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Abstract—Among the increasing evolution of IoT devices, prac-
tical applications need reliable secure protocols to communicate
with each other. A major issue for modern cryptosystems is an
implementation of secure and trustworthy mechanisms to rely on.
A side-channel attack against these cryptosystems may overturn
the guarantee of security against conventional cyber-attacks.
Elliptic curve cryptography is public-key cryptography based on
elliptic curves, and one of the well-known curves is Curve25519
which is used for TLS protocols as a recommended curve. This
curve is mainly implemented on limited resource devices such as
microcontrollers. However, this curve poses a weakness for low-
order points during a Diffie-Hellman key exchange is employed.
This research demonstrates possible exploitation of a threat of
order 8 rational points of Curve25519 and shows results of
the side-channel attacks using order 8 rational points on an
embedded system. The results indicate the order 8 rational points
might be applied to key extraction as attacker sides.

Index Terms—order 8 rational point, side-channel attack,
Curve25519, microcontroller

I. INTRODUCTION

In the IoT (Internet of Things) era, many devices are

connected to the Internet, and many application services are

provided. A large number of IoT devices that surround us

are linked to each other on the network and thus, reliable

communication technology is required to transmit secret in-

formation over the network. Cryptography is used to protect

information in the most cases, on the other hand, there exist

many reports which try to break cryptography or eavesdrop

the secret information over the network at the same time.

Conversely, in the IoT era, we need to consider physical

attacks along with the above cyber-attacks. Moreover, in

embedded hardware architectures, the resource is constrained,

hence designing an enough secure cryptosystem within the

limitations is necessary. There is some efficient algorithm that

allows us to implement cryptography as software on resource

constraint devices. However, sometimes they lack security

from the aspect of hardware implementation. Side-channel

attack (SCA) introduced in [1] is the method of exploiting

information leakage of cryptographic modules to extract secret

information as side-channels. As the physical side-channels,

timing, data dependency, power, and electromagnetic emana-

tion are well-known.

In this work, we focus on power analysis attacks that take

out significant information by analyzing power consumption

from a device processing some cryptographic data and algo-

rithm. As the target cryptography, we work with elliptic curve

cryptography (ECC) whose security depends on the difficulty

of the elliptic curve discrete logarithm problem. The ECC has

been introduced in 1985 by Koblitz [2] and Miller [3] and is

nowadays a promising alternative to overly used public-key

cryptography such as RSA [4] because it can offer the same

security level with a shorter public key. Internet Engineering

Task Force (IETF) has adopted the elliptic curve Curve25519

proposed by Berstein in 2006 [5] as one of the next generation

curves for the widely used cryptography standard on the

Internet TLS [6] because of its efficiency and security for ECC.

While this cryptography can be considered trustful, it is not

exempted of the threat and one of them is order 4 rational

points, has been pointed out by Genkin, Valenta, and Yarom

[7]. This attack is a side-channel attack taking advantage of

the few possibilities of intermediates calculations during scalar

multiplication (SCM) for ECC.

As another threat to this kind of cryptosystems, the authors

introduce the SCA scheme based on the features of order 8
rational points in this research. The order 8 rational points at-

tack could be the same principle as the order 4 attacks although
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there have not been reported that confirm the vulnerability of

side-channel attacks using order 8 rational points on embedded

devices. This research reveals the threat of order 8 rational

points of Curve25519 in an ECC secure algorithm against a

side-channel attack. After a brief introduction to mathematical

fundamentals used in ECC, this paper exposes the principle of

the order 8 rational points side-channel attack, then gives the

results of such attacks on an ATmega 8-bit microcontroller

and presents a consideration for applying pattern recognition

to the attack.

II. PRELIMINARIES

This section introduces some fundamentals such as ellip-

tic curve, Curve25519, Montgomery curve, and Montgomery

ladder.

A. Elliptic Curve

For a prime number p, let Fp be a prime field. An elliptic

curve E over Fp is defined as the simplified Weierstrass form

[8] as below,

E : y2 = x3 + ax+ b, a, b ∈ Fp, (1)

where a, b ∈ Fp such that 4a3 + 27b2 �= 0. A pair of

coordinates x and y which satisfy Eq. (1) on affine coordinates

is called a rational point including the point at infinity denoted

by O. The number of rational points in this group is called

group order and there are two types of operation for the set

of rational points; elliptic curve addition (ECA) and elliptic

curve doubling (ECD). By combining these operations, SCM

is defined so that one can compute the resultant rational points

for a given scalar efficiently. Typically, an ECC using a general

type of elliptic curve for cryptographic systems requires com-

plicated arithmetic operations. Indeed, the computations for

ECA and ECD involve inversions which is a heavy operation

over the definition field. In contrast, there is a particular type

of elliptic curve, which allows us to omit the inverse operation.

