply that the full archi-
tectures are over-parameterized. Indeed, we find that most of the performance on
all four datasets can be attributed to the item embeddings, which in turn explains
the similarity between the neural models. In fact, our LastEmbedding model, which
recommends the items that are most similar to the last item, already significantly
outperforms the neural models on the Beauty dataset, confirming that the models
are indeed over-parameterized on that dataset. Other architectural components like
a bias, dropout, or transformations had a limited positive or severe negative effect
on the performance of the models.

We then exploited our observation that the trivial recommendations from non-
last items are already a fruitful source of recommendations, which means we do not
need to model any interaction effects between the items. Therefore, we continue by
exploring the potential of a weighted summation between the item embeddings, at
which point our model attains better or similar performance on 3 out of 4 datasets.
Allthewhile, our model remains pre-computable, which means that our model is fast
and scalable with no need for a GPU in production. Lastly, we further increased per-
formance on the Delivery Hero datasets by modelling the interaction effects between
items through a normalization layer.

76

Chapter 8

Discussion

Having answered our research questions, this chapter is intended to address several
limitations of this thesis and comment on the work in general.

Focus of this thesis First of all, this thesis was mainly concerned with the neural
architectures. The main result on this is that there is very little difference between
the performance and behaviour of the models once all auxiliary components like the
training task and loss function are standardized. It seems that the models converge
to the same behaviour as long as their architecture is sufficiently expressive to pro-
cess all items in the session. As such, we personally believe that the future discov-
eries in neural session recommendation domain will not be new and more complex
architectures, and instead will be better loss functions and training tasks. Admit-
tedly, we have neglected these components in favour of a more in-depth analysis of
the architecture.

While we advocate for a more holistic approach to recommendation in general,
this thesis also just focuses on optimizing offline metrics like the bulk of the research
on recommendation. However, there is very little research on whether the offline
evaluation metrics actually translate to higher business metrics like user satisfac-
tion [65]. Frankly, we have optimized a model’s ability to predict the last item of
a shopping cart, but this is not straightforwardly correlated with a model’s ability
to recommend good items that will increase profit. Due to internal delays we were
unfortunately not able to properly analyze the online performance of our algorithms
as well, and instead decided to focus on optimizing the offline evaluation metrics as
a proxy. We did move away from the typical conduct of simply introducing a model
and providing an evaluation by also conducting an analysis in chapter 5. This lead to
multiple promising avenues for optimizing the models explored in chapter 6, high-
lighting that a holistic approach can be fruitful.

Early decision designs Besides the training task and loss function, there are much
more design decisions that may have affected our results. We navigated the space of
possible implementations and hyperparameters through preliminary experiments,
which is by no means a rigorous process. Due to the sheer number of decisions re-
lated to the design and implementation of a deep learning model, it was difficult to
balance between maintaining rigor and maintaining a decent scope for this thesis.
For example, all BERT4Rec experiments in this thesis use 10 as the number of ran-
dom train cases. Clearly, this might not be optimal, but it is also extremely hard to
re-evaluate (re-optimize) this decision at every single design step. Ironically, the ini-
tial motivation for our research was to address the exact same issues in the original
publications, but we found that this would simply demand too much compute and
meticulosity.

Chapter 8. Discussion 77

Dataset suite Lastly, we would like to note that our dataset suite is limited as
well. We chose Beauty [69] and ML-1M [31] as our open datasets because of their
widespread use and diverse dataset statistics. Still, these datasets originally consist
of reviews and ratings instead of interactions, and so they only partially represent
the true session recommendation scenario. Fortunately, the Delivery Hero datasets
provide us with real session datasets. Still, shopping carts are very particular types
of sessions, so that our results on these datasets might not be directy transferrable to
use-cases with other types of sessions.

78

Bibliography

[1] Charu C. Aggarwal. Recommender Systems: The Textbook. 1st. Springer Pub-
lishing Company, Incorporated, 2016. ISBN: 3319296574.

[2] Takuya Akiba et al. “Optuna: A next-generation hyperparameter optimiza-
tion framework”. In: Proceedings of the 25th ACM SIGKDD international confer-
ence on knowledge discovery & data mining. 2019, pp. 2623–2631.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Genera-
tive Adversarial Networks”. In: Proceedings of the 34th International Conference
on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org,
2017, 214–223.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normaliza-
tion”. In: arXiv preprint arXiv:1607.06450 (2016).

[5] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In:
Proceedings of the 24th International Conference on Neural Information Processing
Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011, 2546–2554.
ISBN: 9781618395993.

[6] Christopher JC Burges. “From ranknet to lambdarank to lambdamart: An
overview”. In: Microsoft Research Technical Report 11.23-581 (2010), p. 81.

[7] Rocío Cañamares and Pablo Castells. “On Target Item Sampling In Offline
Recommender System Evaluation”. In: Proceedings of the 14th ACM Confer-
ence on Recommender Systems. RecSys ’20. Virtual Event, Brazil: Association for
Computing Machinery, 2020, 259–268. ISBN: 9781450375832. DOI: 10.1145/
3383313.3412259. URL: https://doi.org/10.1145/3383313.3412259.

[8] Huiyuan Chen et al. “Denoising Self-Attentive Sequential Recommendation”.
In: Proceedings of the 16th ACM Conference on Recommender Systems. RecSys ’22.
Seattle, WA, USA: Association for Computing Machinery, 2022, 92–101. ISBN:
9781450392785. DOI: 10.1145/3523227.3546788. URL: https://doi.org/10.
1145/3523227.3546788.

