

Delft University of Technology

Efficient Graph Processing

Spinellis, Diomidis

DOI
10.1109/MS.2024.3477013
Publication date
2025
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2025). Efficient Graph Processing. IEEE Software, 42(1), 22-25.
https://doi.org/10.1109/MS.2024.3477013

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3477013
https://doi.org/10.1109/MS.2024.3477013

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

22	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E

ADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

SCIENCE TYPICALLY ADVANCES
in small incremental steps, but in some
rare instances it leaps forward. One
discovery or invention can change how
we see the world around us. Would
it not be neat to be able to accurately
pinpoint those moments of time in an
objective way and thereby investigate
science and technology’s progress? In
2016, Russel Funk of the University of
Minnesota’s Carlson School of Man-
agement and Jason Owen-Smith from
the University of Michigan published
a measure for exactly this purpose.1
Their so-called consolidation-disrup-
tion (CD) index quantifies the extent
to which published findings affect the
subsequent use of the knowledge on
which those findings relied. Worry-
ingly, a widely cited subsequent study
applied this measure on patents and
scientific publications, finding a slow-
down in disruptive progress.2 Thicken-
ing the plot, a later preprint attributed
the finding to dataset artefacts.3 These
studies prompt the need for an efficient
way to calculate the CD index on large
amounts of openly available data.

The CD index for a given publica-
tion (or patent) is calculated by exam-
ining the citation graph associated with

it: earlier citations cited by the publica-
tion and subsequent publications that
cite the given publication and the pub-
lications it cites. When later publica-
tions cite both the examined one and
the ones it cites [Figure 1(a)], it is con-
sidered a consolidating development.
On the other hand, when subsequent
publications do not seem to bother
citing the ones the examined publica-
tion cites [Figure 1(b)], the publication
indicates a destabilizing development
because it marks a shift in the type of
knowledge considered important. The
CD metric formalizes this idea with a
method normalizing citation ratios be-
tween the two extreme cases to a range
from –1 (maximally consolidating) to 1
(maximally disrupting), with details

for examining a specific time horizon
(e.g., CD5 for five years) and with a
weight that considers a publication’s
importance. Commendably, Funk has
released cdindex, an open source soft-
ware Python package that calculates
the CD index.4 The calculation is per-
formed by building a graph containing
all publications linked by their cita-
tions as incoming and outgoing edges.
After that, the offered cdindex function
can form a set with all citations re-
lated to a publication and a specified
time horizon, add them up according
to their source and destination, and
finally divide the sums by the set’s
cardinality to derive the CD index.

Calculating the CD index for all pub-
lications in a large dataset is expensive.

Efficient Graph Processing
Diomidis Spinellis

T1 T2 T3 T1

Focal
Node

(a) (b)

Focal
Node

T2 T3

FIGURE 1. (a) A maximally consolidating and (b) a maximally destabilizing publication.
Digital Object Identifier 10.1109/MS.2024.3477013
Date of current version: 11 December 2024

mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

	 JANUARY/FEBRUARY 2025 | IEEE SOFTWARE � 23

Take as an example the publication
and citation data released this year by
Crossref, a scholarly research com-
munity nonprofit organization, which
is the largest digital object identifier
registration agency. The data contain
details about 158 million publications
linked through 2.3 billion citations: an
immense graph. Based on the cost of
processing just 3 million publications,
I estimate it would take 22 days to cal-
culate the CD index for all of them.

In the next sections I describe
how I optimized the original cdindex
package and its use to bring the fig-
ure down to a dozen hours. The op-
timized code and the steps I took to
arrive to it are available on GitHub as
a repository and its commit history.5
In common with many performance
optimization tasks, optimization came
down to the employment of efficient
data structures and algorithms, as
well as parallelization.