In the following section, we introduce Montgomery curve as

such an efficient elliptic curve for the ECC.

B. Montgomery Curve

Montgomery curves are introduced in [9] and it is repre-

sented as follows:

E : By2 = x3 +Ax2 + x,

where A,B ∈ Fp and B(A2 − 4) �= 0 (mod p).
By using projective coordinates, although a rational point

P = (x, y) on Montgomery curve is expressed by coordinates

P = (X : Y : Z) where x = X/Z for Z �= 0, we can omit

the Y -coordinates when the SCM is carried out. Therefore, P
is represented as P = (X : Z) throughout the paper for the

sake of convenience.

• ECA of Montgomery Curve

For two different elements, P = (Xi : Zi) and Q = (Xj :
Zj), define their addition R = P + Q that have coordinates

R = (XR : ZR). Also prepare the point U = P − Q, which

is U = (Xi−j : Zi−j). Then, R is calculated as follows:

XR = Zi−j [(Xi−Zi)(Xj+Zj)+(Xi+Zi)(Xj−Zj)]
2,

ZR = Xi−j [(Xi−Zi)(Xj+Zj)−(Xi+Zi)(Xj−Zj)]
2.

As the above equations show, the pre-computation U enables

us to process the addition efficiently. In addition, the Y -

coordinates in the ECA with projective coordinates can ignore

by combining the Montgomery ladder algorithm described in

II-D. Therefore, we treat the affine cordinates points (x, y)
and (x,−y) as the same point in the projective coordinates

representation in what follows.

• ECD of Montgomery Curve

For a P = (Xi : Zi), let us consider the doubling operation

R = P + P , where R = (XR : ZR) is defined as follows:

XR = (Xi + Zi)
2(Xi − Zi)

2,

T = (Xi + Zi)
2 − (Xi − Zi)

2, (2)

ZR = T · [(Xi − Zi)
2 +A24 · T ],

where A24 denotes a precomputed constant value A+2
4 .

Since ECA and ECD do not involve any inverse operations

which are time-consuming operations much lager than mul-

tiplications, Montgomery curve allows more efficient imople-

mentation.

C. Curve25519

Curve25519 is an elliptic curve introduced by Bernstein [5]

in 2006. Let p be the fixed prime number 2255 − 19, then,

Curve25519 over Fp is given as follows:

E25519 : y2 = x3 + 486662x2 + x (3)

Curve25519 is used for Elliptic Curve Diffie-Hellman (ECDH)

protocols which are adopted in TLS with offering the 128-bit

security with 32-byte secret key. Since the definition field is

given by p = 2255−19, we have 2255 ≡ 19 = 24+21+20 and

the modulo operations required in multiplication are carried

out by some shift operations and additions. Moreover, Mont-

gomery ladder which is described in the following section also

contributes to its efficiency. Considering the above features,

Curve25519 have been paid much attention as practical elliptic

curve cryptosystem.

However, the readers need to remember that there exist

low-order rational points in affine coordinates as reported in

[7]. More precisely, the rational points with affine coordinates

(0, 0) and (1,±√486664) are known to have the order 2 and

4, respectively.

D. Montgomery Ladder

ECDH based cryptography relies on SCM over the elliptic

curve to generate a session key. During this operation, there

potentially exist weaknesses which allow an attacker to retrieve

the secret key via side-channel information.

To address the weaknesses, Montgomery ladder algorithm

[9], [10] is adopted as an side-channel attack (SCA) resistant

algorithm for handling SCM without leaking information.

226



Montgomery ladder algorithm is shown in Alg. 1. If a condi-

tional branching of SCM algorithm is driven by secret scalar s
and the side-channel data such as timing or power are observed

regarding the branches, an attacker could obtain secret data.

In contrast, Montgomery ladder always processes addition and

doubling in all branches, thus any differences would not occur

and we say that it has durability for SCA [11].

Algorithm 1 Montgomery Ladder

Input: P , s = (sn−1, sn−2 . . . s1, s0)2
Output: T1 = [s]P

1: T1 ← O
2: T2 ← P
3: for i = n− 1 to 0 do
4: if si = 1 then
5: T1 ← T1 + T2

6: T2 ← 2T2

7: else
8: T2 ← T1 + T2

9: T1 ← 2T1

10: end if
11: end for
12: return T1

In the rest of this paper, a loop of the FOR statement of

Montgomery ladder algorithm is reffered to as a ladder step.

