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Abstract

Job scheduling is the process where jobs are arranged in a specific sequence. This process has
always been a crucial subject for companies in numerous industries. A company could signifi-
cantly improve its business performance if the scheduling process is not performed optimally.
As companies and products become more and more data-driven, new tools to improve pro-
cesses are emerging. Robust job scheduling methods optimize job schedules with job duration
uncertainties. Typical robust scheduling methods only use straightforward statistical metrics
such as the job duration and variance. Data relevant to the process’ job duration, stored as
observational data, is not typically used in robust job scheduling methods. A field of research
that is concerned with the use of observational data is causal inference. It can be applied
to observational data to explain causal variable behaviour and therefore also the statistical
metrics used in the scheduling process. In addition, it can be used to predict variable be-
haviour after certain variable modifications. This motivates our search for an approach that
uses the tools of causal inference on available process data to identify the causal relations
within these job processes. Based on this information, it predicts the effects of parameter
modifications. These predictions are incorporated in the scheduling optimization to poten-
tially further improve the job scheduling performance. In this thesis, we will therefore study
research on causal inference and a method of robust job scheduling and propose an algorithm
that extends the robust job scheduling method. The algorithm includes the tools of causal
inference and additionally solution sensitivity analysis.
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Chapter 1

Introduction

1-1 Background

Lely is one of the Netherlands’ largest robotics companies and a market leader in the agri-
cultural and robotics sector. They produce state-of-the-art autonomous robot systems and
automation software for the dairy industry. One of their robot systems is the Lely Vector
which manages the cow feed allocation within a farm. It consists of a mixing and feeding
robot (MFR), a power distribution box (PDB) and a feed grabber (FG). In one job cycle,
the MFR charges at the PDB, collects feed from the FG and mixes and distributes the feed
along a path throughout the farm and finally returns to charge at the PDB. This happens
numerous times per day along several paths and is performed autonomously. The entire pro-
cess ensures continuous availability of feed for the cows which in turn improves high-quality
dairy products while minimizing the workload of the farm owner. Since a farm is a dynamic
environment, the MFR faces collisions on the pathways or diverse events such as system errors
and breakdowns. The feed distribution cycle durations are therefore uncertain with multiple
possible outcomes. The set of cycles have to be scheduled extensively in order to maximize
efficiency in terms of time and energy consumption. In addition, to prevent food waste due
to oxidation and discomfort of hungry cows the tasks should be finished within a reasonable
amount of time. A certain deadline should therefore not be exceeded to ensure optimal busi-
ness performance. Finding an optimal feeding schedule that corresponds to the lowest risk of
this certain deadline being exceeded is one of the main challenges for the farm owner.

An approach that solves this type of robust scheduling problems is the β-robust scheduling
method [1] which functions in a one-machine scheduling environment. The β-robust schedul-
ing method is concerned with the maximization of the probability that the flow time of a
schedule does not exceed a given deadline. This method applies to the Lely Vector since one
job cycle can be modelled as a single job which makes the full feed distribution problem a
one-machine scheduling problem. The β-robust scheduling model has also been presented
as a constraint model by Wu et al. [2] to make it more convenient to combine the model
with other scheduling models. This constraint representation however does not outperform
the original β-robust model by Daniels and Carillo. An extension to the β−robust modelling
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2 Introduction

schedule by Ullah [3] made the schedule applicable to two-machine flow-shops and Alimoradi
[4] to parallel two-machine flow-shops. For β-robust scheduling problems where each opera-
tion has a common due date, an extension was developed by Khatami et al. [5]. The β-robust
schedule is concerned with good schedule performance that is measured by predefined target
threshold T . An approach to optimize the schedule for performance while minimizing the
target threshold T has been developed by Wang et al. [6]. The benefit of this approach is
that a schedule may be found that performs sufficiently for values of T that are lower than
previously considered. On the other hand, a schedule for higher values of T may be found if
schedule performance for the desired value of T is insufficient
A branch-and-bound optimization algorithm was used in the original β-robust scheduling
method. Several other optimization methods are used in robust scheduling. Leon [7] devel-
oped a genetic algorithm for job shops that follow the "right-shift" policy. Sevaux [8] applied
a genetic algorithm on a single-machine scheduling problem to minimize the weighted num-
ber of ’late’ jobs, being jobs that exceed the makespan threshold. Jensen [9] performed a
genetic algorithm approach for a job shop facing machine breakdowns and Sevaux [10] per-
formed a genetic algorithm optimization for a single-machine job shop. Van Laarhoven et al.
[11] applied a simmulated annealing technique, and Dell’Amico and Trubian [12] applied a
tabu-search technique ta a job-shop scheduling problem. All of the mentioned optimization
algorithms can be applied to obtain (near-)optimal solutions to hedge against job delays in
an uncertain job shop scheduling environment.
Hedging against job delays could be done even more effectively. A data-driven approach
could be considered to determine the events that have caused the job cycle duration. Several
algorithms have been developed throughout the years to identify the causal relations within
a data set. For this problem the PC algorithm [13] has been developed, which identifies
the causal model of the variable set after performing conditional independence tests. The
found independence constraints are used to determine the structure of the graph. This makes
the PC algorithm a constraint-based algorithm. The PC algorithm functions under three
assumptions, including the absence of unobserved variables that cause bias in the data set.
It performs tests consequently for an ascending order of conditional independence relations.
For high-order data sets the results could be variable and to improve on this, Colombo [14]
developed the stable PC algorithm. The stable PC algorithm performs conditional indepen-
dence tests order-independently. To combat undesirable run times resulting from high-order
data sets, Le et al. [15] developed the parallelised PC algorithm which performs conditional
independence tests that are unrelated in parallel, reducing the run time significantly.
In reality, the absence of unobserved variables that cause bias is naive to assume. For causal
discovery on a data set for which unmeasured variables are present (incomplete data set),
either the modified PC algorithm by Tu et al. [16] or the FCI algorithm [13] can be consid-
ered. Both of these algorithms are an extension to the PC algorithm, which make them part
of the constraint-based causal discovery methods. They’re able to estimate an equivalence
class of a DAG under the assumption that unobserved variables are present that influence
the observed system variables. Colombo et al. [17] added to the FCI algorithm to create
the RFCI (Real Fast Causal Inference) algorithm, making it faster than the FCI algorithm
and computationally feasible for high-dimensional data sets in the asymptotic limit. The
Lingam discovery algorithm (Shimizu [18]) can estimate the complete causal structure of a
model under the assumption that the disturbance data distribution is non-Gaussian and no
unobserved variables are present.
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1-1 Background 3

Apart from the constraint-based causal discovery methods, the score-based algorithms are
also worth noting. The result of these methods is a causal model which is considered optimal
under a used score gauge, hence categorizing these methods as score-based discovery methods.
Chickering [19] developed the Greedy Equivalence Search lgorithm (GES), which is the best
known score-based discovery method. This is a two-phase algorithm that functions under
the assumption that no confounding latent variables are present as is the case for the PC
algorithm. This algorithm starts with an empty model and greedily adds single-edges until a
local maximum for a predetermined score gauge is reached. In the second phase the algorithm
greedily deletes single-edges until a local maximum is reached yet again. The result is a DAG
which can be considered optimal under the used score gauge.

Figure 1-1: The Lely Vector MFR.

When the causal model is obtained, predictions on variable values can be made. Pearl invented
do-calculus [20] as a tool to express predictions on the effects of manipulated variable values
in terms of observational values. The completeness of do-calculus was proved by Huang
and Valtorta [21]. With the focus on job scheduling, do-calculus could be used to predict
the job duration values for certain modifications of system parameters. For each of these
predicted scenarios a corresponding optimal schedule must then be determined. If a schedule
corresponding to one of these predicted scenarios is found to outperform the schedule under
current conditions, schedulers could apply these modifications in practice to optimize their
business performance.

In practice, it could be that the values used for the optimization slightly differ from the true
values. This can be easily explained as data is prone to noise. Minimizing the likeliness that
these perturbations affect the optimality of the solution is crucial to safeguard the reliability
of the scheduler. Therefore, it is very useful to know the maximum allowed perturbation of the
input value for which the optimal solution remains optimal. An approach to do so in robust
job scheduling was developed by Sotskov [22]. This maximum allowed perturbation is known
as the stability radius of the solution. Ensuring a large stability radius means the scheduler
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4 Introduction

has likely chosen the true optimal solution which in turn safeguards the reliability of the
scheduler. After applying the tools of causal inference on eligible observational data, multiple
scenarios and thus multiple input values can be considered for the optimization process to
generate additional solutions. As more solutions can then be considered, the stability radius
becomes a useful additional measure of performance that can be included.

1-2 Contribution

The main contribution of this work is the proposed algorithm that includes causal inference
and solution sensitivity analysis in the β-robust scheduling optimization in a one-machine
job environment. In this algorithm, the application of causal inference generates additional
input values for the optimization based on given observational data. This means multiple
optimal solutions are generated on which sensitivity analysis is performed. The addition of
causal inference and sensitivity analysis allows the scheduler to optimize the job schedule for
performance and solution sensitivity. Originally, the method of sensitivity analysis computes
a perturbation bound for the only optimal solution based on the obtained job duration data
which makes it an a posteriori approach. In our algorithm, sensitivity analysis is also per-
formed on optimal solutions for predicted scenarios, based on observational data. This makes
the algorithm a hybrid a priori/a posteriori approach. The benefit of the algorithm is that it
might allow the scheduler to avoid a scenario with a predicted sensitive solution, where that
isn’t possible for the original a posteriori approach.

Combining these fields of research should illustrate the potential benefits of causal inference
in job scheduling and incentivize the reader to investigate the applicability on a compatible
real data set with the intent of improving a job scheduling process.

1-3 Outline

In Chapter 2 of this thesis the reader is introduced to basic deterministic one-machine robust
job scheduling. Second, the concept of causal inference is discussed in Chapter 3. This consists
of the concept of causal discovery, and predictions on the effects of variable manipulations
following the rules of do-calculus. In Chapter 4 solution sensitivity analysis is explained. In
Chapter 5 our problem is formulated. Finally, in Chapter 6 the results of simulations on a
synthetic data set are shown and in Chapter 7 the conclusions of this thesis and suggestions
for future work are presented.
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Chapter 2

Robust scheduling

In real world applications it can not truly be expected for job durations to be consistent.
Physical systems are subjected to wear and may fail after frequent use, decreasing their ex-
pected performance compared to their original performance, also humans are known to be
imperfect and will always be capable of causing errors resulting in physical injuries, mate-
rial damage and thus loss of time. Job durations should therefore be modelled as stochastic
variables. Robust scheduling methods use these uncertain variables as input and determine a
job schedule which is optimized for both job duration, sensitivity for job disruptions (robust-
ness) or both. Having a schedule assigned to a system for which the process time is the least
likely to exceed a given threshold provides should prove the system owner a certain amount
of comfort. In this chapter β-robust scheduling will be discussed and applied on two example
scenarios as method of predictive scheduling. β-robust scheduling is a probabilistic method
that uses mean job duration values and the job duration variances as inputs and optimizes
the schedule for the probability of the flow time not exceeding a given threshold T .