Efficient Data Structures
As is the case with many of Python’s
scientific and machine learning librar-
ies, the original CD index implemen-
tation is a Python module where some
C code does the heavy lifting. This
is an appropriate choice because the
same code written in Python would
use considerably more time and mem-
ory. The module works by represent-
ing publications and their citations as
a graph, stored in a dynamically allo-
cated array of vertices.

typedef struct Graph {
  Vertex *vs;
  long int vcount;
  long int ecount;
} Graph;

The index of each vertex in the ar-
ray is used to represent its identifier,
which allows accessing a vertex with a
quick array lookup. The graph’s edges

are represented through an adjacency
list. Each graph vertex maintains a list
of its incoming and outgoing edges in
dynamically allocated arrays of vertex
identifiers as follows:

typedef struct Vertex {
  long int id;
  long int timestamp;
  long int *in_edges;
  long int *out_edges;
  long int in_degree;
  long int out_degree;
} Vertex;

This graph representation and its
implementation offer several optimi-
zation opportunities.

First, the addition of each new
edge reallocates space for the in_edges
and out_edges arrays, potentially copy-
ing the existing array data to the
larger newly allocated space. The cost
of this operation is not constant: it de-
pends on the number of stored edges.
The same logic applies to the addi-
tion of each vertex. Consequently, this
changes the complexity cost of con-
structing a graph with V vertices and
E edges from 0(V + E) into 0(V2 + E2).
In general, implementing an algorithm
with operations costing more than 0(1)
increases the algorithm’s complexity.

A second issue is that the represen-
tation of the graph’s vertices as inte-
ger indices into the array of vertices
burdens the CD index calculation
with the cost of indirections through
the array. In most modern languages
this cost can be avoided by storing
the edge data as pointers to the corre-
sponding vertices rather than as inte-
ger identifiers of them. For example,
rather than accessing the time stamp
of a vertex v as vs[v].timestamp, we can
access it as v->timestamp.

A third issue is that each vertex’s in
and out degrees are stored explicitly
and also duplicated in the metadata

of the dynamically allocated memory
used for storing the corresponding
edges. This wastes memory, which for
millions of vertices adds up.

Finally, all these issues result in
less predictable and more memory
accesses, which, as a secondary ef-
fect, reduce the benefits of the CPU’s
caches, increasing the calculation’s
run time.

The reallocation cost can be eas-
ily reduced by doubling the allocated
memory each time it exceeds the orig-
inally allocated space. However, it is
counterproductive and error-prone to
explicitly optimize memory alloca-
tions. Instead, it is best to reuse exist-
ing polished and tested libraries. In
this case, an obvious choice is the C++
Standard Template Library (STL)
std::vector data structure, which allows
us to store each vertex as follows:

class Vertex {
private:
  timestamp_t timestamp;
  std::vector<Vertex *> in_edges;
  std::vector<Vertex *> out_edges;
}

Adding elements to a C++ std::vector
via the push_back method is guaran-
teed to have an amortized constant
time cost, thereby avoiding the algo-
rithmic complexity increase of real-
locating memory as each element is
added. (Internally, the std::vector im-
plementation is most likely using the
doubling of allocated space method,
but this is not something that we
need to care about.) Furthermore,
the two edge vectors store pointers
to other vertices, thereby eliminating
the cost of indirecting through ver-
tex identifiers. Finally, the vertex’s in
and out degrees are obtained through
methods that return the size of the
underlying vectors, eliminating the
cost of duplicating this information.

ADVENTURES IN CODE

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

size_t get_in_degree() const {
  return in_edges.size();
}
size_t get_out_degree() const {
  return out_edges.size();
}

The size of the original vertex data
structure is 48 bytes on an x86-64
CPU. To this, one must add the
24 byte overhead for maintaining
each of the two dynamically allocated
arrays, which gives a total empty ver-
tex footprint of 96 bytes. In contrast,
the size of the C++ Vertex implemen-
tation is 56 bytes, almost half of the
original footprint.

One remaining issue regarding the
new implementation is the represen-
tation of the C++ vertex pointers in
Python, which (rightly) lacks support
for unrestricted pointers. I addressed
this by defining a union data type that
stores a vertex identifier both as a
pointer to the vertex data and as an
(unsigned long) integer overlayed over
the same area as the pointer.

typedef union {
  unsigned long int id;
  Vertex *v;
} vertex_id_t;

This allows Python’s C interface
to obtain and return the vertex iden-
tifiers through id as integers with the
same bit representation as the origi-
nal C++ pointers. Correspondingly,
the C++ code processes the vertex
identifiers through v as pointers.