III. ATTACKING METHOD

This section describes the scenario of SCA against

Curve25519 implemented on a microcontroller using order 8
rational points. This is our critical proposal that points of order

8 pose a noteworthy threat on Curve25519.

The authors have reported a related work about SCA using

order 4 rational points in [12]. Although the attacks using order

4 points have been reported, the threat of the attack that points

of order 8 can be used as a chosen-ciphertext still has not been

enough considered. Even if countermeasures are introduced

for order 4 rational points, it will be a serious problem, when

other specific ciphertexts are chosen and used. In this research,

the authors confirm order 8 rational points can be used for the

SCA to extract a secret key and point out its vulnerability.

Let P = (X = α : Z = β) be a rational point of order

8 and consider that P is used as a chose-ciphertext in what

follows, where α �= β and both α and β are not 0. It is

noteworthy that though the order 4 elements have the same

values in both X and Z-coordinates, the order 8 elements

pretend to be regular rational points as different values of both

coordinates. Therefore, it is not difficult to point out whether

a rational point belongs to the order 4 group by evaluating

the coordinates of the element. On the other hand, it is not a

reasonable choice to evaluate the order of all elements to know

whether the element has order 8. Thus, we focus on explaining

how to employ the feature of rational points of order 8 into

the SCA hereafter.

Since the order of P is 8, the doubling for P and 2P have

to result in the rational points of order 4 and 2, respectively.

Besides, recall that the inverse of (x, y) is given by (x,−y)
in affine coordinates and we can omit the Y -coordinate in

projective coordinates. Hence, we have 5P = 3P , 6P = 2P ,

7P = P . Following the later description, the important thing

for our attacks is that the value is whether zero or non-zero,

it doesn’t matter what the exact number is. Consequently, P
and 3P are the same in that both are points with projective

coordinates that can be represented with two different large

positive integers, for instance, P = (α;β), 3P = (ν; υ). Thus,

we can consider P and 3P are the same set. We define this

set as P ′ and point at infinity O is defined as O = (X �= 0 :
Z = 0). The relations between these points are obtained with

every combination of P through addition and doubling.

As a result, during SCM with Montgomery ladder, the

outcomes of every operation are within 4 elements including

point at infinity:

P ′ = {P , 3P}, 2P , 4P , and O.

In Fig. 1, each state represents the pair of value [T1, T2]
which is indicated in Alg. 1. The results of Montgomery ladder

are divided into six states when P is used as a base point for

attacks. The arrow symbols in the figure show the transition of

these states. In the Case : Key, Case indicates three groups of

Case A to C which give us information to recover a secret key

and Key means a bit of the current secret key. For example,

the sequence from [O, P ′] to [P ′, 2P ] belongs to Case C, and

we have the current secret key bit is 1.

Fig. 1. State transition diagram of SCM using order 8 rational points

In each case, Eq. (2) becomes,

• Case A

XR = (0 + θ)2 · (0− θ)2 ≡ ω,

T = (0 + θ)2 − (0− θ)2 = 0, (4)

ZR = 0 · [(0− θ)2 +A24 · 0] = 0,

• Case B

XR = (θ + θ)2 · (θ − θ)2 = 0,

T = (θ + θ)2 − (θ − θ)2 ≡ ω, (5)

ZR = ω · [(θ − θ)2 +A24 · ω] ≡ ω,

• Case C
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XR = (θ + λ)2 · (θ − λ)2 ≡ ω,

T = (θ + λ)2 − (θ − λ)2 ≡ ω, (6)

ZR = ω · [(θ − λ)2 +A24 · ω] ≡ ω,

where θ, λ, and ω different large positive integers that generate

elements such as P ′ for convenience.
When the value 0 is used for multiplication in XR or ZR, the

power needed to compute the result is quite small compared

to a multiplication involving two large integers. By observing

the differences in voltage throughout the multiplication, it is

possible to determine whether the zero calculation has been

performed. Additionally, the Case can be identified from these

differences. For instance, Case A is non-zero calculation in

XR, conversely, the multiplication of ZR is zero which is

considered low power consumption. Thus, if only the power

consumption in the multiplication of ZR is small, it can be

specified to be Case A. The relationship between each Case
and the power consumption is defined in TABLE I. As a result,

focusing on the multiplication of XR and ZR and using Fig. 1

and TABLE I, we can retrieve the secret key from the transition

of the states.

