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We present ADM-LTS, an adaptive multilevel space-time-stepping scheme for transport 
in heterogeneous porous media. At each time step, firstly, the flow (pressure) solution 
is obtained. Then, the transport equation is solved using the ADM-LTS method, which 
consists of two stages. In the first stage, an initial solution is obtained by imposing the 
coarsest space-time grid. This initial solution is then improved, in the second stage, by 
imposing a space-time adaptive grid on the cells where the solution does not satisfy 
the desired quality. The quality control is based on error estimators with user-defined 
threshold values. The time-integration procedure, in which the coarsest-scale solution 
provides local flux boundary conditions for sub-domains with local time refinement, is 
strictly mass conservative. In addition, the method employs space-time fine grid cells only 
at the moving saturation fronts. In order to ensure local mass conservation at all levels, 
finite-volume restriction operators and unity prolongation operators are developed. Several 
numerical experiments have been performed to analyze the efficiency and accuracy of 
the proposed ADM-LTS method for both homogeneous and heterogeneous permeability 
fields on two and three dimensional domains. The results show that the method provides 
accurate solutions, at the same time it maintains the computational efficiency. The ADM-
LTS implementation is publicly available at https://gitlab .com /darsim2simulator.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Simulation of transport in natural porous media is challenging due to the variety of time and length scales involved in 
the process. In fact, geological formations extend several hundreds of meters whereas physical and chemical phenomena, 
which are relevant in many applications (e.g., energy and greenhouse gas storage and geo-energy production), occur at much 
smaller scales (cm and below). Additionally, at the continuum (or Darcy) scale, porous media present highly heterogeneous 
discrete properties (e.g., permeability) with no separation of scales. This leads to having fast and slow transport processes 
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coexist in one computational domain. Accurate numerical models, thus, require very high resolution grids both in space and 
time to capture all relevant physics. However, due to the big size of the domains and the large number of simulations for 
uncertainty reduction [1,2], field-scale simulations on such high resolution grids are impractical.

The global system complexity cannot be reduced by upscaling approaches, as the heterogeneous properties often times 
do not entail clear separation of scales [3]. Alternatively, one can map scalable part of the solution (e.g. pressure) in coarser 
spatial resolutions, as in the multiscale methods [4–8]. For the transport (e.g. saturation) equation, due to its local nature, 
Adaptive Mesh Refinement (AMR) schemes provide a promising framework for the reduction of the computational com-
plexity [9,10]. Both approaches address resolution challenges in space only, which can be integrated into an operator-based 
strategy by the Algebraic Dynamic Multilevel (ADM) method [11,12].

ADM maps the spatial fine-scale system into a dynamic multilevel system by using sequences of local operators (restric-
tion and prolongation). It can be applied to coupled flow-transport, or only transport equation. In addition to explicit and 
implicit time integration schemes, both sequential and fully-implicit coupling strategies can be treated in a straightforward 
manner. The focus of the present study is on the transport equation, which is sequentially coupled with the pressure and 
velocity solver at each time step.

Similar to AMR, ADM develops an adaptive spatial-grid stepping scheme. In contrast to AMR, however, ADM is applicable 
to heterogeneous systems without dependency on upscaling parameters.

Although important, spatial grid is only part of the full transport simulation advancement. To further advance the overall 
simulation efficiency, one may need to take large time step sizes. However, the excessive numerical dispersion introduced 
by the use of large time steps can significantly impact the accuracy of the solution, e.g., by smearing the advancing satu-
ration front. It is therefore crucially important to, not only allow for large time step sizes, but also to control the accuracy 
by resolving the sharp fronts using smaller time steps. Such a development is made possible–for static spatial grids–by 
Local Time Stepping (LTS) or multirate methods [13]. Recent LTS methods allow for self-adjusting time-stepping strategies 
based on a posteriori error estimator [14] in a strictly conservative implicit time integration framework [15]. The LTS for 
conservative transport simulation on fine-scale spatial grid has been also successfully integrated with the pressure solver of 
the multiscale finite volume method [16]. This idea was also followed to develop an explicit LTS scheme [17]. Note that all 
of these mentioned methods depend on a given static single-level spatial grid for transport.

Of particular interest is to develop an adaptive space-time stepping scheme for transport simulation. This development 
would allow not only to adjust the spatial, but also temporal grid in order to achieve the optimum efficient and accurate 
transport solutions.

In this paper, the adaptive space-time stepping scheme (ADM-LTS) is devised. This new development makes it possible 
to march adaptively both in space and time (with an arbitrary number of levels) to obtain accurate and efficient solutions 
for complex transport in heterogeneous porous media. Additionally, the proposed ADM-LTS method preserves mass conser-
vation, even though it takes different time step sizes in different subsets of the domain. This is made possible by obtaining 
an initial solution estimator on the coarsest space-time grid, and impose it as Neumann (fixed flux) boundary condition to 
local regions with smaller space-time steps.

Note that the ADM-LTS is developed for the transport equation, within the coupled flow-transport multiphase simulation. 
In particular, it is emphasized that the pressure equation solution is assumed to be available by any advanced solver, which 
stays out of the scope of this paper. Once the pressure and velocity fields are obtained, ADM-LTS is imposed on the transport 
equation, with adaptive space-time grid based on space-time error estimators. As a consequence, the method is able to use 
a fine-grid resolution (in space and time) only at the location of the moving saturation fronts. More precisely, the method 
first applies a global time step on the coarsest possible grid resolution. Then, it defines a multilevel grid resolution on the 
basis on the error estimators. On this new grid, the solution is recomputed with smaller time steps only in a fraction of the 
domain.