[9] Qiwei Chen et al. “Behavior Sequence Transformer for E-Commerce Recom-
mendation in Alibaba”. In: Proceedings of the 1st International Workshop on Deep
Learning Practice for High-Dimensional Sparse Data. DLP-KDD ’19. Anchorage,
Alaska: Association for Computing Machinery, 2019. ISBN: 9781450367837.
DOI: 10.1145/3326937.3341261. URL: https://doi.org/10.1145/3326937.
3341261.

[10] Yongjun Chen, Jia Li, and Caiming Xiong. “ELECRec: Training Sequential
Recommenders as Discriminators”. In: Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval. SI-
GIR ’22. Madrid, Spain: Association for Computing Machinery, 2022, 2550–2554.
ISBN: 9781450387323. DOI: 10.1145/3477495.3531894. URL: https://doi.
org/10.1145/3477495.3531894.

https://doi.org/10.1145/3383313.3412259
https://doi.org/10.1145/3383313.3412259
https://doi.org/10.1145/3383313.3412259
https://doi.org/10.1145/3523227.3546788
https://doi.org/10.1145/3523227.3546788
https://doi.org/10.1145/3523227.3546788
https://doi.org/10.1145/3326937.3341261
https://doi.org/10.1145/3326937.3341261
https://doi.org/10.1145/3326937.3341261
https://doi.org/10.1145/3477495.3531894
https://doi.org/10.1145/3477495.3531894
https://doi.org/10.1145/3477495.3531894

Bibliography 79

[11] Heng-Tze Cheng et al. “Wide & Deep Learning for Recommender Systems”.
In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.
DLRS 2016. Boston, MA, USA: Association for Computing Machinery, 2016,
7–10. ISBN: 9781450347952. DOI: 10.1145/2988450.2988454. URL: https:
//doi.org/10.1145/2988450.2988454.

[12] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by
Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar: Associ-
ation for Computational Linguistics, Oct. 2014, pp. 1724–1734. DOI: 10.3115/
v1/D14-1179. URL: https://aclanthology.org/D14-1179.

[13] Philippe Clement and Wolfgang Desch. “An elementary proof of the triangle
inequality for the Wasserstein metric”. In: Proceedings of The American Mathe-
matical Society - PROC AMER MATH SOC 136 (Jan. 2008), pp. 333–340. DOI:
10.1090/S0002-9939-07-09020-X.

[14] Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks for
YouTube Recommendations”. In: Proceedings of the 10th ACM Conference on
Recommender Systems. RecSys ’16. Boston, Massachusetts, USA: Association
for Computing Machinery, 2016, 191–198. ISBN: 9781450340359. DOI: 10.1145/
2959100.2959190. URL: https://doi.org/10.1145/2959100.2959190.

[15] Alexander Dallmann, Daniel Zoller, and Andreas Hotho. “A Case Study on
Sampling Strategies for Evaluating Neural Sequential Item Recommendation
Models”. In: Proceedings of the 15th ACM Conference on Recommender Systems.
RecSys ’21. Amsterdam, Netherlands: Association for Computing Machin-
ery, 2021, 505–514. ISBN: 9781450384582. DOI: 10.1145/3460231.3475943.
URL: https://doi.org/10.1145/3460231.3475943.

[16] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[17] Yimin Ding. “The Impact of Learning Rate Decay and Periodical Learning
Rate Restart on Artificial Neural Network”. In: Proceedings of the 2021 2nd In-
ternational Conference on Artificial Intelligence in Electronics Engineering. AIEE
’21. Phuket, Thailand: Association for Computing Machinery, 2021, 6–14. ISBN:
9781450389273. DOI: 10.1145/3460268.3460270. URL: https://doi.org/10.
1145/3460268.3460270.

[18] Hanwen Du et al. “Contrastive Learning with Bidirectional Transformers for
Sequential Recommendation”. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. CIKM ’22. Atlanta, GA,
USA: Association for Computing Machinery, 2022, 396–405. ISBN: 9781450392365.
DOI: 10.1145/3511808.3557266. URL: https://doi.org/10.1145/3511808.
3557266.

[19] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization”. In: J. Mach. Learn. Res.
12.null (2011), 2121–2159. ISSN: 1532-4435.

[20] Travis Ebesu, Bin Shen, and Yi Fang. “Collaborative Memory Network for
Recommendation Systems”. In: The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI,
USA: Association for Computing Machinery, 2018, 515–524. ISBN: 9781450356572.

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1090/S0002-9939-07-09020-X
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/3460231.3475943
https://doi.org/10.1145/3460231.3475943
https://doi.org/10.1145/3460268.3460270
https://doi.org/10.1145/3460268.3460270
https://doi.org/10.1145/3460268.3460270
https://doi.org/10.1145/3511808.3557266
https://doi.org/10.1145/3511808.3557266
https://doi.org/10.1145/3511808.3557266

Bibliography 80

DOI: 10.1145/3209978.3209991. URL: https://doi.org/10.1145/3209978.
3209991.

[21] Xinyan Fan et al. “Lighter and Better: Low-Rank Decomposed Self-Attention
Networks for Next-Item Recommendation”. In: Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’21. Virtual Event, Canada: Association for Computing Machin-
ery, 2021, 1733–1737. ISBN: 9781450380379. DOI: 10.1145/3404835.3462978.
URL: https://doi.org/10.1145/3404835.3462978.

[22] Ziwei Fan et al. “Modeling sequences as distributions with uncertainty for
sequential recommendation”. In: Proceedings of the 30th ACM international con-
ference on information & knowledge management. 2021, pp. 3019–3023.

