
 
 

Delft University of Technology

Measuring, modelling and minimizing perceived motion incongruence
for vehicle motion simulation
Cleij, Diane

DOI
10.4233/uuid:45fd3f70-2ba6-43fa-a2c4-018967bfdc88
Publication date
2020
Document Version
Final published version
Citation (APA)
Cleij, D. (2020). Measuring, modelling and minimizing perceived motion incongruence: for vehicle motion
simulation. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:45fd3f70-
2ba6-43fa-a2c4-018967bfdc88

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:45fd3f70-2ba6-43fa-a2c4-018967bfdc88
https://doi.org/10.4233/uuid:45fd3f70-2ba6-43fa-a2c4-018967bfdc88
https://doi.org/10.4233/uuid:45fd3f70-2ba6-43fa-a2c4-018967bfdc88


Measuring, modelling and minimizing
perceived motion incongruence

for vehicle motion simulation

Diane Cleij





Measuring, Modelling and Minimizing
Perceived Motion Incongruence

for Vehicle Motion Simulation

Diane CLEIJ



ISBN 978-94-028-1912-0

Printed by Ipskamp Printing.

Cover design by M.G. Cleij.

Copyright ©, 2020 by D. Cleij. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior permission in writing from the proprietor.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Measuring, Modelling and Minimizing
Perceived Motion Incongruence

for Vehicle Motion Simulation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
dinsdag 4 februari 2020 om 15:00 uur

door

Diane CLEIJ

Ingenieur in de Luchtvaart en Ruimtevaart,
Technische Universiteit Delft, Nederland,

geboren te Rotterdam, Nederland



Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:

Rector Magnificus, voorzitter
Prof. dr. ir. M. Mulder, Technische Universiteit Delft, promotor
Prof. dr. H.H. Bülthoff, Max-Planck-Institut für biologische Kybernetik,

promotor
Dr. ir. D.M. Pool, Technische Universiteit Delft, copromotor

Onafhankelijke leden:
Prof. dr. ir. P. Breedveld Technische Universiteit Delft
Prof. dr. J.E. Bos Vrije Universiteit Amsterdam
Prof. dr. A. Kemeny Arts et Métiers ParisTech, Frankrijk
Dr. ir. M. Wentink Desdemona B.V.
Prof. dr. D.G. Simons Technische Universiteit Delft, reservelid

Dr. ir. J. Venrooij en dr. P. Pretto hebben als begeleiders in belangrijke mate aan de
totstandkoming van het proefschrift bijgedragen.

Dit onderzoek is gefinancierd door het Max-Planck-Institut für biologische Kyber-
netik, en is deels ondersteund door de Technische Universiteit Delft.



“The best material model for a cat is another, or preferably the same cat.”
Norbert Wiener





Contents

Summary xiii

Samenvatting xvii

1 Introduction 1
1.1 Motion cueing algorithms . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Cueing quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Measuring Cueing Quality. . . . . . . . . . . . . . . . . . . . 7

1.2.2 Improving Cueing Quality. . . . . . . . . . . . . . . . . . . . 9

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Continuous Rating of Perceived Motion Incongruence 15

2 Continuous Subjective Rating of Perceived Motion Incongruence 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Continuous Rating Method . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Independent variables . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Procedure and Instructions . . . . . . . . . . . . . . . . . . . 29

2.3.6 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii Contents

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Specific findings . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Method considerations . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Comparison filter- and optimization-based MCA 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Motion cueing algorithms . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Filter-based motion cueing. . . . . . . . . . . . . . . . . . . . 44

3.2.2 Optimization-based motion cueing . . . . . . . . . . . . . . . 45

3.2.3 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 49

3.3.5 Rating procedure . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.6 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Rating results and reliability. . . . . . . . . . . . . . . . . . . 51

3.4.2 Rating results per manoeuvre . . . . . . . . . . . . . . . . . . 54

3.4.3 Comparison between rating and cueing errors . . . . . . . . . 54

3.4.4 Motion cueing mechanisms . . . . . . . . . . . . . . . . . . . 55

Global scaling . . . . . . . . . . . . . . . . . . . . . . . . 55

Washout . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Tilt-coordination . . . . . . . . . . . . . . . . . . . . . . 56

Prepositioning . . . . . . . . . . . . . . . . . . . . . . . 56

Velocity buffering . . . . . . . . . . . . . . . . . . . . . . 57

3.4.5 Linear acceleration simulation in Daimler simulator. . . . . . 58

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Modelling Perceived Motion Incongruence 67

4 Cueing Error Detection Algorithm 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Non binary shape and gain measures . . . . . . . . . . . . . . 74

4.2.3 Mathematical Cueing Error Definitions . . . . . . . . . . . . . 74

4.2.4 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.5 Shape and Gain Measures . . . . . . . . . . . . . . . . . . . . 78

Shape Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Semblance . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Contents ix

Relevant semblance . . . . . . . . . . . . . . . . . . . . 82

Averaging and smoothing . . . . . . . . . . . . . . . . . 83

Shape Measure Threshold . . . . . . . . . . . . . . . . . 85

Gain Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.6 Algorithm Outcome . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.7 Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Motion Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.3 Error Detection Truth Data . . . . . . . . . . . . . . . . . . . 92

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Modelling Perceived Motion Incongruence 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.3 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . 108

Non-Linear Part . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Linear Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.4 Model Parameters and Choices . . . . . . . . . . . . . . . . . 111

5.3 System Identification Process . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Step 1: Initial Parameter Selection. . . . . . . . . . . . . . . . 117

5.3.2 Steps 2 and 3: Input Selection and Order Reduction . . . . . . 117

Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Avoid Negative Input Contributions (ANIC) . . . . . . 120

5.3.3 Step 4: Parameter Estimation . . . . . . . . . . . . . . . . . . 121

5.3.4 Step 5: Model Explanatory Analysis . . . . . . . . . . . . . . 121

Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . 121

Negative input contributions . . . . . . . . . . . . . . . 122

Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . 122

5.3.5 SI Process Parameters . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Additional Inputs . . . . . . . . . . . . . . . . . . . . . . 124

Including CEDA . . . . . . . . . . . . . . . . . . . . . . 125

5.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Model Structure Analysis . . . . . . . . . . . . . . . . . 127

Model Explanatory Analysis . . . . . . . . . . . . . . . 127



x Contents

Model Prediction Analysis . . . . . . . . . . . . . . . . 128

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.1 Model Structure Analysis . . . . . . . . . . . . . . . . . . . . 128

5.5.2 Model Explanatory Analysis. . . . . . . . . . . . . . . . . . . 132

5.5.3 Model Prediction Analysis. . . . . . . . . . . . . . . . . . . . 137

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1 SI Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.3 Future work and recommendations . . . . . . . . . . . . . . . 143

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Model Transfer Between Experiments 145
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 CMS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.2 Daimler Experiment . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Model Transfer Parameter . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.1 MIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.2 Rating scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.3 MTP Estimation Process . . . . . . . . . . . . . . . . . . . . . 154

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.1 MTP Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.2 Between-Experiment Prediction . . . . . . . . . . . . . . . . . 156

CMS Data Results . . . . . . . . . . . . . . . . . . . . . . . . . 156

Daimler Data Results . . . . . . . . . . . . . . . . . . . . . . . 161

6.4.3 Combined Experiment Fitting . . . . . . . . . . . . . . . . . . 162

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5.1 MTP estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5.2 Between Experiment Prediction . . . . . . . . . . . . . . . . . 169

6.5.3 Combined Experiment Fitting . . . . . . . . . . . . . . . . . . 171

6.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

III Minimizing Perceived Motion Incongruence 175

7 Optimizing Motion Cueing with a MIR Model 177
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2 MPC-based MCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Perception-based Weights . . . . . . . . . . . . . . . . . . . . . 180

7.2.3 MCA Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Predicted MIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



Contents xi

7.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.1 Independent Variables and Dependent Measures . . . . . . . 185

7.3.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.3 Apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.5 Instructions and Procedures . . . . . . . . . . . . . . . . . . 186

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.1 Data Processing. . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Overall Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Continuous Rating . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.4.3 Participant Groups . . . . . . . . . . . . . . . . . . . . . . . . 188

7.4.4 Rating Results . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8 Conclusions and Recommendations 199
8.1 Measuring Perceived Motion Incongruence . . . . . . . . . . . . . . 199

8.2 Modelling Perceived Motion Incongruence . . . . . . . . . . . . . . . 200

8.3 Minimizing Perceived Motion Incongruence . . . . . . . . . . . . . . 202

8.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Bibliography 207

A The Model: MIR Averaging 223

B The Model: Optional Non-linear Subsystems 225
B.1 Rotational Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

B.2 Rotational Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C SI Process: Estimating Criteria Thresholds 231
C.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

C.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

C.3 Threshold Choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

D SI Process: Selection Criteria Parameters 235
D.1 Influence of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.2 Influence of ANIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

E SI Process: Parameter Estimation 241
E.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 241

E.2 Prediction Error Method for ARX model structures . . . . . . . . . . 245

E.3 Influence of non-IDD noise . . . . . . . . . . . . . . . . . . . . . . . 245

E.3.1 Noise Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 246

E.3.2 Back Estimation of ARX parameters . . . . . . . . . . . . . . 251

E.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



xii Contents

F MTP Estimation 255
F.1 Serial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

F.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

F.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 258

G Model Structure, Residual and Uncertainty Analysis 261
G.1 CMS Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

G.1.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 261

G.1.2 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

G.1.3 Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 264

G.2 Daimler Data Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 264

G.2.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 264

G.2.2 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

G.2.3 Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 271

G.3 Combined Experiment Fitting . . . . . . . . . . . . . . . . . . . . . . 271

G.3.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 271

G.3.2 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

H Questionnaire 281

Acknowledgements 283

Curriculum Vitæ 287

List of Publications 289



Summary

Motion-based vehicle simulators are frequently used in research and development,
e.g., for human factors evaluations and vehicle design, as well as for pilot/driver
training, as such simulations provide a safe and cost-effective testing environ-
ment. Visual and physical motion cues are combined to provide occupants with a
feeling of being in the real vehicle. While visual cues are generally not limited in
amplitude, physical cues certainly are, due to the limited simulator motion space.
A motion cueing algorithm (MCA) is used to map the vehicle motions onto the
simulator motion space. This mapping inherently creates mismatches between the
visual and physical motion cues.
Due to imperfections in the human perceptual system, not all visual/physical cue-
ing mismatches are perceived. However, if a mismatch is perceived, it can impair
the simulation realism and even cause simulator sickness. For MCA design, a
good understanding of when mismatches are perceived, and ways to prevent these
from occurring, are therefore essential. While most other research tries to predict
perceived mismatches based on complex non-linear models of human perception,
in this thesis a data-driven approach, using continuous subjective measures of
Perceived Motion Incongruence (PMI), is adopted. PMI refers to the effect that
perceived mismatches between visual and physical motion cues have on the re-
sulting simulator realism. When a mismatch is perceived, but does not influence
the simulation realism, the PMI is low, while a mismatch that is detrimental to
simulator realism results in a high PMI. In this thesis we focus on car driving, but
the proposed methods can also be applied to other vehicles.
One often-occurring type of mismatch between visual and physical motion cues
is referred to as scaling errors. Such errors are caused by a pure (down) scaling
of the vehicle physical motion, such that it fits in the simulator motion space.
MCAs also make use of tilt-coordination, where the gravitational force and a non-
zero rotation with a rotational rate below human perception threshold, are used
to simulate sustained accelerations. This mechanism can cause shape differences
between the visual and physical motion signals, resulting in other types of cueing
errors, i.e., missing or false cues. It is well known that missing or false cues are
more likely to be perceived than scaling errors with a similar amplitude and are
often more detrimental to simulator realism. Thus, not only the magnitude of the
mismatch, but also the type of mismatch is important information when designing
and optimizing an MCA. While this is widely accepted knowledge and is implic-
itly used by experts to tune MCAs, currently this knowledge is not explicitly used
in MCA optimization due to its qualitative, rather than quantitative, nature.
Another characteristic of simulator realism is that it is inherently time-varying.
While a simulation might feel mostly realistic, momentary manoeuvres requiring
a large motion space, such as driving a roundabout, can cause a sudden decrease
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in realism. Currently, experts often apply worst-case MCA tuning, resulting in
suboptimal physical motions for those parts of the simulation that do not require
this large motion space. Certain MCAs, such as those based on model predictive
control, on the other hand, can optimize the simulator realism at each simula-
tion time step. This thesis aims to connect the benefits of expert knowledge on
motion cue mismatches with the advantage of optimization algorithms in deal-
ing with the time-varying aspect of simulation realism. It aims to develop an
MCA-independent, offline prediction method for time-varying PMI during vehi-
cle motion simulation, with the purpose of improving motion cueing quality. To
this end, the thesis is divided in three parts, dedicated to measuring, modelling and
minimizing PMI, respectively.

Part I focuses on the development of a novel method to measure time-varying
PMI using a continuous subjective rating. Two human-in-the-loop experiments
were performed, where participants were asked to rate the PMI continuously
throughout several repetitions of a passive driving simulation. The first exper-
iment, Experiment 1, assessed the reliability and validity of the method itself.
Comparing the ratings of several repetitions of the same simulation showed con-
sistency in participants’ ratings, verifying the reliability of the method. The va-
lidity of the method was assessed by comparing the continuous ratings to a more
established time-independent rating method and to expert knowledge from liter-
ature on the different cueing error types. The continuous ratings correlated well
with a time-independent rating method for each segment of the simulation and
was also consistent with expert knowledge on the relative PMI between several
scaled, missing and false cues.
In a second experiment, Experiment 2, the continuous rating method was applied
to compare the performance of two motion cueing algorithms in a highly real-
istic vehicle motion simulation. Again, participants were able to provide consis-
tent continuous ratings across several repetitions of the same simulation and their
time-independent ratings for each tested MCA setting compared well to their av-
erage continuous rating. This confirmed the reliability and validity of the contin-
uous rating method, also for more realistic vehicle simulations.

In Part II, the data obtained with the two experiments described in Part I were
used to develop PMI models, to predict the time-varying PMI within and between
experiments. A general model structure was designed to map visual and physi-
cal motion cues onto a Motion Incongruence Rating (MIR), which represents the
time-varying rating of PMI obtained with the continuous rating method. First,
the model translates the visual and physical cues into different types of cueing
errors that are combined into one measure of PMI and then filtered to obtain the
modelled Motion Incongruence Rating (MIR). A wavelet-based Cueing Error De-
tection Algorithm (CEDA) was developed to differentiate between scaled, missing
and false cues, and its parameters were tuned using data from Experiment 1. Ap-
plying the algorithm showed that the CEDA could distinguish between scaled,
missing and false cues as hypothesized.
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To determine within-experiment prediction capabilities, three models of different
complexity were derived from the general model template. These models were
fitted to the first half of the data from Experiment 1, after which their prediction
power was assessed using the second half of this dataset. The prediction results
showed that all models could predict important PMI features and that the pre-
diction improved with increasing model complexity. An interesting observation
was also that false cues were modelled as being two times more detrimental than
scaled cues for the same cueing error magnitudes. Overall it was shown that the
models can indeed link different type of cueing errors to decreases in cueing qual-
ity and predict such decreases for data within one experiment.
To compare datasets from different experiments, first a method for estimating a
Model Transfer Parameter (MTP) was developed, with which ratings from one
experiment can be mapped onto the ratings of a second experiment. The MTP
needed to align the ratings from Experiment 1 and 2 was estimated with this
method and used to assess the between-experiment prediction capabilities of the
three derived models. Good prediction capabilities were obtained only when a
rich enough dataset was used for model fitting. The hypothesis that better models
can be obtained when increasing the richness of the estimation dataset was sup-
ported by the fact that models fitted to aggregated data from both experiments
were more accurately matched to the measured ratings then those fitted to either
dataset.

Part III focuses on minimizing PMI. The capabilities of the PMI models in predict-
ing decreased cueing quality opens up opportunities to improve this quality. The
predictions can, for example, be used to tune MCAs such that the most critical
drops in cueing quality are avoided. Additionally, developing these PMI models,
by correlating the time-varying PMI to different cueing errors, can help in gaining
a better understanding of what exactly causes decreased cueing quality. In this
thesis, a PMI model was used in an optimization-based MCA. The weights for lin-
ear acceleration and rotational velocity visual-physical cues differences in the cost
function of this MCA were estimated using a static version of the least complex
PMI model from Part II and data from both Experiments 1 and 2.
In a third human-in-the-loop experiment, Experiment 3, the cueing quality of the
MCA with the PMI model weights was compared to the cueing quality of the
MCA with its original weights, which accounted solely for the differences in unit
between linear acceleration and rotational velocity. The results showed that only
a small group of participants, all with prior simulator experience, preferred the
MCA with the PMI model weights. The preference of the remaining, larger group
seemed to mainly be based on a preference for “lower than unity gains” between
vehicle and simulator motions, which is consistent with earlier literature, but was
not yet accounted for in the PMI models. Overall, the results indicate that for
MCA optimization a PMI model needs to be fitted to a much richer dataset in
terms of, among others, number and variety of participants, cueing errors and
simulators.
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In this thesis a novel approach to improve perceived cueing quality of motion
cueing algorithms was introduced. A complete roadmap, describing how to mea-
sure and model PMI and how to apply such models to predict and minimize PMI
in motion simulations was presented. The results presented in this thesis show
the potential of this novel approach. For future research it is recommended to
adapt the developed PMI measurement method for use in active driving simula-
tions and improve the PMI models by designing algorithms to detect additional
cueing error types. It is also recommended to gather more and richer PMI rating
data via human-in-the-loop experiments to improve the parameter estimation of
these models. Finally, a systematic investigation on how and under which cir-
cumstances these models can be used to improve cueing quality should also be
performed. With these advances, the approach outlined in this thesis can enable
major improvements in simulator cueing and realism.



Samenvatting

Bewegingssimulatoren worden vaak gebruikt in onderzoek en ontwikkeling, voor
bijvoorbeeld de evaluatie van menselijke factoren en het ontwerp van voertuigen,
alsook voor de opleiding van piloten/bestuurders, omdat dergelijke simulatoren
een veilige en kosteneffectieve testomgeving bieden. Visuele en fysieke bewe-
gingsstimuli worden gecombineerd om de inzittenden het gevoel te geven dat ze
zich in het echte voertuig bevinden. Alhoewel visuele bewegingsstimuli over het
algemeen niet beperkt zijn in amplitude, zijn fysieke bewegingsstimuli dat zeker
wel, vanwege de beperkte bewegingsruimte van de simulator. Een bewegingsal-
goritme, een zogenaamd ‘Motion Cueing Algorithm (MCA)’, wordt gebruikt om
de bewegingen van het voertuig te projecteren op de bewegingsruimte van de
simulator. Deze projectie creëert van nature discrepanties tussen de visuele en
inertiële bewegingsstimuli.
Door onvolkomenheden in het menselijke perceptuele systeem worden niet alle
visuele/inertiële bewegingsstimuli discrepanties waargenomen. Als een discre-
pantie echter wél wordt waargenomen, kan dit het ervaren realisme van de si-
mulatie aantasten en zelfs simulatieziekte veroorzaken. Voor het ontwerpen van
MCAs is een goed begrip van wanneer discrepanties worden waargenomen en
hoe deze kunnen worden voorkomen, daarom essentieel. Terwijl de meeste an-
dere onderzoeken proberen om waarneembare discrepanties te voorspellen op
basis van uitgebreide niet-lineaire modellen van menselijke perceptie, wordt in dit
proefschrift een datagestuurde benadering toegepast, gebruikmakend van conti-
nue subjectieve metingen van de waargenomen bewegingsincongruentie (PMI).
PMI verwijst naar het effect dat waarneembare discrepanties tussen visuele en
inertiële bewegingsstimuli hebben op het resulterende realisme van de simulator.
Wanneer een discrepantie wordt waargenomen, maar niet als erg storend ervaren
wordt in het simulatierealisme, is de PMI laag, terwijl een discrepantie die scha-
delijk is voor het simulatorrealisme resulteert in een hoge PMI. In dit proefschrift
richten we ons op het autorijden, maar de voorgestelde methoden kunnen ook
worden toegepast op simulaties van andere voertuigen.
Een vaak voorkomende vorm van discrepantie tussen visuele en inertiële bewe-
gingsstimuli zijn schalingsfouten. Dergelijke fouten worden veroorzaakt door een
pure (terug) schaling van de fysieke beweging van het voertuig, zodat deze in
de bewegingsruimte van de simulator past. Om aanhoudende versnellingen te
simuleren, maken MCAs gebruik van “tilt-coordination”, i.e., het langzaam kan-
telen van de simulator. Hierbij kantelt de simulator met een rotatiesnelheid onder
de menselijke waarnemingsdrempel, zodat een component van de zwaartekracht
leidt tot een ervaren versnelling van het lichaam. Dit mechanisme kan vorm-
verschillen veroorzaken tussen de visuele en inertiële bewegingssignalen, wat re-
sulteert in andere soorten fouten, zoals ontbrekende of foutieve signalen. Het is
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bekend dat ontbrekende of foutieve signalen eerder worden waargenomen dan
schalingsfouten met een vergelijkbare amplitude en dat ze vaak schadelijker zijn
voor het ervaren realisme van de simulator. Daarom geeft dus niet alleen de
grootte van de discrepantie, maar ook het type van de discrepantie belangrijke in-
formatie voor het ontwerpen en optimaliseren van een MCA. Hoewel dit algemeen
aanvaarde kennis is en impliciet door experts wordt gebruikt om MCAs af te stem-
men, wordt deze kennis momenteel niet expliciet gebruikt in MCA-optimalisatie
vanwege het veelal kwalitatieve, in plaats van voor optimalisatie vereiste kwanti-
tatieve, karakter ervan.
Een ander kenmerk van simulatorrealisme is dat het van nature varieert over tijd.
Ook als een simulatie voor het merendeel van de tijd realistisch aanvoelt, kunnen
kortstondige manoeuvres die een grote bewegingsruimte vereisen, zoals het rijden
over een rotonde, een plotselinge daling van het realisme veroorzaken. Op dit mo-
ment stemmen experts de MCAs vaak af zodat de projectie van de grootste bewe-
gingsamplitudes in de bewegingsruimte past, wat resulteert in suboptimale iner-
tiële bewegingen voor die delen van de simulatie die deze grote bewegingsruimte
helemaal niet nodig hebben. Bepaalde MCAs, zoals die op basis van “Model Pre-
dictive Control”, kunnen daarentegen het realisme van de simulator bij elke stap
in de simulatie optimaliseren. Dit proefschrift streeft ernaar de voordelen van
deskundige kennis over de discrepanties tussen visuele en fysieke beweginssti-
muli te combineren met het voordeel van deze moderne optimalisatiealgoritmes
in het omgaan met het tijdsveranderende aspect van het simulatierealisme. Het
doel is om een MCA-onafhankelijke, offline methode te ontwikkelen om de tijds-
afhankelijke PMI tijdens de simulatie van voertuigbewegingen te voorspellen, met
de intentie de kwaliteit van de bewegingssimulatie van het voertuig vervolgens te
verbeteren. Hiertoe is het proefschrift opgedeeld in drie delen, respectievelijk ge-
wijd aan het meten, modelleren en minimaliseren van PMI.

Deel I richt zich op de ontwikkeling van een nieuwe methode voor het meten
van de tijdveranderende PMI, die gebruik maakt van een continue subjectieve
waardering. Er werden twee mens-in-de-loop experimenten uitgevoerd, waarbij
de deelnemers werd gevraagd de PMI continu te waarderen gedurende verschil-
lende herhalingen van een passieve rijsimulatie.
Het eerste experiment, Experiment 1, beoordeelde de betrouwbaarheid en validi-
teit van de methode zelf. Het vergelijken van de waarderingen van verschillende
herhalingen van dezelfde simulatie toonde consistentie in de waarderingen van de
deelnemers en verifieerde de betrouwbaarheid van de methode. De validiteit van
de methode werd geanalyseerd door de continue beoordelingen te vergelijken met
een meer gevestigde tijdsonafhankelijke beoordelingsmethode en met de kennis
van deskundigen uit de literatuur over de verschillende typen bewegingsstimuli
fouten. De continue waarderingen correleerden goed met een tijdonafhankelijke
waarderingsmethode voor elk segment van de simulatie en waren ook consistent
met de kennis van de relatieve PMI tussen verschillende geschaalde, ontbrekende
en foutieve bewegingsstimuli.
In een tweede experiment, Experiment 2, werd de continue waarderingsmethode
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toegepast om de prestaties van twee MCAs in een zeer realistische bewegingssi-
mulatie van het voertuig te vergelijken. Opnieuw waren de deelnemers in staat
om consistente continue waarderingen over meerdere herhalingen van dezelfde
simulatie te geven en waren hun tijdonafhankelijke waarderingen voor elk geteste
MCA goed te vergelijken met hun gemiddelde continue waarderingen. Dit beves-
tigde de betrouwbaarheid en validiteit van de continue waarderingsmethode, ook
voor meer realistische voertuigsimulaties.

In Deel II werden de gegevens verkregen met de twee experimenten beschreven
in Deel I, gebruikt voor de ontwikkeling van PMI modellen, om de tijd variërende
PMI in en tussen experimenten te voorspellen. Een algemene modelstructuur
werd ontworpen om visuele en inertiële bewegingsstimuli te vertalen naar een
bewegingsincongruentie waardering, de Motion Incongruence Rating (MIR). De
MIR vertegenwoordigt de tijd-variërende waardering van PMI, verkregen met de
continue waarderingsmethode. Eerst vertaalt het model de visuele en inertiële
bewegingsstimuli in verschillende typen discrepanties die gecombineerd worden
in één maat van PMI en vervolgens gefilterd worden om de gemodelleerde MIR
te verkrijgen. Een op wavelet-gebaseerde bewegingsstimuli discrepantie detectie
algoritme (CEDA) werd ontwikkeld om onderscheid te maken tussen geschaalde,
ontbrekende en foutieve bewegingsstimuli, waarbij de parameters werden geschat
met behulp van gegevens van Experiment 1. Het toepassen van het algoritme
toonde aan dat de CEDA onderscheid kon maken tussen geschaalde, ontbrekende
en foutieve bewegingsstimuli zoals verondersteld.
Om de intra-experiment voorspellingscapaciteiten te bepalen, werden drie model-
len van verschillende complexiteit afgeleid van de algemene modelstruktuur. De
eerste helft van de gegevens van Experiment 1 is gebruikt voor de parameter schat-
ting van de drie modellen, waarna hun voorspellend vermogen is geanalyseerd
met behulp van de tweede helft van deze dataset. De voorspellingsresultaten
toonden aan dat alle modellen belangrijke PMI-kenmerken konden voorspellen.
De voorspelling verbeterde met de toenemende complexiteit van het model. Een
interessante observatie was ook dat foutieve bewegingsstimuli werden gemodel-
leerd als twee keer schadelijker dan geschaalde bewegingsstimuli voor dezelfde
bewegingsstimuli discrepantie magnitudes. In het algemeen werd aangetoond
dat de modellen inderdaad verschillende soorten bewegingsstimuli fouten kun-
nen koppelen aan de gemeten dalingen in bewegingsstimuli kwaliteit en dat der-
gelijke dalingen te voorspellen zijn voor data binnen één experiment.
Om datasets uit verschillende experimenten te vergelijken, werd eerst een me-
thode ontwikkeld voor het schatten van een Model Transfer Parameter (MTP),
waarmee de waarderingen van het ene experiment kunnen worden geprojecteerd
op de waarderingen van een tweede experiment. De MTP die nodig was om de
waarderingen van Experimenten 1 en 2 te vergelijken werd geschat met deze me-
thode en gebruikt om het voorspellende inter-experiment vermogen van de drie
afgeleide modellen te analyseren. Goede voorspellingsmogelijkheden werden al-
leen verkregen wanneer er een voldoende rijke dataset werd gebruikt voor de
parameter schatting. De hypothese dat betere modellen kunnen worden verkre-
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gen naarmate de schattingsdataset rijker is, werd ondersteund door het feit dat
de modellen die op geaggregeerde gegevens van beide experimenten werden ge-
schat, de gemeten waarderingen beter volgden dan de modellen die op een van
beide datasets werden geschat.

Deel III, richt zich op het minimaliseren van de PMI. Het vermogen van de PMI-
modellen om een verminderde bewegingsstimuli kwaliteit te kunnen voorspellen
biedt mogelijkheden om deze kwaliteit te verbeteren. De voorspellingen kunnen
bijvoorbeeld worden gebruikt om de kortstondige bewegingsstimuli kwaliteit zo
af te stemmen dat de meest kritische kwaliteitsdalingen worden vermeden. Bo-
vendien kan de ontwikkeling van deze PMI modellen, door het correleren van de
tijdveranderende PMI met verschillende bewegingsstimuli fouten, helpen om een
beter begrip te krijgen van wat precies de verminderde bewegingsstimuli kwaliteit
veroorzaakt.
In dit proefschrift werd een PMI model gebruikt in een op optimalisatie gebaseerd
MCA. De gewichten voor de verschillen tussen de visuele en inertiële bewegings-
stimuli voor lineaire versnelling en rotatiesnelheid in de kostenfunctie van dit
MCA werden geschat met behulp van een statische versie van het minst complexe
PMI model van deel II en gegevens van zowel Experimenten 1 en 2.
In een derde mens-in-de-loop experiment, Experiment 3, werd de bewegingssti-
muli kwaliteit van het MCA met de op het PMI model gebaseerde gewichten
vergeleken met de kwaliteit van het MCA met zijn oorspronkelijke gewichten, die
alleen rekening hielden met de verschillen in eenheid tussen lineaire versnelling
en rotatiesnelheid. De resultaten toonden aan dat slechts een kleine groep deel-
nemers, allen met ervaring in de simulator, de voorkeur gaf aan het MCA met de
op het PMI model gebaseerde gewichten. De voorkeur van de resterende, grotere
groep, leek vooral gebaseerd te zijn op een voorkeur voor ’lager-dan-eenheid-
schaling’ tussen voertuig- en simulatorbewegingen, wat consistent is met eerdere
literatuur, maar nog niet in de PMI modellen is verwerkt. In het algemeen, wijzen
de resultaten erop dat voor MCA optimalisering een PMI model op een dataset
moet worden geschat die veel rijker is in termen van, onder andere, aantal en ver-
scheidenheid van deelnemers, bewegingsstimuli fouten en simulatoren.

In dit proefschrift werd een nieuwe aanpak geïntroduceerd om de waargenomen
bewegingsstimuli kwaliteit van MCAs te verbeteren. Een compleet stappenplan
werd gepresenteerd, waarin wordt beschreven hoe PMI te meten en te modelleren en
hoe dergelijke modellen toe te passen om PMI in bewegingssimulaties te voorspel-
len en te minimaliseren. De resultaten die in dit proefschrift worden beschreven,
tonen het potentieel van deze nieuwe aanpak.
Voor toekomstig onderzoek wordt aanbevolen om de ontwikkelde PMI meetme-
thode aan te passen voor gebruik in actieve rijsimulaties en de PMI modellen te
verbeteren door algoritmes te ontwerpen om meer types bewegingsstimuli fouten
te detecteren. Het wordt verder aanbevolen om meer en rijkere PMI waarderings-
data te verzamelen via mens-in-de-loop experimenten om de parameterschatting
van deze modellen te verbeteren. Ten slotte moet ook een systematisch onderzoek
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worden uitgevoerd naar hoe en onder welke omstandigheden deze modellen kun-
nen worden gebruikt om de kwaliteit van de bewegingsstimuli te verbeteren. Met
deze vooruitgang kan de in dit proefschrift geschetste aanpak belangrijke verbe-
teringen in simulator bewegingsstimuli realisme mogelijk maken.





1
Introduction

Humans always wanted to go faster and higher than their own legs could carry
them. This led them to invent numerous types of vehicles to move fast over land,
water and air. As training how to handle such vehicles and testing new devel-
opments can be dangerous and costly, vehicle motion simulators were invented.
In 1910 the first vehicle motion simulator, the Antoinette trainer (Figure 1.1(a)),
was developed to safely train pilots how to control an aircraft while staying on
the ground. Since then, motion simulator technology has evolved tremendously
and many different types of motion simulators have been developed for a range
of vehicle types (Figure 1.1(b)).
In the aerospace industry, motion simulators have increased flight safety by pro-
viding a safe and cost effective way for pilot training, while also reducing the
environmental impact as less airborne training is required [1]. Simulators used
for pilot training often consist of a Stewart platform [2], or hexapod platform (see
Figure 1.1(b) TU Delft simulator), to provide the physical motions cues and a
cabin with display to host the pilot and provide visual motion cues. Aircraft man-
ufacturers such as Airbus and Boeing, but also large airlines such as Air France -
KLM and Lufthansa, operate several training centers with dozens of full motion
flight simulators especially for training purposes. Apart from pilot training, flight
simulators are used for aerospace research and development, such as display de-
sign [3], handling quality assessment [4, 5] and even accident investigation [6].
In the automotive industry, the focus of this thesis, also increasing use is made
of motion simulators. For race car driving physical motion cues during high
translational vehicle acceleration are important for proper driver training [7, 8].
Simulator-based eco-driving training for truck and bus drivers can help to de-
crease fuel consumption [9, 10], while simulator-based investigations into driving
behaviour under dangerous conditions can help to improve driver safety [11, 12].
Also during the car design process motion simulators are used for, for exam-
ple, chassis testing [13], evaluation of steering feel [14] or development of driver
assistance systems [15, 16]. Due to the importance of linear motion during car ma-
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(a) (b)

Figure 1.1: (a) Antoinette Trainer. (b) current vehicle motion simulators (top left: SIMONA Research
Simulator, TU Delft, top right: Daimler Simulator, bottom: CyberMotion Simulator, MPI for Biological

Cybernetics).

noeuvres, the motion simulators of big car manufacturers such as Daimler [17],
Renault [18], Toyota [19] and soon also BMW [20], consist of a hexapod platform
on top of a linear track or X-Y table, to expand the horizontal and lateral motion
limits. The cabin is usually large enough to house a real size car and often con-
tains a 360 degrees display.
In the aerospace industry specialized motion simulators have also been developed
to simulate specific parts of space flight. The vertical motion simulator at NASA
Ames [21], for example, was designed to simulate the vertical take-off and landing
of air- and spacecraft. The Desdemona, operated by Desdemona B.V. and AMST,
having a centrifuge design motion platform and gimbaled cabin, was initially de-
signed for disorientation training [22].
Other novel simulator designs such as the Cybermotion [23] and CableRobot [24]
simulators at the Max Planck Institute for Biological Cybernetics are, for example,
used for motion perception research. In the DriverLab at Toronto Rehabilitation
center [25] the influence of physical and mental health on driving performance
is investigated. This simulator has additional realistic features such as a weather
and glare simulator to simulate rain and oncoming headlights.
While new technologies and simulator designs have greatly improved the realism
of vehicle motion simulators, generating realistic physical motion cues while stay-
ing within the simulator workspace remains one of the grand challenges of vehicle
motion simulation. Realistic motion cues are needed for many aspects of transfer
of training in aircraft [26, 27]. Transfer of training related to fuel consumption
reduction was also greater when providing eco-driving training in motion-base
simulators compared to a fixed-base simulator [28]. Motion cueing has also been
shown to significantly affect driving behaviour during, for example, braking [29]
and curve driving [30, 31]. Especially for driving behaviour research, and vehicle
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Figure 1.2: General scheme of motion cueing in a vehicle motion simulator.

and human support system development which rely on simulating realistic driv-
ing behaviour, realistic motion cueing is extremely important. However, while the
addition of physical motion cues increases simulation realism [32, 33], poor cue-
ing can actually cause a significant reduction in realism and even lead to simulator
sickness [34]. In cases of very poor motion cueing no motion is often preferred
to motion [27, 35, 36]. Much research is therefore done in improving the realism
of physical motion cues, such as taking into account human perception models
[37–39], implicitly [40] or explicitly [41, 42] accounting for simulator constraints or
accounting for future simulator motions [43, 44] when generating physical motion
cues, or specializing the generation of physical motion cues for specific simulation
scenarios [45, 46].

1.1. Motion cueing algorithms

In Figure 1.2 a general scheme for motion cueing in a vehicle simulator is pre-
sented. The simulator motions, usually taken as the linear acceleration and rota-
tional velocity, are used unrestricted to generate a visual scene that is displayed
inside the motion simulator. From these visuals, visual motion cues are derived
and sensed by the human visual system. A parallel path is shown for the physi-
cal motion cues, which are presented via the motion platform and sensed by the
human gravito-inertial sensors such as the vestibular and somatosensory systems.
The motion platform workspace, however, is restricted. Therefore, the vehicle mo-
tions are run through a motion cueing algorithm (MCA), which maps the vehicle
motions onto the limited simulator workspace, before being send to the motion
platform. Finally, the sensed visual and physical motion cues are then combined
in the human brain and a percept of self motion is obtained.
Most simulators use an MCA that is based on the Classical Washout Filter (CWF)
[47]. This MCA uses high pass filters to extract the high-frequency content of the
linear accelerations and rotational velocities and sends only those to the simula-
tor motion system. Low-pass filters are used to extract the low-frequency content
of the lateral and longitudinal accelerations for what is called “tilt-coordination”
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[48], i.e., rotating instead of translating the cabin to simulate prolonged accelera-
tions. If the rotations occur at a rate below the human perceptual thresholds, the
physical rotation angle and the visual cues for linear acceleration combined are
perceived as sustained acceleration rather than rotation [49]. To avoid the simula-
tor hitting its limits, worst-case tuning of the MCA parameters is usually applied
[50]. This type of tuning involves scaling down all motions, i.e., global scaling,
such that those parts of the simulation that are not ’worst-case’ are suboptimal.
For the trade-off between hitting limits and simulator realism, experts are needed
to tune the MCA parameters. This expert tuning often involves using human-in-
the-loop experiments to obtain a ’feeling’ of what is optimal [50, 51].
In attempts to avoid this inherently subjective manual tuning, adjustments to the
CWF have been made. With the Optimal Washout Filter (OWF) [52], for example,
filter orders and parameters are optimized off-line using an optimization algo-
rithm that minimizes a specific cost function. The cost function is often based
on calculating the difference between vehicle and simulator linear acceleration
and rotational velocities, but can also include models of, for example, the hu-
man vestibular system to account for thresholds in the human perceptual system
[53]. With this type of MCA, however, the algorithm is again always tuned for
the expected worst-case and the optimization needs to be repeated when different
manoeuvres or vehicles are being simulated.
Adaptive Washout Filters (AWF) [54] were designed in another attempt to avoid
global scaling. This MCA implicitly accounts for simulator limits by adjusting
the filter gains in real time, based on minimizing a cost function that penalizes
the difference between simulator and vehicle motions, the motion magnitude and
the gain parameter change. It is a non-linear and much more complex procedure
than the Classical or Optimal washout filters, but does not lead to significant im-
provements. Additionally, the adaptive filters are prone to instability, which, all
together, makes that they are not widely used.
Lately, with increasing availability of computation power, MCAs based on model
predictive control (MPC) [42, 55–57] have been introduced. Here a model of the
simulator is used to predict the simulator motions for a given set of simulator
inputs over a specified prediction horizon. By minimizing a cost function, the
optimal simulator inputs for a given reference motion are found. Each time step
the first simulator input is sent to the simulator, after which the optimization
is repeated. With these MCAs the simulator limits are explicitly accounted for
such that worst-case tuning is no longer needed, while algorithm stability is ob-
tained with the combination of a well-designed cost function and a sufficiently
long prediction horizon. Additionally, the cost function can be designed for opti-
mal perceived simulation realism, by taking into account human percept.
In Figure 1.3 an overview of the different types of MCAs and their challenges are
shown. From this figure it is clear that the one challenge that all types of MCAs
share is the tuning of its parameters, may it be filter parameters or cost function
parameters. Generally this tuning is done by experts, often using human-in-the-
loop experiments. As these experiments are expensive and time consuming, often
a limited number of parameter sets is tested [46, 58–61]. To make a well-grounded
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choice for the best MCA, it is imperative that these experiments provide a max-
imum of information on the cueing quality. Improving the MCA outside of the
limited sets that are tested also requires knowledge on what causes the differences
in perceived cueing quality.

1.2. Cueing quality

Simulator fidelity, simulation realism, MCA performance and cueing quality, are
just a few of the terms that exist in literature that aim to capture how realistic
a vehicle motion simulation is. Simulation realism can be influenced by many
things, such as the quality of the outside visuals and sounds, the vehicle mock up
and the motion cue quality. In this thesis the term cueing quality will only refer
to the effect of the physical motion cues generated by a motion cueing algorithm
on the perceived simulation realism. A high cueing quality thus results in a more
realistic simulation than a low cueing quality, when all other simulator and exper-
imental conditions are considered equal.
As here we consider perceived realism, high cueing quality does not necessarily
mean that the vehicle motions need to be replicated one to one with the simulator
motions. Using tilt-coordination to simulate sustained acceleration while apply-
ing below human perception threshold rotations, for example, can result in the
same cueing quality as would a one to one sustained acceleration, because the
human subject would not perceive the difference.
As the human sensory system is subject to noise, also differences between visual
and physical motion cues in the same motion channel cannot always be distin-
guished. In fact, in [62] and [63] coherence zones, ranges which indicate how
much a visual motion cue can differ in magnitude from a corresponding phys-
ical motion cue while still being perceived as coherent, were identified for dif-
ferent motion channels. In this thesis, the term Perceived Motion Incongruence
(PMI) refers to visual-physical motion cue pairs that are outside of these coher-
ence zones, i.e., that are not coherent or, more generally, not congruent. The level
of PMI then refers to the magnitude of its effect on the simulator realism, i.e., mo-
tion cue pairs that are perceived as incongruent but not detrimental to simulator
realism will have a lower PMI than motion cue pairs that are perceived as incon-
gruent and very detrimental to simulator realism. In Figure 1.4 the mapping from
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vehicle motions to this PMI is shown schematically. The vehicle motions usually
consist of lateral, longitudinal and vertical linear accelerations and rotational ve-
locities in roll, pitch and yaw. The simulator presents these vehicle motions to the
human via visual motion cues, which are similar to the vehicle motion cues, and
via physical motion cues, which differ from the vehicle motion cues. The human
senses these motions cues with its visual and gravito-inertial sensors. Given the
instruction, the human can use its car driving experience and preferences to com-
pare the visual-physical motion cueing pair to real vehicle motions and generate
one percept of motion incongruence.
Much research has been done on when motion cue pairs, i.e., visual and phys-
ical motion cues, are perceived as different [64–68], as these differences can be
the most detrimental to motion simulation, due to the fact that they can induce
simulator sickness [69, 70]. But also if a motion cue pair has magnitudes that lie
within a coherence zone, i.e., differences are small, it can still affect the cueing
quality negatively. In this case, it is possible that the vehicle motion magnitude
that is being simulated is perceived incorrectly. Most cue integration models, such
as [71] and [72], show that the perceived magnitude of a motion is some weighted
average of the motion cues perceived by the different sensory organs. If an phys-
ical motion cue is within the coherence zone of a visual motion cue, but lower, a
weighted average would thus imply that the perceived motion is somewhat lower
than the vehicle motion that is being simulated.
Another aspect of cueing quality is that it is time-varying. Generally, the magni-
tude of the differences between vehicle and simulator motions already vary over
time, logically resulting in differences in cueing quality over time. But also when
the magnitude of the difference between simulator and vehicle motions is sim-
ilar, the cueing quality can still differ. In [51] an overview is given of different
cueing error types and their varying influences on the cueing quality. In Figure
1.5(a) an example of two of such cueing error types, a missing and a false cue,
is shown. Both cueing errors have exactly the same objective quality, i.e., their
euclidean distances are the same, as can be seen in Figure 1.5(b), but one is the
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result of missing motion, while the other is the result of added motion where no
motion was expected. The false cue is known to be perceived as more detrimental
to the cueing quality than the missing cue [51], as indicated in the fictional cueing
quality detriment in Figure 1.5(b).
The quality of an MCA therefore strongly depends on how often the most detri-
mental cueing errors occur during a particular simulation. Information on the
time variations in cueing quality is therefore essential when trying to understand
why certain MCAs result in a low cueing quality, i.e., was there just one very detri-
mental cueing error or was the cueing quality constantly low? In the former case,
the particular manoeuvre causing the large drop in quality could for example be
removed, or if caused by hitting a limit, the gains can be scaled down. Knowing
when a drop in cueing quality occurred can also help significantly in determining
its exact cause related to the simulator motions.

1.2.1. Measuring Cueing Quality

Generally, a high quality MCA would cause the perception of being in a real mov-
ing vehicle, such that the participant behaves, i.e., controls the vehicle, in a similar
way as in a real vehicle. For training purposes especially, it is important that the
subject reacts to the perceived motions in exactly the same way as (s)he would in
a real vehicle. One way of objectively measuring MCA quality is therefore to ex-
amine the control behaviour and compare it to control behaviour in a real vehicle,
such as was done in [73] for flying and in [74, 75] for driving behaviour. This,
however, is very time consuming and only a limited set of safe manoeuvres can
be tested in this way.
Examining the difference in control behaviour with different MCA settings is also
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done, but it remains difficult to determine which control behaviour is desired
without a real life example to compare it to. Another problem with examining
control behaviour is that humans are very good at adapting [76], i.e., it is possible
that the measured control behaviour in the simulator and real vehicle is similar,
while the perceived motion differed. If this is the case during training, the partici-
pant would develop incorrect associations between certain perceived motions and
their manoeuvres and, with that, fail to develop appropriate control behaviour.
Finally, a more practical issue with measuring control behaviour is that differ-
ences in control behaviour between participants will result in different motions
between experiments. It is therefore difficult to perform a human-in-the-loop ex-
periment where each participant is subjected to exactly the same motion cueing.
Conclusions on differences in control behaviour are therefore generally made by
analysing the behaviour over longer periods of time, and either fitting parameters
of a control behaviour model to it [77] or averaging certain aspects [75, 78], such
as control effort, over time. While this averaging over time can reduce the effects
of small differences in motions between participants, it also removes all time in-
formation for the analysis. This time information, however, is particularly useful
when analysing what caused the differences in MCA quality.
To avoid dealing with the adaptive nature of humans, one could try to measure
the perceived motions or perceived cueing quality. As perception happens in the
brain, however, it cannot be measured directly. Up till now the only objective mea-
sures related to cueing quality are physiological measures, such as measured in
[79], showing simulator sickness. Simulator sickness, however, only occurs with
very bad cueing quality and develops slowly over time, making it unsuitable to
determine which part of the simulation really caused the sickness.
Instead, therefore, the perceived cueing quality is often measured subjectively.
While subjective measures are generally disfavoured compared to objective mea-
sures due to their large variability, when obtaining a sufficient number of measure-
ments, reliable results can be obtained. Many studies use subjective measurements
such as questionnaires [36, 80], magnitude estimation [39] and paired comparison
methods [81, 82] to determine cueing quality. While here a direct measure of the
overall cueing quality is obtained, still important time information on when the
cueing quality was high or low is missing. While some have tried to include more
time information via questionnaires [36], it remains difficult to directly relate such
results to the provided visual and physical motion cues.
Finally, also off-line methods to determine MCA quality have been developed.
Most of these methods, however, are related to the often used Classical Washout
Filters. The Sinacori-Schroeder criterion [50], for example, determines acceptable
gain and phase shift regions for the high-pass filter of a Classical Washout Fil-
ter. The Advani-Hosman criteria [83] instead provide such regions for the transfer
function of the entire motion system. The more elaborate Objective Motion Cue-
ing Test (OMCT) [84] uses similar criteria to determine the motion quality of the
entire system, such that simulators can be compared. Both the Advani-Hosman
criteria and the OMCT, however, assume a mostly linear system and analyse this
system in the frequency domain. These methods are therefore suitable to com-
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pare systems using a Classical Washout Filter that keeps the motions within the
simulator limits, but due to the lack of time information these methods are less
suitable for highly non-linear MCAs such as the MPC-based MCA. Additionally,
it is difficult to pinpoint exactly when or why an MCA has a lower quality.

1.2.2. Improving Cueing Quality

While each type of MCA can be improved on different aspects, as shown in Fig-
ure 1.3, one challenge that all MCAs face is parameter tuning for optimal cueing
quality. While human-in-the-loop experiments can be used to determine the best
out of a limited group of MCA settings, such as was done in [46, 58, 60], it is
very time-consuming to use such experiments to actively tune the parameters.
Instead, off-line methods, such as using the Sinacori-Schroeder criterion, Advani-
Hosman criterion or OMCT, are often used to perform an initial analysis and tune
the parameters. As mentioned before, however, these methods were designed for
mostly linear algorithms, and are not suitable for highly non-linear algorithms
such as MPC-based MCAs.
Analysing and improving the cueing quality of such highly non-linear MCAs is
often done with MCA independent methods such as visual analysis of the result-
ing simulator motions for a specific set of test manoeuvres [7, 85, 86] or comparing
different parameter settings using a cost function that takes into account the differ-
ence between simulator and vehicle motions [41, 87, 88]. While the latter method
is very time efficient, its effectiveness depends on the choice of cost function.
Cost functions used for MCA optimization, either used within the algorithm it-
self or used as an analysis tool of its results, come in many different forms. The
simplest version is a weighted sum of the (squared) differences between simulator
and vehicle motions [40, 89]. While such cost functions are easy to implement in
a cueing algorithm, they lack important information related to the perception of
motion. In an attempt to include the perceptual system in such cost functions,
many have instead first ran the simulator and vehicle motions through simplified
models of our vestibular system [41, 53, 56]. Such models, for example, account
for the washout effect on the rotational velocity of our vestibular organs, i.e., we
do not perceive sustained rotational velocity [90]. By running the simulator and
vehicle motions through such models before comparing them, differences between
simulator and vehicle motions from simulating sustained rotational velocity with
a washout filter would, correctly, not be penalized.
While many claim that including such models improve the perceived cueing qual-
ity [37, 41, 55, 91], not many have actually tested this. In [37] the influence of
different perception models in two types of MCAs was only investigated off-line,
by analysing the algorithm responses, i.e., the effect of using different perception
models on the perceived cueing quality was not investigated using human-in-the-
loop experiments. Moreover, not only the perception models changed between
conditions, but also parameter retuning was applied, making it difficult to identify
the influence of perception model changes alone. In [37] human-in-the-loop ex-
periments were done to evaluate some of the different types of cueing algorithms
described in [37], however, here the focus was on differences between an optimal



10 1. Introduction

and a non-linear cueing algorithm, rather than differences between perception
models. In [41, 55, 91] the effect of using vestibular models was not evaluated at
all. In [92], however, human-in-the-loop experiment results were analysed using
such vestibular system models and they concluded that comparing motions after
running them through such models does not explain the experiment results better
than simply comparing the original motions signals.
Research has also been done on using more elaborate perception models that,
for example, include models of the visual system [37, 93]. For now these mod-
els mainly contain low level sensory systems and not the higher level cognitive
functions of the brain related to motion perception. While such models can be
useful for gaining a better understanding of human motion perception, they only
map actual simulator motions to perceived motions, and do not determine how
this effects the perceived cueing quality. For example, they do not provide infor-
mation on how to weigh and combine cueing errors between perceived vehicle
and simulator motions from different motion channels into one measure of cue-
ing quality. As also stated in [59], rather than the use of vestibular models, the
cueing quality results of an optimization of any algorithm mainly depends on the
choice of cost function and corresponding weighing constants. Moreover, current
motion perception models cannot explain why different cueing error types, such
as scaled and false cues, are not equally detrimental to the cueing quality. While
the model driven bottom-up approaches are very useful in fully understanding
how we perceive self-motion, they are not yet directly applicable to the problem
of predicting cueing quality.