ADM-LTS is different, yet complementary, to other advanced methods for transport equation, specially the Adaptive 
Implicit Method (AIM) [18–20]. AIM develops an adaptive implicit-explicit time-integration scheme, but takes the same 
space-time grids everywhere. ADM-LTS, on the other hand, is developed to allow different space and time step sizes in a 
domain, irrespective of the choice of the time-integration scheme.

The ADM-LTS method is applied to homogeneous and heterogeneous 2D and 3D test cases including complex nonlinear 
transport physics (i.e., gravitational forces and capillarity heterogeneity). Systematic studies of the performance (i.e., accuracy 
and system complexity) are presented. Numerical test cases show that the ADM-LTS approach provides an accurate solution 
reducing the number of active cells both in space and in time.

The paper is organized as follows. The equations describing multiphase flow in porous media are presented in section 2
along with the fine-scale discrete systems for transport equation. The ADM-LTS method is explained in detail in section 3
whereas numerical experiments are presented in section 4. Finally, conclusions are provided in section 5.

2. Sequential-implicit simulation

Mass conservation equations for the flow of Np incompressible phases in a d-dimensional porous domain � ⊂ Rd read

∂
(φρα Sα) + ∇ · (ραuα) = qα ∀α ∈ {1, . . . , Np}. (1)
∂t
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Here, Sα , ρα and qα are the α-phase saturation, density and source term (i.e., wells). The Darcy velocity for α-phase can 
be written as

uα = −Kλα (∇pα + ρα g∇z) ∀α ∈ {1, . . . , Np}. (2)

Here, the phase mobility is denoted by λα , and λα = krα/μα holds, where krα and μα are the phase relative permeabil-
ity and viscosity, respectively. Furthermore, K is the rock absolute permeability (defined at discrete fine-scale resolution). 
Additionally, pα are the phase pressures, which are related to the capillary pressure Pc as

pα − pβ = (1 − δα,β)Pcα,β ∀α,β ∈ {1, . . . , Np}. (3)

Here, δα,β is the Kronecker delta, which is equal to 1 if α = β and 0 otherwise, while Pcα,β is a nonlinear function of 
wetting phase saturation. Note that the constraint 

∑N p
α=1 Sα = 1 allows for eliminating one of the unknowns. Assuming 

incompressible fluids and rock, in a two-phase system one can use the non wetting (nw) pressure and the wetting (w) 
saturation as primary variables [21,22]. We will then set p = pnw , S = S w and define a total velocity as

ut = unw + uw . (4)

Sequential-implicit simulation requires a decoupled pressure-saturation sets of equations. The equation for pressure is ob-
tained by combining the mass-balance equations, to have

∇ · ut = qw

ρw
+ qnw

ρnw
in �, (5)

where the total velocity is expressed as

ut = K
(

−λt∇p + λw∇ Pc − (λwρw + λnwρnw)g∇z

)
. (6)

On the other hand, the (wetting-phase) saturation equation is re-written by introducing the fractional flow function f w =
λw/λt , thus obtaining

∂(φS)

∂t
+ ∇ ·

{
K f wλnw (∇ Pc + (ρnw − ρw)g∇z) + f w ut

}
= qw

ρw
in �. (7)

Equations (5), (6) and (7) are coupled by the total velocity, the (nonlinear) phase relative permeability krα and the 
capillary pressure Pc .

Sequential implicit simulation (SIM) consists of decoupling the pressure and transport equations at numerical level, and 
solving each of them implicitly in time. Given the state at a current time tn , the solution at time tn+1 is found by first 
solving Eq. (5), freezing all saturation dependencies, i.e.,

−∇ · (Kλn
t ∇pn+1) = qt − ∇ · (K(λn

w∇ Pn
c − (λn

wρw + λn
nwρnw)g∇z)

)
, (8)

where qt = qw/ρw + qnw/ρnw . Then, the total velocity is computed as

un+1
t = −K

(
λn

t ∇pn+1 − λn
w∇ Pn

c + (λn
wρw + λn

nwρnw)g∇z
)
. (9)

Finally the transport equation is solved, i.e.,

φ
Sn+1 − Sn


t
+

∇ ·
(

K f n+1
w λn+1

nw

(∇ Pn+1
c + (ρnw − ρw)g∇z

) + f n+1
w un+1

t

)
− qw

ρw

n+1 = 0.

(10)

The saturation equation is a nonlinear function. Thus, we employ a Newton-Raphson’s method for Eq. (10), which leads 
to a sequence of systems of the form Jνδxν+1 = −rν . Here, δx is the vector of increment for saturation, J is the Jacobian 
matrix, r is the residual, and ν the iteration index.

For each cell K , one can write the residual as

rn+1
K = φ(Sn+1

K − Sn
K ) − 1

|K |
∑

eK L∈EK

eK L F n+1
K L − qw

ρw

n+1 = 0. (11)

Here, |K | is the volume of element K , eK L the area of the interface between cells K and L and EK the set of faces e of 
the element K. Finally, F n+1

K L is a numerical flux, which can be decomposed into three parts to have a separate treatment of 
each mobility term. Namely,
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F n+1
K L =

(
V n+1

K L + Gn+1
K L + Cn+1

K L

)
, (12)

where V n+1
K L , Gn+1

K L and Cn+1
K L are the viscous, buoyancy and capillary numerical fluxes, respectively. In the viscous numerical 

flux, the mobility is calculated using an upwind method based on the sign of the total velocity, i.e.,

V n+1
K L =

{

t f w(Sn+1

U )uT K L if uT K L > 0


t f w(Sn+1
D )uT K L otherwise.

