
 
 

Delft University of Technology

Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks

Bentivoglio, Roberto; Isufi, Elvin; Jonkman, Sebastiaan Nicolas; Taormina, Riccardo

DOI
10.5194/hess-27-4227-2023
Publication date
2023
Document Version
Final published version
Published in
Hydrology and Earth System Sciences

Citation (APA)
Bentivoglio, R., Isufi, E., Jonkman, S. N., & Taormina, R. (2023). Rapid spatio-temporal flood modelling via
hydraulics-based graph neural networks. Hydrology and Earth System Sciences, 27(23), 4227–4246.
https://doi.org/10.5194/hess-27-4227-2023

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/hess-27-4227-2023
https://doi.org/10.5194/hess-27-4227-2023


Hydrol. Earth Syst. Sci., 27, 4227–4246, 2023
https://doi.org/10.5194/hess-27-4227-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Rapid spatio-temporal flood modelling via
hydraulics-based graph neural networks
Roberto Bentivoglio1, Elvin Isufi2, Sebastiaan Nicolas Jonkman3, and Riccardo Taormina1

1Department of Water Management, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands
2Department of Intelligent Systems, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Delft, the Netherlands
3Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands

Correspondence: Roberto Bentivoglio (r.bentivoglio@tudelft.nl)

Received: 19 February 2023 – Discussion started: 22 March 2023
Revised: 3 September 2023 – Accepted: 23 October 2023 – Published: 30 November 2023

Abstract. Numerical modelling is a reliable tool for flood
simulations, but accurate solutions are computationally ex-
pensive. In recent years, researchers have explored data-
driven methodologies based on neural networks to over-
come this limitation. However, most models are only used
for a specific case study and disregard the dynamic evo-
lution of the flood wave. This limits their generalizabil-
ity to topographies that the model was not trained on and
in time-dependent applications. In this paper, we introduce
shallow water equation–graph neural network (SWE–GNN),
a hydraulics-inspired surrogate model based on GNNs that
can be used for rapid spatio-temporal flood modelling. The
model exploits the analogy between finite-volume methods
used to solve SWEs and GNNs. For a computational mesh,
we create a graph by considering finite-volume cells as nodes
and adjacent cells as being connected by edges. The inputs
are determined by the topographical properties of the domain
and the initial hydraulic conditions. The GNN then deter-
mines how fluxes are exchanged between cells via a learned
local function. We overcome the time-step constraints by
stacking multiple GNN layers, which expand the considered
space instead of increasing the time resolution. We also pro-
pose a multi-step-ahead loss function along with a curricu-
lum learning strategy to improve the stability and perfor-
mance. We validate this approach using a dataset of two-
dimensional dike breach flood simulations in randomly gen-
erated digital elevation models generated with a high-fidelity
numerical solver. The SWE–GNN model predicts the spatio-

temporal evolution of the flood for unseen topographies with
mean average errors in time of 0.04 m for water depths and
0.004 m2 s−1 for unit discharges. Moreover, it generalizes
well to unseen breach locations, bigger domains, and longer
periods of time compared to those of the training set, outper-
forming other deep-learning models. On top of this, SWE–
GNN has a computational speed-up of up to 2 orders of mag-
nitude faster than the numerical solver. Our framework opens
the doors to a new approach to replace numerical solvers in
time-sensitive applications with spatially dependent uncer-
tainties.

1 Introduction

Accurate flood models are essential for risk assessment, early
warning, and preparedness for flood events. Numerical mod-
els can characterize how floods evolve in space and time,
with the two-dimensional (2D) hydrodynamic models be-
ing the most popular (Teng et al., 2017). They solve a dis-
cretized form of the depth-averaged Navier–Stokes equa-
tions, referred to as shallow water equations (SWEs) (Vreug-
denhil, 1994). Numerical models are computationally expen-
sive, making them inapplicable for real-time emergencies
and uncertainty analyses. Several methods aim to speed up
the solution of these equations either by approximating them
(Bates and De Roo, 2000) or by using high-performance
computing and parallelization techniques (Hu et al., 2022;
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Petaccia et al., 2016). However, approximate solutions are
valid only for domains with low spatial and temporal gradi-
ents (Costabile et al., 2017), while high-performance com-
puting methods are bound by the numerical constraints and
the computational resources.

Data-driven alternatives speed up numerical solvers
(Mosavi et al., 2018). In particular, deep learning outper-
forms other machine learning methods used for flood mod-
elling in both speed and accuracy (Bentivoglio et al., 2022).
Berkhahn et al. (2019) developed a multi-layer perceptron
model for predicting urban floods given a rainfall event,
achieving promising speed-ups and accuracy. Guo et al.
(2021) and Kabir et al. (2020) developed convolutional
neural networks (CNNs) for river flood inundation, while
Jacquier et al. (2021) used deep learning to facilitate the
reduced-order modelling of dam break floods and to provide
uncertainty estimates. Also, Zhou et al. (2022) employed a
CNN-based model to determine the spatio-temporal varia-
tion of flood inundation from a set of representative loca-
tions. These works explored the generalization of boundary
conditions on a fixed domain. That is, they change the return
period of the floods for a single case study, but they need
retraining when applied to a new area, requiring more re-
sources in terms of data, model preparation, and computation
times.

To overcome this issue, the community is investigating the
generalizability of deep-learning models to different study
areas. Löwe et al. (2021) proposed a CNN model to esti-
mate the maximum water depth of pluvial urban floods. They
trained their model on part of their case study and then de-
ployed it on the unseen parts, showing consistent perfor-
mances. Guo et al. (2022) accurately predicted the maxi-
mum water depth and flow velocities for river floods in differ-
ent catchments in Switzerland. To incorporate the variations
in catchment size and shape, they divided the domain into
patches. do Lago et al. (2023) proposed a conditional gen-
erative adversarial network that could predict the maximum
water depth unseen rain events in unseen urban catchments.
However, these approaches focus on a single maximum depth
or velocity map, disregarding the dynamical behaviour. That
is, no information is provided on the flood conditions over
space and time, which is crucial for evacuation and the re-
sponse to the flood.

To overcome this limitation, we propose SWE–GNN, a
deep-learning model merging graph neural networks (GNNs)
with the finite-volume methods used to solve the SWEs.
GNNs generalize convolutional neural networks to irregu-
lar domains such as graphs and have shown promising re-
sults for fluid dynamics (e.g. Lino et al., 2021; Peng et al.,
2022) and partial differential equations (e.g. Brandstetter
et al., 2022; Horie and Mitsume, 2022). Hence, develop-
ing GNNs that follow the SWE equations is not only more
physically interpretable but also allows better generalization
abilities to unseen flood evolution, unseen breach locations,
and unseen topographies. In particular, we exploit the geo-

metrical structure of the finite-volume computational mesh
by using its dual graph, obtained by connecting the centres
of neighbouring cells via edges. The nodes represent finite-
volume cells and edge fluxes across them. Following an ex-
plicit numerical discretization of the SWE, we formulate a
novel GNN propagation rule that learns how fluxes are ex-
changed between cells, based on the gradient of the hydraulic
variables. We set the number of GNN layers based on the
time step between consecutive predictions, in agreement with
the Courant–Friedrichs–Lewy conditions. The inputs of the
model are the hydraulic variables at a given time, elevation,
slope, area, length, and orientation of the mesh’s cells. The
outputs are the hydraulic variables at the following time step,
evaluated in an auto-regressive manner. That is, the model is
repeatedly applied using its predictions as inputs to produce
extended simulations.

