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ABSTRACT In this manuscript we explore European feature importance in Day Ahead Market (DAM)
price forecasting models, and show that model performance can deteriorate when too many features are
included due to over-fitting. We propose a greedy algorithm to search over candidate countries for European
features to be used in a DAM price forecasting model, that can be applied to several regression and machine
learning modelling methodologies. We apply the algorithm to build price forecasting models for the Dutch
market, using candidate countries selected through an integrated analysis based on open-source European
electricity market data. Feature importance is visualised using an Auto Regressive and Random Forest
model. We explain these results using cross-border flow and DAM price data. Two types of models (LEAR
and the Deep Neural Network) are considered for the DAM price forecasting with and without European
features. We show that in the Dutch case, taking European market integration into account improves the
Mean Absolute Error (MAE) of the best performing DAM price forecasting model by 3.1%, the relative
MAE (rMAE) by 3.85%, and the Symmetrical Mean Absolute Percentage Error (sMAPE) by 0.31 p.p.,
compared to the best forecasting model without European features. Through statistical testing we show that
European features improve the accuracy of the forecasts with statistical significance.

INDEX TERMS Electricity price forecasting, European market integration, day ahead markets, deep neural
networks, deep learning, feature analysis.

NOMENCLATURE
DR Demand Response.
DAM Day Ahead Market.
IDM Intraday Market.
ENTSO-E European Network for Transmission System

Operators in Europe.
EPF Electricity Price Forecasting.
ML Machine Learning.
ARX Linear Auto Regressive model with Exoge-

nous variables.
LASSO Least Absolute Shrinkage and Selection

Operator, a linear model estimation algorithm
that includes regularisation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiquan Zhao .

RF Random Forest, an ensemble regression
model using regression trees [1].

fARX The full-ARX model, as proposed in [2].
LEAR Lasso Estimated Auto Regressive, the fARX

estimated with the LASSO as proposed in [3].
MLP MultiLayer Perceptron.
DNN Deep Neural Network.
SM-DNN Single-market DNN, a DNN forecasting

24 hourly DAM prices of a single market.
MM-DNN Multi-market DNN, a DNN forecasting

24 hourly DAM prices of multiple markets
simultaneously.

TPE Tree-structured parzen estimator, Bayesian
hyperparameter optimisation algorithm [4].

DM-test Diebold-Mariano test, a statistical test
to compare accuracy between forecast
timeseries.
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I. INTRODUCTION
Demand response (DR) is an energy management technique
where energy consumers are incentivised to shift their energy
use in time [5], [6]. In market based DR, the incentive is eco-
nomic through variable pricing. The electricity price reflects
the availability of (renewable) energy through scarcity of a
product. Low prices correspond with an energy surplus and
low marginal cost of energy, where high prices correspond
with energy scarcity and high marginal cost of energy. The
introduction of spot markets allows for a different electric-
ity price in every hour, 30-minutes and even 15-minutes.
In Europe, the Day Ahead Market (DAM) is the main spot
market for trading electricity. On the DAM, energy is traded
in hourly blocks with corresponding prices. The DAM is
well studied in the context of Electricity Price Forecasting
(EPF) [7].

The European grid is well connected and the inter-
connectivity of countries is expected to increase in the future.
In 2002, members of the EU vowed to have 10% of their
generation capacity in cross-border transmission capacity [8].
A future ‘‘European Supergrid’’ could even connect the Euro-
pean grid to North Africa [9]–[11]. Inter-connectivity of the
European grid will help reach greater efficiencies, improve
resilience to climate change and will enhance energy flexi-
bility [12]. The development of European infrastructure will
improve internal market efficiencies, enhance security of
supply and enable Renewable Energy Sources (RES) mar-
ket penetration [8]. Inter-connectivity enables cross-border
electricity trading, opening up national electricity markets to
foreign demand. These facts already make a strong case for
the consideration of European market integration in a DAM
price forecasting model. French market features (e.g. load,
prices, generation), for example, have been shown to be
more important than Belgian features when forecasting the
Belgian DAM prices [13]. However, the analysis was limited
to one neighbouring country and only a Deep Neural Net-
work (DNN) was applied. Similarly, a study [14] has shown
that including Energy Exchange Austria’s (EXAA) prices as
features improves forecast accuracy in all other EU DAM
markets, especially in the Dutch and FrenchDAM forecasting
models. However, the connection between the Dutch DAM
and the EXAA is also shown to be getting weaker over
time. Possibly due to the further integration of the Dutch
market with the APX UKmarket. In another study [15], price
forecasts of other European markets are used as exogenous
input for an Italian DAM forecasting algorithm, significantly
improving performance. The effect of European market inte-
gration is not only seen in the DAM, but also in the Intraday
Market (IDM) [16]. In general, the effect of European market
integration is understudied in the context of EPF.
Machine Learning (ML) techniques have been shown to be

effective at forecasting electricity prices, both in the DAM [7]
and the IDM [17], [18]. Specifically, the MultiLayer Percep-
tron (MLP) has been successfully applied to forecast DAM
prices in Spain and Pennsylvania-New Jersey-Maryland [19],
[20]. The more complex structured Deep Neural Network

(DNN) was successfully applied in Belgium [21], Nord-Pool
markets, Germany, France and Pennsylvania-New Jersey-
Maryland [22].

Many other methods have been applied to forecast DAM
prices [7]. According to an EPF benchmark study on
the Belgian market, a two-layer DNN generally outper-
forms both statistical and other ML models, given the
same features [21]. The Lasso Estimated Auto Regressive
(LEAR) [22], or fARX-Lasso [3], is the best perform-
ing non-ML method and should be considered as a bench-
mark [22], especially since ML methods have been shown to
not always outperform statistical models [21].