1.3. Research Goals

The mapping of vehicle motions onto the simulator workspace, while maintaining
a high simulation realism, remains one of the main challenges in vehicle motion
simulation. To make an MCA-independent method to analyse time-varying motion
cueing quality off-line is important when trying to improve cueing quality and the
effects different types of cueing errors have on this quality, but is currently not yet
available. The research goal of this thesis is therefore:

To develop an MCA-independent off-line prediction method for time-varying
perceived motion incongruence during vehicle motion simulation, to improve motion

cueing quality

The focus is put on Perceived Motion Incongruence (PMI) as the differences
between visual and physical motion cues are assumed to be the most detrimental
for simulator realism. No specific MCA type is assumed, such that any developed
prediction method will be MCA-independent. The aim of the PMI prediction
method is that it can be used for tuning of MCA parameters, such that the result-
ing motion cueing quality can be optimized.
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1.4. Approach

The research goal is addressed in three steps: measuring, modelling and minimizing
perceived motion incongruence. The thesis aims to provide a complete roadmap
that describes how to measure and model PMI and how to apply such models to
predict and with that minimize PMI in motion simulations.
Measuring time-varying PMI is essential for the development of PMI prediction
models. While measurement methods such as paired comparison might be used
to measure overall PMI, no method exists yet that can measure the time-varying
aspect of PMI. As a first step in this thesis, a subjective method to measure time-
varying PMI during a passive driving experiment was therefore developed and
validated with two human-in-the-loop experiments. For subjective measurements
the accuracy of the measurement strongly depends on the number of participants.
As more participants with driving experience are available than, for example, with
piloting experience, all experiments in this thesis are performed with car driving
simulations.
The data obtained in the experiments were subsequently used for the develop-
ment of a method to design data-driven PMI prediction models. A data-driven
top-down modelling approach was chosen, as this would lead to the goal of PMI
prediction more efficiently than a model-driven bottom-up approach. Via a data-
driven approach the focus of the model automatically steers to those aspects of
perception that influence PMI most. A model-driven approach, on the other hand,
would require modelling all aspects of human self-motion perception and cogni-
tion, including those aspects that may not significantly affect simulator realism.
The developed models were subsequently analysed with respect to their explana-
tory and prediction power. For the analyses of the prediction power, first a pre-
diction of new data within one experiment was made. Next, a method to compare
PMI rating data between experiments was developed and used to analyse the pre-
diction power of the PMI models between experiments.
While off-line PMI predictions can directly be used to minimize PMI via manual
tuning of MCA parameters, a more efficient use of PMI prediction models would
be to implement them in MCA optimization algorithms. Hence, in the last step of
this thesis approach a simple PMI prediction model was implemented as the cost
function of an optimization-based MCA, and its effectiveness was analysed in a
human-in-the-loop experiment.

1.5. Scope

As simulator realism and the corresponding motion cueing quality have many
aspects, a number of assumptions to limit the scope of this thesis were made.
First of all, it is assumed that humans can make a reasonable comparison between
vehicle and simulator motions while experiencing a vehicle motion simulation.
For this comparison it is assumed that the vehicle motions are perceived via some
combination of visual cues and prior experience in car driving. For this reason,
only participants that were in the possession of a valid driving license were al-
lowed to participate in the experiments.
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Assuming that vehicle motions can accurately be perceived from visual informa-
tion and experience disregards important aspects of human self-motion percep-
tion. Visually perceived motion is strongly influenced by aspects such as field-of-
view [94, 95] and visual scene content [95, 96]. Additionally, not all motions can
be perceived with the same accuracy. As the measurement method developed in
this thesis only involves passive driving, i.e., the participant is not requested to
provide any vehicle control inputs, also the influence of car driving style experi-
ence on the perceived motion is significant. Expected car motions that are difficult
to derive from visual cues, such as longitudinal acceleration, might be influenced
by the driving style of the participant which likely differs from the driving style of
the ‘automatic driver’ used in the experiment. For those motions extra care should
be taken when deriving conclusions from the corresponding PMI measurements.
It is, however, expected that in general the visual motion cues are sufficient to
derive a reasonable estimate of the vehicle motions.
A second assumption is that the time-variation of cueing quality is purely due to
the time variation of the inputs, and that any PMI prediction model itself is there-
fore time-invariant. It is likely that some time variation is present in the human
perception system, for example, due to the changing physical state of a participant
related to fatigue or stress. However, by properly instructing the participant to,
for example, take breaks before loosing focus, minimizing the experiment dura-
tion, and averaging over multiple measurements of PMI, such time variations are
expected to be small when compared to the time variations caused by inputs.
A third assumption is that the PMI measurement is a good indication of the cue-
ing quality of the vehicle motion simulation, and minimizing the PMI would thus
improve cueing quality. This measure only includes perceived incongruences be-
tween vehicle and simulator motions, while congruent motion cue pairs that result
in incorrectly perceived vehicle motions are not measured. While PMI is not the
only aspect of cueing quality, any incongruences between vehicle and simulator
motion negatively affect the cueing quality and can thus be taken as a measure of
cueing quality.

1.6. Outline

The first two chapters of this thesis are based on scientific publications, while
other chapters are written to be included in this thesis first. All chapters can be
read independently, although some back references occur. All nomenclature and
references to literature are made uniform throughout the thesis.
The thesis is divided in three parts: measuring, modelling and minimizing per-
ceived motion incongruence. In Figure 1.6 a schematic overview of the thesis is
shown. It has a sequential structure, with each chapter providing data and/or
developments for the next chapters. Part I yields a PMI measurement method
and corresponding data sets. In Part II these data are used for the development of
a PMI model. Part III uses both the developed measurement method, and a PMI
model to optimize an MCA.
Chapter 2 introduces a newly developed subjective method based on continuous
rating to measure time-varying PMI. The resulting motion incongruence rating
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is checked for reliability and validity in a human-in-the-loop experiment. Data
collected in this experiment are also used in Chapters 4, 5 and 6.
Chapter 3 compares an optimization-based MCA, developed at the MPI for Bio-
logical Cybernetics, to the MCA used by the Daimler motion simulator which is
based on classical washout filters. The two MCAs are evaluated using both the
newly developed rating method, to determine its performance, and an off-line
analysis describing the different strategies used by each MCA. The rating data
from this experiment are also used in Chapter 6.
Chapter 4 addresses the varying influences which different cueing error types can
have on cueing quality. A cueing error detection algorithm is developed using
data from Chapter 2 and tested using data from an experiment performed outside
this thesis, reported in [97].
Chapter 5 presents a system identification process for the development of PMI
models. The algorithm developed in Chapter 4 is used in the non-linear part of
such PMI models.
Chapter 6 shows how motion incongruence ratings from different experiments
can be used to analyse the prediction capability of PMI models, or can be prop-
erly aggregated into a larger dataset. The introduced Model Transfer parameter
is validated, and different PMI models are parametrized and analysed using data
obtained in Chapters 2 and 3.
Chapter 7 describes the implementation of one of the PMI models from Chapter
6 as a cost function in an optimization-based MCA. The performance of this new
cost function is compared to the original cost function using motion incongruence
rating results of a human-the-loop experiment.
The thesis ends with conclusions and recommendations for future research.
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In this chapter a method is presented to measure Perceived Motion Incongruence (PMI)
continuously throughout a motion simulation. The method, which is based on continuous
rating, was validated in an experiment. Subjects were requested to continuously provide
a subjective rating of PMI during a vehicle simulation in the CyberMotion Simulator
through constantly adjusting a rotary knob. Participants demonstrated that they could
rate repetitions of the same simulation consistently. The resulting time-varying ratings
were consistent with overall ratings of the same simulation and with literature on the
typical cueing error types presented in this experiment. The time information contained in
the rating data obtained with this method is essential for development of PMI prediction
models as described in Chapter 5.

This chapter is based on the following publication:
Cleij, D., Venrooij, J., Pretto, P., Pool, D. M., Mulder, M., and Bülthoff, H. H. (2017).
“Continuous Subjective Rating of Perceived Motion Incongruence during Driving
Simulation.” in IEEE Transactions on Human-Machine Systems, vol. 48, no. 1, pp.
17-29
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2.1. Introduction

Motion-based vehicle simulators are used for a wide variety of applications. They
are an increasingly important tool for training, research and vehicle system de-
velopment in both the car [98] and aerospace industry [1]. However, one of the
main challenges in motion-based simulation is to cope with the typically limited
workspace of the simulator. To map the vehicle physical motions onto the sim-
ulator motion space, a Motion Cueing Algorithm (MCA) is used [85]. As the
simulator motion space typically is much smaller than the vehicle motion space,
this process inherently results in motion mismatches: differences between the un-
constrained visual and the constrained physical motion cues. These mismatches
result in a decrease of simulator motion fidelity and unrealistic simulations [51].
For motion simulation fidelity, a distinction is made between physical and per-
ceptual motion fidelity [99]. Physical fidelity is defined as the match between
objectively measured motion cues in the simulator and in the vehicle. Perceptual
fidelity is defined as the match between simulator and vehicle motion cues as
perceived by the human. The main reason for using a vehicle simulator is not to
replicate the physical vehicle motions, but rather replicate the human perception
of these motions [100]. Van der Steen [62] investigated the effect of physical in-
congruence between visual and physical motion on the perceived realism of the
combined motion in a passive flight simulation. He introduced the term coher-
ence zone for the range of physical motion amplitudes that were still perceived as
coherent with a given visual motion amplitude. In [101] the effect of motion fre-
quency on these coherence zones in passive flight simulation is investigated and
in [102] the term phase coherence zone is introduced as the range of phase shifts
for which physical and visual motion are still perceived as realistic. As in real ve-
hicles, where all motion stimuli are congruent, motion simulators should provide
physical motions that are within these coherence zones. If this is not possible, at
least the perceived incongruence between different motion stimuli should be min-
imal. The current study therefore focuses on measuring any, linear or non-linear,
incongruence between visual and physical motion that is perceived in a passive
vehicle simulation. The degree to which this incongruence results in unrealistic
motion is hereby called the Perceived Motion Incongruence (PMI).
To improve motion cueing we need to understand how this PMI is related to the
physical motion mismatches presented in the simulator. Currently there are meth-
ods to directly or indirectly measure PMI, but they only provide time-invariant
overall results. These discrete results can be used to quantify and compare the
overall quality of an MCA, but cannot be correlated to the time-varying short-
duration motion mismatches. It therefore remains unclear which motion mis-
matches are responsible for the overall PMI. A time-varying measure of PMI,
that can be correlated to these mismatches, is therefore needed. Relevant motion
mismatches can then be identified and, eventually, minimized. Besides being in-
strumental to improve motion cueing, such a measure can also be used to gain a
better understanding of human motion perception.
Perceptual fidelity is measured using human-in-the-loop experiments. During
these experiments participants are usually subjected to vehicle simulations us-
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ing different MCA tunings. This fidelity can currently be measured directly via
questionnaires or subjective ratings on the MCA quality. In [36] information on
MCA quality during car motion simulation was obtained via questionnaires after
each simulation run and overall MCA quality ratings at the end of the experi-
ment. In [80] the Simulation Fidelity Rating scale together with an overall Motion
Fidelity Rating were used to subjectively rate the motion fidelity of a helicopter
motion simulation for different MCAs. In both cases the only time varying in-
formation of MCA quality was obtained via questionnaires on specific parts of
the simulation. In [39] an off-line rating method based on magnitude estimation
with cross-modality matching was developed and used to detect differences be-
tween MCAs during car motion simulation. The MCA rating results obtained in
these studies are time-invariant and can thus not easily be correlated with the
time-varying motion mismatches. Direct objective and time-varying measures
of PMI could possibly be done via physiological measures. Currently though,
only physiological measures related to motion sickness, a possible effect of sus-
tained or extreme PMI, have been found. Physiological measures such as heart
rate and skin temperature were measured and compared with the continuously
rated subjective estimate of discomfort during a car simulation in [103], while in
[79] similar physiological measures during a driving and flying simulation were
compared to off-line ratings of motion sickness. Instead of direct measurements,
objective indirect measurements of PMI can be attained by observing the induced
control behaviour for different MCAs. In [78] different MCAs were analysed based
on objective measures such as overall control activity and tracking performance
throughout an active driving simulation, while in [77] similar measurements dur-
ing a flight simulation were used to determine the effect of heave washout filter
settings on the parameters of a pilot model. To understand which differences in
control behaviour indicate a ’better’ MCA, in [104] and [61] control behaviour in
a simulator for different MCAs is compared to real in-flight and in vehicle record-
ings respectively. In [105] the effect of time-varying filter gains on pilot control
model parameters is investigated. However, the changes in control behaviour de-
scribed by both time-invariant and time-variant models currently available, do not
have the temporal resolution needed to identify the relevant short-duration mo-
tion mismatches.
This paper therefore presents a novel subjective measurement method which al-
lows for measurement of the time-varying PMI continuously during a vehicle
simulation (first described in [106]). The method is based on continuous subjec-
tive rating used in other research fields, such as 3D television [107]. The validation
of the novel method is done by analysing the results of a human-in-the-loop ex-
periment, where continuous rating of PMI was performed in a motion-based sim-
ulator during a passive driving simulation. First the measurements are tested for
reliability and validity. Subsequently, the applicability of this method is analysed
to determine if relevant short-duration motion mismatches can indeed be identi-
fied from the measured PMI. More information on the method and the validation
process is given in Section 2.2. Section 2.3 describes the experiment set up, while
the results with respect to reliability, validity and applicability of the method are
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presented in section 5.5. A discussion of these results and the corresponding con-
clusions are presented in Sections 5.6 and 5.7, respectively.

2.2. Continuous Rating Method

2.2.1. Background

Continuous rating (CR) refers to an on-line subjective rating, based on the method
of magnitude estimation [108]. This method allows for the measurement of the
perceived intensity of any physical stimulus. In the more traditional off-line rating
method (OR), the observer provides a single rating (magnitude) to a certain prop-
erty of the sensory stimulus via a dedicated rating interface. In the CR method,
the observer is asked to provide this rating continuously throughout the sensory
stimulus, resulting in a rating that varies over time.
In the field of 2D/3D television, CR methods are used to assess video quality by
rating the visual stimuli on visual comfort. In [109] this method is used to relate
the measured visual comfort to disparity and motion, while in [110] the influ-
ence of 3D video properties, such as perceived depth, on the feeling of presence
are rated. In the field of music analysis CR is also used. In [111] the method is
used to measure the predictability of music over time, while in [112] a CR method
is used to relate levels of emotion to specific aspects of music. Finally, in [113]
and [114], a CR method is used to gauge strain and workload in, respectively, a
motion-based and a fixed-based driving simulator, continuously.

2.2.2. Procedure

The proposed rating method is based on the rating methods described above and
used to measure perceived motion incongruence during a passive vehicle motion
simulation in a motion-based simulator. The participants did thus not use the
steering wheel or pedals, but were instead asked to continuously rate the per-
ceived motion incongruence, i.e. judge the mismatch between the physical mo-
tions in the simulator and the motions you would expect in a real vehicle based
on the simulator visuals. The resulting motion incongruence rating (MIR) is a
measure for the perceived incongruence between visual and physical motion cues
presented in the simulator.
The CR is performed using a dedicated rating interface, shown in Figure 2.1, con-
sisting of a rotary knob to express the rating and a rating bar displayed on the
screen, serving as visual feedback on the current rating. A maximum rating of
one is given by turning the rotary knob fully to the right and will result in a fully
coloured rating bar. A minimum rating of zero, given by turning the knob fully
to the left, will result in a fully black rating bar. The method makes use of simu-
lation trials: vehicle simulations of manoeuvres of interest, that each include the
complete range of motion incongruence that will be presented during a specific
experiment. In the experiment described in this paper, the simulation trials all
consist of the same segments, combinations of manoeuvre and MCA, but ordered
differently for each trial. To anchor both ends of the rating scale, participants are
instructed to provide the minimum rating of zero when no motion incongruence



2.2. Continuous Rating Method 21

Rating bar

Rotary knob

Figure 2.1: Rating interface consisting of a rating device and a rating bar.

is perceived. When motion incongruence is perceived the rating should increase
proportional to the incongruence intensity, with the maximum rating anchored at
the highest incongruence perceived during the simulation trial.
Participants can only use such a rating scale properly, if the maximum incongru-
ence during the experiment is known. The complete range of motion incongru-
ence presented during an experiment should thus be observed at least once, before
a proper rating can be performed. Therefore, participants first receive training
that consists of two procedures: rating interface training and congruence range
training, based on [115] and [109, 110], respectively. During the rating interface
training, participants familiarize themselves with the rating interface via a sim-
ple control task, where they are asked to follow a second automatically adjusted
rating bar. Subsequently, in the congruence range training, the participants fa-
miliarize themselves with the full range of motion incongruence that can occur
during the experiment. They also familiarize themselves with the task of rating
this incongruence continuously. To this end, participants are instructed to con-
tinuously rate the motion incongruence during a simulation trial. The training is
repeated several times to check if the participant can provide a consistent rating.
At the end of this training the participants should thus have learned to use the full
range of the rating bar, i.e., when no motion incongruence is felt provide a rating
of zero and when the maximum motion incongruence during the simulation trial
is felt provide a rating of one.
In the measurement part of the experiment, participants are asked to continuously
rate the motion incongruence in a simulation trial, using the rating interface. For
verification of consistency of the rating, this procedure is repeated three times.
During the experiment described here, a second measurement, a retrospective off-
line rating (OR), will be done. For this off-line rating, the simulation trial is split
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Figure 2.2: Simplified block diagram of the human subject during the continuous rating of perceived
motion incongruence in a simulator.

into several smaller segments. After observing a segment, participants are asked
to provide one overall rating of the perceived motion incongruence during this
segment using again the rating interface shown in Figure 2.1. This off-line rat-
ing method is commonly used to measure MCA quality [36, 61, 80] and is here
assumed to be an accepted measure of perceived motion incongruence.

2.2.3. Measurements

To better understand what is measured with the CR method, a simplified block di-
agram of the human subject during the continuous rating task is shown in Figure
2.2. This diagram shows that the sensory input (SI), generated by the simulator
motion and visualization systems during the simulation trial, is processed by the
human perceptual system (PS) into, among other signals, the perceived motion
incongruence (PMI). Here, subjects use their response system (RS) to translate the
PMI into a continuous motion incongruence rating (MIR). The latter is the contin-
uous rating data obtained during the experiment. When using the block diagram
for the off-line rating (OR) task mentioned above, the response system will yield
a time-invariant rating, the off-line MIR.

2.2.4. Validation

The most important properties of a measurement method are reliability and valid-
ity of the measurements [116]. The main advantage of this measurement method
in particular, is the possibility to correlate the various physical motion mismatches
to the measured MIR. In the following paragraphs, the validation process and the
applicability of the method in finding these correlations, are further explained.

Reliability

To validate the novel measurement method, the results need to show that par-
ticipants gave consistent ratings. The reliability analysis will determine within-
subject consistency by comparing the three consecutive ratings of the same sim-
ulation trial by the same participant. The between-subject reliability analysis will
be done by comparing all mean continuous ratings across participants. The relia-
bility estimate Cronbach’s Alpha [117] is calculated in both cases. This parameter
measures internal consistency and serves as a metric for the expected correlation
between the ratings. A value of 0.7 or higher is generally considered to reflect
acceptable reliability [118].
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Validity

In addition to reliability, the CR method should also provide a valid measure of
perceived motion incongruence. One way of analysing this validity is to compare
the continuous MIR to a generally accepted measure of perceived motion incon-
gruence. The continuous MIR will therefore be compared to the off-line MIR
introduced in Section 2.2.2. To pass the validity test, the continuous MIR should
show a significant correlation with the off-line MIR per segment. For this correla-
tion calculation the continuous MIR, containing measurements for each time step,
should be reduced to one value per segment. The reduction method will be cho-
sen based on the measurement results and could, for example, include the mean
or the maximum MIR per segment. The resulting correlation coefficient between
the off-line and continuous MIR per segment will be tested for significance [119].
The t-test used to calculate the significance is shown in equation (2.1), where N is
the amount of test items and r the correlation coefficient.

t =
r
√

N − 2√
1− r2

(2.1)

In this paper it is assumed that participants can use the visual motion cues pre-
sented in the simulator, together with their real world driving experience, to de-
rive the desired vehicle motion, while the simulator motion is represented by the
perceived physical motion cues generated by the motion platform. This means
that motion mismatches as defined previously, can be represented by the differ-
ence between desired vehicle motion and obtained simulator motion. In the ex-
periment, multiple MCAs and manoeuvres are used to generate specific physical
motion mismatches between vehicle and simulator in different motion channels. It
is hypothesized that, if the continuous MIR is indeed a valid measure of perceived
motion incongruence, these motion mismatches can be clearly identified from the
continuous MIR. This second validity check will be done via visual comparison of
the mean continuous MIR over all participants and the induced physical motion
mismatches.

Applicability

As mentioned in Section 2.1, a major advantage of this measurement method is
that its results can be used to obtain a deeper insight in the correlation between
the sensory input generated by the simulator and the perceived motion incongru-
ence. Subsequently, this correlation can be used to identify relevant short-duration
motion mismatches and, eventually, minimize them. For this purpose, the block
diagram of Figure 2.2 is transformed into the model shown in Figure 2.3. The
measurement method provides a continuous MIR R(t) which can be compared to
the modelled continuous MIR R̃(t) to provide insight in the correlation between
SI and PMI. As the model presented here is merely a first example of the applica-
bility of the measurement method, the models P̃S and R̃S will be kept simple and
in accordance with previous literature.
In the field of motion simulation, sensory input S̃(t) is often described as specific
force and rotational velocity in longitudinal (x), lateral (y) and vertical (z) direc-
tion [51], which, for simplicity, will also be done here. The perceptual system
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Figure 2.3: Block diagram of a model mimicking a human subject during the continuous rating of
perceived motion incongruence in a simulator.
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Figure 2.4: Block diagram of the perceptual system model, when rating perceived motion
incongruence in a motion simulator.

P̃S translates these sensory inputs into motion mismatches that together form the
perceived motion incongruence P̃(t). In literature, these motion mismatches are
often described as the absolute difference between vehicle and simulator sensory
inputs in individual degrees of freedom [40, 89], which will also be used here.
The perceived motion incongruence is then calculated as the weighted sum of
these motion mismatches, resulting in the perceptual system P̃S shown in Figure
2.4. The modelled response system R̃S should account for certain dynamics in
the human rating process. In previous research where a CR method was used for
perceived positive emotion [120] and melody predictability [111], the continuous
rating was found to be a smoothed and delayed version of the expected signal.
Hence, in this paper the continuous MIR is expected to be a smoothed and de-
layed version of the PMI. Without available data to support an explicit model, the
response system R̃S is modelled as a simple moving average filter with a win-
dow length of N seconds. A constant C is added to account for the non-zero
minimum mean rating, due to spread between participants. The resulting rating
system model R̃S is shown in Figure 2.5. Assuming these representations of S̃(t),
P̃S and R̃S, experimental CR data R(t) can be used to, using linear least-squares,
fit the model parameters: the 6x1 motion mismatch weight vector ~W, the filter
window length N and the constant C. The resulting model weights ~W show the
strength of the correlation between a specific motion mismatch and the perceived
motion incongruence. The perceptual system model PS can be used to minimize
the motion mismatches, by implementing it as a cost function in the optimiza-
tion algorithms for MCAs. The weight parameters of the simple model described
here P̃S could for example be used to replace the tuned weights in cost functions
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Figure 2.5: Block diagram of the rating system model when continuously rating perceived motion
incongruence in a motion simulator.

for MCA optimization based on adaptive [40] or model predictive control [39]
algorithms.

2.3. Experiment

An experiment was performed to investigate whether a CR method can be used to
measure time-varying perceived motion incongruence. For this experiment partic-
ipants were exposed to a passive driving simulation in a motion-based simulator.
During the simulation, different levels of motion incongruence were induced by
varying the simulator MCA settings for different manoeuvres.

2.3.1. Independent variables

The independent variables in this experiment were manoeuvre (three levels) and
MCA setting (three levels), which were all embedded in a simulation trial, result-
ing in nine different simulation segments. The following manoeuvres were used
in the simulation:

• CD: Curve Driving at 70 km/h, on a curve with a 257 meter radius and a
120 degrees deflection angle

• BA: Braking from 70 km/h to full stop and again Accelerating to 70 km/h
on a straight road

• BCDA: Braking from 70 km/h to 50 km/h while entering the curve, Curve
Driving at 50 km/h and Accelerating again to 70 km/h when exiting the
curve, on a curve with a 131 meter radius and a 120 degrees deflection angle

With these three manoeuvres, the simulation consists of motion incongruence in
different motion channels. As shown in Figure 2.6, manoeuvres CD and BA pri-
marily affect the longitudinal (X) and lateral (Y) specific forces, respectively, while
the BCDA manoeuvre combines both forces. The MCAs were all classical washout
filters [121], which map the vehicle specific force and rotational velocity vectors
onto the simulator workspace. These algorithms make use of motion washout, re-
turning the simulator to a neutral position with accelerations and rotations below
human perception threshold, and tilt-coordination, tilting of the simulator cabin
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Figure 2.6: Longitudinal and lateral vehicle specific force for the three manoeuvres.

to simulate sustained acceleration. Tilt-rate limiting is applied to keep the rota-
tion rate below human perception thresholds, for which values of ∼3 deg/sec are
often used [122].
The washout filter parameters that serve as a basis for the three MCAs used here
were tuned to reproduce the above described manoeuvre motions within sim-
ulator limits, while making maximum use of tilt-coordination and not applying
scaling or tilt-rate limiting. To induce specific motion mismatches, only the scaling
or the tilt-rate limiting parameters were adjusted, which resulted in the following
three MCAs:

• MCAScal : Scaling

– Motion scaling (gain=0.6), which leads to scaling and small rotational
errors (<4 deg/sec)

• MCATRL: Tilt-Rate Limiting

– Rotation rate limiting to 1 deg/sec, which leads to missing or false cues,
and very small rotational errors

• MCANL: No Limiting

– Neither tilt rate limiting nor scaling is applied, which leads to large
rotational errors (<8 deg/sec)

In Figure 2.7 the vehicle motions for each manoeuvre are shown together with the
measured and commanded simulator motions resulting from the use of different
MCAs. As the measured and commanded motions are very similar, the physi-
cal motion mismatches are hereby defined as the difference between vehicle and
commanded simulator motion and are indicated with the light gray area in Figure
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(a) Typical motion mismatches for three different MCAs during manoeuvre CD
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(b) Typical motion mismatches for three different MCAs during manoeuvre BA

2.7. The longitudinal specific force and pitch rate for manoeuvre CD, as well as
the lateral specific force and roll rate for manoeuvre BA, are zero for both vehicle
and simulator motion and are not shown in Figure 2.7. A scaling error, visible in
the specific force during the turn, the acceleration and the deceleration motions
for MCAScal , is caused by a constant gain between vehicle and simulator motion.
A missing cue, visible in the specific force at the beginning of these motions for
MCATRL, is here defined as a simulator motion that has a lower amplitude than
the vehicle motion but, unlike the scaling error, the gain between vehicle and
simulator motion is not constant over all frequencies. A false cue, visible in the
specific force at the end of these same motions for MCATRL, is similar to the miss-
ing cue, but here the variable motion gain is greater than one. False cues can also
refer to simulator motion when no vehicle motion is present, such as the rotation
errors visible in all rotational velocity plots in Figure 2.7.
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(c) Typical motion mismatches for three different MCAs during manoeuvre BCDA

Figure 2.7: The figures show vehicle motion, as calculated by CarSim, the commanded simulator
motion resulting from the different MCAs, the motion that was measured in the simulator and the

mismatch between vehicle and commanded simulator motion.
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2.3.2. Dependent Variables

The dependent variables were the continuous motion incongruence rating (MIR)
throughout the simulation trial, repeated three times, and the off-line MIR for
each of the nine simulation segments.

2.3.3. Apparatus

The experiment was performed in the CyberMotion Simulator at the Max Planck
Institute for Biological Cybernetics. This dynamic simulator was developed to
expand the limited workspace and dexterity of traditional hexapod-based simu-
lators. It is an 8-degrees-of-freedom serial robot derived from an industrial robot
manipulator (Kuka GmbH, Germany), where a 6-axes industrial robot manipula-
tor is mounted on a linear rail and equipped with a motorized cabin at the end
effector. The cabin is equipped with two WUXGA (1920x1200 pixels) projectors
(Eyevis, Germany) and interference filter stereo projection system (Infitec GmbH,
Germany), which provide up to 160x90 degrees Field-of-View on the cabin inner
side. The visuals and vehicle physical motions were generated using the simula-
tion software CarSim (Mechanical Simulation, US). The rating interface, shown in
Figure 2.1, consisted of a rotary knob (SensoDrive GmbH, Germany) to express
the rating, and a rating bar rendered on the dashboard of the virtual vehicle for
visual feedback on the current rating.

2.3.4. Participants

In total 16 participants, one female, aged between 22 and 38 years partook in
the experiment. Their levels of simulator experience ranged from no simulator
experience (7), participated in simulator studies before (5), to motion cueing expert
(4), and all had a valid driving license.

2.3.5. Procedure and Instructions

Participants were first trained to use the rating interface and familiarize them-
selves with the simulation via the rating interface and congruence range trainings
as described in Section 2.2.2. For the congruence range training two simulation
trials were rated, after which the within-subject consistency was visually checked
by the experimenter. If a low consistency was detected, a third training trial was
given. After a short break the CR measurement part started, where participants
were asked to observe and continuously rate three simulation trials, each includ-
ing all nine combinations of manoeuvres and MCAs. After a second break the
OR measurement part was started, where the participants were asked to observe
nine short simulation trials, containing only one segment each, and provide one
off-line rating after each trial using the rating interface. The same simulation seg-
ments were used throughout the experiment.
The simulation trial used for the congruence range training had a fixed segment
order. The three trials used for the CR measurements all had a different segment
order and were never the same as the training trial. For the OR measurement part
each trial always consisted of the same initial acceleration and final deceleration
and one of the nine segments, such that the simulation always had a natural start
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and ending. The order of these trials was randomized per participant. Per partic-
ipant, the experiment lasted approximately 2 hours.
Throughout the experiment participants were asked how they felt regularly, such
that the experiment could be stopped if early signs of simulator sickness, such as
sweating and burping, were detected.

2.3.6. Hypothesis

It is hypothesized that the continuous MIR will show sufficient consistency within-
and between-subjects and that this rating will significantly correlate with the cor-
responding off-line ratings. It is also hypothesized that the continuous MIR will
show an increase in motion incongruence during the physical motion mismatches
shown in Figure 2.7. This in turn leads to the hypothesis that a simple model
which makes use of these motion mismatches, described in Section 2.2.4, can
explain a significant portion of the motion incongruence measured with the con-
tinuous rating.

2.4. Results

2.4.1. Reliability

As mentioned in Section 2.2.4, the reliability within- and between-subjects is de-
termined by Cronbach’s Alpha, using each time step sample as a separate mea-
surement. The within-subjects reliability is calculated using the three simulation
trial repetitions. The raw rating data for each of these three simulation trials from
the first three participants is shown in Figure 2.8. As each simulation trial has a
different sequence of the same simulation segments, for comparison, the rating
data for each trial has been reordered to fit the same base sequence. The rating
data in Figure 2.8 shows that participants rated the three trials consistently. The
alpha for within-subject reliability had a median across all participants of 0.771

and an interquartile range between 0.727 and 0.897. Figure 2.8 also shows that
there is variability between participants. For example, during the vehicle acceler-
ation and deceleration in manoeuvre BA for MCANL, which causes rotation rate
mismatches, participant 1 rated the motion as being much more incongruent than
participant 2. This difference, which is also visible in the other manoeuvres for
MCANL, could be explained by a difference in rotation rate perception threshold
between these participants. Instead, participant 2 gave higher incongruence rat-
ings than the other two participants during manoeuvre BA for MCATRL. This
could possibly be explained by the ability of participant 2 to extract the vehi-
cle motion more accurately from the visuals than the two other participants and
therefore observing the incongruence better. Another explanation could be the
preference of errors in one motion channel over another. Rotational errors might
have had a stronger influence on the perceived incongruence of participant 1,
while participant 2 was more focused on, or had a preference for, accurate lin-
ear acceleration. As humans have different motion sensitivities and thresholds,
but also dissimilar higher level processes such as motion preferences, expecta-
tions and experiences, the observed rating differences between participants are to
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Figure 2.8: Raw continuous MIR during three simulation trials.

be expected. However, an alpha of 0.855 for between-subject reliability indicates
that, in general, participants did agree on the occurrence and magnitude of the
perceived motion incongruence during the simulation. From these results it is
concluded that the method provides sufficient reliable measurements.

2.4.2. Validity

As mentioned in Section 2.2.4, the validity analysis is done by comparing the
off-line and continuous motion incongruence rating (MIR) for each of the nine
simulation segments, as well as comparing the continuous MIR to the physical
motion mismatches shown in Figure 2.7. For this analysis Figure 2.9, showing the
mean off-line and continuous MIR and their standard error during each segment,
is used. For the correlation calculation between off-line and continuous MIR,
the latter needs to be reduced to one variable. Figure 2.9 shows that, with the
exceptions of the BA/MCATRL and BCDA/MCANL cases, the off-line MIR can
be accurately predicted by the maximum continuous MIR during that segment.
To compare the off-line and continuous MIR the latter is therefore "summarized"
as the mean across all participants of the maximum rating per participant per
segment. As the set of maximum ratings per segment for each participant has
a smaller variance and higher mean than the set of off-line ratings per partici-
pant, for the correlation calculation, both sets are standardized to have zero mean
and unit variance for each participant. Figure 2.10 shows the means over all par-
ticipants of 1) the standardized off-line MIR and 2) the standardized maximum
continuous MIR per segment. The Pearson correlation coefficient between the
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Figure 2.9: Mean values for off-line and continuous MIR and their standard error for each of the
MCAs during manoeuvres CD (a), BA (b) and BCDA (c).
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Figure 2.10: Mean standardized rating per simulation segment for the two rating methods.

standardized mean OR and maximum CR is r = 0.86 (p < 0.01). This indicates that
there is a significant linear relationship between the off-line and continuous MIR,
and it can therefore be reasonably assumed that both methods measure the same
perceived motion incongruence.
The time variations in the continuous MIR were hypothesized to correlate with
the induced physical motion mismatches illustrated in Figure 2.7. The continuous
MIR for manoeuvre CD, shown in Figure 2.9(a), clearly shows differences between
the three MCAs. The false cue generated by MCATRL, starting at around 37 sec-
onds, is clearly rated to induce the strongest motion incongruence. The second
strongest perceived motion incongruence can be related to the missing cue starting
at 11 seconds for the same MCA. The scaling error throughout the turn caused
by MCAscal is also clearly visible, but there is an unexpected increase in rating
towards the end of the turn. More detailed analysis showed that this increase is
visible in the ratings of seven of the sixteen participants. Finally, the peaks seen in
the right graph in Figure 2.9(a) can be related to the roll rate error at the beginning
and end of the turn for MCANL.
The ratings for manoeuvre BA, shown in Figure 2.9(b), are overall much lower
than the ratings for manoeuvre CD. The main peaks in the continuous MIR for
this manoeuvre are found when using MCANL, which causes large tilt rates at
the onset of braking and accelerating. At around 20 seconds, the continuous MIR
seems to approach zero, which can be attributed to the absence of any vehicle or
simulator motion during the full stop, see Figure 2.7. The continuous MIR for
MCATRL does not approach zero as observed for the other two MCAs and, in
fact, shows a small peak, which can be attributed to the missing high-frequency
motion cue at the end of the full stop. This peak, however, was only visible in the
ratings of six participants. Some participants reported verbally that they did not
rate this missing cue, even though it did clearly increase the motion incongruence.
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They reported waiting for the cue to arrive but, when realizing it would not occur,
felt it was too late to rate accordingly, which could explain the difference between
off-line and maximum continuous MIR for this manoeuvre.
Ratings for manoeuvre BCDA, shown in Figure 2.9(c), are very similar to the rat-
ings for manoeuvre CD, which reveals that similar physical motion mismatches,
indeed result in a very similar continuous MIR, indicating consistent rating be-
haviour. Again the scaling error, missing/false cues and roll rate errors caused by
MCAScal , MCATRL and MCANL, respectively, result in increased continuous MIR.
The main difference with the continuous MIR is seen for MCAscal : the increase in
rating towards the end of the turn that was visible in the CD manoeuvre is not
observed in the BCDA manoeuvre. Overall, the continuous MIR can be visually
correlated to the physical motion mismatches during each simulation segment
rather well, suggesting that the CR method can indeed be used to measure the
perceived motion incongruence.

2.4.3. Applicability

To show how the results of the novel measurement method can be used, the sim-
ple model described in Section 2.2.4 is fit to the measured continuous MIR. Such
models may lead to a better insight in how PMI results from physical motion
mismatches. Furthermore, the fitted motion mismatch weights ~W can be used in
MCA optimization.
As explained in Section 2.2.4 we do not directly measure the true perceived mo-
tion incongruence P(t), but rather the motion incongruence rating R(t). The latter
being the output of the human response system RS, rather than the output of the
human perception system PS. For this reason, not only a model of the perceptual
system P̃S, but also a model of the human response system R̃S needs to be fit.
The model parameters motion mismatch weight ~W, filter window length N and
rating constant C are estimated by fitting the modelled ˜R(t) to the mean measured
continuous MIR over all participants.
When comparing the estimated mismatch weights ~W, it should be taken into ac-
count that the corresponding mismatches did not have equal strength in the sim-
ulation trial. The motion mismatches in longitudinal specific force, for example,
were mainly present during one third of the total simulation, i.e., during the BA
manoeuvre. For this reason an additional parameter, the influence factor I, is
calculated to represent the percentage of P̃(t) caused by mismatches in a specific
motion channel:

Ii = 100 · Σ(|S̃vehi
(t)− S̃simi (t)|) ∗Wi

ΣP̃(t)
(2.2)

Here Ii is the influence factor, Wi the weight, S̃vehi
the vehicle motion and S̃simi the

simulator motion for the ith motion channel. The resulting estimated parameters
and the influence factor per motion channel are listed in Tables 2.1(a) and 2.1(b).
Additionally the average filter delay δavg, resulting from the fitted filter window
length N, is shown. Figure 2.11(a) shows the resulting modelled continuous MIR,
as well as the mean and standard error of the measured continuous MIR averaged



2.4. Results 35

Table 2.1: Estimated model parameters

(a) P̃S

Motion Channel ~W I
Specific X 0.000 0

Force Y 0.227 37

Z 0.389 18

Rotational Roll 0.047 17

Velocity Pitch 0.003 2

Yaw 0.012 26

(b) R̃S

Parameter Value
C 0.087

N 3 [s]
δavg 1.45 [s]

over all participants. Figure 2.11(b) shows the PMI components per motion chan-
nel: the absolute difference between vehicle and simulator motion multiplied with
the estimated weight vector. To determine the goodness of fit of the modelled PMI
the coefficient of determination r2 [119] is calculated with:

r2 =
Σ(R̃− R̄)2

Σ(R− R̄)2 , (2.3)

where R̄ is the mean R over all time steps. The r2 was found to be 0.79, i.e., 79%
of the variations in R(t) can be accounted for by the model.
The lateral specific force and yaw rate motion channels had the highest influ-
ence factors. Figure 2.11 shows that the motion mismatches in these channels
only occurred during the curve driving manoeuvres CD and BCDA. As expected,
the specific force mismatches are the main contributor for the PMI when using
MCAscal and MCATRL, while the roll rate mismatches are the main contributor
for the clear peaks in PMI when using MCANL. The PMI measured throughout
the curve for all MCAs is best modelled with the yaw rate mismatches.
During the BA manoeuvre, ˜P(t) is mainly based on the motion mismatches in the
vertical specific force, caused by tilt-coordination. It is surprising that the motion
mismatches in the longitudinal specific force did not influence ˜P(t) at all. The
pitch rotation rate had a very small influence on ˜P(t).
The perceptual system model P̃S together with the estimated weights ~W from
Table 2.1(a) could now be used to minimize the perceived motion incongruence
for manoeuvres and motion mismatches similar to those used in this experiment,
by implementing it as a cost function in an MCA optimization algorithm. The
estimated weights would then replace tuned weights normally used in the cost
function. As the range of motion incongruence used in this experiment is rel-
atively small, compared to those that can possibly be present during a vehicle
simulation, the perception model P̃S should be further improved using additional
experimental data, before it can be used for a larger range of manoeuvres and
motion mismatches.
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Figure 2.11: (a) measured continuous MIR R(t) , its standard error over all participants and the
modelled continuous MIR R̃(t). (b) modelled PMI P̃(t) and its components.
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2.5. Discussion

2.5.1. Summary

The experiment analysis described in this paper shows that the proposed contin-
uous rating method can indeed be used to obtain a valid and reliable measure of
time-varying perceived motion incongruence during vehicle motion simulation.
Within- and between-subject reliability of the continuous motion incongruence
rating (MIR) was shown to be sufficiently high to assume reliable measures. The
validity of the measurement was investigated by comparing the continuous MIR
first, to an off-line MIR generally used to measure overall perceived motion incon-
gruence and second, to the physical motion mismatches in six motion channels
over time. A significant correlation between the off-line MIR and the maximum
continuous MIR was found, indicating that the continuous rating method indeed
results in a measure of the perceived motion incongruence similar to that mea-
sured with the off-line rating method. Because also the different physical motion
mismatches can be identified from the continuous MIR, it is reasonable to assume
that the continuous MIR is indeed a measure for perceived motion incongruence.
Finally, the applicability of the results from this method was investigated by fit-
ting a simple model, describing the formation of perceived motion incongruence
and the resulting continuous MIR from the sensory input in a motion simulator,
to the measured continuous rating. This simple model could already explain a
large part of the measured continuous MIR. Next to giving more insight in the
importance of certain motion mismatches on the formation of perceived motion
incongruence, these estimated weights for motion mismatches in six motion chan-
nels, specific force and rotational velocity, can be used in cost functions for MCA
optimization.

2.5.2. Specific findings

Even though the current experiment was set up to validate the measurement
method, it also already provided some interesting results on motion cueing that
require further discussion. The correlation between the off-line rating per seg-
ment and the continuous rating seemed to depend on the maximum, rather than
the mean continuous rating during a manoeuvre. This finding is in accordance
with earlier findings on the relation between overall and a continuous rating of
video quality [123], where it is found that the off-line rating can best be predicted
from the continuous rating by the peak impairment. This finding should also be
taken into account when designing a cost function for MCA optimization, where
currently, the overall motion incongruence is assumed to be a summation of the
motion incongruence over all time steps of a certain manoeuvre [93] or the pre-
diction horizon [55].
The correlation between the continuous ratings and motion mismatches in differ-
ent motion channels showed that the false cues during the curve driving manoeu-
vres were rated with a higher motion incongruence than the scaling and missing
cues during these manoeuvres. This is in accordance with general knowledge on
false cues [51], but has now been measured directly for the first time.
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The missing cue in longitudinal specific force at the end of the full stop in the
"Braking, Accelerating" manoeuvre, unlike the missing cues during the "Curve
Driving" manoeuvre, was not clearly rated as highly incongruent with the contin-
uous rating. The off-line rating for this segment, however, did show high overall
incongruence. The missing cue makes one feel like the car never came to a full
stop, while the visuals do not show any vehicle motion any more. The timing
of this cue is difficult to deduce from the visual motion, but, from experience,
participants do expect the cue to appear at the end of the full stop. Because of
this, some participants had reported to be too late in rating this perceived motion
incongruence during the continuous rating, but said they did take it into account
during the off-line rating. This could explain the difference between off-line and
continuous rating, which is an interesting topic for further research. Depending
on the application of the measurement method, it can be useful to clearly instruct
the participants to rate any motion incongruence, even if their rating is delayed. It
is often more important to obtain the incongruence rating than it is to avoid time
delays, as the latter can be detected and removed during the data analysis.
The "Braking, Accelerating" manoeuvre, was clearly rated to be less incongruent
for all MCAs than the curve driving manoeuvres, even though the objective mo-
tion mismatch magnitude, shown in Figure 2.7, was similar. An explanation for
this can be that participants are less capable of perceiving longitudinal vehicle
acceleration, derived from the changes in velocity observed in the simulator visu-
als, than they are at extracting vehicle yaw rate from these visuals during curve
driving, due to differences in the optic flow for these two degrees-of-freedom, as
explained in [96]. Less accuracy in the visually perceived vehicle motion, results
in a larger range of simulator motions still being perceived as congruent.
A simple model, mapping sensory input to a motion incongruence rating can al-
ready produce a good fit, explaining 79% of measured mean continuous ratings.
The fit was best for the curve driving manoeuvres, where the model shows that
the rating was most likely caused by the lateral specific force mismatches.
The peak in motion incongruence due to the false cues for the curve driving ma-
noeuvres, when using an MCA that includes tilt rate limiting, is modelled to be
much lower than the peak that was measured with the continuous rating, while
the peaks related to the missing cues are a much better fit. Both these peaks are
caused by motion mismatches in the same motion channel, i.e., lateral specific
force. As mentioned before, false cues are in general perceived as more incon-
gruent than missing cues, but with the current implementation of the model this
difference cannot be emphasized. It is therefore advised for future work that the
motion mismatches defined as false cues are assigned a different weight than mis-
matches defined as missing cues.
The fit for the "Braking, Accelerating" manoeuvre is much less accurate than for
the curve driving manoeuvres. A surprising finding is that the longitudinal spe-
cific force and the pitch rate are modelled to have, respectively, no and very
little impact on the perceived motion incongruence. Instead, the motion mis-
match in vertical specific force is modelled as the main influence on perceived
motion incongruence during this manoeuvre. The latter mismatch exists due to
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tilt-coordination used in washout filters, where linear acceleration is simulated
via the gravitational vector by tilting the simulator cabin. The motion mismatch
in vertical specific force is thus related to the pitch angle. This implies that instead
of responding to the perceived pitch rate, participants might have responded to
the resulting pitch angle. This is consistent with results presented in [92], where
it was concluded that subjects relied strongly on mismatches in attitude to deter-
mine the goodness of the motion cueing, at least during the tested longitudinal
acceleration manoeuvre.
The estimated weight of zero for longitudinal specific force can be related to the
aforementioned less accurate perception of this motion from simulator visuals,
leading to a large range of simulator motions still being perceived to be congruent
with the visual motion. In [124] it is concluded that simulator jerk has a large in-
fluence on perceived motion. In future work it is therefore advised to investigated
if additional sensory inputs, such as rotational angle and linear jerk, would result
in a better fit for the "Braking, Accelerating" manoeuvre.
The human response system during the rating task was modelled as a moving
average filter and an added constant offset. The estimated window length for the
filter resulted in an average delay of 1.45 seconds. This delay seems reasonable as
it is in the same range as delays found in previous research where a continuous
rating method was applied: [125] reports delays between 1.5 and 2 seconds, [111]
reports delays between 0.5 and 0.7 seconds and [126] reports delays between 0.9
and 1.2 seconds. The constant offset should have accounted for the non-zero mini-
mum mean rating, due to spread between participants, at points in the simulation
where instead a minimum rating of zero was expected. A minimum rating is ex-
pected, for example, while the car is stopped and no simulator motion is present.
The non-zero minimum mean continuous ratings found at these points in the sim-
ulation, however, are much lower than the estimated constant offset. This could be
an indication that the constant offset value was not estimated correctly, or that the
constant offset fulfils a different role in the model than the role that was intended.
Some participants verbally reported that they rated the absence of road rumble. It
is possible that such ratings were accounted for in the model by an inflated value
of the constant offset. In future work it is therefore advised to include the absence
of road rumble as one of the motion mismatches in the perception system.

2.5.3. Method considerations

This subsection gives a short overview of several aspects of the rating method
that should be taken in consideration when using it to measure perceived motion
incongruence.

• Time resolution: the major advantage of this method is that perceived mo-
tion incongruence is measured continuously over time, resulting in much
more information than the currently existing methods that only provide
overall measurements for a certain simulation trial. Even though the rating
is continuous, it cannot be assumed to be instantaneous. Due to processing
delays and filtering, which can also differ somewhat between participants,
the time resolution of the mean motion incongruence rating is limited.
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• Passive driving: the main drawback of the presented method is that it in-
volves a passive driving simulation, where participants are not asked to
control the vehicle. In [68] it is shown that, at least in some cases, percep-
tual thresholds differ between passive and active driving tasks, which can
be an indication that perceived motion incongruence will also differ. The
perceptual thresholds, however, seem to increase, which could lead to less
sensitivity to motion incongruence during active driving. If this is the case,
measuring perceived motion incongruence during a passive rather than an
active driving task might actually lead to a more sensitive measurement. An-
other drawback of passive driving simulations is that only the incongruence
between visual and physical motion stimuli can be measured. Perceived
visual-physical motion incongruence, however, is not the only aspect of mo-
tion quality in a simulator. Motion quality depends on both the congruence
between all motion stimuli, including stimuli such as proprioceptive feed-
back from control devices during active driving, and on how well these stim-
uli combined represent the actual vehicle motion. For motions such as the
high-frequency vehicle motion at the end of a full stop manoeuvre, which is
not easily derived from visual information, incongruence between the pro-
prioceptive stimuli during active driving and the physical motion might be
a more important measure. This, however, cannot be measured with passive
driving simulations. In [113] an experiment is described where continuous
ratings are used to measure strain during driving in both active and passive
driving simulations. Here continuous ratings were taken during a simula-
tion while performing an active driving task, followed by continuous rating
while passively observing a repetition of this simulation. To include the ef-
fect of performing an active driving task on perceived motion incongruence,
it would be interesting to use a similar experiment set up in future work.

• Direct measurement: an advantage of the method is that it provides direct
measurements of perceived visual-physical motion incongruence rather than
indirect measurements such as control behaviour or performance. Critical
aspects of motion cueing can therefore more easily be identified.

• Memory workload: an advantage of the continuous rating method as com-
pared to off-line rating is that the memory workload is reduced, as par-
ticipants do not need to evaluate an entire trial and compare it to another
one. Instead the perceived motion incongruence is only compared to the
one instant of maximum incongruence that is unchanged throughout the ex-
periment. This decreased memory workload also allows for rating of longer
simulation trials, as compared to off-line rating. Longer rating trials in turn
might help participants reaching a higher level of immersion into the simu-
lation.

• Measurement scale: another advantage of the method is that it allows for
measurements on an interval scale, i.e. containing information about or-
der as well as having equal intervals, rather than an ordinal scale, i.e. only
containing information about order, such as the often used Cooper-Harper
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scale [127] or paired comparison method [128]. However, unlike the Cooper-
Harper scale, the scale in this study is derived from a specific experiment,
which has the drawback that comparison between experiments is more dif-
ficult.

• Participant engagement: a negative effect of passive driving simulations is
that participants can loose concentration due to the lack of activity. In the
continuous rating method this is much reduced by requesting participants
to actively rate throughout the simulation.

• Realistic simulation: The experiment described in this paper was deliber-
ately set up to create very clear and specific cueing errors, such that the
method could be validated. For future work it would be interesting to per-
form an experiment using a more realistic environment by using a dedicated
driving simulator and realistic visuals and manoeuvres.

2.6. Conclusion

This paper describes a first experiment using a continuous rating method to mea-
sure time-varying perceived motion incongruence in a motion-based simulator.
Results show that participants with different backgrounds and expertise in motion
cueing and motion simulation are able to continuously rate perceived motion in-
congruence during passive driving simulations in a consistent manner. The corre-
lation between retrospective off-line and continuous rating methods suggests that
both methods indeed measure the same underlying variable, i.e., the perceived
motion incongruence. This result is strengthened by the similarities between the
continuous rating and the presented physical mismatches between vehicle and
simulator motion. The continuous rating could therefore be used to determine
the relative importance of short-duration motion mismatches such as scaling er-
rors, missing and false cues. A simple model, mapping a selected set of sensory
inputs to the motion incongruence rating, was fitted to the measured continuous
rating data. The estimated model parameters showed the relative importance of
each of the selected sensory inputs on the formation of perceived motion incon-
gruence. Using this novel measurement method more complex models can be
designed, which can significantly increase knowledge on perceived motion incon-
gruence and that can also be used to further improve simulator motion cueing.





3
Comparison between Filter-

and Optimization-Based
Motion Cueing Algorithms

for Driving Simulation

In this chapter a Motion Cueing Algorithm (MCA) based on a real-time Classical Washout
Filter (CWF) is compared to an off-line optimization-based MCA. An experiment was
performed where participants were requested to use the method developed in Chapter 2
to rate the Perceived Motion Incongruence (PMI) throughout a vehicle motion simulation
with a high level of realism in the Daimler Driving Simulator. Results show a significantly
better PMI for the optimization-based MCA throughout the simulation. For this thesis, a
more important result is that participants were able to rate consistently, also in a realistic
vehicle simulation. The data obtained with this experiment are used in Chapters 4-6 for
the development of PMI prediction models.