We tested our model on dike breach flood simulations due
to their time-sensitive nature and the presence of uncertain-
ties in topography and breach formation (Jonkman et al.,
2008; Vorogushyn et al., 2009). Moreover, given the sen-
sibility to floods in low-lying areas, fast surrogate models
that generalize over all those uncertainties are required for
probabilistic analyses. By doing so, our key contributions are
threefold.

– We develop a new graph neural network model where
the propagation rule and the inputs are taken from the
shallow water equations. In particular, the hydraulic
variables propagate based on their gradient across
neighbouring finite-volume cells.

– We improve the model’s stability by training it via a
multi-step-ahead loss function, which results in stable
predictions up to 120 h ahead using only the informa-
tion of the first hour as initial hydraulic input.

– We show that the proposed model can serve as a sur-
rogate for numerical solvers for spatio-temporal flood
modelling in unseen topographies and unseen breach lo-
cations, with speed-ups of 2 orders of magnitude.

The rest of the paper is structured as follows. Section 2 illus-
trates the theoretical background; Sect. 3 describes the pro-
posed methodology. In Sect. 4, we present the dataset used
for the numerical experiments. Section 5 shows the results
obtained with the proposed model and compares it with other
deep-learning models. Finally, Sect. 6 discusses the results,
analyses the current limitations of this approach, and pro-
poses future research directions.

2 Theoretical background

In this section, we describe the theory supporting our pro-
posed model. First, we discuss numerical models for flood
modelling; then, we present deep-learning models, focusing
on graph neural networks. Throughout the paper, we use the
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standard vector notation, with a scalar, a vector, A matrix,
and A tensor.

2.1 Numerical modelling

2.1.1 Shallow water equations

When assuming negligible vertical accelerations, floods can
be modelled via the SWEs (Vreugdenhil, 1994). These are
a system of hyperbolic partial differential equations that de-
scribe the behaviour of shallow flows by enforcing mass and
momentum conservation. The two-dimensional SWE can be
written as

∂u

∂t
+∇F= s, (1)

with

u=

 h

qx
qy

 ,F=
 qx

q2
x

h
+
gh2

2
qxqy
h

qy
qxqy
h

q2
y

h
+
gh2

2

 ,
s =

 0
gh(s0x − sfx)

gh
(
s0y − sfy

)
 , (2)

where u represents the conserved variable vector, F the fluxes
in the x and y directions, and s the source terms. Here, h (m)
represents the water depth, qx = uh (m2 s−1) and qy = vh
(m2 s−1) are the averaged components of the discharge vector
along the x and y coordinates, respectively, and g (m s−2) is
the acceleration of gravity. The source terms in s depend on
the contributions of bed slopes s0 and friction losses sf along
the two coordinate directions.

2.1.2 Finite-volume method

The SWE cannot be solved analytically unless some simpli-
fications are enforced. Thus, they are commonly solved via
spatio-temporal numerical discretizations, such as the finite-
volume method (e.g. Alcrudo and Garcia-Navarro, 1993).
This method discretizes the spatial domain using meshes, i.e.
geometrical structures composed of nodes, edges, and faces.
We consider each finite-volume cell to be represented by its
centre of mass, where the hydraulic variables h, qx , and qy
are defined (see Fig. 1). The governing equations are then in-
tegrated over the cells, considering piece-wise constant vari-
ations. That is, the value of the variables at a certain time
instant is spatially uniform for every cell. The SWE can be
discretized in several ways in both space and time (e.g. Petac-
cia et al., 2013; Xia et al., 2017), but we focus on a first-order
explicit scheme with a generic spatial discretization. For an
arbitrary volume �i and a discrete time step 1t , the SWE
(Eq. 1) can be re-written as

ut+1
i = uti +

(
si −

Ni∑
j=1
(F ·n)ij

lij

ai

)
1t, (3)

with uti the hydraulic variables at time t and cell i, ai the
area of the ith cell, Ni the number of neighbouring cells, lij
the length of the j th side of cell i, si the source terms, nij =
[nxij ,nyij ] the outward unit normal vector in the x and y
directions for side ij , and (F·n)ij the numerical fluxes across
neighbouring cells.

In numerical models with explicit discretization, sta-
bility is enforced by satisfying the Courant–Friedrichs–
Lewy (CFL) condition, which imposes the numerical prop-
agation speed to be lower than the physical one (Courant
et al., 1967). Considering v to be the propagation speed, the
Courant number C can be evaluated as

C =
v1t

1x
, (4)

where 1t and 1x represent the time step and the mesh size.
This condition forces 1t to be sufficiently small to avoid a
too-fast propagation of water in space that would result in a
loss of physical consistency. Small time steps imply an in-
creasing number of model iterations, which slow down nu-
merical models over long time horizons. Deep learning pro-
vides an opportunity to accelerate this process.

2.2 Deep learning

Deep learning obtains non-linear high-dimensional represen-
tations from data via multiple levels of abstraction (LeCun
et al., 2015). The key building blocks of deep-learning mod-
els are neural networks, which comprise linear and non-
linear parametric functions. They take an input x and pro-
duce an estimate ŷ of a target representation y as ŷ =
f (x;θ), where θ are the parameters (Zhang et al., 2021). The
parameters are estimated to match predicted output with the
real output by minimizing a loss function. Then, the validity
of the model is assessed by measuring its performance on a
set of unseen pairs of data, called the test set.

The most general type of neural network is a multi-layer
perceptron (MLP). It is formed by stacking linear models fol-
lowed by a point-wise non-linearity (e.g. rectified linear unit,
ReLU, σ(x)=max{0,x}). For MLPs, the number of param-
eters and the computational cost increase exponentially with
the dimensions of the input. This makes them unappealing to
large-scale high-dimensional data typical of problems with
relevant spatio-temporal features such as floods. MLPs are
non-inductive: when trained for flood prediction on a certain
topography, they cannot be deployed on a different one, thus
requiring a complete retraining. To overcome this curse of di-
mensionality and to increase generalizability, models can in-
clude inductive biases that constrain their degrees of freedom
by reusing parameters and exploiting symmetries in the data
(Battaglia, 2018; Gama et al., 2020; Villar et al., 2023). For
example, convolutional neural networks exploit translational
symmetries via filters that share parameters in space (e.g. Le-
Cun et al., 2015; Bronstein et al., 2021). However, CNNs
cannot process data defined on irregular meshes, which are
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Figure 1. Schematic representation of an arbitrary triangular volume mesh and its dual graph. (a) A finite-volume cell �i along with its
neighbouring cells. Vectors ui and uj represent the cells’ hydraulic variables, while lij and nij , respectively, correspond to the length of the
mesh side and the outward unit normal vector between cells i and j . (b) The dual graph of the mesh is obtained by considering each ith cell’s
centre as a node i, with features xi and connecting neighbouring nodes, i and j , via edges ij , with features εij .

common for discretizing topographies with sparse details.
Thus, we need a different inductive bias for data on meshes.

