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SUMMARY

This thesis focuses on advancing radar technology to meet the growing demands of au-
tonomous driving, particularly regarding angular resolution and target detection. The
work acknowledges the critical role of automotive radar in achieving higher levels of
vehicle autonomy, where reliable detection, classification, and tracking of objects like
pedestrians, vehicles, and infrastructure are critical. The primary focus of the disser-
tation is to explore novel techniques for enhancing radar system performance through
machine learning (ML) and compressive sensing (CS) approaches, addressing the chal-
lenges faced by current radar technologies, such as low angular resolution and inefficient
target detection in dynamic environments.

The dissertation begins by outlining the challenges in automotive radar systems, es-
pecially the need for improved angular resolution without increasing the physical size
and complexity of the radar devices. The importance of angular resolution is empha-
sized for both azimuth and elevation, as modern vehicles must be able to discriminate
between various objects, such as distinguishing between two vehicles at a similar dis-
tance, or identifying an object’s height to determine whether it can be driven under
or must be avoided. Current methods for improving angular resolution, such as in-
creasing the number of transmitters and receivers in multiple input multiple output
(MIMO) radars, are costly and increase system complexity, thus requiring novel solutions
to meet industry needs. Then, Chapter 2 briefly summarizes the theoretical background
of MIMO radars and defines the terminology used in the rest of the dissertation. This
is crucial since automotive radar is a multi-disciplinary topic with people from different
backgrounds interacting, and often, the same concepts are named differently.

The first research chapter, Chapter 3, introduces a self-supervised learning frame-
work designed to enhance the angular resolution of radar systems without the need
for additional physical hardware. A neural network (NN) artificially expands the radar’s
aperture by predicting the response of additional antenna elements based on data from
radars with larger arrays. This approach leverages the correlation between antenna ele-
ments to generate a more detailed angular profile from a smaller, low-resolution radar,
allowing for a more accurate estimation of incoming signals’ direction of arrival (DoA).
Extensive simulations and experimental results demonstrate that this method signifi-
cantly enhances radar performance in separating closely spaced objects, which is critical
in automotive scenarios.

Another key contribution of the dissertation is presented in Chapter 4, with the ap-
plication of Bayesian compressive sensing (BCS) to automotive radar, which exploits
the sparse nature of the data in the DoA domain. The BCS approach uses probabilis-
tic models to estimate the DoA while also providing uncertainty measures, offering both
accuracy and reliability in angular estimation. The research further explores how array
topologies can be optimized for BCS-based DoA estimation, demonstrating that a care-
fully designed antenna array can achieve better performance with fewer elements, thus

xiii



xiv SUMMARY

reducing system costs. Additionally, the work presents a computationally efficient BCS
algorithm that dramatically reduces the time needed for DoA estimation without com-
promising accuracy. This is a crucial advancement for real-time applications, where fast
processing is required for decision-making in autonomous driving.

In addition to BCS, in Chapter 5, total variation compressive sensing (TVCS) is ap-
plied to the problem of radar imaging. TVCS enforces sparsity in the gradient of the sig-
nal rather than in the signal itself, which proves particularly effective in estimating the
shape of extended targets, such as vehicles or pedestrians. By applying TVCS to 2D and
3D radar data, the dissertation demonstrates that this method can reconstruct objects’
shapes more accurately than traditional methods, thereby enhancing the radar’s abil-
ity to classify and understand the surrounding environment. The application of TVCS
marks a significant step forward in radar-based shape estimation, especially for imaging
radars used in automotive systems.

The dissertation also addresses the limitations of conventional target detection meth-
ods, particularly the widely used window-based constant false alarm rate (CFAR) de-
tectors. Window-based CFAR detectors struggle with dynamic and unpredictable envi-
ronments, which are common in road traffic scenarios. Moreover, they are unsuitable
for extended targets with very different sizes, such as the ones encountered in auto-
motive radar. To overcome this, in Chapter 6, a deep learning-based detector is pro-
posed, trained using a newly developed dataset, RaDelft, which includes synchronized
radar and lidar data. This deep learning detector outperforms traditional CFAR detec-
tors by significantly improving the probability of detection and the Chamfer distance,
especially in complex and cluttered environments. The RaDelft dataset itself is another
important contribution of the dissertation, providing the research community with a
well-curated, large-scale, multi-sensor dataset for further exploration and development
of radar-based detection and classification systems.