(13)

Here, SU and S D denote the upstream and downstream saturation values, respectively. In the gravity numerical flux, the 
mobility is computed based on the density differences, i.e.,

Gn+1
K L =

{

tT K L f w(Sn+1

U )λnw(Sn+1
U )
ρg(zL − zK ) if 
ρg(zL − zK ) > 0


tT K L f w(Sn+1
D )λnw(Sn+1

D )
ρg(zL − zK ) otherwise.
(14)

Here, 
ρ = (ρnw −ρw), and T K L is the interface normalized transmissibility (normalized by the grid cell cross-section area), 
which is computed as the harmonic average of the neighboring cell parameters, i.e.,

T K L =
(

dK e

KK
+ deL

KL

)−1

, (15)

where dK e and deL are the distances between the face eK L and the centers of cells K and L, respectively. Finally, the capillary 
numerical flux is calculated as

Cn+1
K L =

{

tT K L f w(Sn+1

U )λnw(Sn+1
U )(Pn+1

cL
− Pn+1

cK
) if uT K L > 0


tT K L f w(Sn+1
D )λnw(Sn+1

D )(Pn+1
cL

− Pn+1
cK

) otherwise.
(16)

The quality of the solution of Eq. (10) is highly influenced by the resolution of the spatial and time discretization scheme. 
The objective of this work is to develop a space-time multilevel adaptive method (ADM-LTS) to solve Eq. (10) accurately 
and efficiently.

3. ADM-LTS method

In this section, first, the original ADM method [11] is reviewed, then, the newly proposed ADM-LTS algorithm is pre-
sented in detail.

3.1. The ADM method

The ADM method is employed to reduce the computational cost associated with the solution of the linear system arising 
from the linearized problem of Eq. (10).

Let us consider a domain discretized with a high resolution grid which is assumed to be fine enough to capture all 
relevant physics and to honor the heterogeneous distribution of the geological properties. Given this fine-scale discretization, 
a hierarchy of nl nested coarse grids is constructed. Each grid is formed by Nl = Nlx × Nly × Nlz grid cells, where l is the 
resolution index and l = 0 represents the fine grid resolution.

The set of all grid cells belonging to resolution level l is called �l . At each time step ADM defines a multilevel grid by 
combining grid cells belonging to the hierarchy of grids previously defined. Given a multilevel ADM grid, let us define �l as 
the set of grid cells belonging to all levels from 0 to l which are present in the ADM grid. Additionally, it is convenient to 
define the set 
l as 
l = �l ∩ �l .

Given an ADM grid formed by the set of grid cells �l , ADM assumes that the fine scale solution can be approximated by 
employing a sequence of prolongation operators, i.e.

δx f ≈ δx′ = P̂1
0 . . . P̂l

l−1δxADM . (17)

Here, operator P̂i
i−1 interpolates the solution at level i to the finer resolution level (i − 1) and δxADM is the vector of 

increment for the ADM solution on the adaptive multilevel grid. The fine-scale Jacobian system is mapped to the ADM grid 
by

R̂l−1
l . . . R̂0

1JP̂1
0 . . . P̂l

l−1δxADM = −R̂l−1
l . . . R̂0

1r f , (18)

where R̂i−1
i is the restriction operator which maps the solution from resolution at level i to coarser level (i − 1). In order 

to ensure mass conservation at all level, a finite volume restriction operator is considered [5]. Thus, the entry (i, j) of a 
restriction operator reads
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R̂l−1
l (i, j) =

{
1 if cell i ∈ 
l and cell j ∈ 
l−1,

δi j otherwise.
(19)

Additionally, constant interpolation is considered for saturation,

P̂l
l−1 =

(
R̂l−1

l

)T
. (20)

Consequently, no solution step is required to compute the prolongation operator.

3.2. ADM method with local time-stepping (ADM-LTS)

At each time step n, having solved the pressure equation and computed the total velocity field, we address the transport 
equation employing the ADM-LTS algorithm.

First, Eq. (18) is solved with time step 
t over the whole domain on the coarsest grid resolution (lmax) formed by cells 
belonging to �lmax and limiting refinement only around the wells. Then, based on the coarse solution obtained, the proper 
ADM grid resolution is chosen according to a front-tracking criterion. Two alternative front-tracking strategies are considered 
in this work:

• a criterion based on the saturation difference between neighboring cells. A cell i belonging to level l is refined whenever 
the saturation difference, as defined in [11], between i and one of its neighbors exceeds a user-defined tolerance εx .

• a time-dependent criterion combined with the previous one to determine whether cells belonging to �0 should stay 
fine. Let us define ψS = Sn+1 − Sn . A fine cell i is kept at the fine resolution only if ψSi > εt , where εt is a user-
defined tolerance. A similar time-based coarsening criterion has successfully been used in the literature for channelized 
heterogeneous problems where stationary gradients are present [23].