TABLE I
RELATIONS BETWEEN CaseS AND POWER CONSUMPTION

Case A Case B Case C
XR High Low High
ZR Low High High

IV. EXPERIMENT

A. Computation Environment
This experiment has been performed using an Agilent

Technologies DSOS104A oscilloscope synchronized with the

execution of the SCM through a provoked trigger signal. Since

it is expected that the practical use of ECC with IoT devices

will further expand in the future, we choose Arduino UNO for

the target. Simultaneously, implementations and evaluations of

ECC for Arduino have been extensively reported in [13], [14],

for example.
The authors use μNaCl [15], the networking and cryptogra-

phy library for microcontrollers, for implementing curve25519

with Montgomery ladder algorithm over the prime field 2255−
19. The base point P used for SCM is an order 8 rational point

and the secret key s is a randomly initialized by 256-bit size

integer. The readers can refer to further details of P and s in

the Appendix. TABLE II shows the specifications of Arduino

UNO.

TABLE II
ARDUINO UNO SPECIFICATIONS

Microcontroller ATmega328P

Flash Memory 32K bytes

SRAM 2K bytes

Clook Speed 16 MHz

Language Arduino functions based on C/C++

Compiler avr-gcc

B. Experimental Results

This section introduces the experimental results of the attack

based on Sec. III scenario. Furthermore, we conduct another

experiment which uses a standard rational point as a base point

used to compute SCM to compare these results and to make

the threat of the order 8 rational point much clear.

The point of order 8 is initially chosen so that the coordi-

nates are made up of large integers because if the base point

has small coordinates, the first a few loops of Montgomery

ladder do not show sufficient differences in power consump-

tion between zero and non-zero multiplications. To make the

lecture of the trace easier, a signal is raised with an analog

pin during the target multiplications which are XR and ZR

calculations of Eq. (4) to Eq. (6). As the complete SCM is

about 6.5 seconds long, we focus on only the first six bits

calculation in this section, however, it is noted that the same

result is confirmed for the whole bits of the secret key. In the

next paragraph, the result of the attack is represented in Fig. 2.

Since a single trace is too noisy to observe, we carry out the

same SCM 50 times and takes the average of the traces so that

the differences between zero and non-zero multiplications can

be visible more clearly. To measure the power consumption,

a 50 Ω resistor is inserted between the GND pin of the

microcontroller and the ground. Then, we observe the voltage

across the resistor with a passive probe. The larger the power

consumption, the larger the amplitude of the voltage waveform

measured on the oscilloscope. Conversely, the amplitude is

smaller in the case of low power consumption.

During the marked sets of multiplication, the first trigger

signal indicates XR calculations, then the next signal shows

ZR calculations of the above equations, respectively. First, let

us focus on the part of XR. We can see for the first loop

that the power consumption is high and on the next loop, we

can see a lower power consumption. Since the first invocation

of multiplication is non-zero multiplication, the energy to set

the final value is large. It means that the energy is greater

than a zero multiplication. In contrast, the second invocation

of the function, we have a zero multiplication, therefore it is

considered that energy is not so much large compared to a

non-zero multiplication.

Second, we focus on the ZR computations to determine the

Cases on each loop. In the ZR, the differences of waveforms

can be clearly seen than in the XR, the power consumption

of the fifth loop is exactly low compared to the others.

From the above observations, we can recover the secret key

using Fig. 1 and TABLE I. The status of power consumption

in XR and ZR of each loop and the Cases determined from

TABLE I are shown in TABLE III. TABLE III also shows the

current state within the transition diagram and secret key bits

si which we try to obtain. Initially, the state is [O, P ′] and

the Case is C, therefore the key bit is 1 and the next state

is [P ′, 2P ]. The second loop is Case B, thus the next key bit

is also 1. Then, third and fourth loops are as same as first

and second loops. The fifth Case is A and the current state is

[4P , P ′]. Consequently, we can decide its key value is 0 in the
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same way as previous processes. These values are ultimately

the same as the secret key s.

TABLE III
STATUS AND SECRET KEY IN EACH LOOP

Loop 1st 2nd 3rd 4th 5th 6th

XR High Low High Low High High

ZR High High High High Low High

Case C B C B A C

State [O, P ′] [P ′, 2P ] [P ′, 4P ] [2P , P ′] [4P , P ′] [O, P ′]
si 1 1 0 0 0 1

Fig. 3 shows a power trace using a standard rational point

which is used to compare the chosen-ciphertext attack of the

order 8 rational point and general plaintext attack with a

standard rational point (see Appendix). This element is on

the Curve25519, however, the order is not small such as low-

order points. The power traces are irregular, and there are no

relations between waveforms and key values.

