
 
 

Delft University of Technology

Efficient Graph Processing

Spinellis, Diomidis

DOI
10.1109/MS.2024.3477013
Publication date
2025
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2025). Efficient Graph Processing. IEEE Software, 42(1), 22-25.
https://doi.org/10.1109/MS.2024.3477013

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3477013
https://doi.org/10.1109/MS.2024.3477013


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 



22	 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E

ADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

SCIENCE TYPICALLY ADVANCES 
in small incremental steps, but in some 
rare instances it leaps forward. One 
discovery or invention can change how 
we see the world around us. Would 
it not be neat to be able to accurately 
pinpoint those moments of time in an 
objective way and thereby investigate 
science and technology’s progress? In 
2016, Russel Funk of the University of 
Minnesota’s Carlson School of Man-
agement and Jason Owen-Smith from 
the University of Michigan published 
a measure for exactly this purpose.1 
Their so-called consolidation-disrup-
tion (CD) index quantifies the extent 
to which published findings affect the 
subsequent use of the knowledge on 
which those findings relied. Worry-
ingly, a widely cited subsequent study 
applied this measure on patents and 
scientific publications, finding a slow-
down in disruptive progress.2 Thicken-
ing the plot, a later preprint attributed 
the finding to dataset artefacts.3 These 
studies prompt the need for an efficient 
way to calculate the CD index on large 
amounts of openly available data.

The CD index for a given publica-
tion (or patent) is calculated by exam-
ining the citation graph associated with 

it: earlier citations cited by the publica-
tion and subsequent publications that 
cite the given publication and the pub-
lications it cites. When later publica-
tions cite both the examined one and 
the ones it cites [Figure 1(a)], it is con-
sidered a consolidating development. 
On the other hand, when subsequent 
publications do not seem to bother 
citing the ones the examined publica-
tion cites [Figure 1(b)], the publication 
indicates a destabilizing development 
because it marks a shift in the type of 
knowledge considered important. The 
CD metric formalizes this idea with a 
method normalizing citation ratios be-
tween the two extreme cases to a range 
from –1 (maximally consolidating) to 1 
(maximally disrupting), with details 

for examining a specific time horizon 
(e.g., CD5 for five years) and with a 
weight that considers a publication’s 
importance. Commendably, Funk has 
released cdindex, an open source soft-
ware Python package that calculates 
the CD index.4 The calculation is per-
formed by building a graph containing 
all publications linked by their cita-
tions as incoming and outgoing edges. 
After that, the offered cdindex function 
can form a set with all citations re-
lated to a publication and a specified 
time horizon, add them up according 
to their source and destination, and 
finally divide the sums by the set’s 
cardinality to derive the CD index.

Calculating the CD index for all pub-
lications in a large dataset is expensive. 
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FIGURE 1. (a) A maximally consolidating and (b) a maximally destabilizing publication.
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Take as an example the publication 
and citation data released this year by 
Crossref, a scholarly research com-
munity nonprofit organization, which 
is the largest digital object identifier 
registration agency. The data contain 
details about 158 million publications 
linked through 2.3 billion citations: an 
immense graph. Based on the cost of 
processing just 3 million publications, 
I estimate it would take 22 days to cal-
culate the CD index for all of them. 

In the next sections I describe 
how I optimized the original cdindex 
package and its use to bring the fig-
ure down to a dozen hours. The op-
timized code and the steps I took to 
arrive to it are available on GitHub as 
a repository and its commit history.5 
In common with many performance 
optimization tasks, optimization came 
down to the employment of efficient 
data structures and algorithms, as 
well as parallelization.

Efficient Data Structures
As is the case with many of Python’s 
scientific and machine learning librar-
ies, the original CD index implemen-
tation is a Python module where some 
C code does the heavy lifting. This 
is an appropriate choice because the 
same code written in Python would 
use considerably more time and mem-
ory. The module works by represent-
ing publications and their citations as 
a graph, stored in a dynamically allo-
cated array of vertices.

typedef struct Graph {
   Vertex *vs;
   long int vcount;
   long int ecount;
} Graph;

The index of each vertex in the ar-
ray is used to represent its identifier, 
which allows accessing a vertex with a 
quick array lookup. The graph’s edges 

are represented through an adjacency 
list. Each graph vertex maintains a list 
of its incoming and outgoing edges in 
dynamically allocated arrays of vertex 
identifiers as follows:

typedef struct Vertex {
  long int id;
  long int timestamp;
  long int *in_edges;
  long int *out_edges;
  long int in_degree;
  long int out_degree;
} Vertex;

This graph representation and its 
implementation offer several optimi-
zation opportunities.