2-1 β-robust modelling

The job duration mean and variance values will be used as input for the optimization. The aim
is to determine the job schedule with n independent jobs which has the highest probability
of the total flow time time not exceeding a given threshold T . This threshold T can be
chosen such that the resulting job schedule is either risk-averse or risk-seeking. The β-robust
scheduling method is therefore a useful tool for robust scheduling. The variable notations of
Section 2 [1] are used for the β-robust scheduling problem.

Input values

• job duration means: {µ1, µ2, ..., µn}, µ =
n∑
i=1
µi

• job duration variances: {σ2
1, σ

2
2, ..., σ

2
n}, σ2 =

n∑
i=1
σ2
i
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6 Robust scheduling

Decision variable

• Assignment variable: xik ∈ {0, 1} : i = 1, 2, ..., n and k = 1, 2, ..., n.

xik indicates whether job Ji is scheduled at position k in the sequence, as is illustrated in
Figure 2-1. Given that job Ji is scheduled at position k, xik = 1, and xij = 0 for j = 1, ..., n,
j 6= k.

Figure 2-1: Decision variable x.

Constraints

Each order in the sequence can have a maximum of one job assigned, and each job can only
be assigned once in the job sequence. Naturally, the control actions are assigning a job within
the sequence. Together this is formulated as the following set of constraints

n∑
k=1

xik = 1, i = 1, 2, ..., n, (2-1a)

n∑
i=1

xik = 1, k = 1, 2, ..., n, (2-1b)

xik ∈ {0, 1}, i = 1, 2, ..., n,
k = 1, 2, ..., n.

(2-1c)

A sequence {J4, J2, J3, J5, J1} would then be given as

x =


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0


{J4, J2, J3, J5, J1}.
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2-1 β-robust modelling 7

Performance variables

The goal of this optimization problem is to maximize the probability of the schedule’s total
flow time not exceeding threshold T . The total weighted flow time for scenario λ is given as

FT = φ(x, pλ) =
n∑
i=1

n∑
k=1

(n− k + 1)pλi xik, (2-2)

where pλi is the actual job duration value of job Ji for scenario λ ∈ Λ. Λ is the set of all
possible outcomes, which implies the uncertainty of this problem.

The total weighted mean flow time and total weighted variance are given as

φ̄(x) =
n∑
i=1

n∑
k=1

(n− k + 1)µixik, (2-3)

σ2(x) =
n∑
i=1

n∑
k=1

(n− k + 1)2σ2
i xik. (2-4)

Due to the added weights, the distribution of φ(x, pλ) approaches a normal distribution for
an increasing n. The distribution of φ(x, pλ) approaches a normal distribution for even a
small number of jobs (n ≈ 4) when job duration time distributions are unimodal and nearly
symmetric [23]. The probability that φ(x) does not exceed threshold T can therefore modelled
in the standard-normal form

z(x, T ) = T − φ̄(x)√
σ2(x)

. (2-5)

Objective function

The objective of β-robust scheduling is to maximize the expression of Equation 2-5. Substi-
tuting Equations 2-3 and 2-4 into this equation and maximizing the resulting expression leads
to the objective function

max
x

T −
n∑
i=1

n∑
k=1

(n− k + 1)µixik√
n∑
i=1

n∑
k=1

(n− k + 1)2σ2
i xik

. (2-6)

with Φ(x) being the objective value of the optimization problem. The value of Equation
2-5 is a z-statistic of a one-tailed normal distribution test. This value can be given as a
probability value by directly converting the z-statistic to the normal cumulative distribution
value. This can be done by following a normal distribution table or simply using Matlab’s
normcdf function, which then holds as

normcdf(Φ(x)) = P (φ(x) ≤ T ) (2-7)
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8 Robust scheduling

This optimization problem is concerned with a binary decision variable and a non-convex
maximization function 2-6 with linear constraints 5-4-2-1c. The optimization problem will
therefore be treated as a mixed-integer-nonlinear programming problem (MINLP).
To illustrate the advantage of a β-robust schedule, it will be compared with the schedule with
the lowest expected flow time. Two examples (n = 3) are shown in this section.

First example

A one machine job shop system with jobs {J1, J2, J3} (n = 3) with job processing time
uncertainties is considered. The schedule should preferably correspond to the lowest expected
flow time possible, however, its main requirement is that it may not exceed T = 62. The
specifications of each job are given in Table 2-1.

Job J1 J2 J3
µ 12 6 9
σ2 1 24 1

Table 2-1: First example optimization input values.

If the objective for this problem would be to minimize the expected job flow time, the objective
function would be given as

min
x
φ̄(x) = min

x

n∑
i=1

n∑
k=1

(n− k + 1)µixik. (2-8)

The optimal solution for this problem is the shortest expected processing time (SEPT) sched-
ule xSEPT . The jobs in the SEPT schedule are scheduled in ascending order starting from Ji
for min

i
(µ) (i = 1, 2, 3). This corresponds to the schedule

xSEPT =

0 0 1
1 0 0
0 1 0

 ,
{J2, J3, J1}.

This total weighted mean flow time of this schedule is φ̄(xSEPT ) = 48. The aim of β-robust
scheduling however is to find the sequence for which the total flow time is most likely to
not exceed target performance T (Equation 2-6). Given that T > φ(xSEPT ), a risk-averse
schedule must be chosen to maximize the probability that the total flow time does not exceed
T (Theorem 2. [1]). The solution to the β-robust scheduling problem is then given as

x∗ =

0 0 1
0 1 0
1 0 0

 ,
{J3, J2, J1}

For both schedules, the weighted mean flow time with corresponding weighted standard de-
viation is shown in Figure 2-2.
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2-1 β-robust modelling 9

Figure 2-2: First example weighted flow times comparison.

It can be seen that schedule xSEPT performs better than schedule x∗ in terms of total weighted
mean flow time. However, the total weighted variance of schedule x∗ is smaller than that of
xSEPT , which is beneficial for risk-aversion. The total weighted variance should be low enough
to compensate for the surplus in total weighted mean flow time. If this is the case, the actual
flow time of schedule x∗ is then less likely to exceed target performance T = 62, which is
desired. As this is a one-machine scheduling problem with 3 jobs, there exist 3! feasible
schedules. The performance values of both schedules are given in the top part of Table 2-2.
Those of the remaining feasible schedules {x3, x4, x5, x6} are given in the bottom part of the
table.

sequence(x) φ̄(x) σ2(x) Φ(x) P (φ(x) ≤ T )
xSEPT {J2, J3, J1} 48 221 0.941 0.826
x∗ {J3, J2, J1} 51 106 1.068 0.857
x3 {J3, J1, J2} 57 37 0.822 0.794
x4 {J1, J3, J2} 60 37 0.328 0.628
x5 {J2, J1, J3} 51 221 0.739 0.770
x6 {J1, J2, J3} 57 106 0.485 0.686

Table 2-2: First example schedule performance values.

From these example results, it can be seen how the β-robust schedule nearly performs opti-
mally in terms of mean weighted total flow time. It performs optimally in terms of robustness,
of which the latter has our main priority.

Second example

It is desired to maximize the probability that the total mean flow time corresponding to the
schedule does not exceed T = 38. The total weighted mean flow time of schedule xSEPT and
x∗ is given in Figure 2-3.
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10 Robust scheduling

Job J1 J2 J3
µ 6 12 9
σ2 1 1 24

Table 2-3: Second example optimization input values.

Figure 2-3: Second example weighted flow times comparison.

Performance target T is now significantly lower than in the previous example. Given that
T < φ(xSEPT ), a more risk-seeking schedule must be chosen to increase the probability that
the total mean flow time does not exceed T (Theorem 2. [1]). It can be seen in Figure 2-3
that the total weighted variance of schedule x∗ now is larger than for the previous example,
which shows how the β-robust schedule now is a more risk-seeking schedule.

sequence(x) φ̄(x) σ2(x) Φ(x) P (φ(x) ≤ T )
xSEPT {J1, J3, J2} 48 106 -0.971 0.165
x∗ {J3, J1, J2} 51 221 -0.874 0.190
x3 {J3, J2, J1} 57 221 -1.278 0.100
x4 {J2, J3, J1} 60 106 -2.136 0.016
x5 {J2, J1, J3} 57 37 -3.123 0.000
x6 {J1, J2, J3} 51 37 -2.137 0.016

Table 2-4: Dummy example schedule performance values.

In Table 2-4 it can be seen how the β-robust schedule once again nearly performs optimally in
terms of total weighted mean flow time and performs optimally in terms of robustness. This
proves β-robust modelling to be a useful tool for robust scheduling.
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Chapter 3

Causal inference

Causal inference is the process of drawing causal conclusions based on observational data. Our
aim is to apply this in robust job scheduling when a data set of a job was to be available where
the job duration values along with observational values for different parameters have been
measured. This data set should enclose all of the events concerned with the process, where the
job duration time also is a measured event. The causal effect of a system variable adjustment
on the performance variable can be predicted if the data set meets certain conditions. These
predicted values will be used as additional inputs for the robust scheduling method.
Causal effect (Definition 2 [20]): Given two disjoint sets of variables, X and Y, the causal
effect of X on Y, denoted P (y|do(x)), is a function from X to the space of probability distri-
butions on Y. For each realisation x of X, P (y|do(x)) gives the probability of Y = y induced
on deleting from the model all equations corresponding to variables X and substituting x for
X in the remainder.
A large portion of statistics and causality uses graphical models to model variable relations.
These graphical models represent variable relations visually and are constructed following the
rules of graph theory and probability calculus. Also, these graphical models can be exploited
to identify (in)dependence relations which enable us to make these predictions mentioned
earlier. Therefore, several probability calculus rules and an introduction to some graph-
theoretic elements are given and discussed in Section A-1 of the Appendix. The reader can
consult this section for his/her understanding of the subject and the remaining of this chapter.
In Section 3-1 two conditions are discussed that must be satisfied by the observational data
set. In Section 3-2 the concept of causal discovery is discussed and a method will be applied
on an example. Finally, in Section 3-3 the rules of do-calculus will be explained and applied
on an example.