The performance of the different modelling approaches
varies over different markets [22], but a recent case-study
on the Dutch market is missing in literature. Many statisti-
cal methods rely on the calibration of linear relationships.
While they can still be powerful modelling approaches, they
might not perform well with high-resolution data like hourly
prices with high volatility [21]. Price volatility in electric-
ity markets can be pronounced due to the continuous need
for balancing supply and demand [23]. It can differ signifi-
cantly per month, and is subject to external price drivers like
energy demand, demand elasticity, congestion, (renewable)
energy generation, fuel prices, currency exchange rates and
inter-connected electricity markets [13], [23]–[25]. With an
increasing renewable energy penetration in electricity mar-
kets, price volatility is expected to increase due to the inter-
mittent nature of renewables, in the absence of sufficient
energy storage [25]. However, effective policy, cooperation
between TSO’s and intraday trading can presumably prevent
a significant increase in price volatility on the DAM [26]. It is
possible that as renewable energy penetration increases, price
volatility would increase and ML methods would increas-
ingly outperform statistical methods.

To summarize, market integration can be expected to play
a large role in price settlement of European Day Ahead
Markets. The increasing inter-connectivity may even increase
external market influences on national markets. The current
state of the art in EPF generally limits market integration fea-
tures to a single external market, while the inter-connectivity
of the grid and different local conditions would make it
likely for national markets to be affected by multiple external
markets. Also, little clarification is given on the actual market
mechanisms that make themarkets affect each other. In recent
literature, a case study is missing on the Dutch market. And
while it is expected that ML methods perform better than
statistical methods in times of high price-volatility, this has
not been confirmed with statistical significance.

In this manuscript we perform an EU wide, data-based
analysis of European market feature (e.g. price and load)
importance in DAM price forecasting models of Euro-
pean bidding zones. Open-source data from the ENTSO-E
transparency platform [27] was used exclusively. Yearly
cross-border flows are analysed, after which we apply a
Least Absolute Shrinkage and Selection Operator (LASSO)
[28], [29] estimated Auto Regressive model, and a Random
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Forest [1] model to identify European feature importance
(Section IV). The results are used to select candidate Euro-
pean countries whose features are to be considered in a Dutch
DAM forecastingmodel.We perform a benchmark using only
Dutch features (Section V-B). Then, we propose a greedy
approach to searches through candidate countries for the best
performing combination of features for a DAM forecasting
model (Section V-A). We apply two different types of models
in the search for market integration features: the LEAR [3],
[22] and the DNN. The LEAR is a linear regression model
estimated with the LASSO. The DNN will be applied in
two different configurations: the single-market DNN [21]
(SM-DNN) and the multi-market DNN [13] (MM-DNN).
The SM-DNN [21] is a neural network that can forecast all
24 hourly DAM prices of a bidding zone simultaneously. The
MM-DNN is a neural network that forecasts the 24 hourly
prices of multiple bidding zones simultaneously. Temporal
variations in relative model forecasting performance will be
analysed (Section V-D) using univariate Diebold-Mariano-
tests (DM-tests) on the hourly forecasts, in combination with
Kernel Density Estimates of the daily DAM prices per hour
of the day.

II. ELECTRICITY PRICE FORECASTING METHODS
In order to test whether our proposedmethodology for includ-
ing market integration features in a Dutch price forecasting
model leads to a performance increase, several benchmark-
ing models are proposed. Using a naive forecast as general
benchmark, we compare its performance with 4 other Dutch
price forecasting models without European features. The full
AutoRegressive (fAR) and the fAR with Exogenous variables
(fARX) [2], [3] are compared with the Lasso Estimated
AutoRegressive (LEAR) [3], [22], consisting of the LASSO-
or EN-estimated fARX. In this study we considered both
the LASSO- and EN-estimated LEAR, and selected the best
performing model based on a preliminary analysis. Since the
Deep Neural Network (DNN) has recently been shown to
be the best performing model in an EPF benchmark for the
Belgian market [21], we include it in the benchmark for a
Dutch price forecasting model.

The best performing models without European features
will be used in the greedy algorithm in order to quantify
their performance increase due to the inclusion of European
features. The DNN will be included since it has already suc-
cessfully been applied to improve the accuracy of the Belgian
price forecast using French market features [13]. However,
we consider two configurations of the DNN. First, we apply
the SM-DNN with European features. The SM-DNN is used
to forecast the 24 hourly Dutch DAM prices only, while
European features are included in the input. Second, we apply
and the MM-DNN, where the 24 hourly DAM prices of
multiple bidding zones are forecast in the same model [13].
The MM-DNN is depicted in Figure 1, where the model is
applied to forecast the Dutch and N other bidding zones’
hourly DAM prices. We evaluate all models on their forecast
accuracy of the Dutch DAM prices only.