[23] Ziwei Fan et al. “Sequential Recommendation via Stochastic Self-Attention”.
In: Proceedings of the ACM Web Conference 2022. WWW ’22. Virtual Event,
Lyon, France: Association for Computing Machinery, 2022, 2036–2047. ISBN:
9781450390965. DOI: 10.1145/3485447.3512077. URL: https://doi.org/10.
1145/3485447.3512077.

[24] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are We
Really Making Much Progress? A Worrying Analysis of Recent Neural Rec-
ommendation Approaches”. In: Proceedings of the 13th ACM Conference on Rec-
ommender Systems. RecSys ’19. Copenhagen, Denmark: Association for Com-
puting Machinery, 2019, 101–109. ISBN: 9781450362436. DOI: 10.1145/3298689.
3347058. URL: https://doi.org/10.1145/3298689.3347058.

[25] Andres Ferraro, Dietmar Jannach, and Xavier Serra. “Exploring Longitudinal
Effects of Session-Based Recommendations”. In: Proceedings of the 14th ACM
Conference on Recommender Systems. RecSys ’20. Virtual Event, Brazil: Associa-
tion for Computing Machinery, 2020, 474–479. ISBN: 9781450375832. DOI: 10.
1145/3383313.3412213. URL: https://doi.org/10.1145/3383313.3412213.

[26] Yarin Gal and Zoubin Ghahramani. “A Theoretically Grounded Application
of Dropout in Recurrent Neural Networks”. In: Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems. NIPS’16. Barcelona,
Spain: Curran Associates Inc., 2016, 1027–1035. ISBN: 9781510838819.

[27] Aleksandra Gałka, Jan Grubba, and Krzysztof Walentukiewicz. “Performance
and reproducibility of bert4rec”. In: European Conference on Advances in Databases
and Information Systems. Springer. 2023, pp. 620–628.

[28] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond Accu-
racy: Evaluating Recommender Systems by Coverage and Serendipity”. In:
Proceedings of the Fourth ACM Conference on Recommender Systems. RecSys ’10.
Barcelona, Spain: Association for Computing Machinery, 2010, 257–260. ISBN:
9781605589060. DOI: 10.1145/1864708.1864761. URL: https://doi.org/10.
1145/1864708.1864761.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[30] Michael U. Gutmann and Aapo Hyvärinen. “Noise-Contrastive Estimation of
Unnormalized Statistical Models, with Applications to Natural Image Statis-
tics”. In: J. Mach. Learn. Res. 13.null (2012), 307–361. ISSN: 1532-4435.

[31] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: His-
tory and Context”. In: ACM Trans. Interact. Intell. Syst. 5.4 (2015). ISSN: 2160-
6455. DOI: 10.1145/2827872. URL: https://doi.org/10.1145/2827872.

https://doi.org/10.1145/3209978.3209991
https://doi.org/10.1145/3209978.3209991
https://doi.org/10.1145/3209978.3209991
https://doi.org/10.1145/3404835.3462978
https://doi.org/10.1145/3404835.3462978
https://doi.org/10.1145/3485447.3512077
https://doi.org/10.1145/3485447.3512077
https://doi.org/10.1145/3485447.3512077
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3383313.3412213
https://doi.org/10.1145/3383313.3412213
https://doi.org/10.1145/3383313.3412213
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872

Bibliography 81

[32] Jesse Harte et al. “Leveraging Large Language Models for Sequential Recom-
mendation”. In: Proceedings of the 17th ACM Conference on Recommender Sys-
tems. RecSys ’23. Singapore, Singapore: Association for Computing Machin-
ery, 2023, 1096–1102. ISBN: 9798400702419. DOI: 10.1145/3604915.3610639.
URL: https://doi.org/10.1145/3604915.3610639.

[33] Xiangnan He et al. “Neural Collaborative Filtering”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth, Australia: Inter-
national World Wide Web Conferences Steering Committee, 2017, 173–182.
ISBN: 9781450349130. DOI: 10.1145/3038912.3052569. URL: https://doi.
org/10.1145/3038912.3052569.

[34] Xiangnan He et al. “Neural Collaborative Filtering”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17. Perth, Australia: Inter-
national World Wide Web Conferences Steering Committee, 2017, 173–182.
ISBN: 9781450349130. DOI: 10.1145/3038912.3052569. URL: https://doi.
org/10.1145/3038912.3052569.

[35] Zhankui He et al. “Locker: Locally Constrained Self-Attentive Sequential Rec-
ommendation”. In: Proceedings of the 30th ACM International Conference on In-
formation & Knowledge Management. CIKM ’21. Virtual Event, Queensland,
Australia: Association for Computing Machinery, 2021, 3088–3092. ISBN: 9781450384469.
DOI: 10.1145/3459637.3482136. URL: https://doi.org/10.1145/3459637.
3482136.

[36] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus)”. In:
arXiv preprint arXiv:1606.08415 (2016).

[37] Balázs Hidasi and Ádám Tibor Czapp. “The Effect of Third Party Imple-
mentations on Reproducibility”. In: Proceedings of the 17th ACM Conference
on Recommender Systems. RecSys ’23. Singapore, Singapore: Association for
Computing Machinery, 2023, 272–282. ISBN: 9798400702419. DOI: 10.1145/
3604915.3609487. URL: https://doi.org/10.1145/3604915.3609487.