First, the addition of each new 
edge reallocates space for the in_edges 
and out_edges arrays, potentially copy-
ing the existing array data to the 
larger newly allocated space. The cost 
of this operation is not constant: it de-
pends on the number of stored edges. 
The same logic applies to the addi-
tion of each vertex. Consequently, this 
changes the complexity cost of con-
structing a graph with V vertices and 
E edges from 0(V + E) into 0(V2 + E2). 
In general, implementing an algorithm 
with operations costing more than 0(1) 
increases the algorithm’s complexity.

A second issue is that the represen-
tation of the graph’s vertices as inte-
ger indices into the array of vertices 
burdens the CD index calculation 
with the cost of indirections through 
the array. In most modern languages 
this cost can be avoided by storing 
the edge data as pointers to the corre-
sponding vertices rather than as inte-
ger identifiers of them. For example, 
rather than accessing the time stamp 
of a vertex v as vs[v].timestamp, we can 
access it as v->timestamp.

A third issue is that each vertex’s in 
and out degrees are stored explicitly 
and also duplicated in the metadata 

of the dynamically allocated memory 
used for storing the corresponding 
edges. This wastes memory, which for 
millions of vertices adds up.

Finally, all these issues result in 
less predictable and more memory 
accesses, which, as a secondary ef-
fect, reduce the benefits of the CPU’s 
caches, increasing the calculation’s 
run time.

The reallocation cost can be eas-
ily reduced by doubling the allocated 
memory each time it exceeds the orig-
inally allocated space. However, it is 
counterproductive and error-prone to 
explicitly optimize memory alloca-
tions. Instead, it is best to reuse exist-
ing polished and tested libraries. In 
this case, an obvious choice is the C++ 
Standard Template Library (STL) 
std::vector data structure, which allows 
us to store each vertex as follows:

class Vertex {
private:
  timestamp_t timestamp;
  std::vector<Vertex *> in_edges;
  std::vector<Vertex *> out_edges;
}

Adding elements to a C++ std::vector 
via the push_back method is guaran-
teed to have an amortized constant 
time cost, thereby avoiding the algo-
rithmic complexity increase of real-
locating memory as each element is 
added. (Internally, the std::vector im-
plementation is most likely using the 
doubling of allocated space method, 
but this is not something that we 
need to care about.) Furthermore, 
the two edge vectors store pointers 
to other vertices, thereby eliminating 
the cost of indirecting through ver-
tex identifiers. Finally, the vertex’s in 
and out degrees are obtained through 
methods that return the size of the 
underlying vectors, eliminating the 
cost of duplicating this information.
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size_t get_in_degree() const {
  return in_edges.size();
}
size_t get_out_degree() const {
  return out_edges.size();
}

The size of the original vertex data 
structure is 48 bytes on an x86-64 
CPU. To this, one must add the 
24  byte overhead for maintaining 
each of the two dynamically allocated 
arrays, which gives a total empty ver-
tex footprint of 96 bytes. In contrast, 
the size of the C++ Vertex implemen-
tation is 56 bytes, almost half of the 
original footprint.

One remaining issue regarding the 
new implementation is the represen-
tation of the C++ vertex pointers in 
Python, which (rightly) lacks support 
for unrestricted pointers. I addressed 
this by defining a union data type that 
stores a vertex identifier both as a 
pointer to the vertex data and as an 
(unsigned long) integer overlayed over 
the same area as the pointer.

typedef union {
  unsigned long int id;
  Vertex *v;
} vertex_id_t;

This allows Python’s C interface 
to obtain and return the vertex iden-
tifiers through id as integers with the 
same bit representation as the origi-
nal C++ pointers. Correspondingly, 
the C++ code processes the vertex 
identifiers through v as pointers.

Efficient Algorithms
The original implementation of the 
CD index calculation also offered 
opportunities to employ more effi-
cient algorithms. In two loops and 
two doubly nested loops the calcula-
tion calls the function in_int_array to 
determine whether a specific vertex 

is connected to another. The function 
works by performing a linear search 
through the array’s elements, which 
results in a quadratic blowup in the 
algorithm’s polynomial complexity.

An alternative to this method might 
be storing the edges as an STL std::set 
data structure, whose lookup com-
plexity is much more efficient: loga-
rithmic rather than linear. However, 
this data structure requires addi-
tional space, which I wanted to avoid 
for the billions of edges that would 
get stored. I addressed this by capi-
talizing on the fact that the CD in-
dex calculation is performed by first 
building the complete graph and then 
processing its vertices without fur-
ther modifying it. This allowed me 
to write a method that can be called 
at the end of the graph’s construc-
tion to optimize the graph for further 
processing.

void Graph::prepare_for_searching() {
  for (auto i: versus) {
    i->shrink_to_fit();
    i->sort_out_edges();
} 
}

The method does two things. 
First, it disposes unused space that 
was initially (over)allocated for the 
efficient addition of edges.

void Vertex::shrink_to_fit() {
  out_edges.shrink_to_fit();
  in_edges.shrink_to_fit();
}

Second, it sorts the vector con-
taining the outgoing edges (which 
are the ones that are searched for the 
CD index calculation).

void Vertex::sort_out_edges() {
  std::sort(out_edges.begin(), out_edges.end());
}

The sorted vector allows a vertex’s 
edges to be searched with an efficient 
0(log N) binary search rather than 
the original more expensive 0(N) one 
without any storage overhead.