Once the ADM grid resolution has been defined, the solution is recomputed for all cells belonging to �lmax−1 with a 
time step 
tlmax−1 = 
t/η by imposing local boundary conditions as described in detail in the following subsection. Here 
η is the time refinement ratio. Then, the same operation is repeated for all resolution levels l until l = 0 has been reached. 
Thus, each resolution level l (formed by the set of grid blocks �l) is solved with a time step 
tl = 
tl+1/η. For the finest 
level (l = 0) ADM-LTS only recomputes the solution, with time step 
t0 = 
t/ηlmax , for a subset, defined �0

A , of the cells 
belonging to �0. In fact, only fine cells for which ψS = Sn+
t1 − Sn > εt are part of the set �0

A .
The method advances in time for the active cells in �0

A until they reach t = tn + 
t1. Once they are synchronized, cells 
in �1 advance in time. At this point, a new set of cells �0

A is selected and these cells are advanced by 
t1 performing 
η 
t0 time steps. Once all cells in �1 have reached time t = tn + 
t2 another time step 
t2 can be performed for all 
cells belonging to �2. This is a recursive procedure which is performed for all levels until all cells have reached time 
tn+1 = tn + 
t .

Fig. 1 illustrates a schematic overview of the ADM-LTS method where η and lmax are both taken equal to 2. Fig. 2 shows 
an example of the ADM grid at each step and the refining area. At the global time step 
t , the solution is computed on the 
coarsest resolution lmax . At the intermediate time step the ADM grid resolution is defined and the solution is recomputed 
with the intermediate time step everywhere except at the coarsest region (middle figure). At the end, the method checks 
the errors and defines the set of active cells �0

A (pink region on the right), the solution is recomputed with the smallest 
time step. Note that the solution at each local time step is performed at a different space-time resolution. Furthermore, all 
cells belonging to the coarsest level march with the biggest time step size. On the other hand, the saturation at cells in �0

A
(i.e., where higher resolution is needed) naturally advance with smaller time step sizes.

We remark that the quality of the solution and the efficiency of the ADM-LTS algorithm will be significantly affected by 
the choice of the user-defined tolerances εx and εt . Even though, a general strategy cannot be defined, simple analytical 
solutions (e.g., Buckley-Leverett) can be used to estimate the value of the saturation front and deduce effective values for 
the tolerances that will have to be determined to obtain the desired trade-off between accuracy and efficiency.

3.2.1. Local systems and local boundary conditions

For each resolution level l, the set of grid cells �l is solved with the corresponding time step 
tl = 
t

η(lmax−l)
. The number 

of active cells contained by �l is denoted by Nl
A .

When solving for the cells belonging to �l , the numerical flux at the interface between two cells K and L such that 
K ∈ �l ∧ L ∈ 
l+1 is approximated by

F n+β(i)
K L = F n+γ ( j)

K L

η
(21)

where
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Fig. 1. Schematic overview of a time step for the ADM-LTS strategy with η = 2 and lmax = 2.

Fig. 2. Example of ADM grid and active regions for the refinement time steps with η = 2 and lmax = 2.

β(i) = i

η(lmax−l)
, i = {1 · · ·η(lmax−l)} (22)

γ ( j) = j
(lmax−l−1)

, j = {1 · · ·η(lmax−l−1)}. (23)

η
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Fig. 3. Test case 1 [99 × 99] - CFL values for different global time steps at time t = 500 days.

Thus, Eq. (11) can be modified to account for the presence of different time levels as

rn+β(i)
K = φ(Sn+β(i)

K − Sn+β(i)−1
K )

− 1

|K |
∑

eK L∈EK A

eK L F n+β(i)
K L − qw

ρw

n+β(i) − 1

|K |
∑

eK L∈EK L

eK L
F n+γ ( j)

K L

η
.

(24)

Here, EK A is the set of interface fluxes exchanged between two cells K and L both belonging to �l . Additionally, EK L is 
the set of fluxes at the interface between two cells K and L where K ∈ �l and L ∈ 
l+1. Note that, for l = 0 the residual 
for the active cells is the same described in Eq. (11), but EK L would be the set of fluxes at the interface between �0

A and 
�1 \ �0

A .
We remark that, for each level l, the linear system to be solved has size Nl

A × Nl
A , which is significantly smaller than the 

full fine-scale system. At each time step, only a sub-set of the cells of each level l is restricted and prolonged.
The following section presents a study of the performance of the ADM-LTS method for various 2D and 3D test cases 

involving different fluid physics.

4. Numerical results

The performance of the newly developed ADM-LTS strategy is thoroughly investigated for several challenging test cases. 
For all the cases presented, quadratic relative permeability curves are considered. Gravitational and capillary forces are only 
considered in test cases 2 and 7, respectively. Furthermore, all errors are computed with respect to a reference solution, 
obtained by employing a high resolution discretization both in space and in time.

4.1. Test case 1: 2D homogeneous reservoir

The first test case is a 100 × 100 [m2] homogeneous reservoir, with isotropic permeability of 5 × 10−15 [m2]. A pressure-
constrained wetting-phase injector well is positioned in the bottom-left corner of the domain with a pressure pinj = 108

[Pa], whereas a production well is present in the top-right corner with a relative pressure of pprod = 0 [Pa]. The phase 
viscosity values are μw = 10−3 [Pa · s] and μnw = 10−2 [Pa · s] for the wetting and non wetting phase, respectively. The 
final simulated time is 600 [days] after injection has started.

A fine-scale grid with 99 × 99 cells is imposed on the domain. ADM-LTS employs, a time refining ratio η = 2 and a 
space coarsening ratio equal to 3 in all directions. The user-defined tolerances for the coarsening and refinement criteria 
are εx = 0.07 and εt = 5 × 10−2.

Simulations are run employing three different global time step sizes: 5, 10 and 20 days. Fig. 3 reports the CFL values at 
time t = 500 days for the three different time steps for fine-scale in space simulations.