Efficient Algorithms
The original implementation of the
CD index calculation also offered
opportunities to employ more effi-
cient algorithms. In two loops and
two doubly nested loops the calcula-
tion calls the function in_int_array to
determine whether a specific vertex

is connected to another. The function
works by performing a linear search
through the array’s elements, which
results in a quadratic blowup in the
algorithm’s polynomial complexity.

An alternative to this method might
be storing the edges as an STL std::set
data structure, whose lookup com-
plexity is much more efficient: loga-
rithmic rather than linear. However,
this data structure requires addi-
tional space, which I wanted to avoid
for the billions of edges that would
get stored. I addressed this by capi-
talizing on the fact that the CD in-
dex calculation is performed by first
building the complete graph and then
processing its vertices without fur-
ther modifying it. This allowed me
to write a method that can be called
at the end of the graph’s construc-
tion to optimize the graph for further
processing.

void Graph::prepare_for_searching() {
  for (auto i: versus) {
   i->shrink_to_fit();
   i->sort_out_edges();
}
}

The method does two things.
First, it disposes unused space that
was initially (over)allocated for the
efficient addition of edges.

void Vertex::shrink_to_fit() {
  out_edges.shrink_to_fit();
  in_edges.shrink_to_fit();
}

Second, it sorts the vector con-
taining the outgoing edges (which
are the ones that are searched for the
CD index calculation).

void Vertex::sort_out_edges() {
  std::sort(out_edges.begin(), out_edges.end());
}

The sorted vector allows a vertex’s
edges to be searched with an efficient
0(log N) binary search rather than
the original more expensive 0(N) one
without any storage overhead.

A further similar optimization
opportunity presents itself in the
CD calculation at the point where it
builds a set of vertices that are the
incoming edges of the focal vertex’s
outgoing edges at a given time stamp.
As this data structure is transient for
each edge, it makes sense to build it
as an STL std::set from the beginning
and use its efficient 0(log N) opera-
tions for adding unique elements to
it and then iterating through them.

  std::set<Vertex *> it;
[…]
  it.insert(out_edge_i_in_edge_i);
[…]
  it.insert(in_edge_i);
[…]
  for (auto i: it) {
[…]

Careful performance measure-
ments should always back any per-
formed code optimizations. In this
case, the vertex addition throughput
actually dropped from 109 vertices
per second to 91 vertices per second,
but the edge addition throughout in-
creased from 74 edges per second
to 241 edges per second. More im-
portantly, the CD index calculation
throughput also increased from 84
values per second to a sprightly 672
values per second. For the 2024 Cross-
ref publication dataset these numbers
would bring down the estimated cal-
culation duration from 22 days to
fewer than three days.

And Parallelization
Three days is still a significant time
for a job to run, so it makes sense to
examine whether this can be further

ADVENTURES IN CODE

	 JANUARY/FEBRUARY 2025 | IEEE SOFTWARE � 25

reduced. An important insight is that
once the graph is built, the CD index
calculations can be performed inde-
pendently from each other, making it
a trivially parallelizable operation.

Unfortunately, achieving this par-
allelism in Python is close to impos-
sible. The two alternatives involve
using multiple threads or multiple
processes. Multiple threads in Python,
run, e.g., with ThreadPoolExecutor, are not
helpful for CPU-bound tasks, such as
the CD index calculation, because
a global interpreter lock prevents
more than one processing thread
from being executed concurrently.
In the case of multiple processes
sharing the graph’s data structure,
another feature of Python kicks
in to limit the method’s potential.
Because Python maintains a refer-
ence count for the objects it uses,
when one of the multiple processes
accesses the shared graph’s data
structure, the corresponding refer-
ence counts get incremented. This
forces the operating system kernel’s
copy-on-write mechanism to cre-
ate a private (nonshared) copy of
the corresponding data, resulting
in hugely expensive data copies and
memory size increases. (The 2024
Crossref dataset citation graph oc-
cupies 62 GiB of RAM.)