A. LASSO ESTIMATED AUTO REGRESSIVE MODEL
The Lasso Estimated Auto Regressive (LEAR) is a
fARX-model estimated using the LASSO (Appendix A1)
[3], [22]. For DAM forecasting considered here, the fARX
is given by the following formula:

pd,h

=

24∑
i=1

(βh,ipd−1,i + βh,i+24pd−2,i + βh,i+48pd−3,i)

+βh,73pd−7,h +
3∑
j=1

(βh,jpmin
d−j + βh,jp

max
d−j + βh,jp

avg
d−j)

+βh,83zd,h+βh,84zd−1,h + βh,85zd−7,h +
7∑

k=1

βh,85+kDk

+

7∑
k=1

βh,92+kDkzd,h +
7∑

k=1

βh,99+kDkpd−1,h + εd,h,

(1)

where pd,h is the price on day d and hour h, β are the
weights or coefficients, pmin

d , pmax
d and pavgd are the minimum,

maximum and average price of day d , zd,h is the logarithm of
the load for historic data, and the load forecast of day d , Dk
are weekday dummies for all days of the weekwhere holidays
are all 0, and ε is the model error. The model can be written
more compactly as

pd,h =
n∑
i=1

βh,iXd,h,i + εd,h, (2)

where Xd,h,i are the n = 106 regressors or features in
Equation (1).
The model is trained by solving the least-squares esti-

mate of the model, with either an l1-norm for the
LASSO-estimation or an l1l2-norm for the EN-estimation.
With sufficiently large penalty term some weights will
become (near) zero [30], effectively performing variable
selection. More information on the LASSO- or EN- estima-
tion can be found in Appendix A1.

B. DEEP NEURAL NETWORK
A DNN is a feed forward Artificial Neural Network (ANN)
that is trained using back propagation. It contains a minimum
of 3 layers: an input layer, an output layer and at least 1 hidden
layers. Following the standard notation in EPFs, we will use
the name MLP for ANNs with 1 hidden layer and DNN for
ANNs with 1 or more. Although the definition of what is
‘‘deep’’ might be debatable, it is out of the scope of this paper
and we simply follow the current standard terminology used
in literature [13], [21], [22].
The DNN is trained with the Adaptive Moment Estimation

(ADAM) [31]. Figure 1 shows an MM-DNN with 2 hidden
layers (z1, z2), where nf is the number of input features in the
input layer x, n1 and n2 are the number of nodes in hidden
layer 1 and 2, respectively. The output layer (P) consists
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FIGURE 1. Multi-market deep neural network (MM-DNN) with input layer
(x), two hidden layers (z1, z2) and output layer (P). The MM-DNN is
applied to forecast Dutch DAM prices (PNLh

) simultaneously with N other
bidding zones’ prices (PCx,h

, with x ∈ (1, . . . , N) and h ∈ (1, . . . , 24)).
If N = 0, the DNN forecasts a single market’s prices, the Dutch prices,
only. If N = 1, the dual-market DNN as proposed in [13] results.

of 24 nodes for each country included in the forecast, one for
each hour of the day (h). In the case of Figure 1, the DNN is
used to forecast Dutch DAM prices together with a variable
number (N ) of other bidding zones. In the case of a DNN
with one hidden layer, the output layer is fully connected to
the first hidden layer.

Features are optimised as hyperparameters similarly
to [13], where a single binary choice-option for country load
features is added to the search space. In our case these are the
historic load, and load forecast of the countries considered
in the forecast, which are added or removed through a single
binary choice-option per country. Historic prices are always
included as model features.

To optimise hyperparamerters and features, the Tree-
structured Parzen Estimator [4] (TPE) algorithm is used.
The TPE is a Bayesian Sequential Model Based Optimisa-
tion (SMBO) methods, which can efficiently be applied to
optimise hyperparameters [32], [33]. The method consists of
a surrogate model that is built using Bayes rule, describing
the probability of model performance as a function of the
hyperparameters

p(y|x) =
p(x|y) ∗ p(y)

p(x)
, (3)

where y is model performance and x is a hyperparameter
instantiation.

The surrogate model is used to estimate model perfor-
mance as a function of features and hyperparameters. In the

TPE algorithm, p(x|y) is defined such that

p(x|y) =

{
l(x) if y < y∗

h(x) if y ≥ y∗,
(4)

where l(x) is the density formed by observations x(i) such that
the corresponding loss, f (x(i)), is less than a threshold (y∗).
h(x) is the density formed by the remaining observations. The
TPE algorithm samples candidates from l(x), after which l(x)

h(x)
is evaluated for each sample in order to suggest the candidate
with the highest expected improvement.

C. DIEBOLD-MARIANO TEST
The DM-test is a statistical measure to compare accuracy of
two forecast timeseries. Given a target timeseries (yt ) and
two forecasts (ŷ1t , ŷ2t ), the error timeseries (ei,t ) are calcu-
lated (Equation 5a). In this manuscript we apply the Mean
Absolute Error (MAE) (Equation (5b)) as loss function (L).
Based on this, a loss differential timeseries (δt ) is calculated
(Equation 5c), which is then used to perform the one-sided
DM-test.

ei,t = ŷi,t − yi,t , i = 1, 2 (5a)

Li,t = ||ei,t ||1, (5b)

δt = L1,t − L2,t , (5c)

The one-sided DM-test tests the null hypothesis (H0) that
forecast timeserie 1 is more accurate than or equally accurate
as forecast timeserie 2. The alternative hypothesis (H1) is that
forecast 2 is more accurate than forecast 1. In the context
of DAM forecasting, the DM-test can be applied to either
the full DAM timeseries (e.g. multivariate DM-test) or to
evaluate forecasting performance for each hour separately
(e.g. univariate DM-test).