In conclusion, this dissertation presents a comprehensive study of methods to en-
hance the angular resolution, detection capabilities, and efficiency of automotive radar
systems through a combination of machine learning and compressive sensing. It pro-
vides practical solutions verified with experimental data to overcome existing limitations
in automotive radar technology, particularly in the areas of angular resolution, target de-
tection, and data processing speed. These advancements contribute to the broader goal
of achieving fully autonomous driving by improving the ability of radar systems to per-
ceive and interpret complex environments.



SAMENVATTING

Deze scriptie richt zich op de verbetering van radartechnologie om te voldoen aan de
toenemende eisen van autonoom rijden, met name wat betreft hoekresolutie en doelde-
tectie. Het werk erkent de cruciale rol van automotive radar bij het bereiken van hogere
niveaus van voertuigautonomie, waarbij het betrouwbaar detecteren, classificeren en
volgen van objecten zoals voetgangers, voertuigen en infrastructuur essentieel zijn. De
primaire focus van het proefschrift is het onderzoeken van nieuwe technieken om de
prestaties van radarsystemen te verbeteren door middel van machine learning (ML) en
compressieve sensing (CS), waarbij de uitdagingen van de huidige radartechnologieën
worden aangepakt, zoals lage hoekresolutie en inefficiënte doeldetectie in dynamische
omgevingen.

Het proefschrift begint met een overzicht van de uitdagingen in automotive radar-
systemen, met name de behoefte aan verbeterde hoekresolutie zonder de fysieke grootte
en complexiteit van de radarsystemen te vergroten. Het belang van hoekresolutie wordt
benadrukt voor zowel azimut als elevatie, aangezien moderne voertuigen verschillende
objecten moeten kunnen onderscheiden, zoals het onderscheiden van twee voertuigen
op vergelijkbare afstand of het vaststellen van de hoogte van een object om te bepalen
of er onderdoor gereden kan worden of dat het moet worden vermeden. Huidige me-
thoden om de hoekresolutie te verbeteren, zoals het verhogen van het aantal zenders en
ontvangers in multiple input multiple output (MIMO) radars, zijn kostbaar en vergroten
de systeemcomplexiteit, waardoor nieuwe oplossingen nodig zijn om aan de industri-
ële eisen te voldoen. Vervolgens vat Hoofdstuk 2 kort de theoretische achtergrond van
MIMO-radars samen en definieert het de terminologie die in de rest van het proefschrift
wordt gebruikt. Dit is van cruciaal belang, aangezien automotive radar een multidisci-
plinair onderwerp is waarin mensen uit verschillende achtergronden samenwerken en
vaak dezelfde concepten anders worden genoemd.

Het eerste onderzoekshoofdstuk, Hoofdstuk 3, introduceert een zelflerend raamwerk
dat is ontworpen om de hoekresolutie van radarsystemen te verbeteren zonder extra fy-
sieke hardware. Een neuraal netwerk (NN) vergroot kunstmatig de radarapertuur door
de reactie van extra antenne-elementen te voorspellen op basis van gegevens van radars
met grotere arrays. Deze benadering maakt gebruik van de correlatie tussen antenne-
elementen om een gedetailleerder hoekprofiel te genereren vanuit een kleinere radar
met lage resolutie, waardoor een nauwkeurigere schatting mogelijk is van de richting
van aankomst (DoA) van echosignalen. Uitgebreide simulaties en experimentele resul-
taten tonen aan dat deze methode de prestaties van radar aanzienlijk verbetert bij het
onderscheiden van dicht bij elkaar gelegen objecten, wat van cruciaal belang is in ver-
keerstoepassingen.