Fig. 4 shows a comparison of the ADM-LTS solution with the reference solution (on the left) at time t = 500 [days] using 
three different sizes of the global time steps.

Fig. 5 reports the error for the saturation at time t = 500 days between a reference solution and the ADM method with 
fine time steps (first column) with the LTS approach (second column) and with the coarse time steps (third column) for the 
three different time steps sizes 
t = 5 (first row), 
t = 10 (second row) and 
t = 20 (third row). In all cases the AMD-LTS 
approach improves the errors with respect to the coarse time step approach.

The complexity of the algorithm is shown in Fig. 6. In particular, each column represents the total amount of active cells 
multiplied by the number of Newton iterations involved to compute the solution, for the three approaches and for the three 
different global time step sizes. Note that, to obtain the solution at time t = 600 [days], 120, 60 and 30 global time steps 
have been performed using the three analyzed time steps. We remark that the errors obtained by employing the original 
ADM method with a fine time step are comparable to those obtained with ADM-LTS in terms of accuracy.
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Fig. 4. Test case 1 [99 × 99] - Reference solution (first column) and ADM-LTS solution using a global time step size: 
t = 5, 10 and 20 [days] at time 
t = 500 days for the second, third and fourth column, respectively.

Fig. 5. Test case 1 [99 × 99] - Saturation errors for the ADM method with fine time steps (first column), ADM-LTS method (second column) and ADM coarse 
time steps method (third column) for the three different global time step sizes.

Fig. 7 shows the complexity of a single global time step. For the ADM method with fine time steps, the local steps are 
just the small steps applied at the whole domain. At the end of the local steps both the ADM-LTS method and the ADM fine 
step method reach the same time. For the ADM-LTS method, local step 1 indicates the global step on the coarsest grid, step 
2 and 5 are the intermediate time steps performed on level 0 and 1 of the ADM grid, and the other local steps are the small 
time steps for the active cells detected by the error estimator in time. In particular, we can notice that the intermediate 
time steps have almost the same complexity of the small time steps of the ADM fine method, even if the size of the time 
step is two times bigger with almost the same number of active cells. This is due to the improvement of the initial guess for 
the Newton loop. In the intermediate time steps we use as initial guess a linear combination of the solution of the previous 
time tn and the solution obtained on the coarsest grid at the new global time tn+1. In the small time steps is not necessary 
to perform this technique since a small step is used to advance in time.

The same test case is analyzed after performing a 2 × 2 refinement of the space fine-scale grid. In order to obtain a 
reasonable solution, using a global 
t equal to 20 [days], we need to compute more local time steps inside the global one, 
so a refining ratio equal to 4 has been taken into account.

Fig. 8 reports the complexity for the entire simulation using ADM-LTS method and the ADM with fine time steps. To 
obtain the solution at final time t = 600 [days] with a global time step equal to 20 days, the same number of global time 
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Fig. 6. Test case 1 [99 × 99] - Total amount of active cells multiplied by number of Newton iterations for the three different time step sizes. On the top of 
each bar the mean in time of the averaged absolute difference respect to the reference solution for the saturation is displayed Es = mean|S(t f ) − Sref (t f )|
where t f is the final time 600 days.

Fig. 7. Test case 1 [99 × 99] - Computational complexity history at each local times step within a global step. The computation complexity is the number 
of active cells multiplied by the number of Newton iterations.

Fig. 8. Test case 1 [198 × 198] - Total amount of active cells multiplied by number of Newton iterations for the ADM with fine time steps and the ADM LTS 
method.

step are involved (30 time steps in total). Of course the number of local time step for both the LTS method and the fine 
time steps approach has increased; but the ratio between active cells and total cells decreases.

Fig. 9 shows the averaged number of active cells times the number of Newton iterations for each local time step within 
a global time step.

In Fig. 10 we can see that the ADM-LTS approach reduces the errors obtained using a coarse grid in time.

4.2. Test case 2: 3D homogeneous reservoir

A 3D 108 × 108 × 108 [m3] homogeneous reservoir is considered in this test case. The domain is discretized, at the 
fine-scale, with a 54 × 54 × 54 Cartesian grid for a total of 157464 cells. The physical parameters are the same of the first 
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Fig. 9. Test case 1 [198 × 198] - Computational complexity history at each local times step within a global step. The computation complexity is the number 
of active cells multiplied by the number of Newton iterations.

Fig. 10. Test case 1 [198 × 198] - Saturation errors at time t = 540 [days] for the ADM method with fine grid in time (left), ADM-LTS method (center) and 
the ADM method with coarse grid in time (right).

Fig. 11. Test case 2 - Saturation profile (top row) at time t = 1500 days (left) and at time t = 8750 days (right) for the case without gravity. Active cells for 
the level lref =0 at time t = 1500 (bottom-left) and saturation profile inside the domain at time t = 8750 (bottom-right).

test case. The size of the global steps is equal to 125 days. The simulation ends after 70 global steps. The tolerances for the 
coarsening criteria in space and time are set to be εx = 0.2 and εt = 5 × 10−2.

Fig. 11 reports the saturation maps at two different simulation times (on the top) neglecting the gravity effects. It also 
displays the set of active cells �0

A at time t = 1500 days (left, bottom) and a section of the solution at final time t = 8750
days (right, bottom). Note that ADM-LTS automatically employs fine cells only around the advancing saturation front and 
that the active cells in time are only a fraction of them.