3-1 Model assumptions

For our research, it is required for the models to satisfy two conditions before we are allowed to
successfully draw conclusions on conditional independence relations within the model. If these
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12 Causal inference

assumptions hold, the causal and probabilistic dependencies within the model are connected.
We will therefore assume these assumptions to hold throughout the rest of the thesis.

Causal Markov Condition (3.4.1 [13]): Let G be a causal graph with vertex set V
and P be a probability distribution over the vertices in V generated by the causal structure
represented by G. G and P satisfy the Causal Markov Condition if and only if for every W
in V, W is independent of V\(Descendants(W) ∪ Parents(W)) given Parents(W).

The practical use of this condition is that now for each of these child-parent node relations
the corresponding probability distribution can be determined. Then the joint probability
function as a factorization of these individual probability distributions of the entire graph for
which the Causal Markov Condition holds.

Faithfulness Condition (3.4.3 [13]): Let G be a causal graph and P a probability dis-
tribution generated by G. <G, P> satisfies the Faithfulness Condition if and only if every
conditional independence relation true in P is entailed by the Causal Markov Condition ap-
plied to G.

This assumption guarantees that there are no additional underlying conditional dependencies
that can not be visually determined from the causal graph. The importance of this assumption
is that it guarantees the true probability distribution to be equal to that of the graphical
representation. Both the Causal Markov Condition and the Faithfulness Condition must be
satisfied for P to be faithful to G.

Example

Consider a data set XD of a dairy farm that is equipped with a feed distributing robot system.
The dairy farm owner has accurately collected a large set of observational data for a large
number of job cycles. The set of measured variables is given below as

• xm: elapsed hours since the latest software and hardware maintenance round,
• xp: total measured hourly precipitation amount for the last 48 hours in millimeters,
• xe: amount of error flags shown in software during job cycle, triggering a temporary

standstill,
• xr: measured rust content in robot components,
• xt: job cycle timespan.

The directed acyclic graph GD of variable set XD is shown in Figure 3-1.

Figure 3-1: Directed graph GD of variable set XD.
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3-2 Causal discovery 13

Following the Causal Markov Condition, we can conclude

• Parents(xm) = ∅ and Parents(xp) = ∅ which shows xp ⊥⊥ xm,
• Parents(xp) = ∅, xe /∈ Descendants(xp) and xm /∈ Descendants(xp) which shows (xp ⊥
⊥ {xm, xe}),

• Parents(xr) = {xp, xm}, xe /∈ Descendants(xr) which shows (xr ⊥⊥ xe|{xp, xm}).

We can explain independence relation xp ⊥⊥ xm as both the precipitation amount and the
time since last maintenance logically cannot be a causal effect of another variable within the
data set. The other events are incapable of altering the ways of nature and therefore the
true directed acyclic graph of data set XD will show no edges going into xp. Also, the time
since last maintenance cannot be influenced by any given event. Only the robot’s responsible
mechanic could execute the maintenance round and reset xm to zero. However, this has not
been the case during measurements and therefore is not be included in the model. Given this
information, we can conclude xp ⊥⊥ xm.

3-2 Causal discovery

The aim of causal discovery is to identify causal relations in a model from its data and model
structure. We can use these relations to update the estimate of the model. Consequently,
the model can be used to make predictions on variable values. This makes causal discovery a
useful tool and a crucial part of our β-robust scheduling model extension.

3-2-1 D-separation

The d-separation criterion is a powerful tool for the graphical identification of independence
relations in a model. When a causal model satisfies both the Causal Markov Condition and
the Faithfulness assumption hold, we can apply the d-separation criterion. When nodes X
and Y are d-separated by a set of nodes Z, it is noted as X ⊥⊥ Y |Z. Holmes’ definition of
the d-separation is given below as

D-separation criterion (Definition 1 [24]): X and Y are d-separated given Z (for any
subset Z of variables not including X or Y) if and only if each distinct path Φ between them
is cut by one of the graph-theoretic conditions:

1. Φ contains a chain X1 → X2 → X3 and X2 ∈ Z.
2. Φ contains a common causal structure X1 ← X2 → X3 and X2 ∈ Z.
3. Φ contains a common effect structure X1 → X2 ← X3 (i.e. an uncovered collision with
X1 and X3 not directly connected) and neither X2 nor any descendant of X2 is in Z.
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14 Causal inference

Consider directed graph Gd of variable set Vd which is shown in Figure 3-2. According to the
d-separation criterion, several independence relations can be identified.

Figure 3-2: Directed graph Gd of variable set Vd.

First, two independence relations can be identified since

• v2 blocks all paths through chain v1 → v2 → v3 which indicates (v1 ⊥⊥ v3|v2),
• v2 blocks all paths through chain v1 → v2 → v4 which indicates (v1 ⊥⊥ v4|v2).

Figure 3-3: Directed graph Gd of variable set Vd conditioned on node v2.

In Figure 3-3, the causal influence of v1 on v3 and v4 is eliminated when conditioning on node
v2. Doing so makes v1 independent of both v4 and v3 conditioned on v2.

Second, another two independence relations can be indentified since

• v4 blocks all paths through chain v2 → v4 → v5 which indicates (v2 ⊥⊥ v5|v4),
• v4 blocks all paths through chain v2 → v4 → v6 which indicates (v2 ⊥⊥ v6|v4).

Similarly to node v2, it can be seen in Figure 3-4 how the causal influence of v2 on v5 and v6
is eliminated when conditioning on node v4. Doing so makes v2 independent of both v5 and
v6 conditioned on v4.

Also after following this criterion for the graph from Figure 3-1 it can be seen that

• node pair {xe, xr} blocks all paths from xm to xt which indicates (xt ⊥⊥ xm|{xe, xr}),
• node xr blocks all paths from node xp to node xt which indicates (xt ⊥⊥ xp|xr).

3-2-2 PC algorithm

A widely used causal discovery method is the PC algorithm. For this algorithm to apply the
additional assumption that no unmeasured variables that cause bias are present must hold for
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3-2 Causal discovery 15

Figure 3-4: Directed graph Gd of variable set Vd conditioned on node v4.

the underlying data set. The PC algorithm applies conditional independence tests and edge
orientation tests on variable sets within a given data set. The independence constraints are
used to determine the structure of the graph, making the PC algorithm a constraint-based
causal discovery method. The PC algorithm determines variables to be causally related if no
subset exists on which can be conditioned for the variables to be independent. Kalisch and
Bühlmann [25] proved this algorithm to estimate the equivalence class of high-dimensional
DAGs under a sparseness assumption. Sparse graphs can consist of a large number of nodes
but only a few edges connecting these nodes, limiting the complexity of these graphs.

The output of the causal discovery method may be the true DAG or a Markov equivalent of
the true DAG. A Markov equivalence class model of a true model represents the same set of
conditional independence relations as the true model. The orientation of an edge connecting
2 variables can switch, but the same conditional independence relation by d-separation holds.
An algorithm therefore will not always be able to distinguish between the true and Markov
equivalent models. In certain scenarios this is an inconvenience. If two estimated Markov
equivalent DAGs differ in one edge orientation, the true outcome of an intervention on a
variable connected to this edge is uncertain. It may not even come close to one of two
predicted values. The reason causal inference is applied is to be able to estimate what the
causal effect is for an intervention, without having to apply the intervention in practice.
Therefore, this uncertainty is undesired and this characteristic of a Markov equivalent model
is considered a limitation in causal inference.

As the variable sets we will consider are assumed to be complete (no unobserved variables
causing bias) and represent low-dimensional variable sets, the PC algorithm is sufficient for
our research and is therefore chosen as our causal discovery method. The algorithm is also
given in the Appendix in Section A-2.

Application of PC algorithm

After a set of variables is given as input, the first part of the algorithm is initiated and a fully
connected DAG of the variable set is formed. Once the connected graph is formed, edges are
removed by d-separation between node pairs that are determined to be independent when
conditioned on a corresponding node. If an edge connecting node pair (i,k) is removed by
d-separation after conditioning on node j, where both node pairs (i,j) and (j,k) are adjacent,
node j forms the separation set Sik of node pair (i,k). During the first removal step, the
algorithm addresses zero-order conditional independence relations. The order increases by one

Master of Science Thesis Q.A.H. Rademakers



16 Causal inference

per algorithm step. The algorithm continues with the edge removal steps until no conditional
independence relation can be found that applies to the order of the step. At this point the
skeleton of the DAG has been determined. The skeleton of a DAG consists of the same set
of nodes and edges as the true DAG, but these edges are undirected.

In the second part, the edge directions will be assigned. For each node triplet (i,j,k) where
(i,j) and (j,k) are an adjacent pair of nodes but not (i,k), the edge orientation will become
i −→ j ←− k if and only if node j does not belong to separation set Si,k.

Finally, for each node triplet (i,j,k), where node pairs (i,j) and (j,k) are adjacent but not (i,k),
now with edge orientation i −→ j − k, an edge direction can be assigned such that j −→ k
while avoiding the creation of cycles or nodes with only inwards directed edges (colliders).

Example

Consider variable set XD of Figure 3-1 once again, with set Yi ⊆ XD as the set of nodes that
is adjacent to node xi ∈ XD. XD is assumed to satisfy both the Causal Markov condition and
the Faithfulness assumption. The PC algorithm is assumed to perform successfully. The goal
of the PC algorithm is to identify the true directed acyclic graph of the variable set without
any prior knowledge of causal relations. This is done by performing conditional independence
tests on the data set. In this case, XD is a discrete data set, which means a linear or discrete
conditional independence test should be applied. In this section, we will provide proof for
these conditional independence relations by following the d-separation criterion. In Figures
3-5 − 3-8 the edge removal steps are shown.

Figure 3-5: Connected graph G’ of variable
set XD.

Figure 3-6: Graph G’ of variable set
XD after the first edge removal round.