Een andere belangrijke bijdrage van het proefschrift wordt gepresenteerd in Hoofd-
stuk 4, met de toepassing van Bayesian compressive Sensing (BCS) op automotive ra-
dar, dat gebruikmaakt van de ijle aard van de gegevens in het DoA-domein. De BCS-
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benadering gebruikt probabilistische modellen om de DoA te schatten en biedt tegelij-
kertijd mates van onzekerheid, wat zowel nauwkeurigheid als betrouwbaarheid biedt in
hoekschattingen. Het onderzoek verkent verder hoe array-topologieën geoptimaliseerd
kunnen worden voor op BCS gebaseerde DoA-schatting, waarbij wordt aangetoond dat
een zorgvuldig ontworpen antenne-array betere prestaties kan leveren met minder ele-
menten, wat de systeemkosten verlaagt. Bovendien wordt een efficiënt BCS-algoritme
gepresenteerd dat de tijd die nodig is voor DoA-schatting drastisch vermindert zonder
nauwkeurigheid te verliezen. Dit is een cruciale vooruitgang voor realtime toepassingen,
waar snelle verwerking vereist is voor besluitvorming bij autonoom rijden.

Naast BCS wordt in Hoofdstuk 5 total variation compressive sensing (TVCS) toege-
past op het probleem van radarbeeldvorming. TVCS dwingt ijlheid af in de gradiënt
van het signaal in plaats van in het signaal zelf, wat bijzonder effectief blijkt te zijn bij
het schatten van de vorm van niet-puntachtige doelen, zoals voertuigen of voetgangers.
Door TVCS toe te passen op 2D- en 3D-radargegevens, toont het proefschrift aan dat
deze methode de vormen van objecten nauwkeuriger kan reconstrueren dan traditio-
nele methoden, waardoor de radar beter in staat is om de omgeving te classificeren en
te begrijpen. De toepassing van TVCS markeert een significante vooruitgang in radar-
gebaseerde vormschatting, vooral voor beeldvormende radars die worden gebruikt in
automotive systemen.

Het proefschrift behandelt ook de beperkingen van conventionele doeldetectieme-
thoden, met name de veelgebruikte venster-gebaseerde constant false alarm rate (CFAR)-
detectoren. Venster-gebaseerde CFAR-detectoren hebben moeite met dynamische en
onvoorspelbare omgevingen, die vaak voorkomen in verkeerssituaties. Bovendien zijn
ze ongeschikt voor niet-puntachtige doelen met zeer verschillende afmetingen, zoals
die worden aangetroffen in automotive radar. Om dit te verhelpen wordt in Hoofd-
stuk 6 een op deep learning gebaseerde detector voorgesteld, getraind met behulp van
een nieuw ontwikkelde dataset, RaDelft, die gesynchroniseerde radar- en lidar-gegevens
bevat. Deze deep learning-detector presteert aanzienlijk beter dan traditionele CFAR-
detectoren door de detectiekans en de Chamfer-afstand aanzienlijk te verbeteren, vooral
in complexe omgevingen met ongewenste echo’s. De RaDelft-dataset zelf is een andere
belangrijke bijdrage van het proefschrift, aangezien het de onderzoekswereld voorziet
van een goed gecureerde, grootschalige, multisensordataset voor verdere verkenning en
ontwikkeling van op radar gebaseerde detectie- en classificatiesystemen.

Concluderend presenteert dit proefschrift een uitgebreide studie van methoden om
de hoekresolutie, detectiemogelijkheden en efficiëntie van automotive radarsystemen
te verbeteren door een combinatie van machine learning en compressieve sensing. Het
biedt praktische oplossingen, geverifieerd met experimentele gegevens, om bestaande
beperkingen in de automotive radartechnologie te overwinnen, met name op het gebied
van hoekresolutie, doeldetectie en datasnelheid. Deze vooruitgangen dragen bij aan het
bredere doel van volledig autonoom rijden door de mogelijkheid van radarsystemen te
verbeteren om complexe omgevingen waar te nemen en te interpreteren.



1
INTRODUCTION

I believe automotive radar will be a critical component of future vehicles, but always in
cooperation with other sensors for redundancy. In this chapter, I mention some of the
outstanding challenges that automotive radar must solve before it can be safely used. In
this thesis, I propose some new approaches that may help us get one step closer to solving
these problems.

1
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2 1. INTRODUCTION

1.1. AUTOMOTIVE RADAR: MOTIVATION AND CHALLENGES
Autonomous driving is one of the most relevant trends in the automotive industry, and a
race for reaching driver-assistance level 5 has begun between all the major car manufac-
turers. To achieve this, the sensing suite in autonomous vehicles must provide the most
reliable and dense information about the surroundings. Therefore, reliable detection
and classification of very different objects, such as pedestrians, cars, potholes, or speed
bumps, amongst others, should be performed in real-time. Moreover, the system must
understand which items can be driven-over, such as small debris on the road or speed
bumps, which objects can be driven under, such as bridges or tunnel entrances, and
which objects should be avoided as significant obstacles on the road that could damage
the vehicle.