H0 : E(δt ) ≤ 0, (6a)

H1 : E(δt ) > 0 (6b)

D. GREEDY ALGORITHM FOR EUROPEAN
FEATURE SEARCH
In order to include EU market integration in a bidding zone’s
DAM forecasting model, we propose a greedy algorithm as
defined in Algorithm 1. We apply the algorithm to prevent
over-fitting on the large amount of available data by selecting
only the relevant features. Starting with a candidate set of
features (e.g.21 contains only Dutch features), a model (Mi)
is trained and its hyperparameters are optimised. Themodel is
evaluated to test its predictive performance (pi) on the bidding
zone of interest’s prices, in our case the Dutch bidding zone’s,
and added to a set (Pi) together with model performance
(pi) and features (2i) of the current iteration (i). After the
first iteration, all candidate countries (8) are consecutively
added to the latest feature set (2i), to be used in the price
forecasting model. The model is trained, its hyperparameters
are optimised, and its forecasting performance on the bidding
zone of interest (Pj) is evaluated and added to set (P). After
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Algorithm 1: GreedyFeatureSearch(21, 8)

1 i← 1
2 P ← ∅
3 p← ∅
4 M← ∅
5 Mi← TrainModel(2i)
6 pi← EvaluateModel(Mi)
7 Pi← (2i, pi,Mi)
while (pi ≤ pi−1 ∨ i > 1) ∧|8| > 0 do

// execute algorithm while
performance improves, or until
all country features are
included in the model

8 P← ∅
9 M ← ∅

for j = {1, . . . , |8|} do
// train and evaluate the ith

model by adding a single
country’s (j) features at a
time

10 Mj← TrainModel({2i ∪8j})
11 Pj← EvaluateModel(Mj)

end
12 j← argminj(P)
13 2i+1← {2i ∪8j}

// add best performing country’s
features (8j) to ith model

14 8← {8 \8j}

15 i← i+ 1
16 pi← Pj
17 Mi← Mj
18 Pi← (2i, pi,Mi)

end
19 return P

all candidate countries are evaluated, the best performing
model’s features are selected from the set (P). Those features
are added to the feature set (2i), while they are removed
from the candidate feature set (8). The procedure will then
be repeated until either performance stops increasing, or all
candidate features are added to the model.

The candidate set of features (8) was selected using the
data analysis described in Section IV, where all countries
that result from at least one of the analyses (cross-border
flow, ARX or RF) are selected. The candidate set of country
features used for the Dutchmarket are summarised in Table 1.

Our proposed greedy algorithm can be applied to any
model that allows for a large amount of features, and assists
with preventing over-fitting. In this manuscript we inde-
pendently apply the algorithm to three different modelling
approaches (Section V-C). We perform both hyperparameter
optimisation and feature selection on the validation set of
the Dutch DAM prices. Finally, all models are evaluated on

TABLE 1. Candidate countries to be included in the search for Dutch price
forecasting features, based on cross-border flows, ARX-, and RF feature
importance. A country is selected as candidate when it shows up in at
least one of the analyses.

the test set to evaluate the increase in model performance.
No model selection is performed on the test set.

III. DATA AND TOOLS
The data used for this study is taken from the ENTSO-E
transparency platform [27]. Historic DAM price-series, his-
toric loads and historic day ahead load forecasts are used. The
data was split in train-, validation- and test-sets, as depicted
in Figure 2. Data from 2015-2019 was used, with the year
2019 being used as test data. In order to be able to include
the most recent information in training, 2017 was taken as
validation data instead of 2018. A single split limits the data
leakage that occurs in the first week of the 2018, where data
from the validation set is used in the lagged features. There
still is no data leakage from the test set.

FIGURE 2. Dutch historic price, load and load-forecast with train,
validation and test splits indicated for model training.

The LEAR models are build and trained, and the features
were Z-score standardised using the scikit-learn python pack-
age [34]. The DNN was made using Tensorflow [35] and
trained with the ADAM optimiser [31]. The TPE SMBO
algorithm is implemented using the Python Hyperopt pack-
age [4]. The DM-tests are performed using the python
EPF-toolbox [22].

IV. EUROPEAN FEATURE IMPORTANCE ANALYSIS
In order to identify possible European features that influ-
ence the Dutch market, a EU-wide analysis is performed on
cross-border flow data and DAM prices.
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European cross-border flow data [27] was analysed to iden-
tify trading patterns between countries. Figure 3 shows the
cross-border flows between countries whose data is available
through the ENTSO-E transparency platform. The data shows
that France is the largest net exporter of the EU, while Italy
is the largest net importer of the EU. The Nordic markets (FI,
SE, DK and NO) seem to be a relatively independent block,
mostly trading amongst each other.

FIGURE 3. Cross-border flows between European countries, units in
[MWh/year] based on 2018 data [27].

For each bidding zone, a LASSO-estimated ARX-model is
trained and its weights are analysed. The model is given by
the following formula:

pd,h =
N∑
i=1

βipi,d−1,h +
M∑
j=1

βj+N zj,d,h + εd,h, (7)

where N is the number of bidding zones, M the number
of countries, pi,d,h the price of bidding zone i and zj,d,h
the load forecast of country j, on day d and hour h, β are
the weights or coefficients, and εd,h the model error. The
analysis allows us to gain insight in the relative importance
of European features with respect to domestic features. The
analysis fits the general EPF modelling approach, where
historic prices and the load (forecast) are used to forecast next
day’s price. Figure 4a shows the normalised weights resulting
from the ARX-models. The incoming arrow width indicates
the relative weight of transmitting country features for the
receiving country’s price forecasting model. For countries
containing multiple bidding zones, the weights of the bidding
zones are summed. Weights are masked at a minimum of 5%
normalised importance.