Figure 3-7: Graph G’ of variable set XD

after the second edge removal round.
Figure 3-8: Graph G’ of variable set XD

after the third edge removal round.
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3-2 Causal discovery 17

First edge removal step: For the first edge removal step, the zero-order conditional inde-
pendencies (n = 0) are tested by the algorithm, which address the nodes with no incoming
edge. When looking at Figure 3-1 it can be seen that the only two nodes with no incoming
edges are xm and xp, making them both independent (xm ⊥⊥ xp) = (xm ⊥⊥ xp|∅). The
algorithm should identify this conditional independence relation, remove the edge connecting
both nodes and create separation set Sm,p = ∅ and then update the adjacency sets. The
edge to be removed is shown as a dotted red line in Figure 3-5. The updated graph is shown
in Figure 3-6.
Second edge removal step: The algorithm then repeats the test for first-order independencies
(n = 1). The test should identify several conditional independence relations, which we can
identify following the d-separation criterion. First, we can see in Figure 3-1 that node xr
blocks all active paths from xp to the remaining nodes. This indicates the independence
relations (xp ⊥⊥ xe|xr) and (xp ⊥⊥ xt|xr). Second, there is no active path from node xr to xe
relative to node xm. This indicates independence relation (xr ⊥⊥ xe|xm). After the algorithm
identifies these independence relations, it removes the corresponding edges, adds node xr to
subset Sp,t, node xr to subset Sp,t, node xm subset Sr,e and updates the adjacency sets again.
The updated graph is shown in Figure 3-7.
Third edge removal step: The algorithm then performs the tests for second-order conditional
independencies (n = 2). We see that there is no active path from node xm to node xt relative
to node pair {xe, xr}, which indicates the independence relation (xm ⊥⊥ xt|(xe, xr)). The
algorithm should remove the edge connecting nodes (xm, xt), add node set {xe, xr} to Sm,t
and update the adjacency sets. The updated graph is shown in Figure 3-8
We see that there are no tests to perform for third-order conditional independencies (n = 3).
The algorithm should end the edge removal part and determine the undirected graph of figure
3-8 to be the skeleton of the directed acyclic graph G.

Step Independence Separation set
1 (xm ⊥⊥ xp) Sm,p = ∅
2 (xp ⊥⊥ xe|xr) Sp,e = xr

2 (xp ⊥⊥ xt|xr) Sp,t = xr

2 (xr ⊥⊥ xe|xm) Sr,e = xm

3 (xm ⊥⊥ xt|{xe, xr}) Sm,t = {xe, xr}

Table 3-1: Conditional independence relations in variable set XD.

Edge direction assignment: Now that the skeleton has been determined, the algorithm starts
its second part. This step is concerned with the assignment of directions to the eligible
edges. Considering each node triplet (vi, vj , vk) where only node pairs (vi, vj) are adjacent
and (vj , vk) are adjacent, the algorithm assigns edges assigned as vi −→ vj ←− vk unless node
vj is contained in subset Si,k. From Figure 3-8 we see that this condition is only satisfied for
node triplets (xm, xr, xp) and (xe, xt, xr). The graph after the corresponding edge directions
are assigned the graph is shown in Figure 3-9.
For the final step of the algorithm each node triplet (vi, vj , vk) where vi −→ vj , vj − vk
and node pair (vi, vk) not being adjacent, a directed edge should be drawn so vj −→ vk.
We can see that both edge directions are possible for node pair (xm, xe). This means that
after following the d-separation criterion, two estimates of the DAGs are justified graphically.
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18 Causal inference

Figure 3-9: Graph G’ of variable set XD after first edge direction.

Applying appropriate conditional independence tests on the data set would hopefully deliver
an estimate of the true DAG alone.

3-3 Do-calculus

System parameters can be modified to obtain experimental results, or to learn about the
structure or dynamics of the experimental system. Due to practical restrictions or ethical
reasons it will not always be possible to change the experiment parameters to obtain desired
data. In addition, when it is unknown how the modification of a parameter may affect the
system it does not seem very convenient to apply this modification in practice. An external
modification where a variable Xi ∈ X is fixed to a specific observed value x′i is known as an
intervention and is noted as do(Xi = x′i) = do(x′i).

With a causal model, predictions on the effects of variable modifications may be obtained,
without actually modifying these variables in practice. This is possible if the causal effect is
found to be identifiable.

Causal Effect Identifiability (Corollary 1 [20]): A causal effect P (y|do(x)) is identifiable
in a model characterised by a graph G if there exists a finite sequence of transformations,
each conforming to one of the inference rules in Theorem 3, which reduces P (y|do(x)) into a
standard probability expression involving only observed quantities.

The causal effect identifiability of P (y|do(x)) therefore guarantees that the effect of do(x)
onto y can be computed by the use of observational data only and the information provided
by causal graph G. This summarizes the concept of do-calculus.

An intervention on Xi removes the incoming causal influences from the model onto Xi and
substitutes Xi = x′i into the rest of the distributions in X that are conditionally dependent of
variable Xi. This phenomenon is formulated mathematically as Equation (3.10) [26], which
holds as

P (x1, ..., xn|do(x′i)) =
{

Πj 6=iP (xj |Pa(xj)) if xi = xi
′,

0 if xi 6= xi
′.

(3-1)
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3-3 Do-calculus 19

Confounding variables

When a pair of variables {X,Y } maintains a causal relation, while another variable Z has a
causal influence on both {X,Y }, it gets more tedious to predict the causal effect of X on Y. We
speak of confounding if a variable has a causal influence on two variables, one being a cause
and one being its effect, while it is not on the causal path itself. If we wish to predict the effect
onto Y for an intervention on X, we have to ’adjust’ our measurements to remove spurious
influences from this confounder Z. Adjusting in this case is dividing each separate group
relative to Z, estimating the effect of X on Y in each group, and then averaging the results.
Pearl constructed a criterion that must be satisfied by the set of variables Z ⊆ V relative to
variables (X,Y) for identifiability of P (y|do(x)). This is called the back-door criterion.
Back-door criterion (Definition 3.3.1 [20]): The back-door criterion is satisfied by a set
of variables Z relative to an ordered pair of variables (Xi, Xj) in a DAG G if

• No node in Z is a descendant of Xi; and
• Z blocks every path between Xi and Xj that contains an arrow into Xi

Since if the only paths towards Xi are blocked then there should be no causal influence on
Xi, making it possible to yield an estimate of Y after manipulation of Xi. If the criterion is
satisfied by set of variables Z relative to (X,Y), then the causal effect of X on Y is identifiable
and is given by

P (y|do(x)) =
∑
z

P (y|x, z)P (z). (3-2)

Pearl incorporated the d-separation criterion to introduce a set of 3 inference rules, known as
the rules of do-calculus. These rules are used to write an expression of the distribution of Y
for manipulated variable X in terms of observed variables only. This is possible if the causal
effect of X onto Y is identifiable. The rules are given in Theorem 3.

The rules of do-calculus (Theorem 3 [20])

Let G be the DAG for V, where X,Y,Z and W are disjoint subsets of V.
Rule 1: Insertion/deletion of observations

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX̄
; (3-3)

Rule 2: Action/observation exchange

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )G
X̄Z; (3-4)

Rule 3: Insertion/deletion of actions

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX̄, ¯Z(W )
. (3-5)

The proof of these rules is also given in Section 4.3 of [20]. (Huang and Valtorta) [21] proved
the completeness of do-calculus. This means that if a causal effect is identifiable, then the
inference rules can be applied to convert the causal effect formula into one that only contains
observational quantities.
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First example

Consider a highly complex robotic feed distributing system. Throughout its processes, it has
collected data for the farm owner to analyze. Data set XR contains the measurements of
all the relevant system parameters and whether a system failure has occurred or not. This
data set satisfies both the Causal Markov Condition and the Faithfulness assumption. The
directed acyclic graph GR of XR is given in Figure 3-10.

Figure 3-10: Directed graph GR of variable set XR.

Following Equation Eq. (A-6) the joint probability distribution function of XR is given as

P (XR) = P (xb, xa, xe, xfail, xc, xd, xf )
= P (xd)P (xf )P (xb|xd, xf )P (xe|xb)P (xa|xb)P (xc|xe)P (xfail|xe, xa)

In this case it is desired to know P (xfail = 1|do(xb = t)), which is the probability of a system
failure (xfail = 1) in case system parameter xb were to be fixed to t. Variable xb has been
observed to take on this value. Following intervention do(xb = t), the edges going into xb are
removed. As the value of xb is fixed, the values of xd and xf are no longer relevant for xb
and therefore any causal influence going into xb is no longer considered for this case. This
means that P (do(xb = t)|xd, xf ) = P (do(xb = t)). In addition, P (do(xb = t)) = P (xb = t),
which is a function made up of observational data only. The corresponding post-interventional
directed acyclic graph is given in Figure 3-11.

Figure 3-11: Directed graph GR of variable set XR after intervention do(xb = t).

Following Equation 3-1, the post-interventional joint probability fuction is now given as

P (do(xb = t), xa, xe, xfail, xc) = P (xb)P (xe|xb)P (xa|xb)
P (xc|xe)P (xfail|xe, xa)
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xc does not have any causal influence on xfail is left out of the equation when computing
P (xfail = 1|do(xb = t)). Using the information given and following Equation A-5 we find

P (xfail = 1|do(xb = t)) = P (do(xb = t), xa, xe, xfail = 1)
P (do(xb = t))

= P (do(xb = t))P (xa|do(xb = t))P (xe|do(xb = t))P (xfail = 1|xa, xe)
P (do(xb = t))

= P (xa|do(xb = t)P (xe|do(xb = t))P (xfail = 1|xa, xe)
= P (xa|xb = t)P (xe|xb = t)P (xfail = 1|xa, xe)

We see that we can give the post-interventional distribution function of xfail = 1 in strictly
observational terms. This means that the causal effect is identifiable.
The application of the backdoor adjustment Equation 3-6 will be explained in the second
example. This is done on an example subset Vbd given in Figure 3-12.

Second example

Consider variable set Vbd of which graph Gbd is given in Figure 3-12. It is desired to predict
the effect of intervention do(vOX = t) onto vQ.

Figure 3-12: Directed graph Gbd of variable set Vbd.

For a consistent prediction of this causal effect to be made, an adjustment should be made
for confounding variables vFS and vA. This adjustment is the backdoor adjustment and can
be made since

• neither of node pair {vFS , vA} are descendants of vOX ,
• node pair {vFS , vA} block every path between vOX and vQ that contain an arrow into
vOX .

When vOX is set to value t after intervention do(vOX = t), the incoming edges from vFC and
vA, being all backdoor paths, are removed. The graph after intervention is shown in Figure
3-13.
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Figure 3-13: Directed graph Gbd of variable set Vbd after intervention do(vOX = t).

Now observation vOX = t can not be differentiated from intervention do(vOX = t) since
the incoming causal influences are removed and P (vQ|do(vOX = t)) can be computed in
terms of observational data only. When adjusting for vFT the causal influence of vFS onto
vQ is removed by d-separation. We therefore adjust for vFT and vA to remove all spurious
confounding influences.