This difficult task cannot be run successfully by any single sensor, and a combination
of radars, cameras, and lidar is the most used approach in current autonomous driving
research. With higher levels of automation, more sensors are expected to be integrated
into a vehicle, as seen in Figure 1.1. However, radars have some advantages over other
sensors. First, they work in adverse weather conditions, such as fog, rain, or low-light
conditions [1], with little drop in performance. Second, radar can accurately and di-
rectly measure objects’ velocity via the Doppler effect. Finally, it can be mounted behind
the chassis and, therefore, is less susceptible to damage from scratches, dust, and other
environmental factors, making it more reliable and long-lasting in various driving con-
ditions. All these reasons make radar a crucial sensor for vehicular autonomy [2].

Figure 1.1: Number of sensors for the different levels of vehicle automation. It can be seen how fast the number
of radars increases. Taken from [3].

A notable trend in automotive radar is the shift towards imaging radar, which achieves
a high angular resolution in both azimuth and elevation angles by leveraging a more sig-
nificant number of antennas and, thus, a larger aperture, combined with using multiple-
input multiple-output (MIMO) methods [4]. However, many open challenges still need
to be solved in imaging radars to make them suitable for safe, fast, and reliable environ-
mental perception. These will be discussed in the following sub-section.
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1.1.1. CHALLENGES

ANGULAR RESOLUTION

Automotive radars must have enough angle resolution in both azimuth and elevation
to provide dense and valuable information about the surroundings for subsequent de-
tection and classification. With the development of MIMO radars, the angular resolu-
tion has been improved significantly, but it still needs to meet the requirements of the
automotive industry. Current high resolution in range and Doppler may seem enough
to separate objects, but many everyday automotive situations will not be resolved. For
example, Figure 1.2 shows a vehicle equipped with an automotive radar on a highway,
where two cars are at the same distance and have the same speed. For the automotive
radar to resolve two targets in this scene, around 1-degree azimuth resolution is needed.
Moreover, Figure 1.3 shows another situation where a vehicle is stopped at the entrance
of a tunnel. Similarly, around 1-degree elevation resolution is required to distinguish
between the car and tunnel entrance.

150m

2.6m

Figure 1.2: Representation of two vehicles in two different lanes moving at the same speed and the same range
with respect to the ego vehicle. High azimuth resolution would be needed to resolve both targets.

150m

2.6m

Figure 1.3: Representation of a vehicle stopped at a tunnel entrance. A high elevation resolution would be
needed to detect it as an independent target.

Also, high angular resolution is needed for object classification [5]. Automotive tar-
gets have many scattering centers due to their different curvatures, corners, and slots
[6–8]. If a low angular resolution radar is used, the power reflected from all these scat-
terer points will combine in a single cell, losing all the target’s shape information, as seen
in Figure 1.4a. On the other hand, a high angular resolution radar will generate more
detection points per object, being able to perceive shape information crucial for target
classification, as illustrated in Figure 1.4b.

The approach to address this problem is designing automotive radars with more
transmitters and receivers. While this approach directly improves the angular resolu-
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(a) (b)

Figure 1.4: On (a), a single detection is perceived by a low-resolution radar, while in (b), many smaller detec-
tions are generated by a high-resolution radar. As can be seen, the shape of the target is preserved in case (b),
and therefore, the classification of the object will be better.

tion, it creates other practical issues, such as an increase in the system cost, a massive
increase in the data rate and the processing capabilities to handle that data, thermal is-
sues, and complicated multiplexing schemes, among others. In this thesis, two different
approaches to increase the angular resolution without adding extra transmitters or re-
ceivers have been proposed, one based on neural networks in Chapter 3, and one based
on compressive sensing in Chapter 4.