Fig. 12 shows the saturation maps and the active cells �0
A at different times considering the same scenario but intro-

ducing a density ratio of ρw/ρnw = 5/4. As expected, the heavier fluid occupies the bottom of the reservoir.
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Fig. 12. Test case 2 - Saturation profile (top row) at time t = 1500 days (left), t = 6375 (center) and t = 8750 days (right) for the case with gravity. Active 
cells for the level lref =0 at time t = 1500 (bottom-left), active cells for the level lref =0 at time t = 6375 (bottom-center) and saturation profile inside the 
domain at time t = 8750 (bottom-right).

Fig. 13. Test case 2 - Computational complexity – total amount of active cells multiplied by the count of Newton iterations for different scenarios (top). 
Computational complexity history for ADM-LTS and ADM fine-scale time are also presented (bottom).

Fig. 13 shows the total and the mean computational complexity per local time step for both ADM-LTS and ADM methods. 
This figure illustrates the results with fine time steps, with and without gravity effects. The transport equation, in the pres-
ence of gravitational forces, becomes highly nonlinear. As a consequence, more Newton iterations are required to converge 
compared with the case without gravitational effects. Note that, as shown in Fig. 14, the number of ADM-LTS active cells 
for the two different scenarios is the same during the entire simulation. The number of active cells increases during the 
progress of the simulation time, resulting in reduction of the relative errors (Fig. 14). The errors of ADM-LTS for the cases 
with and without gravity are comparable.

4.3. Test case 3: 2D homogeneous reservoir with barrier

A 2D homogeneous reservoir with low permeability barriers is considered, as shown in Fig. 15. The same permeability 
field was presented in [23]. The domain dimensions and the physical parameters are the same of the first test case, the 
same 99 × 99 fine scale grid is imposed. The global time step is equal to 50 [days] and the simulation ends after 100 global 
time steps (t = 5000 days).

Simulations are carried out both with the original ADM method employing a global fine time-step and with ADM-LTS. 
The coarsening and the time-refinement criteria tolerances are set to εx = 0.05 and εt = 0.005.
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Fig. 14. Test case 2 - Number of ADM-LTS active cells for the test cases with and without gravity (left). Also shown (right) are the saturation l1-norm errors.

Fig. 15. Test case 3 - Absolute permeability field.

Fig. 16. Test case 3 - Saturation profile and ADM grid at different time steps (columns) for ADM with coarse time steps and classical ADM grid resolution 
(first row) and for ADM-LTS method with the new ADM grid resolution (second row).

Fig. 16 shows a comparison of the saturation profile and the grid resolution for the two different strategies. The original 
ADM method with a saturation difference-based coarsening criterion (top row) employs a large number of fine grid cells 
wherever saturation gradients are present even if they are stationary. On the other hand the newly proposed grid resolution 
criterion (bottom row) for the ADM-LTS approach uses fine cells only in those regions where the saturation gradient is 
moving, reducing the number of active cells.
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Fig. 17. Test case 3 - number of active cells employed in ADM with fine grid in time and ADM-LTS simulations expressed as percentage of fine grid cells 
(left) and the saturation relative errors in l1-norm for the ADM fine and ADM-LTS method (right).

Fig. 18. Test case 3 - Total amount of active cells multiplied by number of Newton iterations (left) and computational complexity history at each local times 
step within a global step (right) for the ADM with fine time steps approach and for the ADM-LTS method.

Fig. 19. Test case 4 - Natural logarithm of the permeability.

Fig. 17 reports the evolution of the active grid cells percentage for the two different approaches (left) and the evolution 
of the relative saturation error in l1-norm (right). In the early steps, we can see that the ADM fine with just the gradient 
in space criterion approach employs almost the same number of active grid cells used by the ADM-LTS method. For the 
ADM with fine time steps at every small local time step we solve both the flow and the transport equations, instead for the 
ADM-LTS approach only the transport equation is solved for the local steps. This is the reason why in the first five steps 
the saturation errors for the ADM-LTS approach are larger with respect to the ADM fine steps approach. Instead, in the last 
steps the errors increase because a lower number of fine grid cells has been used.

Fig. 18 shows the total complexity (number of active cells multiplied by the number of Newton iterations) for the ADM 
with fine steps and the ADM-LTS approach. Note that the local time steps of ADM-LTS method reduce the complexity of the 
system compared to the classical ADM approach.

4.4. Test case 4: heterogeneous reservoir (SPE10 top layer)

In this test case a heterogeneous reservoir is considered. The permeability map is the top layer of the SPE10 test case 
[24] and it is presented, in logarithmic scale, in Fig. 19. The size of the reservoir is 2200 × 600 [m2] and a 216 × 54 grid 
is employed at the finest level. The injector is at the top left corner and has a constrained pressure 107 [Pa]. A producer is, 
instead, located at the bottom right corner of the domain with a pressure equal to 0 [Pa]. The porosity of the reservoir φ
is equal to 0.2. The viscosity for the wetting phase is 10−5 [Pa · s], whereas, for the non-wetting phase, is 10−4 [Pa · s]. The 
coarsening ratio for the space grid is equal to 2 as well as the time refining ratio. The error tolerance for the time estimator 
is equal to 5 × 10−2.
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Fig. 20. Test case 4 - Saturation map and ADM grid for the ADM with fine time step approach with classical grid criterion for different values of the 
threshold εx = 0.05, 0.1, 0.2 (row 1, 2, and 3) and for the ADM-LTS method with the new grid criterion εx = 0.05 and εt = 0.05 (row 4) at time t = 1200
days (first column), t = 15000 days (second column) and t = 20000 days (third column).

Fig. 21. Test case 4 - Active cells for the refinement in time, at time t = 1200 days (left), t = 15000 days (center) and t = 20000 days (right).