Following Equation 3-2, the probability distribution of vQ for intervention do(vOX = t) is
given as

P (vQ|do(vOX = t)) =
∑
vA

∑
vF T

P (vB|do(vOX = t))P (vA)P (vFT )P (vQ|vFT , vB, vA)

=
∑
vA

∑
vF T

P (vB|vOX = t)P (vA)P (vFT )P (vQ|vFT , vB, vA).
(3-6)

We have discussed how the observational data set is required to satisfy both the Causal Markov
Condition and the Faithfulness assumption. In addition, we have discussed predictions on the
effects of variable interventions and how the causal effect should be identifiable to do so. We
will apply the rules of do-calculus to make predictions on job duration values and use these
predictions as additional inputs for the β-robust scheduling optimization.
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Chapter 4

Sensitivity analysis

Sensitivity analysis of the optimal schedule is the process where the preservation of optimality
of this schedule is investigated for perturbations of the numerical input data. Sensitivity
analysis is also known as stability analysis. Measurement data contains noise which means its
accuracy is limited. Inaccuracies in data can be modelled as uncertainties and when occurring,
the solver is supplied with inaccurate input data. Given that a perturbation in measurement
data has occurred, a probability exists that the solver finds an optimal schedule for this input
data, which then is not the optimal schedule in reality. If this is the case, the reliability
of the scheduler may be harmed. After a job schedule has been determined to be optimal
given the input parameters, they could verify whether the schedule will remain optimal for a
certain perturbed input vector µ′. This can be done by following the approach of Sotskov et
al. [22], where the stability radius ρ of the optimal job schedule is determined. This stability
radius encloses the maximum allowed input parameter perturbation for which optimality of
the schedule is preserved.

4-1 Stability radius
Consider set of jobs J ∈ {J1, .., Jn} for general one-machine problem. Under nominal be-
haviour, meaning input perturbed input vector µ′ = µ, the optimal objective function is
given as

Φ(x∗) =

n∑
i=1

n∑
k=1

(n− k + 1)µix∗ik − T√
n∑
i=1

n∑
k=1

(n− k + 1)2σ2
i x
∗
ik

. (4-1)

Let X be the set of all feasible schedules. Schedule x∗ is optimal if

Φ(x∗) = max
x∈X

Φ(x) (4-2)

With optimal schedule x∗, the next step is to determine the maximum parameter perturbation
of µ such that the optimality of schedule x∗ is preserved. Sotskov developed his approach for
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a multi-machine environment where jobs consist of multiple processes. Since we only consider
a one-machine job environment, the inclusion of his research may seem redundant. However,
we want to incentivize the reader to investigate the improvement of a robust job scheduling
method by applying causal inference. Our approach can easily be extended for multi-machine
job environments with the remaining of Sotskov’s research. Therefore, we see no reason to
exclude Sotskov’s approach. In this section, we follow Sotskov’s definition and explanation of
the stability ball and radius of Section 2 [27].
Stability ball (Definition 1 [22]): The closed ball Oρ(µ) with the radius ρ ∈ R and center
µ ∈ Rn+ is known as the stability ball Oρ of schedule x∗ if for any vector µ′ ∈ Oρ(µ) ∩ Rn+
of the job duration means, schedule x∗ remains optimal. The minimum value ρ(µ) of such a
radius ρ of a stability ball Oρ(µ) of schedule x∗ is called the stability radius of x∗:

ρ(µ) = min{ρ ∈ R1
+ : If µ′ ∈ Oρ(µ) ∩Rn+, schedule x∗ is optimal}. (4-3)

The stability radius is enclosed in a maximum parameter perturbation space Rn+. It is desired
to have a stability radius that is large enough so the influence of approximation errors and
minor random errors on the optimality of the schedule can be ruled out. The maximum
parameter perturbation space should be determined to verify this can be done.

4-2 Problem formulation

Decision variable
• Perturbed job duration mean: µ′ ∈ Rn

Objective function

The stability radius can be found by solving the following maximization function

max
µ′

|µ′i| (4-4)

Constraint
subject to x∗(µ) = x∗(µ′). (4-5)

The solution to Equation (4-4) is given as θ ∈ Rn. The entry corresponding to the smallest
value of allowed perturbation gives the stability radius ρ(µ), which is done by following

ρ(µ) = min
i
|θi − µi|. (4-6)

A large value of ρ(µ) is desired as this guarantees the schedule to remain optimal for large
perturbations of µ. If the optimal schedule has a maximum allowed perturbation ρ(µ) < min

i

αµi with α ∈ R+ being a very small non-negative value, the schedule is not a well-performing
solution in terms of robustness. There is a probability that the schedule is not optimal in
practice. This scenario makes the application of causal inference extra useful as this would
supply the β-robust scheduling optimization with an additional set of input values. If a post-
interventional solution’s stability radius is predicted to be larger than the initial stability
radius, then the scheduler could consider applying the corresponding intervention. Doing so
would safeguard the optimality of the solution and thus the reliability of the scheduler.
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Chapter 5

Methodology

5-1 Proposed methodology

We will solve a one-machine scheduling problem for nominal and post-interventional scenarios.
We have generated the input values µ and σ2 synthetically, where the input values of one job
are a function of the variables of a synthetic data set V1. We will exploit this data set for
predictions by applying the tools of causal inference. We will apply the stable PC algorithm
on the data set with the aim of identifying the causal model of V1. Predictions on the effects
of interventions will be made based on this model. These predictions will be used as post-
interventional input values for an optimization problem which will be a maximization of the
trade-off between the improvement on job schedule performance Φ and stability radius ρ.

5-2 Problem formulation

For our problem we consider
• a one-machine scheduling environment,
• n independent jobs,
• 1 data set Vi (i = 1, ..., n) of job Ji eligible for causal inference,
• only single interventions are considered.

Input variables

Job Ji’s duration mean µi is now a function of the variable set Vi, if given. It is the first input
variable and is defined as

µi(Vi) =


µi, if Vi,I = ∅∑

y

P (y|do(v))y

dim(y) , if Vi,I 6= ∅
(5-1)

Vi,I ⊂ Vi is the intervention set and it holds that
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• y ∈ Vi corresponds to the job duration value and v ∈ Vi,I to the intervention variable,
• v ∈ Vi,I 6= ∅ if the causal identifiability condition is satisfied for variable v onto y in set
Vi. Vi,I = ∅ otherwise,

• P (y|do(v)) is computed by applying the rules of probability calculus and do-calculus,
in case predictions on the effects of an intervention can be made for data set Vi.

The second input variable, being the variance of the job duration σ2
i (Vi), is given as

σ2
i (Vi) =


σ2
i , if Vi,I = ∅

N∑
j=1

(yj(Vi)−µi(Vi))2

N , if Vi,I 6= ∅∗
(5-2)

yj(Vi) (j = 1, ..., N) is the j-th sample of the post-interventional job duration value which is
generated synthetically following the post-interventional probability distributions.

Decision variables

• Assignment variable: xik ∈ {0, 1} : i = 1, 2, ..., n and k = 1, 2, ..., n,
• Variable set: Vi.

Objective function

max
x,Vi

γ(ΦI(x, Vi)− Φ) + (1− γ)(ρI(µ(Vi))− ρ), γ ∈ [0, 1]. (5-3)

Constraints

subject to
n∑
k=1

xik = 1, i = 1, 2, ..., n, (5-4)

n∑
i=1

xik = 1, k = 1, 2, ..., n, (5-5)

xik ∈ {0, 1}, i = 1, 2, ..., n, k = 1, 2, ..., n. (5-6)

In this objective function we have

• γ ∈ [0, 1]: optimization weight,
• Φ: nominal objective value,
• ρ: nominal stability radius,
• ΦI(x, Vi): nominal or post-interventional objective value.
• ρI(µ(Vi)): nominal or post-interventional stability radius.

The goal is to maximize the effect of an intervention on a trade-off between the objective
value and stability radius. The new objective function value is ΦN (x, Vi). If we prefer an
increase of performance of objective value, then we should choose γ larger than 0.5. If we
only wish a maximized job schedule stability radius, then we should choose γ as 0. We have
ΦN (x, Vi) = 0 for Vi,I = ∅.
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5-3 Simulation approach 27

Post-interventional objective value ΦI(x, Vi) and stability radius ρI(µ(Vi)) are given as

ΦI(x, Vi) =
T −

∑n
i,k(n− k + 1)µi(Vi)xik√∑n

i,k(n− k + 1)2σ2
i (Vi)xik

, (5-7)

ρI(µ(Vi)) = min
i
|θi(µi(Vi))− µi(Vi)|, (5-8)

where θi(µ(Vi)) is the solution to the following modified sensitivity analysis maximization
problem

max
µ′

|µ′i| (5-9)

subject to x∗(µ) = x∗(µ′). (5-10)

5-3 Simulation approach

We treat the β-robust optimization problem as a mixed-integer nonlinear programming prob-
lem (MINLP) and will solve it with the use of Matlab. Yalmip’s bmibnb will be applied as
solver, which uses a branch-and-bound approach for nonconvex problems. It consists of a
lower bound solver for a convex relaxation of the problem and an upper bound for the origi-
nal nonlinear problem. In our case, we apply fmincon as upper bound solver and Gurobi as
lower bound solver. fmincon is a local nonlinear solver. The size of our scheduling example is
chosen such that we are able to verify that our optimization algorithm successfully solves our
problem in the root node within reasonable run time. We verify in our simulations that this
is the case for the branch-and-bound optimization algorithm bmibnb. Therefore, we choose it
as optimization algorithm for the β-robust modeling approach.

We treat the sensitivity analysis as a nonlinear problem (NLP) due to the nonlinear constraint.
We will solve this problem with Gurobi in Matlab. This state-of-the-art solver successfully
solves nonlinear constrained problems.

We will use the stable PC algorithm from Rstudio’s bnlearn package as causal discovery
method on the synthetic data set for the causal inference part. This algorithm is an improved
version of the PC algorithm, which does not necessarily perform conditional independence
tests in an ascending order. This algorithm is the standard version of the PC algorithm from
the bnlearn package. The mutual information test will be used as (conditional) independence
test, which is a conditional independence test that can be applied to discrete variable sets.
We will use a score-based causal discovery method from the bnlearn package to verify our
DAG estimate, which is the Grow-Shrink method.