RADAR DETECTION

A primary challenge in the context of target detection with automotive radar is the use of
the well-known window-based constant false alarm rate (CFAR) detectors for generating
radar point clouds from the dense radar data cube. While CFAR detectors have proven
optimal in other environments [9], their application in the dynamic and unpredictable
conditions of road traffic scenarios suffers from poor performance [10, 11]. Namely, they
are designed to maintain a constant rate of false alarms amidst varying clutter, but they
struggle to adapt to the rapidly changing environments typical of roadways. Complica-
tions such as non-uniform clutter (or the lack of reliable clutter models for this task),
target masking, and shadowing can significantly reduce the effectiveness of CFAR de-
tectors in automotive radar settings. Additionally, CFAR detectors are constrained by a
fundamental limitation: they typically assume a fixed, expected target size based on pre-
defined guard and training cell hyperparameters. However, in an automotive context,
this assumption needs to be revised as the size of potential targets can widely vary, rang-
ing from medium-sized objects, such as pedestrians, to large vehicles, such as trucks
or buses. Moreover, the perceived size of these targets in the radar’s angular dimen-
sion changes with distance. Large objects occupying multiple cells at close range can
appear as more straightforward point-like targets at further distances. This relation-
ship between angular target size and distance adds another layer of complexity to using
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window-based CFAR detectors in automotive radar, necessitating alternative solutions
to accurately detect and then classify objects under varying road conditions. This thesis
introduces a novel deep learning radar detector in Chapter 6 to tackle this issue specifi-
cally.

SCENE UNDERSTANDING

In terms of basic functionalities, radar sensors can be used just to detect objects and
report their position and velocity. However, more is needed to achieve autonomous
driving. Target classification is necessary for modern radars since decision systems re-
quire information about the objects’ characteristics, such as whether they are drivable-
through, drivable-under, a vulnerable road user, or part of the road infrastructure. This
has become only possible in the last few years with the increased popularity of machine
learning methods and the improvements in resolution. However, radar data is not di-
rectly interpretable for humans. Hence, labeling radar data is not trivial, and this is
one of the main bottlenecks when designing neural network based classifiers, which
are inherently data-hungry. Moreover, radar data have unique characteristics, such as
the measurement of Doppler or the extensive dynamic range in the measured backscat-
tered power, that need specific classifier designs to be applied. On top of that, access to
high-quality radar data is still not trivial, and it is usually the practice of collecting spe-
cific data for each developed or proposed algorithm. While there are open datasets with
widely accepted benchmarks in the computer vision community, this is a relatively new
trend in the radar community [12]. Also, the differences in the type of sensor and wave-
form, including the effects of the fabrication and mounting of the radar sensors, make it
challenging to design a generic classifier that is truly device-agnostic. During this PhD
work, a large-scale multi-sensor dataset has been collected and shared publicly, aiming
to ease access to radar data.

REAL-TIME RADAR PROCESSING

In the automotive context, the whole radar processing pipeline, from the digitization of
the signals to the report of the targets, must be performed in the order of 50ms to guar-
antee safety in the higher levels of automation. With the increase of receiver elements
in modern automotive systems, the amount of data to process is also increasing, and
this is especially problematic for super-resolution direction of arrival (DoA) algorithms
that need to be implemented in embedded hardware with low computational resources.
Therefore, the computational complexity of DoA algorithms should be considered, and
new low-complexity methods are needed to deal with the increasing number of anten-
nas. This thesis presents a framework in Chapter 4 that, in combination with Bayesian
compressive sensing (BCS), significantly reduces the computational time for the DoA.

INTERFERENCE MITIGATION

Figure 1.1 shows that the number of radars per vehicle rapidly increases, with up to 10
onboard radars to build the whole environmental perception system. This means that
the number of radars working simultaneously will quickly escalate in a crowded envi-
ronment. In that dense environment, interference mitigation is a crucial component
that should be addressed. While interference mitigation is outside of the scope of this
PhD thesis, it is an issue that should be considered when building new radar solutions.
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1.2. RESEARCH OBJECTIVES AND MAIN RESULTS
This thesis aims to design and evaluate novel signal and data processing algorithms for
automotive imaging radars at different levels of the processing chain. The need for high
angular resolution brings the following research questions:

Q1: Is it possible to increase the angular resolution of a MIMO radar system without
increasing the number of physical transmitters or receivers?

Q2: Is preserving the detected objects’ shape possible when performing DoA processing?