Fig. 22. Test case 4 - Number of active cells expressed as percentage of fine grid cells (left) and saturation relative errors in l1-norm (right) for the ADM 
with fine grid in time with different values of the threshold and for the ADM-LTS simulation.

Fig. 20 reports the saturation map and the ADM grid for different threshold values of the ADM grid resolution criterion 
using the classical ADM approach with fine time steps, and the ADM-LTS approach with the new grid resolution strategy. 
The classical approach uses, for small threshold values, a large number of fine grid cells. If we relax the threshold parameter 
the method is not able to capture the fronts. Thanks to the new ADM-LTS approach, the method is able to apply the fine 
grid cells only where the front is moving fast (high permeability regions).

Fig. 21 shows the active cells in time at the finest level lref = 2 for different global time steps. The method recomputes 
the solution with small time steps only for a few percentage of cells where the front crosses high permeability regions. In 
fact, in the last snapshot, the saturation profile is almost developed everywhere and so, the set of active cells is very small.

In Fig. 22 we compare the number of active cells and the saturation errors for the different simulations. Using the 
classical ADM approach with small values of the tolerance a lot of active grid cells are employed giving very small errors. 
The classical ADM approach with larger tolerance value and the ADM-LTS method are comparable in terms of active cells 
during all the simulation but the ADM-LTS approach gives better results in term of errors.

Fig. 23 reports the complexity of the four simulations. The ADM approach with fine grid in time and small threshold 
values is really expensive. The ADM-LTS approach is comparable to the ADM with fine time step approach and large value 
of εx but, as shown previously, the solution of the classic ADM, in this case, is not as accurate.
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Fig. 23. Test case 4 - Total amount of active cells multiplied by number of Newton iterations (top) and computational complexity history at each local times 
step within a global step (bottom) for the ADM approach.

Fig. 24. Test case 5 - Natural logarithm of the permeability.

4.5. Test case 5: heterogeneous reservoir (SPE10 bottom layer)

The permeability of SPE10 bottom layer is used for this test case, as shown in Fig. 24. This layer, with respect to the 
previous case has higher contrasts and more a channelized distribution.

The global time step is equal to 10 days and the simulation ends after 50 global time steps. The input parameters for 
the wells and the physical properties are identical to Test Case 4.

The top 2 rows of Fig. 25 show the saturation distribution at simulation time of 150, 250 and 350 days obtained with 
εx = 0.15 and εx = 0.2, respectively. The bottom rows, instead, show the saturation map, at the same simulations times, 
obtained by employing the ADM-LTS method with εx = 0.05 and εt = 5 ×10−2 and εt = 5 ×10−3. The classic ADM approach 
employs a large number of active cell during the simulation, instead the ADM-LTS method is able to select a fine scale grid 
only where the fronts are moving.

Fig. 26 shows the active cells in time for lref = 2 at time 150, 250 and 350 days. As expected, for smaller value of the 
threshold more cells are involved in the refinement step.

The history of the percentage of active cells employed by the different simulation strategies for the various tolerances is 
shown in Fig. 27 (left), along with the l1 norm of the saturation error (right). For both the ADM-LTS tolerance values less 
active cells are involved respect to the classical ADM approach. Since a smaller number of cells is employed, the saturation 
errors are higher but still of the same order of magnitude.

Fig. 28 reports the complexity of the four simulations for different tolerance values.

4.6. Test case 6: heterogeneous reservoirs with different layering orientations

A 500 × 500 m2 2D reservoir is considered on which a 99 × 99 grid is imposed. The fluid properties, the location of the 
wells and their constraints are the same as in the previous test cases. Five sets of permeability fields, with different layer-
ing orientation and created using sequential Gaussian simulations with spherical variogram and dimensionless correlation 
lengths 0.5 and 0.02 as proposed in [25], are considered. Each set consists of 20 statistically identical realizations.
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Fig. 25. Test case 5 - Saturation map and ADM grid at 150, 250 and 350 days for the ADM approach with fine time steps and the ADM-LTS approach.

Fig. 26. Test case 5 - Active cells for the refinement level lref = 2, at 150 (left), 250 (center) and 350 (right) days for the two threshold values.

Fig. 27. Test case 5 - Number of active cells expressed as percentage of fine grid cells (left) and saturation relative errors in l1-norm (right) for the ADM 
with fine grid in time and for the ADM-LTS simulations.

Fig. 29 shows one realization for each set. Injection of the wetting phase, for 560 days, is simulated for each realization. 
Simulations are run with the ADM-LTS method. For all runs, the spatial coarsening criterion tolerance is εx = 0.008. Two 
different values are instead considered for the time-based criterion tolerance, εt : 5 × 10−2 and 5 × 10−3.

Fig. 30 shows a comparison, for one permeability realization of each set, of the saturation map at the end of the simu-
lation obtained with fine-scale (time and space) simulation (top row), ADM-LTS employing a fixed refined time-step.

Fig. 31 displays the active cells in time for the last refinement level of the last global time step. As expected, using 
a bigger value of the tolerance for the time error estimator, just few cells need to be computed with small time steps. 
Moreover, the space grid changes and allows to use coarser grid cells.

Fig. 32 represents the mean and the standard deviations of the complexity for the ADM-LTS method using the two 
different time-based criterion tolerances and for the solution computed with the fine grid resolution both in space and in 
time. Note that the y-axis scale for the two pictures are different.