GNNs use graphs as an inductive bias to tackle the curse
of dimensionality. This bias can be relevant for data repre-
sented via networks and meshes, as it allows these models
to generalize to unseen graphs. That is, the same model can
be applied to different topographies discretized by different
meshes. GNNs work by propagating features defined on the
nodes, based on how they are connected. The propagation
rule is then essential in correctly modelling a physical sys-
tem. However, standard GNNs do not include physics-based
rules, meaning that the propagation rules may lead to unreal-
istic results.

3 Shallow-water-equation-inspired graph neural
network (SWE–GNN)

We develop a graph neural network in which the compu-
tations are based on the shallow water equations. The pro-
posed model takes as input both static and dynamic fea-
tures that represent the topography of the domain and the hy-
draulic variables at time t , respectively. The outputs are the
predicted hydraulic variables at time t+1. In the following,
we detail the proposed model (Sect. 3.1) and its inputs and
outputs (Sect. 3.2). Finally, we discuss the training strategy
(Sect. 3.3).

3.1 Architecture

SWE–GNN is an encoder–processor–decoder architecture
inspired by You et al. (2020) with residual connections that
predicts auto-regressively the hydraulic variables at time t+1
as

Ût+1
= Ut +8

(
Xs,Ut−p:t ,E

)
, (5)

where the output Ût+1 corresponds to the predicted hydraulic
variables at time t+1; Ut are the hydraulic variables at time
t ;8(·) is the GNN-based encoder–processor–decoder model
that determines the evolution of the hydraulic variables for a
fixed time step; Xs are the static node features; Ut−p:t are the
dynamic node features, i.e. the hydraulic variables for time
steps t −p to t ; and E are the edge features that describe the
geometry of the mesh. The architecture detailed in the sequel
is illustrated in Fig. 2.

3.1.1 Encoder

We employ three separate encoders for processing the static
node features Xs ∈ RN×INs , dynamic node features Xd ≡

Ut−p:t ∈ RN×O(p+1), and edge features ε ∈ RE×Iε , where
INs is the number of static node features, O the number of
hydraulic variables (e.g. O = 3 if we consider water depth
and the x and y components of the unit discharges), p the
number of input previous time steps, and Iε the number of
input edge features. The encoded variables are

Hs = φs (Xs) ,Hd = φd (Xd) ,E′ = φε (E) , (6)

where φs(·) and φd(·) are MLPs shared across all nodes that
take an input X ∈ RN×I and return a node matrix H ∈ RN×G,
and φε(·) are MLPs shared across all edges that encode the
edge features in E′ ∈ RE×G. All MLPs have two layers,
with a hidden dimension G followed by a parametric ReLU
(PReLU) activation. The encoders expand the dimensional-
ity of the inputs to allow for higher expressivity, with hyper-
parameter G being the dimension of the node embeddings.
The ith rows of the node matrices Hs and Hd represent the
encoded feature vectors associated with node i, i.e. hsi and
hdi , and the kth rows of the edge matrices E′ represent the
encoded feature vector associated with edge k.

Hydrol. Earth Syst. Sci., 27, 4227–4246, 2023 https://doi.org/10.5194/hess-27-4227-2023
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Figure 2. Overview of the proposed SWE–GNN model. The model 8 takes as input the mesh discretization of the static and dynamic
input (blue box) and produces an estimate of their evolution in time (orange box). The model is then repeated auto-regressively, i.e. using
its predictions as inputs, to determine the spatio-temporal evolution of the flood. The encoder–processor–decoder structure of the SWE–
GNN model is shown in the bottom black box. The node inputs xsi and ut−p:t

i
represent static attributes, such as elevation and slopes, and

dynamic attributes representing hydraulic variables, while the edge inputs εij represent the mesh’s geometry. The inputs are encoded into
higher-dimensional embeddings hsi , h0

di
(yellow nodes), and ε′

ij
via three separate multi-layer perceptrons shared across nodes or edges.

The embeddings, whose purpose is to increase the inputs’ expressivity, are used as input for the L GNN layers. The output of the GNN hLdi
(red and orange nodes) is decoded via another shared multi-layer perceptron and is summed to the hydraulic variables at time t , i.e. ut

i
. The

final output ŷi (blue nodes) represents the prediction at time t + 1, i.e. ût+1
i

.

3.1.2 Processor

We employed as a processor an L-layer GNN that takes a
high-dimensional representation of the static and dynamic
properties of the system at time t given by the encoders
and that produces a spatio-temporally propagated high-
dimensional representation of the system’s evolution from
times t to t+1. The propagation rule is based on the shallow
water equation. In the SWE, the mass and momentum fluxes,
representative of the dynamic features, evolve in space as a
function of the source terms representative of the static and
dynamic features. Moreover, water can only propagate from
sources of water, and the velocity of propagation is influ-
enced by the gradients of the hydraulic variables. Thus, the
GNN layer `= 1, . . . ,L− 1 update reads as

s
(`+1)
ij = ψ

(
hsi,hsj ,h

(`)
di ,h

(`)
dj ,ε

′

ij

)
�

(
h
(`)
dj −h

(`)
di

)
, (7)

h
(`+1)
di = h

(`)
di +

∑
j∈Ni

s
(`+1)
ij W(`+1), (8)

where ψ(·) : R5G
→ RG is an MLP with two layers, with

a hidden dimension 2G followed by a PReLU activation
function; � is the Hadamard (element-wise) product; and
W(`)
∈ RG×G are parameter matrices. The term h

(`)
dj −h

(`)
di

represents the gradient of the hydraulic variables and en-
forces water-related variables hd to propagate only if at least
one of the interfacing node features is non-zero, i.e. has wa-
ter. The function ψ(·), instead, incorporates both static and
dynamic inputs and provides an estimate of the source terms
acting on the nodes. Thus, vector sij represents the fluxes
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exchanged across neighbouring cells, and their linear combi-
nation is used as in Eq. (3) to determine the hydraulic vari-
ables’ variation for a given cell. In this way, Eq. (7) resembles
how fluxes are evaluated at the cell’s interface in the numer-
ical model, i.e. δF(u)ij = J̃ ij (uj −ui), which enforces con-
servation across interface discontinuities (Martínez-Aranda
et al., 2022). Based on this formulation, sij can also be in-
terpreted as an approximate Riemann solver (Toro, 2013),
where the Riemann problem at the boundary between com-
putational cells is approximated by the function ψ(·) in place
of equations (e.g. Roe, 1981). To reduce model instabilities,
the output of ψ(·) is normalized along its embedding dimen-
sion. That is, it is divided by its norm ‖ψ(·)‖. This procedure
is similar to other graph normalization techniques that im-
prove training stability (Chen et al., 2022). The contribution
of each layer is linearly multiplied by W(`) (Eq. 7). From a
numerical perspective, this is analogous to an L-order multi-
time-step scheme with L being the number of layers, where
the weights are learned instead of being assigned (e.g. Dor-
mand and Prince, 1980).