This chapter is based on the following publication:
Cleij, D., Venrooij, J., Pretto, P., Katliar, M., Bülthoff, H. H., Steffen, D.,
Hoffmeyer, F.W. and Schöner, H. P. (2016). “Comparison between filter- and
optimization-based motion cueing algorithms for driving simulation.” in Trans-
portation Research Part F: Traffic Psychology and Behaviour, vol. 61, no. 1, pp. 53-68
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3.1. Introduction

Motion cueing is the process of converting a desired physical motion, obtained
from, e.g., a vehicle model, into motion simulator input commands. This conver-
sion is done by a motion cueing algorithm (MCA). In past decades, many different
types of MCAs have been introduced [85]. The vast majority of them are variations
of the filter-based approach, which relies mainly on scaling down and filtering the
physical motions such that the commanded motion lies within the limited motion
envelope of a simulator.
Recently, several optimization-based MCAs have been developed [56, 93, 129, 130].
The most important difference with filter-based approaches is that an optimization-
based MCA produces an optimized output, in which simulator constraints are
explicitly accounted for, instead of a filtered output for which it is not guaranteed
it lies within the simulator’s operational capabilities. In some optimization-based
MCAs the motions of the simulator platform are optimized which are then con-
verted to simulator control commands by low-level controllers [56, 129]. In others,
the simulator control commands are optimized directly [93, 130].
It is clear that filter-based and optimization-based MCAs are fundamentally dif-
ferent algorithms, but it is not readily apparent which provides better motion
cueing, if at all, and under which conditions. One can compare the algorithms’
output, i.e., the commanded simulator motions, but that does not provide a direct
answer to the question how the motion cueing quality of the algorithms is actu-
ally perceived by simulator occupants. The study presented in this paper aimed
at providing some answers to that question by performing an experimental com-
parison.
The filter-based and optimization-based motion cueing approaches were com-
pared in a driving simulation experiment, executed on the Daimler Driving Sim-
ulator (DDS) of Daimler AG in Sindelfingen, Germany. In the experiment, an
optimization-based algorithm, developed by the Max Planck Institute for Biologi-
cal Cybernetics in Tübingen, was compared against Daimler’s filter-based MCA,
using a newly developed motion cueing quality rating method [106]. The two al-
gorithms will be referred to, in this paper, as MCAOPT and MCAFIL respectively.
The goal of the comparison is to investigate whether optimization-based MCAs
have, compared to filter-based approaches, the potential to further improve the
quality of motion simulations.

3.2. Motion cueing algorithms

3.2.1. Filter-based motion cueing

Filter-based motion cueing algorithms consist of a combination of gains and filters,
which transform (desired) vehicle motion into simulator set-points in real-time.
Typically, the filters have a high-pass characteristic to prevent low-frequency ac-
celerations from consuming a considerable part of the simulator’s motion space.
The gain functions can be linear or nonlinear and are adjustable, with the aim of
reaching a good motion representation in a wide range of manoeuvres, preferably
with a constant set of parameters. Special requirements of the manoeuvre that is



3.2. Motion cueing algorithms 45

to be simulated, like tight curves or turns, might be considered separately by the
algorithm in order to provide good motion cueing quality while keeping the sim-
ulator within its operational limits. Well-known characteristics of the filter-based
approach are tilt-coordination (where low-frequency components of the linear ac-
celeration are reproduced by tilting the simulator platform) and motion washout
(the ever-present push to return to the initial position). Such MCAs are commonly
referred to as washout filters.
The MCAFIL for non-professional driver applications is based on a classical washout
algorithm. Scaling factors and filters are used in all six degrees of freedom (DOF)
to calculate the motion cues. Lateral, vertical and yaw excitations are dynamically
limited by high-pass filters. A modified tilt-coordination algorithm provides an
impression of steady-state acceleration in longitudinal direction and maximizes
the use of the linear rail.
The main goal of the MCAFIL is to provide linear motion cues within the envelope
of the motion system even during worst-case manoeuvres. The algorithm takes
the outputs of the vehicle simulation (accelerations and rotation angles and rates
in 6 DOF) and calculates the commands for the motion system at 500 Hz. When
used in driver-in-the-loop studies, the algorithm operates in real-time such that
the driver is free to choose velocity, acceleration, deceleration and manoeuvres
like lane change or overtaking other cars.

3.2.2. Optimization-based motion cueing

Optimization-based motion cueing optimizes simulator motions or control com-
mands through an optimization algorithm. An often-used approach is Model
Predictive Control (MPC). MPC is a control methodology that optimizes the cur-
rent control signal based on a process model and a future reference trajectory of
finite length, while taking constraints into account [131]. The optimization is gov-
erned by an objective function which quantifies the difference between (desired)
vehicle motion and simulator motion. The optimization is constrained by the sim-
ulator’s actuator limits. As a result, the optimized simulator control inputs and
states always lie within the simulator’s operational capabilities. MPC-based algo-
rithms utilize predictions of future reference signals, using a ‘prediction horizon’
of a certain length, to compute the current control action. The advantage of this
is that the current control action is optimized while taking future simulator states
and control actions into account [132].
In general, an MPC-based MCA finds a sequence of controls u and states x which
minimizes the following objective function:

J (x , u) =
N

∑
k=1

(
‖uk‖2

P +
1
2

(
‖y (xk , uk)− ŷk‖2

R +‖y (xk+1, uk)− ŷk+1‖2
R

))
+

N+1

∑
k=1
‖xk−x0‖2

Q

(3.1)
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subject to the constraints:
xk+1 − F (xk , uk) = 0

umin ≤ uk ≤ umax

xmin ≤ xk ≤ xmax

(3.2)

where N – number of time steps, x0 – the “neutral” state of the simulator, y (xk , uk)
– physical motion signal at the head point in the simulator as a function of its state
and input, ŷk – physical motion signal at the head point in the vehicle (reference
value), P,Q,R – symmetric positive-definite weighting matrices for penalizing con-
trol input, deviation from the neutral state and error in the physical motion signal,
respectively. F is the function that describes discrete-time dynamics of the system,
umin, umax, xmin, xmax are the lower and upper bounds of the inputs and states.
The physical motion signal is defined as:

y =

[
f
ω

]
(3.3)

where f – specific force, ω – rotational velocity at the head point.
The MCAOPT is described in more detail in [39, 93]. For the experiment described
in this paper the process model was adjusted to incorporate and cope with the
parallel, rather than serial, model of the Daimler simulator. In the current paper, a
trajectory-based optimization was performed, which means that the information
of the entire trajectory was provided to the algorithm at the start of the optimiza-
tion: i.e. in Equation 3.1, N is the total number of trajectory samples and ŷ is
obtained from a recording of the manoeuvre that was to be simulated (instead
of a prediction of the future reference). In theory, this should lead to the best
cueing quality, as the maximum amount of available information (i.e., a ‘perfect
prediction’) is provided to the optimization algorithm. A clear disadvantage of
this approach is that it makes the algorithm only suitable for simulation of pre-
recorded manoeuvres. It is possible to use prediction methods to obtain real-time
predictions of the future reference signal, which makes the algorithm suitable for
driver-in-the-loop simulations, e.g., [56]. It is to be expected that this would re-
sult in a lower simulation quality compared to the trajectory-based optimization
approach used in the current study [87].
The weighting matrices used in the objective function are: P = 0.1, Q = 0, R =
diag(1,1,1,10,10,10)2. As the value for Q was zero, there was no penalty for de-
viation from the neutral state, which implies that the algorithm did not exhibit
washout behaviour. The weighting factor 10 for the rotational velocities is cho-
sen as an approximate ratio of standard deviation of specific force components in
m/s2 and standard deviation of rotational velocity components in rad/s for typical
car manoeuvres.
The optimization was constrained by the actuator limits. For safety reasons, the
bounds were set at 95% of the actual position, velocity and acceleration limits of
each actuator. In addition, the simulator state was constrained by the condition
that the initial and final position of the simulator should be upright (zero degrees
of roll, pitch and yaw) and the initial and final velocity of simulator should be
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Table 3.1: Comparison of algorithm characteristics

MCAFIL MCAOPT

Type Filter-based Optimization-based
Real-time capable Yes No

Driver-in-the-loop applications Suitable Not suitable
Sampling rate 500 Hz 50 Hz

Future Reference Not applicable Entire trajectory
Accounting for simulator limits Manual tuning Constrained optimization

Tuned Yes No

zero. The optimization was performed using CasADi toolbox [133] and Ipopt
solver [134].

3.2.3. Algorithm comparison

It is important to note that the two MCAs described above are very different algo-
rithms, each with their own characteristics, see Table 3.1.
The MCAFIL is a robust, real-time algorithm, suitable for driver-in-the-loop sim-
ulations. The MCAOPT performs its optimization based on perfect knowledge
of the entire driving manoeuvre, making it unsuitable for real-time driver-in-the-
loop applications, but suitable for passive simulations.
The MCAOPT does not run in real-time due to the high computational load asso-
ciated with the optimization. The optimization of the trajectory used in this study
– with a duration of approximately 5 minutes – took a few hours on a regular
PC. After the optimization, the output of the MCAOPT , which provided data at a
sampling rate of 50 Hz, was resampled (interpolated) to 500 Hz, in order to run
synchronously with the output of the MCAFIL.
During the optimization, the MCAOPT utilized exact knowledge on the desired
motion for all future time steps (trajectory-based optimization). Such an opti-
mization would not be possible if the knowledge about the future is limited, as
is the case in real-time driving scenarios with a driver in the loop. In that case,
prediction algorithms would be required to obtain an estimate of the future refer-
ence trajectory. The effect of using (different approaches to) real-time prediction
on simulation quality remains a topic to be addressed in future studies.
Furthermore, the optimization of the MCAOPT is constrained by the simulator’s
actuator limits. As a result, the optimized simulator control inputs and states al-
ways lie within the simulator’s operational capabilities. This is not guaranteed
for the output of the MCAFIL, where simulator limits are typically accounted for
by tuning the algorithm’s parameters. The MCAOPT did not need tuning for the
experiment described in this paper. The implementation of the MCAOPT used in
the current study did not account for perceptual factors like drivers’ motion sen-
sitivity and thresholds [39]. It is to be assumed that the implementation of such
features will further improve the cueing quality of the MCAOPT .
Due to the above differences, this study is not to be considered as a competitive
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(a) (b)

Figure 3.1: Exterior of the Daimler Driving Simulator (DDS) (a) and the car orientation during the
experiment (b).

comparison between MCA alternatives, but rather as an attempt to gain insight
in the potential that an optimization-based approach has to offer with respect to
well-established filter-based approaches.

3.3. Methods

3.3.1. Research questions

The primary research question of this study is whether optimization-based MCAs
have the potential to further improve the quality of motion simulations compared
to filter-based approaches. At the start of the study it was unknown whether there
would be any measurable differences between the two algorithms, and if so, what
can be learned from these differences to further improve motion cueing.
In order to measure the quality of the motion cueing, a quality rating method
developed at the Max Planck Institute for Biological Cybernetics in Tübingen
was utilized. The method was described and evaluated in [106]. As the rating
method was only recently developed, a secondary research question was whether
the method provides reliable and repeatable results within and between partici-
pants.

3.3.2. Apparatus

The experiment was conducted in the Daimler Driving Simulator (DDS), an elec-
trical hexapod platform mounted on a 12 m long linear axis [17] (Figure 3.1(a)).
For this experiment, the car’s longitudinal axis was aligned with the simulator’s
linear axis by rotating the cabin in the dome (Figure 3.1(b)). This adjustment pro-
vides a relatively large motion space for the reproduction of longitudinal acceler-
ations and deceleration with the disadvantage that the space for lateral motion is
limited. The driver’s cabin was a standard Mercedes-Benz C-Class model (W204)
equipped with an additional display showing the rating bar (described below).
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Table 3.2: Overview of experiment procedure

TRAINING Familiarization with rating device and procedure.(1 trial pair, 10 min)

EXPERIMENT PART 1 Motion mismatch rating: CR followed by OR for each trial(1 trial pair, 10 min)

EXPERIMENT PART 2 Motion mismatch rating: CR followed by OR for each trial(2 trial pairs, 20 min)

3.3.3. Participants

In total 18 participants, 9 females, aged between 21 and 40 (mean = 29.3, std = 5.7)
took part in the experiment. All had previous experience in driving simulators,
but no or limited knowledge of motion cueing. They were expert drivers with a
minimum mileage of 10,000 km per year (mean = 17.222, std = 7.496). Two par-
ticipants did not complete the experiment due to motion sickness symptoms and
their data were excluded from the analysis.

3.3.4. Experimental procedure

In the experiment, participants were presented with four pairs of evaluation trials,
of which the first pair was used for training purposes. Each trial consisted of the
playback of an identical pre-recorded simulated drive. While the visuals remained
unaltered, the vehicle motions of the simulated drive were processed by either the
MCAFIL or the MCAOPT , generating two different simulator trajectories. These
trajectories were repeatedly presented in random order at each trial pair. In total,
participants rated each trajectory four times, of which the last three were included
in the data analysis. During the playback, the participants did not need to take any
actions on the steering wheel or pedals. Instead, they were asked to concentrate
on the movements of the simulator and rate the perceived motion mismatch, i.e.,
the perceived mismatch between the motion felt in the simulator and the motion
one would expect from a drive in a real car, taking the simulator visuals as a
reference. The experiment lasted approximately 1 hour, of which 45 minutes in
the DDS (Table 3.2). Throughout the experiment participants were asked how
they felt regularly, such that the experiment could be stopped if early signs of
simulator sickness, such as sweating and burping, were detected.

3.3.5. Rating procedure

The ratings were provided using the built-in rotary COMAND-knob of a Mer-
cedes C-Class. By rotating it, participants controlled a rating bar with 15 coloured
markers, visible on a small screen located to the left of the steering wheel (Figure
3.2). A rotation to the left reduced the number of visible marks (lower motion
mismatch); a rotation to the right increased the number of visible marks (higher
motion mismatch). There was always at least one green mark visible. The quality
of the motion cueing was rated in two ways:
A continuous rating (CR) method was used to measure time-varying aspects of
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Figure 3.2: Location of rating bar and rating knob in the car cabin. The rating bar has 15 coloured
marks, where green/red marks indicated low/high perceived mismatch.

the perceived mismatch between real and simulated drive. For the CR, partici-
pants were asked to continuously assign a value (magnitude) to the instantaneous
perceived motion mismatch via the rotary knob during the playback. If no mis-
match was perceived they were asked to provide a rating of zero.
After each trial the participants were asked to provide an overall rating (OR), by
indicating the perceived motion mismatch of the entire playback. The OR resulted
in a single rating for each trial. The rating method is described in more detail in
[106].

3.3.6. Stimuli

The recorded simulated drive that was used in this experiment was performed
by a human driver. The drive consisted of different manoeuvres combined into
one realistic drive in both rural and city surroundings of about 5 minutes. The
chronological list of manoeuvres that occurred during the drive is shown below.

• InitAcc: initial acceleration along a rural road up to the speed of 100 km/h

• RuralCurves: drive over a rural road consisting of a large-radius left, right
and left curve, during which a constant speed was maintained.

• OverTake: double lane change manoeuvre at constant speed to avoid a car
parked on the right-hand side of the road.

• SlowDown50: upon entering an urban area the speed is initially reduced
from 100 to 70 km/h and then from 70 to 50 km/h.

• TrafLightDec: driving through a gentle curve and decelerating to a full stop
in front of a red traffic light.
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• TrafLightWait: standing still in front of the red traffic light for 6 seconds.

• TrafLightAcc: accelerating from stand-still to 50 km/h after the traffic light
turns green

• City1: multiple gentle curves through the city at a constant 50 km/h speed.

• Roundabout: decelerating to 20 km/h, driving through a four-exit round-
about, exiting at the second exit and accelerating back to 50 km/h.

• City2: multiple curves through the city at a constant 50 km/h speed.

• TurnLeft: decelerating to 20 km/h, driving through a 90-degrees left turn
and accelerating back to 50 km/h.

• City3: multiple gentle curves through the city at a constant 50 km/h speed.

• FinalDec: deceleration to a full stop at a red traffic light.

3.4. Results

To compare the two MCAs, first the results and reliability of the overall and contin-
uous ratings are shown in Section 3.4.1. To determine which parts of the drive are
responsible for these differences, the continuous rating is analysed per manoeuvre
in Section 3.4.2. In Section 3.4.3 a comparison between the continuous rating and
the motion cueing errors over this time interval is shown as an indication of what
caused the perceived mismatch during these manoeuvres. To minimize the cueing
errors, both MCAs made use of different cueing mechanisms which are described
in Section 3.4.4. Finally in Section 3.4.5 the implementation of these mechanisms
to generate the linear acceleration in the driver frame of reference in the Daimler
Driving Simulator is explained.

3.4.1. Rating results and reliability

Using the method described above, participants rated the perceived motion mis-
match between 0 (no motion mismatch) and 14 (strong motion mismatch). Note
that a higher rating value implies a lower cueing quality.
To test for significant differences between mean ratings the parametrized paired
t-test (test statistic = t) and repeated measures ANOVA (test statistic = F) were
used. Because the mean ratings were not always normally distributed, the Lil-
liefors test for normality and generalized ESD (extreme Studentized deviate) test
were used to check the normality and outlier assumptions of these tests. If these
tests were not passed, the non-parametric Wilcoxon signed-rank test (test statistic
= z) and the Friedman test (test statistic = χ2) were used instead of the paired t-test
and ANOVA respectively. The average results obtained for the overall rating (OR)
are shown in Figure 3.3. The mean overall rating (MCAFIL = 7.0, MCAOPT = 3.0)
across all participants differs significantly between MCAs: z = 3.2154, p < 0.01.
This indicates that participants felt less motion mismatch with the MCAOPT than
with the MCAFIL. The overall rating does not change significantly for either of
the MCAs over the three evaluation trials (MCAFIL: F (47) = 0.91123, p > 0.05,
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Figure 3.3: Mean overall rating across three evaluation trials (left) and mean overall rating per trial
(right). Error bars indicate the standard error.

Table 3.3: Consistency test (Cronbach’s Alpha) for participants’ continuous rating. [* Two participants
did not reach 0.7].

Participant 1 Cronbach‘s Participant Cronbach‘s

Alpha Alpha

0 0.894 12 0.888

1 0.828 13 0.84

2 0.883 14 0.683 *
3 0.868 15 0.875

8 0.822 16 0.671 *
9 0.897 17 0.886

10 0.884 18 0.727

11 0.843 19 0.854

MCAOPT : χ2(47) = 2.4615, p > 0.05).
The average results obtained for the continuous rating (CR) are shown in Figure
3.4, showing the mean continuous rating across all participants. Before comput-
ing the means, the CR raw data were standardized per trial pair by subtract-
ing the minimum rating and dividing by the rating range. The mean values of
the continuous ratings (MCAFIL = 4.0, MCAOPT = 1.5) also differ significantly;
t (15) = 3.6708, p < 0.001. Participants were consistent when rating the perceived
motion mismatch continuously (Cronbach’s alpha (α), mean = 0.83, std = 0.07). As
shown in Table 3.3, from the 16 participants only two did not pass the statistical
test for consistency (α < 0.7) [118]. This result is in line with previous findings in
which the same method was used to determine MCA perceived quality [106].

1This column indicates participant number as assigned during the experiment, where numbers 4-7 are
missing.
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Table 3.4: Test statistics for the differences in mean continuous rating per manoeuvre. ***
p-adjusted<0.001, ** p-adjusted<0.01, * p-adjusted<0.05 and otherwise p-adjusted>0.05

Manoeuvre Test statistic
(means MCAFIL/MCAOPT)

RuralCurves *** t = 4.3771 (5.1/1.7)
OverTake *** z = 3.9762 (6.1/1.7)
SlowDown ** t = 3.4159 (3.2/0.9)
TrafLightDec * t = 2.8780 (2.7/1.2)
TrafLightWait z = 1.7721

TrafLightAcc z = 2.0919

City1 z = 1.5270

Roundabout ** t = 3.3070 (5.5/2.6)
City2 * t = 2.5093 (3.2/1.4)
TurnLeft * t = 2.8131 (4.1/1.9)
City3 z = 0.9526

3.4.2. Rating results per manoeuvre

Differences between MCAs rating on specific manoeuvres were analysed by com-
paring the mean continuous rating of the two MCAs per manoeuvre. The contin-
uous rating for manoeuvres ‘InitAcc’ and ‘FinalDec’ was not recorded fully and
was therefore excluded from the analysis. To control for the false discovery rate of
multiple comparisons the Benjamini-Hochberg correction was applied to all corre-
sponding p-values before testing for significance. The resulting test statistics and
the significantly different means per MCA are shown in Table 3.4.

3.4.3. Comparison between rating and cueing errors

To determine which motion cueing errors were responsible for the measured per-
ceived mismatch the data is split in different Manoeuvre Sets. For these sets only
the manoeuvres that were rated significantly different between the two MCAs are
used.

• Set Longitudinal (X): ‘SlowDown’, ‘TrafLightDec’

• Set Lateral (Y): ‘RuralCurves’, ‘OverTake’, ’City2’

• Set Combination (XY): ‘Roundabout’, ’TurnLeft’

The mean of the continuous ratings over all participants was compared to the er-
rors in 9 motion channels: linear accelerations in x, y and z direction, rotational
rate and angle in roll, pitch and yaw. In Table 3.5 the correlations (Pearson cor-
relation coefficient r) between MCA continuous rating and the absolute error in
different motion channels is shown per Manoeuvre Set. Correlations also occur
between some of the motion channels themselves, such as yaw and lateral ac-
celeration, which can make it difficult to determine exactly which error is rated.
Nonetheless the correlation together with the maximum size of the absolute error
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Table 3.5: Correlation coefficients between continuous rating and absolute motion errors

Set Longitudinal Lateral Combination

MCA MCAOPT MCAFIL MCAOPT MCAFIL MCAOPT MCAFIL

Correlation/Error r εmax r εmax r εmax r εmax r εmax r εmax

Longitudinal Acc 0.84 0.09 0.86 2.22 0.60 0.10 0.43 0.74 0.70 0.82 0.45 1.92

Lateral Acc 0.86 0.07 0.48 0.29 0.62 0.23 0.92 1.41 0.92 1.62 0.90 3.61

Vertical Acc 0.87 0.13 0.72 0.02 0.90 0.08 0.79 0.03 0.86 0.26 0.84 0.16

Roll Rate 0.68 0.25 0.23 0.53 0.61 1.98 0.38 1.58 0.93 6.27 0.70 1.53

Pitch Rate 0.78 1.95 0.72 0.70 0.68 1.05 0.45 0.31 0.85 4.27 0.57 0.79

Yaw Rate 0.85 0.16 0.43 1.12 0.69 3.20 0.81 5.06 0.84 9.42 0.88 26.10

Roll Angle 0.65 0.96 0.26 0.86 0.91 8.39 0.88 3.23 0.80 14.16 0.85 4.88

Pitch Angle 0.92 7.55 0.82 2.60 0.50 5.43 0.42 1.36 0.60 6.47 0.44 3.09

Yaw Angle 0.81 17.79 0.71 13.33 0.87 18.50 0.72 43.00 0.46 58.83 0.55 77.90

(εmax) can give a good indication of whether a certain rating is likely to be caused
by the error in a specific motion channel. The highlighted values in Table 3.5
show the highest correlation coefficients and corresponding maximum error for
each column of the table. From Table 3.5 one can see that the mean continuous
rating correlates with errors in different motion channels for each MCA. For the
longitudinal manoeuvres the MCAOPT rating correlates best with the pitch angle
error, while the MCAFIL rating correlates best with the longitudinal acceleration
error. For the lateral manoeuvres a similar observation can be made; here the
MCAOPT rating correlates best with the roll angle error, while the MCAFIL rating
correlates best with the lateral acceleration error. It is also notable that the maxi-
mum pitch angle error is relatively high for the MCAOPT , but no clear correlation
between this error and the rating is found. For the manoeuvres with both strong
longitudinal and lateral acceleration errors the MCAOPT correlates best with the
roll rate error, while the MCAFIL correlates best with the lateral acceleration error.
Additionally a strong correlation between lateral acceleration error and the rating
for the MCAOPT is also found.
Overall the rating for the MCAFIL correlates best with the linear acceleration error,
while the rating for the MCAOPT correlates best with the rotational error.

3.4.4. Motion cueing mechanisms

The MCAs utilize very different approaches to deal with the limited motion space
of the simulator. While these mechanisms are explicitly programmed for the
MCAFIL, the mechanisms used by MCAOPT are only revealed when analysing
the resulting optimized simulator motions. In the following paragraphs these
different mechanisms are described.

Global scaling of the vehicle motions is an often used mechanism to guaran-
tee that the simulator motions stay within the simulator motion space, while the
visual and vestibular motions remain coherent. The MCAFIL relies to a large ex-
tent on a global scaling of the vehicle motion, resulting in significantly reduced
motion strengths. Because the MCAOPT uses an optimization at each time step,
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Figure 3.5: Hexapod lateral position for the end of the manoeuvre ‘RuralCurves’ and the manoeuvre
‘OverTake’ for both MCAs.

motion scaling is only applied at those time steps where this is required (i.e., local
scaling), resulting in virtually no global scaling.

Washout of the simulator motions is an often used mechanism to keep the simu-
lator within its motion limits. This mechanism returns the simulator to its neutral
position, such that simulator excursions in all simulator degrees of freedom are
still possible. This mechanism is used by the MCAFIL via high pass filtering of the
accelerations that are produced via the simulator’s linear rail and hexapod trans-
lations. While the MCAOPT has a similar mechanism implemented, currently this
was not used (as Q=0 in Eq. 1).

Tilt-coordination is an often used mechanism to simulate sustained linear accel-
erations while keeping the simulator within the simulator workspace. The simu-
lator is slowly tilted such that a component of the gravitational acceleration can
be used to simulate the desired longitudinal or lateral acceleration. This mech-
anism is explicitly implemented in the MCAFIL where filters are used to obtain
the low frequent vehicle accelerations that can be simulated with tilt-coordination.
Even though this mechanism is not explicitly implemented in the MCAOPT , the
optimization can result in similar behaviour, trading tilt rate errors for improved
performance in linear acceleration simulation. The use of tilt-coordination by both
MCAs is clearly visible in Figure 3.7 where the green line indicates the acceleration
in the driver reference frame that is produced via tilt-coordination.

Prepositioning is a mechanism used by the MCAOPT to extend the motion space
of the simulator. Knowing future motions, the MCAOPT positions the simulator
in such a way that the available excursion for this future motion is maximized.
Instead of moving the simulator to the neutral position as done with the washout
mechanism, prepositioning results in moving the simulator to extreme positions of
the simulator. For example, several seconds before the manoeuvre ‘OverTake’, the
hexapod is slowly moved to a large lateral offset to the right ( 1.1m) (MCAOPT at
t=5.5[s], Figure 3.5). This prepositioning doubles the available leftward excursion
needed for the linear accelerations of the future motion. A similar prepositioning
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Figure 3.6: Yaw angle (top) and yaw rate (bottom) during several manoeuvres for both MCAs.

strategy can be identified for the manoeuvre ‘Roundabout’. Here, the available
clockwise yaw excursion of the hexapod is maximized by very slowly preposi-
tioning the hexapod to a counter-clockwise yaw angle of 21 degrees (MCAOPT at
t=120[s], Figure 3.6 top) before entering the roundabout. In this case the mech-
anism starts about 110 seconds before the start of the roundabout manoeuvre.
For the manoeuvre ‘LeftTurn’, the available yaw excursion is maximized about 10

seconds before the turn starts (MCAOPT at t=161[s], Figure 3.6 top). Here the algo-
rithm traded an error in yaw rate just before the turn (MCAOPT between t=161[s]
and t=171[s], Figure 3.6 bottom) for additional yaw excursion possibilities while
driving through the turn (between t=171[s] and t=179[s]).

Velocity buffering , which is only utilized by the MCAOPT , is the final mech-
anism that will be discussed here. In velocity buffering the simulator’s velocity
is utilized to maximize the simulator’s future acceleration capabilities. It can be
interpreted as the velocity equivalent of the prepositioning mechanism. By giving
the simulator a velocity in one direction, the duration for which the simulator can
then accelerate in the opposite direction is increased. In the experiment, velocity
buffering was most clearly observed during manoeuvres ‘InitAcc’ and ‘TrafLight-
Wait’. As shown in the top plot of Figure 3.7, the MCAFIL did not result in
simulator motion during the vehicle’s standstill (between t = 0 [s] and t = 15.5 [s]
and between t = 33 [s] and t = 38 [s]), but the MCAOPT generated a backwards
simulator motion via the linear rail (blue line) and hexapod translation (red line)
during the vehicle’s standstill. At the same time the simulator pitch angle was
slowly increased (green line) to counteract the generated backward motion, re-
sulting in a linear acceleration (black line) of zero in the driver frame of reference.
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Figure 3.7: Contributions of different acceleration sources to the longitudinal acceleration in the
driver frame of reference for manoeuvres ‘InitAcc’, ‘TrafLightWait’ and ‘TrafLightAcc’ using the

MCAOPT (top) and the MCAFIL (bottom).

The pitch rate was constant at 0.9
[
deg/s

]
for the manoeuvre ‘TrafLightWait’ and

increased from 0 to 1.5 deg/s for the manoeuvre ‘InitAcc’. Upon accelerating (at
t = 15.5 [s] and t = 38 [s]), the initial forward vehicle acceleration was simulated by
first slowing down the backwards motion (green and red lines) before the sim-
ulator obtained forward velocity, effectively extending the duration at which the
forward acceleration could be sustained. This mechanism was mainly used to
improve the high frequent initial acceleration cue provided by the hexapod trans-
lation (during both manoeuvres) and the linear rail (mainly during manoeuvre
‘InitAcc’). Effective velocity buffering requires accurate knowledge on future ac-
celerations in order not to exceed actuator position limits.

3.4.5. Linear acceleration simulation in Daimler simulator

There are multiple ways in which the Daimler simulator, consisting of a linear rail
and a hexapod, can be used to generate linear acceleration in the driver frame
of reference. Investigating the sources of the linear accelerations resulting from
either MCA gives a better insight in how the different cueing mechanisms and
the capabilities of the Daimler simulator are exploited by these MCAs. Table 3.6
shows the contributions of the different sources of acceleration as a percentage of
the required vehicle acceleration (first value) and as a percentage of the generated
total simulator acceleration (second value) in the driver frame of reference. As
the MCAOPT results in very small acceleration errors (i.e. vehicle and simulator
accelerations in the driver frame of reference are almost equal), the two percent-
ages are very similar for this MCA. The gravitational acceleration contributes to
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Table 3.6: Contributions of different acceleration sources to the longitudinal and lateral acceleration in
the driver frame of reference.

Acceleration Longitudinal (X) Lateral (Y)

MCA MCAOPT MCAFIL MCAOPT MCAFIL

Gravitational acceleration (GA) 99.5%/100% 19.3%/80.3% 82.0%/87.6% 24.2%/90.7%
Linear rail acceleration (LRA 41.3%/41.5% 12.4%/51.4% 7.8%/8.3% 0.2%/0.8%

Hexapod X acceleration (HXA) 17.1%/17.2% 2.4%/9.9% 2.5%/2.7% 0%/0.2%
Hexapod Y acceleration (HYA) 4.3%/4.3% 0.2%/0.9% 17.6%/18.8% 4.6%/17.4%
Hexapod Z acceleration (HZA) 0.2%/0.2% 0.0%/0.0% 0.1%/0.1% 0.0%0.0%

Hexapod roll rate (HRR) 0.8%/0.8% 0.1%/0.3% 2.5%/2.7% 1.1%/4.1%
Hexapod pitch Rate (HPR) 2.4%/2.4% 0.7%/2.8% 0.5%/0.5% 0.0%/0.0%

both linear and longitudinal acceleration in the driver frame of reference via the
tilt-coordination mechanism. When the hexapod yaw angle is zero, an accelera-
tion of the hexapod over the linear rail simulates longitudinal acceleration in the
driver frame of reference. When the hexapod yaw angle differs from zero, this
source produces lateral acceleration in the driver frame of reference. The hexapod
translation capabilities can also be used to simulate short duration longitudinal
and lateral linear accelerations in the driver frame of reference. In combination
with a hexapod tilt angle, translation accelerations in one direction can contribute
to the linear acceleration in a different direction in the driver frame of reference.
Finally, because the hexapod coordinate system is positioned 1.6 [m] below the
driver’s eye point, also the roll and pitch rate of the hexapod cause small linear
accelerations in the driver frame of reference.
As can be derived from Table 3.6, the sum of the contributions of all these sources
is not necessarily 100%. This can be explained by the occurrence of counter acting
accelerations produced by different sources resulting in a simulator acceleration of
zero in the driver frame of reference. As shown in Figure 3.7 (top) this occurs, for
example, during prepositioning (from t = 0 [s] to t = 15.5 [s]) and velocity buffer-
ing (from t = 33 [s] to t = 38 [s]) where the linear rail (blue line) and hexapod (red
line) accelerations counter act the gravitational acceleration (green line). The total
acceleration produced by the individual sources is thus higher than the resulting
acceleration in the driver frame of reference.
Both the MCAFIL as well as the MCAOPT use the gravitational acceleration as their
main source for simulating both longitudinal and lateral acceleration in the driver
frame of reference. However, the angular rates produced by the MCAOPT are
much larger than those produced by the MCAFIL (means of 0.47 and 0.39

[
deg/s

]

versus 0.14 and 0.09
[
deg/s

]
in roll and pitch respectively). Table 3.6 shows that

this source is responsible for 100% of the total longitudinal simulator accelera-
tion in the drivers reference frame when using the MCAOPT . To keep the corre-
sponding tilt rate low, the tilt angle is slowly increased before the motion starts
as can be seen from the green line between for example t = 30 [s] and t = 33 [s] in
the top plot of Figure 3.8. At the same time the resulting false rotational cue is
minimized by the hexapod (red line) and linear rail (blue line) accelerations in
opposite direction. The MCAFIL also counter acts the excess gravitational accel-
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Figure 3.8: Contributions of different acceleration sources to the longitudinal acceleration in the
driver frame of reference for the manoeuvres ‘OverTake’, ‘SlowDown’ and ‘TrafLightDec’ using the

MCAOPT (top) and the MCAFIL (bottom).

eration from tilt-coordination with linear rail accelerations, but does so only at
the end of the manoeuvre as can be seen around t = 15 [s] and t = 22 [s] in the
bottom plot of Figure 3.8. The MCAFIL is designed to use tilt-coordination for
sustained accelerations, while using the linear rail and hexapod translations for
high frequent motions. This is clearly visible in Figure 3.8 (bottom) during the
manoeuvre ‘SlowDown’ where the linear rail (blue line) is used for the initial and
final high frequent part of the motion while the low frequent part of the motion
is produced by the gravitational acceleration (green line).In Figure 3.9 (bottom)
instead of the linear rail, the hexapod lateral acceleration (yellow line) is used for
the very low amplitude high frequent part of the motion throughout the curves.
Even though the MCAOPT does not explicitly implement such a division in the
frequency domain, the optimization algorithm comes up with a very similar so-
lution. This effect is especially well visible in Figure 3.9 (top), where all high
frequent variations of the lateral accelerations are generated via hexapod lateral
acceleration (yellow line). The benefit of not implementing a hard division for
high and low frequencies explicitly is that the linear rail can also be used for low
frequent motions as seen clearly by the blue line in Figure 3.8 (top) during the ma-
noeuvre ‘TrafLightDec’. Table 3.6 also shows an interesting difference between the
usage of the linear rail accelerations as a source for both lateral and longitudinal
acceleration in the driver reference frame. In the currently used Daimler simulator
configuration, the linear rail can be used for longitudinal acceleration when the
hexapod yaw angle is equal to zero. Table 3.6 shows that both MCAs produce
around half of the longitudinal simulator motions in the driver reference frame
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Figure 3.9: Contributions of different acceleration mechanisms to the lateral acceleration in the
driver’s coordinate system for the manoeuvres ‘RuralCurves’ and ‘OverTake’ using the MCAOPT

(top) and the MCAFIL (bottom).

using this source. Due to the use of linear rail accelerations for low frequent mo-
tions as well as the use of the prepositioning and velocity buffering mechanisms,
the linear rail accelerations account for a much larger part of the total vehicle ac-
celeration when using the MCAOPT than when using the MCAFIL.
When applying a yaw angle to the hexapod, the linear rail acceleration can also be
used to simulate lateral vehicle acceleration which, as Table 3.6 indicates, is only
used by the MCAOPT , where 7.8% of the lateral vehicle acceleration is produced in
this way. As shown in Figure 3.10, the MCAOPT uses this mechanism effectively
during the roundabout manoeuvre where the linear rail acceleration (blue line)

contributes maximally at t = 15 [s] with 0.5
[
m/s2

]
to the lateral acceleration in the

drivers reference frame. Since the yaw angle of the hexapod is always smaller
than 90

[
deg
]
, using this mechanism for lateral acceleration creates an additional

parasitic longitudinal acceleration. Figure 3.11 between t = 14 [s] and t = 17 [s]
shows that the MCAOPT uses pitch tilt-coordination (green line) to counteract the
parasitic longitudinal acceleration (blue line).

3.5. Discussion

The perceived motion mismatch for the MCAFIL and MCAOPT were rated using
two measurement methods, both showing a significantly larger perceived motion
mismatch when using the MCAFIL than when using the MCAOPT . This indicates
that the MCAOPT indeed has the potential to further improve motion cueing in
simulators such as the DDS. The rating methods both showed very similar ra-
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Figure 3.10: Contributions of different acceleration mechanisms to the lateral acceleration in the
driver’s coordinate system for the manoeuvre ‘Roundabout’ using the MCAOPT (top) and the

MCAFIL (bottom).
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Figure 3.11: Contributions of different acceleration mechanisms to the longitudinal acceleration in the
driver’s coordinate system for the manoeuvre ‘Roundabout’ using the MCAOPT .
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tios between the MCAFIL and the MCAOPT (OR: 2.32, CR:2.67), implying that the
mean of the continuous rating was a good indicator for the overall rating of the
complete drive. The consistency of both the overall and the continuous rating be-
tween trials indicates that learning, habituation or fatigue effects did not impact
these ratings significantly, and participants were able to provide consistent esti-
mates during the whole experiment.
A more in detail analysis of the continuous rating shows that the difference be-
tween MCAs is mainly caused by the manoeuvres ‘Overtake’ and ‘RuralCurves’,
where the largest significant difference between the mean ratings was found.
It is especially surprising that during the ‘RuralCurves’ manoeuvre, where the
MCAFIL simply scales down the motion, such a large difference between MCAs
is found. The often used mechanism of scaling can thus have a larger impact
on the perceived mismatch in motion simulation than often assumed. The con-
tinuous rating also showed that for both MCAs the manoeuvre ‘Roundabout’ is
rated as the worst of all manoeuvres presented during the drive. It is notable that
even with full knowledge of the future motions the MCAOPT still resulted in a
strong perceived motion mismatch during this manoeuvre. However, also here
an optimization-based approach has the potential to significantly improve motion
cueing compared to a filter-based approach.
The extensive use of global scaling mechanism by the MCAFIL and the lack of any
global scaling in the MCAOPT is the largest difference between the two MCAs.
This resulted in larger linear acceleration errors for the MCAFIL than for the
MCAOPT . Instead, the MCAOPT made much more use of tilt-coordination mecha-
nism, resulting in higher rotation errors. The effect of these choices is also visible
in the continuous rating results. The MCAOPT rating showed a higher correlation
to rotation errors, while the MCAFIL showed a higher correlation to the errors
in linear accelerations. These correlations indicate that both error types were per-
ceived by the participants. The mean continuous rating, however, was significantly
higher for the MCAFIL than for the MCAOPT . This indicates that, a higher tilt rate
that results in false rotational cues, would have been more acceptable than the de-
gree of global scaling as done by the MCAFIL to avoid these false cues.
One advantage of global scaling is that the resulting simulator motions are less
strong, but still in coherence with the desired vehicle motions. Currently the
MCAOPT managed to minimize the acceleration errors so well, that low coherence
did not seem to be an issue during most of the drive. If the acceleration errors
increase, for example when using a limited prediction horizon, unpredictable scal-
ing of the linear accelerations might become a problem. In this case global scaling
could also become necessary for the MCAOPT . The correlation analysis also indi-
cates that the participants rated rotational angles instead of rotational rates during
the lateral and longitudinal manoeuvre sets. This finding indicates that not only
the tilt rate, but also a tilt angle can be perceived as a false cue and should be
taken into account when optimizing a motion cueing algorithm.
During the ‘TrafLightWait’ manoeuvre there were no vehicle motions. The MCAOPT ,
however, uses this time for velocity buffering and prepositioning which results in
significant simulator motion. The corresponding continuous rating of the MCAOPT
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for this manoeuvre does not show a significant increase in perceived mismatch,
indicating that this motion was not perceived or did not bother the participants.
This could be explained by the tilt rate of 0.9

[
deg/s

]
, which is often found to

be below the human threshold for rotational rate, and a resulting acceleration of
zero. In practice, however, simulator motion can often be felt through the gener-
ation of parasitic rumble-like motions. In the Daimler simulator special attention
was given in the design for this purpose, resulting in very smooth simulator mo-
tions. Using simulator motions for prepositioning or velocity buffering during
standstill is therefore only recommended for high quality motion simulators. For
both these mechanisms knowledge of the future vehicle trajectory is necessary.
Reducing the prediction horizon of an MPC-based algorithm will therefore also
reduce the possibilities of using these mechanisms.
The trade-off made by the MCAOPT to reduce the yaw rate before the ‘LeftTurn’
manoeuvre in order to increase the available yaw rate while driving through the
turn could be responsible for the slight increase in continuous rating at this point.
During the ‘LeftTurn’ manoeuvre continuous rating also shows a clear perceived
motion mismatch. Further research could determine if such trade-offs are benefi-
cial and the MPC cost function should be adjusted correspondingly.
For the manoeuvres ‘City1’ and ‘City3’ no significant difference between the MCAs
was found. The maximum vehicle acceleration during these manoeuvres was

0.36
[
m/s2

]
in lateral direction, compared to 1.45

[
m/s2

]
during manoeuvre ‘City2’,

where significant differences between MCAs were found. The high scaling factor
of the MCAFIL thus does not seem to reduce the perceived motion mismatch
significantly for accelerations below 0.36

[
m/s2

]
. It is likely that the resulting ab-

solute errors were close to the human perceptual threshold for lateral physical
acceleration and were thus not perceived as incoherent with the visual motions.

3.6. Conclusions

The results of the experiment lead to the following conclusions:

• The results show that participants were able to rate the perceived mismatch
consistently over the various repetitions. This holds for both the overall
rating (Figure 3.3 right plot) as for the continuous rating (Table 3.3).

• The rating results (Figure 3.3 right plot and Figure 3.4) show that optimization-
based cueing algorithms such as MCAOPT indeed have the potential to im-
prove motion cueing compared to filter-based approaches such as MCAFIL.

• The continuous rating (Figure 3.4) shows that avoiding global scaling of
the vehicle motions, as can be done with optimization-based cueing algo-
rithms, has a large impact on the perceived motion mismatch especially
during rural road simulations. The rating also showed that simulating a
roundabout manoeuvre is difficult even for optimization-based approaches
such as MCAOPT . However, a significant improvement can still be made
compared to filter-based-approaches such as MCAFIL.
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• The comparison of the continuous rating with the motion errors (Table 3.5)
indicates that a certain amount of detectable rotation errors could be pre-
ferred over large scaling errors.

• Several mechanisms were identified that contributed to the differences ob-
served between the two algorithms: global scaling, washout, tilt-coordination,
prepositioning and velocity buffering. Additionally an overview was given
(Table 3.6) of how the two MCAs used the different sources of linear accel-
eration in the Daimler Driving Simulator.

It should be noted that the two MCAs are very different algorithms, each with
their own characteristics. This study is therefore not to be considered as a com-
petitive comparison between MCA alternatives, but rather as an attempt to gain
insight in the potential that an optimization-based approach has to offer. The re-
sults show that there exists a potential to further improve the quality of the motion
simulation with optimization-based methods, deserving of further research.
Regarding the rating method, the results show that the rating method provides
reliable and repeatable results within and between participants, which further
confirms the reliability and utility of the method. Ongoing research investigates
the dynamics and limitations of the rating behavior.
In future experiments it could be investigated how the quality of the MCAOPT
degrades if the prediction horizon is decreased (i.e., no longer using trajectory-
based optimization) or if the prediction is imperfect (i.e., no longer using the pre-
recorded trajectory but a predicted trajectory). Also, it could be studied how the
objective function can be adapted to further improve the quality of the MCAOPT .
Finally, it would be interesting to investigate whether the tuning of the MCAFIL
can be further improved based on the more detailed analysis of the results pre-
sented in this paper.
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4
Cueing Error Detection

Algorithm

This chapter presents an algorithm for automatically detecting different types of cueing
errors within one motion channel. The algorithm parameters are fit on a first dataset and
validated using a second dataset obtained with experiments described Chapter 2 and ref-
erence [135], respectively. The results show that the algorithm can differentiate between
scaled, missing and false cues consistently. Literature shows that these cueing error types
generally have a different effect on the Perceived Motion Incongruence (PMI). The algo-
rithm described here is used to include this knowledge in Perceived Motion Incongruence
(PMI) prediction models presented in Chapters 5 and 6, by allowing for different weights
to be assigned to each cueing error type.

69
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4.1. Introduction

Motion Cueing Algorithms (MCAs) for vehicle simulation are used to map the
vehicle motions onto the simulator workspace. Optimizing such an MCA re-
quires minimizing the perceived differences between motion cues perceived in a
real vehicle and those perceived in the simulator. Differences between simulator
and vehicle motion, i.e. cueing errors, are inherent to motion simulation due to
the limited motion space of the simulator. Tuning experts therefore attempt to
tune an MCA by minimizing only those cueing errors that are considered to be
the most detrimental to cueing quality. Mathematically predicting cueing quality
should therefore also take into account that not all cueing error types are equally
detrimental. Currently, however, no algorithm exists that can mathematically1

distinguish different cueing error types based on recorded simulator and vehicle
motions alone. In this chapter a Cueing Error Detection Algorithm (CEDA), that
uses only simulator and vehicle motion signals as its inputs, is presented.
In [51] guidelines are provided for how to use expert knowledge to manually tune
a classical washout filter MCA. This expert knowledge includes, for example, the
fact that errors due to motion limiting are much more detrimental to the cueing
quality than cueing errors that result from pure downscaling. In [51] also an ex-
tensive overview is given on the varying influence of ten different types of cueing
errors on the cueing quality. In [136] the different influence of missing, scaled and
false cues on the perceived cueing quality was confirmed. Here a model, based
solely on the euclidean distance between simulator and vehicle motions in each
motion channel, was fitted to measured subjective ratings of cueing quality. The
differences between the model and subjective ratings could largely be explained
by an increased weight on false and missing cues compared to overall scaling
errors. It was proposed that adding a CEDA to this model, such that different
cueing error types could be weighted separately, would improve the model fit.
Optimization-based MCAs, such as described in [137], attempt to optimize the
cueing quality by minimizing the euclidean distance between simulator and vehi-
cle motions for each motion channel. Much of the expert knowledge of different
cueing error types is thus discarded in such optimizations. Using a cueing quality
prediction model that includes separately weighted cueing error types, could add
this expert knowledge to the optimization and thus help to improve such MCAs.
In literature, cueing errors are often subdivided in scaled, missing and false cues.
In [51] ten different cueing errors are categorized on the basis of their source and
divided in two main groups: false cues and scaled/missing cues. A false cue is
described as motion that is presented in the simulator that either does not occur in
the real vehicle, or that is of opposite direction as compared to the vehicle motion,
or a simulator motion containing a high frequency disturbance of a sustained mo-
tion cue. Scaled or missing cues, described as relatively less detrimental to cueing
quality, indicate a simulator motion that is reduced or absent as compared to the
vehicle motion.
In [138] a subdivision of four cueing error types in car simulations is made: false
cues, missing cues, phase errors and scaling errors. False cues are described as
motion cues in the wrong direction as compared to the vehicle motion or simula-
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tor motion cues without predefined stimuli. Missing cues are described as missing
stimuli in the simulator motion that were present in the vehicle motion and phase
errors as noticeably delayed stimuli. Finally, scaling errors are described as the
noticeable amplitude difference between simulator and vehicle accelerations.
In [139] and [138] cueing errors are divided in only two subgroups: scale and
shape errors. Where the scale errors are described as a pure scaling between sim-
ulator and vehicle motion cues and shape errors include all other cueing errors,
where the former are expected to be less detrimental to cueing quality than the
latter. The importance of similarity in simulator and vehicle motion signal shapes
was also noted [140] and [141], where low correlation between simulator and ve-
hicle motion is used to indicate poor cueing quality.
Another interesting signal characteristic that tends to influence the effect that cue-
ing errors have on the cueing quality is the frequency content of the motion. The
subdivision of the main error groups described in [51] is partly based on the
frequency of the error signal, where high frequency errors caused by reaching
simulator motion limits, are often more detrimental to the cueing quality than
low frequency cueing errors. In [142] cued motions themselves are subdivided
in high-frequency onset cues, transient cues, and low-frequency sustained cues.
In both [142] and [51] it is mentioned that the effect that cueing errors have on
the cueing quality depends on the type of the corresponding cued motions. From
perceptual research in motion cueing we also know that the motion frequency is
an important factor in human self-motion perception. For example, both our vi-
sual and vestibular systems can detect motions only at limited frequency ranges,
which is known to result in varying motion perception thresholds depending on
the frequency of the motion [143]. Furthermore, Valente Pais [101] showed that
the range of amplitude differences between the visual and physical motion cues
that still results in a coherent perception of the motion, the so-called coherence
zone, depends on the frequency of the motion. Even though the exact relation
between (reduced) cueing quality and the cueing error frequency is not yet fully
known, it is therefore useful to already account for the motion frequency charac-
teristics in the design of a CEDA.
Here we propose an automatic wavelet-based CEDA that can distinguish between
the three most common cueing errors, i.e., scaled, missing and false cues, given
simulator and vehicle motion signals. Wavelet-based methods are used to de-
termine if the vehicle and simulator motion signals locally differ in shape and
thus can be classified as a false or missing cue or if their shape is the same and a
purely scaled motion cue is observed. Although currently not implemented, using
wavelet-based methods also makes it easier to extend the algorithm in the future
with detection of cueing errors based on the frequency characteristic of the motion
cue, by performing the analysis on only a subset of the motion frequencies.
In Section 4.2 the CEDA is further explained. This section contains the algorithm
goal and requirements, mathematical definitions of scaled, missing and false cues,
a short overview of the algorithm steps, an explanation of the used shape and gain
measures, and finally an overview of the resulting tunable algorithm parameters.
In Section 4.3 two datasets, used to tune and validate the algorithm and each con-
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Figure 4.1: Simplified vehicle and simulator motions as the result of motion washout with
corresponding cueing errors (a) and the fictional corresponding decrease in cueing quality and the

actual euclidean distance between simulator and vehicle motions (b).

taining different cueing error types, are presented. In Sections 4.3.3 and 4.4 the
desired algorithm output and the algorithm results are presented, respectively.
A discussion of these results is given in Section 4.5, followed by a conclusion in
Section 4.6.

4.2. Algorithm

4.2.1. Goal

The main reason for developing a CEDA is to automatically detect and localize
different types of cueing errors that occur in a certain simulation segment. In
Figure 4.1(a) a simplified example is given of typical vehicle and simulator mo-
tions and the corresponding cueing errors that can occur due to simulator motion
washout. Figure 4.1(b) shows the euclidean distance between simulator and ve-
hicle motions, i.e., the absolute cueing error, as well as a fictional example of the
decrease in perceived cueing quality that such cueing errors can cause, i.e., as
mentioned in [139] false cues are often more detrimental to the cueing quality
than missing cues. To model, and eventually predict, the decrease in cueing qual-
ity, not only the euclidean distance (which is equal in this case), but thus also the
cueing error type information is needed. The goal of the CEDA is to provide this
cueing error type information. In Figure 4.2(a) the desired output of the CEDA,
given the simulator and vehicle motions, is shown. In Figure 4.2(b) a simple linear
model of cueing quality decrease, using the additional cueing error type informa-
tion in the CEDA output, is shown. Here the model weighs missing cues (MC)
with 0.5, while a higher weight of 2 is attributed to false cues (FC). This model
has a higher explanatory power than when only euclidean distance information is
used.
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Figure 4.2: Desired algorithm output (a) and simple linear model using the CEDA output fitted to the
fictional decrease in cueing quality (b).