Consequently, I decided to per-
form the CD index calculation en-
tirely in C++ rather than in Python.5
This mainly involved rewriting the
Python driver code into C++. C++
has matured significantly over the
past decades, becoming considerably
more expressive. Its expressiveness
allowed me to rewrite the 154 lines
of Python code into just 241 lines of
C++ code, which also utilized con-
currency through the CPU’s multiple
processing cores.

I designed the concurrent process-
ing based on STL’s parallel algorithms,

introduced in C++17. Specifically,
I implemented the parallelism by con-
structing multiple batches of nodes
that could be processed by a single
worker. Batching together a few thou-
sand nodes reduces the overhead of
coordinating workers by amortizing it
over a larger amount of work.

const int BATCH_SIZE = 10000;
vector <work_type> chunks;
auto pos = s2v.begin();
auto begin = pos;
size_t i;
for (i = 0; i < s2v.size(); i++, pos++)
  if (i > 0 && i % BATCH_SIZE == 0) {
   chunks.push_back(pair{begin, pos});
   begin = pos;
  }

With these chunks at hand I could
then invoke the std::for_each algorithm,
which applies a function to each ele-
ment in a range.

for_each(execution::par_unseq, chunks.begin(),
chunks.end(), worker);

The specified par_unseq execution
policy allows the elements to be exe-
cuted in parallel in different threads,
while worker is the function that calcu-
lates the CD index for each element in
the chunk.

Running the CD5 index calculation
on the entire 2024 Crossref dataset
on a 40-core CPU took 3.7 h of wall

clock time against 79 h of CPU time,
giving a speedup of close to 22 times
compared with the sequential execu-
tion and more than 140 times com-
pared with the original unoptimized
CD index implementation.

REFERENCES
	 1.	R. J. Funk and J. Owen-Smith, “A

dynamic network measure of tech-

nological change,” Manage. Sci.,

vol. 63, no. 3, pp. 791–817, 2016,

doi: 10.1287/mnsc.2015.2366.

	 2.	M. Park, E. Leahey, and R. J.

Funk, “Papers and patents are

becoming less disruptive over time,”

Nature, vol. 613, no. 7942, pp.

138–144, 2023, doi: 10.1038/

s41586-022-05543-x.

	 3.	V. Holst, A. Algaba, F. Tori, S.

Wenmackers, and V. Ginis, “Dataset

artefacts are the hidden drivers of the

declining disruptiveness in science,”

2024, arXiv:2402.14583.

	 4.	R. J. Funk. “cdinex.” GitHub. Ac-

cessed: Oct. 17, 2024. [Online].

Available: https://github.com/

russellfunk/cdindex

	 5.	R. J. Funk and D. Spinellis. “fast-

cdindex.” GitHub. Accessed: Oct. 17,

2024. [Online]. Available: https://

github.com/dspinellis/fast-cdindex/

	 6.	D. Spinellis, “Open reproducible

scientometric research with Alexan-

dria3k,” PLoS One, vol. 18, no. 11,

Nov. 2023, Art. no. e0294946, doi:

10.1371/journal.pone.0294946.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology, Athens University of Economics and Business,

104 34 Athens, Greece, and a professor of software analytics in the

Department of Software Technology, Delft University of Technology, 2600

AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact him at

dds@aueb.gr.

http://dx.doi.org/10.1287/mnsc.2015.2366
http://dx.doi.org/10.1038/s41586-022-05543-x
http://dx.doi.org/10.1038/s41586-022-05543-x
https://github.com/russellfunk/cdindex
https://github.com/russellfunk/cdindex
https://github.com/dspinellis/fast-cdindex/
https://github.com/dspinellis/fast-cdindex/
http://dx.doi.org/10.1371/journal.pone.0294946

	022_42ms01-adventurescode-3477013