The GNN’s output represents an embedding of the pre-
dicted hydraulic variables at time t + 1 for a fixed time step
1t . Instead of enforcing stability by limiting 1t , as is done
in numerical models, we can obtain the same result by con-
sidering a larger portion of space, which results in increasing
1x (see Eq. 4). This effect can be achieved by stacking mul-
tiple GNN layers, as each layer will increase the propagation
space, also called the neighbourhood size. The number of
GNN layers is then correlated with the space covered by the
flood for a given temporal resolution. We can then write the
full processor for the L GNN layers as

h
(0)
di = hdiW(0),

s
(`+1)
ij = ψ

(
hsi,hsj ,h

(`)
di ,h

(`)
dj ,ε

′

ij

)
�

(
h
(`)
dj −h

(`)
di

)
,

h
(`+1)
di = h

(`)
di +

∑
j∈Ni

s
(`+1)
ij W(`+1),

h
(L)
di = σ

h(L−1)
di +

∑
j∈Ni

s
(L)
ij W(L)

 , (9)

where we employ a Tanh activation function σ(·) at the out-
put of the Lth layer to limit numerical instabilities resulting
in exploding values. The embedding of the static node fea-
tures hsi and of the edge features ε′ij does not change across
layers, as the topography and discretization of the domain do
not change in time.

3.1.3 Decoder

Symmetrically to the encoder, the decoder is composed of
an MLP ϕ(·), shared across all the nodes, that takes as input
the output of the processor H(L)

d ∈ R
N×G and updates the

hydraulic variables at the next time step, i.e. Ût+1
∈ RN×O ,

via residual connections, as

Ût+1
= Ut +ϕ

(
H(L)

d

)
. (10)

The MLP ϕ(·) has two layers, with a hidden dimension G,
followed by a PReLU activation. Neither of the MLPs in the
dynamic encoder and the decoder has the bias terms as this
would result in adding non-zero values corresponding to dry
areas that would cause water to originate from any node.

3.2 Inputs and outputs

We define input features on the nodes and edges based on
the SWE terms (see Eq. 2). We divide node features into a
static component that represents fixed spatial attributes and a
dynamic component that represents the hydraulic variables.

Static node features are defined as

xsi =
(
ai,ei,s0i,mi,w

t
i

)
, (11)

where ai is the area of the ith finite-volume cell, its elevation
ei , its slopes in the x and y directions s0i , and its Manning
coefficientmi . We also included the water level at time t , wti ,
given by the sum of the elevation and water depth at time t as
node inputs, since this determines the water gradient (Liang
and Marche, 2009). The reason why we include wti in the
static attributes instead of the dynamic ones is that these fea-
tures can also be non-zero without water due to the elevation
term and would thus result in the same issue mentioned for
the dynamic encoder and decoder.

Dynamic node features are defined as

xdi = u
t−p:t
i =

(
u
t−p
i , . . ., ut−1

i ,uti

)
,

uti =
(
hti, |q|

t
i

)
, (12)

where uti are the hydraulic variables at time step t and ut−p:ti

are the hydraulic variables up to p previous time steps to
leverage the information of past data and to provide a tem-
poral bias to the inputs. In contrast to the definition of the
hydraulic variables as in Eq. (2), we selected the modulus of
the unit discharge |q| as a metric of flood intensity in place
of its x and y components to avoid mixing scalar and vector
components and because, for practical implications, such as
damage estimation, the flow direction is less relevant than its
absolute value (e.g. Kreibich et al., 2009).

Edge features are defined as

εij =
(
nij , lij

)
, (13)

where nij is the outward unit normal vector and lij is the cell
sides’ length. Thus, the edge features represent the geomet-
rical properties of the mesh. We excluded the fluxes Fij as
additional features as they depend on the hydraulic variables
ui and uj , which are already included in the dynamic node
features.

Outputs. The model outputs are the estimated water depth
and unit discharge at time t+1, i.e. ût+1

i = (ĥt+1
i , ˆ|q|t+1

i ), re-
sulting in an output dimension O = 2. The outputs are used
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Figure 3. Example of auto-regressive prediction for p input previous time steps and H predicted steps ahead. The predictions at time τ are
used as new inputs to predict the following time step and so on. The loss and the metrics are evaluated as the average over all steps H .

to update the input dynamic node features xdi for the follow-
ing time step, as exemplified in Fig. 3. The same applies for
the water level in the static attributes, i.e. wt+1

i = ei + ĥ
t+1
i .

3.3 Training strategy

The model learns from input–output data pairs. To stabilize
the output of the SWE–GNN over time, we employ a multi-
step-ahead loss function L that measures the accumulated er-
ror for multiple consecutive time steps, i.e.

L=
1
HO

H∑
τ=1

O∑
o=1

γo‖û
t+τ
o −ut+τo ‖2, (14)

where ut+τo ∈ RN are the hydraulic variables over the whole
graph at time t+τ ;H is the prediction horizon, i.e. the num-
ber of consecutive time instants; and γo are coefficients used
to weight the influence of each variable on the loss. For each
time step τ , we evaluate the model’s prediction ût+τ and then
use the prediction recursively as part of the new dynamic
node input (see Fig. 3). We repeat this process for a num-
ber of time steps H and calculate the root mean squared er-
ror (RMSE) loss as the average over all the steps. In this way,
the model learns to correct its own predictions while also
learning to predict a correct output, given a slightly wrong
prediction, hence improving its robustness. After p+ 1 pre-
diction steps, the inputs of the model are given exclusively
by its predictions. During training, we limit the prediction
horizon H instead of using the full temporal sequence due
to memory constraints, since the back-propagation gradients
must be stored for each time step.

To improve the training speed and stability, we also em-
ployed a curriculum learning strategy (Algorithm 1). This
consists in progressively increasing the prediction horizon in
Eq. (14) every fixed number of epochs up to H . The idea
is first to learn the one-step-ahead or few-steps-ahead pre-
dictions to fit the short-term predictions and then to increase
the number of steps ahead to stabilize the predictions (Wang
et al., 2022).

Algorithm 1 Curriculum learning strategy.

Initialize:
H = 1
CurriculumSteps= 15
γ1 = 1 (water depth h)
γ2 = 3 (unit discharge q)

for epoch= 1 to MaxEpochs do
Ût+1

= Ut +8(Xs ,Ut−p:t ,E)

L= 1
HO

H∑
τ=1

O∑
o=1

γo‖û
t+τ
o −ut+τo ‖2,

Update the parameters
if epoch>CurriculumSteps∗H then
H =H + 1

end if
end for
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4 Experimental setup

4.1 Dataset generation

We considered 130 numerical simulations of dike breach
floods run on randomly generated topographies over two
squared domains of sizes 6.4× 6.4 and 12.8× 12.8 km2 rep-
resentative of flood-prone polder areas.

We generated random digital elevation models using the
Perlin noise generator (Perlin, 2002) as its ups and downs re-
flect plausible topographies. We opted for this methodology,
instead of manually selecting terrain patches, to automatize
the generation process, thus allowing for an indefinite num-
ber of randomized and unbiased training and testing samples.