[38] Balázs Hidasi and Ádám Tibor Czapp. “Widespread Flaws in Offline Evalu-
ation of Recommender Systems”. In: Proceedings of the 17th ACM Conference
on Recommender Systems. RecSys ’23. Singapore, Singapore: Association for
Computing Machinery, 2023, 848–855. ISBN: 9798400702419. DOI: 10.1145/
3604915.3608839. URL: https://doi.org/10.1145/3604915.3608839.

[39] Balázs Hidasi and Alexandros Karatzoglou. “Recurrent neural networks with
top-k gains for session-based recommendations”. In: Proceedings of the 27th
ACM international conference on information and knowledge management. 2018,
pp. 843–852.

[40] Balázs Hidasi et al. “Session-based Recommendations with Recurrent Neural
Networks”. In: (Nov. 2015).

[41] Yupeng Hou et al. “CORE: Simple and Effective Session-Based Recommen-
dation within Consistent Representation Space”. In: Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’22. Madrid, Spain: Association for Computing Machinery,
2022, 1796–1801. ISBN: 9781450387323. DOI: 10.1145/3477495.3531955. URL:
https://doi.org/10.1145/3477495.3531955.

[42] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative Filtering for Im-
plicit Feedback Datasets”. In: 2008 Eighth IEEE International Conference on Data
Mining. 2008, pp. 263–272. DOI: 10.1109/ICDM.2008.22.

https://doi.org/10.1145/3604915.3610639
https://doi.org/10.1145/3604915.3610639
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3459637.3482136
https://doi.org/10.1145/3459637.3482136
https://doi.org/10.1145/3459637.3482136
https://doi.org/10.1145/3604915.3609487
https://doi.org/10.1145/3604915.3609487
https://doi.org/10.1145/3604915.3609487
https://doi.org/10.1145/3604915.3608839
https://doi.org/10.1145/3604915.3608839
https://doi.org/10.1145/3604915.3608839
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1109/ICDM.2008.22

Bibliography 82

[43] Dietmar Jannach, Lukas Lerche, and Markus Zanker. “Recommending Based
on Implicit Feedback”. In: Social Information Access: Systems and Technologies.
Ed. by Peter Brusilovsky and Daqing He. Cham: Springer International Pub-
lishing, 2018, pp. 510–569. ISBN: 978-3-319-90092-6. DOI: 10.1007/978- 3-
319-90092-6_14. URL: https://doi.org/10.1007/978-3-319-90092-6_14.

[44] Dietmar Jannach and Malte Ludewig. “When Recurrent Neural Networks
Meet the Neighborhood for Session-Based Recommendation”. In: Proceedings
of the Eleventh ACM Conference on Recommender Systems. RecSys ’17. Como,
Italy: Association for Computing Machinery, 2017, 306–310. ISBN: 9781450346528.
DOI: 10.1145/3109859.3109872. URL: https://doi.org/10.1145/3109859.
3109872.

[45] Dietmar Jannach et al. “What Recommenders Recommend: An Analysis of
Recommendation Biases and Possible Countermeasures”. In: User Modeling
and User-Adapted Interaction 25.5 (2015), 427–491. ISSN: 0924-1868. DOI: 10.
1007/s11257-015-9165-3. URL: https://doi.org/10.1007/s11257-015-
9165-3.

[46] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-Based Evaluation
of IR Techniques”. In: ACM Trans. Inf. Syst. 20.4 (2002), 422–446. ISSN: 1046-
8188. DOI: 10.1145/582415.582418. URL: https://doi.org/10.1145/
582415.582418.

[47] Wang-Cheng Kang and Julian J. McAuley. “Self-Attentive Sequential Recom-
mendation”. In: Proceedings of IEEE International Conference on Data Mining.
ICDM ’19. IEEE Computer Society, 2018, pp. 197–206. ISBN: 978-1-5386-9159-
5. DOI: 10.1109%2fICDM.2018.00035.

[48] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[49] Anton Klenitskiy and Alexey Vasilev. “Turning Dross Into Gold Loss: Is BERT4Rec
Really Better than SASRec?” In: Proceedings of the 17th ACM Conference on Rec-
ommender Systems. RecSys ’23. Singapore, Singapore: Association for Com-
puting Machinery, 2023, 1120–1125. ISBN: 9798400702419. DOI: 10.1145/3604915.
3610644. URL: https://doi.org/10.1145/3604915.3610644.

[50] Yehuda Koren. “Factorization Meets the Neighborhood: A Multifaceted Col-
laborative Filtering Model”. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. KDD ’08. Las Vegas,
Nevada, USA: Association for Computing Machinery, 2008, 426–434. ISBN:
9781605581934. DOI: 10.1145/1401890.1401944. URL: https://doi.org/10.
1145/1401890.1401944.

[51] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix Factorization Tech-
niques for Recommender Systems”. In: Computer 42.8 (2009), pp. 30–37. DOI:
10.1109/MC.2009.263.

[52] Walid Krichene and Steffen Rendle. “On Sampled Metrics for Item Recom-
mendation”. In: Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. KDD ’20. Virtual Event, CA, USA: As-
sociation for Computing Machinery, 2020, 1748–1757. ISBN: 9781450379984.
DOI: 10.1145/3394486.3403226. URL: https://doi.org/10.1145/3394486.
3403226.

https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1109%2fICDM.2018.00035
https://doi.org/10.1145/3604915.3610644
https://doi.org/10.1145/3604915.3610644
https://doi.org/10.1145/3604915.3610644
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3394486.3403226
https://doi.org/10.1145/3394486.3403226
https://doi.org/10.1145/3394486.3403226

Bibliography 83

[53] Sara Latifi, Dietmar Jannach, and Andrés Ferraro. “Sequential Recommenda-
tion: A Study on Transformers, Nearest Neighbors and Sampled Metrics”. In:
Inf. Sci. 609.C (2022), 660–678. ISSN: 0020-0255. DOI: 10.1016/j.ins.2022.
07.079. URL: https://doi.org/10.1016/j.ins.2022.07.079.