Since the LASSO estimated ARX is a linear model, it is
possible that non-linear relationships are not well reflected

in the analysis. To overcome this limitation, a RF-model is
applied in similar fashion. The RF is trained to forecast the
24 hourly DAM prices of a bidding zone simultaneously,
using the same features as the ARX-model. The RF is able
to capture non-linear relationships, and can similarly show
relative features importance. More information on the RF
model can be found in Appendix A2. Figure 4b shows the
normalised feature importance resulting from the RF-models.
The RF seems to give a higher importance to domestic market
features compared to the ARX.

Both the ARX- and RF-analyses show that Norwegian
market features seem to performwell in many other European
price forecasting models, while Norwegian models perform
well using only Norwegian features. Compared to Sweden,
which exports more in an absolute sense, Norwegian features
perform well in a large number of forecasting models of
other European markets. This could be do to the amount of
storage present in the Norwegian system, possibly allowing
them to export more dynamically. It would enable them to
export at times the merit-order curve in other bidding zones is
relatively high and steep, expressing more influence on price
settlement. Another explanation could be the relative large
transmission losses that come with the oversea cables that
connect Norway to many other European markets, making
high foreign prices necessary to make up for the transmission
losses. Figure 5 shows the correlation matrix of Norwegian
export and the DAM Prices of the importing markets. The
figure shows that Norwegian exports correlates positively
with the importing market’s DAM prices. The correlation is
the strongest in Denmark and Sweden, but is positive for
all neighbouring markets. The positive correlation between
Norwegian export and Swedish prices is as positive as to
other connected market prices. This indicates that the dif-
ference between overland- and oversea-connected markets,
and as such the possible effect of transmission losses on
export behaviour, can’t be observed to have an effect on the
correlation between Norwegian export and the neighbouring
price.

The Spanish and Portuguese markets seem to function as
an independent block from the other EUmarkets, with French
features having low importance in their price models. This
could partially be explained by the Pyrenees separating them,
which makes overland transmission cables relatively expen-
sive [36]. This would result in the relatively low degree of
interconnection of Spain with other EU member states [37].

Even though France is the largest net exporter of electric-
ity, its feature importance in neighbouring market models
is relatively low. One explanation could be the large share
of nuclear power in France, making its export possibilities
relatively inflexible. This makes it possible that the informa-
tion in French features is captured in the historic prices of
those markets, and less information from France is needed to
quantify its effect on price settlement. Figure 6 shows the cor-
relation matrix of French electricity export and the importing
market’s DAM prices. The figure shows that the correlation
between electricity export and DAM prices is weak, and in
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FIGURE 4. Normalised weights for the ARX model (a) and normalised feature importance for the RF model (b) forecasting the DAM prices of day d ,
using the prices of day d − 1 and the load forecast of day d of all European bidding zones and countries. The weights of the load and separate
bidding zone’s prices are summed for each country.

FIGURE 5. Correlation matrix of Norwegian electricity export and the
DAM prices of importing markets. Based on 2018 data.

some cases negative. This can similarly explain the relative
low importance of Italian features in other markets’ models,
regardless of its high net import. Figure 7 shows the corre-
lation matrix of Italian import and the transmitting market’s
DAM prices. Again, only weak correlations are observed.
A constant Italian demand in foreign markets (e.g. Slovenian,
Swiss and French) could be captured in the historic prices
of those markets, and less Italian information is needed to
quantify this effect. Although cumulatively, Italian feature
importance is relatively high in both the ARX- and RF-
models.

Germany and Switzerland trade a significant amount of
electricity, but their features are not selected each other’s
price forecasting model. Germany has a large renewable

FIGURE 6. Correlation matrix of French electricity export and the DAM
prices of importing markets. Based on 2018 data.

energy share, making a constant trading behaviour less likely.
However, it could be that a part of the export is from intraday
trading. If that is the case, cross-border training would have
a smaller effect on DAM prices.

Both the ARX- (Figure 4a) and the RF-analyses
(Figure 4b) show there is no straightforward relationship
between cross-border flows and feature importance in a for-
eign price forecasting model. Norwegian features have high
importance in many markets, while French feature impor-
tance is limited. France exports a lot more electricity than
Norway, but their inter-connectivity, means of generation and
as such their inherent flexibility are vastly different. Which
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FIGURE 7. Correlation matrix of Italian electricity import and the DAM
prices of exporting markets. Based on 2018 data.

can also be seen in the correlation matrix of their export and
the importing markets’ DAM prices. Italian features show up
in many ARX-models (Figure 4a), but with low importance
compared to other markets regardless of its large net import.
A possible explanation is the ability of a bidding zone to time
its import and export with advantageous prices. However,
more research is necessary to conclude this definitely.

For the Dutch price model, Table 1 summarises the results
of the analysis perform in this section. It stands out that
directly connected markets (BE, FR, NO and GB) arise
from the ARX- and RF-analyses. The ARX- and RF-models
identify second-order market effects through Danish (DK),
French (FR) and Italian (IT) features. German features are
considered due to the relatively large amount of trading
between the two markets. For the Belgian, British and
German price forecasting models, Dutch features seems to
contain information on their prices as well. However, for
the French, Italian, Danish and Norwegian models, Dutch
features are not of high importance.

V. DUTCH DAM PRICE FORECASTING WITH EU
MARKET INTEGRATION
To search for the best combination of European features for
several Dutch price forecasting models, we apply the greedy
algorithm (Algorithm 1) to three modelling approaches inde-
pendently. The algorithm will be applied to search over the
previously defined candidate countries (8). Table 1 shows
the summarised results for the European feature candidate
selection, applied to the Dutch market. For countries contain-
ing multiple bidding zones (NO, DK, IT), a single bidding
zone (NO-2, DK-1, IT-NORD) is selected for the remaining
analysis.