We employed a high-fidelity numerical solver, Delft3D-
FM, which solves the full shallow water equations using an
implicit scheme on staggered grids and adaptive time steps
(Deltares, 2022). We used a dry bed as the initial condition
and a constant input discharge of 50 m3 s−1 as the bound-
ary condition, equal to the maximum dike breach discharge.
We employed a single boundary condition value for all the
simulations as our focus is on showing generalizability over
different topographies and breach locations. The simulation
output is a set of temporally consecutive flood maps with a
temporal resolution of 30 min.

We created three datasets with different area sizes and
breach locations as summarized in Table 1. We selected a
rectangular domain discretized by regular meshes to allow
for a fairer comparison with other models that cannot work
with meshes or cannot incorporate edge attributes. Further-
more, we considered a constant roughness coefficient mi for
all the simulations, meaning that we use the terrain elevation
and the slopes in the x and y directions as static node inputs.

1. The first dataset consists of 100 DEMs over a squared
domain of 64× 64 grids of length 100 m and a simu-
lation time of 48 h. This dataset is used for training,
validation, and testing. We used a fixed testing set of
20 simulations, while the remaining 80 simulations are
used for training (60) and validation (20).

2. The second dataset consists of 20 DEMs over a squared
domain of 64× 64 grids of length 100 m and a simula-
tion time of 48 h. The breach location changes randomly
across the border with a constant discharge of 50 m3 s−1

(Fig. 4a). This dataset is used to test the generalizability
of the model to unseen domains and breach locations.

3. The third dataset consists of 10 DEMs over a squared
domain of 128×128 grids of length 100 m. The bound-
ary conditions are the same as for the second dataset.
Since the domain area is 4 times larger, the total simu-
lation time is 120 h to allow for the flood to cover larger
parts of the domain. This dataset is used to test the gen-
eralizability of the model to larger unseen domains, un-
seen breach locations, and longer time horizons.

Figure 4. Distribution of the breach locations (red crosses) for
datasets 2 and 3.

Unless otherwise mentioned, we selected a temporal res-
olution of 1t = 1 h as a trade-off between detail and speed.
When the beginning of the flood is relevant (e.g. for real-
time forecasts), higher temporal resolutions are better. By
contrast, if the final flood state is relevant, lower temporal
resolutions may be better.

4.2 Training setup

We trained all models via the Adam optimization algorithm
(Kingma and Ba, 2014). We employed a varying learning
rate with 0.005 as a starting value and a fixed step decay of
90 % every seven epochs. The training was carried out for
150 epochs with early stopping. We used a maximum pre-
diction horizonH = 8 steps ahead during training as a trade-
off between model stability and training time, as later high-
lighted in Sect. 5.4. There is no normalization pre-processing
step and, thus, the values of water depth and unit discharge
differ in magnitude by a factor of 10. Since for applica-
tion purposes discharge is less relevant than water depth
(Kreibich et al., 2009), we weighted the discharge term by
a factor of γ2 = 3 (see Eq. 14) while leaving the weight fac-
tor for water depths as γ1 = 1. Finally, we used one previous
time step as input, i.e. Xd = (Ut=0,Ut=1), where the solution
at time t = 0 corresponds to dry bed conditions.

We trained all the models using Pytorch (version 1.13.1)
(Paszke et al., 2019) and Pytorch Geometric (version 2.2)
(Fey and Lenssen, 2019). In terms of hardware, we employed
an Nvidia Tesla V100S-PCIE-32GB for training and deploy-
ment (DHPC, 2022) and an Intel(R) Core(TM) i7-8665U
@1.9 GHz CPU for deployment and for the execution of
the numerical model. We run the models on both GPUs and
CPUs to allow for a fair comparison with the numerical mod-
els.

4.3 Metrics

We evaluated the performance using the multi-step-ahead
RMSE (Eq. 14) over the whole simulation. However, for test-

Hydrol. Earth Syst. Sci., 27, 4227–4246, 2023 https://doi.org/10.5194/hess-27-4227-2023



R. Bentivoglio et al.: Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks 4235

Table 1. Summary of the datasets employed for training (TR), validation (VA), and testing (TE). The uncertainty accounts for the variability
across the different simulations in each dataset.

Dataset Number of Size (km2) Random Simulation Execution
and use simulations breach duration time of the

location (h) numerical
model (s)

1 (TR, VA, TE) 100 6.4× 6.4 No 48 29.5± 9.1
2 (TE) 20 6.4× 6.4 Yes 48 32.5± 5.1
3 (TE) 10 12.8× 12.8 Yes 120 185.5± 29.9

ing, we calculated the RMSE for each hydraulic variable o
independently as

RMSEo =
1
H

H∑
τ=1
‖ûτo −u

τ
o‖2. (15)

Analogously, we evaluated the mean average error (MAE)
for each hydraulic variable o over the whole simulation as

MAEo =
1
H

H∑
τ=1
‖ûτo −u

τ
o‖1. (16)

The prediction horizon H depends on the total simulation
time and temporal resolution. For example, predicting 24 h
with a temporal resolution of 30 min results in H = 48 steps
ahead. We also measured the spatio-temporal error distribu-
tion of the water depth using the critical success index (CSI)
for threshold values of 0.05 and 0.3 m, as in Löwe et al.
(2021). The CSI measures the spatial accuracy of detecting a
certain class (e.g. flood or no-flood) and, for a given thresh-
old, it is evaluated as

CSI=
TP

TP+FP+FN
, (17)

where TP is the true positives, i.e. the number of cells where
both the model and simulation predict flood; FP is the false
positives, i.e. the number of cells where the model wrongly
predicts flood; and FN is the false negatives, i.e. the num-
ber of cells where the model does not recognize a flooded
area. We selected this measure as it discards the true neg-
atives, i.e. when both the model and simulation predict no
flood, as this condition is over-represented, especially for the
initial time steps. Thus, including true negatives may give an
overconfident performance estimate. We measured the com-
putational speed-up as the ratio between the computational
time required by the numerical model and the inference time
of the deep-learning model. Both times refer to the execution
of the complete flood simulation but do not include the time
required to simulate the initial time steps.

5 Numerical results

5.1 Comparison with other deep-learning models

The proposed SWE–GNN model is compared with other
deep-learning methods, including the following.

– CNN: encoder–decoder convolutional neural network
based on U-Net (Ronneberger et al., 2015). The CNN
considers the node feature matrix X reshaped as a ten-
sor X ∈ Rg×g×IN , where g is the number of grid cells,
i.e. 64 for datasets 1 and 2 and 128 for dataset 3, and
IN is the number of static and dynamic features. This
baseline is used to highlight the advantages of the mesh
dual graph as an inductive bias in place of an image.

– GAT: graph attention network (Veličković et al., 2017).
The weights in the propagation rule are learned con-
sidering an attention-based weighting. This baseline is
considered to show the influence of learning the propa-
gation rule with an attention mechanism. For more de-
tails, see Appendix A.

– GCN: graph convolutional neural network (Defferrard
et al., 2016). This baseline is considered to show the
influence of not learning the edge propagation rule in
place of learning it. For more details, see Appendix A.

– SWE–GNNng: SWE–GNN without the gradient term
xdj − xdi . This is used to show the importance of the
gradient term in the graph propagation rule.