A further similar optimization 
opportunity presents itself in the 
CD calculation at the point where it 
builds a set of vertices that are the 
incoming edges of the focal vertex’s 
outgoing edges at a given time stamp. 
As this data structure is transient for 
each edge, it makes sense to build it 
as an STL std::set from the beginning 
and use its efficient 0(log N)  opera-
tions for adding unique elements to 
it and then iterating through them.

  std::set<Vertex *> it;
[…]
  it.insert(out_edge_i_in_edge_i);
[…]
  it.insert(in_edge_i);
[…]
  for (auto i: it) {
[…]

Careful performance measure-
ments should always back any per-
formed code optimizations. In this 
case, the vertex addition throughput 
actually dropped from 109 vertices 
per second to 91 vertices per second, 
but the edge addition throughout in-
creased from 74 edges per second 
to 241 edges per second. More im-
portantly, the CD index calculation 
throughput also increased from 84 
values per second to a sprightly 672 
values per second. For the 2024 Cross-
ref publication dataset these numbers 
would bring down the estimated cal-
culation duration from 22 days to 
fewer than three days.

And Parallelization
Three days is still a significant time 
for a job to run, so it makes sense to 
examine whether this can be further 
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reduced. An important insight is that 
once the graph is built, the CD index 
calculations can be performed inde-
pendently from each other, making it 
a trivially parallelizable operation.

Unfortunately, achieving this par-
allelism in Python is close to impos-
sible. The two alternatives involve 
using multiple threads or multiple 
processes. Multiple threads in Python, 
run, e.g., with ThreadPoolExecutor, are not 
helpful for CPU-bound tasks, such as 
the CD index calculation, because 
a global interpreter lock prevents 
more than one processing thread 
from being executed concurrently. 
In the case of multiple processes 
sharing the graph’s data structure, 
another feature of Python kicks 
in to limit the method’s potential. 
Because Python maintains a refer-
ence count for the objects it uses, 
when one of the multiple processes 
accesses the shared graph’s data 
structure, the corresponding refer-
ence counts get incremented. This 
forces the operating system kernel’s 
copy-on-write mechanism to cre-
ate a private (nonshared) copy of 
the corresponding data, resulting 
in hugely expensive data copies and 
memory size increases. (The 2024 
Crossref dataset citation graph oc-
cupies 62 GiB of RAM.)

Consequently, I decided to per-
form the CD index calculation en-
tirely in C++ rather than in Python.5 
This mainly involved rewriting the 
Python driver code into C++. C++ 
has matured significantly over the 
past decades, becoming considerably 
more expressive. Its expressiveness 
allowed me to rewrite the 154 lines 
of Python code into just 241 lines of 
C++ code, which also utilized con-
currency through the CPU’s multiple 
processing cores.

I designed the concurrent process-
ing based on STL’s parallel algorithms, 

introduced in C++17. Specifically, 
I implemented the parallelism by con-
structing multiple batches of nodes 
that could be processed by a single 
worker. Batching together a few thou-
sand nodes reduces the overhead of 
coordinating workers by amortizing it 
over a larger amount of work.

const int BATCH_SIZE = 10000;
vector <work_type> chunks;
auto pos = s2v.begin();
auto begin = pos;
size_t i;
for (i = 0; i < s2v.size(); i++, pos++)
  if (i > 0 && i % BATCH_SIZE == 0) {
    chunks.push_back(pair{begin, pos});
    begin = pos;
  } 

With these chunks at hand I could 
then invoke the std::for_each algorithm, 
which applies a function to each ele-
ment in a range.

for_each(execution::par_unseq, chunks.begin(), 
chunks.end(), worker);

The specified par_unseq execution 
policy allows the elements to be exe-
cuted in parallel in different threads, 
while worker is the function that calcu-
lates the CD index for each element in 
the chunk.

Running the CD5 index calculation 
on the entire 2024 Crossref dataset 
on a 40-core CPU took 3.7 h of wall 

clock time against 79 h of CPU time, 
giving a speedup of close to 22 times 
compared with the sequential execu-
tion and more than 140  times com-
pared with the original unoptimized 
CD index implementation.
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