[54] Chengxi Li et al. “STRec: Sparse Transformer for Sequential Recommenda-
tions”. In: Proceedings of the 17th ACM Conference on Recommender Systems.
RecSys ’23. Singapore, Singapore: Association for Computing Machinery, 2023,
101–111. ISBN: 9798400702419. DOI: 10.1145/3604915.3608779. URL: https:
//doi.org/10.1145/3604915.3608779.

[55] Jiacheng Li, Yujie Wang, and Julian McAuley. “Time Interval Aware Self-
Attention for Sequential Recommendation”. In: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining. WSDM ’20. Houston, TX,
USA: Association for Computing Machinery, 2020, 322–330. ISBN: 9781450368223.
DOI: 10.1145/3336191.3371786. URL: https://doi.org/10.1145/3336191.
3371786.

[56] Jing Li et al. “Neural Attentive Session-Based Recommendation”. In: Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment. CIKM ’17. Singapore, Singapore: Association for Computing Machin-
ery, 2017, 1419–1428. ISBN: 9781450349185. DOI: 10.1145/3132847.3132926.
URL: https://doi.org/10.1145/3132847.3132926.

[57] Jing Li et al. “Neural Attentive Session-Based Recommendation”. In: Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment. CIKM ’17. Singapore, Singapore: Association for Computing Machin-
ery, 2017, 1419–1428. ISBN: 9781450349185. DOI: 10.1145/3132847.3132926.
URL: https://doi.org/10.1145/3132847.3132926.

[58] Li Li, Yuxi Fan, and Kuo-Yi Lin. “A Survey on federated learning”. In: 2020
IEEE 16th International Conference on Control Automation (ICCA). 2020, pp. 791–
796. DOI: 10.1109/ICCA51439.2020.9264412.

[59] Yang Li et al. “Lightweight Self-Attentive Sequential Recommendation”. In:
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. CIKM ’21. Virtual Event, Queensland, Australia: Association for
Computing Machinery, 2021, 967–977. ISBN: 9781450384469. DOI: 10.1145/
3459637.3482448. URL: https://doi.org/10.1145/3459637.3482448.

[60] Chang Liu et al. “Noninvasive self-attention for side information fusion in se-
quential recommendation”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 5. 2021, pp. 4249–4256.

[61] Yang Liu, Alan Medlar, and Dorota Glowacka. “On the Consistency, Dis-
criminative Power and Robustness of Sampled Metrics in Offline Top-N Rec-
ommender System Evaluation”. In: Proceedings of the 17th ACM Conference
on Recommender Systems. RecSys ’23. Singapore, Singapore: Association for
Computing Machinery, 2023, 1152–1157. ISBN: 9798400702419. DOI: 10.1145/
3604915.3610651. URL: https://doi.org/10.1145/3604915.3610651.

[62] Zhiwei Liu et al. “Augmenting Sequential Recommendation with Pseudo-
Prior Items via Reversely Pre-Training Transformer”. In: Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. SIGIR ’21. Virtual Event, Canada: Association for Computing
Machinery, 2021, 1608–1612. ISBN: 9781450380379. DOI: 10.1145/3404835.
3463036. URL: https://doi.org/10.1145/3404835.3463036.

https://doi.org/10.1016/j.ins.2022.07.079
https://doi.org/10.1016/j.ins.2022.07.079
https://doi.org/10.1016/j.ins.2022.07.079
https://doi.org/10.1145/3604915.3608779
https://doi.org/10.1145/3604915.3608779
https://doi.org/10.1145/3604915.3608779
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1109/ICCA51439.2020.9264412
https://doi.org/10.1145/3459637.3482448
https://doi.org/10.1145/3459637.3482448
https://doi.org/10.1145/3459637.3482448
https://doi.org/10.1145/3604915.3610651
https://doi.org/10.1145/3604915.3610651
https://doi.org/10.1145/3604915.3610651
https://doi.org/10.1145/3404835.3463036
https://doi.org/10.1145/3404835.3463036
https://doi.org/10.1145/3404835.3463036

Bibliography 84

[63] Zhiwei Liu et al. “Contrastive self-supervised sequential recommendation
with robust augmentation”. In: arXiv preprint arXiv:2108.06479 (2021).

[64] Malte Ludewig and Dietmar Jannach. “Evaluation of session-based recom-
mendation algorithms”. In: User Modeling and User-Adapted Interaction 28 (2018),
pp. 331–390.

[65] Malte Ludewig and Dietmar Jannach. “User-Centric Evaluation of Session-
Based Recommendations for an Automated Radio Station”. In: Proceedings
of the 13th ACM Conference on Recommender Systems. RecSys ’19. Copenhagen,
Denmark: Association for Computing Machinery, 2019, 516–520. ISBN: 9781450362436.
DOI: 10.1145/3298689.3347046. URL: https://doi.org/10.1145/3298689.
3347046.

[66] Malte Ludewig et al. “Empirical analysis of session-based recommendation
algorithms: A comparison of neural and non-neural approaches”. In: User
Modeling and User-Adapted Interaction 31 (2021), pp. 149–181.