We also evaluated MLP-based models, but their performance
was too poor and we do not report it. All the models con-
sider the same node feature inputs X= (Xs,Xd), produce the
same output Ŷ= Ut+1, produce extended simulations by us-
ing the predictions as input (as in Fig. 3), and use the same
training strategy with the multi-step-ahead loss and curricu-
lum learning. For the GNN-based models, we replaced the
GNN in the processor while keeping the encoder–decoder
structure as in Fig. 2. We conducted a thorough hyperparam-
eter search for all the models, and we selected the one with
the best validation loss. For the CNN architecture, the best
model has three down- and up-scaling blocks, with 64 fil-
ters in the first encoding block. Interestingly, we achieved
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good results only when employing batch normalization lay-
ers, PReLU as an activation function, and no residual con-
nections. All other standard combinations resulted in poor
performances, which we did not report as they are outside the
scope of the paper. For the GNN-based architectures, all hy-
perparameter searches resulted in similar best configurations,
i.e. L= 8 GNN layers and an embedding size of G= 64.

In Table 2, we report the testing RMSE and MAE for
water depth and discharges as well as the CSI scores for
all the models. The proposed SWE–GNN model and the U-
Net-based CNN perform consistently better than all the other
models, with no statistically significant difference in perfor-
mance according to the Kolmogorov–Smirnov test (p value
less than 0.05). The CNN performs similarly to the SWE–
GNN because the computations on a regular grid are simi-
lar to those of a GNN. Nonetheless, there are valuable dif-
ferences between the two models. First, SWE–GNN is by
definition more physically explainable as water can only
propagate from wet cells to neighbouring cells, while in the
CNN there is no such physical constraint, as exemplified
by Fig. 5b. Second, as emphasized in the following section,
the SWE–GNN results in improved generalization abilities.
Moreover, in contrast to CNNs, GNNs can also work with
irregular meshes. Regarding the other GNN-based models,
we noticed that the GAT model had the worse performance,
indicating that the propagation rule cannot be learned effi-
ciently via attention mechanisms. Moreover, the GCN and
the SWE–GNNng achieved comparable results, meaning that
the gradient term makes a relevant contribution to the model
as its removal results in a substantial loss in performance.
We expected this behaviour as, without this term, there is no
computational constraint on how water propagates.

5.2 Generalization to breach locations and larger areas

We further tested the already trained models on datasets 2
and 3, with unseen topographies, unseen breach locations,
larger domain sizes, and longer simulation times, as de-
scribed in Table 1. In the following, we omit the other GNN-
based models, since their performance was poorer, as high-
lighted in Table 2.

Table 3 shows that all the metrics remain compara-
ble across the various datasets for the SWE–GNN, with
test MAEs of approximately 0.04 m for water depth and
0.004 m2 s−1 for unit discharges, indicating that the model
has learned the dynamics of the problems. The speed-up on
the GPU of the SWE–GNN over dataset 3 increased further
with respect to the smaller areas of datasets 1 and 2, reaching
values twice as high, i.e. ranging from 100 to 600 times faster
than the numerical model on the GPU. We attribute this to
the deep-learning models’ scalability and better exploitation
of the hardware for larger graphs.

In Fig. 5, we see two examples of a SWE–GNN and a
CNN on test datasets 2 and 3. The SWE–GNN model pre-
dicts better the flood evolution over time for unseen breach

locations, even on bigger and unseen topographies, thanks to
its hydraulic-based approach. On the other hand, the CNN
strongly over- or under-predicts the flood extents unless the
breach location is close to that of the training dataset, indi-
cating that it lacks the correct inductive bias to generalize
floods. For both models, the predictions remain stable even
for time horizons 2.5 times longer than those in training.

5.3 SWE–GNN model analysis

Over the entire test part of dataset 1, the model achieves
MAEs of 0.04 m for water depth and 0.004 m2 s−1 for
unit discharges with respect to maximum water depths and
unit discharges of 2.88 m and 0.55 m2 s−1, respectively, and
average water depths and unit discharges of 0.62 m and
0.037 m2 s−1.

We illustrate the spatio-temporal performance of the
model on a test sample in Fig. 6. Water depth and discharges
evolve accurately over time, overall matching the ground-
truth numerical results. The errors are related to small over-
or under-predictions, a few incorrect flow routes, and lags in
the predictions resulting in delays or anticipations that are
corrected by the successive model iterations. In particular,
the model struggles to represent discharges corresponding to
ponding phenomena, i.e. when an area gets filled with wa-
ter and then forms a temporary lake, as exemplified in the
bottom-left part of the domain in Fig. 6b. This is because
of the lower contribution of the discharges to the training
loss. Nonetheless, the error does not propagate over time,
thanks to the multi-step-ahead loss employed during train-
ing. In fact, the model updates the solution for the entire do-
main at each time step. Consequently, it exploits information
on newly flooded neighbourhoods to recompute better values
for the cells that were flooded before.

We also observe the average performance of the different
metrics over time, for the whole test dataset 1, in Fig. 7. The
CSI is consistently high throughout the whole simulation, in-
dicating that the model correctly predicts where water is lo-
cated in space and time. On the other hand, both MAE and
RMSE increase over time. This is partially due to the evalua-
tion of both metrics via a spatial average, which implies that,
in the first time steps, where the domain is mostly dry, the
error will naturally be lower. Nonetheless, the errors increase
linearly or sub-linearly, implying that they are not prone to
exploding exponentially.

Next, we analysed the relationship between the number of
GNN layers and the temporal resolution to validate the hy-
pothesis that the number of layers is correlated with the time
steps. Following the CFL condition, we can expand the com-
putational domain by increasing the number of GNN layers
in the model instead of decreasing the time steps. We con-
sidered several models with an increasing number of GNN
layers targeting temporal resolutions of1t = 30, 60, 90, and
120 min. Figure 8 shows that lower temporal resolutions (e.g.
120 min) require more GNN layers to reach the same perfor-
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Table 2. Performance of the deep-learning models over test dataset 1. The provided uncertainty estimates account for the variability across
the different simulations in the dataset. Bold results indicate the best performances considering a statistical significance with a p value
of 0.05.