4.2.2. Requirements

The main requirement of the algorithm is that it should use only the simulator and
vehicle motions to generate three time signals that each contain only one cueing
error type. This requirement distinguishes the algorithm presented here from the
shape and scaling error calculations used in [139, 144]. Here the classical washout
filter MCA parameter for global scaling was used to distinguish between these
error types, defining any cueing error that is the result of the scaling parameter as
scale errors and any additional difference between simulator and vehicle motions
as shape errors. While this can be an effective way to distinguish between scale
and shape errors when classical washout filter MCAs are used, it cannot be used
in the absence of a global scaling parameter, such as is the case in model predic-
tive control-based MCAs as described in [137].
Implementing a CEDA as part of a Perceived Motion Incongruence (PMI) model
for optimization purposes imposes additional model requirements. While not all
requirements are known at this stage, the algorithm should at least not be unnec-
essarily complex, such that fast computation can be achieved. For this reason, the
algorithm described here will only be able to distinguish a limited number of dif-
ferent cueing errors that are known to have a different effect on the cueing quality.
Additionally, as optimizing smooth functions is easier, the algorithm should be
smooth, i.e., have continuous derivatives. As will be explained further in the next
sections, the algorithm described here makes use of threshold comparisons and
absolute value calculations. As these calculations generally involve non-smooth
functions, here smooth approximations of these functions are used instead. For
smooth threshold comparisons the following function is used:

Fth (X, thx , b) = 0.5 + 0.5tanh
(

X− thx

b

)
, (4.1)



74 4. Cueing Error Detection Algorithm

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
th

(X
,th

x,b
)

Threshold Function

b = 1e-05
b = 0.0001
b = 0.001
b = 0.01
b = 0.1
b = 0.2
th

x

data1
data2

0 5 10 15 20

10-4

0.6

0.8

1
Zoom

Figure 4.3: Threshold function for different values of the steepness parameter b.

where X is the vector or matrix for which the threshold signal is calculated, thx is
the threshold for X and b is the steepness of the threshold function. Multiplying
this threshold function with the signal X results in a signal where all values below
threshold are set to zero.
The absolute value calculations used in the algorithm described here are instead
approximated with the smooth function [145]:

|X|s =
√

X · X∗ + η (4.2)

where η = 1e−6, which is also used in other functions of the algorithm to ensure
smoothness, and ∗ indicates the conjugate. In the following sections the resulting
algorithm is further explained.

Non binary shape and gain measures

In the next sections error detection based on close to binary threshold functions
will be introduced. This directly results in detected cueing errors that can instantly
switch from one type to another, which might not always be an accurate descrip-
tion of human perception. More smooth transitions between cueing error types
can be generated by adjusting the steepness parameter b of the threshold func-
tions. In Figure 4.3 the effect of changing b on the threshold function is shown.

4.2.3. Mathematical Cueing Error Definitions

In literature many different types of cueing errors have been discussed [51],[139]
and [138]. To comply with the aforementioned requirement for simplicity, the
algorithm introduced here only focuses on a small selection of common cueing
errors (scaled, false and missing cues), known to affect the cueing quality differ-
ently. While many written definitions of these cueing errors exist, it is unclear
how these different cueing errors can be defined mathematically.
In this section scaled, missing and false cues are defined mathematically, based on
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Figure 4.4: Examples of the three types of cueing errors, scaled, missing and false cues, considered in
this study.

the many definitions of these cues found in literature. In Figure 4.4 examples of
these three cueing error types are shown. In green the scaled cue, resulting from
downscaling of the simulator compared to the vehicle motion, is indicated. In
blue and red examples of missing and false cues are shown, respectively. Here the
simulator and vehicle motion signals differ in shape. During the missing cue the
simulator motion is also smaller than the vehicle motion, while during the false
cue the simulator motion is larger in magnitude than the vehicle motion.
One important cueing error characteristic thus seems to be the shape similarity
between simulator and vehicle motion signals. In [141] the correlation between
certain objective indicators of the differences vehicle and simulator motion signals
and the subjective rating of the resulting simulation was analyzed. The results
showed that the Pearson correlation between simulator and vehicle motion sig-
nals mainly correlates with the subjective rating of the MCA, i.e., the higher the
Pearson correlation, the higher the ratings. In [138] and [139] the importance of
shape similarity is mentioned and a distinction between scaling and shape errors
is made to analyze MCA performance. In [140] the cross-correlation between the
simulator and vehicle motion signals is used as an additional parameter, next to
the euclidean distance between simulator and vehicle motion, in the cost function
of the optimization algorithm, such that this correlation can be directly optimized.
In the CEDA described here, the shape similarity characteristic is therefore used
to distinguish between the scaled and missing and false cues.
To further differentiate between missing and false cues, the algorithm described
here uses the ratio between the amplitudes of simulator and vehicle motions. False
cues encompass all cueing errors due to simulator motion in the wrong direction
or due to simulator motion when no vehicle motion is expected. Missing cues,
instead, are defined as shape errors due to simulator motion with a lower am-
plitude than the vehicle motion. A summary of the three different cueing error
types and their mathematical description, based on measures of the gain GM and
shape similarity SM between the simulator and vehicle motion signals, is defined
in Table 4.1. As will be further explained in Section 4.2.5, the measure for shape
similarity SM is chosen to be the time-varying mean semblance over a range of
frequencies. A value of SM smaller than a certain threshold thSM indicates a per-
ceived difference in signal shape, while a value above this threshold indicates that
both time signals have equal shape and any error that is detected must therefore
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Table 4.1: Mathematical cueing error definitions

Cueing
Error

Description Mathematical definition

Scaling similar shape SM≥ thSM ∩ GM≥ 1

Missing different shape and less motion
in simulator than in vehicle

SM < thSM ∩ 0 < GM < 1

False different shape and more
motion in simulator than in
vehicle, or simulator and vehicle
motion of opposite sign

(SM < thSM ∩ GM≥ 1) ∪ GM <

0

be a scaling error, or, in the case of a negative gain between simulator and vehicle
motions, a false cue. In Table 4.1, GM is a measure for the gain between simulator
and vehicle motions, which is also further explained in the next subsection.
As it is still unknown when two signals are perceived as similar in shape and when
not, the algorithm parameters are tuned based on clear examples of scaled, miss-
ing and false cues present in a reference dataset (Dataset 1), which is described in
Section 4.3. The tuned algorithm is subsequently tested on known cueing errors
in a second dataset described in the same section.

4.2.4. Algorithm Overview

The overview of the different steps made in the cueing error detection algorithm
are shown in the scheme in Figure 4.5. The algorithm inputs are vectors contain-
ing the simulator (ysim) and vehicle (ysim) motion time signals for a specific motion
channel and the output consists of three vectors each containing the time signal
of one type of cueing error, i.e., scaled (εsc), missing (εmc) or false cue (ε f c).
The upper path, Steps 1-3, shows the steps taken to calculate the shape measure
SM. In Step 1 the time (t) and scale (s) dependent semblance S is calculated. From
this the relevant semblance Srel is calculated in Step 2, which, after averaging and
smoothing in Step 3, leads to the shape measure. These three steps are explained
further in Section 4.2.5. The bottom path, Step 4, shows the calculation of the gain
measure GM, which is further explained in Section 4.2.5.
In Step 5, using the gain and shape measures, binary time signals for all cueing
errors (scbin, mcbin, f cbin) are computed by applying a set of rules further ex-
plained in Section 4.2.5, to detect the different cueing error types. These binary
signals are unity when a specific cueing error type occurs and zero otherwise.
Multiplying these binary signals with the total cueing error, i.e., the absolute dif-
ference between vehicle and simulator motion ε, isolates the portions of this error
attributable to the different error types (Step 6) and with that gives the final algo-
rithm output.
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Figure 4.5: A scheme of the main steps in the algorithm.
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Table 4.2: Shape and gain measures. Where SM indicates the shape measure, thSM the shape measure
threshold and GM the gain measure.

Variable Symbol Value of 1

Shape SV SM > thSM

Gain GV0 GM≥ 0

GV1 GM > 1

4.2.5. Shape and Gain Measures

Table 4.1 shows that the shape measure needs to be compared to the threshold
thSM and the gain measure to zero and to unity. These comparisons result in
three variables, hereby called the shape variable SV, the gains variable GV0, for
the comparison of the gain measure with zero, and the gain variable GV1, for
the comparison with unity. These variables are calculated at each simulation time
step and can have values of zero or one, depending on the simulator and vehicle
motion signals that are compared. Values between zero and one are also possible,
but are not considered for now and will be further elaborated on in subsection
4.2.2. To comply with the smoothness requirement, all threshold comparisons
indicated in this section are performed using the smooth threshold function Fth
described in Equation 4.1, using a value for b that is close to zero (here 1e− 5).
In Table 4.2 the shape and gain variables are listed and the condition under which
they have a value of unity is shown. Under all other conditions the value of the
variable is set to zero. Following the comparisons presented in Table 4.1, if we can
calculate the appropriate shape (SM) and gain (GM) measures, the cueing error
types can be defined as the following smooth functions:

(4.3a)εsc = ε ·
(
GV0 · (1− SV) + 1− GV0

)
,

(4.3b)εmc = ε · (GV0− GV1) · (1− SV) ,
(4.3c)ε f c = ε · GV0 · SV,

where ε indicates the absolute difference between simulator and vehicle motion
and εsc, εmc and ε f c the cueing errors due to scaled, missing and false cues, re-
spectively.

Shape Measure

The purpose of SM is to provide a value smaller than the chosen threshold thSM
when the shapes of the two signals differ significantly, and provide a value higher
than this threshold when any difference between the two signals is a pure scaling
error. In [146] the basis for such a measure is described. In [146] the shape
difference between two time signals is quantified in both the time and frequency
domains using this wavelet-based semblance. The current study uses a similar
measure to determine whether simulator and vehicle motion signals have a similar
shape. The measure used in this study only differs from [146] in how it deals with
the noise sensitivity of the wavelet-based semblance, as will be explained in the
next paragraph.
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Semblance To calculate the semblance between the simulator ysim and vehicle
motion yveh, first the continuous wavelet transform CWT with scale parameter s
(equivalent to frequency) and time shift parameter τ of both motion time signals is
calculated. This transform decomposes a signal into its time and scale (frequency)
components and is calculated with:

CWT (t, s) = 2
∫ ∞

−∞
y (τ)Ψ∗

(
τ − t

s

)
dτ, (4.4)

where y represents the analyzed time signal and Ψ∗ indicates the complex con-
jugate of the selected wavelet function. The scaling factor of two before the in-
tegral in equation 4.4 is used to obtain equal wavelet transform and time signal
amplitudes and should only be applied when using analytic wavelets [147], i.e.,
complex wavelets with zero magnitude in the negative frequencies. Due to the
zero magnitude at negative frequencies, the wavelet transform of a signal using
an analytic wavelet eliminates the magnitude of that signal at negative frequen-
cies, resulting in a wavelet transform magnitude at half the amplitude of the signal
amplitude. To obtain equal amplitudes, the wavelet transform using an analytic
wavelet should thus be scaled with a factor of two.
The choice of the wavelet function depends on the signal to be analyzed and the
information one needs from it, i.e., magnitude only or both magnitude and phase.
As the semblance requires the calculation of phase, a complex-valued wavelet is
needed for this study. Additionally, the shape of the wavelet function should be
chosen to correspond to the signal features that one wants to analyze. In this
study, many different types of signal features, such as abrupt changes due to sim-
ulator hitting a limit, as well as slow changes as can be seen in many scaling
errors, need to be analyzed. While one could argue that it is best to use different
wavelets for each feature type, to reduce the complexity of the algorithm, here
only one wavelet function best resembling most signal features, the complex Mor-
let wavelet, is used.
The complex Morlet wavelet, which is approximately analytic, is described by:

Ψ (t) =
1√(
π fb

) e2πi fcte
− t2

fb , (4.5)

where fb and fc are the wavelet bandwidth parameter and center frequency, re-
spectively. The set of scales for which the wavelet transform is calculated is deter-
mined by:

sj = s02jδj, j = 0,1, ..., J, (4.6)

where s0 indicates the smallest scale, which should be chosen to be larger than
the sampling time of y, δj is the spacing between the scales and J the number of
scales minus 1. The largest scale should be chosen as less the length of y.
To show the signal information that can be represented with the wavelet trans-
form, in Figure 4.6 the magnitude and phase of the wavelet transform of a time
signal composed of three sine waves with different amplitudes and frequencies
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Figure 4.6: Wavelet transform magnitude (b) and phase (c) plots of sine waves with different
frequencies and amplitudes (a) using the complex Morlet wavelet ( fb = 0.8, fc = 0.8). The phase with a

wavelet transform magnitude below 0.1 is hatched out for clarity.

of 0.5, 8 and 3 Hz, using the complex Morlet wavelet, is shown. Figure 4.6(a)
shows the time signal and Figure 4.6(b) the magnitude of its wavelet transform.
An increased magnitude is visible during the sine waves, with a peak magnitude
at the specific frequency of each sine wave. The peak magnitude is equal to the
amplitude of the time signal. Finally, Figure 4.6(c) shows the phase of the wavelet
transform, where the phase data for wavelet transform magnitudes lower than 0.1
are hatched out for clarity. This plot shows that the phase during all sine waves at
magnitudes higher than 0.1 is regular, i.e., no phase shifts occur during the sine
waves.
Depending on the choice of the wavelet parameters fb and fc, the time or fre-
quency resolution can be improved: increasing fb or fc improves the time or fre-
quency localization, respectively. For Figure 4.6 parameters specifically tuned for
the algorithm ( fb = 0.8 and fc = 0.8) are used, resulting in a much better time than
frequency resolution.

In Figure 4.7 the wavelet transform magnitude and phase for the cueing error
examples from Figure 4.4 are shown. Figures 4.7(a) and 4.7(b) show the simpli-
fied vehicle and simulator motions during three turns, respectively. The wavelet
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Figure 4.7: Vehicle and simulator motions ((a) and (b)), their wavelet transform magnitude ((c) and
(d)) and phase ((e) and (f)) plots, using the complex Morlet wavelet ( fb = 0.8, fc = 0.8), for typical

cueing errors. The phase with a wavelet transform magnitude below 0.1 is hatched out for clarity.

transform magnitude plots (4.7(c) and 4.7(d)) show that most power is in the lower
frequencies, except for the start and end of each turn, where also the high frequen-
cies have power. The wavelet transform phase plots (4.7(e) and 4.7(f)) show that
at lower frequencies the phase between the vehicle and simulator motion differs
only during the second and third turn when missing and false cues occur. It is
this difference in phase that is captured with the semblance measure.
The semblance [146] is based on the cross-wavelet transform XWTveh,sim:

XWTveh,sim (t, s) = CWTveh × CWTsim
∗, (4.7)

where CWTveh and CWTsim indicates the wavelet transform of the vehicle motion
yveh and simulator motion ysim, respectively, and ∗ again indicates the complex
conjugate. For the semblance, only the phase information contained in this cross-
wavelet transform is important. The local phase γ between vehicle and simulator
motion is calculated with:

γveh,sim (t, s) = tan−1

(
<
(
XWTveh,sim

)

=
(
XWTveh,sim

)
)

(4.8)
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Figure 4.8: The semblance ((b)) between the vehicle and simulator motions ((a)) of typical cueing
errors.

Finally, the semblance as a function of time and scale S (t, s), ranging between 1
and −1, is calculated as the cosine of this local phase.

S (t, s) = cos (γ) (4.9)

In Figure 4.8 the semblance S (t, s), resulting from the wavelet transforms of yveh
and ysim shown in Figure 4.7, is presented. Figure 4.8 shows that the semblance
between vehicle and simulator motions is reduced when false or missing cues
occur (turns two and three), but stays close to unity during the scaling error (turn
one).

Relevant semblance The semblance measure is very sensitive to noise, making
it difficult to distinguish between semblance measures related to motion signals
at a certain time and frequency with perceivable amplitude, i.e., relevant sem-
blance, and semblance measures related to non-perceivable noise signals, i.e., non-
relevant semblance. In [146] the sensitivity to noise is reduced by multiplying the
semblance with the amplitude of the cross-wavelet transform, which makes the
resulting measure, described in [146] as D, dependent on the motion amplitudes
that are used. This measure D is unsuitable for the application described here,
where the shape measure SM needs to be compared to a fixed threshold. Instead,
this issue is solved by only taking into account the semblance of motion signals
that are above the human absolute and discriminatory perception thresholds re-
ported in literature [143, 148].
To determine whether motions are above the human perception thresholds, wavelet
transforms of the original vehicle (yveh) and simulator (ysim) motion signals, are
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compared to these perception thresholds at each time and frequency. These com-
parisons produce a logical matrix LM of similar size as the semblance S. This
matrix consists only of values one and zero, indicating significant and insignifi-
cant motion at a particular time and scale, respectively:

LM =

{
1, if LMabs = 1∩ LMdisc = 1
0, otherwise,

(4.10)

where LMabs is the logical matrix related to the absolute motion perception thresh-
old thabs. This threshold refers to the minimal motion amplitude in a specific mo-
tion channel which can be detected by the human perceptual system. LMabs is
calculated with:

LMabs =

{
1, if |CWTveh|s > thabs ∪ |CWTsim|s > thabs

0, otherwise
(4.11)

The logical matrix LMdisc is related to the discriminatory motion perception thresh-
old thdisc. This threshold refers to the minimal difference between two motion sig-
nals in the same motion channel which can be detected by the human perceptual
system. LMdisc is calculated with:

LMdisc =

{
1, if |CWTveh − CWTsim|s > thdisc

0, otherwise
(4.12)

Multiplying this logical matrix LM with the semblance S (t, s) then gives the rel-
evant semblance Srel (t, s) that is used to determine the difference between scaled
and false or missing cues. In Figure 4.9 Srel (t, s) for the example cueing errors of
Figure 4.4 is shown. Figure 4.9 now clearly shows that Srel (t, s) during the scaled
cue (first turn) equals one, while during the missing and false cues (turns two
and three) the semblance is smaller than one. At time steps where no relevant
semblance is present in any frequency, Srel (t, s) is set to zero. Here Srel (t, s) is not
important for the algorithm’s outcome, as there is no error or the error is below
all known human perception thresholds.

Averaging and smoothing For the shape measure SM this semblance needs to
be mapped onto a measure over time only. Here we use a simple averaging over
the relevant semblance to obtain the time-dependent semblance S̄rel (t):

S̄rel (t) =
∑N

i=1 S (t, s(i))× LM (t, s(i))

∑N
i=1 LM (t, s(i))

, (4.13)

The final step to calculate the shape measure SM is to smooth the mean relevant
semblance to avoid high-frequency variations, which are unlikely to be perceived
as such during motion simulation. The mean relevant semblance S̄rel is therefore
filtered with a zero phase Butterworth filter with order n and cut-off frequency
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Figure 4.9: The relevant semblance ((b)) between the vehicle and simulator motions ((a)) of typical
cueing errors.
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Figure 4.10: The mean semblance over frequency and the shape measure ((b)) of simplified vehicle
and simulator motions ((a)).
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ωc, here tuned using Dataset 1, resulting in the shape measure SM. The mean
semblance S̄, mean relevant semblance S̄rel and the final shape measure SM are
shown in Figure 4.10. Here, averaging over only the relevant semblance Srel , as
compared to the total semblance S, results in a more pronounced measure of the
shape differences during Turn 2 and, moreover, avoids the noise related detection
of a shape difference during Turn 1. The final shape measure SM, shown in
Figure 4.10, correctly indicates no shape difference, i.e., SM = 1, during the scaled
cue (Turn 1) and clear shape differences, i.e., SM < 1, during the missing and false
cues in Turn 2 and Turn 3.

Shape Measure Threshold It is expected that the human perception system will
not detect shape differences between vehicle and simulator motion signals for
which the shape measure SM only deviates marginally from unity. A shape dif-
ference is therefore defined to occur only when the shape measure SM comes
below a certain shape measure threshold thSM. At which value for SM a shape
difference can indeed be perceived, however, is currently not known. In this chap-
ter, therefore, the thSM is treated as a tunable parameter.

Gain Measure

As mentioned before, also a gain measure GM is needed to distinguish between
the different error types. To avoid divisions by zero and incorporate perceptual
thresholds, the gain measure is slightly more complicated than a simple ratio be-
tween vehicle and simulator motion signal amplitudes.
The vehicle and simulator motions are first compared to the absolute motion per-
ception threshold thabs and the vehicle and simulator motions are set to zero when
they are below this threshold using the smooth threshold function, resulting in
yth. To avoid division by zero, the gain between the resulting motion signals
(ythsim and ythveh) is calculated with a smooth gain function:

Gsim,veh =
ythveh ∗ ythsim

ythveh
2 + η

, (4.14)

With this smooth gain function, the gain Gsim,veh is zero when either ythveh or
ythsim is zero. When ythveh 6= 0 and ythsim = 0 we indeed expect Gsim,veh to be zero,
however, when ythveh = 0 and ythsim 6= 0, we instead expect Gsim,veh to be infinite.
The final gain measure GM therefore equals Gsim,veh, except for the case when
ythveh = 0 and ythsim 6= 0, where GM > 1. The exact value of GM in this case is
not important for the algorithm outcome, as only the comparisons GM > 1 and
GM≥ 0 are made.
In Figure 4.11 the resulting gain measure GM, for plotting purposes only limited
to [−1.5,1.5], for the typical cueing errors of Figure 4.4 are shown. Figure 4.11

shows that only during the false cues (around 35 and 55 seconds) the value of the
gain measure is larger than unity or smaller than zero.



86 4. Cueing Error Detection Algorithm

0 10 20 30 40 50

Time [s]

-1

-0.5

0

0.5

1

1.5

A
cc

el
er

at
io

n 
[m

/s
2
]

Motions
1 2 3

Vehicle
Simulator

(a)

0 10 20 30 40 50

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

G
ai

n 
M

ea
su

re

Gain Measure
1 2 3

(b)

Figure 4.11: The simplified vehicle and simulator motions ((a)) and corresponding gain measure ((b)).
The gain measure is limited to [−1.5,1.5] for plotting purposes only.

4.2.6. Algorithm Outcome

Using the shape and gain measures combined with the cueing error equations
described in Equation 4.3, the scaled, missing and false cues between the vehicle
and simulator motions can be detected. The algorithm produces three separate
time signals of the same length as the original cueing error, each containing only
one type of cueing error. Applying the algorithm to the cueing error ε shown in
Figure 4.4 results in the cueing errors εsc, εmc and ε f c presented in Figure 4.12.
This figure shows that a scaled cue occurs during the first turn, while the second
and third turn contain a missing cue initially and a false cue at the end.

4.2.7. Algorithm Parameters

The algorithm described in this section has several parameters which are listed in
Table 4.3. All parameters, apart from the absolute and discriminatory perception
thresholds, were tuned such that the algorithm output closely resembles the in
Section 4.3.3 true cueing errors in Dataset 1, presented in Section 4.3. The final
parameter values are also shown in Table 4.3.
The scale parameters s0, J and δj were found via optimization, such that the
combination of all wavelet transform parameters resulted in a frequency range
between 0.1 and 10 [Hz]. The algorithm was tested on typical motion profiles for
linear acceleration in the horizontal plane, i.e., longitudinal (ax) and lateral (ay)
acceleration. The perceptual motion thresholds thabs and thdisc are therefore also
only shown for these accelerations. In [143] an absolute linear acceleration thresh-
old of 0.04m/s2 in both longitudinal and lateral direction was found for motion
frequencies in the range 1.0− 14

[
rad/s

]
or 0.159− 2.228 [Hz]. For low frequen-

cies, i.e., in the range 0.096− 0.159 [Hz], the absolute thresholds were found to
increase with decreasing frequency. For simplicity, in this study the lowest abso-
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Figure 4.12: The algorithm output ((b)), in terms of scaled, missing, and false cue occurrences, for the
vehicle and simulator motions ((a)) of example cueing errors.

lute threshold of 0.04
[
m/s2

]
is applied for all frequencies.

A lot less research can be found on the discriminatory thresholds for linear mo-
tion perception. In fact, these thresholds were only investigated by Naseri and
Grant in [148]. Assuming that Weber’s law holds, they estimated that for sinu-
soidal motion with a frequency of 0.4 or 0.6 [Hz] the Weber fraction was 0.05 and
0.02, respectively. Again for simplicity, the value for the Weber fraction resulting
in the lowest threshold is chosen. In case future research would provide a more
detailed function describing the relation between absolute and discriminatory mo-
tion thresholds and motion frequency over the frequency range used in this study,
these functions can easily be implemented in the algorithm.
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Table 4.3: Algorithm parameters

Symbol Description Effect on error detection Value used in
this study

Thresholds
b Steepness parameter of

the slope from 0 to 1 for
all but the shape and
gain thresholds

A lower value reduces the threshold
steepness.

1e− 5

bs Steepness parameter of
the slope from 0 to 1 for
the shape and gain
thresholds

A lower value reduces the threshold
steepness and can result in εall being
classified as partly one and partly another
cueing error.

1e− 5

thabs Absolute perceptual
threshold

This value should be based on literature.
Increasing it results in less sensitivity of
the shape similarity measure to low
amplitude motions.

0.04
[
m/s2

]
for

both ax and ay
[143]

thdisc Discriminatory
perceptual threshold

This value should be based on literature.
Increasing it results in less sensitivity of
the shape similarity measure to low
amplitude errors.

for ax and ay
|CWTveh| × w f rac
is used, with
Weber fraction
w f rac = 0.02 [148].

thSM Shape measure
threshold, above which
scaling errors are
assumed

Increasing it causes higher sensitivity to
shape differences and consequently results
in a higher detection rate for missing and
false cues.

0.95
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Wavelet
Transform

s0 Smallest scale Increasing it results in decreased influence
of lower frequency motions on the shape
similarity measure

8.13[s]

J Number of scales Increasing it results in increased influence
of higher frequency motions on the shape
similarity measure

100 [scales]

δj Spacing between scales Increasing it results in less accurate shape
similarity measure

0.0664 [scales]

fb Wavelet bandwidth Increasing it results in a higher frequency
resolution, but lower time resolution of the
semblance

0.8 [Hz]

fc Wavelet center
frequency

Increasing it results in a higher frequency
resolution, but lower time resolution of the
semblance

0.8 [Hz]

Smoothing
ωc Butterworth low-pass

filter cut-off frequency
Increasing it decreases smoothness of the
similarity measure

0.1 [Hz]

n Butterworth low-pass
filter order

Increasing this reduces the amplitude of
the similarity measure at frequencies
higher than wc

1
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Table 4.4: Segment numbers for all nine segments in Dataset 1.

MCA1: MCA2: MCA3:
Maneuver/MCA scales down

linear
acceleration

limits
tilt-rate

does not
limit
motions

M1: Curve driving at constant
speed

1 2 3

M2: Braking to full stop and ac-
celerating to 70

[
km/h

] 4 5 6

M3: Curve driving at variable
speed

7 8 9

4.3. Motion Profiles

For the tuning and validation of the algorithm, two experiment datasets, here
referred to as Dataset 1 and Dataset 2, were used. In this section the cueing errors
occurring in these datasets are discussed in more detail.

4.3.1. Dataset 1

Dataset 1 is derived from the motions used in the experiment described in Chap-
ter 2. This dataset includes typical motion cueing errors caused by washout filters
in both longitudinal and lateral acceleration during three maneuvers and each
performed with three different MCAs. Hence, there are nine numbered segments
in total, which are summarized in Table 4.4. More information on the maneuvers
and MCAs can be found in Chapter 2. In Figures 4.13 and 4.14 the vehicle and
simulator motion signals for lateral and longitudinal accelerations in Dataset 1 for
all nine segments are shown, respectively.
As can be seen in these figures, MCA1 (Segments 1, 4 and 7) introduces a scaling
difference, while the MCA2 (Segments 2, 5 and 8) introduces a shape difference
between vehicle and simulator motion. MCA3 (Segments 3, 6 and 9) instead
results in close to no difference between the vehicle and simulator motion. Fur-
thermore, the longitudinal acceleration contains slightly higher frequency motions
and smaller errors between simulator and vehicle motion than the lateral acceler-
ation.

4.3.2. Dataset 2

Dataset 2 is derived from the motions used in the experiment described in [135]
and includes 7 different types of cueing errors with varying levels of intensity in
the lateral acceleration during 22 identical curves. In Figure 4.15 the vehicle and
simulator motions for the lateral acceleration in Dataset 2 for all 22 segments are
shown.
This dataset shows a wide variety of pure scaling and shape differences between
vehicle and simulator motion in lateral acceleration only. In Segments 13 and 18
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Figure 4.13: Lateral accelerations (a) and absolute errors between vehicle and simulator motions (b)
for Dataset 1.
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Figure 4.14: Longitudinal accelerations (a) and absolute errors between vehicle and simulator motions
(b) for Dataset 1.
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Figure 4.15: Longitudinal accelerations (a) and absolute errors between vehicle and simulator motions
(b) for Dataset 2.

no difference between vehicle and simulator acceleration is introduced. Pure scal-
ing differences between vehicle and simulator motion are found in Segments 2,
6, 10, 16, 20 and 21, of which only 6 and 21 contain larger amplitude simulator
than vehicle motion. Segments 5, 7, 12 and 19 all show similar shape differences
between vehicle and simulator motion, but with different intensity. Different de-
lays are introduced in Segments 4, 17 and 15 and in Segments 1 and 8 only the
high-frequency part of the vehicle motion is still present in the simulator motion.
Very high-frequency errors between vehicle and simulator motion are introduced
in Segment 3, due to reaching a simulator motion limit, and Segment 9, introduc-
ing simulator noise. Finally, in Segments 11 and 22 additional simulator motion
is introduced at the end of the curve, while in Segment 14 some of the vehicle
motion at the beginning of the curve is missing from the simulator motion.

4.3.3. Error Detection Truth Data

The algorithm defines only three different cueing errors types based on shape
and amplitude differences. The cueing error types in lateral and longitudinal
acceleration in Dataset 1 are similar for each segment, with the latter often having
much smaller error amplitudes. In Dataset 1 the algorithm should detect the errors
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Table 4.5: True Cueing Errors.

Cueing Error Segments Dataset 1 Segments Dataset 2
lateral & longitudinal acceleration lateral acceleration

Scaling error 1, 4, 7 2, 6, 10, 16, 20, 21

Missing Cue start of 2, 5, 8 5, 7, 12, 14, 19

start of 1, 4, 8, 15, 17

partly in 3, 9

False Cue end of 2, 5, 8 11, 22

end of 1, 4, 8, 15, 17

partly in 3, 9

caused by MCA1 (Segments 1, 4 and 7) as pure scaling errors and detect no or
very small errors for MCA3 (segments 3, 6 and 9). For MCA2 (Segments 2, 5 and
8) errors at the beginning of either the acceleration, deceleration or curve driving
motions should be detected as a missing cue, while for the same maneuver errors
towards the end should be detected as false cues.
In Dataset 2 the algorithm should clearly distinguish between the scaling errors
in Segments 2, 6, 10, 16, 20 and 21, no errors in Segments 13 and 18 and shape
errors in all other segments. Delays between simulator and vehicle motion, i.e.,
Segments 4, 17 and 15, and the simulator motions containing only high frequent
motions, i.e., Segments 1 and 8, are expected to result in an initial missing cue and
a false cue at the end. In Segments 5, 7, 12, 19 and 14 only a missing cue should
be detected, while in Segments 11 and 22 only a false cue should be detected.
The error due to hitting a simulator motion limit, i.e., Segment 3, is expected to
mainly cause a missing cue and possibly some small false cues due to additional
oscillations. Finally, the simulator noise error, i.e., Segment 9, is expected to be
detected as a mixture of missing and false cues as the simulator motion oscillates
around the vehicle motion. In Table 4.5 an overview of the true cueing errors is
given.

4.4. Results

In this section results of the different algorithm steps are shown when applied
to the motion profiles introduced in Section 4.3. The figures show the following
results per motion profile in the subplots from top to bottom:

(a) Vehicle yveh (t) and simulator ysim (t) acceleration
(b) Semblance S (t, s) over a frequency range of 0.1− 10 [Hz]
(c) Relevant semblance Srel (t, s) over a frequency range of 0.1− 10 [Hz]
(d) Mean semblance, mean relevant semblance S̄rel (t), the shape measure SM (t)

and shape measure threshold thSM
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(e) Gain measure GM 1 and thresholds at zero and one.
(f) The detected separate cueing errors εsc, εmc and ε f c

4.4.1. Dataset 1

In Figure 4.16 the algorithm results for each step are shown for the lateral accel-
eration in Dataset 1. Figure 4.16(f) shows the final result of the algorithm: scaled
cues are detected during Segments 1 and 7, missing cues occur at the beginning
and false cues at the end of the turn in Segments 2 and 8 and very small scaling
errors are detected during Segments 3 and 9. Since no lateral motion is present
during Segments 4, 5 and 6, no error is detected here.
Between the false and missing cues in Segments 2 and 8 the two motion signals are
very similar, which can also be seen from the increasing mean semblance at this
point in Figure 4.16(d). The difference between the semblance (Figure 4.16(b)) and
relevant semblance (Figure 4.16(c)) plots shows that much of the semblance below
one at high frequencies is due to motion with amplitudes below human thresh-
olds. The gain measure (Figure 4.16(e)) shows high variations, especially during
Segments 4, 5 and 6, where both simulator and vehicle motion hover around
0
[
m/s2

]
. The gain measure for the scaled cues in Segments 1 and 7 shows a rela-

tively constant scaling factor of 0.6 between vehicle and simulator motions, while
the scaling factor for the missing cue in Segments 2 and 8 varies within the range
0− 1. The false cues in these segments show a jump from > 1 to < 0 back to > 1
due to the change in sign in the vehicle acceleration.
In Figure 4.17 the algorithm results for each step are shown for the longitudinal
acceleration in Dataset 1. Figure 4.17(f) again shows the final result of the algo-
rithm: scaled cues are indeed detected in Segments 4, 7 and 9. Missing cues are
found at the beginning and false cues at the end of the acceleration and deceler-
ation maneuvers in Segments 5 and 8. However, in Segment 8 during the initial
acceleration phase a small scaled cue is found. Again the difference between the
semblance (Figure 4.17(b)) and relevant semblance (Figure 4.17(c)) shows motion
with amplitudes below human threshold cause the decreased semblance visible
in Segments 1 till 3.
Overall, all scaled, missing and false cues, except for the small false cue at the
start of Segment 8, were detected correctly by the algorithm.

4.4.2. Dataset 2

Figure 4.18 shows the algorithm results in each step for the lateral acceleration
in Dataset 2. Figure 4.18(f) shows the final result of the algorithm: scaled cues
are found in Segments 2, 6 10, 16, 20 and 21, while missing cues are detected in
Segments 5, 7, 12, 14 and 19, and false cues in Segments 11 and 22. The scaled cue
in Segment 16 is detected as a missing cue at the very start of the turn. Missing
cues are found at the beginning and false cues at the end of the curve in Segments
1 and 8.

1For plotting purposes GM was limited to the range [−0.5,1.5], whereas in the algorithm the unlimited
value is used.
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Figure 4.16: Results of each algorithm step when applied to the lateral acceleration in Dataset 1.
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Figure 4.17: Results of each algorithm step when applied to the longitudinal acceleration in Dataset 1.
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Figure 4.18: Results of each algorithm step when applied to the lateral acceleration in Dataset 2.
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Figure 4.19: Binary and non-binary algorithm output for the lateral acceleration in Segment 1 of
Dataset 2, with bs = 1e− 5 and bs = 0.1, respectively.

Similar results are found during time delay errors in Segments 4, 15 and 17. The
high-frequency limiting and noise errors in Segments 3 and 9, respectively, are
partly detected as a missing and partly as a false cue. While in Dataset 2 most
high-frequency motions were below the human perception thresholds, the rele-
vant semblance in Figure 4.18(c) shows that during Segments 3 and 9 the high-
frequency motion is above this threshold.
Unlike Dataset 1, the error type in Dataset 2 sometimes changes while the total er-
ror is still above zero, creating some steep peaks in the resulting error type signal.
This is clearly visible in Segments 1 and 8 in Figure 4.18(f). Depending on the use
of the algorithm such steep variations can be troublesome. Additionally, it might
seem unrealistic that a human indeed perceives such abrupt changes between er-
ror types. One way of smoothing these changes between different error types is
by using non-binary shape and gain measures. This is achieved by increasing the
threshold steepness parameter bs.
In Figure 4.19 the algorithm final result for Segment 1 is shown for the binary
(bs = 10( − 5)) and non-binary bs = 0.1 gain and shape measures. Currently it is
not known which value for parameter bs results in a cueing error transition that
best resembles human perception. It is proposed that when using the cueing error
detection algorithm in a PMI model, this parameter is only increased if it signifi-
cantly improves the model fit to measured rating data.
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4.5. Discussion

In this chapter a Cueing Error Detection Algorithm (CEDA), based on a wavelet-
based semblance measure, is presented. The goal of the algorithm is to split the
total cueing error into three common cueing error types: scaled cues, missing
cues and false cues. Such results can then be used for improved modelling or
analysis of motion cueing quality. With the aim of eventually using this algorithm
for cueing quality optimization, the algorithm was designed using only smooth
functions. The algorithm parameters were tuned using Dataset 1, previously pre-
sented in Chapter 2, and also applied to Dataset 2 obtained from the experiment
described in [135]. Both datasets were designed to contain specific cueing error
types, based on their description in literature. These true cueing error types there-
fore served as the truth data, and thus desired output, for testing the algorithm.
Almost all cueing errors in both datasets were correctly detected. Only in Dataset
2, during Segment 16, a scaled cue was initially detected as a missing cue. This
slight deviation from the true cueing error type seems to be caused by a combi-
nation of mean semblance smoothing and a large false cue just before the start of
the scaled cue. To correct the negative effect of smoothing, the cut-off frequency
of the smoothing filter could be increased, however, this would result in more os-
cillations between cueing error types in, for example, the noise error in Segment 9

of Dataset 2. Overall, the algorithm performed well in detecting different cueing
error types.
The algorithm has several parameters that require tuning. While the parameter
values presented here show good results for both Datasets 1 and 2, as well as
the simplified example motions, it is possible that these parameter values can be
further optimized to provide good results over a wider range of cueing errors. In
future research it is therefore recommended to obtain more cueing error data to
improve the tuning. For example, an experiment including one maneuver with
different degrees of shape similarity between the vehicle and simulator motion
could be performed. Answers from participants on the shape similarity between
vehicle and simulator motions could be used to tune the shape measure threshold.
Additionally, more datasets with known cueing errors and different maneuvers
can be generated to improve the tuning of parameters, such as wavelet center and
bandwidth frequency and smoothing filter cut-off frequency and order.
In the algorithm presented here, the wavelet-based semblance was used to deter-
mine shape similarity between two signals. This semblance was shown to be an
efficient measure to distinguish between scaled and missing or false cues. Another
measure that was considered for this study is the more often used wavelet-based
coherence [149, 150]. This measure, however, requires smoothing in time and fre-
quency to avoid it being equal to unity [149], which reduces the resolution of the
measure and can also introduce lags. This measure is therefore less suited for
use in the algorithm presented here. While the significance testing presented in
[149] can be used to improve the resolution for some applications, its dependency
on the total motion signal amplitude makes it unsuitable for the application pre-
sented here. The amplitude dependency would cause similar cueing errors being
classified differently in case a larger motion is added to the same time signal.
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The semblance measure does not require smoothing, but has a high sensitivity to
noise due to its lack of amplitude information. In this study it was shown that the
effect of noise on the algorithm results could be significantly reduced via ampli-
tude filtering using the original wavelet transforms, i.e., only taking into account
the relevant semblance.
The wavelet transform resolution in time and frequency depends on the choice
of the center and bandwidth parameters of the selected wavelet. For the algo-
rithm described in this chapter these wavelet parameters were tuned for optimal
algorithm results for Dataset 1, which resulted in a high time resolution, but a
comparatively low frequency resolution. The algorithm results presented here do
not appear to be negatively influenced by this power spread in frequency. How-
ever, for future research it can be useful to investigate whether techniques, such
as a prior significance test on the wavelet transforms, improve the results when
applying the algorithm to a wider range of cueing errors. It should again be noted
that the significance testing described in [149] cannot be directly applied here.
Currently the relevant semblance is determined by comparing the time signals and
their wavelet transforms to absolute and discriminatory human perception thresh-
olds. Research on motion perception such as [143] has shown that the perceptual
thresholds depend on motion frequency. Because of the frequency information
that is readily available with this method, such frequency-dependent perceptual
thresholds can easily be implemented in the algorithm when they are available in
a more general form. Currently, however, the non-frequency dependent thresh-
olds are used.
The algorithm is designed to only detect three of the most common cueing errors,
causing other error types to be classified as one of these three. Time delay errors,
for example, were detected as consecutive combined missing and false cues. It
can be debated whether a separate class of delayed cues would better represent
human perception, or if humans actually do perceive delayed cues as a combina-
tion of missing and false cues. It is possible that this, for example, depends on
the size of the delay and the main frequency of the maneuver. A small delay in
a slalom maneuver might be perceived as a delay, while a large delay in a large
radius turn might be perceived as a combination of a missing and a false cue. An
experiment testing this hypothesis could clarify if detection of separate time delay
error is useful.
High-frequency cueing errors, such as the limiting and noise errors in Dataset
2, were classified as oscillating, missing and false cues. Using the frequency in-
formation present in the wavelet transforms, a separate class of high-frequency
cueing errors could be made. As, for example, the limiting error is known to be
detrimental to cueing quality [51], it is recommended to also extend this approach
to include detection of this error type in future research.

4.6. Conclusion

Cueing errors of different types can affect the perceived motion cueing quality
to different degrees, e.g., false cues have been shown to be more detrimental to
cueing quality than scaled cues. To capture this difference in a cueing quality
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prediction model, an algorithm to detect and extract different cueing error types
is required. In this chapter, a Cueing Error Detection Algorithm, detecting scaled,
missing and false cues from simulator and vehicle motion data, was presented.
The algorithm, which uses the wavelet-based semblance to distinguish between
different types of cueing errors, was tuned to a first dataset such that all present
cueing errors were detected. When applying this tuned algorithm to a second
dataset, as well as when applying it to simplified example motions, boh for which
the algorithm was not tuned to, yielded the same level of performance, and most
cueing errors were detected.
While the algorithm presented here only detects three of the most common cueing
error types, the availability of frequency information makes it possible to extend
the algorithm to also detect error types such as limiting or noise errors. The use of
smooth functions throughout the algorithm also makes it suited for optimization
purposes in the future.





5
Modelling Perceived Motion

Incongruence

This chapter presents a complete design process for the time-varying Perceived Motion In-
congruence (PMI) prediction models that are central to this thesis. The process consists of
several steps, including the selection of process parameters, model inputs and filter orders,
as well as model parameter estimation and model analysis. Three models of increasing
complexity are designed by applying this process, using part of the dataset from the exper-
iment described in Chapter 2. The prediction capabilities of these models are verified using
the rest of this dataset. The results show that all models have considerable PMI prediction
capabilities for data obtained within one experiment. Increasing the complexity of a model,
such as including the Cueing Error Detection Algorithm (CEDA) described in Chapter 4,
improves these capabilities.

103
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5.1. Introduction

One of the main challenges in vehicle motion simulation is to determine which
simulator motions result in the best perceived motion quality. Addressing this
challenge requires knowledge on how motion cueing quality is affected by sim-
ulator motion. For purposes such as automated motion cueing analysis or opti-
mization specifically, a mathematical representation of this relation is required. In
this study, therefore, the design process of models that predict the time-varying
motion quality due to vehicle and simulator motion differences is proposed.
Over the years, researchers have proposed different methods to assess cueing
quality. A commonly used method is to perform human-in-the-loop experiments
where Motion Cueing Algorithms (MCAs) with different tunings are compared
via subjective ratings. In [39] this was done using a magnitude estimation method,
while in [36] questionnaires were used.
Because human-in-the-loop experiments are time consuming, methods have been
developed to instead tune cueing algorithms off-line. The most recent of such
methods is the objective motion cueing test (OMCT) [84], which is based on cri-
teria like the Sinacori-Schroeder [50] and the Advani-Hosman [151] criteria. The
OMCT can be used to tune MCA parameters, based on desirable frequency re-
sponses of the complete simulation system for several motion channels over spe-
cific frequency ranges. While this test has been proven to be successful in assessing
simulator fidelity, it is not designed for on-line or off-line mathematical optimiza-
tion, as it lacks a single measure of cueing quality that can be optimized.
Instead, optimization algorithms often simplify this cueing quality measure to in-
corporate only the euclidean distance between vehicle and simulator motions in
linear acceleration and rotational velocity [40, 136], where weights for each mo-
tion channel are for simplicity often only set to account for the differences in unit
[57]. While this simplifies the computation significantly, it also removes all expert
knowledge from the MCA tuning process, such as described in [51], from the op-
timization. Such expert tuning knowledge is often based on human-in-the-loop
simulation experiments as well as a basic understanding of the human perceptual
system. One of the main challenges in MCA optimization is to combine the op-
timization requirements for simplicity of the cost function and the complexity of
the human perception system.
In an attempt to include human perception in the cost function, simplified mod-
els of the vestibular system, the main sensory organ for detection of specific
force (otholiths) and rotational velocity (semicircular canals), are sometimes im-
plemented to map the actual vehicle and simulator motions to perceived motions
[38, 56, 152]. More elaborate models that determine perceived vehicle and simula-
tor motions via visual vestibular cue integration have also been used [37]. While
this provides information on one aspect of human perception, it fails to address
how errors in different motion channels are combined into a single measure of
simulation quality. Additionally, these models do not explain why different cue-
ing error types, such as scaled and false cues, deter the cueing quality dispropor-
tionately. The difficulty of using such models to explain simulation quality was
shown in [92], where comparing perceived motions, calculated by running the ac-
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tual motions through a perception model, during a take-off run could not directly
explain why an MCA was judged as good or bad.
In this chapter therefore the design process for a model that maps vehicle and
simulator motions to a single time-varying motion cueing quality rating is intro-
duced. The method focuses on a bottom-up approach and does not include any
human sensory system models, but rather focuses on fitting the model output to
the measured perceived motion incongruence rating [136]. The resulting model
can be used to predict the decrease in perceived cueing quality from vehicle and
simulator inputs without the use of human-in-the-loop experiments. By extend-
ing the non-linear part of the model with the cueing error detection algorithm
described in Chapter 4, the varying influences of different cueing errors on the
cueing quality can also be captured by this model.
The design process introduced here, is tested on data from the experiment pre-
sented in Chapter 2. As the resulting model is only based on one limited dataset,
it is not expected to describe all complexities of the human perceptual system
related to vehicle motion simulation. The proposed design process can however
be used on larger datasets to obtain a more accurate model for the prediction of
perceived motion incongruence during a vehicle motion simulation.
This chapter is structured as follows. Section 5.2 introduces the considered input-
output mapping and provides an overview of the general model structure which
can be used to predict time-varying perceived motion incongruence. To determine
which inputs are actually represented in the measured output, find appropriate
model orders, and estimate the corresponding model parameters, a system iden-
tification process is proposed in Section 5.3. To validate this process, Section 5.4
introduces three models of different complexity, the datasets to which they are
fitted and the methods that are used for the analysis of the models. In Section 5.5
the models’ structural, explanatory and prediction analysis results for each of the
three models are compared. A discussion on these results is provided in Section
5.6, followed by a conclusion on the proposed models and system identification
process in Section 5.7.

5.2. The Model

In this study a design process is proposed for a model that can be used to assess
the motion cueing quality in a vehicle simulation. The main purpose of the model
is to map vehicle and simulator motion signals onto a measure of the time-varying
Perceived Motion Incongruence (PMI). Such a model could also be used to predict
motion cueing quality off-line and possibly even serve as a cost calculation algo-
rithm for MCA optimization. In the next subsections first the inputs and output
of the model are further explained, after which an overview of the general model
is provided.

5.2.1. Inputs

During the design of an MCA, usually only differences between actual and sim-
ulated physical vehicle motions in the six motion channels for linear acceleration



106 5. Modelling Perceived Motion Incongruence

(or specific force) and rotational velocity are used to determine the quality of an
MCA. In [136], however, it was suggested that including derivatives and integrals
of these motion channels could possibly also improve the model fit.
For the current study therefore all eighteen motion channels, first derivatives and
first integrals of the six motion channels, are considered as possible inputs to the
modelling process. The inputs described in here are not necessarily part of the
final model, but are used as an initial set of possible inputs from which relevant
inputs can be selected via an input selection process as described in Section 5.3.
Before adding all eighteen motion channels as model inputs, it is necessary to de-
termine whether including them makes sense from a perceptual point of view. To
this end an overview is made on how differences between actual and simulated
vehicle motions in each motion channel could be perceived. In case differences
between vehicle and simulator motions in a specific channel cannot be perceived,
this channel should not be used as a model input.
In this study it is assumed that the actual physical vehicle motions are estimated
using a combination of the unrestricted visual motion cues and the participant’s
experience with car driving. Visual motion cues can be derived from optic flow
[153–155], while orientation can be derived from the geometric layout of the visual
environment [156]. Even though not all motion channels can be estimated with
equal accuracy, for simplicity, perfect estimation of the actual vehicle motions is
assumed in this study.
The ability to perceive differences between actual and simulated vehicle motions
is thus assumed to depend on the gravito-inertial motion sensors. It is well known
that humans use their otoliths and semicircular canals (SC) to sense linear accel-
eration and rotational velocity respectively. Otoliths, however, are also sensitive
to its rate of change, i.e., jerk [157]. Furthermore, studies described in both [124]
and [158] showed that jerk influences the motion perception in motion simulators,
making this jerk motion a good choice for a model input.
The semicircular canals on the other hand, only function as a rotational velocity
detector during normal head movements. Depending on the motion frequency,
semicircular canals function as detectors of rotational velocity (0.1− 1Hz), rota-
tional acceleration (< 0.1Hz) or rotational angle (> 1Hz) [37]. Additionally, when
the rotational velocity is above the perceptual threshold, pitch and roll angles can
be derived from a combination of rotational velocity and linear acceleration.
The importance of pitch and yaw angles for the cueing quality was also shown
in [92], where it was concluded that subjects relied strongly on mismatches in
attitude to determine the cueing quality, at least during the tested longitudinal
acceleration manoeuvre. The yaw angle, not generating a change in gravitational
acceleration, cannot be derived in this way.
Finally, even though linear velocity cannot directly be sensed by the vestibular sys-
tem, the longitudinal velocity could be derived from the road rumble frequency: a
higher longitudinal velocity results in higher road rumble frequency. For the data
used in this study, no road rumble was implemented in the simulator, making the
longitudinal velocity physical motion cue in the simulator equal to zero.
In Table 5.1 an overview of all considered motion inputs is provided. As shown in
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Table 5.1: Sensory signals considered as model inputs.

Motion Channel Symbol Gravito-inertial Motion
Sensors

Included
as input

Linear X vx Indirectly perceived via road
rumble

Yes

Velocity Y vy Not perceived No
Z vz Not perceived No

Linear X ax Otoliths Yes
Acceleration Y ay Otoliths Yes

Z az Otoliths Yes
Linear X jx Otoliths Yes
Jerk Y jy Otoliths Yes

Z jz Otoliths Yes
Rotational Roll θr SC & otoliths combined Yes
Angle Pitch θp SC & otoliths combined Yes

Yaw θy Not perceived No
Rotational Roll ωr SC Yes
Velocity Pitch ωp SC Yes

Yaw ωy SC Yes
Rotational Roll αr SC Yes
Acceleration Pitch αp SC Yes

Yaw αy SC Yes

this table, three of the eighteen motion channels are not included as inputs because
no difference between actual and simulated vehicle motion could be perceived in
these channels. Although the precision and accuracy of the motion perception in
the remaining channels vary significantly, they cannot directly be excluded and
are therefore used as possible model inputs.

5.2.2. Output

The model should map the inputs onto a measure of PMI. The model described in
this study aims to predict the average PMI over a random set of participants, rather
than, for example, predicting participant-specific ratings. The measure most re-
lated to this time-varying average PMI is the average Motion Incongruence Rating
(MIR) measured with the method described in [136].
Such a dataset should include ratings of multiple participants that each rated the
same vehicle simulation multiple times. The simplest way of obtaining an average
MIR would be to take the mean at each time step over all ratings in the dataset,
as was done for the initial model presented in [136]. After further inspection of
the dataset, however, the distribution of these ratings at each time step proved to
be strongly non-normal, making the mean a poor descriptor for the average MIR.
Appendix A in this thesis provides a full overview of the averaging techniques
that have been investigated.
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Figure 5.1: Results for different averaging techniques for continuous rating data.

In this study the median, a simple and often applied alternative averaging tech-
nique, is used. In Figure 5.1 the mean and median over all ratings are compared
to the mode of the estimated distribution (using the Kernel Density Estimation
(KDE) method) at each time step. The latter averaging technique is complex, but
can be assumed to give the most accurate representation of the average MIR as
it estimates the measurement distribution separately for each time step. Figure
5.1 shows that averaging via the median instead of the mean, results in an aver-
age MIR much closer to the average MIR obtained with the KDE method. In this
study, therefore, the model output will be compared to the median, rather than
the mean, of the measured MIR at each time step.