[67] Haokai Ma et al. “Exploring False Hard Negative Sample in Cross-Domain
Recommendation”. In: Proceedings of the 17th ACM Conference on Recommender
Systems. RecSys ’23. Singapore, Singapore: Association for Computing Ma-
chinery, 2023, 502–514. ISBN: 9798400702419. DOI: 10.1145/3604915.3608791.
URL: https://doi.org/10.1145/3604915.3608791.

[68] Jianxin Ma et al. “Disentangled Self-Supervision in Sequential Recommenders”.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. KDD ’20. Virtual Event, CA, USA: Association for
Computing Machinery, 2020, 483–491. ISBN: 9781450379984. DOI: 10.1145/
3394486.3403091. URL: https://doi.org/10.1145/3394486.3403091.

[69] Julian McAuley et al. “Image-Based Recommendations on Styles and Substi-
tutes”. In: Proceedings of the 38th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. SIGIR ’15. Santiago, Chile: As-
sociation for Computing Machinery, 2015, 43–52. ISBN: 9781450336215. DOI:
10.1145/2766462.2767755. URL: https://doi.org/10.1145/2766462.
2767755.

[70] Bibek Paudel et al. “Updatable, Accurate, Diverse, and Scalable Recommen-
dations for Interactive Applications”. In: ACM Trans. Interact. Intell. Syst. 7.1
(2016). ISSN: 2160-6455. DOI: 10.1145/2955101. URL: https://doi.org/10.
1145/2955101.

[71] Aleksandr Petrov and Craig Macdonald. “A Systematic Review and Repli-
cability Study of BERT4Rec for Sequential Recommendation”. In: Proceed-
ings of the 16th ACM Conference on Recommender Systems. RecSys ’22. Seat-
tle, WA, USA: Association for Computing Machinery, 2022, 436–447. ISBN:
9781450392785. DOI: 10.1145/3523227.3548487. URL: https://doi.org/10.
1145/3523227.3548487.

[72] Aleksandr Petrov and Craig Macdonald. “Effective and Efficient Training for
Sequential Recommendation Using Recency Sampling”. In: Proceedings of the
16th ACM Conference on Recommender Systems. RecSys ’22. Seattle, WA, USA:
Association for Computing Machinery, 2022, 81–91. ISBN: 9781450392785. DOI:
10.1145/3523227.3546785. URL: https://doi.org/10.1145/3523227.
3546785.

https://doi.org/10.1145/3298689.3347046
https://doi.org/10.1145/3298689.3347046
https://doi.org/10.1145/3298689.3347046
https://doi.org/10.1145/3604915.3608791
https://doi.org/10.1145/3604915.3608791
https://doi.org/10.1145/3394486.3403091
https://doi.org/10.1145/3394486.3403091
https://doi.org/10.1145/3394486.3403091
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2955101
https://doi.org/10.1145/2955101
https://doi.org/10.1145/2955101
https://doi.org/10.1145/3523227.3548487
https://doi.org/10.1145/3523227.3548487
https://doi.org/10.1145/3523227.3548487
https://doi.org/10.1145/3523227.3546785
https://doi.org/10.1145/3523227.3546785
https://doi.org/10.1145/3523227.3546785

Bibliography 85

[73] Aleksandr Vladimirovich Petrov and Craig Macdonald. “GSASRec: Reduc-
ing Overconfidence in Sequential Recommendation Trained with Negative
Sampling”. In: Proceedings of the 17th ACM Conference on Recommender Sys-
tems. RecSys ’23. Singapore, Singapore: Association for Computing Machin-
ery, 2023, 116–128. ISBN: 9798400702419. DOI: 10.1145/3604915.3608783.
URL: https://doi.org/10.1145/3604915.3608783.

[74] Ruihong Qiu et al. “Contrastive Learning for Representation Degeneration
Problem in Sequential Recommendation”. In: Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining. WSDM ’22. Virtual
Event, AZ, USA: Association for Computing Machinery, 2022, 813–823. ISBN:
9781450391320. DOI: 10.1145/3488560.3498433. URL: https://doi.org/10.
1145/3488560.3498433.

[75] Massimo Quadrana et al. “Personalizing Session-Based Recommendations
with Hierarchical Recurrent Neural Networks”. In: Proceedings of the Eleventh
ACM Conference on Recommender Systems. RecSys ’17. Como, Italy: Associa-
tion for Computing Machinery, 2017, 130–137. ISBN: 9781450346528. DOI: 10.
1145/3109859.3109896. URL: https://doi.org/10.1145/3109859.3109896.

[76] Pengjie Ren et al. “RepeatNet: A Repeat Aware Neural Recommendation Ma-
chine for Session-Based Recommendation”. In: Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference and Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19. Hon-
olulu, Hawaii, USA: AAAI Press, 2019. ISBN: 978-1-57735-809-1. DOI: 10 .
1609/aaai.v33i01.33014806. URL: https://doi.org/10.1609/aaai.
v33i01.33014806.

[77] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from Implicit Feed-
back”. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press, 2009, 452–461.
ISBN: 9780974903958.

[78] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Recommender systems:
introduction and challenges”. In: Recommender systems handbook (2015), pp. 1–
34.

[79] Stephen Robertson. “Understanding inverse document frequency: on theo-
retical arguments for IDF”. In: Journal of documentation 60.5 (2004), pp. 503–
520.