5-4 Artificial data set

We will test the proposed method on a 5 job data set. 4 of these job’s input parameters
{(µ2, σ

2
2), ..., (µ5, σ

5
5)} are generated in the same manner as in Chapter 5 of [1]. µ1 and σ2

1 are
the product of data set V1 which has been generated in Rstudio. For the generation of this
data we have used R’s sample function which creates samples by running a random number
generator for a set of given probability distributions that satisfy Equations A-1 – A-2 – A-3.
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µ1 and σ2
1 satisfy the same bounds as used for the generation of the remaining job input

parameters. Variable information of data set V1 can be found in the Appendix. The post-
interventional data sets have been generated in the same manner, but with a different seed for
the random number generator. In Section A-3 of the Appendix we show how µ1 and µ1(V1)
are computed.
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Chapter 6

Results

It is given that out of all available data, data set V1 ∈ R7x1000 of job J1 is complete and
sufficient for analysis of causal relations. Data set {v1, v2, v3, v4, v5, v6, v7} ∈ V1, with variable
v6 ∈ {14, 15, 16, 17, 18, 20, 23, 24} being the observed job duration values. This data set is
generated by running datacreator.R. The observed values and their observation count of the
job duration variable v6 ∈ V1 can be seen in Table 6-1. The remaining variable observational
values can be found in Table A-2 in the Appendix.

v6 14 15 16 17 18 20 23 24
n 2439 1573 1376 808 711 704 1311 1078

Table 6-1: Observed job duration values and their count.

6-1 Nominal optimization

The nominal input values are given in Table 6-2.

Job J1 J2 J3 J4 J5
µ 17.64 28.01 10.00 17.56 13.67
σ2 13.26 16.23 3.84 13.59 11.19

Table 6-2: Nominal input values.

The goal is to maximize the probability that the total flow time does not exceed a given
threshold T = 250. We note the set of all feasible schedules as X. Given this information, we
compute the β-robust schedule by solving the maximization function Equation 2-6, with the
corresponding objective value given as Φ(x∗). Matlab’s bmibnb solver finds the beta-robust
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optimal solution to be

x∗ =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

 .
{J3, J5, J4, J1, J2}

The performance variable values of this sequence are given as

φ̄(x) σ2(x) ρ(µ) Φ(x) P (φ(x) ≤ T )
x∗ 220.65 466.61 0.02 1.359 0.913

Table 6-3: Nominal optimization performance variable values.

6-2 Causal inference

As this data set is generated by ourselves, we assume both the Faithfulness assumption and
the Causal Markov condition to hold. In addition, we assume that no unobserved confounding
variables are present. This means that the PC algorithm can be applied to the data set, with
the aim to identify the underlying DAG. We have done this in Rstudio with the bnlearn
toolbox and we’ve chosen the mutual information test as conditional independence test. This
is a statistical hypothesis test that we’ve used to verify whether the distributions of separate
discrete sets of variables are independent of each other.

Causal discovery

Our estimated DAG of data set V1 is shown in Figure 6-1.

Figure 6-1: Directed graph of variable set V1 estimated with Rstudio’s bnlearn package.
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6-2 Causal inference 31

We see that a bi-directed edge between nodes v1 and v3 has been determined. This means
that two separate DAGs (G1 and G2) have been estimated by the PC algorithm. The algo-
rithm cannot distinguish between these models, based on the given observational data. The
difference between both DAGs is the edge orientation between nodes v1 and v3. Graph G1
is considered as the graph with edge orientation v1 → v3, and G2 for v1 ← v3. Both graphs
consist of the same set of conditional independence relations since by d-separation we have
v1 ⊥⊥ v4|v3 and v1 ⊥⊥ v5|v3 for both graphs. Therefore, one graph is a Markov Equivalent and
the other is the true DAG of variable set V1.

Having these two different estimates is not ideal, since we don’t know if we can exclude
an intervention on v1. If G2 is the true DAG, then applying an intervention on v1 will
not influence the job duration time v6 and then doing so would be an unnecessary action.
If we cannot permit ourselves to perform unnecessary actions, we should exclude v1 as an
intervention variable in our optimization. On the other hand, excluding v1 would be a waste
of opportunity to improve our job scheduling process if G1 is the true DAG. This scenario
is not what we desired. However, we can still investigate interventions on the remaining
variables.

In Table 6-4 the conditional probabilities of the variables are given for both DAG estimates.

x Pa1(x) P (x|Pa1(x)) Pa2(x) P (x|Pa2(x))
v1 ∅ P (v1) v3 P (v1|v3)
v2 ∅ P (v2) ∅ P (v2)
v3 v1 P (v3|v1) ∅ P (v3)
v4 {v2, v3} P (v4|v2, v3) {v2, v3} P (v4|v2, v3)
v5 {v3, v7} P (v5|v3, v7) {v3, v7} P (v5|v3, v7)
v6 {v4, v5} P (v6|v4, v5) {v4, v5} P (v6|v4, v5)
v7 ∅ P (v7) ∅ P (v7)

Table 6-4: Conditional probabilities of variables of directed graphs G1 and G2.

We’ve computed the probability values by dividing the observed values by their corresponding
observation count. Next, we’ve derived the conditional probabilities P (x|Pa(x)) by follow-
ing Equation A-5 and following the independence rule (Equation A-7). For example, when
determining P (v4|v2, v3) for graph G1 we first incorporate the following:

• by the Causal Markov Condition v2 and v3 are independent when conditioning on v4
which means v2 ⊥⊥ v3|v4 and P (v2, v3) = P (v2)P (v3),

• by d-separation it follows that v4 ⊥⊥ v1|v3 and therefore the edge going into v1 can be
left out.

These conclusions and Equation A-5 allow us to compute P (v4|v2, v3) as

P (v4|v2, v3) = P (v4, v2, v3)
P (v2, v3)

= P (v4, v2, v3)
P (v2)P (v3)

For graphs G1 and G2, we follow Equation A-6 and find two joint probability distribution
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functions P1(x) and P2(x) respectively as

P1(x) = P (v1)P (v2)P (v7)P (v3|v1)P (v5|v7, v3)P (v4|v2, v3)P (v6|v4, v5) (6-1)
P2(x) = P (v3)P (v2)P (v7)P (v1|v3)P (v5|v7, v3)P (v4|v2, v3)P (v6|v4, v5) (6-2)

Do-calculus

We see that for v4, both v3 and v5 satisfy the backdoor criterion, as both nodes block each
other’s backdoor path to node v6. For v5, both v4 and v3 satisfy the backdoor criterion. This
means that the causal effects of both v4 and v5 onto v6 are identifiable. We can obtain an
unbiased prediction of v6 for both interventions on v4 and v5, which we can use to generate
the inputs for the β-robust scheduling method.

For demonstration purposes, we consider the effects on v6 for an intervention on variables
v4 and v5 only and {v4, v5} ∈ V1,I . As is given in Table A-2 in the Appendix, the set of
observational values of v4, v5 and v6 are

• v4 : {1, 2, 3, 4, 5, 6, 7, 8} = {v41, v42, v43, v44, v45, v46, v47, v48},
• v5 : {60, 62.5, 65, 67.5, 70, 72.5, 75, 77.5} = {v51, v52, v53, v54, v55, v56, v57, v58},
• v6 : {14, 15, 16, 17, 18, 20, 23, 24} = {v61, v62, v63, v64, v65, v66, v67, v68},

We can predict the effects of an intervention on v4 and v5 for both 8 different values each.
We use each of these variable values as intervention values and thus for the prediction of a
post-interventional probability distribution of v6 following Equation 3-2. We calculate these
post-interventional probability values by applying the backdoor adjustment Eq. (3-2), which
results in the following equations

P (v6|do(v4)) =
∑
v5

P (v6|v4, v5)P (v5), (6-3)

P (v6|do(v5)) =
∑
v4

P (v6|v4, v5)P (v4). (6-4)

The post-interventional probability distributions of v6 for interventions do(v4) and do(v5) are
given in Table A-3 in the Appendix.

Post-interventional optimization

We compute the β-robust optimization input variables by substituting Equations 6-3 and 6-4
into Equation 5-1 for µ1(V1) and following Equation 5-2 for σ2

1(V1).

We see several scenarios for both interventions for which we predict the schedule to outperform
the nominal optimal schedule. The post-interventional objective value ΦI(x∗I(V1)) is the
highest for intervention do(v51), which means max(max(ΦIS1),max(ΦIS2)) = ΦI9.
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v4 ∈ V1 do(v41) do(v42) do(v43) do(v44) do(v45) do(v46) do(v47) do(v48)
µ1(V1) 17.47 17.60 17.60 17.43 17.62 17.77 18.00 18.11
σ2

1(V1) 12.24 12.59 13.13 12.92 13.75 13.31 14,73 13.35
ΦI(x∗I , V1) 1.394 1.371 1.365 1.391 1.358 1.346 1.317 1.304
v5 ∈ V1 do(v51) do(v52) do(v53) do(v54) do(v55) do(v56) do(v57) do(v58)
µ1(V1) 16.88 17.08 17.46 17.55 18.05 18.30 18.46 19.05
σ2

1(V1) 12.24 12.59 13.13 12.92 13.75 13.31 14.73 15.35
ΦI(x∗I , V1) 1.505 1.458 1.391 1.375 1.316 1.290 1.272 1.218

Table 6-5: Input and objective values after interventions on v4 and v5.

6-3 Effect of changing parameter T on objective value

In the previous section, we have concluded that we predict a job schedule in a post-interventional
scenario to outperform the schedule for the nominal situation for target performance T = 250
in terms of objective value. We will now analyze the maximum predicted objective value after
intervention for different values of performance target T ∈ [210, 250]. For each T ∈ [210, 250],
we compute the sets ΦIS1 and ΦIS2 again.

The maximum value of sets ΦIS1 and ΦIS2 are shown in Figure 6-2 for each T against the
nominal optimal objective value Φ(x∗).

Figure 6-2: Cumulative distribution function values of Φ for nominal and post-interventional
scenarios for different T.

We see that for any T ∈ [210, 250], post-interventional schedule performance ΦI9 is higher than
for any post-interventional performance value in ΦIS1. ΦI9 is also higher than for any other
value in ΦIS2 for each T ∈ [210, 250], which is remarkable. We also see that for T ∈ [210, 241],
the optimal schedule performance in ΦIS1 is for intervention do(v44). For T ∈ [242, 250] the
optimal schedule performance in ΦIS1 is for intervention do(v48).

We can conclude that we predict a schedule for a post-interventional scenario to outperform
the schedule under the nominal circumstances for each T ∈ [210, 250].
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6-4 Sensitivity analysis

Nominal optimization

We look further at our optimization problem for T = 250. We have Φ(x∗) = 1.32 and compute
ρ(µ) = 0.02 corresponding to job J4 by following Equations 4-4 and 4-6.