5.2.3. Model Overview

Now that the inputs and output have been selected, a model, representing the
input-output mapping, can be defined. Keeping in mind that the output repre-
sents the MIR rather than the actual PMI, the model should not only account for
perceptual processes, but also include a simplified model of the rating process
itself. In [136], therefore, an initial model structure is proposed that includes sep-
arate perceptual and response systems.
The perceptual system is a model describing the translation from simulator and
vehicle motion to perceived motion incongruence, while the response system
models how this perceived incongruence results in the participants’ rating. The
latter should, for example, account for delays and smoothing that has been shown
to occur when rating a variable continuously [111, 125]. The main difference be-
tween the two systems is that parameters in the response system apply to one
combined signal, assumed to be the perceived motion incongruence, while in the
perceptual system parameters apply to specific motion channels.
The perceptual system described here is not intended to accurately portray what
happens in the human brain during a motion simulation, but rather defines a re-
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Figure 5.2: General structure of a MIR model consisting of a perceptual system (the PMI model) and
response system.

lation between simulator and vehicle motion differences in all motion channels
and the resulting PMI over time. This system is split in three parts, in part one
different cueing errors are calculated, part two filters and weights each cueing er-
ror and in part three all filtered cueing errors are added up to form one measure
of PMI over time. The filtering and weighing of different cueing errors should
account for, among others, the filtering behavior that occurs in the human sensory
systems and the relative weighing of different cueing errors in the human cogni-
tive system.
As the model describes a human perception process, it is assumed to be subject to
a considerable amount of noise, i.e., unpredictable stochastic components, which
could enter the system at different places. In the current application and model
structure it is likely that most of the noise enters the model before the response
system, e.g., in the perceptual system. The exact location of the main noise source
entrance is difficult to judge, but for simplicity the current model assumes this to
be at the end of the perceptual system. The noise source is an important aspect of
the model and its characteristics will be discussed in Section 5.3.3.
In Figure 5.2 the proposed model structure, including these descriptions of the
perceptual and response systems, is shown. In the following subsections the non-
linear and linear part of the model are described in more detail.

Non-Linear Part

The non-linear part consists of the cueing error calculations. To purpose of this
system is to detect which cueing errors require separate filters and weights before
being combined into one measure of PMI. Basically, any non-linear transformation
of the simulator and vehicle motion should occur in this part.
As can be seen in the non-linear model overview in Figure 5.3, four main non-
linear transformations are currently implemented in the general model. These
transformations result in three sets of cueing errors: general cueing errors (ε),
cueing errors split in different types assumed to influence PMI differently (scaled
εsc, missing εmc and false ε f c cues) and perceived rotational rate and angle errors
(εperc) that take into account perceptual motion thresholds.
The general cueing errors ε are directly derived from the difference between sim-

ulator and vehicle motion signals, e.g., the motion error. In Figure 5.3 this is done
in Error Calculation block (1), where a range of different simple transformations
can be applied to the motion errors. For example, one can choose to take the
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Figure 5.3: Non-linear part of the MIR model including four non-linear transformations to calculate
relevant cueing errors.

absolute or the squared value of these errors. For computational simplicity, the
optimization-based MCAs generally use the squared value of the motion errors.
When taking into account human perception, however, this might not be the most
optimal choice, as it assumes that large errors affect PMI more than small errors.
Here therefore the absolute value of the motion errors is used instead.
Within one motion channel, cueing errors of different types, indicated with sub-
scripts εsc, εmc and ε f c, can occur. Block (2) in Figure 5.3 represents the Cueing
Error Detection Algorithm (CEDA) described in Chapter 4. The algorithm pro-
vides three binary time signals that have a value of one when either of the three
cueing error types, scaled, missing or false cues, occurs. These output signals are
then multiplied with the value of the general cueing error at this time to obtain
the specific cueing error.
Another assumption that is often used by MCA tuning experts, is that rotations
with a rate below the perceptual thresholds are not perceived by the participants
and thus do not have to be minimized further. To account for this fact, subsys-
tems PRRD (3) and PRAD (4), which map actual rotational rates and angles onto
perceived rates and angles, respectively, could be implemented. Examples of such
subsystems can be found in Appendix B, but, as they have not been experimen-
tally validated, these are not used in the remainder of this study.
Because of the general nature of the model, many different models can be derived
depending on the choice of which motion channels and cueing error types to in-
clude and which transformations to apply. To make informed choices, motion
perception literature can be consulted, as well as comparing the fit of different
models based on different sets of choices. This process is further explained in
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Figure 5.4: Linear part of the MIR model modeled with an ARX structure, consisting of the cueing
error and response filters.

Section 5.3.

Linear Part

The linear part of the model shown in Figure 5.2 is a multiple-input-single-output
(MISO) system, with cueing errors as inputs and a MIR as output. Due to its
structure, a logical choice is to model this system as an ARX model, for which
estimating the optimal parameters has an analytic solution, if the noise can be
considered white zero-mean Gaussian noise. Using such a model structure signif-
icantly reduces the calculation time compared to more elaborate structures such
as Box-Jenkins models. The linear part of the MIR model in the form of an ARX
model is shown in Figure 5.4. The cueing error filters are described by n (= the
number of cueing errors) polynomials Bn

(
q
)

of orders nb subject to input delays
nk, where nb and nk are both vectors of length n. The response system is described
with the polynomial A

(
q
)

of order na.
If an ARX model structure turns out not to suffice in describing the measured
MIR, one option could be to use a more complex model structure. Due to the pos-
sibly very large increase in computation time, however, it is advised to consider
other improvements to the model first, such as the implementation of methods to
detect additional cueing error types in the non-linear part of the MIR model.

5.2.4. Model Parameters and Choices

Because of the limited knowledge on what is important for the prediction of the
PMI, the model described here is of a general nature. This approach allows for
implementation or removal of subsystems, depending on the model fit to experi-
mental data. Due to the limited dataset used for the analysis in this study, not all
subsystems presented here were used. However, because these subsystems might
be useful for larger datasets, all current options are still discussed.
In Table 5.2 different choices that can be made to obtain sub-models of the general
MIR model are shown. Additionally, some other ‘free’ parameters of the general
MIR model are listed in Table 5.3, together with their values used in this chapter.
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Table 5.2: MIR model choices

Subject Choice Influence on model Choice in this study
Input set Different subsets of the total input set

can be used
Less inputs will decrease model complexity, but
might reduce the model fit.

Several input subsets
are introduced and
analyzed in Sections
5.4.1 and 5.5,
respectively

Error Cal-
culation

Different transformations such as
absolute value and even power
functions can be used

Determines the general relation between a motion
errors and PMI.

Absolute value function

CEDA The CEDA can be included or not Removing the CEDA will decrease model
complexity, but might reduce the model fit.

Models with and
without CEDA are
analyzed in Section 5.5

PRRD The PRRD can be included or not Removing the PRRD will decrease model
complexity, but might reduce the model fit.

Not used

PRAD The PRAD can be included or not Removing the PRRD will decrease model
complexity, but might reduce the model fit.
Currently a non-smooth version of this algorithm
is implemented, making it unsuitable for
optimization purposes.

Not used

Linear
Model

Structure

Any model structure derived from
the Box-Jenkins model can be used

More complex models than the ARX model are not
expected to improve the model fit much as
compared to including or removing inputs, but
instead will restrict the possibility to obtain quick
analytic solutions.

ARX model structure

Output
Type

Depending on the experiment data
and the goal of the model, the model
output can be compared to a MIR
obtained via a range of averaging
techniques

Non-smooth averaging techniques could
complicate the model identification. Averaging
over all participants can be used when a general
measure for PMI is requested, while averaging over
specific subgroups, such as participants with
different levels of sensitivity to rotation, can be
used to estimate models specific for such a
subgroup.

Median
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Table 5.3: MIR model parameters

Parameter Description Influence on model Value in this study
na Order of the response system

polynomial A
Increased order increases model complexity and
most likely initially improve model fit a

Maximum 4

nb Orders of the cueing error
polynomials Bi

Increased order increases model complexity and
most likely initially improve model fit a.

Maximum 4

nk Cueing error delays Incorrect estimation will decrease model fit. Should be estimated
based on experimental
data

CEDA for CEDA parameter descriptions, see
Section 4.2.7

Adjusting these parameters influences the
detection of cueing error types scaled, missing and
false cues.

The parameters from
Table 4.2.7 are used

thdet Detection threshold for rotational
velocity

Increasing this value reduces the amount of
rotational velocity that is assumed to be perceived.
For a logical model this parameter should be based
on perception literature.

-

thdiscr Discrimination threshold for
rotational velocity

Increasing this value reduces the amount of
rotational velocity that is assumed to be perceived.
For a logical model this parameter should be based
on perception literature.

-

aIt is clear that increasing model complexity can result in a better fit, but also a worse prediction. The latter happens when the model is fit to not only the
actual PMI but also the system noise.
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5.3. System Identification Process

To actually predict the PMI from vehicle and simulator motions, a parametric
model needs to be derived from the general MIR model described in the previous
section. In this section a system identification process is proposed to select rele-
vant inputs, minimal model orders and parameter values. To simplify the process,
only the parameters of the linear part of the model are estimated, while the pa-
rameters of the non-linear part are derived either from literature, from Chapter 4

or manually tuned.
The inputs to the linear part of the model are the cueing errors, calculated by the
non-linear part of the model, and the output is the MIR. There are several char-
acteristics of the input/output set for the linear part of the MIR model that affect
the system identification (SI) process significantly. The characteristics summarized
below should be taken into account throughout the SI process.

• Unknown inputs: Not all inputs described in Section 5.2.1 have a significant
influence on the MIR and a selection thus needs to be made.

– To make the model less complex and more robust, an iterative approach
needs to be adopted to determine which inputs are relevant for the
model. In Section 5.3.2 such an input selection strategy is described
and tested.

• Correlated inputs: Due to the physical relations between the motion chan-
nels, the inputs will be correlated. This correlation greatly influences the
accuracy of the parameters that will be estimated, as these will be correlated
as well.

– When analyzing the model, accuracy of the input-output system, rather
than the accuracy of individual parameters, should therefore be in-
spected [159].

• Limited input power: The vehicle motions cannot be freely designed to have
equal power in a predefined frequency range, because they have to concur
with (in our case) actual car driving on realistic roads. For example, the often
used periodic signals with which specific frequencies are excited in mechan-
ical systems, would, though very informative, not be a representative input
for the model. Instead the distribution of signal power can only be designed
indirectly and within narrow limits by using different road profiles, cueing
algorithms and driving behavior.

– The limited input power in certain frequencies results in poor estima-
tion of the corresponding parameters with large uncertainties. These
large uncertainties, in turn, can result in poor prediction power of the
model. It should be kept in mind that for accurate estimation of pa-
rameters in higher order models, a large dataset with well distributed
input power is needed.

• Non-negative output: Cueing errors are reasonably assumed to always re-
duce, rather than also increase, cueing quality. As the MIR ranges from zero
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to one and the inputs to the linear-part of the system are always positive,
the contribution of these inputs to the modeled MIR should thus also be
positive.

– While the cueing errors are all non-negative, phase shifts can still cause
the contribution of a cueing error to the MIR to be negative. During the
identification process, attention should be paid to avoid such inconsis-
tent results.

Based on the goal of the model, prediction of PMI from simulator and vehicle
motions, and the input/output characteristics, a system identification (SI) process
was developed. As mentioned in [159] if the purpose of the model is to simulate
the system or to predict the future outputs of the system, then time-domain meth-
ods are the most appropriate and these are therefore used here as well. In Figure
5.5 an overview of the developed SI process is given.
As indicated in this figure, before starting the SI process, the inputs and subsys-
tems used in the non-linear part of the MIR model need to be chosen. These
choices influence the cueing errors that are used as the input set to the linear part
of the MIR model. Additionally, an averaging technique for the measured output
needs to be chosen. These choices combined lead to a model definition, which
can then be parametrized using the SI process. The SI process itself has some
additional parameters that also need to be chosen beforehand and are further
explained in Section 5.3.2. The SI process itself can be divided in five steps:

1. Initial parameters selection,

2. Input selection,

3. Order reduction,

4. Parameter estimation, and

5. Model explanatory analysis.

In Step 1 of the SI process the initial model orders and input delay estimates need
to be determined. Using this information, the most relevant inputs for describing
the MIR output are selected in an iterative process in Step 2. After the relevant
input set is selected, a similar iterative process is used in Step 3 to decrease the
model order, to reduce model complexity and improve the prediction power of the
model. With the inputs, model orders and estimated delays selected, the model
parameters can be estimated in Step 4. Next, in Step 5, a model explanatory
analysis is performed and a decision is made on whether or not to change initial
parameters model na, nb and nk, and restart the process.
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Figure 5.5: Identification process for linear part of the model.
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When these initial parameters do not require changes, the prediction power
of the parametrized model can be analysed. The SI process can be repeated for
several models with different model choices and different SI system parameters,
after which the ‘best’ model can be chosen, based on both the explanatory and
prediction analysis results. In Subsections 5.3.1 till 5.3.4 the SI process steps are
explained in more detail.
Throughout the SI process different datasets z are used to avoid over-fitting. As
the process consists of multiple steps that include model fitting, the data are split
in four different datasets.

• Fit dataset z f : used in Steps 2 and 3 to estimate model parameters.

• Evaluation dataset ze: used in Steps 2 and 3 to evaluate the cost function and
determine the relevance of an input or model order.

• Parameter estimation dataset z f e: used in Steps 4 and 5 to estimate the actual
model parameters and analyze the model fit, respectively.

• Prediction dataset zp: used after the SI process is completed to analyze the
model prediction power.

Datasets z f and ze should at least include different measurement noise realiza-
tions, to avoid over-fitting. Datasets z f e and zp should contain different input
signals as well, such that the prediction capability of the model can be analysed.

5.3.1. Step 1: Initial Parameter Selection

When a specific model is chosen and the SI process parameters are set, the initial
model parameters na, nb and nk can be chosen. It is advisable to choose model
orders that are somewhat higher than what one expects them to be, as they will
anyway be reduced later during the model order reduction, Step 3 of the SI pro-
cess. Setting the initial model orders instead too low, can result in the undesired
removal of certain inputs during the input selection step.
The initial model delay can be estimated using the cross-correlation between the
cueing errors and the measured output. The lag at which the highest correlation
coefficient is found should be used as the initial model delay. To avoid unrealistic
delays, only a limited range of lags, here taken as 0-3 seconds, should be taken
into account. If no clear maximum is found, that particular cueing error is most
likely not highly relevant for the MIR, and finding the correct delay is therefore
less important. As a time delay is equivalent to a special case of phase shifts, e.g.,
linear phase shifts, they can be partially accounted for by the phase shifts gener-
ated by the polynomials A and B. In cases where no clear time delay is found, it
is therefore best to choose a minimal delay.

5.3.2. Steps 2 and 3: Input Selection and Order Reduction

The input selection and order reduction steps of the SI process both deal with
decreasing the complexity of the model. Due to the large number of possible in-
puts and corresponding model orders, a stepwise regression method needs to be
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adopted for both input selection and order reduction.
With the stepwise regression method, a model is fitted at each iteration to de-
termine whether a variable should be removed or added. As mentioned in the
previous section, the model used for input selection should have a relatively high
model order to avoid unwanted removal of inputs. For example, assume that
one uses only static gains for the input selection and for one input only its high
frequency content contributes to the MIR. Fitting the static gain would probably
result in close to zero gain for this input, just because the low frequency content
was not filtered out. This input, with valuable information in its higher frequen-
cies, would thus not be selected if the filter order is too low.
The two main approaches for stepwise regression are forward selection and back-
ward elimination. The former approach starts with fitting a model with only one
input to the measured output. With the help of a predefined selection criterion
(SC), the unique contribution of a specific input (uici) can be calculated. The input
with the largest unique contribution is then selected and the process is repeated
until none of the potential inputs result in a unique contribution higher than a
preselected threshold (thuic).
Because of the before-mentioned input characteristics and the use of filters, the
models that are fitted with few inputs can give very unrealistic results. An in-
put that has power at only a limited time range, for example, can be filtered to
(poorly) fit to the MIR over a longer period by low pass filtering it at a very low
frequency. Using forward selection therefore gives very unrealistic results and is
thus not applicable here.
Backward elimination, instead, starts by fitting a model that uses all inputs and
then calculates the unique contribution of each input, uici, by removing them one
at the time. In this case, more realistic results are expected to be obtained at each
iteration step, as all inputs together do have power over the whole time range.
This approach, similar to the approach described in [160], is therefore much better
suited for use in this study.
The unique contribution of an input needs to be recalculated each time after re-
moving one of the inputs. If two inputs are highly correlated, their unique con-
tribution is very small when both inputs are still present in the dataset. However,
when one of the inputs is removed, the unique contribution of the correlated in-
put can increase significantly. With this approach, an input that correlates strongly
with the MIR can be removed very early in the elimination process, if it also cor-
relates strongly with another input. This should be taken into account when
defining the selection criterion for the input elimination.
After the relevant inputs are selected, the model order is determined. As the
model still has relatively many inputs, which can also be partially correlated, sim-
ply trying out many different combinations of model orders would take far too
much computation time. Therefore a stepwise regression method is also applied
here. Instead of removing inputs, at each step one of the polynomial orders is
reduced. The selection criterion for this order reduction is then calculated and the
unique order contribution (uoci) is determined. The order reduction resulting in
the lowest unique contribution is applied and the process is repeated until none
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of the order reductions result in a unique contribution below a chosen threshold
(thuoc).
Using backward elimination, instead of forward selection, for order reduction,
ensures that the final polynomial orders do not exceed the orders used for input
selection. If the model analysis shows that a higher polynomial order is preferred,
rather than increasing a single polynomial order, the order of the polynomials for
all initial inputs should be increased and the input selection should be redone to
ensure a fair comparison of the input contributions.

Selection Criteria

To calculate the unique contribution of a variable, e.g., input or polynomial order,
two datasets, z f and ze, are used. The model parameters are fitted on dataset z f by
minimizing the prediction error. The fitted model is then evaluated by applying it
to dataset ze. If the prediction error is minimized by fitting the model parameters
to noise in dataset z f , evaluation of the model on a different dataset makes sure
that this does not inadvertently improve the selection criterion.
The selection criterion SC is chosen to compute the normalized weighted root
mean square error indicated as a percentage:

SC = 100 ·


1−

√
(MIRmeas −MIRmod)

T W (MIRmeas −MIRmod)√(
MIRmeas −MIRmeas

)T
W
(

MIRmeas −MIRmeas

)


 , (5.1)

where MIRmeas is a vector with the measured MIR, MIRmod is a vector with the
modeled MIR and MIRmeas the mean measured MIR over all time steps. Each
time step can also be given a weight via the diagonal matrix W, with the weights
(with mean weight of one) per time step on its diagonal. The criterion can have a
value between minus infinity, indicating a very poor fit, and hundred, indicating
no errors and thus a perfect fit. A criterion value of zero, indicates that the model
is not better than a straight line at a value of MIRmeas.
This criterion is first calculated for all inputs considered in a specific step, which is
indicated with SCinp0 . Next the criterion is calculated when one of the considered
inputs is removed, which is indicated with SCinpi , where i indicates the input that
is removed. The unique contribution of input i, is then calculated with:

uici = SCinp0 − SCinpi (5.2)

The unique input contribution thus indicates which percentage of the model fit
can be uniquely attributed to a specific input. This unique contribution is com-
pared to a predetermined threshold thuicp, which can be chosen based on the
model usage. If model simplicity is the most important, the threshold should be
set higher than when model accuracy is the most important. If all unique contri-
butions are above the threshold thuicp, the process is stopped and no more inputs
are removed.
For the order reduction process the unique contribution is calculated with:

uocp = SCord0 − SCordp , (5.3)
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where SCord0 indicates the value of the selection criterion for the model that is
considered in the current step, and SCordp is the selection criterion for the same
model, but where the order of polynomial p is reduced with one. Polynomial p
can indicate any of the polynomials, e.g., the response system polynomial A or
one of the input polynomials Bn, that at that point in the process has an order
higher than zero. The order reduction resulting in the lowest uoci is performed,
if the uoci is below a predefined threshold thuoc. The order reduction is stopped
if none of the unique contributions are below this threshold. Appendix C of this
thesis describes how the values for the thresholds thuic and thuoc were chosen,
based on simulations using synthetic datasets.
As indicated in Figure 5.5 there are some additional SI process parameters that can
be set. These parameters only influence the input selection and order reduction
process and are therefore discussed here. The first parameter is the weight vector
W used in Eq. (5.1), which in this study is set to one for each time step. If certain
time steps should be given more importance than other, because, for example, the
agreement between participants is higher for certain time steps then for others,
this weight can be varied. In Appendix D some options for this weight vector are
further explained. The second parameter is the boolean PANIC, which is set to one
in this study and further explained in the next paragraph.

Avoid Negative Input Contributions (ANIC) As mentioned in the beginning of
Section 5.3, one of the characteristics of the MIR is that it is always non-negative.
The inputs to the linear part of the model, the cueing errors, are expected to only
increase, rather than decrease, the MIR, as it seems illogical that cueing errors
improve the MCA quality. The parameter estimation that occurs in the input se-
lection process, however, can result in optimal parameters that cause large phase
shifts, resulting in a cueing error being modelled as decreasing the MIR. To have
the input selection result in more logical input choices, e.g., inputs that solely
increase the MIR, an SI parameter, PANIC, can be set to one to adjust the input
selection process.
During the input selection process the unique contributions of each input are
calculated and compared to the threshold thuic. At each iteration there can be
multiple inputs that have a unique contribution below this threshold, but when
PANIC = 0 only the input with the lowest unique contribution is removed. Setting
PANIC = 1 adjusts the selection process when multiple inputs have a below thresh-
old unique contribution. In this case, the models resulting from the removal of
each of these inputs are analysed. For each model, the number of inputs that have
a decreasing effect on the MIR (NNIC) is calculated. Instead of removing the input
with the lowest unique contribution, when PANIC = 1, the input that has a below-
threshold unique contribution, and of which the removal results in a model with
the smallest NNIC, is removed.
This process reduces, but does not eliminate all inputs with a decreasing effect
on the MIR, as this process only operates when multiple inputs have a below-
threshold contribution and the lowest NNIC can still be larger than zero. In Ap-
pendix D the influence of setting PANIC = 1 on the model fit is shown.
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5.3.3. Step 4: Parameter Estimation

The previous steps in the SI process should result in an ARX model definition
with a minimum number of inputs and minimum polynomial orders na and nb,
as well as estimated delays nk. The next step in defining the model is the param-
eter estimation.
For the parameter estimation in this study, the Matlab implementation of the pre-
diction error method using a least squares estimator is used. This estimator equals
the maximum likelihood estimator when the system noise is independent and
identically distributed (IID) Gaussian noise. For more information on the relation
between maximum likelihood and prediction error estimation, see Appendix E.
The measurements in this study, however, indicate that the system noise cannot be
described as IID Gaussian noise. To investigate the effect this has on the param-
eter estimation, a noise model was developed for the data in this study and used
to generate noise samples for synthetic datasets. The comparison between back-
estimation of random ARX model parameters when using IID Gaussian noise,
and noise from the developed noise model shows no significant difference in esti-
mated parameters. Therefore, the parameter estimates using the prediction error
method with least squares estimation are still assumed to be the maximum likeli-
hood estimates. More information about the noise modelling and back-estimation
results can be found in Appendix E.

5.3.4. Step 5: Model Explanatory Analysis

The previous steps in the SI process resulted in a parametrized model that maps
the vehicle and simulator motions onto the motion incongruence rating. To deter-
mine whether this model can be used to explain the rating observed in dataset z f e
the model explanatory analysis is done. This analysis includes the goodness-of-fit,
residual and uncertainty analyses. After the explanatory analysis, a decision can
be made to change the initial model orders and/or input delays and restart Steps
2-4 of the SI process. When the analysis shows that the model can explain the
measurements sufficiently, the SI process is done and a prediction analysis can be
performed using a new dataset, zp. This analysis, which is not used to alter the
model and therefore only discussed in Section 5.4, focuses on the main goal of
the model: how well can the model predict the MIR from solely the vehicle and
simulator motions?
In the following paragraphs the goodness-of-fit, residual and uncertainty analysis
are further explained.

Goodness of fit After a parametrized model is obtained, a goodness-of-fit can
be calculated by comparing the measured MIR to the simulated MIR obtained
with the parametrized model and the measured inputs. In this study the variance
accounted for (VAF) is used to quantify the goodness of fit of each model:

VAF = 100 ·


1− ∑((MIRmeas −MIRmod)

2

∑
(

MIRmeas −MIRmeas

)2


 (5.4)
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Similar to the selection criterion, the VAF can have a value between minus infinity,
indicating a very poor fit, and hundred, indicating no errors and thus a perfect
fit. A criterion value of zero, again indicates that the model is not better than a
straight line at a value of MIRmeas.

Negative input contributions The influence of each input on the modelled MIR
is analysed in the time domain, by analysing the input contributions over time,
which result from running each cueing error through their respective Bi

A polyno-
mial pair system. This analysis focuses on the possible negative contributions of
a cueing error to the model output. If a large negative input contribution is de-
tected, this is an indication that the model is not a realistic representation of the
underlying system.

Residuals If the model is indeed representing the underlying system correctly,
the prediction errors, also referred to as the residuals, should show the same char-
acteristics as the assumed system noise. In general the system noise of ARX mod-
els estimated with least squares estimators should be independent, homoscedastic
and normally distributed [161]. However, as explained in Section 5.3.3, the actual
system noise is probably heteroscedastic and non-normal. Appendix E showed
that violations of these noise assumptions do not influence the parameter esti-
mation significantly. Instead, therefore, the residuals will only be tested for their
independence of inputs and outputs.
If the residuals depend on their own past values or on input values, this means
that the information from the inputs and past outputs is not correctly captured
by the model. To correct for this, a first step can be to increase the polynomial
orders, where high autocorrelations usually relate to polynomial A and high cross-
correlations to polynomial B or incorrectly estimated delays. If very high orders
are needed to reduce the correlations sufficiently, it is possible that other model
structures than the ARX structure should be used. For example, if high orders for
polynomial A are needed, it is possible that an ARMAX structure, which includes
a moving average term, would describe the system better.

Uncertainty Analysis If the residuals have been shown to be independent of the
input and output, the uncertainty analysis can be performed. In this analysis the
covariance matrix of the parameters is used to investigate relations between pa-
rameters as well as the confidence intervals of each parameter. High correlation
coefficients between parameters of the same B polynomial, can give an indication
of wrongly estimated model orders, while high correlation between parameters of
different B polynomials relates to input correlations. Therefore, in case high cor-
relations are found, the model order should probably be adjusted. When the 95%
confidence intervals of the parameters are large, this can, for example, indicate
that the model order is chosen too high, or that the frequency of the signal related
to this parameter has low power.
From the uncertainties of the model parameters, also confidence intervals of each
Bi
A polynomial pair system are investigated. Large confidence intervals in certain
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Table 5.4: System identification process parameters.

Symbol Description Influence on model Value
in

this
study

thuic Unique contribution
threshold for input
selection

Lower value results in more
inputs being selected

0.2

thuoc Unique contribution
threshold for polynomial
order reduction

Lower value results in less
order reduction

0.2

W Time step weights used for
input selection and order
reduction

Can be used to give more
importance to the fit at
certain time steps such as
there where participant
ratings are in agreement

W1

PANIC Switch parameter to turn
on negative input
contribution avoidance in
input selection

Set to one this will result in
less inputs that give an
illogical negative
contribution to the output

1

frequency ranges can be an indication of low input power at these frequencies.
The model is therefore not expected to have a high prediction power for inputs
with high power in these frequency ranges.

5.3.5. SI Process Parameters

In Table 5.4 the SI process parameters discussed in the previous sections are
shown, together with their influence on the SI process and the values used in this
study. The values for thuic and thuoc are chosen based on the synthetic data results
discussed in Appendix C. Parameter vector W is set to provide equal weights for
all time steps, e.g., W = W1, and PANIC is set to one to avoid the selection of in-
puts that provide a negative contribution to the modelled output, see Appendix
D. To demonstrate the influence of these parameters on the model design pro-
cess, Section 5.5 will discuss results for the basic model with different values for
parameters W and PANIC.

5.4. Analysis

The model design procedure described in the previous sections aims to structure
the process of designing a simple model to describe the, for motion cueing, most
important features of the highly non-linear process of motion perception in vehi-
cle simulation and the corresponding rating behaviour. With this process, many
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different models can be designed, depending on the model and SI process pa-
rameters shown in Tables 5.2, 5.3 and 5.4. To analyse the SI process, three initial
parameter sets are chosen and the resulting three models are analysed using the
data from the experiment described in Chapter 2. In the following sections the
three parameter sets leading to three different models, the datasets and the anal-
ysis methods are further explained.

5.4.1. Models

The three parameter sets, named Basic, Additional Input (AI) and Cueing Error
Detection Algorithm (CEDA), were chosen to validate the SI process described in
the previous sections. These models are chosen as a baseline, to show the impact
of including derivatives and integrals of standard motion channels and also to
show the impact of adding the cueing detection algorithm in the non-linear part
of the model, respectively.
Each model used the SI process described in Section 5.3 to select the inputs, model
order and parameter values of the linear part of the model. All models use the
ARX structure for the linear part of the model. The only difference between the
linear part of the three models is the initial set of cueing errors, resulting from
choices made in the non-linear part of the model, to start the SI process with.
For each model the measured output is calculated as the median of the MIR over
all participants, the initial polynomial orders na and nb are set to four, and the
input delays are initially calculated via cross correlation between each input and
the model output for dataset z f e. The SI process parameter W is set to W1 such
that each time step is equally important in the fit criterion for input and order
selection. Parameter PANIC is set to one such that inputs with a negative input
contribution are less likely to be selected during the input selection process.

Basic The basic model is the simplest model derived from the general model
described in Section 5.2.3 and serves as a baseline. The initial input set includes
the cueing errors in the six standard motion channels: ax, ay, az, ωr, ωp and ωy.
The model has a non-linear part that only includes the absolute value calculation
of the difference between these vehicle and simulator motion inputs.
This model is most similar to the cost calculations, e.g., weighted sums of these
cueing errors, that are currently used in many MCA optimization algorithms. The
model differs from these cost functions in that it also contains dynamics. A static
weight measure of the relative importance between cueing errors derived from
this basic model could, for example, be the low-frequency (DC) gain for each
input-output pair.

Additional Inputs The model with additional inputs (AI) increases the model
complexity by simply adding integrals and derivatives of the cueing errors to the
initial input set of the basic model. The initial input set includes the cueing errors
in fifteen motion channels: ax, ay, az, ωr, ωp, ωy, vx, θr, θp, jx, jy, jz, αr, αp and αy.
Similar to the basic model, this model has a non-linear part that only includes the
absolute value calculation of the difference between these vehicle and simulator
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motion inputs.
Using cueing error weights derived from this model in a cost function for MCA
optimization, would require additional motion channels to be analyzed by the
cost function, but no additional non-linear calculations.

Including CEDA The third model includes not only the derivatives and integrals
of the standard cueing errors, but also uses the CEDA described in Chapter 4 to
distinguish between scaled (sc), missing (mc) and false cues ( f c) in the ax and ay
motion channels. The initial input set includes nineteen cueing errors: axsc , ax f c ,
axmc , aysc , ay f c , aymc , az, ωr, ωp, ωy, vx, θr, θp, jx, jy, jz, αr, αp and αy. This model
has a non-linear part that includes the CEDA and includes the absolute value
calculation of the difference between these vehicle and simulator motion inputs.
This model is highly non-linear due to inclusion of the CEDA, and cannot easily
be implemented as part of the cost function for MCA optimization.

5.4.2. Datasets

As mentioned in Section 5.3, the SI process makes use of four different datasets:
z f , ze, z f e and zp. Datasets z f and ze are used for input selection and order re-
duction and should contain different measurement noise, to avoid over-fitting.
Dataset z f e is used for parameter estimation and is a combination of the previous
mentioned datasets. Dataset zp should contain different input signals, and is used
to analyse the prediction capability of the model.
In this study, the total dataset z refers to the data obtained in the experiment pre-
sented in Chapter 2. Dataset z f e contains measurements from manoeuvres ‘Curve
Driving’ (CD) and ‘Braking/Accelerating’ (BA), each repeated with three different
MCAs: MCAscal , MCATRL and MCANL. These three MCAs cause global motion
scaling with a gain of 0.6, tilt-rate limiting to 1 [deg/sec] and large tilt-rates as no
limiting is applied, respectively. Dataset zp instead consists of data from the ma-
noeuvre ‘Braking, Curve Driving, Accelerating’ (BCDA) repeated with all three
MCAs, such that both z f e and zp contain power in the same cueing errors. Hence,
we expect the model fitted on z f e to predict the output in dataset zp.
Dataset z f contains MIR measurements from trials one and two, while dataset ze
contains measurements from trial three. The difference between these two datasets
should thus only be due to noise within participants. Another option could have
been to use different participants groups per dataset, rather than different trials.
However, the differences between participants are not expected to be solely due
to rating noise, but rather represent actual biological- or preference-related differ-
ences. As the goal of the model in this study is to predict a MIR that provides
insight in the average participant, each dataset should include as many partici-
pants as possible.
In Figure 5.6 the resulting measured median MIR, together with six cueing errors
(absolute differences between vehicle and simulator motion in channels ax, ay, az,
ωr, ωp and ωy) are shown for datasets z f , ze and z f e. In Figure 5.7 the same
information is shown for dataset zp.



126 5. Modelling Perceived Motion Incongruence

0 50 100 150 200 250 300
Time [s]

0

0.2

0.4

0.6

0.8

1

M
IR

Measured Median MIR
CD, MCAScal CD, MCATRL CD, MCANL BA, MCAScal BA, MCATRL BA, MCANL

z
f

z
e

z
fe

(a) MIR

0 50 100 150 200 250 300
Time [s]

0

2

4

6

8

10

M
ot

io
n

Cueing Errors
CD, MCAScal CD, MCATRL CD, MCANL BA, MCAScal BA, MCATRL BA, MCANL

a
x

a
y

a
z r p y

(b) Cueing Errors

Figure 5.6: Measured median MIR and six possible cueing errors (absolute differences between
vehicle and simulator motion in channels ax , ay, az, ωr , ωp and ωy) for datasets z f , ze and z f e.
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Figure 5.7: Measured median MIR and six possible cueing errors (absolute differences between
vehicle and simulator motion in channels ax , ay, az, ωr , ωp and ωy) for dataset zp.
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5.4.3. Methods

To investigate the validity of the models, three analyses are performed: the model
structure, the explanatory and the prediction analysis. The first analysis considers
the SI process outcome in terms of which inputs, model orders and delays are
chosen. The second analysis shows how well the model can describe the data that
were used for fitting the model, while the latter shows how well the model can
predict the average rating of a new dataset that was not used to design the model.

Model Structure Analysis In the model structure analysis the models that re-
sulted from the SI process when using the different initial SI parameter sets de-
scribed in Section 5.4.1 are introduced and the logic of the choices for input, order
and delays are discussed.
To give an indication of how important each input is for the model, two addi-
tional parameters per model input are calculated for each of the models: the
low-frequency (DC) gain (GDC) and the output contribution percentage (OCP).
The former could replace weights in a cost function for MCA optimization and
shows the relative importance of the cueing errors with the same unit. The latter,
instead, shows the relative importance of each cueing error for this specific rating,
irrespective of the unit, and is calculated with:

OCP = 100 · ∑T
t=0|IC|

∑T
t=0
∣∣ymod

∣∣ , (5.5)

where IC indicates the input contribution for one cueing error, calculated by mul-
tiplying the cueing errors with their respective A/B polynomial pair, t indicates
the time step and T the total time duration of the rating in this dataset.

Model Explanatory Analysis For the explanatory analysis, dataset z f e is used.
This analysis is similar to the analysis described in Section 5.3.4 and is split up as
follows:

• Goodness of fit

– The results of the model output fits to the average rating is shown.

– The goodness of fit is quantified with the Variance Accounted For.

• Negative input contributions

– The input contributions for each cueing error are shown per model.
The input contribution represents the cueing error after transformation
by its respective input-output polynomial pair.

– A visual inspection of the input contributions is done to determine if
the model results in illogical input contributions.

• Residual analysis

– The auto-correlation of the residuals and the cross-correlations the resid-
uals with the inputs is shown for a lag/lead of three seconds.
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– For the model to be valid, the correlations should not significantly ex-
ceed the 95% confidence interval.

• Uncertainty analysis

– The covariance matrix of the model parameters is shown to determine
if the correlation between parameters related to the same input channel
are sufficiently low.

– The parameter values and their 95% confidence intervals are shown to
indicate which parameter estimate should be trusted.

– Bode plots for each input-output polynomial pair, together with the
95% confidence intervals, are shown to indicate over which frequency
ranges the model is expected to be valid.

Model Prediction Analysis For the prediction analysis, dataset zp is used. As
this dataset was not used to fit the model, only the goodness of fit, negative input
contributions and residual analysis can be performed.
As the goal of the model is to predict the average rating over time from different
cueing errors, the most important analysis is the goodness of fit analysis.

5.5. Results

The initial model parameters introduced in Section 5.4.1 were used in the SI pro-
cess and analysed using the methods described in Section 5.4.3. In this section,
the results from these analysis methods are shown for all three resulting models.

5.5.1. Model Structure Analysis

In Figure 5.8 the block diagrams for each of the three models resulting from the
initial SI parameter sets described in Section 5.4.1 are shown.
The structure of the Basic and AI models are the same, but they have different
inputs. The CEDA model also has a different non-linear part, where the cueing
error detection algorithm is used to split the linear accelerations in x and y direc-
tion in three different types of cueing errors (scaled, missing and false cues).
In Table 5.5 the estimated polynomial orders, input delays, input/output DC gains
and the output contribution percentage (OCP) for each of these models are shown.
For the Basic model, the input selection resulted in the removal of longitudinal ve-
hicle motion related inputs ax and ωp, leaving the model with two sets of each
four inputs in total. The input selection for the AI model resulted in additional
cueing errors in jy and jz compared to the basic model, resulting in a model with
two sets of each six inputs. Finally the CEDA model, when compared to the Basic
model, also includes a cueing error in ωp, replaces ωy with θr and uses all cueing
error types of ay (aysc , ay f c , aymc ) instead of ay itself.
The optimal delays are similar between models for the same inputs and are mostly
below one second, with exceptions for aysc , ay f c , jy and θr. The cueing error types
for ay do show a clear difference between type and also with respect to the total
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cueing error ay used by the Basic and AI models. The scaled and missing cues
have a delay twice as large as the false cue and the total cueing error ay in the
other models.
The DC gains for the rotational velocities are between a factor five and ten lower
than those for linear motions, at least partly due to the differences in unit. An-
other interesting finding is the differences in DC gain between the different cueing
error types in ay. The missing cue has a gain of one and a half times the gain of
the scaled cue and the false cue a gain of almost two times the gain of the scaled
cue. This shows that for equal amplitudes, a false cue is twice as detrimental to
PMI than a scaled cue.
The importance of the different cueing errors for the rating in this dataset specif-
ically is calculated with the output contribution percentage (OCP), which shows
that for all models ay gives a large contribution to the modelled output, as well as
either ωy or θr.
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Figure 5.8: Model Structures.
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Table 5.5: Estimated Model Parameters

Model/Signal ay aysc ay f c aymc az jy jz θr ωr ωp ωy MIR nr. param

Polynomial orders A (MIR) and B (cueing errors)

Basic 3 2 1 2 4 12

AI 2 2 1 1 1 2 4 13

CEDA 1 2 2 2 2 1 1 2 13

Input delays per cueing errors

Basic 0.7 0.4 0.7 0.7

AI 0.8 0.4 1.8 0.1 0.7 0.7

CEDA 1.3 1.5 0.7 0.4 2 0.7 0.5

DC Gain per cueing errors

Basic 0.27 0.27 0.08 0.01

AI 0.18 0.05 0.35 0.90 0.06 0.02

CEDA 0.20 0.31 0.38 0.07 0.01 0.07 0.02

OCP per cueing errors

Basic 35 15 23 27

AI 23 9 11 11 14 32

CEDA 15 8 9 9 30 19 11
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Figure 5.9: Basic, AI and CEDA model fits to dataset z f e.

5.5.2. Model Explanatory Analysis

The explanatory analysis consists of the goodness of fit, the negative input contri-
bution, residual and uncertainty analysis. In Figure 5.9 the goodness of fit of all
models is shown. The goodness of fit is highest for the CEDA and lowest for the
Basic model, with a difference in VAF of 7.2% at the cost of one additional param-
eters. The AI model only yields an improvement in the fit of 3.2% compared to
the Basic model, at the cost of one additional model parameter. All models show
a better fit for the CD maneuvers than for the BA maneuvers. The increased VAF
for the CEDA model is mainly due to a better fit for the CD maneuvers.
To determine whether the input contributions make sense, i.e., cueing errors
should not decrease the PMI and thus increase the cueing quality, the input contri-
butions are shown in Figure 5.10. This figure shows that the Basic and AI models
use ωy to decrease the modelled rating at the beginning of each CD manoeuvre,
while the CEDA model does not show this (physically: flawed) relation between
cueing error and rating during these manoeuvres. To different degrees, all models
also show some negative contribution with az, mainly during BA with MCANL.
Figure 5.10 also shows that the increased rating during CD manoeuvres is cap-
tured by introducing ωy in the Basic and AI model, but with θr in the CEDA
model. The rating during BA manoeuvres is modelled with the cueing errors in
az by all models, and additionally by jz and ωp for the AI and CEDA models,
respectively.
In Figure 5.11 the auto-correlations of the residuals and cross-correlations of the
residuals with the inputs for each model are shown, in the left and remaining
subplots, respectively. None of the models result in residual correlations signifi-
cantly higher than the 95% confidence interval (CI). The cross-correlation between
residuals and input ωr, however, slightly exceeds the 95% CI around the three
seconds lag for all models, indicating that information in this input is possibly
not modelled completely.
In Figure 5.12 the results of the parameter uncertainty analysis are shown. In the
top plots for each sub-figure the parameters and their 95% CI are shown and in
the bottom plots the correlation matrix is shown. In Figure 5.13 the bode plots
for each Bi

A polynomial pair are shown for each model together with their 95% CI
resulting from the parameter uncertainty. The uncertainty analysis results show
that the parameters related to the same input at consecutive time steps always
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Figure 5.10: Input contributions per model for dataset z f e.
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Figure 5.11: Residual analysis per model for dataset z f e.
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Figure 5.12: Uncertainty analysis for model parameters.



136 5. Modelling Perceived Motion Incongruence

-100

-50

0

M
ag

ni
tu

de
 [d

B
]

ay

10-2 100

Frequency [Hz]

-200

0

200

P
ha

se
 [d

eg
]

az

Bode Diagram

10-2 100

Frequency [Hz]

r

10-2 100

Frequency [Hz]

y

10-2 100

Frequency [Hz]

CI Phase Phase + Delay Delay Phase

(a) Basic model.

-100

-50

0

M
ag

ni
tu

de
 [d

B
]

ay

10-2 100

Frequency [Hz]

-200

0

200

P
ha

se
 [d

eg
]

az

10-2 100

Frequency [Hz]

jy

Bode Diagram

10-2 100

Frequency [Hz]

jz

10-2 100

Frequency [Hz]

r

10-2 100

Frequency [Hz]

y

10-2 100

Frequency [Hz]

CI Phase Phase + Delay Delay Phase

(b) AI model.
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Figure 5.13: Bode plots for each Bi
A polynomial pair per model.
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Figure 5.14: Basic,AI and CEDA model prediction for dataset zp.

have a high negative correlation. This can be explained by the high correlation
between the neighbouring time steps themselves and is inherent for ARX model
structures. More interesting is that parameters related to different inputs do not
show high correlation. This indicates that the input selection process indeed re-
moved correlated inputs sufficiently.
Figure 5.13 indicates that cueing errors in az mainly lack low-frequency content,
while the polynomials for θr are most uncertain in the high frequency range. The
phase plots for az also show the phase delays which cause the negative contribu-
tion for this cueing error.

5.5.3. Model Prediction Analysis

The prediction analysis consists of the goodness of fit, the negative input contribu-
tion, and the residual analysis. In Figure 5.14 the goodness of fit for the prediction
of the rating in dataset zp is shown for each model. The prediction power of the
CEDA model is highest, the Basic model the lowest, with a difference in VAF of
17.2%. The AI model also has an improved prediction power with a difference in
VAF of 6.3% compared to the Basic model. The improvement of the CEDA model
is visible in all sections of the dataset, with MCATRL showing the best prediction.
The input contributions for dataset zp are shown in Figure 5.15. The input contri-
butions for dataset zp show similar effects as for dataset z f e, with mainly cueing
errors in ωy causing negative contributions with the Basic and AI models.
In Figure 5.16 the auto-correlations of the residuals and the cross-correlations of
the residuals with the inputs are shown for dataset zp. The autocorrelations of
the residuals show that not all information from previous outputs is captured by
any of the models. The large negative correlations visible for the AI and CEDA
models for inputs ay, ωr and ωy are due to incorrectly estimated delays, which
could also partly explain the observed autocorrelation of the residuals.

5.6. Discussion

In this chapter a generalized model design process for models that aim to predict
motion incongruence ratings was introduced. The design process consists of five
steps that should be iteratively followed. The process includes several parame-
ters and choices, such as initial input set, that result in different models. Three
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Figure 5.15: Input contributions per model for dataset zp.
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(c) CEDA model.

Figure 5.16: Residual analysis per model for dataset zp.
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representative models were constructed and the results for the model structure,
explanatory and prediction analysis were shown.

5.6.1. SI Process

The system identification (SI) process described in this chapter was set up to deal
with the inherent challenges of modelling PMI, caused by the characteristics of
the system that needs to be modelled and its corresponding inputs and outputs.
To deal with the selection of the many possible, often highly correlated, inputs,
an iterative input selection algorithm, based on backward elimination, was intro-
duced.
The criterion thresholds used for eliminating an input were chosen based on sim-
ulations, and a threshold resulting in a minimal amount of extra inputs, e.g., noise
fitting, was chosen. The uncertainty analysis of the model resulting from this SI
process showed that indeed no highly correlated inputs were selected for the fi-
nal models, indicating that the process works as expected. From the threshold
simulation analysis, however, it was shown that it is still possible that incorrect in-
puts are found, and that the number of incorrect inputs increases with increasing
number of actual system inputs. This effect can partly be explained by the low
input power in a wide range of frequencies, which is inherent to the experiment
set up where real vehicle motions are used. Increasing the size of the dataset and
its cueing error variability, however, is assumed to reduce the incorrect selection
of inputs, and make the process more robust.
For the input selection also the ANIC parameter was introduced, which provides
an additional cost for inputs that contribute negatively to the modelled output
when set to one. This input-output relation is undesirable as it infers that a cueing
error can improve cueing quality. In Appendix D the effect of setting the parameter
ANIC to zero is shown by the selection of an input that only contributes negatively
to the modelled output. Even though some partially negative input contributions
were found in the final models shown in Section 5.5, none of the inputs provided
a major negative contribution to the output, providing another indicator that the
models could indeed be representing the underlying system.
The low input power mentioned before, also influences the model order selection.
The generally used AIC method for selecting the polynomial orders was shown
to result in the over-estimation of the model orders. Instead a model order reduc-
tion algorithm, also based on backward elimination, was presented that resulted
in a much stricter order selection, causing less over-estimation of the model or-
ders. The criterion threshold was again chosen based on simulations, which also
showed the leniency of the AIC selection method. During the model analysis step
in the SI process, any order reductions that were too strict were corrected, result-
ing in final models that showed no significant residual/input cross-correlations.
When a model structure is chosen, the parameters in the linear part of the model
can be estimated. The ARX structure was chosen to represent the linear part of
the model, due to its simplicity and resemblance to the author’s basic idea of pro-
cessing cueing errors into PMI. Due to the many parameter estimation iterations
used in the SI process, the low calculation time of the linear least squares estima-
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tion method is desirable. However, the system that is modelled here violates the
noise assumptions that would make this estimator a maximum likelihood estima-
tor. Via simulations, using a developed noise model that imitates the real system
noise, it was shown that the violations do not result in significant departures from
the maximum likelihood estimation. However, the parameter estimation through
least squares is therefore reasonably assumed to be still close to the maximum
likelihood estimate. It should be noted, however, that some small differences be-
tween the noise model and the measured noise were visible. For future work it
is recommended to improve the noise model and confirm that the noise does not
significantly influence the parameter estimation.

5.6.2. Models

The goal of this study was to develop a general method to obtain a model that
can predict the Motion Incongruence Rating (MIR) from the vehicle and simulator
motions.
The developed general model structure and system identification process were
used to develop three models. The first model, the Basic model, resembles cur-
rent cost functions, in that it only maps the six linear acceleration and rotational
velocity motion channels onto the MIR. The second model, the Additional Inputs
(AI) model, differs from the Basic model by also allowing the SI process to select
cueing errors in the derivatives and integrals of these six motion channels as the
model input. Finally, the CEDA model includes the algorithm to split cueing er-
ror in a specific motion channel into scaled, missing and false cues, described in
Chapter 4, implemented in the non-linear part of the model.
Each of the models were fitted to a first dataset and used to predict the MIR of a
new dataset from the same experiment. To different degrees, each of the models
could explain and predict main features of the MIR.
The Basic model resulted in the lowest goodness of fit and prediction, with VAF
values of 85% and 68.7% respectively, and the CEDA model in the highest good-
ness of fit and prediction, with VAF values of 92.2% and 85.9% respectively. The
AI model resulted in a only slightly higher VAF of 88.2% for the goodness of fit,
while the prediction was considerably higher than that of the Basic model with a
VAF of 75%.
These results show that simply including additional motion cues as inputs to the
model, such as linear jerk, already improves the prediction power of the model.
For further improvements, however, a more sophisticated model is needed, i.e.,
one that takes into account the variable influence that cueing errors of different
types have on the MIR, such as done with the CEDA model.
The residual analysis showed that all models capture the information in the se-
lected inputs and previous output for the fit dataset adequately. Even though the
model predictions showed that the main features in the prediction dataset were
captured by all models, the residual analysis for this dataset shows that not all
information in the inputs and previous output is used accurately. As the uncer-
tainty analysis showed high uncertainties for some of the input-output pairs in
certain frequency ranges, it is likely that the prediction will improve when fitting
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the data to a larger and more variable dataset. Additionally, the prediction dataset
included both longitudinal and lateral motions at the same time, this interaction
was not present in the fit dataset and thus not modelled. Including interaction ef-
fects in the model would probably require additional algorithms in the non-linear
part of the model and would be interesting for further research.
Even though the size of the initial input sets differed largely, after the SI process
each of the three final models have a similar number of parameters, with the Basic
model having twelve and the AI and CEDA models each having thirteen param-
eters. The prediction power improvement of the AI and CEDA versus the Basic
model of 6.3% and 17.2% respectively, was thus obtained with only one additional
parameter.
The input selection resulted in lateral acceleration and roll rate being used by each
model to simulate a large part of the MIR during the curve driving (CD) manoeu-
vres. For the Basic and AI models the constant increase in MIR throughout the
curve is modelled with the yaw rate, while the CEDA model instead uses the roll
angle. The former is partly contributing negatively to the output, making the roll
angle the more logical choice. Additionally, the actual perceived yaw rate cue-
ing error during constant turns likely differs from the yaw rate cueing error used
here, as human perception of constant yaw rate decays over time [162, 163]. From
a physical point of view, therefore, it is not likely that the yaw rate cueing error
during manoeuvre CD as modelled here influences the PMI.
The CEDA model shows the best fit during the CD manoeuvres, mainly because it
distinguishes between the scaled, missing and false cues with the first two MCAs.
The scaled cue in lateral acceleration was estimated to have a DC gain of half that
of the false cue, indicating that for the same amplitude, a false cue is perceived as
twice as detrimental to the cueing quality than a scaled cue. The AI model tries
to simulate this difference instead with the higher lateral jerk obtained with the
second MCA. As this fit is clearly worse than the fit of the CEDA model, it is more
likely that the difference in cueing error type is the cause of the difference in MIR.
Surprisingly, the errors for the braking and accelerating (BA) manoeuvres are not
modelled with cueing errors in longitudinal acceleration, but instead with errors
in vertical acceleration, which are mainly caused by tilt-coordination. The AI and
CEDA models additionally explain the MIR during BA manoeuvres with the ver-
tical jerk and the pitch rate, respectively.
In general, it thus seems that during BA manoeuvres the rotation was causing
the increase in MIR rather than errors in longitudinal acceleration. This can be
explained by the low accuracy with which humans can extract longitudinal ac-
celeration from visuals [96] and the resulting large cueing errors in longitudinal
acceleration that are perceived as congruent. The rotation, however, is possibly
compared to the experience, rather than the direct visuals, which dictates that any
large perceived rotations are not realistic for car driving.
The fit during the BA manoeuvre is worse than during the CD manoeuvre with
all models, indicating that some improvements can be made here. On the one
hand, additional cueing errors can be calculated that take the human perception
during these kind of manoeuvre more explicitly into account. On the other hand,
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the cueing errors in the BA manoeuvre were much less pronounced, and a dataset
with larger cueing errors in the longitudinal motion channels, and thus a lower
signal to noise ratio, would possibly result in a better fit and prediction.
As one of the goals of predicting the MIR is to use this measure as a cost in
an optimization-based MCA, the models were chosen and analysed with this in
mind. The Basic model could be used to tune current cost functions by replacing
the motion channel weights with the DC gain for each of the cueing errors in this
model. Alternatively, the full model could be used to replace the cost function en-
tirely. It should be noted that the main interest for MCA optimization is the PMI,
and not the MIR which is modelled by the models. The rating system, represented
in this model by polynomial A, does therefore not have to be included in this cost
function.
For the AI model a similar implementation is possible, although it requires the
optimization algorithm to calculate errors in linear jerk as well as in linear accel-
eration. Due to the complexity of the CEDA it is more difficult, but not impossible,
to implement the CEDA model as a cost function for optimization-based MCAs.
Instead, it is easier to use the model to estimate the quality of an MCA off-line,
and aid in manual tuning of the algorithms. Optionally, the algorithm could also
be used to optimize specific MCA parameters off-line, by using the model in a
non-linear optimization algorithm.