DL model RMSE MAE CSIτ (%)

h (m) [10−2
] |q| (m2 s−1) h (m) [10−2

] |q| (m2 s−1) τ = 0.05 m τ = 0.3 m
[10−2

] [10−2
]

CNN 10.97± 5.11 1.33± 0.57 3.87± 1.29 0.42± 0.13 75.64± 9.40 73.42± 9.26

GAT 25.78± 7.23 1.96± 0.61 9.27± 0.73 5.78± 0.11 34.50± 10.91 27.07± 8.63
GCN 16.49± 6.91 1.65± 0.55 6.05± 1.62 0.57± 0.11 61.14± 13.34 58.89± 11.90

SWE–GNN_ng 16.24± 6.65 1.71± 0.66 6.10± 1.56 0.63± 0.07 58.61± 11.97 57.91± 12.62
SWE–GNN 11.15± 5.11 1.22± 0.42 3.93± 1.63 0.37± 0.10 75.85± 9.30 73.44± 9.28

Figure 5. Comparison of the proposed SWE–GNN model against the CNN for two examples in test datasets 2 (a) and 3 (b). In each panel,
the top-left image represents the digital elevation model (DEM) along with a red cross corresponding to the breach location. The following
blocks represent, respectively, the ground-truth numerical results, the SWE–GNN predictions, and the CNN predictions for water depth and
unit discharges at the last time instant of the simulation (i.e. 48 h for dataset 2 and 120 h for dataset 3).
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Figure 6. SWE–GNN model predictions for water depth (a) and discharges (b). The results are displayed over time for a test topography
in dataset 1 comparing the ground-truth output of the numerical simulation (top row) with the predictions (middle row). The difference
(bottom row) is evaluated as the predicted value minus the ground-truth one; thus, positive values correspond to model over-predictions,
while negative values correspond to under-predictions. The legends refer to the maximum values throughout the whole simulation. The top-
left panels in both sub-figures represent the initial hydraulic conditions given as input to the DL model along with the dry bed conditions at
time t = 0.
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Table 3. Performance of the deep-learning models over test datasets 2 and 3, respectively, composed of unseen domains with unseen breach
locations and unseen domains 4 times bigger than the training ones, also with unseen breach locations. The provided uncertainty estimates
account for the variability across different simulations. Bold results indicate the best performances, considering a statistical significance with
a p value of 0.05.

Test DL model RMSE MAE CSIτ (%)

dataset h (m) [10−2
] |q| (m2 s−1) h (m) [10−2

] |q| (m2 s−1) τ = 0.05 m τ = 0.3 m
[10−2

] [10−2
]

2
CNN 15.74± 7.00 1.69± 0.47 6.50± 2.37 0.54± 0.13 51.90± 20.25 47.82± 18.42
SWE–GNN 11.11± 4.65 1.31± 0.44 4.84± 1.87 0.48± 0.13 73.62± 8.04 68.46± 7.13

3
CNN 16.86± 3.12 1.21± 0.16 6.07± 1.77 0.36± 0.10 42.16± 15.63 40.92± 15.96
SWE–GNN 11.38± 3.95 1.12± 0.30 3.77± 1.98 0.31± 0.12 68.53± 10.18 64.53± 11.20

Figure 7. Temporal evolution of CSI scores, MAE, and RMSE for test dataset 1. The confidence bands refer to 1 standard deviation from the
mean.

mance as that of higher temporal resolutions (e.g. 30 min).
One reason why the number of layers does not increase lin-
early with the temporal resolution may be that the weighting
matrices W` (see Eq. 7) improve the expressive power of
each layer, leading to fewer layers than needed otherwise.

Finally, we explored different model complexity combina-
tions, expressed by the number of GNN layers and the latent
space size, to determine a Pareto front for validation loss and
speed-up, which results in a trade-off between fast and accu-
rate models. Figure 9 shows that increasing the complexity
reduces both errors and speed-ups while improving the CSI,
as expected. While for the GPU the number of hidden fea-
tures does not influence the speed-up, the performance on
the CPU depends much more on it, with bigger models being
slower, implying different trade-off criteria for deployment.

5.4 Sensitivity analysis of the training strategy

Finally, we performed a sensitivity analysis of the role of the
multi-step-ahead function (see Eq. 14) and the curriculum
learning (Algorithm 1) in the training performance. Sensitiv-
ity analysis is a technique that explores the effect of varying
hyperparameters to understand their influence on the model’s
output. Figure 10a shows that increasing the number of steps
ahead improves the performance. Increasing the number of
steps implies higher memory requirements and longer train-

ing times. Because of the best performances and GPU avail-
ability, we selected eight steps ahead in all the experiments.
However, when performing bigger hyperparameter searches
or when limited by hardware, choosing fewer steps ahead can
result in an acceptable performance. Similar considerations
can also be made for the CNN model.

Figure 10b shows that increasing the interval of curricu-
lum steps linearly reduces the training times while also im-
proving the performance. The decrease in performance asso-
ciated with bigger values is probably caused by the number
of total training epochs, i.e. 150, which is insufficient to cover
the whole prediction horizon H . Increasing the total number
of epochs should increase both the performance and the train-
ing time, but we avoided this analysis and chose an interval
of 15 epochs for the curriculum learning strategy as a trade-
off between performance and training times. Moreover, mod-
els with curriculum steps between 0 and 15 suffered from
spurious instabilities during training that were compensated
for with early stopping, while models with more curriculum
steps were generally more stable. This is due to sudden vari-
ations in the loss function that limit a smoother learning pro-
cess.
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Figure 8. Relationship between the number of GNN layers and different temporal resolutions in terms of the validation RMSE and validation
CSI. As the temporal resolution decreases and, conversely, as the time step increases, the optimal number of GNN layers, in terms of the
desired performance level, increases.

Figure 9. Pareto fronts (red-dotted lines) in terms of speed-ups, RMSE, and CSI for a varying number of parameters, for both CPUs and
GPUs, for a temporal resolution of 1t = 1 h.

6 Concluding remarks

We proposed a deep-learning model for rapid flood mod-
elling, called SWE–GNN, inspired by shallow water equa-
tions (SWEs) and graph neural networks (GNNs). The model
takes the same inputs as a numerical model, i.e. the spatial
discretization of the domain, elevation, slopes, and initial val-
ues of the hydraulic variables, and predicts their evolution
in time in an auto-regressive manner. The results show that
the SWE–GNN can correctly predict the evolution of wa-
ter depth and discharges with mean average errors in time
of 0.04 m and 0.004 m2 s−1, respectively. It also generalizes
well to previously unseen topographies with varying breach
locations, bigger domains, and longer time horizons. SWE–
GNN is up to 2 orders of magnitude faster than the un-
derlying numerical model. Moreover, the proposed model
achieved consistently better performances with respect to
other deep-learning models in terms of water depth and unit
discharge errors as well as CSI.

In line with the hypothesis, GNNs proved to be a valu-
able tool for spatio-temporal surrogate modelling of floods.
The analogy with finite-volume methods is relevant for three
reasons. First, it improves the deep-learning model’s inter-
pretability, as the weights in the graph propagation rule can
be interpreted as an approximate Riemann solver and multi-
ple GNN layers can be seen as intermediate steps of a multi-
step method such as Runge–Kutta. Second, the analogy also

provides an existing framework to include conservation laws
in the model and links two fields that can benefit from each
other’s advances. For example, multiple spatial and temporal
resolutions could be jointly used in place of a fixed one, sim-
ilarly to Liu et al. (2022). Third, the methodology is applica-
ble to any flood modelling application where the SWE holds,
such as storm surges and river floods. The same reasoning
can also be applied to other types of partial differential equa-
tions where finite-volume methods are commonly used, such
as in computational fluid dynamics.