Q3: Is it possible to design a MIMO array topology optimized for the DoA algorithm to
be specifically used in the system?

However, with the increase in angular resolution of the most recent radar systems, some
new challenges and questions arise, and this PhD thesis has tackled them in several
ways, namely:

Q4: Could efficient DoA estimation methods be designed to process the high-dimensional
data sampled by modern imaging radars?

Q5: With the extended nature of targets due to the high angular resolution and the di-
verse and dynamic automotive scenes, is it possible to design a more suitable detector
than conventional, window-based state-of-the-art radar detectors?

The aforementioned research questions lead to the following primary outcomes for this
thesis:

• A novel framework leveraging neural networks was introduced to enhance the an-
gular resolution of automotive radars. This framework artificially expands the an-
tenna aperture through a self-supervised scheme. Specifically, data from a high
angular resolution radar, characterized by a large aperture antenna, was employed
to train a deep neural network to extrapolate the antenna element response of a
compact, low angular resolution radar. The proposed framework has been exten-
sively validated using both simulated and experimental data collected from a com-
mercial automotive radar. A case study involving two pedestrians walking towards
the radar at identical speed and range demonstrates that using an array of 86 vir-
tual elements (with an aperture of 43 wavelengths) allows for resolving the two
pedestrians 94.5% of the time, compared to only 30.1% with an array of 44 virtual
elements (with an aperture of 22 wavelengths). When the proposed method was
applied before angle estimation, the probability of resolution increased to 55.6%
(i.e., the probability of detecting two targets instead of a single one). These find-
ings indicate that the proposed method significantly enhances the radar’s ability
to distinguish between objects, which can directly improve the accuracy and re-
sponse time of the vehicle’s planning and decision-making systems.
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• The angular estimation for extended targets using a single snapshot in short-range
imaging radar was thoroughly analyzed. Traditional compressive sensing meth-
ods are inapplicable due to the scene’s non-sparsity characteristics, and super-
resolution algorithms based on subspace methods are unsuitable due to the prob-
lem’s constraints (single snapshot and coherent sources). Consequently, two novel
methods were proposed based on total variation compressive sensing (TVCS),
where sparsity is enforced in the signal’s gradient. The first method employs an
independent azimuth-elevation estimation for each range cell, whereas the sec-
ond method introduces a joint 3D range-azimuth-elevation optimization prob-
lem. These proposed algorithms were validated using realistically simulated data
from 3D CAD models of various cars, pedestrians, and bicycles. The performance
of these methods was compared to that of a conventional Fourier beamformer and
the standard Compressive Sensing algorithm in shape reconstruction. The inter-
section over union (IoU) between the ground truth shape and the estimated shape
produced by the four methods has been calculated to evaluate shape reconstruc-
tion capabilities. The proposed methods consistently outperform the FFT-based
and conventional CS methods, achieving a maximum IoU increase of 3.5 times
under favorable SNR conditions for the 2D version.

• Bayesian compressive sensing (BCS) is a family of algorithms that addresses the
compressive sensing (CS) problem from a probabilistic perspective, providing
both estimations and their associated uncertainties. Leveraging this uncertainty,
a novel algorithm was developed to generate the optimal array topology for angle
estimation using BCS in MIMO radars. This algorithm utilizes the differential en-
tropy of the measurements and has been executed offline with simulated data to
generate the array topology. It was subsequently tested with real measurements
from a commercial automotive MIMO radar. The results indicate that the gener-
ated array outperforms the average random array, which is typically considered
the best strategy for generating CS sensing matrices. Furthermore, the proposed
method can accurately resolve closely spaced targets using only 50% of the ele-
ments compared to a fully dense uniform linear array (ULA).

• An algorithm was designed based on a split-and-merge approach followed by a
correction stage, demonstrating a tenfold reduction in computational time com-
pared to standard Bayesian compressive sensing (BCS). Significantly, this reduc-
tion in computational time does not compromise accuracy or the probability of
resolving closely spaced targets. Experimental measurements validated that the
proposed method outperforms FFT-based approaches and the single-snapshot
multiple signal classification (MUSIC) algorithm in terms of accuracy and reso-
lution probability, all while operating ten times faster than the MUSIC algorithm.