5.6.3. Future work and recommendations

Due to the bottom-up approach of this method for developing PMI prediction
models, there are many possible representations for the black box system that is
the human perception of motion cueing quality in vehicle simulation. Moving
towards a grey box model by implementing knowledge on the human perception
system could reduce the number of possibilities and possibly also improve the
model prediction. It is therefore recommended to develop additional and more
accurate algorithms that can be implemented in the non-linear part of the model.
The current models were fitted on a small dataset with limited power in the differ-
ent cueing error inputs. It is therefore encouraged to apply the SI process to data
from a much larger and more variable dataset. As the continuous rating scale cur-
rently is linked to the experiment, where the maximum rating is anchored to the
maximum incongruence perceived during the whole experiment, it is somewhat
challenging to combine data from different experiments to gain larger datasets.
Chapter 6 therefore presents a way to combine data obtained from different ex-
periments, such that more accurate models can be developed.
Currently the linear part of the model uses an ARX structure. The author has
briefly tried applying different model structures, such as the ARMAX structure
where a moving average is included, but did not find any significant improve-
ments in the model fit and prediction or reductions of the number of parame-
ters. As this was only briefly investigated, and the choice for an ARX structure
is mainly based on an initial guess and for simplicity, it could be interesting to
investigate the effects of different model structures more thoroughly, and possibly
improve the model prediction further.
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For simplicity, the parameter estimation was done using a least squares estima-
tion method, but it was also shown the system noise violated the assumptions of
white Gaussian noise that make this estimator a maximum likelihood estimator.
Even though for the current dataset the system noise was shown to not have a sig-
nificant influence on the parameter estimation, it is advised to check this for any
future datasets as well and use a more suitable estimator if the noise assumption
violates significantly influence the parameter estimation.

5.7. Conclusion

In this study a method was developed to design a model that can predict the
motion incongruence rating (MIR) from the vehicle and simulator motions. This
method was applied to continuous rating data from a human-in-the-loop experi-
ment and is shown to produce models that were able to predict the main features
of the motion incongruence rating for similar manoeuvres in the same experiment.
The developed models could be used to tune cost functions for optimization-based
MCAs or to evaluate the MCA quality off-line, without human-in-the-loop exper-
iments. However, it is recommended to apply and validate the proposed model
design process to larger and more variable datasets for more accurate models.



6
Model Transfer Between

Experiments

This chapter introduces the Model Transfer Parameter (MTP) which can be used to make
PMI data obtained with different experiments comparable. This parameter can be used
for the between-experiment prediction analysis of Perceived Motion Incongruence (PMI)
models, or to aggregate data obtained with different experiments into larger datasets for
the development Perceived Motion Incongruences (PMIs) models. First, a validation of
the MTP estimation process is presented and used to estimate the MTP between data ob-
tained with experiments described in Chapters 2 and 3. This MTP is then used to analyse
the between-experiment prediction capabilities of different PMI models. The results show
that these capabilities strongly depend on the richness of the dataset to which the mod-
els were fitted. For rich datasets, these models have good between-experiment prediction
capabilities.

145
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6.1. Introduction

Predicting the cueing quality used for vehicle motion simulators can aid in im-
proving the cueing algorithms and reduce simulator motion sickness. A model
that predicts a measure related to the cueing quality, the Perceived Motion In-
congruences (PMIs) between vehicle and simulator motions, was introduced in
Chapter 5. As for any model, its predictive power strongly depends on the size
and variability of the dataset to which the model parameters are fitted. Being able
to combine data from different experiments to fit the models is therefore desired.
While the average PMI resulting from a matched set of simulator and vehicle mo-
tions is expected to be largely comparable between experiments, the rating scale
used for continuous rating of motion incongruence, by design, is not. Data ob-
tained from different experiments can thus in general not directly be compared.
In this chapter, a method is introduced to compensate for these rating scale dif-
ferences. The "model transfer parameter" that is estimated with this method can
be used to evaluate a model’s prediction power between datasets from different
experiments. Moreover, it allows for combination of data from different experi-
ments, which could lead to the development of more accurate and widely appli-
cable motion incongruence prediction models.
Subjective assessment of cueing algorithms for flight simulation is often done us-
ing categorical scales, such as the Cooper-Harper Handling Quality Rating Scale
[127], the Motion Fidelity Rating Scale [50], and the Simulator Fidelity Rating
Scale [164]. These scales can provide a good measure of the absolute simula-
tor fidelity when assessed by experienced evaluation pilots and can be used for
simulator classification. As with these calibrated rating scales an absolute mea-
sure of simulator fidelity is obtained, the results from different experiments are
directly comparable. When not using experienced evaluators, simpler question-
naires combined with, for example, Likert scales [38, 165], visual analogue scales
[36], or qualitative scales [61, 166] are often used. Not many studies exist where,
like in this chapter, the results are compared between experiments, but if done so,
as in [165], scale linking or aligning [167] can be used to make the corresponding
scales better comparable.
One type of scale linking is referred to as scale anchoring. In this procedure the
scales used in two different experiments are mapped onto a common scale by
equating the rating for anchor items that occur in both tests. This procedure can
be used if two experiments contain the same anchor items (e.g., reference condi-
tions), or if a third experiment is performed that contains items or conditions of
both experiments. The former is, for example, applied to compare results from
three simulator studies described in [165]. The latter is, for example, done in
[168], where the rating scales used in several different video quality experiments
are mapped onto the common scale of an additional anchor test.
With continuous rating of PMI, the rating scale minimum and maximum are per
definition anchored to the minimum and maximum PMI obtained throughout an
entire experiment. While most experiments will contain a similar minimum PMI
of zero, i.e., where both the visual and the physical motion cues are zero or match
perfectly, such as during a full stop, the maximum PMI generally differs, resulting
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in different scales for each experiment.
As the experiments used for this chapter, described in Chapters 2 and 3, do not
contain similar items, e.g., similar cueing errors, direct linking using anchors is
not possible. An option would be to perform a third experiment where cueing
errors similar to segments of both experiments are rated, but this would require
a lot of time, as it can be complex to combine these different sections in a realis-
tic experiment. Additionally, the rating of PMI is a dynamic process, where past
measurements influence future measurements, which makes it difficult to isolate
and compare specific items.
Another recently introduced procedure for scale linking was proposed in [169],
where the pain intensity scales of two different questionnaires were mapped onto
a common scale. This mapping was done by performing two estimations simulta-
neously: an estimation of the parameters of a model that relates the item responses
to the latent trait (pain intensity) and an estimation of the linking transformation
between scales. The linking here is possible because the two questionnaires both
contain some of the same items. In [170] a similar process, referred to as “cali-
brated projection”, is introduced. Here, instead of common items between ques-
tionnaires, some participants responded to items of both questionnaires.
In [168] the scale linking procedure using an anchor test is compared to a proce-
dure similar to calibrated projection. To achieve linked scales, two least squares
problems are solved iteratively: the first problem includes fitting the parameters
of a model relating video quality variables to the video quality rating, and the sec-
ond involves fitting the scale transformation parameters to map the scales from
different experiments to one common scale. In such a case, the link between dif-
ferent experiments is thus not made through equal items or equal participants,
but rather through similar model inputs, e.g., video quality variables.
In this chapter a process similar to the calibrated projected approach of [168] is
used to estimate the constant scaling factor, the Model Transfer Parameter (MTP),
to map PMI ratings (Motion Incongruence Rating (MIR)) from a first experiment
to the rating scale of a second experiment. The resulting MTP estimate is then
used to evaluate the across-dataset prediction power of models that were fitted to
the experiments described in Chapters 2 and 3. Additionally, the MTP estimate is
used to combine data from both experiments for the development of a more gen-
erally applicable MIR model.
In Section 6.2 first the datasets from the two experiments used in this study
are briefly summarized. The model transfer parameter estimation method is ex-
plained in Section 6.3. In Section 6.4 first the results of the MTP estimation for
the experiments in this study are shown, after which the use of the MTP for
analysing the prediction power of a model between experiments, and the use of
the MTP when combining datasets from different experiments to obtain more ac-
curate models, is shown. A discussion on the results is provided in Section 6.5,
followed by a conclusion in Section 6.6.
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6.2. Experiments

In this study the data from two previously described experiments are used: an
experiment performed at the CyberMotion Simulator (CMS) at the Max Planck
Institute, described in Chapter 2, and an experiment performed in the Daimler
driving simulator, described in Chapter 3.

6.2.1. CMS Experiment

The dataset obtained in the CMS experiment contains ratings from sixteen partic-
ipants, who all rated the PMI of a nine-minute vehicle motion simulation three
times. The simulation consisted of nine segments that each included a different
combination of one out of three manoeuvres and one out of three tested motion
cueing algorithms (MCA). The manoeuvres were as follows:

• CD: Curve Driving at 70 km/h, on a curve with a 257 meter radius and a
120 degrees deflection angle

• BA: Braking from 70 km/h to full stop and again Accelerating to 70 km/h
on a straight road

• BCDA: Braking from 70 km/h to 50 km/h while entering the curve, Curve
Driving at 50 km/h and Accelerating again to 70 km/h when exiting the
curve, on a curve with a 131 meter radius and a 120 degrees deflection angle

The MCAs were defined as follows:

• Scal: Scaling

– Motion scaling (gain=0.6), which leads to scaling and small rotational
rate errors (<4 deg/sec)

• TRL: Tilt-Rate Limiting

– Rotation rate limiting to 1 deg/sec, which leads to missing or false cues,
and very small rotational rate errors

• NL: No Limiting

– Neither tilt rate limiting nor scaling is applied, which leads to large
rotational rate errors (>8 deg/sec)

In Figure 6.1 the motion incongruence ratings and the introduced cueing errors
in linear acceleration and rotational velocity throughout the CMS experiment are
shown. The nine different segments are separated with vertical dotted lines and
the corresponding segment names, here shown as the horizontal axis labels, are a
combination of the manoeuvre (first line) and MCA (second line) abbreviations.

6.2.2. Daimler Experiment

The Daimler dataset also contains ratings from sixteen participants, who each
rated the PMI of a nine-minute vehicle motion simulation three times. The sim-
ulation consisted of a single simulated test track that included several different
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Figure 6.1: Motion incongruence ratings (a) and main cueing errors (b) during the CMS experiment.

manoeuvres, which was repeated with two different MCAs. The MCAs were a
classical washout-based MCA developed and tuned by Daimler, here referred to
the Daimler MCA, and an optimization-based MCA developed by the MPI for
Biological Cybernetics, here referred to as the MPI MCA.
The manoeuvres included in the track were as follows:

• Rural Curves (RC): drive over a rural road consisting of a large radius left,
right and left curve, during which a constant speed was maintained.

• Overtake (OT): double lane change manoeuvre at constant speed to avoid a
car parked on the right-hand side of the road.

• Slow Down (SD): upon entering an urban area the speed is initially reduced
from 100 to 70 km/h and then from 70 to 50 km/h.

• Traffic Light Deceleration (TLD): driving through a gentle curve and decel-
erating to a full stop in front of a red traffic light.

• Traffic Light Wait (TLW): standing still in front of the red traffic light for 6

seconds.

• Traffic Light Acceleration (TLA): accelerating from the full stop to 50 km/h
after the traffic light switched to green
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Figure 6.2: Motion incongruence ratings (a) and main cueing errors (b) during the Daimler
experiment.

• City 1 (Ci1): multiple gentle curves through the city at a constant speed of
50 km/h.

• Roundabout (Ro): decelerating to 20 km/h, driving through a four-exit
roundabout, exiting at the second exit and accelerating back to 50 km/h.

• City 2 (Ci2): multiple curves through the city at a constant speed of 50 km/h.

• Turn Left (TL): decelerating to 20 km/h, driving through a 90-degrees left
turn and accelerating back to 50 km/h.

• City 3 (Ci3): multiple gentle curves through the city at a constant speed of
50 km/h.

In Figure 6.2 the motion incongruence ratings and cueing errors in linear acceler-
ation and rotational velocity throughout the Daimler experiment are shown. The
different segments, each containing a different combination of manoeuvre and
MCA, are again indicated with vertical dotted lines. Each segment is indicated
with the manoeuvre name abbreviation (first line). The MCA name (second line)
is shown once for all manoeuvres. Due to the limited space on the horizontal axis,
the names of the traffic light manoeuvres are combined into TrL, representing
TLD/TLW/TLA.
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Figure 6.3: General structure of a MIR model consisting of a perceptual system (the PMI model) and
a response system (the Rating model).

6.3. Model Transfer Parameter

In this section the need for the model transfer parameter, as well as the method
used for its estimation, are explained in detail. First a short description of the
models and their identification process, initially introduced in Chapter 5, is given,
after which the need for the MTP due to differences in rating scales between exper-
iments is further explained. Finally, the estimation of the MTP using an iterative
process similar to those introduced in [165], [169] and [170], is explained. As a
sanity check, this MTP estimation method is validated in Appendix F, by applying
it to a set of data all obtained within one experiment, where the MTP should, per
definition, be unity. Additionally, to explain why this relatively complex parallel
method is used, the parallel method is compared to a simpler serial estimation
method.

6.3.1. MIR Model

As introduced in Chapter 2, the considered general Motion Incongruence Rating
(MIR) model is a combination of a PMI model and a rating model as shown in
Figure 6.3.
The PMI model consists of the calculation, filtering, weighing and summation of
different cueing errors. The rating system outputs the modelled MIR by pass-
ing the PMI through a low-pass rating filter (RF) after adding noise. The system
identification process explained in Chapter 5 is used to select the inputs and filter
orders and estimate the model parameters.
Different models can be derived by adjusting the model choices and the SI process
parameters. The initial parameters and choices of the three models, Basic, Addi-
tional Inputs (AI) and Cueing Error Detection Algorithm (CEDA), all introduced
in Chapter 5, are also used in this chapter. However, as the SI process is applied to
different datasets in this chapter, the resulting final models will differ from those
reported in Chapter 5.
The three sets of initial model choices and parameters used in this chapter are as
follows:

• Basic:

– Motion channels: linear acceleration (ax, ay, az) and rotational velocity
(ωr, ωp and ωy).
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– Cueing error calculation: absolute difference between vehicle and sim-
ulator motions.

• Additional Inputs (AI):

– Motion channels: linear acceleration (ax, ay, az), rotational velocity (ωr,
ωp, ωy), longitudinal velocity (vx), roll and pitch angle (θr, θp), linear
jerk (jx , jy, jz) and rotational acceleration ()αr , αp, αy).

– Cueing error calculation: absolute difference between vehicle and sim-
ulator motions.

• Cueing Error Detection Algorithm (CEDA):

– Motion channels: scaled, missing and false cues in longitudinal and lat-
eral acceleration (axsc/mc/ f c , aysc/mc/ f c ), vertical acceleration (az), rotational
velocity (ωr, ωp and ωy), longitudinal velocity (vx), roll and pitch angle
(θr, θp), linear jerk (jx , jy, jz) and rotational acceleration (αr , αp, αy).

– Cueing error calculation: absolute difference between vehicle and sim-
ulator motions and an additional split in false, missing and scaled cues
in lateral and longitudinal acceleration, calculated with the CEDA de-
scribed in Chapter 4.

6.3.2. Rating scales

The rating model for the experiments in this study, shown in Figure 6.3, should
describe the rating system adopted with the continuous rating method. The rating
system can, for example, be influenced by the rating device, e.g., rating devices
with lower input resolution will result in a less accurate and less smooth ratings
over time.
A more pronounced difference between rating systems of different experiments,
however, is the rating scale. The rating scale for continuous rating is anchored to
the minimum and maximum motion incongruence perceived during the exper-
iment. This means that the maximum rating in one experiment, does not nec-
essarily have the same meaning, or correspondence to the same PMI value, as a
maximum rating in another experiment. Comparing rating data from two experi-
ments therefore requires at least a rescaling of one of the ratings.
Before explaining this scale adjustment, first several assumptions on the rating
system and scale are made:

• The minimum rating of zero is anchored to parts of the simulation where
no simulator and no vehicle motion is present and thus by definition no dis-
crepancies between vehicle and simulator motion are present. As this occurs
in basically any realistic driving simulation (for example, at the start and
the end of the simulation) this anchor can be assumed to be equal between
experiments.

• The rating scale linearly increases between the minimum and maximum
rating with increasing perceived motion incongruence.
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Figure 6.4: Example of applying an MTP to map ratings from two experiments to the same PMI scale.

• The rating dynamics are similar between the experiments used in this study.
For example, no significant differences in rating dynamics due to, for exam-
ple, different rating devices are assumed.

As the final MIR ranges between zero and unity, in case the maximum PMI differs
between experiments, the same MIR value will correspond to a different PMI
value. In Figure 6.4 the mathematical relation between MIR and PMI is shown
with the continuous lines.
To account for this difference in rating scale, the Model Transfer Parameter (MTP)
is introduced:

MTP =
max (PMI1(t))
max (PMI2(t))

(6.1)

where PMI1 and PMI2 indicate the PMI present during a first and a second exper-
iment. For the example of Figure 6.4, during Experiment 1 a maximum PMI of
about 70 and during Experiment 2 a maximum of 110 fictional units was present.
By scaling the rating from Experiment 1 with the MTP, the scales for both exper-
iments are mapped onto a common scale, i.e., the scale from Experiment 2, as
indicated with the striped line in Figure 6.4.
Prediction of the MIR based on a model derived from the data of Experiment 1

should thus be rescaled with the MTP in order to be compared to the MIR ob-
tained in Experiment 2. Note that the choice for the scale of Experiment 2 to be
the common scale is arbitrary, i.e., any scale can be used as a common scale to
which the ratings of both experiments will be mapped. Using one of the existing
scales as a common scale, however, requires only one MTP for rescaling.
The MTP should thus account for differences in rating scales, but an MTP differ-
ent from unity should not increase or decrease the system noise. In the model
block diagram in Figure 6.3 the MTP should therefore apply just before the noise
enters the system. In this chapter, however, the multiplication is applied to the
model input directly, for practical reasons. In the results shown in Section 6.4, the
MIR data are therefore presented as it was measured during the experiments, i.e.,
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unscaled, with values between zero and one. To test the predictive power of an
estimated model, this model is first fitted to a first dataset and the estimated MTP
is used to apply the model to a second dataset. When combining two datasets
from different experiments, the inputs of the second experiment are multiplied
with the estimated MTP before fitting a model to the combined dataset.

6.3.3. MTP Estimation Process

The model transfer parameter is estimated using an iterative process. First, using
the SI process described in Chapter 5, a MIR model is fitted to data from two
experiments, where the input data from the second experiment are first multiplied
with an MTP. Second, the MTP is adjusted and a new model is found by repeating
the SI process with this new MTP. An optimal MTP is found using a gradient-
descent method that minimizes the sum of the prediction error of the model fit.
Ideally, the MTP estimation process can be applied once to the complete dataset,
i.e., including all segments of both experiments, using a global search algorithm
to find the best MTP estimate. Practically, however, this is not the most effective
method as the following needs to be considered:

• Robustness

– To avoid over-fitting and to ensure that the MTP estimate is not bi-
ased by differences between experiments other than the rating scale,
the estimation should be repeated using different SI process inputs and
outputs and an average MTP should be used as the final estimate.

� Repeat the MTP estimation with different models, e.g., initial model
choices and parameters, for the estimation process.
� Repeat the MTP estimation with different subsets of segments from

both experiments.

– The adopted search algorithm cannot distinguish between global and
local minima. To reduce the effects of finding local minima on the
average MTP estimate, the initial MTP should be randomized for each
estimation.

• Computation time

– A global search method would require months of computation as dur-
ing each iteration the whole SI process is repeated. Instead, for this
study, a simplified gradient-descent search method is adopted.

– As the PMI can only contain positive values, the MTP does as well. To
decrease the search space, a constrained optimization, allowing only
MTPs above zero, is therefore used.

– To further decrease computation time, the initial MTP used by the
search algorithm should be close to an initial estimate of the MTP. This
initial estimate can for example be obtained by fitting a simple model to
the first dataset and searching for the MTP resulting in the lowest pre-
diction error when applying the model and MTP to the second dataset.
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Therefore, instead of estimating the MTP only once, the MTP estimation process
is repeated for different combinations of the following inputs.

• Set of initial MIR model parameters and choices, described in Chapter 5,

• Data subset pair, where each part of the pair includes a subset of the in-
put/output data in one experiment, and

• Randomized initial MTP that is in the order of the initial estimate of the
MTP.

The final output of the MTP estimation method is the median over all MTP esti-
mates resulting from the different combinations of these inputs.
The reliability of the MTP estimation strongly depends on how well the MIR
model fits to the data, which is why only reasonable model choices and SI process
parameters should be used. In this study the three sets of initial model choices
and parameters, Basic, AI and CEDA, described in Chapter 5, are used. The differ-
ent subset pairs were chosen to each contain input power similar to the complete
dataset. In total 20 different subset pairs were used, each containing at least 29 of
the 32 segments present in the two experiments,
An initial MTP estimate using the two complete datasets was found to be 0.8. To
minimize the computation time the randomized initial MTP was kept close to this
estimate by bounding the randomization between 0.1 and 2.
The MTP estimation method was applied to each of the three models with 20

different subset pairs using one randomized initial MTP estimate, resulting in 60

MTP estimations. The median of these 60 MTP estimations is then taken as the
resulting MTP estimate between the two experiments.
In Appendix F a detailed validation of this method is presented. Additionally,
the parallel estimation method described in this chapter is compared to a simpler
serial estimation method, which shows to be less accurate but has a much faster
computation time.

6.4. Results

In this section, first the results of the MTP estimation are presented, after which
two different uses of the model transfer parameter are demonstrated. The use of
the MTP for analyzing the prediction power of a model between two experiments
is shown first. Secondly, the MTP estimate is used to combine the datasets from
both experiments to obtain a more accurate and widely applicable MIR model.
In this section, the Variance Accounted For (VAF) values of each model on the
fit and prediction datasets are shown, together with the input contributions to
the modeled output of each of the different cueing errors accounted for in the
model. Additionally, in Appendix G the model structure, residual and uncertainty
analyses for all three fitted models are presented.

6.4.1. MTP Estimation

Using the MTP estimation process described in Section 6.3.3, the MTP mapping
the CMS experiment rating scale onto the rating scale of the Daimler experiment
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was estimated. In Figure 6.5 the results for the MTP estimation are shown in a
boxplot, which shows the 60 MTP estimates discussed in Section 6.3.3.
The MTP estimate, the median MTP over all different estimates, is 0.84. Given
that the MTP is equal to the maximum PMI ratio between two experiments, this
MTP estimate indicates that the maximum PMI was higher during the Daimler
experiment than during the CMS experiment.

6.4.2. Between-Experiment Prediction

Predicting the PMI of a second experiment with a model fitted to a first experi-
ment can, naturally, be done without the use of the MTP. However, if verification
of this prediction is required, and given that during an experiment only the MIR
can be measured, the MTP is needed to map the MIR to the same scale as the one
used for the model prediction.
In this section, three models, the Basic, AI and CEDA models, are fitted to both
the CMS or the Daimler experiment dataset, after which the predictive power of
the resulting models is analysed using the dataset of the other experiment. As the
determined MTP of 0.84 maps the CMS rating scale onto the Daimler rating scale,
a model made using the CMS dataset should be multiplied with the MTP before it
can be used to describe the Daimler dataset. The inputs of the Daimler prediction
dataset are therefore first multiplied with the MTP of 0.84, while the inputs of the
CMS prediction dataset are instead multiplied with its inverse, before they are put
through the MIR models.

CMS Data Results

In this section the results of models fitted to the dataset of the CMS experiment
and their prediction for the data from the Daimler experiment are shown. Ad-
ditionally, in Appendix G.1 the model structure, the residual and the uncertainty
analyses are presented. Figure 6.6 shows the output of the models fitted to the
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CMS experiment dataset and Figure 6.7 shows the predictions obtained with these
models for the Daimler experiment dataset.
Figure 6.6 shows that, consistent with Chapter 5, the fit improves with complexity
of the model, where the simplest model (the Basic model) has a VAF of 77%, the
AI model improves the VAF with 7.2% and the most complex model, the CEDA
model, further improves the VAF with 13.2%. The largest difference between the
CEDA model and the Basic and AI models is seen during the CD and BCDA ma-
neuvers for MCA Scal. Additionally, peaks during the same maneuvers for MCA
TRL and MCA NL are slightly less underpredicted with increasing model com-
plexity.
Figure 6.7 shows that these models fitted to the CMS experiment dataset can pre-
dict most features of the ratings given during the Daimler experiment as well.
However, the VAF values for the prediction of the Daimler data are 9.1%, 24.7%
and 13.1% lower for the Basic, AI and CEDA models, respectively. While the
model fit improves with increasing model complexity, the VAF of the predictions
only improves for the CEDA structure (9.1% increase compared to Basic model),
while the prediction becomes less accurate when only the additional cueing er-
rors are included (AI model, 8.4% decrease). The main differences between the
Basic and CEDA models can be observed in the prediction of the roundabout (Ro)
maneuver for the MPI MCA in Figure 6.7, where the Basic model predicts a large
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overshoot, and during the rural road curves (RC) for both MCAs, where the Basic
model underpredicts the ratings. The AI model does not underpredict this ma-
neuver with the MPI MCA, but does so for the Daimler MCA. None of the models
correctly predict the rating during the deceleration and acceleration at the traffic
light (TrL). During the left turn (TL) maneuver all models show an overshoot for
the MPI MCA.
In Figures 6.8 and 6.9 the contributions of all of the inputs, i.e., the different cueing
errors, to the total output for each model are shown, when applied to the CMS
and the Daimler experiment datasets, respectively.
Figures 6.8(a) and 6.9(a) show that the Basic model contains some negative in-
put contributions due to the yaw rate cueing error. Negative input contributions
would imply that a cueing error in fact improves the cueing quality, which is un-
likely and thus a modelling artefact. For the CMS experiment dataset to which
these models were fitted, the yaw cueing error has a shape that resembles the roll
angle cueing error. The roll angle error, only a possible input in the AI and CEDA
models, seems to be a more likely input, as Figures 6.8(b), 6.8(c),6.9(b) and 6.9(c)
show that including this error does not result in any negative input contributions.
Figures 6.8(b) and 6.9(b) show that the AI model does have small negative input
contributions for the lateral acceleration. Splitting the lateral acceleration cueing
error in three different cueing errors, the main difference between the AI and
CEDA models, reduces these negative input contributions of this cueing error.
While for the CMS dataset the PMI during longitudinal accelerations was mod-
elled with the cueing error in vertical acceleration (Basic and AI models) or pitch
angle (CEDA model), Figure 6.9 shows that these cueing errors have close to no
power in the Daimler experiment dataset during manoeuvres with longitudinal
acceleration, such as the “slow down” (SD) and “traffic light” (TrL) manoeuvres.
Figure 6.2 shows that, instead, these manoeuvres with the Daimler MCA have
power in the longitudinal acceleration cueing error, which is not included in any
of the models fitted to the CMS experiment dataset. This largely explains why
these manoeuvres with the Daimler MCA are underpredicted.
While many different cueing errors contribute to the model outputs for the CMS
dataset, Figure 6.9 shows that most of the rating data for the Daimler MCA are in
fact modelled with the lateral acceleration cueing error. For the CEDA model, the
dominant contribution is seen to be the missing cue in lateral acceleration, while
the corresponding false and scaled cues have much smaller contributions. Other
cueing errors that have noticeable contributions are those in roll and yaw rate for
the Basic model, and the errors in roll rate and lateral jerk for the AI model, par-
ticularly during the roundabout and left turn manoeuvres, see Figure 6.9. The
CEDA model uses cueing errors in roll rate to model these manoeuvres when the
MPI MCA is used.
Figure 6.9 shows that the AI and CEDA models both describe the ratings during
the Rural Curves (RC) manoeuvre using the MPI MCA, see Figure 6.9 around 50

sec, with the roll angle. The underprediction of the rating during this segment by
the Basic model, is a direct result of the lack of the roll angle error in this model.
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(b) AI model.
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Figure 6.8: Input contributions of the Basic, AI and CEDA models, each fitted and applied to the
CMS experiment dataset.
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Figure 6.9: Input contributions of the Basic, AI and CEDA models, each fitted to the CMS and
applied to the Daimler experiment dataset.
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Figure 6.10: Outputs of Basic, AI and CEDA models, fitted and applied to the Daimler experiment
dataset.
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Figure 6.11: Predictions of the Basic, AI and CEDA models, fitted to the Daimler experiment dataset,
and applied the CMS experiment dataset.

Daimler Data Results

In this section the results of models fitted to the complete dataset of the Daimler
experiment and their prediction for the data from the CMS experiment are shown.
Additionally, in Appendix G.2 the full details of the corresponding model struc-
ture, residual and uncertainty analyses are presented. The overall model fits to
the Daimler experiment data are shown in Figure 6.10 and the model predictions
for the CMS experiment data are shown in Figure 6.11. While Figure 6.10 shows
that also for the models fitted to the Daimler experiment dataset the VAF in-
creases with increasing model complexity, the differences here are marginal, with
increases in VAF of only 1.2% and 2% for the AI and CEDA models, respectively,
as compared to the Basic model. The main difference between model fits can be
seen in the modelling of the Rural Curves (RC) manoeuvre when using the MPI
MCA, where only the Basic model again underpredicts the rating. The models
can all explain a large part of the rating, but underestimate the rating during the
Over Take (OT), Slow Down (SD) and Traffic Light (TrL) manoeuvres when using
the Daimler MCA.
Figure 6.11 shows that the CMS experiment rating is poorly predicted by the
models fitted to the Daimler experiment data, with VAF values of 43.6%, 48%
and 52.1% for the Basic, AI and CEDA models, respectively. While hardly any
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difference in fit was found between the models, the prediction power does dif-
fer considerably, with a VAF increase of almost 9% between the Basic and CEDA
models. The predicted rating during the false cues of the CD and BCDA manoeu-
vres is around 1.5 times higher with the CEDA than with the Basic and AI models.
During the BA manoeuvres all models predict very different ratings. While the
Basic model predicts an increased rating for all MCAs, the AI model predicts
only an increase when using MCA Scal or MCA TRL, and the CEDA model only
predicts an increase for MCA TRL. All models, however, predict the measured
ratings poorly, as the highest rating for this manoeuvre occurs when using MCA
NL.
In Figures 6.12 and 6.13 the input contributions for each model are shown when
applied to the Daimler and CMS experiment dataset, respectively. None of the
models use negative input contributions and all models use the cueing error in
lateral acceleration to model most of the rating, especially with the Daimler MCA.
The MIR during Slow Down (SD) and Traffic Light (TrL) manoeuvres, when using
this MCA, are modelled with the cueing error in longitudinal acceleration. Figure
6.13, however, shows that contributions of these cueing errors for the CMS exper-
iment dataset result in a poor prediction, especially during the BA manoeuvres.
For the Basic model, the vertical acceleration also contributes to these large predic-
tion errors. The CEDA model has a smaller prediction error than the Basic model
during these manoeuvres, as only the missing cue in longitudinal acceleration
contributes.

6.4.3. Combined Experiment Fitting

With the combined dataset, including the original data from the CMS experiment
and the data from the Daimler experiment that was rescaled with the MTP of 0.84,
a new, overall more accurate, model can be fitted. Here the system identification
process presented in Chapter 5 with the initial model choices and parameters of
the three models, Basic, AI and CEDA, are again applied. As all currently avail-
able continuous rating data are used for the system identification, only the model
fit and not the between-experiment prediction power can be shown. A prediction
analysis can then only be performed when more data are available. The model
fits are shown in Figures 6.14 and 6.15 for the CMS and Daimler experiment data,
respectively. Figure 6.14 shows that a higher complexity of the combined models
again results in increasing VAF values when applying them to the CMS exper-
iment dataset alone, with the CEDA model having a VAF value that is 16.7%
higher than the VAF value obtained for the Basic model. The Basic and AI mod-
els overpredict the rating during the CD and BCDA manoeuvres with MCA Scal
much more than the CEDA manoeuvre, likely because the scaled cues in lateral
acceleration, mainly present in these segments, are weighed differently from the
missing and false cues when using the CEDA model. The BA manoeuvre with
MCA TRL is overpredicted by the Basic and CEDA models.
The longitudinal acceleration maneuvers in the Daimler experiment dataset, shown
in Figure 6.15 are instead underpredicted by all three models. This figure also
shows that for the Daimler experiment dataset the VAF values do not show a
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Figure 6.12: Input contributions of the Basic, AI and CEDA models, each fitted and applied to the
Daimler experiment dataset.
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(b) AI model.
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Figure 6.13: Input contributions of the Basic, AI and CEDA models, each fitted to the Daimler and
applied to the CMS experiment dataset.
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Figure 6.14: Outputs of Basic, AI and CEDA models, fitted to the combined CMS-Daimler dataset
and applied to the CMS dataset.
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Figure 6.15: Outputs of Basic, AI and CEDA models, fitted to the combined CMS-Daimler dataset
and applied to the Daimler dataset.
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Table 6.1: VAF values per model when applied to either the fit or the prediction dataset. C stands for
the CMS and D for the Daimler experiment dataset.

Fit Dataset

CMS Daimler CMS-Daimler

Model Fit (C) Pred. (D) Fit (D) Pred. (C) Fit (C) Fit (D)

Basic 77.02% 67.91% 83.28% 43.62% 63.21% 79.13%

AI 84.20% 59.47% 84.51% 47.97% 68.27% 78.60%

CEDA 90.26% 77.13% 85.30% 52.05% 79.95% 83.32%

noticeable increase with added model complexity: the differences between the
models are much smaller (max: 4.7%) than for the CMS experiment dataset.
In Figures 6.16 and 6.17 the input contributions for each of the models fitted to the
combined dataset are shown for the datasets from the CMS and Daimler experi-
ment, respectively. None of the cueing errors provide negative contributions to
the modelled rating for any of the models. The cueing errors in lateral acceleration
clearly represent the dominant contribution to the modelled rating for all models.
The addition of the cueing error in roll angle for the AI and CEDA models also
contributes to the fit, mainly during rural road curves when using the MPI MCA,
and reduces the weight of the cueing errors in vertical acceleration by replacing
part of its contribution during the CD and BCDA manoeuvres in the CMS exper-
iment.
To compare the results of the combined models with the models fitted to the indi-
vidual CMS and Daimler datasets, Table 6.1 shows the VAF values of all models
applied to either their fit or their prediction dataset. The VAF values of the com-
bined models are all higher than the VAF values of the prediction of the other
models, but lower than the VAF values of the fits of the models fitted to one
dataset only. The differences between fit and prediction VAF values for the latter
models are on average 15.65% and 36.48% for models fitted to the CMS and Daim-
ler experiment dataset, respectively. This differences between VAF values of the
CMS and Daimler datasets is reduced to on average 9.88% when fitting the mod-
els to the combined dataset. In Figure 6.18 the VAF values of each model when
applied to the combined dataset are shown, while the corresponding number of
parameters are listed in Table 6.2.

Figure 6.18 shows that the VAF values of all models increase when fitting to
the combined dataset as compared CMS experiment dataset (VAF increases of
1.85%, 5.94% and 0.04% for the Basic, AI and CEDA models, respectively) and as
compared to the Daimler experiment dataset (VAF increases of 4.62%, 3.80% and
9.00% for the Basic, AI and CEDA models, respectively).
Table 6.2 shows, however, that the VAF increases with respect to fitting to the
Daimler dataset come at a cost of a larger number of model parameters, i.e., re-
spectively, 2 and 6 parameters more for the Basic and the AI and CEDA models.
The increases in VAF compared to fitting to the CMS dataset for the Basic and AI
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(c) CEDA model.

Figure 6.16: Input contributions of the Basic, AI and CEDA models, fitted to the combined
CMS-Daimler dataset and applied to the CMS dataset.

Table 6.2: Number of parameters per model

Fit Dataset

Model CMS Daimler CMS-Daimler

Basic 11 7 9

AI 13 6 12

CEDA 13 8 14
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(c) CEDA model.

Figure 6.17: Input contributions of the Basic, AI and CEDA models, fitted to the combined
CMS-Daimler dataset and applied to the Daimler dataset.
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CMS-Daimler (yellow) dataset, when applied to combined CMS-Daimler dataset
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models, instead are obtained with, respectively, 2 and 1 parameters less. The very
small (< 1%) increase in VAF for the CEDA model comes at a cost of 1 model
parameter.
The additional parameters are mainly due to more cueing errors being included
in the models when fitting to the combined dataset. This indicates that especially
the Daimler dataset lacks power in certain cueing errors, which results in simpler,
but less widely applicable models.

6.5. Discussion

A method for comparing continuous ratings of Perceived Motion Incongruence
(PMI) obtained from different experiments was introduced. As the considered
MIR rating scale is anchored to the PMI range in a specific experiment, the main
challenge is to transfer the PMI ratings from these different experiments onto a
common scale. For this scale transfer, a method was developed to estimate the
Model Transfer Parameter (MTP), which can be used to map the ratings from one
experiment onto the scale of a second experiment.
Using this MTP, the prediction power of different models, fitted to two differ-
ent experiments and using three different initial model parameter settings, Basic,
AI and CEDA, was analysed. Additionally, the MTP was used to combine data
from two experiments into a large dataset to which also three different models
were fitted. For all analyses, the datasets collected in the CMS and the Daimler
experiments, described in Chapters 2 and 3, respectively, were used.

6.5.1. MTP estimation

The MTP estimation method optimizes the model fit to a dataset containing data
from two different experiments, via iteratively adjusting the model parameters
and the MTP. The estimation method results in a set of MTP estimations by fit-
ting multiple models, i.e., the Basic, AI and CEDA models, to different sections
of the total dataset, i.e., combinations of segments with similar input power. By
repeating the MTP estimation under different conditions and averaging over these
estimations, the risk of over-fitting, and thus obtaining an MTP estimate that ac-
counts for more than just the scale differences, is reduced.
The MTP that can be used to map the ratings of the CMS to the ratings of the
Daimler experiment was estimated to be 0.84. This indicates that the maximum
PMI during the Daimler experiment was larger than during the CMS experiment
and that the motion cueing quality during the former was thus lower. This finding
is supported by the fact that two out of 18 participants had to quit the Daimler
experiment due to motion sickness, while none of the participants became sick
during the CMS experiment.

6.5.2. Between Experiment Prediction

Using the MTP estimated with the MTP estimation method, the predictive power
of models fitted to both the CMS and Daimler datasets was analysed. To each
dataset, three models (the Basic, AI and CEDA models) were fitted. The model
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fits improved with increased model complexity, with VAF values between 77%
and 90.3% and values between 83.3% and 85.3% for models fitted to the CMS and
Daimler experiment data, respectively. The difference between the models fitted
to the Daimler experiment dataset was found to be notably smaller (differences in
VAF values of up to 2.0%) than those fitted to the CMS experiment dataset (dif-
ferences in VAF values of up to 13.2%). This can be explained by the difference in
cueing error diversity between these two experiments. The CMS experiment was
deliberately set up to include many different types of cueing errors, while the cue-
ing errors in the Daimler experiment were generally very small for the MPI MCA,
and were mainly caused by missing cues in lateral acceleration for the Daimler
MCA. This explains why the benefits of including additional cueing errors in the
more complex models were not reflected by the attained model fits.
Applying the models fitted to the CMS experiment dataset to the Daimler exper-
iment dataset resulted in notably lower VAF values than applying them to the
CMS experiment dataset (reductions in VAF of 9.1%, 24.7% and 13.1% for the Ba-
sic, AI and CEDA models, respectively), but still resulted in the prediction of the
main features of the Daimler experiment ratings. The Basic model had a higher
prediction power than the AI model (VAF 67.9% compared to 59.5%), and the
CEDA model showed the best prediction power with a VAF of 77%. The Basic
and CEDA models thus show a relatively good (VAF > 60%) prediction of the
Daimler ratings, especially given the large differences between the experiments,
.e.g., different participants, motion platforms, cueing algorithms and simulated
vehicle, and visual field-of-view.
The prediction power results and the large differences between experiments sug-
gest that a general perceived motion incongruence model exists and can be devel-
oped with data from multiple experiments. However, the differences between the
fit and prediction power for between-experiment prediction, rather than within-
experiment prediction, as was shown in Chapter 5, indicate that more accurate
and specialized models can be obtained by decreasing the differences between the
datasets.
The between-experiment prediction power of the model fitted to the CMS dataset
for the longitudinal manoeuvres, i.e., those involving deceleration and accelera-
tion, was relatively poor. One explanation for this poor prediction is the large
difference in visual motion cues between the two experiments, i.e., 360 (Daimler)
compared to 140 (CMS) degrees field-of-view combined with higher quality of the
visuals and more visual details and increased optical flow in the Daimler simula-
tor.
While the expected lateral acceleration can be partially derived from the shape
of the road, i.e., curves, the longitudinal acceleration is mainly derived from the
optical flow [155, 171]. The improved visuals in the Daimler simulator would
have made is easier to accurately derive the longitudinal acceleration than possi-
ble in the CMS. More accuracy in the visual acceleration cue reduces the spread
of physical motion cues that can be perceived as congruent. This more accurate
perception of differences between visual and physical motion cues in turn results
in higher PMI ratings for the same manoeuvre.
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For future research, it would be interesting to investigate which transformations
can be included in the non-linear part of the PMI model that account for differ-
ences in visual quality between simulators. A simple example of such a transfor-
mation could be to increase the weight for longitudinal acceleration errors with
increasing visual quality, as cueing errors are more easily detected when the vi-
sual quality is high.
More complex transformations could describe cueing errors as the likelihood that
the physical and visual motion cues are coming from the same source, as also
used in causal inference models of multi-sensory integration [67], and have the
precision of the visual longitudinal acceleration estimate be partially dependent
on factors influencing visual quality, such as field-of-view, update rate and reso-
lution.
The between-experiment prediction of the model fitted to the Daimler dataset was
considerably poorer (VAF values between 43.6% and 52.1%). The low prediction
power was mainly visible in the longitudinal acceleration manoeuvres. The differ-
ence in weights between scaled, missing and false cues as possible in the CEDA
model, was the main reason for the increased prediction power of this model.
One reason for the poor prediction power of the models fitted to the Daimler
dataset, is that this dataset has much less diversity in its cueing errors than the
CMS experiment dataset. This was also shown by the lower number of cueing
errors selected by each of the models as compared to the models fitted to the CMS
dataset (3, 3 and 5 cueing errors vs. 4, 5 and 6 cueing errors for the Basic, AI and
CEDA models).
The prediction power of MIR models thus strongly depends on the richness of
the dataset. When developing a MIR model, it should be taken into account that
not only the input power is well spread over the desired frequency range, but also
that the input power is well spread over cueing errors in different motion channels
and different cueing error types such as scaled, missing and false cues.
The off-line prediction of the PMI can aid in the optimization of cueing algo-
rithms, without the need for human-in-the-loop experiments. Additionally, the
development and improvement of a PMI prediction model can aid in better un-
derstanding the challenges in motion cueing, as bad cueing can be identified over
time and correlated to specific differences between visual and physical motion
cues. Depending on the use of the PMI prediction models, the requirements for
the accuracy of the prediction differ.
In future research (Chapter 7), it will be tested whether the current accuracy of
the models is high enough to optimize motion cueing algorithms.

6.5.3. Combined Experiment Fitting

Using the estimated MTP, the datasets from the CMS and Daimler experiment
were combined and the three considered MIR models (Basic, AI and CEDA) were
fitted to the aggregated dataset. As no further data were available to analyse the
prediction power of these models, only an explanatory analysis was performed.
The model fits had VAF values ranging from 73.7% to 82.4%, again increasing
with increasing model complexity. The main increase in VAF was caused by the
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splitting of different cueing error types in longitudinal and lateral acceleration, as
included in the CEDA model. The VAF values of these models when applying
them to the combined dataset are higher than those of the models fitted to either
individual dataset. Only a marginal VAF increase (0.04%) was found between
the CEDA model when fitted to the combined dataset or when fitted to the CMS
dataset. This could indicate that the input power in the CMS dataset does not
differ largely from the input power in the combined dataset.
The input power related to longitudinal acceleration seemed to cause the main
difference between these models: fitting to the CMS dataset results in including
the pitch angle cueing error in the model, while fitting to the combined dataset
instead results in including vertical acceleration cueing error and the longitudinal
acceleration missing cues.
The models fitted to the combined dataset also showed less difference in VAF val-
ues between the two datasets than when fitting the models to one of the datasets
only. For the CEDA model that was fitted to the CMS experiment dataset, the
VAF value of the fit to this dataset was 90% while the VAF value of the prediction
of the Daimler experiment dataset was 77%. For the model that was fitted to the
combined dataset these VAF values were 80% and 83%, respectively. This continu-
ity of performance increases the overall faith in these models. When more data is
available, a prediction analysis of these models should determine which of these
models, both showing very comparable VAF values for their fit to the combined
dataset, describes the underlying system better.
The three models fitted to the combined dataset all used significant contributions
of cueing errors in lateral and vertical acceleration, as well as roll rate cueing
errors. As these models were fitted to a large dataset, this provides a good in-
dication of the importance of cueing errors in these motion channels for motion
cueing quality in driving scenarios and it is thus advised to focus on the reduction
of cueing errors in these channels.
Notable improvements in model fit were observed when adding the roll angle as
well. While roll angle is not unambiguously perceivable by the human perceptual
system when visual information is present, it is strongly related to the perceived
linear acceleration and a rotational rate above threshold, and has also been related
to cueing quality in previous research [92]. Reducing the roll angle cueing error
in vehicle motion simulation is therefore also advised.
Finally, the residual analyses discussed in Appendix G show that all models had
relatively high output polynomial orders of four and still showed some residual
autocorrelations above the 95% confidence interval, indicating that still not all out-
put information was correctly captured by the models. As mentioned in [172], if
high output polynomial orders for ARX models are needed this might indicate
that other model structures such as the ARMAX should be used. For future work
it would be interesting to investigate the benefits and drawbacks of other, more
complex, model structures.
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6.6. Conclusions

In this chapter a method for comparing continuous rating data for Perceived Mo-
tion Incongruence (PMI) from different experiments was introduced. Applying
the method to known scale transformations showed that accurate Model Transfer
Parameters (MTPs), used to map the continuous ratings of different experiments
onto a common scale, can be obtained with this method.
The use of the MTP estimation method for analysing the prediction power be-
tween experiments, as well as combining data from different experiments for more
accurate and generally applicable models was demonstrated. For datasets with a
sufficiently rich input set, models fitted to data from one experiment can be used
to predict the perceived incongruence rating of a different experiment, where the
simulators, visuals and participant groups differ significantly. This result suggests
that it may be feasible to derive a general model for perceived motion incongru-
ence with this approach, which can then be used as a general off-line predictor
of PMI. In future research an attempt will be made to use these models for the
optimization of a motion cueing algorithm.





III
Minimizing Perceived Motion

Incongruence

175





7
Optimizing Motion Cueing

with a MIR Model

In this chapter the potential of Motion Incongruence Rating (MIR) models for Motion
Cueing Algorithm (MCA) optimization is investigated. In a human-in-the-loop experi-
ment two optimization-based MCAs are compared on a medium-stroke hexapod simulator.
The first MCA uses standard cueing error weights in its cost function, while for the sec-
ond MCA these weights were based on a fitted MIR model from Chapter 6. The results
show that such models provide a promising cueing error weight estimation method for
optimization-based MCAs, but they also highlight the limitations of these models due to,
for example, their dependency on the richness of the datasets to which they are fitted.
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7.1. Introduction

One of the challenges in vehicle motion simulation is finding the simulator mo-
tions, given vehicle motions and simulator limitations, which result in the highest
perceived cueing quality. Lately, more and more optimization-based Motion Cue-
ing Algorithms (MCAs) are being developed which use a cost function based on
the difference between simulator and vehicle motions to find an optimal simulator
input at each time step [42, 57, 86, 173]. Such MCAs avoid worst case parameter
tuning such as is usually done for the classical washout filter-based MCA[174].
The cost function in an optimization-based MCA, however, also contains parame-
ters that need to be tuned.
Currently, as off-line automatic cueing quality assessment is still difficult, this tun-
ing is done by experts [40, 55, 56]. In the previous chapters a method for modelling
and predicting the perceived motion mismatch between visual and vestibular mo-
tions during a vehicle simulation was introduced. Here this process is used to
calculate optimal cost function parameters of an optimization-based MCA devel-
oped at the Max Planck Institute (MPI) for Biological Cybernetics [42, 44, 57].
The optimization-based MCA uses Model Predictive Control (MPC) to optimize
the simulator control inputs at each time step. This method makes use of a math-
ematical model of the simulator and a prediction of the desired vehicle motions
over a specified prediction horizon. The optimization uses a cost function that
includes the weighted error between the reference motion, i.e., the vehicle motion,
and the simulator motion over this horizon. By tuning the output error weights,
the perceived motion mismatch during the simulation can be minimized.
In the implementation of the MPC-based MCA used here, the output includes
linear acceleration and rotational velocity. Currently the algorithm uses output
weights based on the amplitude difference in a large set of vehicle motions be-
tween linear acceleration and rotational velocity. It was found that amplitudes for
linear acceleration are on average around ten times smaller than the amplitudes
of the rotational velocity when measured in [m/s2] and [rad/s], respectively [87].
These output error weights are thus not chosen based on human motion percep-
tion information, but purely chosen to account for the differences in units between
linear acceleration and rotational velocity.
In an attempt to include knowledge of human perception of motion mismatches,
this chapter uses the Motion Incongruence Rating (MIR) modelling process de-
scribed in the previous chapters to generate perception-based output error weights.
During this process a static MIR model, designed as the output related part of the
MPC-based MCA cost function, is fitted to continuous rating data from the two
previous car driving experiments of Chapters 2 and 3.
The resulting cueing error weights corresponding to the best fit to the continuous
rating are then used as optimized output error weights in the MPC-based MCA
cost function. To assess if the perception-based output error weights indeed re-
sult in improved MCA quality, a human-in-the-loop experiment was performed,
where both error weight sets were compared during a car driving simulation.
The experiment has a similar set up as the experiments described in [136] and
[137], where a continuous rating method was adopted to obtain a time-varying
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measure of cueing quality during a motion simulation. Additionally, participants
were requested to provide one overall rating of the cueing quality per condition.
For each condition, a car driving scenario, including manoeuvres with both lateral
and longitudinal accelerations, was presented to the participant, while the MPC-
based MCA was either using the perception-based or the standard output error
weights. After the experiment, participants were requested to fill out a question-
naire to provide more information on the factors influencing their rating.
This chapter is organized as follows. In Section 7.2 a brief introduction to the
MPC-based MCA is given, with a focus on its cost function. The usage of the
MIR modelling process to design perception-based output error weights is also
briefly discussed. In Section 7.3 the human-in-the-loop experiment comparing the
perception-based output error weights to the current weights is further explained.
The results of this experiment are shown in Section 7.4 and discussed in Section
7.5. A conclusion on the usage of the MIR modelling process for the design of
perception-based output error weights is given in Section 7.6.