Fig. 2. Power trace using an order 8 rational point

Fig. 3. Power trace using a standard rational point

C. Pattern Recognition for SCA of order 8 rational points

There have been many studies about machine learning [16]

and template attacks [17] which are two popular side-channel

attacks to evaluate the side-channel resistance of cryptography.

For the further step, we tried to introduce pattern recognition

[18] to our order 8 attack. As a result, it was found that the

secret key can be analyzed more rapidly by applying pattern

recognition. In the method of IV-B, since the differences in

power consumption is confirmed manually, it has taken a

great deal of time to analyze secret information. However,

the analyses are completed within a second by using that

approach.

In our experiments, the obtained measure contains the 256

ladder steps of the Montgomery ladder algorithm. The attacks

introducing pattern recognition are divided into two phases:

training phase and test phase. In the training phase consists of

classifying the ladder steps in the three patterns according to

TABLE I when attacked with an order 8 rational point which

secret key is known. From the classified ladder step traces,

three models are created by averaging the traces of each Case.

The test phase consists of comparing ladder steps from an

unknown attack with the obtained models and decide which

one fits the most for each ladder step. It means that another

measure is taken from another secret key. By cutting the signal

in ladder steps and comparing each ladder step with the three

models using correlation, it is possible to determine the most

possible Case for every ladder step by applying correlation.

Finally, we can retrieve the secret key by applying the state

transition shown in Fig. 1.

Fig. 4 illustrates the 256 ladder steps of the Montgomery

ladder algorithm used with the 256-bit secret key and Fig.

5 shows the three models in each Case. From the training

phase, it is clear that the three obtained models are different

and thus identifiable as shown. If this phase was not correct

because the measure is not effective or the secret key is

wrong, the three models would be the same because of the

averaging. The models of the Case A, B, and C obtained from

the training phase, to classify the ladder steps of the test set

into the corrects pattern model is almost 100 % for a measure

which is taken in the same conditions as the training set. The

experiments have been made with different secret keys and

on different Arduino UNO from the batch of manufacture to

prove those results.

Fig. 4. Waveforms of power consumption in each ladder step
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Fig. 5. Three models in each Case

V. CONCLUSION

In our work, we have shown that attacking Curve25519 with

Montgomery implementation using an order 8 rational point is

possible with analyzing power consumption on Arduino UNO.

Injecting a point of order 8 as a base point of Montgomery

ladder algorithm for Curve25519 is highly dangerous because

it is possible to extract the ECC secret key from it entirely. This

makes every secure protocol using Curve25519 potentially

vulnerable to SCA. We also introduced the pattern recognition

techniques for SCA, it indicates that attackers potentially

have advanced physical attack methods. When designing a

cryptosystem based on ECC and Curve 25519, it is important

to consider implementing countermeasures to this kind of

attack. It may be the easiest way to prohibit performing

order 8 rational points for the input, similarly, also in case

of order 4 rational points should be constrained. We are

planning to introduce machine learning into this side-channel

attack to confirm the impact of AI (Artificial Intelligence) on

cryptography. Furthermore, the authors would like to verify

the safety of Curve448 [19] against chosen-ciphertext attack

as future work.
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APENDIX

TABLE IV to TABLE VI shows the parameters of

Curve25519 and experiments.

TABLE IV
PARAMETERS OF CURVE25519

Curve25519

p (prime number) 2255 − 19

A 486662

Group order #E25519
2255 + 221938542218978828286815502

327069187944

Order of the base point
2252 + 2774231777737235353585193

7790883648493

TABLE V
PARAMETERS OF THE ORDER 8 POINT

Order 8 rational point P = (X : Z), secret key s

X
3174071933684646393566129511741853346714706162249316

6019063263804243205893678

Z
4173733970464226290332125811752417659684966221212222

8668073959407940653183394

s
8998307883394519916166667433513620452577546027878765

1032884970583523388749624

TABLE VI
PARAMETERS OF THE STANDARD POINT

Standard point P = (X : Z), secret key s

X
6713841377151768861295690118837205812206998830791072

0957457332373321210586

Z
7459823752390854290328544576485784235785455425643452

550828592485924578954

s
8998307883394519916166667433513620452577546027878765

1032884970583523388749624
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