A. MODEL TRAINING
For model training of the LEAR and DNN, two slightly
different approaches are taken. In the LEAR models, all
fARX-variables are considered possible features for the
candidate countries. The penalty-factors (λ, ρ) are optimised

on the validation set. For the DNN, a feature- and hyper-
parameter search is performed using the TPE algorithm
(Section II-B). The search space (8) that we have defined for
the DNN’s is shown in Table 2. The best performing models,
evaluated on the validation set, are selected for all modelling
approaches.

TABLE 2. TPE search space for the DNN models. Load features are added
as a hyperparameter for every country that is considered in the forecast.

B. DUTCH BENCHMARK
In order to be able to say whether the inclusion of European
features improves the performance of the Dutch forecast,
a benchmark is performed using the Naive, fAR, fARX [2],
[3], LEAR [3], [22] and DNN [21] models without European
features. For the fAR, fARX and LEAR, a single model is
trained for each hour of the day. While the DNN is applied to
forecast the 24 prices simultaneously.

The results in Table 3 show that the LEAR sets a tough
benchmark to beat, outperforming the DNN. Figure 8a shows
the results of the multivariate DM-test. The test confirms that
the LEAR model’s forecast is significantly more accurate
than all other forecasts using only Dutch features, while the
DNN’s forecast is significantly more accurate than all others’
but the LEAR’s.

TABLE 3. Performance on the test set (2019) of the benchmark models
for Dutch DAM price forecasting.

C. GREEDY SEARCH FOR EUROPEAN FEATURES
Algorithm 1 is applied to search for the best feature combina-
tion in a Dutch DAM forecasting algorithm. The LEAR and
DNN models are applied in the search for European features,
where the DNN is both applied to forecast the Dutch price
only (SM-DNN), and as a multi-market forecasting model
(MM-DNN). All models are evaluated for their ability to
forecast Dutch DAM prices only. Table 4 shows the fore-
cast metrics of the LEAR models, showing an increase in
accuracy as features frommore countries are included.Model
performance stopped increasing after 5 added countries (GB,
DK, NO, FR and DE). The largest improvement can be found
after the second and fourth iteration, when Danish and French
features are included in the model. The uneven increase in
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FIGURE 8. Multivariate DM-test results of the Dutch DAM benchmark models (a), the LEAR models with European features (b), the SM-DNN models
with European features (c), and the MM-DNN models with European features (d). In the figure, the color indicates the p-value (green-yellow:
p ≤ 0.05, light red-dark red: 0.5 < p < 0.1, black: p ≥ 0.1) of the one-sided DM-test on whether the forecast of the model on the X-axis is more
accurate than the forecast of the model on the Y-axis.

TABLE 4. Dutch DAM LEAR models with European features. Notation:
SL,1 = {NL, GB}, SL,2 = {SL,1, DK }, SL,3 = {SL,2, NO}, SL,4 = {SL,3, FR}, SL,5 = {SL,4, DE}, Sall includes all European features in the model.

performance could mean that there are system effects in
price settlement, which are hard to quantify using only two
markets. The LEARSall model using all European features
shows similar performance to the LEAR with features from
set SL,1. It still has improved performance over the LEAR
model with only Dutch features. This can be explained by
the strong regularisation ability of the LASSO, effectively
enforcing sparsity in the solution. However, there is still some
degree of over-fitting resulting in a lower loss than most
models with less features. Figure 8b shows the results of the
multivariate DM-test of the forecasts. It shows that as features
from more countries are included in the model, the perfor-
mance increases significantly. This leaves the LEAR with
features from set SL,5 as statistically significant best perform-
ing LEAR-model.

Table 5 shows the results from the European feature search
applied to the SM-DNN. No significant increase can be seen
after the first iteration, where British features are added to
the model. After three iterations, test performance increased
with respect to the Dutch-only model. However, the fourth
iteration resulted in the model with the lowest test loss.
Interestingly, the same countries except Germany are selected
as in the LEAR model in different order. Model performance
decreased after the second iteration, while the validation loss
decreased. This could indicate that relevant market dynamics
can change depending on the year. The inclusion of Nor-
way lead to the largest loss decrease, which can possibly
be explained by Norway’s high feature importance found in

TABLE 5. Single-market DNN forecasting models with European features.
Notation: SD,1 = {NL, GB}, SD,2 = {SD,1, DK }, SD,3 = {SD,2, FR}, SD,4 =
{SD,3, NO}, Sall includes all European features in the model.

Section IV. Figure 8c shows the results of the multivariate
DM-test between the forecasts of the SM-DNN’s. It shows
little statistical significance in improved forecast accuracy.
The model with features from set SD,4 does show some sig-
nificant performance increase. The SM-DNN with features
from set SD,4 has the most convincing p-values for improved
forecast accuracy compared to models with features from sets
NL, SD,1 and SD,3. In general, the forecast error decreased
by including more European features. Even though not all
improvements are statistically significant, the final model
including features from set SD,4 is arguably better than the
DNN with only Dutch features. The SM-DNNSall model with
all European features shows a large performance decrease,
even compared with the SM-DNN using only Dutch features.
This indicates that even though the degree of l2 regularisation
is taken as a hyperparameter, the model is hard to train with
this amount of features.