7.2. MPC-based MCA
For the experiment explained in this chapter the MPC-based MCA designed at
the MPI for Biological Cybernetics [42, 57] is used. This MCA uses a linearised
model of the hexapod simulator to compute the future simulator inputs over a
given prediction horizon for a provided reference motion over this horizon. An
advantage of this type of MCA, compared to the classical washout filter, is that
the simulator limits are evaluated at each time step [175]. This avoids the need
for worst case MCA parameter tuning, often resulting in largely scaled-down mo-
tions, as is done with classical washout filters [174]. The MCA has many design
options of which the most important, those related to the prediction horizon and
the cost function, are further explained below.

7.2.1. Prediction

The MPC-based MCA optimizes the simulator inputs, platform linear and rota-
tional accelerations, for a desired simulator output, linear acceleration and rota-
tional velocity in head frame, over a specific prediction horizon. This optimization
is repeated each simulation time step and only the first optimized simulator input
is actually sent to the simulator. The simulator output for a given input is com-
pared to a reference motion over this prediction horizon.
While ideally this reference motion equals the exact vehicle motions that will occur
during this prediction horizon, during active driving these future motions are, of
course, unknown. Even though the passive driving experiment described in this
chapter does not require active driving, for application purposes and realism, the
reference motion and prediction horizon length were chosen to be independent
of actual future vehicle motions. The reference motion is therefore assumed to be
equal to the current vehicle motion and kept constant over the prediction horizon
as also used in [57].
With this type of reference motion the cueing algorithm can anticipate hitting sim-
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ulator limits in the near future. For long prediction horizons, however, the actual
future vehicle motions will differ so much from this reference motion, that un-
necessary anticipation occurs, resulting in large reductions in cueing quality. A
prediction horizon of two seconds was, through trial and error tuning, found to
provide a good trade-off between necessary and unnecessary anticipatory MCA
behaviour.

7.2.2. Cost Function

During the optimization a cost (J) is calculated for a certain set of simulator inputs
over the prediction horizon with:

J =‖xN − x̂N‖2
WxN

+

N−1

∑
k=0

(
‖xk − x̂k‖2

Wx
+‖uk − ûk‖2

Wu
+
∥∥y (xk , uk)− ŷk

∥∥2
Wy

)
, (7.1)

where k is the discrete time step, N the prediction horizon length, x the simulator
states (platform position/orientation and linear/rotational velocity), u the simu-
lator inputs (platform linear/rotational acceleration) and y the simulator outputs
(platform linear acceleration and rotational velocity). The variables x̂, û and ŷ in-
dicate the state, input and output references, respectively. The diagonal matrices
WxN = diag(wx N)2, Wx = diag(wx)2, Wu = diag(wu)2 and Wy = diag(wy)2 indicate
the terminal state, state, input and output error weighting matrices, respectively.
The input and terminal state related costs are used for stability and insure convex-
ity of the optimization problem [57]. Their references (û and x̂N) are here set to
zero. The weights wu and wx N were tuned for stability of the output and set to 1
and 2.5, respectively. The state-related cost can be used for washout of the simula-
tor motion when setting its reference x̂ to zero over the full prediction horizon. As
only the platform positions needed to be washed out, the position-related weights
of wx were set to four and the velocity related states were set to zero. Finally, the
output-related cost influences how well a certain output channel is being followed
by setting different weights for the different motion channels linear acceleration
and rotational velocity in wy.
The reference outputs ŷ are here chosen to be equal to the current vehicle mo-
tions and remain constant over the prediction horizon. The weights in wy that are
standard used for this algorithm are based on the relative variance between linear
acceleration and rotational velocity in typical car manoeuvres, which differs by
about a factor of ten, resulting in the standard weights of wys = [1,1,1,10,10,10].

Perception-based Weights

The standard output error weights in wys basically only account for the differ-
ences in units between linear acceleration and rotational velocity. The relative
importance of errors in different motion channels for the perceived cueing quality
is thus not explicitly taken into account.
In the experiment described here, output error weights based on perceived motion
incongruence measures

(
wyp

)
are compared to the standard weights in

(
wys

)
.
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Figure 7.1: Fit of the CF6 model to the median measured rating of the combined dataset (a) and the
corresponding contributions of the different inputs (b).

For wyp , the output error weights per motion channel are chosen such that the
corresponding output cost best fits the measured motion incongruence, i.e., the
Motion Incongruence Rating (MIR), from the experiments described in Chapters
2 and 3.
To this end, the MIR model design process described in Chapter 5 was applied
to the combined datasets presented in Chapter 6, using a static, zero input de-
lay model with linear acceleration and rotational velocity cueing errors as inputs.
These model choices result in a static MIR model, hereby named ’CF6’, that is
comparable to the output error related part of the cost function described in Sec-
tion 7.2.2. In the top plot of Figure 7.1 the fit of this model to the combined dataset
is shown (VAF = 56.5%).
The contributions of the different cueing errors to the model output, shown in
the bottom plot of Figure 7.1, indicate that all but the pitch rate error receive a
non-zero perception-based weight. The cueing error weights in the CF6 model
that best fit the measured MIR are found to be 0.0620 for ax, 0.2881 for ay, 0.5347
for az, 0.0270 for ωr, 0.0000 for ωp and 0.0075 for ωy. To use these weights in
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the MPC-based MCA cost function, first the weights for rotational velocity need
to be converted from sec/deg to sec/rad. To obtain an equivalent influence of the
perception-based weights on the total cost function as the standard weights have,
the perception-based weights should also be scaled accordingly. Here the percep-
tion based weights are scaled such that the sum of the perception-based weights
equals the sum of the standard weights. These two transformations result in the
perception-based weights wyp = [0.7147,3.3222,6.1652,17.8658,0,4.9321].
The perception-based weights thus give about three times more weight to ay and
about six times more weight to az, while the weight for ax is reduced by about
one third, compared to the standard weights. Using wyp in the MPI MCA is thus
expected to result in a better following of the lateral and vertical acceleration. The
better following of the, in a car, zero vertical acceleration in turn relates to smaller
rotation angels.
The perception-based weights also have about one and one third more weight for
roll rate and about half the weight for yaw rate compared to the standard weights.
Cueing errors in pitch rate are not penalized when using the perception-based
weights, while they are when using the standard weights. As the roll and pitch
rates are close to zero during car driving, using wyp is expected to result in lower
roll rates but higher pitch rates than when using wys . The yaw rate, which does
have significant power during car driving, is expected to be followed somewhat
better when using wys then when using wyp .

7.2.3. MCA Output

To investigate the effects of the different output error weights on the motion qual-
ity, a short car simulation was designed, including a set of maneuvers with both
lateral and longitudinal accelerations. During the simulation the car first accel-
erates from standstill to 50 km/h and then slows down to 30 km/h to enter a
roundabout. While exiting the roundabout at the second exit, the car accelerates
back to 50 km/h and finally decelerates to a full stop.
In Figure 7.2 the vehicle linear accelerations and rotational velocities for this simu-
lation are shown. Additionally, the motions calculated with the MPC-based MCA,
using either wys or wyp for the output error weights, are shown. Figure 7.2 also
shows the corresponding motions as measured with the IMU on the simulator
platform. The plots are divided into five sections, where RA stands for “Round-
about”.
Figure 7.2 shows that the different weights mainly affect the amount of tilt coor-
dination that is used to follow the vehicle lateral acceleration. When using wyp

the average scaling difference between vehicle and simulator lateral acceleration
is around 0.9, while the use of wys results in a much lower gain of around 0.6.
Additionally, the reduced weight on yaw for wyp results in a small degradation in
reproducing the vehicle yaw rate.

Predicted MIR
To check if using the optimized weights wyp indeed reduces the predicted MIR,
the MCA outputs were fed through the three MIR models described in Chapter 6.
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Figure 7.2: Linear acceleration ((a)-(c)) and rotational velocity ((d)-(f)) of the car during the car
simulation, together with the motions calculated with the MCA using either wys or wyp and the

corresponding measured (IMU) motions on the simulator.
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Figure 7.3: Predicted MIR for simulator motions resulting from either MCA(wys ) (left column) or
MCA(wyp ) (right column), using the Basic, AI and CEDA MIR models.

For the Basic model only the cueing errors in linear acceleration and rotational ve-
locity are considered, while for the Additional Input (AI) model also their deriva-
tives (linear jerk and rotational acceleration) as well as the rotational angle and
the forward velocity are considered. The third model, the CEDA model, addition-
ally makes use of a cueing error detection algorithm, described in Chapter 4, that
splits the cueing errors in linear acceleration into scaled, missing and false cues.
In Figure 7.3 the predicted MIR from the Basic, AI and CEDA models and the
contributions of cueing errors in the different motion channels are shown. The
sum of the predicted MIR over time for each MCA setting is indicated in the title
of each plot and shows that all models predict a higher motion quality, i.e., overall
lower MIR, when using wyp instead of wys in the MPC-based MCA. The average
MIR decrease over all models is 17% when using wyp instead of wys . The largest
differences occur during the roundabout, where the difference between MIR for
the two settings is on average (over time and all three models) about 0.06, while
during the acceleration and deceleration sections this difference is smaller than
0.005.
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7.3. Experiment

The experiment goal is to determine whether the perception-based output er-
ror weights for the MPC-based MCA improve the overall MCA quality. To this
end, MCA outputs were generated for a set of car manoeuvres, using either the
standard of the perception-based output error weights. The motion quality was
measured using the same subjective rating method as in Ref. [136].

7.3.1. Independent Variables and Dependent Measures

The only independent variable is the output error weight setting of the MPC-
based MCA. We compare the baseline (wys ) weights with those optimized based
on previously measured perceived motion incongruence (wyp ).
The dependent measures are the measures for MCA quality, obtained using the
continuous subjective rating method from [136], resulting in a Continuous Rating
(CR) of the cueing quality throughout the simulation for each participant, as well
as with an Overall Rating (OR) after each simulation, resulting in one quality
rating per condition. To be able to verify the consistency of the participant ratings,
both measurements were repeated three times for both MCA settings.

7.3.2. Hypothesis

As the MIR model analysis predicts a lower MIR when using the optimized wyp

output error weights instead of the heuristically-tuned weights wys , the hypoth-
esis is that the motion cueing quality improves. This improvement should be
visible in both the measured overall rating and the continuous rating, especially
throughout the roundabout.

7.3.3. Apparatus

The experiment was performed in the CyberPod Simulator at the MPI for Biologi-
cal Cybernetics, which has a hexapod motion platform (eMotion-1500-6DOF-650-
MK1 from Bosch Rexroth). The experiment set up is shown in Figure 7.4. The
visuals were projected on a screen about one meter in front of the participant us-
ing a VPixx technologies ProPixx beamer with 1920x1080 resolution and a 120 Hz
update rate, providing the participants with a 80◦ horizontal field-of-view (FOV).
To avoid perception of the earth fixed environment, all lights apart from the large
simulator screen were turned off during the vehicle simulations.
The vehicle motions were generated using CarSim software and the visuals were
generated using Unity. The steering wheel in the visuals was animated using the
steering wheel angle provided by CarSim. The participants used a custom made
rotary knob with visual feedback in the form of a rating bar to provide their rating
during the experiment.

7.3.4. Participants

15 participants, of which five female, aged between 20 and 61 years (mean 30

years) performed the experiment. All possessed a valid car driving license, and all
but three participants had no prior knowledge or experience with motion cueing
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Figure 7.4: Experiment set up with rotary knob and visual rating feedback used to provide the
continuous perceived motion incongruence rating during the experiment.

algorithms. All participants participated voluntarily in the experiment and those
not working at the MPI were compensated for their time (eight euros per hour).

7.3.5. Instructions and Procedures

The task of the participants was to rate the perceived motion incongruence, or
mismatch, between the visual and physical motions during a passive car driving
simulation, i.e., rate the mismatch between the physical motions in the simulator
and the motions you would expect in a real vehicle based on the simulator visuals.
After reading the experiment instructions, participants were further briefed about
the goal of the experiment and their tasks verbally.
The experiment started with a training phase in which the simulation was re-
peated twice for each MCA setting, i.e., four simulations in total. Throughout
the experiment, the simulations occurred in pairs including both MCA settings,
but the order of the setting within one pair was randomized for all participants.
During the first repetition of such a simulation pair, participants were asked to
observe the mismatches and try to anchor the rating scale to the minimum and
maximum mismatch perceived over both simulations. During the second repe-
tition, participants were requested to use the anchored rating scale to provide a
rating continuously (CR) throughout the simulations, by moving the rating bar on
the screen using a rotary knob. After each simulation they were also requested to
provide an overall rating (OR) on the same scale, indicating a summary of their
continuous rating, using the rotary knob.
After this training another three repetitions per MCA setting, i.e., in total six sim-
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ulations, were done in which the participants were asked to provide a continuous
and overall rating using their rating scale, and to try being as consistent as possi-
ble.
To monitor simulator sickness, also a misery score (MISC) [176] was requested af-
ter each simulation pair. At the end of the experiment, participants were requested
to fill in a questionnaire, with questions related to their rating and driving experi-
ence. In Appendix H the questionnaire is included, together with the definitions
of the abbreviations used in the following sections. The total experiment lasted
around 45 minutes per participant.

7.4. Results

During the experiment the participants were asked to judge the perceived motion
incongruence by giving both a CR and an OR for each MCA setting separately.
At the end of the experiment each participant also filled out a questionnaire. To
determine if differences between MCA quality exist, in the next sections the rating
and relevant questionnaire results are shown.

7.4.1. Data Processing

For each participant the OR and the CR were collected for three repetitions of
a simulation pair, including both MCA settings. Each participant was explicitly
asked to anchor the rating scale to the maximum and minimum mismatch present
during the two simulation and thus use the whole rating scale for their CR for each
simulation pair. To correct for any deviations from this task, the CR was normal-
ized, such that both the maximum and minimum ratings were obtained at least
once during each simulation pair. For each participant, the OR or CR per MCA
setting is calculated as the mean over all three repetitions.
To determine whether significant differences are present between the MCA set-
tings, statistical tests were performed. For those comparisons that include normal
data a two-sample t-test was performed and the t-statistic, degrees of freedom
and p-value are reported. For those comparisons that include non-normal data,
a Wilcoxon signed-ranks test was used instead and the corresponding W-statistic,
or for bigger samples the Z-statistic, and p-value are reported. If significant dif-
ferences are found with the appropriate test, also the data means are reported.
For very small sample sizes, instead the non-parametric common language effect
size A [177], which is robust to non-normally distributed samples [178], is calcu-
lated. This effect size measure indicates the probability that a score sampled at
random from one distribution will be greater than a score sampled from some
other distribution [179].

7.4.2. Consistency

Overall Rating

Although subjective ratings are likely not to be exactly the same for each repeti-
tion, it is expected that participants at least consistently prefer the same MCA. To
determine if the participant understood and performed the given task correctly,
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Figure 7.5: Participants with inconsistent overall ratings.

here the consistency of this preference is checked. All but two of the 15 partic-
ipants indeed showed a consistent preference for one of the MCAs. Figure 7.5
shows that both participants 1 and 11 changed their preference during the second
repetition, as compared to the first and last repetition, and thus did not have a con-
sistent preference. Their results are therefore excluded from further OR analysis.

Continuous Rating

As providing a CR is a different task, the consistency of this rating is checked
separately for each of the fifteen participants as well. Following the same ap-
proach taken in previous studies [109, 135–137], the consistency is calculated with
Cronbach’s Alpha (α) [117]. Sets of ratings with an α below 0.7 are considered
inconsistent [118] and are excluded from further CR analysis.
In total eleven participants showed consistent ratings (mean: 0.89, std: 0.061) and
four participants had to be excluded from further analysis due to inconsistency of
their CR data. Figure 7.6 shows the CR of two participants with consistent ratings
over the three trials.
The ratings shown in Figure 7.6 result in the maximum and minimum consistent
α values of 0.96 and 0.80, respectively, and thus give an indication of all ratings
that are here assumed to be sufficiently consistent. In Figure 7.7, instead, the CR
of participants with inconsistent ratings for the three repetitions is shown. These
ratings result in α values of 0.58, 0.53, 0.55 and 0.51, respectively, and are well
below the threshold of 0.7. As participants 1, 3, 9 and 12 gave inconsistent CR,
their results are excluded from the CR analysis.

7.4.3. Participant Groups

The data showed that not all participants had the same MCA preference. Next
to presenting the overall (averaged) rating results, the results of two participant
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Figure 7.6: Participants with consistent continuous ratings.
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Figure 7.7: Participants with inconsistent continuous ratings.
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Figure 7.8: Rating differences between both MCA settings per participant. A positive or negative

difference indicates a preference for settings MCA
(

wyp

)
and MCA

(
wys

)
, respectively.

groups, namely those preferring MCA
(

wys

)
and those preferring MCA

(
wyp

)
,

will therefore also be shown.
In Figure 7.8 the relative rating differences between MCA settings is shown for
both the mean OR and CR per participant. The magenta coloured bars indicate
the participants that were excluded from further analysis of either OR or CR.
Figure 7.8 shows that all participants except Participant 1, showed a consistent
preference when rating with either OR or CR. Five out of the fourteen participants

preferred the MCA
(

wyp

)
, while nine preferred the MCA

(
wys

)
. In the following

figures, the results for these two groups are shown separately.
To determine what made these two participant groups rate the MCA settings
differently, their questionnaire responses are also compared. In the questionnaire,
participants were asked to rate the extent to which certain factors influenced their
rating (Question 2 in Appendix H). When taking all participants into account,
no clear difference between participant groups for any of the factors was found.
However, when only taking into account those participants that gave a consistent
OR and CR, some differences between participant groups emerge, as can be seen
in Figure 7.9.
These results give an indication on what the preference of these two participant
groups was based on, but due to the small sample sizes of each group (wys : N = 7,
wyp : N = 3) these results should be considered with care. The clearest differences
between participant groups (A > 0.8) are found for the factors "stronger" (A = 0.80,
wys > wyp ), "weaker" (A = 0.90, wys < wyp ) and "direction" (A = 0.86 , wys < wyp ).
All other factors showed common language effect scores smaller than 0.8.
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Figure 7.9: Boxplots showing the median and interquartile ranges of the level of influence of different
factors on the participant ratings of the group preferring MCA

(
wys

)
(7 participants) and the group

preferring MCA
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)
(4 participants). The results only include participants with consistent CR.
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Figure 7.10: Boxplots of the mean OR over three repetitions for participants with a consistent OR. The
box shows the interquartile range and the median over all ratings.

7.4.4. Rating Results

For the analysis of the OR, the consistent data of 13 participants are used. For
each participant one OR per MCA setting is calculated as the average over three
repetitions. In Figure 7.10 the OR data results for all consistently rating partici-
pants, as well as for each participant group (wys preferred N = 9, wyp preferred
N = 4), are shown in a boxplot.
No significant difference between the two MCA settings was found for all partici-
pants combined (t(24) = 0.58, p≥ 0.05), nor for the participant group that preferred
MCA

(
wys

)
(t(16) = 2.09, p ≥ 0.05). For the participants preferring MCA

(
wyp

)

the difference in OR between the MCA settings (mean MCA
(

wys

)
= 0.57, mean

MCA
(

wyp

)
= 0.31) was found to be significant (t(6) = 4.15, p < 0.05).

For the CR analysis, the consistent data of 11 participants are used. The CR per
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(a)

(b)

(c)

Figure 7.11: Mean CR with median (bold) and interquartile range (shaded) for all consistently rating
participants (a) and those preferring wys (b) and wyp (c), respectively.

participant is calculated as the mean over all repetitions. Figure 7.11 shows the
median and interquartile range of the CR over all participants per MCA setting
for all consistently rating participants and for the two participant groups (wys

preferred N = 7, wyp preferred N = 4). The plots are divided in five sections, each
showing the data belonging to a different section of the simulation, with RA re-
ferring to Roundabout.
The CR mainly increases during the roundabout section of the simulation for both
MCA settings. The difference between MCA settings is relatively small. To bet-
ter compare the two MCA settings with the CR, the rating of each participant
is summarized with the mean CR over all time steps per MCA setting. Figure
7.12 shows the resulting boxplots containing the results for the eleven participants
with a consistent CR per MCA setting.
No significant difference between the mean CR over time was found between con-
ditions for all participants (t(20) = 0.8735, p ≥ 0.05), nor for the participant group

preferring MCA
(

wys

)
(t(12) = 1.5047, p≥ 0.05) or MCA

(
wyp

)
(t(6) = 0.5933, p≥
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Figure 7.12: Boxplots of the mean CR over time and all three repetitions per MCA setting for
participants with a consistent CR. The box shows the interquartile range and the median over all

ratings.

0.05).
To determine if specific parts of the simulation are rated differently between MCA
setting, also the mean CR over all time steps for a specific section of the sim-
ulation is calculated per participant. Figure 7.13 shows the resulting boxplots
per simulation section for all consistently rating participants, for those preferring

MCA
(

wys

)
and for those preferring MCA

(
wyp

)
.

No significant difference between the MCA settings was found for all participants
combined (Accelerate: z = 0.3951, p ≥ 0.05, Enter RA: z = 0.3940, p ≥ 0.05, RA:
t(20) = 1.3891, p ≥ 0.05, Exit RA: z = 1.3133, p ≥ 0.05, Decelerate: z = 0.1315, p ≥
0.05). For the participant group preferring MCA

(
wys

)
the difference between

MCA settings is more pronounced during and while exiting the roundabout, with
only the latter showing a significant difference (W = 36, p < 0.05) between MCA

settings (mean MCA
(

wys

)
= 0.36, mean MCA

(
wyp

)
= 0.60). During all other

sections no significant differences were found (Accelerate: t(12) = 0.7012, p≥ 0.05,
Enter RA: W = 40, p ≥ 0.05, RA: t(12) = 1.9525, p ≥ 0.05, Decelerate: W = 49.5, p ≥
0.05). For the participant group preferring MCA

(
wyp

)
the difference seems in-

stead more pronounced while entering the roundabout, but no significant differ-
ences were found. (Accelerate: W = 17.5, p≥ 0.05, Enter RA: t(6) = 1.1445, p≥ 0.05,
RA: t(6) = 0.6082, p ≥ 0.05, Exit RA: t(6) = 0.1592, p ≥ 0.05, Decelerate: t(6) =
0.1353, p≥ 0.05).

7.5. Discussion

In this chapter the effect of MCA optimization using a Motion Incongruence Rat-
ing (MIR) model based on previously collected rating data was investigated. An
MPC-based MCA, using weights for linear acceleration and rotational velocity
that were found using a baseline MIR model MCA

(
wyp

)
, was compared to the

same MCA using weights based on differences in variance between these motion
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Figure 7.13: Boxplots of the mean CR per MCA setting for consistently rating participants for each
simulation section. The boxes show the interquartile range and the median over all ratings.
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channels for typical car manoeuvres, i.e., MCA
(

wys

)
. While the MIR predictions

from dynamic MIR models from previous chapters indicated an improvement in

MCA quality for MCA
(

wyp

)
compared to MCA

(
wys

)
, no significant differences

between the conditions were found in the results of a performed human-in-the-
loop validation experiment. A clear statement on the use of MIR models for MCA
optimization can therefore not be made based on these results.
In the experiment, two different measurements of MCA quality were obtained,
the OR and the CR, for each MCA setting. Before comparing these ratings be-
tween conditions, checks on the rating consistency over three repetitions were
performed. The relatively large number of participants (2 for OR and 4 for CR)
that did not provide consistent ratings for the three repetitions could be an indi-
cation that the difference between conditions was not large enough to be detected
by the measurement methods used.
Additionally, the large number of participants that provided inconsistent CR could
be caused by the relatively short training time. The training included the same
number of simulation repetitions as in previous motion cueing CR experiments
[136, 137], but with two minutes per simulation part as compared to about ten
minutes in previous experiments, the total training time was much shorter. To en-
sure rating consistency, it is therefore advised for future experiments to not only
take into account the number of repetitions, but also consider the total training
time.
The lack of significant differences between conditions was further analysed, through
investigating the possible existence of different participant groups. This analysis

showed that, while five participants preferred MCA
(

wyp

)
, nine participants pre-

ferred MCA
(

wys

)
. Questionnaire results indicated that the main cause for a

preference for MCA
(

wys

)
were the strong motions present in the MCA

(
wyp

)

condition. When comparing the main vehicle motions (longitudinal and lateral
acceleration) to the simulator motions, however, both conditions show a reduc-
tion of the simulator motion as compared to the vehicle motion. The finding that
most participants still judged the motion as “too strong” is in line with findings in
previous research [180] and can possibly be caused by the relatively poor visual
quality in the simulator [165]. The participants who, correctly, perceived the mo-
tions as too weak, might have been influenced by their prior knowledge of motion
simulation.
The reason that the MIR models did not predict the preference for weaker motions
is threefold. First, these models did not take into account the existence of cueing
errors when one-to-one vehicle-simulator motion is obtained, i.e., all cueing er-
rors are based on a difference between vehicle and simulator motions. For future
research it could be useful to also investigate how to include the preference for
below-unity gains between vehicle and simulator motions in the MIR models.
Secondly, the models were based on data from previous experiments, with other
simulators that had a different visual quality from the simulator used in this study.
A large FOV, for example, has been shown to improve speed estimation [95],
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while a small FOV can cause speed underestimation [94]. The small horizontal
FOV (80◦) of the Cyberpod used here, as compared to the larger much FOV of
the CyberMotion (140◦) and Daimler-Benz (360◦) simulators used in the previous
experiments, could have caused an underestimation of the vehicle speed, that was
not, or to a lesser extent, present during the other experiments. This speed under-
estimation, in turn, could result in participants expecting weaker vehicle motions,
corresponding to the incorrectly perceived vehicle speed.
Finally, the participants that partook in the experiments on which the MIR models
were based differed considerably from the participants that took part in the exper-
iment described here. For the current experiment, a participant database to which
anyone could apply was used, while the previous experiments solely used MPI or
Daimler employees as participants. The many differences (motion platform, visual
system, participants, cueing errors, etc.) between the experiments used to develop
the MIR models and the current experiment surely also influenced the accuracy
of the prediction. For future research it is therefore advised to first investigate
the use of MIR models for MCA optimization under more similar conditions, e.g.,
within the same experiment. From the results presented here, however, it can be
concluded that the MIR models based on a limited dataset cannot directly be used
for any MCA optimization.
Another challenge that was encountered, mainly when trying to use MIR models
for the optimization of the MPC-based MCA for a more complex simulator than
the CyberPod, is that during the optimization process, an infinite amount of dif-
ferent cueing errors are analysed using the MCA cost function. As MIR models
can only predict cueing errors that are similar to those for which the MIR model
was designed, not all predictions made by the MIR model during the optimization
process are accurate. When a more limited simulator, such as a hexapod, is used,
applying a MIR model-based cost function in the MCA optimization still gave
reasonable results. However, when applying the same process to a simulator with
less limitations, such as the CyberMotion Simulator at the MPI, very unrealistic
motion profiles can result from such an optimization. This is mainly due to the
many local minima that are possible with this type of simulator, in combination
with the limited applicability of the MIR models. Using MIR models for the op-
timization of MCA for such simulators should therefore be done with extra care,
and it is likely that additional constraints will need to be implemented to avoid
local minimum solutions. Additionally, the MIR models should be based on a
wider range of cueing errors when applying the process to these type of simula-
tors.
One of the key choices made in this chapter was to make the two conditions
tested in this chapter comparable. For this purpose the output error weights wys

and wyp were scaled such that they had equal sums. It can be debated if this
scaling procedure results in a fair comparison between conditions and whether
other MPI MCA weight parameters influence the optimization in the two condi-
tions similarly. For example, the absolute value of the lateral acceleration input
error weight was fixed t0 one for both conditions, but its relative value compared
to the corresponding output error weight, which for wyp was six times higher
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than for wyp , differed per condition. Other scaling procedures could therefore be
investigated in the future.
While the MIR models did not accurately predict the difference between the MCA
settings for about two thirds of the participants, they did correctly predict that the
main decrease in cueing quality would occur during the roundabout section of
the simulation. The models also correctly predicted that hardly any decrease in
cueing quality would be detected during the initial acceleration and final deceler-
ation, even though the differences between vehicle and simulator motions during
these sections were considerable. The fact that for one third of the participants the
predicted MCA preference was indeed correct, makes it plausible that MIR mod-
els can aid in the tuning of cost function weights for optimization-based MCAs.
However, further research, where, for example, the MIR model design and corre-
sponding MCA optimization are performed within one experiment, needs to be
conducted to investigate the usefulness and applicability of MIR models for MCA
optimization.

7.6. Conclusion

In this chapter an example of how MIR models can be used for MCA optimization
is explained and tested. The current results do not show a clear difference between
the cueing quality of the MPI MCA optimized with the help of MIR models, or
one heuristically-tuned based on the typical variance difference between linear ac-
celeration and rotational velocity for typical car manoeuvres. Unexpectedly, more
participants preferred the heuristic as compared to the optimization using MIR
models. This preference seems to mainly be based on a preference for lower than
unity gains between vehicle and simulator motions. The predicted preference for
the optimization using MIR models did hold for about one third of the partici-
pants. Additionally, the low impact of cueing errors in longitudinal motions as
compared to lateral motions was also predicted accurately.
The fact that for one third of the participants optimization using a MIR model was
preferred indicates that, while not as broadly applicable as was done here, MIR
models could be useful for MCA optimization. It is expected that MIR models
developed using a much richer dataset will result in an MCA that is preferred
by a wider range of participants. To fully understand the use of MIR models
for MCA optimization, however, it is recommended to first further develop these
models under conditions that are more similar to those which the resulting op-
timized MCA quality will be tested under, such as the same motion platform,
visual system and participant group.





8
Conclusions and

Recommendations

The research goal of this thesis was stated as follows:

To develop an MCA-independent off-line prediction method for time-varying perceived
motion incongruence during vehicle motion simulation, to improve motion cueing quality

In this thesis, Perceived Motion Incongruence (PMI) refers to a feeling of decreased
cueing quality due to the incongruence between visual and physical motion cues.
It describes a novel approach to predict cueing quality and is divided in three
parts. In Part I a continuous rating method to measure time-varying PMI was de-
veloped and experimentally validated. The data obtained with this measurement
method were used to estimate and validate a PMI prediction model in Part II. In
Part III a simple PMI prediction model was implemented in the cost function of
an optimization-based MCA, to investigate whether this results in optimized PMI.
The conclusions of each part are summarized in Sections 8.1 to 8.3, respectively.
Section 8.4 presents the main recommendations for future research.

8.1. Measuring Perceived Motion Incongruence

The development of a time-varying PMI prediction model requires measurements
of the PMI for both parameter estimation and validation of the model. As no
such measurement method existed, in the first part of this thesis a subjective PMI
measurement method was developed and tested. In Chapter 2 this measurement
method, based on continuous subjective ratings [107, 109], was presented and
tested for reliability and validity in a human-in-the-loop experiment in the Cy-
berMotion Simulator at the MPI for Biological Cybernetics, using simple motions
and common (but exaggerated) cueing error types. The results show that partici-
pants can use the developed method to consistently rate the PMI due to common

199
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motion cueing errors (Cronbach’s Alpha > 0.7). Furthermore, the relative magni-
tude of the time-averaged continuous rating for the different tested cueing error
types was consistent with literature. For example, false cues were rated as much
more detrimental than scaled cues [51], and roll rates were the main contributor
to PMI for manoeuvres where this rate was above human perceptual threshold
[68]. The continuous rating also correlated well (Pearson’s r > 0.8) with the more
commonly used overall ratings, collected after each completed trial.
In Chapter 3 the validated measurement method was used for the comparison of
two MCAs during a realistic driving simulation scenario, in the Daimler Simula-
tor. Unlike the experiment in Chapter 2, the vehicle motions were the result of a
realistic drive along rural roads and through a city environment, while the simu-
lator motions were obtained with two optimized MCAs. This experiment showed
that participants could rate consistently under these more realistic conditions.
Subjective measures are, due to their high variance, often not preferred for engi-
neering applications. From Chapter 2 and Chapter 3, however, it can be concluded
that highly relevant information can be obtained with the continuous subjective
rating method presented in this thesis. Specifically, the time information obtained
with this method allows for direct evaluation of the relative severity of different
types of cueing errors, which is not possible with other evaluation methods. Ad-
ditionally, unlike overall ratings, continuous ratings are not subjected to memory
related biases such as the peak-end rule, which states that mainly the peak and the
end experience, rather than the sum over all experiences, affect an overall rating
[123, 181].
Other research where the continuous subjective rating method proposed in this
thesis was used, confirms the effectiveness of this method for the evaluation of
time-varying PMI during vehicle motion simulation [135, 182–184]. While the
variance of the ratings between participants can be high, participants show to be
capable of rating consistently and, moreover, the average rating over multiple par-
ticipants compares well to the severity of different cueing errors as described in
literature [51, 68]. These factors combined provide sufficiently good arguments to
use the time-varying PMI measurement for modelling purposes.

8.2. Modelling Perceived Motion Incongruence

To model and predict the time-varying PMI, a model was developed using a data-
driven approach. A key factor in PMI prediction is the relative weighing of dif-
ferent cueing errors. This includes weighting differences between similar cueing
errors in different motion channels, but also cueing errors of different types, such
as scaling, missing and false cues, within the same motion channel. To extract the
different cueing error types from vehicle and simulator motion signals, a Cueing
Error Detection Algorithm (CEDA) was developed in Chapter 4.
Unlike error detection as described in [139], where scale and shape errors are
defined using the global scaling parameter of a washout filter, here the error de-
tection is directly applied to the vehicle and simulator motion signals, making
it independent of the applied cueing filter. This algorithm uses a wavelet-based
semblance measure to distinguish between the relatively detrimental shape errors
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[41, 51, 144], i.e., missing and false cues, and the less detrimental scaling errors,
and uses gain measures to further distinguish between missing and false cues.
The algorithm parameters were tuned using vehicle and simulator data from the
experiment described in Chapter 2 and the resulting algorithm was validated us-
ing data from a different simulator experiment, described in [135]. The algorithm
correctly classified all cueing errors in scaling, missing and false cues and can thus
facilitate relative cueing error type weighing for PMI modelling.
In Chapter 5 a general form of a data-driven time-varying PMI prediction model
was introduced. The proposed model consists of a non-linear part, that retrieves
the different cueing errors from the measured vehicle and simulator motions, and
a linear part, that filters, weighs and combines these cueing errors into a single
PMI output. The complexity of the non-linear part thus depends on the math-
ematical description of different cueing errors. A simple model would, for ex-
ample, describe cueing errors as the absolute difference between simulator and
vehicle motions for each motion channel. A more complex model could include
the CEDA from Chapter 4 to further differentiate between different cueing error
types within each motion channel.
The PMI model was estimated and validated with the rating data from the mea-
surement method described in Chapter 2. As this Motion Incongruence Rating
(MIR) is an indirect measure of PMI, the proposed PMI model also includes a rat-
ing system that models the mapping of the PMI onto the MIR, in the linear-part
of the model. The linear part of the model was chosen to have an ARX structure,
which simplifies the parametrization of this part of the model.
Chapter 5 furthermore introduces a system identification process to identify and
estimate the linear part of the model. This process is used to reduce model com-
plexity by selecting only the subset of cueing errors that is truly needed for the
PMI prediction of a given dataset. This input selection, for example, confirmed
the finding in [124, 158] that linear jerk has a significant influence on the cueing
quality. Additionally, the identification process is used to estimate the parame-
ters/coefficients of the linear part of the model.
The identification process was used to design three PMI prediction models of dif-
ferent levels of complexity. All models were fitted to one part of the dataset from
the experiment of Chapter 2, to analyse the explanatory power of these models,
and applied to the remaining part of this dataset, to analyse the prediction power
of these models. All models showed adequate explanatory (VAF values between
85% and 92.2%) and prediction power (VAF values between 68.7% and 85.9%),
with both increasing with increasing model complexity. This shows that the pro-
posed general PMI model and corresponding identification process can indeed be
used to predict PMI ratings within one experiment.
In Chapter 6 a process to estimate a Model Transfer Parameter (MTP) is described
and validated. With the continuous rating method, the maximum rating within
one experiment is given to the maximum PMI presented in that experiment. As
this maximum PMI can differ between experiments, so do the corresponding PMI
rating scales. With the MTP, rating data from one experiment can be rescaled and
mapped onto the rating scale of a second experiment. This rescaling is, for exam-
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ple, needed when predicting PMI between different experiments or when com-
bining rating data from different experiments into one dataset for model fitting.
In [165] rating data from three different experiments are combined by matching
the results of an identical experimental condition which was present in all three
experiments. The unique combination of a time-varying quality measurement, a
quality prediction model and the MTP scale linking method, renders replication
of experimental conditions superfluous.
In Chapter 6 the MTP between the datasets from the experiments described in
Chapter 2 and Chapter 3 was estimated. First, the same three models of varying
complexity as considered in Chapter 5 were estimated using either dataset. Subse-
quently, the estimated MTP was used to analyse their prediction power when ap-
plied to the dataset from the other experiment. Additionally, the estimated MTP
was used to combine the datasets from both experiments and the three models
were again estimated using this combined dataset.
The results show that if a PMI prediction model is fitted to a sufficiently rich
dataset, it can indeed be used to predict PMI from a different experiment (VAF
values up to 77.1%). Results also show that especially models of low complexity
benefit from fitting to the combined rather than the single datasets, in terms of
explanatory power (with VAF improvements up to 6%). We can conclude from
Chapter 6 that the general PMI model and corresponding identification process
proposed in this thesis, together with a sufficiently rich dataset, can also be used
to predict general features of PMI ratings between experiments.
While many have focused on the design of physiological models for motion per-
ception for decades [92, 93, 185–188], none of these models have managed to
provide a single measure or prediction of cueing quality so far. The approach
presented in this thesis shows that more research into data-driven approaches to
predicting cueing quality is likely more efficient.

8.3. Minimizing Perceived Motion Incongruence

PMI prediction models open up many different opportunities for improving the
perceived quality of cueing algorithms. Models can, for example, be used during
off-line MCA parameter tuning. They can also be used to pinpoint troublesome
parts of a simulation before an experiment is performed, such that these parts can
be modified or removed. Analysing the correlation between cueing errors and the
measured time-varying PMI, as is done during the development of PMI predic-
tion models, can also aid in gaining a better understanding of which aspects of
simulator-vehicle motion combinations are detrimental to motion cueing quality
and possibly result in new insights into human motion perception.
Chapter 7 presents an initial attempt to utilize PMI prediction models for explicit
MCA optimization. In this chapter a simple PMI prediction model, i.e., including
only a weighted sum of absolute differences between vehicle and simulator mo-
tions in six motion channels, is implemented as part of the cost function of the
optimization-based MCA developed in [42, 57]. The resulting PMI-based MCA is
compared to the original MCA in a short human-in-the-loop experiment.
Results show that only a small group of participants, all with prior simulator ex-
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perience, preferred the PMI-based MCA. The preference of the other, larger group
seemed to mainly be based on a preference for “lower than unity gains” between
vehicle and simulator motions. This preference has been found before in, for ex-
ample, [189]. Overall, it was concluded in Chapter 7 that for MCA optimization
the model needs to be fitted to a much richer dataset, in terms of, among others,
number and variety of participants, cueing errors and simulators.

8.4. Recommendations

This thesis describes a novel approach to improve perceived cueing quality of
motion cueing algorithms. It provides a complete roadmap and describes how to
measure and model PMI and how to apply such models to predict and with that
minimize PMI in motion simulations. The results presented show the potential of
this novel approach. For each step in the roadmap to improving cueing quality,
however, several recommendations for future research can be made.
Regarding the measurement of PMI:

• The continuous rating method as presented in this thesis can only be used
for passive driving simulations. It is recommended to investigate the neces-
sary adjustments to this method such that it can also be used during active
driving. Two main challenges for achieving this need to be addressed:

1. “Rating continuously while at the same time actively controlling a vehi-
cle.” It should be investigated if two such tasks can be done sufficiently
well simultaneously or if an approach where participants first drive
and afterwards rate their recorded drive should be adopted, such as
proposed in [113] and [44].

2. “Obtaining sufficiently similar motion profiles for all participants such
that ratings can still be averaged.” Minimizing motion profile differ-
ences between participants could possibly be done with the help of
haptic guiding forces to train participants to adopt predefined driving
behaviour. Such training methods have previously been applied with
regard to curve negotiation [190], eco-driving [191] and parking [192].

• While most participants in the experiments presented in this thesis managed
to rate reliably, this was not the case for all tested participants. It is therefore
recommended to investigate and improve the training part of the measure-
ment method, such that optimal within-subject reliability is achieved. The
dynamics of learning to provide reliable continuous ratings with respect to,
for example, training duration, should be investigated.

Regarding the modelling of PMI:

• The thesis presents a general model for PMI prediction, that includes a non-
linear part that allows for implementation of specialized cueing error cal-
culation algorithms. It is recommended to both extend the Cueing Error
Detection Algorithm (CEDA) presented in this thesis with more cueing er-
ror types, such as limiting and phase errors [97], as well as develop new
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algorithms to, for example, isolate the rotational angle, rate and acceleration
errors above human perception thresholds. Additionally, known human ab-
solute and discriminatory perception thresholds can be used to filter the
translational motion channels.

• The linear part of the PMI prediction model is currently implemented as an
ARX structure. The residuals of the predictions of several of the presented
models showed autocorrelation, indicating that a different model structure
might be more appropriate. Different model structures have been briefly
tested, such as the ARMAX structure where a moving average is included,
but these did not lead to any significant improvements in the model fit and
prediction or reductions of the number of parameters. It is recommended
to investigate the effects of different model structures on the accuracy of the
models more thoroughly.

• This thesis showed that PMI models fitted to data from one experiment can
be used to predict PMI in another experiment with different simulators and
participants by simply using a Model Transfer Parameter (MTP) to map the
two PMI rating scales onto one common scale. The between-experiment
prediction of PMI was, however, less accurate than the within-experiment
prediction. It is therefore recommended to investigate what the influence
of differences between experiment set-ups are on the estimated PMI pre-
diction models. For example, the models assume that vehicle motions can
be derived from visuals and driving experience, but the visuals can differ
greatly between simulators. It is recommended to investigate whether such
differences between visuals can be captured in the non-linear part of the
PMI prediction model via, for example, an algorithm that maps actual ve-
hicle motions onto visually perceived vehicle motions. By capturing such
known differences between simulators within the PMI prediction model, its
between-experiment prediction power is expected to increase.

• The approach presented in this thesis shows that data-driven approaches to
predicting cueing quality is likely to be more efficient than using physio-
logical models for motion perception [92, 93, 185–188], as the latter do not
provide one single measure or prediction of cueing quality. It is therefore
recommended that research on MCA optimization focuses more on the de-
velopment of these data-driven cueing quality models.

• Especially for automatic optimization of cueing quality, PMI prediction mod-
els need to be able to predict the PMI for all occurring cueing errors. Ob-
taining such models thus requires sufficiently rich datasets. It is therefore
recommended to first investigate what a sufficiently rich dataset entails in
this context, i.e., how to design input signals that are persistently exciting
[193]. Secondly, a large database of diverse cueing error experiments, which
can be combined using the process described in Chapter 6, should be estab-
lished to estimate and validate such “universal” PMI models.
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Regarding the minimizing of PMI:

• Before using the PMI prediction models for explicit MCA optimization, it
is recommended to first use PMI for cueing quality research, such as off-
line MCA tuning. Especially valuable will be these models’ capacity for
pinpointing the key troublesome parts of a simulation. Applying PMI pre-
diction models in this way will also help to reveal the shortcoming of these
models, which can in turn be used to fine-tune and improve them.

• Chapter 7 describes how a simple PMI prediction model can be used as part
of the cost function of an optimization-based MCA. Chapter 5 and Chapter
6 show, however, that the PMI prediction improves with increasing model
complexity. It is therefore recommended to implement a more comprehen-
sive model in future research and then determine whether this improves the
cueing quality compared to a simple model.

• The results of Chapter 7 only provide indications to why only a few partici-
pants preferred the PMI-based MCA. It is recommended to repeat this exper-
iment under more controlled conditions, where the PMI prediction model is
designed using data from a first experiment with the same simulator, partic-
ipants and motions as a second experiment in which the PMI-based MCA is
tested. Differences between these two experiments can then be introduced
one by one to obtain a more thoroughly developed insight into the applica-
bility of PMI prediction models for MCA optimization.

This thesis introduced a new way of looking at the long-standing problem of
improving MCA quality. Hopefully these recommendations will provide a good
starting point for other researchers to extend and improve the methods developed
in this thesis.
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A
The Model: MIR Averaging

During a continuous rating experiment, multiple rating signals are obtained from
the different participants and trials. In this study the main goal is to predict the
average Motion Incongruence Rating (MIR) from such an experiment. In this ap-
pendix several ways of combining the participant ratings into one average MIR
are discussed.
Standard methods for averaging data include taking the mean, mode or median
of a set of data points. The mean is an often used method, but only really de-
scribes the average for normally distributed data and is less suitable to describe
the average for non-normally distributed datasets [119]. The mode does not seem
appropriate for continuous data, where values are hardly ever repeated exactly.
To obtain a value for the mode of the dataset, the data first needs to be discretized,
such that the mode can be calculated over specific bins with equal range. In this
form, the mode, just as the median, can be used to describe the average MIR at
one time step.
A downside of using either of these methods is that, over time, they result in a
non-smooth signal as can be seen from Figure A.1 where these methods were ap-
plied to the continuous ratings obtained in the experiment described in Chapter
2. Because at some time steps several modes are found, at those time steps the
mean over these modes is taken instead.
Two other averaging techniques involve analyzing the actual distribution of the
data points at each time step. The first technique involved calculating Box-Cox
power transformations [194] with the goal of obtaining normal distributions for
the transformed dataset. The Box-Cox power transformations were calculated for
several lambda’s at each time step, as shown in the top plot of Figure A.1. The
lambda value of the transformation resulting in the most time steps with normally
distributed data was used to transform the ratings at all time steps. The mean of
these transformed ratings was taken and transformed back to the rating unit us-
ing the same transformation. This results in a signal equally smooth to directly
taking the mean over all trials and participants.
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Figure A.1: Results for different averaging techniques for continuous rating data.

The last technique involved the Kernel Density Estimation (KDE) [195], which was
used to obtain a most likely distribution of the dataset at each time step. The peak
of this distribution (mode) was then taken as the average of the ratings at this time
step. Since this method involves analyzing the distributions of the data points at
each time step separately, it is assumed that with this technique the most accurate
average of the participant ratings can be obtained.
In Figure A.1 the effects of the different averaging techniques is shown. It shows
that using the mean and mode can result in very different ratings, while the me-
dian, Box-Cox and KDE transformations give similar results. Using the mean
leads to much higher average ratings, due to outliers in the data. The mode, on
the other hand, results in a very non-smooth signal because the distributions are
somewhat flat at some moments in time. From this analysis we conclude that it is
best to use the median to describe the average MIR over time.



B
The Model: Optional

Non-linear Subsystems

The model described in Section 5.2 of this thesis consists of a non-linear part and
a linear part, where the former can be seen as a container for several non-linear
subsystems that extract different cueing errors from the simulator and vehicle
motions. In this appendix two of such possible subsystems, related to perceived
rotations, are described. It should be noted that these subsystems serve as exam-
ples, and were not validated using experiments.
MCA tuning experts often take into account that rotations with a rate below the
perceptual thresholds are not perceived by the participants. Hence, rotational
rates resulting from tilt-coordination do not have to be minimized further than
these thresholds. To account for this in the model, the rotational rates in both the
vehicle and simulator motions can also be transformed into perceived rates and
used to calculate additional cueing errors with the subscript εperc. Additionally,
an attempt is made to calculate the perceived angle based on these thresholded
rotational rates, which are then used to obtain additional cueing errors also indi-
cated with the subscript εperc. These transformations of rotational rate and angle
are further explained here.

B.1. Rotational Rate

To determine whether the rotational rate is perceived, a distinction is made be-
tween detection thresholds, below which a motion is not perceived, and discrim-
ination thresholds, below which the difference between two motions is not per-
ceived. To calculate which part of the rotational motion is above both thresholds,
multiple threshold functions based on Equation 4.1 in Chapter 4 are used. The
simulator (Fdetsim

) and the vehicle (Fdetveh
) motion threshold functions are used to

determine if the motion mismatch is caused by perceivable simulator or vehicle
motions, by comparing to motion to the detection threshold thdet for a given mo-
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Figure B.1: Actual and perceived roll (top) and pitch (bottom) rate errors for curve driving and
breaking/accelerating manoeuvres, respectively, using a perceptual threshold of 4 deg/s.

tion channel. A third threshold function (Fdet) is then used to determine whether
the sum of the first two threshold functions is above 0.5, i.e., whether either
the simulator or vehicle motion is above the detection threshold. Next, a fourth
threshold function (Fdiscr) is used to determine if the motion mismatch is above the
discrimination threshold thdiscr. The discrimination threshold is calculated with
equation B.1, which is based on Steven’s Power law for rotational motions and the
parameters for rotational velocity found by [196]:

thdiscr = 0.88 · I0.37, (B.1)

where I, the stimulus intensity, is equal to the simulator rotational rate in pitch,
roll or yaw. Finally, a fifth threshold function (Fperc) is used to determine whether
the motion mismatch could be perceived based on both the detection and discrim-
ination thresholds.
The final threshold function is used to set the rotational rate errors that are as-
sumed to not be perceived to zero, while all other errors keep their original values.
Applying this transformation to roll and pitch rate signals from the experiment
described in Chapter 2, using a discrimination threshold of three and four degrees
per second for roll and pitch rate respectively, results in perceived rotational rate
errors for the curve driving and breaking/accelerating manoeuvres, respectively,
as shown in Figure B.1. The simulator motion shown in Figure B.1 was obtained
using three different MCAs, resulting in different simulator motions for the same
manoeuvres. As car driving results in only very limited rotational motion, the
actual cueing errors are very similar to the absolute value of the simulator mo-
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tion signals. Using the transformation explained before, the actual cueing error is
transformed in the perceived cueing error, which only occurs during the last curve
driving manoeuvre and the first and last breaking/accelerating manoeuvres.

B.2. Rotational Angle

The human vestibular and somatosensory systems cannot distinguish between
changes in specific force due to rotation or due to linear acceleration. In motion
simulation this tilt/translation ambiguity is used to simulate linear acceleration
via rotation. By combining this rotation with visual cues of linear acceleration,
the central nervous system (incorrectly) resolves the ambiguity and interprets the
perceived force as linear acceleration. However, when the rotational rate is above
the perceptual threshold, this additional information could be used by the CNS to
(correctly) interpret the perceived specific force as the result of rotation. The effect
this has on motion cueing quality was shown in [92], where, for longitudinal
acceleration maneuvers, the MCA quality strongly depended on mismatches in
rotational angle. This makes including the perceived rotational angle as a cueing
error in the model desirable. How exactly different sensory signals, such as skin
pressure, specific force and rotational rate, are combined into a perceived rotation
angle over time, however, is still unknown. In this paragraph an initial attempt is
made to calculate the time-varying perceived rotational angle from rotational rate
signals with a simple algorithm.
There are two apparent processes that can be considered: 1) leaky integration
of the perceived rotational rate and 2) a switching process based on perceived
rotational rate for attributing the perceived specific force to either rotation or to
linear acceleration. Integration of the perceived rotational rate results in perceived
rotation angles when both the skin pressure and specific force signals indicate no
rotation is present. Instead the focus is therefore put on basing the algorithm on
the switching process.
The algorithm is based on three assumptions:

1. Attributing a proportion of the specific force to rotation when the rotational
rate is above threshold always occurs without error, e.g., rotations above
threshold result in a correctly perceived rotation angle.

2. Decreasing the rotational angle, and with that the specific force, will de-
crease the perceived rotational angle, e.g., either the actual rotation angle
or the perceived rotational angle at discrete time step t− 1 to be perceived,
depending on which is smaller.