[80] Peter Gordon Roetzel. “Information overload in the information age: a re-
view of the literature from business administration, business psychology, and
related disciplines with a bibliometric approach and framework develop-
ment”. In: Business Research (2018), pp. 1–44. URL: https://api.semanticscholar.
org/CorpusID:149923282.

[81] Badrul Sarwar et al. “Item-Based Collaborative Filtering Recommendation
Algorithms”. In: Proceedings of the 10th International Conference on World Wide
Web. WWW ’01. Hong Kong, Hong Kong: Association for Computing Ma-
chinery, 2001, 285–295. ISBN: 1581133480. DOI: 10.1145/371920.372071. URL:
https://doi.org/10.1145/371920.372071.

[82] Barry Schwartz. The paradox of choice: Why more is less. Harper Perennial, 2004.

https://doi.org/10.1145/3604915.3608783
https://doi.org/10.1145/3604915.3608783
https://doi.org/10.1145/3488560.3498433
https://doi.org/10.1145/3488560.3498433
https://doi.org/10.1145/3488560.3498433
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1609/aaai.v33i01.33014806
https://api.semanticscholar.org/CorpusID:149923282
https://api.semanticscholar.org/CorpusID:149923282
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071

Bibliography 86

[83] Guy Shani, Ronen I. Brafman, and David Heckerman. “An MDP-Based Rec-
ommender System”. In: Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence. UAI’02. Alberta, Canada: Morgan Kaufmann Publish-
ers Inc., 2002, 453–460. ISBN: 1558608974.

[84] Faisal Shehzad and Dietmar Jannach. “Everyone’s a Winner! On Hyperpa-
rameter Tuning of Recommendation Models”. In: Proceedings of the 17th ACM
Conference on Recommender Systems. RecSys ’23. Singapore, Singapore: Asso-
ciation for Computing Machinery, 2023, 652–657. ISBN: 9798400702419. DOI:
10.1145/3604915.3609488. URL: https://doi.org/10.1145/3604915.
3609488.

[85] Derya Soydaner. “A Comparison of Optimization Algorithms for Deep Learn-
ing”. In: International Journal of Pattern Recognition and Artificial Intelligence
34.13 (2020), p. 2052013. DOI: 10.1142/S0218001420520138. eprint: https:
//doi.org/10.1142/S0218001420520138. URL: https://doi.org/10.1142/
S0218001420520138.

[86] Cheri Speier, Joseph S Valacich, and Iris Vessey. “The influence of task in-
terruption on individual decision making: An information overload perspec-
tive”. In: Decision sciences 30.2 (1999), pp. 337–360.

[87] Fei Sun et al. “BERT4Rec: Sequential Recommendation with Bidirectional En-
coder Representations from Transformer”. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. CIKM ’19.
Beijing, China: Association for Computing Machinery, 2019, 1441–1450. ISBN:
9781450369763. DOI: 10.1145/3357384.3357895. URL: https://doi.org/10.
1145/3357384.3357895.

[88] Gábor Takács et al. “Matrix Factorization and Neighbor Based Algorithms
for the Netflix Prize Problem”. In: Proceedings of the 2008 ACM Conference
on Recommender Systems. RecSys ’08. Lausanne, Switzerland: Association for
Computing Machinery, 2008, 267–274. ISBN: 9781605580937. DOI: 10.1145/
1454008.1454049. URL: https://doi.org/10.1145/1454008.1454049.

[89] Yong Kiam Tan, Xinxing Xu, and Yong Liu. “Improved Recurrent Neural Net-
works for Session-Based Recommendations”. In: Proceedings of the 1st Work-
shop on Deep Learning for Recommender Systems. DLRS 2016. Boston, MA, USA:
Association for Computing Machinery, 2016, 17–22. ISBN: 9781450347952. DOI:
10.1145/2988450.2988452. URL: https://doi.org/10.1145/2988450.
2988452.

[90] Gongbo Tang et al. “Why self-attention? a targeted evaluation of neural ma-
chine translation architectures”. In: arXiv preprint arXiv:1808.08946 (2018).

[91] Jiaxi Tang and Ke Wang. “Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding”. In: Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. WSDM ’18. Marina Del
Rey, CA, USA: Association for Computing Machinery, 2018, 565–573. ISBN:
9781450355810. DOI: 10.1145/3159652.3159656. URL: https://doi.org/10.
1145/3159652.3159656.

[92] Wilson L Taylor. ““Cloze procedure”: A new tool for measuring readability”.
In: Journalism quarterly 30.4 (1953), pp. 415–433.

[93] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS’17. Long
Beach, California, USA: Curran Associates Inc., 2017, 6000–6010. ISBN: 9781510860964.

https://doi.org/10.1145/3604915.3609488
https://doi.org/10.1145/3604915.3609488
https://doi.org/10.1145/3604915.3609488
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/1454008.1454049
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656

Bibliography 87

[94] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. “DropoutNet: Address-
ing Cold Start in Recommender Systems”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17. Long
Beach, California, USA: Curran Associates Inc., 2017, 4964–4973. ISBN: 9781510860964.

[95] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. “Unifying User-Based
and Item-Based Collaborative Filtering Approaches by Similarity Fusion”. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’06. Seattle, Washington, USA:
Association for Computing Machinery, 2006, 501–508. ISBN: 1595933697. DOI:
10.1145/1148170.1148257. URL: https://doi.org/10.1145/1148170.
1148257.

[96] Shoujin Wang et al. “A Survey on Session-Based Recommender Systems”. In:
ACM Comput. Surv. 54.7 (2021). ISSN: 0360-0300. DOI: 10.1145/3465401. URL:
https://doi.org/10.1145/3465401.