Table 6 shows the performance of the models generated in
the European feature search for the MM-DNN. The model
is trained by minimizing the MAE of the price forecasts
over all countries included in the model. Naturally, trade-
offs are made between, for example, Dutch and French price
forecasting accuracy. This could both lead to a performance
decrease due to trade-offs, or to a performance increase by
preventing over-fitting. The greedy algorithm select the same
markets in the same order as the single market DNN, but stops
one iteration sooner.

TABLE 6. Multi-market DNN forecasting models, evaluated on Dutch
price forecasting performance only. Notation: SD,1 = {NL, GB},
SD,2 = {SD,1, DK }, SD,3 = {SD,2, FR}, Sall includes all European features
in the model.
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FIGURE 9. Kernel density estimates of Dutch DAM prices in August (a) and October (b) 2019. The X-axis shows the hours of the day,
the Y-axis shows the price in [e/MWh], and the color shows the probability of occurrence [-].

TABLE 7. Countries whose features are selected by the greedy algorithm
for every iteration and per model type.

TABLE 8. Performance increase of the applied modelling approaches due
to the inclusion of market integration features.

The MM-DNN with features from SD,2 and SD,3 outper-
form the single market DNN with the same features. Indicat-
ing that forecasting prices of multiple markets could indeed
lead to better single-market performance. Forecast accuracy
generally improved with the inclusion of more European
features. The MM-DNN with countries from set SD,3 is sig-
nificantly better than all other MM-DNN models and the
DNN using only Dutch features. Although the significance
of the improvement from SD,2 to SD,3 is debatable. The
MM-DNNSall model with all European features shows a
large performance decrease. The rMAE larger than 1 shows
the forecast performance is lower than the naive model.
The larger performance decrease in the MM-DNN could be
explained by a trade-off between target accuracy’s. The loss
function while training the model combines the losses for
all bidding zones, which could result in a trade-off between
price forecasting performance in the Dutch and other bidding
zones.

Table 7 shows the countries whose features are added in
every iteration and for all applied modelling approaches.
Table 8 shows the improvements of the applied modelling
approaches when European market integration features are
included in the model. All approaches show improvements
with an increasing number of market integration features.
For the Netherlands, the first countries whose features are
included by the greedy algorithm are Great Britain and
Denmark for all modelling approaches. French features are
included in all modelling approaches, and in some cases
Norwegian and German features are included as well. The

third country added by the greedy algorithm differs between
the LEAR and the DNN’s. In the LEAR, Norway is chosen as
third external market, while in the DNN French features are
included. This could indicate that the relationship between
the Norwegian market and Dutch prices are more linearly
approachable than the relationship between the Dutch price
and French market. A possible explanation is that the effect
of the dynamics between the French and British market on
the Dutch price, are better captured in the DNN’s.

The largest improvements are found in the MM-DNN, but
it doesn’t perform better than the LEAR. The large relative
improvement of the MM-DNN could mean that market inte-
gration dynamics are better captured by non-linear relation-
ships, resulting in a larger possible improvement in non-linear
models in comparison to linear models.

The SM-DNN doesn’t perform as well as the MM-DNN,
which could be explained by two factors: during training,
it is possible that the MM-DNN’s were able to overcome
local optima when different features are included. This would
result in improvements in accuracy that are not due to the
information in the data, but due to the training process.
Another factor could be the prevention of over-fitting by
generalizing tasks [13]. However, extensive optimisation of
the DNN-type model performance was not within the scope
of the research. Meaning that it is possible that other DNN
configurations or other training methods could result in DNN
models that outperform the LEAR.

D. TEMPORAL VARIATION IN PERFORMANCE
While the multivariate DM-tests give a good relative repre-
sentation of forecast accuracy, electricity prices are known to
be more volatile in some hours than others. Figure 9 shows
the Kernel Density Estimates (see Appendix A3) of the Dutch
DAM prices in August and October 2019. It can be seen that
the DAM price behaves differently throughout the day, with
low price volatility in the early morning and late evening,
and more volatile prices during midday. Figure 10 shows the
univariate DM-test of LEAR model with features from SL,5
against the benchmark LEAR and DNN, DNNSD,4 and MM-
DNNSD,3 . It can be seen that the LEAR forecasts are more
accurate than the DNN models’ forecasts mostly at hours
with low price volatility. Figure 11 shows the same DM-test

VOLUME 9, 2021 119963



T. van der Heijden et al.: EPF in European DAMs: Greedy Consideration of Market Integration

FIGURE 10. Univariate DM-test of LEARSL,5 model’s hourly forecasts in August (a) and October (b), being more accurate than the
hourly forecasts of the models on the Y-axis.

FIGURE 11. Univariate DM-test of MM-DNNSD,3
model’s hourly forecasts in August (a) and October (b), being more accurate than the

hourly forecasts of the models on the Y-axis.

but applied to model MM-DNNSD,3 . It can be seen that the
MM-DNN forecasts are more accurate than the LEAR type
model forecasts at times with some degree of volatility, but
not when it is too high. These months have been chosen
for the sake of simplicity, the results can also be seen in
other months. Renewable energy generation forecasts are
not included as features, but could assist with forecasting
highly volatile prices. The analysis indicates that as prices
are becoming more volatile, stochastically trained non-linear
models start outperforming mathematically optimised and
regularised linear models. This makes the DNN modelling
approach worth considering for the future Dutch DAM fore-
cast, as it is possible that electricity prices will become more
volatile in the future [25].