3. Other rotational rates do not influence the perceived rotational angle, e.g.,
the perceived angle at t is equal to that at t− 1

Currently, these three assumptions are implemented in Matlab using a for loop
and if/else statements in combination with threshold functions for detecting above
threshold rotational rates and the direction of changes in rotational rate. The
perceived rotational angle error is then calculated as the difference between the
perceived angle in the vehicle and the simulator. For a brief initial analysis of the
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algorithm, its outcome is compared with the rating results presented first in Chap-
ter 2. For this comparison the rating during the braking/accelerating manoeuvres
is used, as the longitudinal acceleration errors were small and the rated perceived
motion incongruence is assumed to instead be caused by the rotational errors.
In Figure B.2 the actual and perceived pitch angle and rate during the brak-
ing/accelerating maneuvers using three different MCAs is compared to the mo-
tion incongruence rating at this time. To better understand the rating, other rele-
vant model inputs are also shown in the bottom plot in this figure. In all plots the
motion signals are multiplied with an estimated gain for better comparison with
the rating signal. Figure B.2 shows that the algorithm predicts that during the
second manoeuvre, where the pitch rate is below threshold, no rotational angle
is perceived. During this manoeuvre peaks in the ratings nevertheless can be ob-
served, but they do not seem to fit either the perceived or the actual rating angles.
Instead, these peaks could be the result of, for example, errors in the longitudinal
or pitch acceleration.
In the other two manoeuvres the algorithm predicts that the initial rotational
angles during deceleration (around t = 10 and t = 105) are perceived as being
larger than the second set of rotational angles during breaking (around t = 30 and
t = 125). This perceived angle is the exact opposite of the actual rotational angles.
Comparing both angles to the rating suggests that the perceived angle fits the ob-
served rating better in this respect.
It would be very interesting to further investigate the validity of this algorithm,
as its outcome can be very helpful in analyzing the cause for perceived motion
incongruence. With showing this preliminary result, the author hopes to convince
and encourage researchers with a stronger background in human perception to
investigate such an algorithm further.
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Figure B.2: MIR and actual and perceived pitch angle (top) rate (middle) unitless signals during the
braking accelerating manoeuvre using three different MCAs. MIR and additional unitless model

inputs are shown in the bottom plot.





C
SI Process: Estimating Criteria

Thresholds

In Chapter 5 the thresholds thuic and thuoc are introduced. These thresholds are
used in the system identification process for input selection and order reduction,
respectively, and should be set depending on the goal of the model. In this study,
the goal is to develop a simple model that can be used to optimize MCAs. The
model should thus capture the main features of the MIR, and not be too complex.
To determine the appropriate value of the thresholds thuic and thuoc, Steps 1-3 of
the SI process were applied to synthetic data generated with known artificial MIR
models.

C.1. Synthetic Datasets

In Figure C.1 a short overview is given on how the synthetic data and models
are generated. To ensure that the particular characteristics of the model inputs
are represented in the synthetic data, the actual measured inputs are used in this
process. The model output, instead, is synthetic and not based on the measured
ratings.

Measured inputs

Iall = [4, 6, 8, 12]

nmaxall
= [1, 2, 3, 4]

ARX Model

Input Set

Synthetic Output

Select
I

Generate
output

Randomly
select I inputs

Make
ARX model

White
noise

Select
nmax

Figure C.1: Generation of synthetic data and model for analysis of threshold value influence on
model identification.
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For a pre-specified number of inputs I and maximum polynomial order nmax,
which are selected from the sets Iall and nmaxall respectively, a random ARX model
is generated to represent the linear part of the MIR model. For the generation of
this model the orders of polynomials A and Bi are set at a random integer in the
range [1− nmax]. The ARX parameters are then set at random values, while the
gain for a certain input does not exceed a gain of 2 at any frequency and the gain
at zero frequency is higher than 0.5. These boundaries are set to ensure reasonable
filters for each input with each selected input having a detectable influence on the
synthetic output.
The I inputs to this system are randomly selected from the total input set as de-
scribed in Section 5.2.1. These inputs, together with a white noise signal, are
passed through the ARX model to generate the synthetic output. One synthetic
dataset thus consists of the I selected inputs and the corresponding synthetic out-
put and is generated by an ARX model with known parameters and a maximum
polynomial order of nmax.
In total 4 · 4 · 7 · (6 + 1) · 5 = 3,920 synthetic datasets were generated for four dif-
ferent number of inputs (Iall = [4,6,8,12]), four different maximum polynomial
orders (nmaxall = [1,2,3,4]), seven different input selection thresholds (thuicall =
[0.01,0.05,0.1,0.2,0.3,0.6,1]) and six different order reduction thresholds (thuocall =
[0.01,0.05,0.1,0.2,0.3,0.6]) plus the use of the Akaike Information Criterion (AIC)
[197] instead of SCordp , that each were repeated five times. For each dataset the
inputs, polynomial orders and ARX parameters were randomly chosen and ran-
domly generated Gaussian white noise was used.

C.2. Results

Using the first three steps of the SI process, the inputs and model orders were
estimated and compared to the original values. Figure C.2 shows the input se-
lection (a) and order reduction (b) results for all synthetic datasets. Each colored
line in Figure C.2 shows the results for a specific number of inputs and maximum
model order in the synthetic dataset. Each data point on a line shows the aver-
age result over five datasets, using the corresponding threshold thuic or thuoc on
the horizontal-axis. The black lines indicate the average over all results at each
threshold value. The dotted vertical line indicates the chosen thresholds, which
are discussed in the next paragraph.
Figure C.2(a) shows, from left to right, as a percentage of the actual number of
inputs in the synthetic data: the inputs that were correctly selected, the inputs
that were missing and the inputs that were incorrectly selected. The figure shows
that increasing the value of thuic results in an increasing number of inputs that
is considered irrelevant after the input selection process, even though they were
actually used to generate the synthetic output. On the other hand, very low values
of thuic result in considering certain inputs relevant, even though they were not
used to generate the synthetic output. In this case, the ARX model probably used
these inputs to fit the white noise. Increasing the number of inputs to generate the
synthetic data also increases the chance on missing inputs after the input selection
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Figure C.2: Performance of input and order estimations for synthetic data with varying criterion
thresholds thuic and thuoc, respectively.
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process and so does increasing the maximum model order.
Figure C.2(b) shows, from left to right, as a percentage of one (polynomial A) plus
the number of correctly selected inputs (polynomials Bi): the polynomials orders
that were correctly estimated, the polynomials orders that were estimated too low
and the polynomials orders that were estimated too high. In these figures, the re-
sults when using the AIC instead of thuoc to reduce the polynomial order are also
shown. The model orders are generally estimated too low for nmax higher than
one. A likely explanation for this is that these model orders influence frequency
ranges that are not represented in the input signals and thus do not influence
the model fit. While increasing thuoc results in even more polynomial orders to
be estimated too low, for low values of this threshold the polynomial orders are
estimated too high. Interestingly, using the AIC instead of thuoc to reduce the
polynomial order results in an even higher percentage of polynomial orders being
estimated too high. A similar finding was observed by Drop [198].

C.3. Threshold Choice

Setting the value for thuic too low reduces the model fit because relevant inputs
might not be selected. On the other hand, setting this value too high can result in
an unnecessarily complex model and with that a reduction of its predictive power.
A value of thuic = 0.2 is chosen such that in Figure C.2(a) almost 90% of the inputs
is selected correctly, while less than hardly any (< 1%) additional inputs are se-
lected.
Even though using the AIC is a widely accepted method for model selection, the
synthetic data results show that this criterion is not strict enough for the type of
data used here, resulting in unnecessarily high polynomial orders in more than
20% of the cases. Using the threshold method with thuoc = 0.2 model orders are
almost never (< 0.5%) overestimated while the same percentage of correct poly-
nomial orders (59% vs. 56% correct orders) only decreases marginally. Instead
therefore the threshold method with thuoc = 0.2 is used in this study. The model
orders that are underestimated can be corrected manually during the model ex-
planatory analysis that is performed in Step 5 of the SI process.



D
SI Process: Selection Criteria

Parameters

In Section 5.3.2 of Chapter 5 the criterion for input selection and order reduction
is discussed and the parameters W (time step weight vector) and PANIC (Avoid
Negative Input Contributions parameter) are introduced. To show the effects of
these parameters on the models resulting from the SI process, the initial SI param-
eters of the CEDA model are used to show the influence of W and PANIC on the
goodness of fit of the final model.

D.1. Influence of W
In Equation 5.1 the selection criterion used for input selection and order reduc-
tion is described. The weight vector W is typically set to one for each time
step (W = W1), indicating that the error between modelled and measured MIR
is equally important at all time steps. This weight vector, however, can be used
to improve the predictive power of the model, by increasing the weight at certain
important time steps.
One way of selecting important time steps is by increasing the weight at time steps
that describe important features of the output signal. As was discussed in [136],
the off-line overall rating of a maneuver was best described by the maximum con-
tinuous rating during this maneuver. This implies that minimizing peaks in the
continuous rating is the most important, when trying to improve the overall MCA
quality. To more accurately model these peaks in particular, a peak detection al-
gorithm (such as Matlab function ‘findpeaks’) can be used to detect the peaks and
valleys in the measured MIR. The corresponding time steps, and the surrounding
ones, can then be given and increased weight during the criterion calculation by
setting W = Wpeaks. For the dataset used in this study, however, adjusting W to
Wpeaks did not give a significantly different result.
A more commonly used criterion for selecting important time steps is by varying
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Figure D.1: Weights Wstd for dataset ze.

the weight according to the level of agreement between participants (W = Wstd).
When the spread between participants is large, the weights for these time steps
should be small, while the weights should increase with a decreasing spread. In
Figure D.1 the weights Wstd, which are inversely proportional to the standard de-
viation of the rating at each time step, for the evaluation dataset ze are shown.
Figure D.1 shows that the highest agreement between participants is found in the
middle of maneuver BA and MCANL where the median rating is zero. In general,
the agreement is highest at times when the median rating is zero.
A new model, CEDAstd, is obtained using the same initial parameters and choices
as the CEDA model described in Paragraph 5.4.1, but using W = Wstd instead of
the original CEDA model setting W = W1. In Figure D.2 the effects of setting
W = Wstd, compared to W = W1 for the CEDA model are shown for the parameter
estimation dataset z f e. The main difference between models CEDA and CEDAstd
is found during the BA maneuvers. The input selection process resulted in leaving
out ωp when the weight parameter was changed from W1 to Wstd. After the order
reduction step, the CEDAstd models therefore contain one parameter less than the
CEDA model. Adjusting W1 to Wstd decreases the total fit with a decrease in VAF
of 0.6%.
In Figure D.3 the prediction for dataset zp is shown for both the CEDA and
CEDAstd model, as well as the input contributions of the CEDAstd model. Figure
D.3(a) shows that the prediction power is increased minimally with 0.2%. Taking
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Figure D.2: Model CEDAstd: Goodness of fit and input contributions for fit to dataset z f e.
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Figure D.3: Model CEDAstd: Goodness of fit and input contributions for prediction of dataset zp.
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Figure D.4: CEDAANIC=0 model fits to dataset z f e.

into account the agreement between participants is generally assumed to improve
the prediction power of the model, as it reduces the chance of fitting the model
to noise in the dataset. The prediction results shown in Figure D.3 imply that
this only has a very marginal effect on the prediction power. Additionally, the
spread between participants caused such disproportionately large weights during
maneuver BA with MCANL, that it makes the model less suitable for prediction
of different maneuvers.
Because no clear indication was found that variable weights significantly improve
the model, for simplicity the weights in this study are all set to W1. However,
when more data become available, it is advised to investigate if weights based
on participant agreement can improve the prediction power. The relation between
weights and agreement can be adjusted and possibly the removal of negative input
contributions can be improved.

D.2. Influence of ANIC
The CEDA model was obtained by setting the parameter PANIC to one, such
that the removal of inputs causing higher negative input contributions are mostly
avoided. To show the influence of this parameter a model was obtained by setting
PANIC to zero. In Figure D.4(a) the goodness of fit to dataset z f e and in Figure
D.4(b) the corresponding input contributions are shown. The prediction of this
model for dataset zp is shown in Figure D.5(a) and the corresponding input con-
tributions are shown in Figure D.5(b).
The resulting model has fourteen parameters, obtained by adding one extra input,
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Figure D.5: CEDAANIC=0 model predictions for dataset zp.

compared to thirteen parameters in the CEDA model. Figures D.4(b) and D.5(b)
show that the contribution of input αy is fully negative, e.g., 180 degrees phase
shift. While this additional input improves the model by increasing both the fit
and the prediction with an absolute increase in VAF of 0.5% and 1% respectively,
the negative input contribution would suggest that cueing errors are improving the
cueing quality. To make the SI process more robust against such illogical choices,
the ANIC parameter should thus be set to one. However, if this is not a require-
ment for the use of the model, setting PANIC to zero likely results in a higher
goodness of fit, because the input selection is less constrained.





E
SI Process: Parameter

Estimation

Parameter estimation is a technique that is used to estimate the most likely pa-
rameters of system. In this appendix first a general overview is given on the
background and different implementations of maximum likelihood estimation.
We then discuss which the relation between this estimation technique, often used
in the human sciences, with the prediction error method for parameter estima-
tion, often used in engineering. After this introduction to the subject of parameter
estimation, the influence of the noise characteristics observed in this study on the
prediction error parameter estimation is analysed.

E.1. Maximum Likelihood Estimation

To calculate the parameters of a model, the system response to a known set of
inputs can be compared to the measured system output. The parameters can
then be calculated by equating the difference between measured and modelled
system outputs to zero and solving for the parameters. However, in the real
world, measurements of system outputs are a combination of the system output
plus noise. This relation for linear systems can be described by:

ymeas = y + η = X · B + η, (E.1)

where ymeas is the measured system output, y the true system output, X are the
system inputs, B is the polynomial with the true system parameters and η is
the noise. Without exact knowledge of the noise, the true system parameters
can thus no longer be directly calculated. Instead, parameters can be estimated
by maximizing the probability of them being the true parameters of the system,
given the measurements. Such a rule describing how to obtain the most probable
model parameters is called an estimator.
The many different estimators described in literature can generally be derived
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from the Bayes’ estimator. This estimator is based on Bayes’ Rule for continuous
random variables [199] which states that the probability density of the parameters
given the measurements, e.g., the posterior probability density, is defined with:

f
(

β|ymeas
)

=
f
(
ymeas|β

)
f
(

β
)

f
(
ymeas

) (E.2)

The probability density of certain parameters being the true system parameters
given the measurements thus depends on three probability densities:

1. Probability density of the measurements occurring given the parameters:
f
(
ymeas|β

)

• where f
(
ymeas|β

)
is called the likelihood function and depends on the

noise distributions.

2. Prior distributions of the parameters: f
(

β
)

• this contains information on the parameters before any evidence, e.g.,
measurements, are taken into account

3. Marginal distribution of the measurements: f
(
ymeas

)

• the mean probability of the measurements over all values of β

The Bayes’ estimator tries finding parameter estimates that maximize the posterior
probability. A point estimator based on this rule is the maximum a posteriori
(MAP) estimator, which assumes that the most likely value for β can be found
at the mode (e.g., the maximum) of the posterior probability distribution. For
the relatively simple case where f

(
β|ymeas

)
is a unimodal distribution, this is a

reasonable assumption.
The MAP estimator is described with:

β̂MAP = argmax
β

f
(

β|ymeas
)

= argmax
β

f
(
ymeas|β

)
f
(

β
)

(E.3)

However, in many applications the prior distributions f
(

β
)

are unknown and in-
stead are assumed to be uniform. As the marginal distributions are independent
of the parameters, maximizing the posterior probability then becomes propor-
tional to maximizing the likelihood function f

(
ymeas|β

)
. For linear systems as

described in equation E.1, this likelihood function represents the distribution of
the noise η. E.g., given certain parameters B̂ and the corresponding modelled out-
put ymod, the likelihood of certain measurements ymeas to occur depends on the
noise distribution.
For many applications it is easier to use the negative of the log likelihood, rather
than the likelihood, such that minimization and summation instead of maximiza-
tion and products can be used. The maximum likelihood estimator is then de-
scribed by the following rule:

β̂MLE = argmin
β

− ln f
(
ymeas|β

)
(E.4)
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The maximum likelihood estimator can be further simplified if more is known
about the noise distributions described by f

(
ymeas|β

)
. In many cases these sim-

plified estimators use the following definition of the measurement error ε:

ε = ymeas − ymod = ymeas − X · B (E.5)

If the modelled output ymod represents the true system output y, then the mea-
surement error ε will equal the system noise η. In Table E.1 an overview is given
for some of the most common distribution assumptions and the corresponding
simplified MLEs.
In this table, IID stands for Independent Identically Distributed. This means that
the noise distribution locations (i.e., mean) and shape (i.e., variance) are identi-
cal for all noise measures and should not depend on any other system variable
[200]. Identically distributed variables are thus also homoscedastic variables, e.g.,
all noise distributions have the same variance [201].
The generalized least squares method allows for a certain degree of correlation
between the noise and system variables described by the matrix V, e.g., IID noise
is not required. For independent, but heteroscedastic noise the weighted least
squares, with weights wi corresponding to the noise variances for each measure-
ment, can be used. When the IID noise assumption applies, the ML estimator
simplifies to the ordinary least squares estimator, which solely depends on the
measurement error. Due to its simplicity and the available analytical solution, this
estimator is used in many applications, including modelling of dynamical sys-
tems.
When, instead of the normal distribution, the IID noise follows a Laplace, or dou-
ble exponential, distribution, the Least Absolute Deviation estimator can be used.
This distribution type has an excess kurtosis of three, meaning that the distribu-
tion peak is much sharper than that of a normal distribution.
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Table E.1: Maximum likelihood estimation methods

Estimation
Method

Estimator Analytical
Solution

Assumptions Features

Generalized
Least Squares

(GLS)
β̂GLS = argmin

β

εTVε
Yes Normal

Distributions
Sensitive to outliers

Weighted Least
Squares (WLS)

β̂WLS = argmin
β

n

∑
i=1

wiε
2
i , with wi =

1
σ2

i

Yes Independent
Normal

Distributions

Sensitive to outliers

Ordinary Least
Squares (OLS) β̂OLS = argmin

β

n

∑
i=1

ε2
i

Yes IID Normal
Distributions

Sensitive to outliers.
Implemented in Matlab

ARX method

Least Absolute
Deviation

(LAD)
β̂LAD = argmin

β

n

∑
i=1
|εi|

No IID Laplace
Distributions

Resistant to outliers and
robust to departures from

the normality assumption
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E.2. Prediction Error Method for ARX model struc-
tures

For dynamical systems with an ARX model structure, the relation between system
output ymeas, inputs X and noise η is described by:

Aymeas = X · B + η, (E.6)

where A and B represent the output and input polynomials, respectively. The
simple OLS estimator described in the previous section, depends on the equality
of system noise η and measurement error ε for the correct model. With this model
structure, however, the measurement error ε also includes system noise from pre-
vious time steps and is thus never equal to η. Instead, the prediction error is
introduced. This prediction error is calculated with the measured and predicted,
rather than modelled, outputs for the model, ymeas and ypred, respectively. The
measured output for an ARX model structure is:

ymeas = X · Breal + η− a1real · ymeas · z−1− a2real · ymeas · z−2...− anreal · ymeas · z−n (E.7)

Here, X are the system inputs, B is the input polynomial, η indicates the system
noise and aireal are the parameters of the output polynomial A. The predicted
output is then calculated with:

ypred = X · B− a1 · ymeas · z−1 − a2 · ymeas · z−2...− ana · ymeas · z−na , (E.8)

where ai are the parameters the modelled output polynomial A. The prediction
error is then calculated with:

εpred = ymeas − ypred (E.9)

If the system noise is IID Gaussian noise, the ML estimator reduces to the OLS
estimator:

β̂OLS = argmin
β

n

∑
i=1

ε2
predi

(E.10)

E.3. Influence of non-IDD noise

In this study the initial guess of the model structure of the linear part of the per-
ceived motion incongruence model resembles the ARX model structure. For this
structure, the parameter estimation is based on the prediction error, rather than
the measurement error, because the measurement error depends on passed in-
stances of the modelled output. If the system noise is assumed to be IID Gaussian
noise, an analytical solution for the model parameters can be found, which signif-
icantly decreases the SI process calculation time. As this process is often repeated
many times for one model, any time improvement can increase the number of
different non-linear choices and SI process parameter combinations that can be
tried in a certain time span, eventually leading to more optimal models.
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Figure E.1: Prediction error εpred versus time (top) and its probability density function (bottom).

In this study, however, the system noise is not IID Gaussian noise. The analyt-
ical solution obtained from the OLS estimation is therefore not necessarily the
maximum likelihood estimate. In this appendix an analysis of the effects of this
departure from IID Gaussian noise on the parameter estimation is performed.
First, the system noise distribution is modelled in Section E.3.1, after which this
noise model is used in Section E.3.2 for back estimation of ARX model parame-
ters. The latter leads to the conclusion that the observed noise distribution does
not significantly influence the parameter estimation, and the OLS estimator can
still be considered as a maximum likelihood estimator.

E.3.1. Noise Modelling

The system noise in ARX model structures is described by the prediction error.
If this system noise is IID Gaussian noise the model parameters can be estimated
with the OLS estimator. In Figure E.1 the resulting prediction error for the data
used in this study is shown. Figure E.1 shows the prediction error over time in the
top plot and the total prediction error probability density distribution in the bot-
tom plot. Clearly, the variance of the system noise is not constant over time, e.g.,
heteroscedasticity occurs. The bottom plot additionally shows that the total sys-
tem noise is not normally distributed. As the prediction error only provides one
sample from the noise distribution at each time step, it is not possible to model
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the heteroscedasticity accurately from the prediction error. Instead, here we try to
estimate the system noise from the measurements.
The measurements in this study included 48 time signals (16 participants each
rating 3 trials), leading to 48 measurement points at each time step. These mea-
surements show the distribution of the noise around a true underlying average
rating that we wish to model. The relation between the measured and true system
output y, e.g., the average rating, is shown in:

ymeas = y + ηmeas(y), (E.11)

where ηmeas differs from the system noise η in equation E.7 as it includes system
noise from previous time steps as well. The true system output that we aim to
model is described with:

y = BX− a1y z−1 − a2y z−2 − ...− any z−n (E.12)

Combining equations E.7, E.11 and E.12, the measurement noise ηmeas can thus be
described as the difference between the measured and the system output:

ymeas − y = ηmeas(y) = η − a1(ymeas − y)z−1 − a2(ymeas − y)z−2−
...− an(ymeas − y)z−n (E.13)

This results in the relation between system noise and measurement noise:

η = ηmeas + a1(ηmeas)z−1 + a2(ηmeas)z−2 + ... + an(ηmeas)z−n (E.14)

The system noise distribution can thus be derived from the measurement noise
distribution and the polynomial A parameters. As the polynomial A parameters
and the true system output are not known, to determine the system noise distri-
bution we need estimates of these values.
Here we start by estimating the parameters of polynomial A. For this estimation
we assume that the measured system output is the median rating at each time
step and that the system noise is IID Gaussian noise. Using the prediction error
method with OLS estimation, the system polynomials A and B are estimated.
To estimate system noise, the true system output y is assumed to be the median of
the measured outputs. The latter is hereby defined as the measured system noise
estimate εmeas:

εmeas = ηmeas + â1(ηmeas)z−1 + â2(ηmeas)z−2 + ... + ân(ηmeas)z−n (E.15)

In Figure E.2 the system noise estimates using equation E.9 for εpred and equation
E.15 for εmeas are shown versus time. Figure E.2 shows that the prediction error is
for the most part within the interquartile range of the measured system errors. In-
dicating that they are both representing the similar underlying system noise. It is
also clear that both estimates show heteroscedasticity over time, e.g., the variance
is not constant, and seems to correlate with the median of the measurements, i.e.,
the lower the median value, the smaller the variance.
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Figure E.2: Top: system noise estimates εpred (red line) and εmeas (gray dots). The black lines indicate
the inter quartile range of the noise estimate εmeas at each time. Bottom: median over all rating

measurements.

To model this heteroscedasticity related to the median rating, distributions were
fitted to the noise estimates εmeas corresponding to a specific value of the median
rating. Normal, logistic and the Student’s t location-scale distribution types, each
type having increasing kurtosis, were used. In Figure E.3 the fits of the different
distributions to the histograms of the measured noise estimates εmeas is shown.
The average negative log likelihood over all fitted Student’s t location-scale dis-
tributions, shown in the legends, is lower than for the normal and logistic distri-
butions. In Figure E.4 the median and inter quartile range (IQR) of the measured
noise estimates εmeas and the fitted distributions are shown. As expected from
the average negative log likelihoods for the Student’s t location-scale distribution
type, the median and IQR for this distribution type also fit best to the measured
noise estimates εmeas distributions, and is therefore used to describe the distribu-
tion of εmeas.
To describe the heteroscedasticity of εmeas over system output y, the parameters of
the Student’s t location-scale distributions, location µ, scale σ and shape parameter
ν, are modelled using a seventh order polynomial. In Figure E.5 these parameters
vs. y and the seventh order polynomial fits are shown. The dotted line indicates
an extrapolation of these parameters for values of y up to one, which, for simplic-
ity, is assumed to be the median of the parameters from y = 0.5 and higher. This
extrapolation is needed to assure reasonable parameters for the complete system
output, i.e., rating, range [0− 1]. The polynomial fit takes into account that for
some values of y many more measurement samples are used than for others, by
using the number of samples as weights in the optimization cost function. The
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(a) Normal distribution fit

(b) Logistic distribution fit

(c) Student’s t location-scale distribution fit

Figure E.3: Standard distribution fits to measured noise estimates εmeas.
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Figure E.6: Measured and modelled system noise estimates over time (top) and their probability
density distributions (bottom).

final noise model as a function of the true system output is now described as:

fεmod (y) = ftLocationScale(poly7µ(y), poly7σ(y), poly7ν(y)) (E.16)

To validate this noise model fεmod (y), random samples are drawn from it with y
as the median rating and compared to εmeas. The top plot in Figure E.6 shows the
resulting measured and modelled noise (εmeas and εmod respectively) over time,
as well as their median and first and third quartiles. The resulting overall distri-
butions of εmeas and εmod over all time steps is shown in the bottom plot. Figure
E.6 shows that the proposed noise model can describe the measured noise rela-
tively well and can be used to determine the influence of the heteroscedasticity
and non-normality of the noise on the arx parameter estimation. It should be
noted, however, that even though the interquartile ranges are very similar, the
measured noise does contain more outliers than the noise sampled from the noise
model. For future work it is therefore recommended to improve this noise model
by, for example, varying distribution type as well as distribution parameters per
median rating, by modelling additional dependencies of the distributions aside
from the dependency on median rating, or by replacing the polynomial functions
with more functions that fit better to the observed distribution parameters.

E.3.2. Back Estimation of ARX parameters

Using the noise model from the previous section, synthetic outputs are generated
using random ARX model polynomials and the inputs in a similar way as was
described in Section C.1.
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Figure E.7: Parameter estimation errors when system noise comes from white Gaussian noise or noise
model distributions.

Synthetic datasets were made using both distributions of white Gaussian noise
and the noise model described in the previous section. Furthermore, the number
of inputs, between three and nine, and the maximum polynomial order, between
one and four, were varied and each combination was repeated twenty times with
randomly chosen parameters. In total this led to 2x6x4x20 = 960 different synthetic
models that were back-estimated using the ARX function of Matlab.
In Figure E.7 the errors between the actual and the estimated system parameters
are shown for all conditions (top row), per number of inputs (middle row) and
per maximum polynomial order (bottom row), for system errors from both white
Gaussian noise and noise model distributions. The right hand plots show the
boxplots without outliers, for clarity.
To determine significant differences in parameter estimation errors between the
two noise distributions, t-tests were performed for each pair shown in Figure E.7.
No significant differences between distributions were found.
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E.3.3. Conclusion

Since no significant differences between system noise from white Gaussian and
actual fitted noise model distributions were found, the effects of non IID Gaussian
noise as observed from the rating measurements is reasonably assumed to not in-
fluence the least squares parameter estimation for ARX models significantly. The
parameters found with this estimation method can therefore be regarded as to be
close to the maximum likelihood estimations of the system parameters.
However, small differences between the noise model and the measured noise
might were observed. For future work it is therefore recommended to improve
the noise model and confirm that the noise characteristics do not significantly
influence the parameter estimation.





F
MTP Estimation

When using the continuous rating method to rate Perceived Motion Incongruence
(PMI), a rating of this incongruence, the MIR, is obtained. This MIR is rated on a
scale that is anchored to the minimum and maximum PMI perceived during the
experiment. Comparing the rating obtained from two different experiments thus
requires one to transform both MIRs to have the same scale. To do this, the model
transfer parameter (MTP) is introduced in Chapter 6. This constant maps the rat-
ing scale of one of the experiments onto the rating scale of the other experiment.
To calculate the MTP, two methods have been tested and compared: a serial and
parallel modelling-scaling method. In this appendix both methods are explained
and analysed. To validate the methods and determine whether they can suc-
cessfully estimate the MTP, data from a single experiment are split in two sub-
datasets and the MTP between them is calculated. As both subsets originate from
the same experiment, they were rated on the same rating scale and the estimated
MTP should thus, by definition, be unity. The method validation thus amounts to
comparing the resulting MTP estimates to the true MTP of one.
The unity MTP estimation is done twice for each estimation method: once using
the CMS and once using the Daimler experiment dataset. The subsets that are
derived from each experiment are used to fit and apply a PMI model to. For a
robust estimation, the model fit to both subsets should be reasonably good. To
accomplish this, the two subsets should include segments, i.e., combinations of
manoeuvre and MCA, that have similar input power. To this end, the overall
datasets are split using Table F.1, where the first subset contains the Basis group
and at least one of the segments from each of the Choices groups. The second
subset contains at least one segment from each of the Choices groups.
For each estimation method, the MTP is estimated for different combinations of
segments in each subset and for three different models, each time using a ran-
domized initial MTP value between 0.1 and 2, as explained in Section 6.3.3. For
the CMS experiment in total 8 different subset pairs are possible, while for the
Daimler experiment, which has many more segments, a total of 48 different sub-
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Table F.1: Grouping of experiment sections with similar input power.

Exp. Basis Choices

1 BAScal , BATRL,
BANL

CDScal ,
BCDAScal

CDTRL,
BCDATRL

CDNL,
BCDANL

2 TLWM/D ,
TLAM/D

RuCM/D ,
OvTM/D

RouM/D ,
TuLM/D

SlDM/D ,
TLDM/D

Ci1M/D , Ci2M/D ,
Ci3M/D

set pairs is used. Each method thus performed 24 and 144 MTP estimations for
the CMS and Daimler experiment, respectively.

F.1. Serial

For the serial MTP estimation method, first a model is fitted to the first subset, af-
ter which the MTP is estimated by applying this model, multiplied with the MTP,
to the second subset. In this case, no data from the second subset are thus used
to fit the model. The optimal MTP is found by minimizing the one-step-ahead
prediction error for the second subset.
In Figure F.1 the results of the serial MTP estimations for the different subset pairs
of both experiments is shown in boxplots, where the CMS boxplots describes 24

MTP estimates and the Daimler boxplot describes 144 MTP estimates. For both
experiments, the unity MTP falls within the interquartile ranges of both boxplots.
The final MTP estimate should be calculated as the average over all these esti-
mates.
In Figure F.2 the histograms and normality plots of the estimates for both experi-
ments are shown. This figure shows that the estimates of both experiments do not
exactly follow a normal distribution. The Lilliefors test for normality confirms this
(CMS: D = 0.26674, p < 0.001, Daimler: D = 0.14017, p < 0.001) and the mean is
therefore not a valid descriptor of the average MTP estimate. Instead the median
should be used. With the serial MTP estimation method, the unity MTP is thus
estimated as 1.00 and 0.91 for the CMS and the Daimler experiments, respectively.
This estimation method can thus be perfect, in case of the CMS experiment, but
has an error from unity of about 9%, in the case of the Daimler experiment.

F.2. Parallel

For the parallel MTP estimation method, the MTP is estimated using an iterative
process of alternately fitting a model to both subsets and estimating the MTP.
Before combining both subsets, the inputs of the second subset are multiplied
with the MTP, while the inputs of the first subset remain unchanged. The optimal
MTP is found using a gradient-descent method by minimizing the one-step-ahead
prediction error for the complete dataset. In this case the model is thus fitted to
data from both subsets.
In Figure F.3 the results of the parallel MTP estimation for the different subset
pairs of both experiments is shown in boxplots, where the CMS boxplot describes
24 MTP estimates and the Daimler boxplot describes 144 MTP estimates. For both
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Figure F.1: Boxplots showing median and interquartile range for serial unit MTP estimation for CMS
(left) and Daimler (right) experiments.
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Figure F.2: Histograms and normal distribution fits (left) and normality plots (right) for serial unit
MTP estimations for CMS (top) and Daimler (bottom) experiments.
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Figure F.3: Boxplots showing median and interquartile range for parallel unit MTP estimation for
CMS (left) and Daimler (right) experiments.

experiments, unity MTP is a likely candidate for the MTP as it falls well inside
the interquartile ranges of both boxplots. The final MTP estimation contains the
additional step of averaging over these different MTP estimation results.
Figure F.4 shows that, the results do not exactly follow a normal distribution. This
is mainly caused by local minima being found when the initial MTP estimate given
to the optimization is close to zero. The Lilliefors test for normality confirmed
that the MTP estimations are not normally distributed (CMS: D = 0.2510, p <
0.001, Daimler: D = 0.085938, p < 0.05), indicating that the mean value over all
MTP estimations is not a good descriptor of the average MTP estimate. Instead,
therefore, the median over all MTP estimates is used as the overall MTP estimate.
Using the median to describe the final MTP estimate for the CMS and Daimler
experiments, MTP estimates of 1.01 and 1.03 are found, respectively. The error
from unity using the parallel MTP estimation estimate is thus 1% and 3%, for the
CMS and Daimler experiments, respectively.

F.3. Discussion and Conclusion

The serial MTP estimation process has the advantage of a low computation time
compared to the parallel estimation process. However, the results of the serial
process are much less accurate (9% error) than those of the parallel process (3%
error). Also this estimation process seems less reliable as there is a large difference
in error between the two experiments.
The relatively low accuracy and reliability can be explained by the use of only
one subset to fit a model. With small subsets, there are many possible models
that can describe the subset equally well. However, not all of these models would
show the same prediction performance. For example, the roll angle and the yaw
rate cueing errors have a similar shape in the CMS experiment, and either of them
might provide a good fit. However, in the Daimler experiment, these two signals
are not similar and the prediction power of a model using the roll angle instead of
the yaw rate would thus differ. If the chosen model does not fit the second subset
well enough, the MTP estimate could adversely be used to partially correct for the



F.3. Discussion and Conclusion 259

0 1 2
MTP

0

5

10

15

F
re

qu
en

cy

CMS: MTP histogram
and normal distribution fit

 mean = 1.01

0 0.5 1 1.5
Data

0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98

P
ro

ba
bi

lit
y

CMS: Normal Probability Plot

0 1 2
MTP

0

20

40

60

F
re

qu
en

cy

Daimler: MTP histogram
and normal distribution fit

 mean = 0.98

0.5 1 1.5
Data

0.003
0.01
0.02
0.05
0.10
0.25

0.50

0.75
0.90
0.95
0.98
0.99

0.997

P
ro

ba
bi

lit
y

Daimler: Normal Probability Plot

Figure F.4: Histograms and normal distribution fits (left) and normality plots (right) for parallel unit
MTP estimations for CMS (top) and Daimler (bottom) experiments.
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bad predictive power of the model. Using both subsets for model fitting, makes
sure that the model is most optimal for both subsets. The resulting MTP estimate
is therefore less likely to account for poor descriptive power of the model.
The results found in this study are supported by [169], where a similar comparison
between a serial and parallel scale transformation estimation was made. In their
study also the parallel estimation process proved to provide more accurate results.
When more data are available for model fitting, and a more accurate model can
thus be obtained, the difference between results of the serial and parallel MTP
estimation processes are expected to reduce. For this study, however, the parallel
MTP estimation process is used, as it results in more accurate MTP estimates.
While the final MTP estimation is quite accurate, the spread in the results of
the parallel MTP estimation method is quite large. This spread is most likely
caused by the simplicity of the search algorithm that often finds local minima
when the initial MTP is far from the actual MTP. This spread can be reduced by
improving the search algorithm, but a more elaborate search algorithm would also
likely result in a higher computation time. As currently the MTP calculation for
the Daimler experiment already took several days, and resulted in a sufficiently
accurate MTP estimate, further improvement of the search algorithm currently
seems unpractical.



G
Model Structure, Residual and

Uncertainty Analysis

In this appendix the model structure, residual and uncertainty analysis for the
models fitted to datasets from the CMS and the Daimler experiment, as well as
the combined dataset, are shown. Additionally, the residual analysis for the pre-
diction of the MIR in the other dataset is presented.

G.1. CMS Data Results

In this section the results of the models, fitted to the dataset of the CMS experi-
ment, and applied to the dataset of the Daimler experiment are shown.

G.1.1. Model Structure

Using the SI process described in Chapter 5 the inputs, polynomial orders for
output and input polynomials A and B, input delays, DC gains and output contri-
bution percentage (OCP) shown in Table G.1 for each model were selected. Table
G.1 shows that the models have a similar number of parameters, with the Basic
model having two parameters less than the AI and CEDA models. For the AI
model, the cueing error in yaw rate, as selected for the Basic model, was replaced
by a combination of lateral jerk and roll angle. For the CEDA model, the cueing
error in yaw rate was replaced by the error in roll angle and the error in vertical
acceleration was replaced by the errors in pitch and roll angle.
In the CEDA model, also the cueing error in lateral acceleration was split up in
three different types of cueing errors, that each were weighted differently: the
false and missing cues were given a more than three times higher DC gain than
the scaled cue. The order for polynomial A was high for all three models, while
the B polynomial for rotational rate is solely a gain for all three models. Delays are
above one second only for the AI model for cueing errors in lateral acceleration
and roll angle.
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Table G.1: Estimated Basic, AI and CEDA model parameters when fitting to the CMS experiment
dataset.

(a) Polynomial orders A (MIR) and B (cueing errors). N indicates the number of free parameters.

Signal

Model MIR ay aysc aymc ay f c az jy θr θp ωr ωy N

Basic 4 2 2 1 2 11

AI 4 2 2 2 2 1 13

CEDA 4 2 1 2 1 2 1 13

(b) Input delays per cueing error

Signal

Model ay aysc aymc ay f c az jy θr θp ωr ωy

Basic 0.6 0.0 0.1 0.0

AI 1.2 0.0 0.0 1.7 0.4

CEDA 0.0 0.3 0.7 0.0 0.0 0.2

(c) DC Gain per cueing error

Signal

Model ay aysc aymc ay f c az jy θr θp ωr ωy

Basic 0.33 0.51 0.08 0.01

AI 0.20 0.24 0.22 0.01 0.07

CEDA 0.12 0.44 0.36 0.01 0.003 0.06

(d) OCP per cueing error

Signal

Model ay aysc aymc ay f c az jy θr θp ωr ωy

Basic 41 19 24 16

AI 28 11 8 31 21

CEDA 10 13 12 37 8 20
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Figure G.1: Residual analysis of the Basic, AI and CEDA models when fitted and applied to the CMS
experiment dataset.

For the Basic model, most of the rating can be explained with the lateral accelera-
tion. However, the gain of the vertical acceleration is higher than that of the lateral
acceleration for this model. For the AI and CEDA models most of the rating can
be explained with the rotational rate, followed by the lateral acceleration. For
the CEDA model, most of the rating can be explained with the combined cueing
errors in lateral acceleration, followed by cueing errors in roll angle.

G.1.2. Model Fit

The residual and uncertainty analyses results of the models fitted to the dataset
from the CMS experiment are discussed. The residual analyses for all models
is shown in Figure G.1. The auto-correlations of the residuals, left subplot, and
cross-correlations of the residuals with the inputs, all other subplots, for each
model are shown in red, and the 95% confidence interval (CI) is indicated with
the gray area.
Despite all models having a high A polynomial order, there is still some residual
autocorrelation visible for the Basic and AI models. Increasing the order even
more reduces this residual correlation, but hardly improves the model fit or pre-
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diction. To avoid overfitting, the A polynomial order is therefore not further in-
creased. While the cross-correlation between residuals and most cueing errors do
not significantly exceed the 95% CI, the correlation with the cueing error in ωy
does exceed the 95% CI, especially for the Basic and AI models. In future research
it could be investigated whether this correlation is reduced when removing the
rotation errors below human perception threshold from the cueing error.
The uncertainty analysis is illustrated in Figure G.2, showing the parameter un-
certainty and covariance matrix, and Figure G.3, showing bode plots of the in-
put/output polynomials and their uncertainty over frequency.

The correlation coefficients displayed in Figure G.2 show that no clear correla-
tion exists between parameters related to different cueing errors or the MIR for
any of the models. The parameter 99% CI in Figure G.2 show that the largest
uncertainty is present in the parameters related to the vertical acceleration cueing
error in models Basic and AI. Replacing this cueing error with the roll angle cue-
ing error for the CEDA model, seems to reduce the parameter uncertainty.
Figure G.3 shows that for low frequencies, the parameters related to the yaw rate
cueing error for the Basic model have a large uncertainty, while the parameters re-
lated to the vertical acceleration are somewhat uncertain over the whole frequency
range. For the AI model, the parameters related to the lateral jerk cueing error are
uncertain at high frequencies. For the CEDA model the parameters related to the
scaled cues in lateral acceleration and the pitch angle are most uncertain across
the entire frequency range displayed here.

G.1.3. Model Prediction

The residual analysis for the models fitted to the dataset from the CMS experiment
and applied to the data from the Daimler experiment is shown. The residual anal-
yses for all models is shown in Figure G.4.
Most residual auto and cross-correlation do not exceed the 95% confidence inter-
val, however, some incorrect input delays might have caused the constant offset of
the cross-correlations from zero for many of the cueing errors. Additionally, the B
polynomials related to the lateral acceleration and jerk seem to not capture all the
cueing error information in the Daimler dataset.

G.2. Daimler Data Results

Results of the models fitted to the dataset of the Daimler experiment and applied
to the dataset of the CMS experiment are discussed here.

G.2.1. Model Structure

Using the SI process described in Chapter 5 the inputs, polynomial orders, input
delays, DC gains and output contribution percentage (OCP) shown in Table G.2
for each model, fitted to the Daimler experiment dataset, were selected.
Table G.2 shows that fitting the models to the Daimler data results in the selection

of less cueing error types than when fitting them to the CMS data. The number
of model parameters does not vary much between the different models, with the
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(c) CEDA model.

Figure G.2: Uncertainty analysis of the Basic, AI and CEDA models when fitted and applied to the
CMS experiment dataset.
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Figure G.3: Bode plots for each Bi
A polynomial pair of the Basic, AI and CEDA models when fitted

and applied to the CMS experiment dataset.
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(c) CEDA model.

Figure G.4: Residual analysis of the Basic, AI and CEDA models when fitted to the CMS and applied
to the Daimler experiment dataset.
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Table G.2: Estimated Basic, AI and CEDA model parameters when fitting to the Daimler experiment
dataset.

(a) Polynomial orders A (MIR) and B (cueing errors). N indicates number of free parameters.

Signal

Model/Signal MIR ax axmc ay aysc aymc ay f c az θr N

Basic 3 1 2 1 7

AI 3 1 1 1 6

CEDA 1 2 1 2 1 1 8

(b) Input delays per cueing error

Signal

Model/Signal ax axmc ay aysc aymc ay f c az θr

Basic 0.0 0.0 0.0

AI 0.0 0.0 0.0

CEDA 0.0 0.0 0.0 0.1 0.0

(c) DC Gain per cueing error

Signal

Model/Signal ax axmc ay aysc aymc ay f c az θr

Basic 0.12 0.38 0.65

AI 0.13 0.37 0.01

CEDA 0.14 0.32 0.38 0.57 0.01

(d) OCP per cueing error

Signal

Model/Signal ax axmc ay aysc aymc ay f c az θr

Basic 13 76 11

AI 13 72 15

CEDA 13 11 58 2 16
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(c) CEDA model.

Figure G.5: Residual analysis of the Basic, AI and CEDA models when fitted and applied to the
Daimler experiment dataset.

CEDA model having two parameters more than the AI and one parameter more
than the Basic model. The input delays are zero for all cueing errors except the
false cue in lateral acceleration, where the delay is 0.1 seconds. The Basic model
includes only cueing errors in linear acceleration, of which the vertical acceleration
has the highest and the longitudinal acceleration the lowest DC gain. The CEDA
model also shows higher DC gains for lateral than for longitudinal accelerations,
where the false cues have a higher DC gain than the scaled and missing cues. All
models mainly use the cueing errors in lateral acceleration to model the rating.
The other cueing errors contribute to the modelled rating about equally.

G.2.2. Model Fit

The residual and uncertainty analyses results of the models fitted to the dataset
from the Daimler experiment are shown. The residual analyses for all models are
shown in Figure G.5.
All models show some residual autocorrelation, indicating that not all informa-
tion in the output signal is captured correctly. Increasing the order of polynomial
A to high values of around eight does decrease this autocorrelation, but does
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not improve the model fit and increases the uncertainty of the parameters. For
the Basic and AI models, no considerable cross-correlation between residuals and
cueing errors is found. For the CEDA model, the false cue in lateral acceleration
does show a cross-correlation with the residuals, indicating that information in
this cueing error is not fully captured by this model.
The uncertainty analysis is shown in Figure G.6, showing the parameter un-
certainty and covariance matrix, and Figure G.7, showing bode plots of the in-
put/output polynomials and their uncertainty over frequency.
The correlation coefficients in Figure G.6 show no considerable correlation be-
tween parameters related to different cueing for any of the models, indicating
that the input selection process removed sufficient inputs. Likely due to the few
number of parameters in these models, the uncertainty for each parameter is rel-
atively small.
Figure G.6 shows that the parameter estimates related to the lateral acceleration
cueing errors are more uncertain higher frequencies. The parameter estimates re-
lated to the vertical acceleration in the Basic model, and the roll angle in the AI
and CEDA model show a relatively constant uncertainty for the whole frequency
range displayed here.

G.2.3. Model Prediction

The residual analysis for the models fitted to the dataset from the Daimler experi-
ment and applied to the data from the CMS experiment is discussed. The residual
analyses for all models are shown in Figure G.8.
All models show a large residual autocorrelation, indicating that information in

the rating during the CMS experiment was not captured correctly by the model.
Incorrect delays for the longitudinal acceleration cueing error could be responsible
for the large cross-correlations between this error and the residuals. Overall the
CEDA model, having the most inputs, shows the most cross-correlation between
residuals and cueing errors, indicating that information in these cueing errors is
not captured well by the model.

G.3. Combined Experiment Fitting

The results of the models fitted to a combination of the datasets from the CMS
and the Daimler experiments are discussed.

G.3.1. Model Structure

Using the SI process described in Chapter 5 the inputs, polynomial orders, input
delays, DC gains and output contribution percentage (OCP) shown in Table G.3
for each model were selected.
For all models the cueing errors in lateral and vertical acceleration, as well as roll
rate, were selected. The AI and CEDA models also use cueing errors in roll angle.
The AI model also uses the yaw acceleration, while the CEDA model instead in-
cludes the missing cue in longitudinal acceleration.
The polynomial A order is relatively high for all models, while most B polyno-
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Figure G.6: Uncertainty analysis of the Basic, AI and CEDA models when fitted and applied to the
Daimler experiment dataset.
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Figure G.7: Bode plots for each Bi
A polynomial pair of the Basic, AI and CEDA models when fitted

and applied to the Daimler experiment dataset.
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(c) CEDA model.

Figure G.8: Residual analysis of the Basic, AI and CEDA models when fitted to the Daimler and
applied to the CMS experiment dataset.
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Table G.3: CMS-Daimler: Estimated Model Parameters

(a) Polynomial orders A (MIR) and B (cueing errors). N indicates number of free parameters.

Signal

Model/Signal MIR axmc ay aysc aymc ay f c az θr ωr αy N

Basic 4 2 1 1 8

AI 4 1 4 1 1 1 12

CEDA 4 1 1 1 4 1 1 1 14

(b) Input delays per cueing error

Signal

Model/Signal axmc ay aysc aymc ay f c az θr ωr αy

Basic 0.0 0.1 0.3

AI 0.0 0.0 0.0 1.1 0.0

CEDA 0.4 0.5 0.0 0.6 0.0 0.0 0.0

(c) DC Gain per cueing error

Signal

Model/Signal axmc ay aysc aymc ay f c az θr ωr αy

Basic 0.45 0.56 0.06

AI 0.41 0.30 0.01 0.03 0.01

CEDA 0.09 0.22 0.44 0.39 0.18 0.01 0.05

(d) OCP per cueing error

Signal

Model/Signal axmc ay aysc aymc ay f c az θr ωr αy

Basic 72 14 14

AI 64 8 15 7 5

CEDA 6 11 40 5 4 22 12
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(c) CEDA model.

Figure G.9: Residual analysis of the Basic, AI and CEDA models when fitted and applied to a
combination of the datasets from the CMS and the Daimler experiments

mial orders are low. The Basic model has a much lower number of parameters
than the CEDA model, with a difference of six parameters. This difference is
mainly caused by the difference in number of inputs (three versus seven inputs).
Most of the cueing errors have an estimated delay of zero, but for the AI model
the roll rate is estimated to have a delay of 1.1 seconds, and for the CEDA model
the missing cue in longitudinal acceleration has an estimated delay of 1 second
and the roll rate of 0.8 seconds.
For the Basic model, the vertical acceleration has a higher DC gain than the lat-
eral acceleration, while for the AI and CEDA models the opposite is true. These
models instead have additional power in the roll angle. The CEDA model DC
gain for the scaled cues in lateral acceleration are about half of the DC gains of
the missing and false cues. The largest contribution to the modeled rating comes
from the lateral acceleration for all models. For the AI and CEDA models, also
the roll angle provides a relatively large contribution.

G.3.2. Model Fit

The residual analyses for all models is shown in Figure G.9. All models show
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some residual autocorrelations, indicating that not all information in the ratings
is captured by the model. Cross-correlations are found between the residuals and
cueing errors in lateral acceleration and roll rate for all models. In the CEDA
model this mainly concerns the false cues in lateral acceleration.
The uncertainty analysis is shown in Figure G.10, showing the parameter un-
certainty and covariance matrix, and Figure G.11, showing bode plots of the in-
put/output polynomials and their uncertainty over frequency.
The correlation coefficients in Figure G.10 show that no considerable correlation
is found between parameters related to different cueing errors, indicating that the
input selection removed sufficient inputs. The estimated parameters shown in
this figure have relatively small confidence intervals, apart from the parameters
related to the cueing errors in vertical acceleration for the AI model. Figure G.11

shows that the uncertainty of the parameters related to vertical acceleration are
relatively large and constant over the frequency range shown here for all models.
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Figure G.10: Uncertainty analysis of the Basic, AI and CEDA models when fitted and applied to a
combination of the datasets from the CMS and the Daimler experiments
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Figure G.11: Bode plots for each Bi
A polynomial pair of the Basic, AI and CEDA models when fitted

and applied to a combination of the datasets from the CMS and the Daimler experiments



H
Questionnaire

Figure H.1 shows the questionnaire that was given at the end of the experiment
described in Chapter 7.
The responses for Question 2 are reported with levels 1 till 7, from low to high
influence, and the different factors are summarized as follows:

• stronger: The motion I experienced was stronger than I expected

• weaker: The motion I experienced was weaker than I expected

• direction: The motion I experienced was in a wrong direction

• delay: The motion I experienced came later than I expected

• advance: The motion I experienced came earlier than I expected

• icyRoad: I felt like I was sliding on an icy road

• falseCue: I experienced motion when I did not expect any motion

• missingCue: I did not experience motion when I expected motion

• jerky: I experienced unrealistic jerky motions

• rotationsCurves: I experienced rotations during the curves

• rotationsAccDec: I experienced rotations during accelerating/decelerating

• roadRumble: I experienced unrealistic road rumble

• Not used in analysis: Other
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Subject ID  Date  

MISC scores:      

Overall Rating           
 

 

Continuous rating of motion quality in the Hexapod Simulator - Questionnaire 

 

1.  How would you rate your current state?  

 

2. Please give an indication on how much the following factors influenced your 

mismatch rating  (cross one of the boxes): 

 Low       Medium    High 

The motion I experienced was stronger than I expected        

The motion I experienced was weaker than I expected        

The motion I experienced was in a wrong direction        

The motion I experienced came later than I expected        

The motion I experienced came earlier than I expected        

I felt like I was sliding on an icy road        

I experienced motion when I did not expect any motion        

I did not experience motion when I expected motion        

I experienced unrealistic jerky motions        

I experienced rotations during the curves        

I experienced rotations during accelerating/decelerating        

I experiences unrealistic road rumble        

Other:        

 

3. Which (type of) car did you imagine being seated in during the experiment? 
 

………………………………………………………………………………………………………………………………… 

 

4. How would you rate your own driving style as compared to the driving style in the 

experiment? 

 

 

 

5. How often you do travel by car (either as passenger or driver)? 

Never Yearly Monthly Weekly Few days a week Daily 

      

   

General comments: 

………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………  

 

Thank you for participating! 

1 2 3 4 5 6 7 8 9 

-4 -3 -2 -1 0 1 2 3 4 

Tired, Demotivated, 

Distracted, Weak, Ill 

 

Energetic, Motivated, 

Concentrated, Fit, Healthy 

More aggressive 

 

Less aggressive  

 

Figure H.1: Questionnaire
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