The current analysis was carried out under a constant
breach inflow as a boundary condition. Further research
should extend the analysis to time-varying boundary condi-
tions to better represent complex real-world scenarios. One
solution is to employ ghost cells typical of numerical mod-
els (LeVeque, 2002) for the domain boundaries, assigning
known values in time. It should be noted that our model can-
not yet completely replace numerical models as it requires
the first time step of the flood evolution as input. This chal-
lenge could be addressed by directly including boundary con-
ditions in the model’s inputs. In contrast to physically based
numerical methods, the proposed model does not strictly en-
force conservation laws such as mass balance. Future work
could address this limitation by adding conservation equa-
tions to the training loss function, as is commonly done with
physics-informed neural networks. Finally, while we empir-
ically showed that the proposed model along with the multi-
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Figure 10. Influence of (a) the number of training steps ahead on the validation RMSE and (b) the update interval in the curriculum learning.

step-ahead loss can sufficiently overcome numerical stability
conditions, we provide no theoretical guarantee that stability
can be enforced for an indefinite number of time steps.

Future research should investigate the new modelling ap-
proach in flood risk assessment and emergency preparation.
This implies creating ensembles of flood simulations to re-
flect uncertainties, flood warning and predicting extreme
events, and exploring adaptive modelling during floods by in-
corporating real-time observations. The model should also be
validated in real case studies featuring linear elements such
as secondary dikes and roads typical of polder areas. Fur-
ther work could also address breach uncertainty in terms of
timing, size, growth, and number of breaches. Moreover, fu-
ture works should aim at improving the model’s Pareto front.
To improve the speed-up, one promising research direction
would be to employ multi-scale methods that allow one to
reduce the number of message-passing operations while still
maintaining the same interaction range (e.g. Fortunato et al.,
2022; Lino et al., 2022). On the other hand, better enforcing
physics and advances in GNNs with spatio-temporal models
(e.g. Sabbaqi and Isufi, 2022) or generalizations to higher-
order interactions (e.g. Yang et al., 2022) may further benefit
the accuracy of the model. Overall, the SWE–GNN marks
a valuable step towards the integration of deep learning for
practical applications.

Appendix A: Architecture details

In this Appendix, we further detail the different inputs and
outputs, the hyperparameters, and the models’ architectures
used in Sect. 5.1.

A1 Inputs, outputs, and hyperparameters

Figure A1 shows the inputs employed by all the models in
Sect. 5.1. The static inputs Xs are given by the slopes in the
x and y directions as well as the elevation, while the initial
dynamic inputs Xd = (U0,U1) are given by water depth and
discharge at times t = 0 h, i.e. the empty domain, and t = 1 h.

Table A1 shows the hyperparameters employed for each
model. Some hyperparameters are common to all the mod-

els, such as learning rate, number of maximum training steps
ahead, and optimizer, while other change depend on the
model, such as embedding dimensions and the number of
layers.

A2 GNN benchmarks

We compared the proposed model against two benchmark
GNNs that employ different propagation rules. Since those
models cannot independently process static and dynamic at-
tributes, in contrast to the SWE–GNN, we stacked the node
inputs into a single node feature matrix X= (Xd,Xs), which
passes through an encoder MLP and then to the GNN.

The GCN employs the normalized Laplacian connectivity
matrix to define the edge weights sij . The layer propagation
rule reads as

sij =
(

I−D−1/2AD−1/2
)
ij
, (A1)

h
(`+1)
i =

∑
j∈Ni

sijW(`)h
(`)
j , (A2)

where I is the identity matrix; A is the adjacency matrix,
which has non-zero entries corresponding to edges; and D
is the diagonal matrix.

GAT employs an attention-based mechanism to define the
edge weights sij based on their importance in relation to the
target node. The layer propagation rule reads as

sij =
exp(LeakyReLU

(
aT
[
W(`)h

(`)
i ||W

(`)h
(`)
k

])
∑
k∈Ni

exp
(

LeakyReLU
(
aT
[
W(`)h

(`)
i ||W(`)h

(`)
k

])) , (A3)

h
(`+1)
i =

∑
j∈Ni

sijW(`)h
(`)
j , (A4)

where a ∈ R2G is a weight vector, sij are the attention coef-
ficients, and || denotes concatenation.

A3 CNN

The encoder–decoder convolutional neural network is an ar-
chitecture composed of two parts (Fig. A2). The encoder
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extracts high-level features from the input images while re-
ducing their extent via a series of convolutional and pooling
layers, while the decoder extracts the output image from the
compressed signal, again via a series of convolutional lay-
ers and pooling layers. The U-Net version of the architecture
also features residual connections between images with the
same dimensions. That is, the output of an encoder block is
summed to the inputs of the decoder block with the same di-
mensions, as shown in Fig. A2. The equation for a single 2D
convolutional layer is defined as

Yk = σ (Wk ∗X) , (A5)

where Yk is the output feature map for the kth filter, X is
the input image, Wk is the weight matrix for the kth filter, ∗
denotes the 2D convolution operation, and σ is an activation
function.

Figure A1. Detailed inputs and outputs used in the paper considering a regular mesh, p = 1 previous time steps, and a time resolution
1t = 1 h. The initial inputs are dry bed conditions, i.e. Ut=0 h, and the first time step of the simulation, i.e. Ut=1 h, given by the numerical
model.

Table A1. Summary of the hyperparameters and related value ranges employed for the different deep-learning models. The bold values
indicate the best configuration in terms of validation loss.

DL model Hyperparameter name Value range (best)

All models Initial learning rate 0.005
Input previous time steps (p) 1
Temporal resolution (1t) 1 h
Maximum training steps ahead (H ) 8
Optimizer Adam

GNN models Embedding dimension (G) 8, 16, 32, 64
Number of GNN layers (L) 1, 2, 3, 4, 5, 6, 7, 8, 9
Batch size 8

CNN First embedding dimension 16, 32, 64, 128
Number of encoding blocks 1, 2, 3, 4
Activation function ReLU, PReLU, no activation
Batch size 64

Hydrol. Earth Syst. Sci., 27, 4227–4246, 2023 https://doi.org/10.5194/hess-27-4227-2023
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Figure A2. U-Net-based CNN architecture employed in the experiments, with the first embedding dimension of 64 and three encoding
blocks. Each block is composed of one convolutional layer, followed by a batch normalization layer, a PReLU activation function, another
convolutional layer, and finally a pooling layer. All the blocks with the same dimensions are connected by residual connections indicated by
the horizontal lines.

Appendix B: Pareto front for dataset 3

We employed the models trained with different combinations
of the number of GNN layers and embedding sizes (Sect. 5.3)
on test dataset 3. Figure B1 shows that the models perform
better in terms of speed with respect to the smaller areas,
achieving similar CPU speed-ups and GPU speed-ups around
2 times higher than those in datasets 1 and 2.
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Figure B1. Pareto fronts on test dataset 3 (red-dotted lines) in terms of speed-ups, RMSE, and CSI for a varying number of parameters for a
temporal resolution of 1t = 1 h.

Code and data availability. The employed dataset can be
found at https://doi.org/10.5281/zenodo.7764418 (Bentivoglio
and Bruijns, 2023). The code repository is available at
https://doi.org/10.5281/zenodo.10214840 (Bentivoglio, 2023a)
and https://github.com/RBTV1/SWE-GNN-paper-repository-
(RBTV1, 2023).

Video supplement. The simulations on test datasets 1, 2,
and 3, run with the presented model, can be found at
https://doi.org/10.5281/zenodo.7652663 (Bentivoglio, 2023b).
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