VI. CONCLUSION
In this manuscript, we propose a method for searching opti-
mal combinations of European features in Day Ahead Mar-
ket (DAM) price forecasting models. By using the Dutch
market as a case study, we show that taking European
market integration into account in regression and machine
learning models can improve the forecasting performance
of the best performing DAM models. We identify and visu-
alize European feature importance, showing that flexibil-
ity in the energy system might affect a country’s feature
importance. This is confirmed by the correlation between
electricity export and DAM prices. We have proposed a
greedy algorithm to search for European features in a DAM
price forecasting model, using candidate countries resulting
from an analysis on before-mentioned feature importances.
The proposed greedy algorithm improved forecasting perfor-
mance of all proposed modelling approaches with statistical
significance.

The algorithm was applied to the Dutch market, using
three different modelling approaches: the LEAR [3], [22],
the Single-Market DeepNeural Network (SM-DNN) [21] and

the Multi-Market DNN (MM-DNN) [13]. A benchmark was
performed using the LEAR and DNN including only Dutch
features. The algorithm was able to identify features while
preventing over-fitting on the data, which did happen in the
models when including all European features. The greedy
algorithm first chose British and Danish market features,
after which either Norwegian or French were included in
the model, differing between the LEAR and the DNN’s.
The LEAR model, which is known to have good regularisa-
tion properties, performed best when features from 5 other
countries are included in the model. The SM-DNN model
performed best with features from 4 other countries, and
the MM-DNN performed best with features from 3 other
countries. The largest improvement was found in the MM-
DNN, which can be explained by either the training process
(as discussed in Section V-C) or the non-linear nature of mar-
ket dynamics. However, in the Dutch case the LEAR model
withmarket integration features is the overall best performing
model. Temporal variations in model performance are shown,
and a relationship between price volatility and relative model
performance was found. The LEAR generally performs better
than the DNN during hours with low volatility, while the
DNN-type models show some improved performance over
the LEAR in hours with high volatility. This could indi-
cate that as prices are expected to become more volatile in
the future [25], non-linear models could outperform linear
models. The LEAR model performed relatively well using
all European features, which can be explained by its strong
regularisation properties. The DNN type models that used all
European features showed a decrease in performance, also
with respect to using only Dutch features. The MM-DNN
showed the largest performance decrease, which could be
due to the multi-market loss function. This could result
in trade-offs between price forecasting performance on the
Dutch market and other bidding zones. In future work, other
modelling approaches could be used in the proposed greedy
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algorithm. Also, different lengths of the training data could
be used, other hyperparameter configurations of the DNN
could be set, and model ensembles could be made, in order
to optimise forecasting performance. More features could be
used, like renewable energy generation forecasts. Weights
could be added to the MM-DNN loss function to optimize
Dutch price forecasting performance. Other years of data can
be used to train and test the models, allowing the investigation
of temporal changes in market dynamics. Also, the analysis
could be applied to different European markets to test the
sensitivity of a certain market’s model accuracy to market
integration features. This would also allow for an extended
analysis on the relative performance of linear and non-linear
models under different scenarios of price volatility.

A. ADDITIONAL METHODOLOGY
In this Appendix we present an extended description of some
of the methodologies used.

1) LASSO AND ELASTIC-NET
The Least Absolute Shrinkage and Selection Operator
(LASSO) [28] is a least squares linear regression model,
where an additional l1-norm penalty is applied to the weights
in order to regularise the model and enforce sparsity of the
solution. The LASSO solves the optimisation problem

min
1
2
||z−8θ ||22 + λ||θ ||1, (8)

where z ∈ RN×1 is a vector of outputs,8 ∈ RN×p is a matrix
of features and θ ∈ Rp×1 is a vector of weights. The regular-
isation parameter λ ∈ R can be used to control the trade-off
between sparsity of the solution and the approximation error.

The Elastic-Net (EN) is a linear regression model fit with
both an l1 and l2 penalty norm on the weights of the model.
During model selection, both the penalty gradient on the
weights (λ) and the l1l2 ratio (ρ) are optimised. A ρ of 0
would result in a Ridge Regression problem, while a ρ of 1
results in a LASSO. The objective function when fitting the
EN is:

min
1
2
||z−8θ ||22 + λρ||θ ||1 +

λ(1− ρ)
2
||θ ||22, (9)

where variables have the same representation as in the
LASSO objective (8), and ρ represents the l1l2 ratio.

2) RANDOM FOREST
The Random Forest (RF) algorithm was developed by
Breiman [1]. It is an ensemble classification or regression
approach using random regression trees, hence the nameRan-
dom Forest. The RF is a collection of tree-predictors whose
output - in the case of regression - is an unweighted average
of the outcomes of the separate trees:

h(x) =
1
K

K∑
k=1

h(x; θk ), (10)

where h is the averaged output of regression trees h(x; θk )
with input x, feature space θ , subspace θk ⊂ θ and K
regression trees. The RF estimates a features’s importance
based on the amount of splits in the trees in comparison to the
amount of samples the feature splits. It is also referred to as
the ‘Gini importance’ or the ‘mean decrease impurity’ [34].

3) KERNEL DENSITY ESTIMATION
A kernel density is a non-parametric method that can be
used to estimate the probability density function (PDF) of
a random variable. If (x1, x2, . . . , xn) is a sample from the
univariate distribution f , its kernel density estimator is then
described by

f̂h(x) =
1
nh

n∑
i=1

K (
x − xi
h

), (11)

where K is the kernel (in our case we have applied the
Gaussian kernel function) and h is the bandwidth (in our case
this has been selected using Scott’s method [38]). The KDE
has been applied using the Scipy python package [39].
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