Fig. 33 shows the mean and the standard deviations of the saturation errors respect to the reference solution for the 
ADM-LTS method using the two different time-based criterion tolerances. From these studies, one can conclude that the 
ADM-LTS performs robustly when several equiprobable realizations are considered. In other words, the error and computa-
tional complexities for all 20 realizations are not much different compared with the average values.
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Fig. 28. Test case 5 - Total amount of active cells multiplied by number of Newton iterations (top) and computational complexity history at each local times 
step within a global step (bottom) for the ADM approach.

Fig. 29. Test case 6 - One of the 20 realization of each of the 5 sets of permeability fields with different angles (0 deg, 15 deg, 30 deg, 45 deg and patchy 
from left to right).

Table 1
Test case 7 - Wells coordinates and constraints.

Well x y Pressure 
[bar]

Prod (W1) 1 1 120
Prod (W2) 99 1 120
Prod (W3) 99 99 100
Prod (W4) 1 99 100
Inj (W5) 50 50 150

4.7. Test case 7: capillary forces

A 500 × 500 [m2] heterogeneous reservoir is considered. The fine-scale grid contains 99 × 99 cells. The phase viscosity 
values are μw = 1e − 4 [Pa · s] and μnw = 1e − 3 [Pa · s]. Five pressure-constrained wells are present, as shown in Fig. 34
along with the heterogeneous permeability field. The well locations and the pressure values are presented in Table 1.

The simulation is run until 2500 [days] after injection is reached. A time step size equal to 10 [days] is used. The ADM-
LTS employs a time refining ratio of η = 2 and a space coarsening ratio of 3. The user-defined tolerances are set as εx = 0.25
and εt = 1 × 10−2. The same capillary pressure function as in [12,26] is considered, i.e.,

Pc = σ cos(θ)

√
φ

K
J (S), (25)

where

J (S) = 0.05

(
1

)−0.5

. (26)

S
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Fig. 30. Test case 6 - Comparison of the saturation profile, for one realization of each set of permeability fields at time t = 560 days. Two different threshold 
values for the time error estimator are employed for the ADM-LTS simulation (center row and bottom row), the fine scale solution are also shown (top 
row).

Fig. 31. Test case 6 - Active calls at the last refinement level for the last global time step using two different threshold values for the error estimator in 
time.

Here, S is the saturation of the wetting phase, σ = 4.361 × 10−2 [Pa · m] the surface tension and θ = 0 the contact angle. 
Fig. 35 compares the reference solution (fine-scale) and the ADM-LTS approach with and without including the effect of 
capillary pressure. The ADM-LTS approach, as shown in Fig. 36, in presence of capillary pressure employs more active cells, 
since the saturation map is more complex compared with the case without capillary effects. In this test case, the complex 
physics induced by capillary heterogeneity is present in almost the entire computational domain. Therefore, the advancing 
saturation front is present in a large sub-region of the domain. As the result, in this case, 70% of the active cells are used to 
obtain accurate solutions. Fig. 36 shows the errors in l1 norm for the ADM-LTS method with and without capillary effects. 
After the global time step 150, the saturation error increases due to coarsening some fine cells. Then after 200 days, the 
error is stabilized.
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Fig. 32. Test case 6 - Mean and standard deviation of complexity over 20 realization for the ADM-LTS method (left) and for the reference solution computed 
with fine grid resolution both in space and time (right).

Fig. 33. Test case 6 - Mean and standard deviation errors of the saturation errors over 20 realization for the ADM-LTS method with different time threshold 
values respect to the reference solution E S = meanNt

t=1

(
mean|S f (t) − S(t)|).

Fig. 34. Test case 7 - Base 10 logarithm of the permeability field.

5. Conclusions

A dynamic local space-time stepping scheme for transport in porous media (ADM-LTS) was devised and integrated within 
the sequentially-coupled multiphase flow-transport system. The studied coupled multiphase flow processed observe pressure 
and velocity change at every time step. The ADM-LTS method operates in two stages: first the solution is obtained at the 
coarsest space-time grid. Then this initial solution is improved by imposing an adaptive multi-resolution grid in space and 
time. The resolution of the space-time grid is defined based on an error criteria, with user-defined threshold values. This 
strategy also guarantees local mass conservation.
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Fig. 35. Test case 7 - Reference solutions (left) and ADM-LTS saturation maps (right) without (top) and with (bottom) capillary heterogeneity effects.

Fig. 36. Test case 7 - Number of active cells expressed as percentage of fine grid cells (left) and saturation relative errors in l1-norm (right) for the ADM-LTS 
simulations.

Compared with the classical ADM approach, the ADM-LTS method employs coarse grids where high saturation gradients 
exist, but the phase velocity is nearly zero. This happens when the saturation front faces impermeable zones or barriers. 
The ADM-LTS grid resolution is decided implicitly by the mentioned two-stage strategy, where initially the coarsest space-
time grid is used everywhere. Then, based on the introduced error criteria, the transport solution is locally improved with 
a multirate multilevel strategy on an adaptive space-time grid. This method is found promising to reduce the size of the 
system in the nonlinear loop without loss of accuracy.

Several numerical test cases with challenging transport physics were considered. Results showed that the ADM-LTS is 
promising for real-field applications. The research simulator (with all numerical test cases) is made available to the public 
(https://gitlab .com /darsim2simulator).

Future work includes development of enhanced prolongation operators to further improve the saturation quality at 
coarser levels (specially for slow-moving fronts). Another ongoing work is the implementation of ADM-LTS in the DAR-
Sim1 C++ research simulator for large-scale 3D test cases.
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