Post-interventional optimization

The set of post-interventional stability radii is found by solving Equations 5-9 and 5-10 and
is given in Table 6-6. The job tolerating the lowest amount of delay, therefore responsible for
the stability radius is also given. For intervention do(v4) we get

• ρIi = ρI(µ1i(V1)), for i = 1, 2, ..., 8,
• ρIS1 = {ρI1, ρI2, ..., ρI8}.

v4 ∈ V1 do(v41) do(v42) do(v43) do(v44) do(v45) do(v46) do(v47) do(v48)
ρI(µ1(V1)) 0.29 0.11 0.03 0.23 0.08 0.16 0.60 0.78

Jρ 1 1 1 1 4 4 4 4

Table 6-6: Post-interventional stability radii for interventions on v4.

We see that the largest stability radius is max(ρIS1) = ρI8. µ4 of job J4 is allowed to encounter
a delay of up to δ4 = µ′4−µ4 = 0.78 for its schedule to remain optimal. Each of the objective
values and corresponding stability radii are plotted in Figure 6-3.

Figure 6-3: Cumulative distribution function values of Φ shown against the stability radius ρ for
nominal scenario and for interventions on v4.

We see that objective value ΦI8 is the lowest of all objective values. Intervention do(v48) per-
forms optimally for both characteristics and this means we should determine which schedule
characteristic is most important to us.
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To verify the stability radius has been computed correctly, we compare the schedule per-
formances Φ(x∗) and ΦI8 for perturbations δ4 of job mean µ4. For both scenarios, the job
corresponding to the stability radius is job J4. We’ve given the delay δ as a percentage of its
job duration mean. This is shown in Figure 6-4, where we have

• ΦF = {Φ(x′) | x′ : x′ ∈ X\{x∗}},
• ΦI8F = {ΦI8(x′) | x′ : x′ ∈ X\{x∗I}}.

Figure 6-4: Cumulative distribution function values of perturbed Φ for nominal scenario and for
intervention do(v48).

We see that the optimality of the schedules is lost when the perturbation equals the stability
radius of the schedule. Therefore, we’ve performed the sensitivity analysis correctly.

For intervention do(v5) we have ρIS2

• ρIS2 = {ρI9, ρI10, ..., ρI16}.

In Table 6-7 the values are given and in Figure 6-5 the objective values and corresponding
stability radii are plotted for each scenario.

v5 ∈ V1 do(v51) do(v52) do(v53) do(v54) do(v55) do(v56) do(v57) do(v58)
ρI(µ1(V1)) 1.18 0.78 0.24 0.11 0.57 0.87 1.11 1.67

Jρ 1 1 1 1 4 4 4 4

Table 6-7: Post-interventional stability radii for interventions on v5.

We see that the post-interventional objective value and stability radius of the optimal schedule
for intervention do(v5) are significantly higher than for intervention do(v4). Therefore, we
should only consider an intervention do(v5).
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Figure 6-5: Cumulative distribution function values of Φ shown against the stability radius ρ for
nominal scenario and for interventions on v5.

6-5 New objective function values

We consider the objective function Equation 5-3. When looking at nominal values Φ(x∗) =
1.359 and ρ(µ) = 0.02, we conclude that the nominal schedule for the nominal situation is too
sensitive. A nearly negligible delay of job duration mean µ4 will result in the found schedule
to no longer being optimal. This motivates us to focus on improving the the stability radius
for our new optimization and therefore choose γ = 0.3 as optimization weight.

Numeric results

In Table 6-8, the new objective values ΦN are given along with the corresponding post-
interventional objective values ΦI and stability radii ρI .

v4 ∈ V1 do(v41) do(v42) do(v43) do(v44) do(v45) do(v46) do(v47) do(v48)
ΦI(x∗I , V1) 1.394 1.371 1.365 1.391 1.358 1.346 1.317 1.304
ρI(µ(V1)) 0.29 0.11 0.03 0.23 0.08 0.16 0.60 0.78

ΦN (x∗I , V1) 0.189 0.059 0.004 0.146 0.039 0.097 0.400 0.529
v5 ∈ V1 do(v51) do(v52) do(v53) do(v54) do(v55) do(v56) do(v57) do(v58)

ΦI(x∗I , V1) 1.505 1.458 1.391 1.375 1.316 1.290 1.272 1.2184
ρI(µ(V1)) 1.18 0.78 0.24 0.11 0.57 0.87 1.11 1.67

ΦN (x∗I , V1) 0.813 0.534 0.155 0.063 0.379 0.587 0.753 1.147

Table 6-8: Performance values after interventions on v4 and v5.

We predict for γ = 0.3, which implies a preference on improving the stability radius, the
optimal scenario to be the post-interventional scenario for do(v58). The post-interventional
objective value for this scenario is lower than that for the nominal situation, meaning the
schedule performs worse. However, we predict the increase in stability radius to be significant
enough such that this scenario corresponds to the optimal schedule.
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Conclusion

7-1 Conclusion

In this thesis, we have proposed a robust scheduling algorithm for a one-machine scheduling
environment. Our algorithm is an extension to the β-robust scheduling method and applies
causal inference on a given job data set and solution sensitivity analysis. The requirement
for the observational job data set is that it’s eligible for causal inference. The addition of
sensitivity analysis has allowed us to include the stability radius as an additional performance
measure for the optimization. We have discussed the practical use of both additions and sev-
eral causal discovery methods in the literature review. We have discussed β-robust scheduling
and shown its practical use and we have shown the application of causal inference for some
toy examples. For the latter, we have provided graphical for the understanding of the reader.

Our demonstration showed how the performance of a synthetic 5-job scheduling problem
is predicted to improve after applying certain system parameter modifications. A Markov
equivalent and the true causal model of the process have been identified and the models
have been exploited for predictions on the effects of variable interventions. We explained
how having multiple estimates of the causal graph could be an issue for making predictions.
This phenomenon shows that we cannot solve any problem entirely by consulting data. We
made predictions by following the rules of do-calculus and probability calculus and used these
to provide the β-robust scheduling problem and sensitivity analysis with additional input
values. We used these additional inputs for the optimization, which means that we included
the predicted scenarios in the decision-making progress. We observed the schedules for several
predicted scenarios to outperform the schedule under nominal behaviour for objective value
Φ and stability radius ρ. Given this information, we can conclude that our scheduling process
can be improved by applying these modifications to the system parameters in practice.

Due to the strong constraints that data used in causal inference is subjected to, we haven’t ap-
plied our algorithm to an existing scheduling problem. We could not find a robust scheduling
problem with an observational data set of a job in a scheduling environment that encloses each
relevant event without bias. Therefore, we demonstrated our algorithm on a 5-job scheduling
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problem with one synthetic data set that we assumed to satisfy the three required conditions.
This thesis should therefore be seen as a theoretical approach to improve a job scheduling
process. Given that the trend continues, machines and processes will become more advanced
and data-driven. Process data will be collected and stored in a manner that makes it resemble
the characteristics of the underlying process more accurately. This means that the applica-
tion of causal inference in robust job scheduling will become more accessible. Therefore, the
results presented in our thesis should encourage robust job schedulers to investigate ways to
get their process data eligible for causal inference. If eligible, our algorithm can be applied
to the scheduling problem with deadline or it can be extended to apply to robust scheduling
problems in multi-machine job environments.

7-2 Limitations and recommendations for future work

1. Both causal discovery methods from the bnlearn package estimated the same two graphs
that differed in one edge orientation. Both algorithms cannot distinguish between graphs
G1 and G2 based on the given data set and the performed conditional independence
tests. Increasing the number of data samples to n = 100000 did not result in the algo-
rithms only finding the true DAG. This is an interesting limitation in causal inference.
Solely analyzing the distribution of variables v1 and v3 will not let our algorithms distin-
guish the Markov equivalent model from the true causal model. After a certain number,
adding more samples to the data set will not change the result of the conditional in-
dependence tests as the distribution of these variables will approach an equilibrium.
This is where our causal discovery method has reached its limit. We could improve our
model estimate by looking into the process to determine which measured event occurs
before the other. With this prior knowledge, we can exclude certain causal relations
within the model. The need for prior knowledge of certain problems is a limitation to
our causal inference approach.

2. It is more realistic a certain amount of confounding bias is present within a process vari-
able set. Events are likely influenced by unmeasured phenomena. Research could be
done on (synthetic) job scheduling cases where unmeasured confounding variables had
been present that caused bias in the process variable sets. Causal discovery methods
like the FCI, modified PC algorithm, RFCI and more could then be applied. Conse-
quently, the use of the rules of do-calculus could be expanded to predict the effects of
interventions when unmeasured confounding variables are present. We haven’t covered
this part of do-calculus in this thesis.

3. The data sets and causal models used for causal inference are subjected to the Faithful-
ness assumption. When certain variable relations exist that can’t be found in the obser-
vational data, the actual outcomes of interventions will likely differ from the predicted
outcomes. Research could be done on a framework of how and when this constraint can
be relaxed such that consistent predictions can still be made for when the data set does
not satisfy this constraint. Having a framework like this and following it would increase
the reliability of predictions based on real data sets.

4. We’ve computed the variances of the post-interventional job duration of job J1 based on
the post-interventional data sample that we generated with Rstudio’s sample function.
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Algorithms generate a pseudo-random set, which means the set is not entirely random.
This is not an issue since we generated the nominal data in the same manner. However,
if a real data set were to be used to generate a post-interventional data set with an
algorithm, certain inaccuracies may exist in this post-interventional data. A slight bias
will be introduced by the algorithm that does not exist in the real data set. This bias
should be addressed as this bias will be incorporated in the optimization. Therefore,
research could be done on how post-interventional variance values for discrete distri-
butions can be accurately predicted, or generated with negligible bias compared to the
real observational data.

Master of Science Thesis Q.A.H. Rademakers



40 Conclusion

Q.A.H. Rademakers Master of Science Thesis



Appendix A

Appendix

A-1 Probability calculus and graph theory fundamentals

Probabilistic inference is the process where probability distributions of variables given a model
are determined.