[97] Tianxin Wei et al. “Model-Agnostic Counterfactual Reasoning for Eliminat-
ing Popularity Bias in Recommender System”. In: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. KDD ’21. Virtual
Event, Singapore: Association for Computing Machinery, 2021, 1791–1800.
ISBN: 9781450383325. DOI: 10.1145/3447548.3467289. URL: https://doi.
org/10.1145/3447548.3467289.

[98] Liwei Wu et al. “SSE-PT: Sequential Recommendation Via Personalized Trans-
former”. In: Proceedings of the 14th ACM Conference on Recommender Systems.
RecSys ’20. Virtual Event, Brazil: Association for Computing Machinery, 2020,
328–337. ISBN: 9781450375832. DOI: 10.1145/3383313.3412258. URL: https:
//doi.org/10.1145/3383313.3412258.

[99] Xu Xie et al. “Contrastive learning for sequential recommendation”. In: 2022
IEEE 38th international conference on data engineering (ICDE). IEEE. 2022, pp. 1259–
1273.

[100] Chengfeng Xu et al. “Long-and short-term self-attention network for sequen-
tial recommendation”. In: Neurocomputing 423 (2021), pp. 580–589.

[101] Shahpar Yakhchi et al. “Towards a Deep Attention-Based Sequential Recom-
mender System”. In: IEEE Access 8 (2020), pp. 178073–178084. DOI: 10.1109/
ACCESS.2020.3004656.

[102] Junliang Yu et al. “Self-supervised learning for recommender systems: A sur-
vey”. In: IEEE Transactions on Knowledge and Data Engineering (2023).

[103] Shuai Zhang et al. “Deep Learning Based Recommender System: A Survey
and New Perspectives”. In: ACM Comput. Surv. 52.1 (2019). ISSN: 0360-0300.
DOI: 10.1145/3285029. URL: https://doi.org/10.1145/3285029.

[104] Shuai Zhang et al. “Deep Learning Based Recommender System: A Survey
and New Perspectives”. In: ACM Comput. Surv. 52.1 (2019). ISSN: 0360-0300.
DOI: 10.1145/3285029. URL: https://doi.org/10.1145/3285029.

[105] Tingting Zhang et al. “Feature-Level Deeper Self-Attention Network for Se-
quential Recommendation”. In: Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence. IJCAI’19. Macao, China: AAAI Press, 2019,
4320–4326. ISBN: 9780999241141.

https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/1148170.1148257
https://doi.org/10.1145/3465401
https://doi.org/10.1145/3465401
https://doi.org/10.1145/3447548.3467289
https://doi.org/10.1145/3447548.3467289
https://doi.org/10.1145/3447548.3467289
https://doi.org/10.1145/3383313.3412258
https://doi.org/10.1145/3383313.3412258
https://doi.org/10.1145/3383313.3412258
https://doi.org/10.1109/ACCESS.2020.3004656
https://doi.org/10.1109/ACCESS.2020.3004656
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029

Bibliography 88

[106] Qihang Zhao. “RESETBERT4Rec: A Pre-Training Model Integrating Time And
User Historical Behavior for Sequential Recommendation”. In: Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’22. Madrid, Spain: Association for Computing
Machinery, 2022, 1812–1816. ISBN: 9781450387323. DOI: 10.1145/3477495.
3532054. URL: https://doi.org/10.1145/3477495.3532054.

[107] Yuhang Zhao. “Analysis of TikTok’s Success Based on Its Algorithm Mecha-
nism”. In: 2020 International Conference on Big Data and Social Sciences (ICBDSS).
2020, pp. 19–23. DOI: 10.1109/ICBDSS51270.2020.00012.

[108] Kun Zhou et al. “S3-Rec: Self-Supervised Learning for Sequential Recommen-
dation with Mutual Information Maximization”. In: Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. CIKM
’20. Virtual Event, Ireland: Association for Computing Machinery, 2020, 1893–1902.
ISBN: 9781450368599. DOI: 10.1145/3340531.3411954. URL: https://doi.
org/10.1145/3340531.3411954.

[109] Tao Zhou et al. “Solving the apparent diversity-accuracy dilemma of recom-
mender systems”. In: Proceedings of the National Academy of Sciences 107.10
(2010), pp. 4511–4515.

https://doi.org/10.1145/3477495.3532054
https://doi.org/10.1145/3477495.3532054
https://doi.org/10.1145/3477495.3532054
https://doi.org/10.1109/ICBDSS51270.2020.00012
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1145/3340531.3411954

	Abstract
	Introduction
	Motivation for recommender systems
	Recommendation tasks
	Collaboration with Delivery Hero Research
	Evaluating recommender systems
	Models for recommendation
	Motivation and scope
	Research questions
	Thesis outline

	Background and related work
	Matrix-based recommendation
	Sequential and session recommendation
	Models for session recommendation
	Reproducibility issues

	Preliminaries
	Datasets
	Train-validation-test split
	Evaluation setup
	Hyperparameter optimization

	Model comparison
	Baselines
	Hyperparameters and search space
	Implementation details
	Evaluation results

	Recommendation analysis
	How much do the recommendations overlap?
	How does the K parameter affect model behaviour?
	How does item popularity affect model behaviour?
	How does session length affect model behaviour?
	How do items at different positions in the sessions affect the recommendations?
	Discussion

	Simplifying models
	Last item optimization
	Exploiting non-last items
	Discussion

	Conclusion
	Discussion
	Bibliography