Basic Probability theory

Probability theory is concerned with the probabilities of events occurring, where the occur-
rence of an event A is expressed as variables taking on a specific value Ai (i = 1, ..., n) within
set of all possible events Ω. An event can be defined as a light turning on or off, a system
breakdown occurring, a specific input control input value or the outcome of an experiment,
which could be the measured duration of a process. In Bayesian formulation the probability
of an event occurring is said to be a degree of belief.
For a finite set of events Ω which is the sample space, the probability of an event A taking
place is given as P (A). For each event A ∈ Ω, P (A) should satisfy the following properties

P (A) ≥ 0 ∀A ∈ Ω (A-1)∑
A∈Ω

P (A) = P (Ω) = 1 (A-2)

P (A1, A2, ..., An) =
∑
n

P (Ai) i = 1, 2, .., n (A-3)

Fundamental rule of probability calculus

Given two events A and B, the probability of both events occurring is given as

P (A,B) = P (B|A)P (A) = P (A|B)P (B). (A-4)

This leads to the Bayes’ rule which is fundamental to probabilistic inference. This rules holds
as
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Bayes’ rule

P (B|A) = P (A|B)P (B)
P (A) = P (A,B)

P (A) . (A-5)

The concept of Bayes’ rule is that with having prior knowledge of event B happening, and
event A occurring, both pieces of information can be used to update our expectation of event
B happening. It can be seen that after the observation of A occurring and having prior knowl-
edge of event B happening, the posterior probability distribution of event B happening under
the condition of event A happening can be obtained. To obtain this posterior distribution,
prior knowledge P (B) is multiplied by the normalized likelihood of B given a, which is given
as P (A|B)

P (A) .

Probabilistic networks

Probabilistic networks show conditional dependence and independence relationships within
a set of variables and use probability as a unit of measurement for the strength of these
(in)dependence relationships. Graphical probabilistic network models have been widely used
to show relations between system variables. These models are a combination of graph theory
and statistics, with graph theory being the mathematical language used to explain the struc-
ture of a graph. A graph consists of a set of nodes and edges connecting internally dependent
node pairs subjected to an underlying joint probability distribution. These edges may be
undirected or directed. For the undirected case, connected node pairs have a dependence
relation and the model would be known as a Markov random field.

The graph in Figure A-1 represents an undirected model of variable set Vp = {v1, v2, v3}.
Node pairs {v1, v2} and {v2, v3} are connected by an edge internally, showing both node pairs
dependencies. Since both nodes {v1, v3} are given to be dependent on v2, they indirectly influ-
ence each other. Note that in this literature survey node pairs {x, y} may also be formulated
as (x, y) ∀ x, y.

Figure A-1: Undirected graph of variable set Vp.

Bayesian networks

A Bayesian network is a probabilistic graphical model that represents the causal relations
between the variables of interest. The directed edges represent causal variable relations in
terms of conditional probabilities, where the node that has an edge directed towards its
neighbour node is the direct cause of this neighbour node. In Figure A-2 a graph of variable
set Vp is given, which represents a Bayesian network.
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A graph consisting of directed edges where no path starting and ending at the same node is
possible is known as a directed acyclic graph (DAG). In causal inference this type of graph is
used. An example is given in Figure A-2

Figure A-2: Directed graph of variable set Vp.

Each subset in a directed acyclic graph is subjected to a probability distribution function.
The product of each of these probability distribution functions in the set equals the joint
probability distribution function of the graph. This probability distribution function is the
product of the conditional probabilities of each node given its parent node(s). The joint
probability distribution function of variable set V therefore satisfies

P (v1, ...., vn) =
∏
i

P (vi|pa(vi)). (A-6)

v Pa(v)
v1 ∅
v2 v1
v3 v1

Table A-1: Nodes of Vp and their parent nodes.

From Table A-1 or from Figure A-2 and Equation (A-10) it follows that

P (v1, v2, v3) = P (v3|v1)P (v2|v1)P (v1)

Independence relations

Two subsets X and Y are independent (X ⊥⊥ Y ) if the probability of X and Y occurring
together is equal to the probability of both X and Y occurring separately ∀x, y ∈ R. This is
given as

P (x, y) = P (x)P (y) ∀x, y ∈ R (A-7)

Two subsets X and Y are conditionally independent if the probability of X occurring, knowing
Z, is not affected by the occurrence of Y ∀x, y, z ∈ R. Following Definition 1.1.2 [26], consider
the subsets of variables X, Y and Z of finite set V with joint probability function P. The sets
X and Y are conditionally independent given Z if

P (x|y, z) = P (x|z) whenever P (y, z) > 0, (A-8)
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which leads us to the definition

(X ⊥⊥ Y |Z) if and only if P (x|y, z) = P (x|z) (A-9)

∀x, y, z ∈ R such that P (y, z) > 0.

The strength of the causal dependence between a node and its parent node(s) is given as the
conditional probability for this node occurring given its parent(s). The conditional probability
of each node in the set given its parent(s) together forms a probabilistic model of a domain
that must represent the joint distribution. Independence relations not only change the joint
distribution but also lower the complexity of the model. This makes the identification of these
relations crucial.

The convenient part of Bayesian network models is that their structure can be exploited to
identify these independence relationships. In Figure A-2 it can be seen that nodes v2 and
v3 are conditionally dependent on node v1. If the value of node v2 changes, then the value
of node v3 has also been influenced change as both nodes share the same single parent node
which causes the change in variable value. The corresponding joint probability distribution
of the node set is therefore given as

P (v2, v3|v1) = P (v2|v1)P (v3|v1). (A-10)

For the directed graph of V ′p with new edge directions shown in Figure A-3, it can be seen
that node v2 and node v3 are both parent nodes of node v1.

Figure A-3: Directed graph of variable set V ′p .

As these parent nodes have no incoming edges they are independent. This means that the
probability of node v2 and node v3 happening is given as

P (v2, v3) = P (v2)P (v3). (A-11)

Nevertheless, a change in the value of variable v1 means that either a single parent node
or both parent nodes caused this change in variable value. This makes both parent nodes
dependent when conditioning on node v1. The corresponding joint probability distribution
function is then given as

P (v1, v2, v3) = P (v2)P (v3)P (v1|v2, v3). (A-12)
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A-2 PC algorithm

Algorithm 1 PC algorithm edge removal part
Data: Variable set V
Result: Skeleton of graph G
Initialization of edge removal part
start with connected undirected graph G’ and set n=0
repeat
for each adjacent node pair (vi, vj) ∈ V do

for each subset ⊆ set Yi\{vj} with cardinality n do
Perform a conditional independence test if (vi ⊥⊥ vk|vj) then

Remove edge between vi and vk Add vk to Si,k and Sk,i
end

end
Update sets Yi ⊆ V

end
n = n+1

until each subset ⊆ set Yi\{vj} is of cardinality less than or equal to n ;

Algorithm 2 PC algorithm edge direction assignment part
Data: Variable set V, edge set E, separation set S
Result: Markov equivalence class of DAG G
initialization of edge direction assignment part
repeat
for each node triplet (vi, vj , vk) where node pairs (vi, vj) and (vj , vk) are adjacent but not
(vi, vk) do

assign the edge direction of both node pairs (vi, vj) and (vj , vk) towards node vj if and
only if vj is not contained in Si,k

end
until no triplets eligible for this edge direction orientation are left;
repeat

for each node triplet (vi, vj , vk) where vi → vj − vk and node pair (vi, vk) not adjacent do
assign a directed edge such that vj → vk if this does not create a cycle or collider
(node with only inwards directed edges)

end
until no triplets eligible for this edge direction orientation are left;
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A-3 Synthetic data table

v1 5 7.5 10 12.5 15 17.5 20 22.5
n 2012 2019 1511 1422 1368 1035 537 96
v2 1.5 1.75 2 2.25 2.5 2.75 3 3.25
n 958 3017 549 2417 1016 1025 481 483
v3 12 13 14 15 16 17 18 19
n 2746 1151 1170 1351 1096 1109 883 494
v4 60 62.5 65 67.5 70 72.5 75 77.5
n 1929 1654 1510 977 1346 1028 873 683
v5 60 62.5 65 67.5 70 72.5 75 77.5
n 1982 1700 1423 1036 1474 1055 776 554
v6 14 15 16 17 18 20 23 24
n 2439 1573 1376 808 711 704 1311 1078
v7 825 850 875 900 925 950 975 1000
n 477 511 994 1474 2060 483 2529 1472

Table A-2: Observed V1 variable values and their count n.

v6 is given to be the observed job duration value. The j-th sample (j = 1, 2, ..., N) is noted
as v6,j . Job duration mean µ1 is given as

µ1 =

N∑
j=1

v6,j

N
. (A-13)

The job duration value of the j-th sample of the post-interventional data set for the k-th
intervention (k = 1, 2, ..., dim(V1,I)) is given as vi,jk.

µ1k(V1) =

N∑
j=1

v6,jk

N
, k = 1, 2, ..., dim(V1,I). (A-14)
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A-4 Synthetic data figure

Figure A-4: Distribution of variables in V1. xi=vi for i = 1, 2, ..., 7.
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A-5 Post-interventional probability distributions of v6

v4 ∈ V1 v4 do(v41) do(v42) do(v43) do(v44) do(v45) do(v46) do(v47) do(v48)
P (v61|v4) 0.244 0.276 0.253 0.254 0.260 0.250 0.200 0.200 0.194
P (v62|v4) 0.157 0.143 0.145 0.149 0.173 0.166 0.170 0.182 0.186
P (v63|v4) 0.138 0.108 0.117 0.150 0.139 0.141 0.175 0.154 0.169
P (v64|v4) 0.081 0.084 0.093 0.076 0.083 0.075 0.079 0.080 0.068
P (v65|v4) 0.071 0.105 0.085 0.075 0.068 0.066 0.051 0.038 0.014
P (v66|v4) 0.070 0.084 0.093 0.061 0.062 0.055 0.073 0.047 0.060
P (v67|v4) 0.131 0.117 0.123 0.138 0.108 0.134 0.135 0.163 0.141
P (v68|v4) 0.108 0.083 0.091 0.098 0.107 0.114 0.118 0.137 0.168
v5 ∈ V1 v5 do(v51) do(v52) do(v53) do(v54) do(v55) do(v56) do(v57) do(v58)
P (v61|v5) 0.244 0.270 0.263 0.244 0.258 0.228 0.206 0.235 0.189
P (v62|v5) 0.157 0.209 0.202 0.164 0.146 0.138 0.132 0.088 0.070
P (v63|v5) 0.138 0.138 0.144 0.153 0.146 0.132 0.118 0.130 0.136
P (v64|v5) 0.081 0.096 0.084 0.074 0.080 0.080 0.077 0.069 0.066
P (v65|v5) 0.071 0.072 0.064 0.071 0.066 0.072 0.091 0.058 0.069
P (v66|v5) 0.070 0.066 0.058 0.077 0.075 0.073 0.068 0.081 0.074
P (v67|v5) 0.131 0.083 0.097 0.117 0.138 0.144 0.169 0.194 0.218
P (v68|v5) 0.108 0.066 0.089 0.099 0.092 0.132 0.140 0.146 0.1794

Table A-3: The probability distribution of v6 for the nominal scenario and after interventions on
v4 and v5
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