• A novel large-scale, real-world multi-sensory dataset was recorded in various driv-
ing scenarios in the city of Delft, which is publicly shared for non-commercial
purposes. The RaDelft dataset contains over 30 minutes of actual driving scenar-
ios collected using a vehicle equipped with lidar and radar sensors, resulting in
16975 radar frames paired with corresponding lidar ground truth. Compared with
other existing datasets, RaDelft provides raw data from a commercial 4D imaging
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radar needed by radar practitioners for many research lines. Moreover, it contains
data processed at other levels (e.g., radar cubes and point clouds) suitable for re-
searchers with different backgrounds and interests.

• Using the RaDelft dataset, a novel data-driven approach was proposed for radar
detection, utilizing unlabeled synchronized lidar data as ground truth to train a
deep neural network with radar data as the sole input. Two performance metrics
were employed to validate the method: the conventional probability of detection
and probability of false alarm, as well as the Chamfer distance, a point cloud-level
metric that captures spatial relationships and similarities between point clouds.
The proposed method achieves a 77% reduction in Chamfer distance (4.2 meters)
compared to conventional OSCFAR detectors and a 28% reduction (0.62 meters)
compared to the state-of-the-art. Additionally, it significantly increases the prob-
ability of detection. An ablation study demonstrated that incorporating tempo-
ral information is crucial, with Doppler information being particularly vital for
the model’s performance. Results indicate an increase in the probability of de-
tection from 50.44% to 62.13%, and a 27% reduction in Chamfer distance when
using Doppler information.

1.3. THESIS OUTLINE
Chapter 2 - FMCW MIMO Radar Fundamentals and Terminology.
Automotive radar has become part of a wider multidisciplinary field in autonomous ve-
hicles where scientists from different backgrounds are cooperating. As different research
communities might use different terms [13, 14], a list of definitions used in this thesis is
provided in this chapter. Moreover, the standard MIMO FMCW signal model is reviewed,
highlighting the relevant steps for the following chapters.

Chapter 3 - Angular Resolution Enhancement Using Self-Supervised Learning.
This chapter shows the first main result listed in Section 1.2, where a machine learning
framework is used to enhance the angular resolution of automotive radar systems. It
answers the first research question Q1, since the angular resolution is increased without
increasing the number of physical antennas. The results presented in this chapter led to
the following publications:
I. Roldan, F. Fioranelli and A. Yarovoy, "Enhancing Angular Resolution Using Neural Net-
works in Automotive Radars," 2021 18th European Radar Conference (EuRAD), London,
United Kingdom, 2022, pp. 58-61.
I. Roldan, F. Fioranelli and A. Yarovoy, "Self-Supervised Learning for Enhancing Angular
Resolution in Automotive MIMO Radars," in IEEE Transactions on Vehicular Technology,
vol. 72, no. 9, pp. 11505-11514, Sept. 2023.

Chapter 4 - Bayesian Compressive Sensing Applied to Automotive Radar.
In this chapter, two novel ideas are presented under the umbrella of BCS. The first one
addresses the placement of the antenna array elements, given that BCS will be used for
DoA estimation. Also, the chapter presents a computationally efficient BCS method for
DoA estimation. The research questions Q3 and Q4 are answered positively in this chap-
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ter by designing an array topology specially tailored for BCS and by implementing BCS
efficiently. The results of this chapter were presented in two conference papers:
I. Roldan, L. Lamberti, F. Fioranelli and A. Yarovoy, "Low Complexity Single-Snapshot
DoA Estimation via Bayesian Compressive Sensing," 2023 IEEE Radar Conference (Radar-
Conf23), San Antonio, TX, USA, 2023, pp. 1-6.
L. Lamberti, I. Roldan, A. Yarovoy and F. Fioranelli, "Sparse Array Placement for Bayesian
Compressive Sensing Based Direction of Arrival Estimation," 2024 IEEE Radar Conference
(RadarConf24), Denver, CO, USA, 2024, pp. 1-6.

Chapter 5 - Total Variation Compressive Sensing Applied to Automotive Radar.
This chapter applies for the first time total variation regularization in compressive sens-
ing for shape estimation in imaging radars. Research question Q2 is answered in this
chapter by leveraging TVCS in the angular estimation process, which enforces high-
quality shape estimations. This research led to two publications, one conference, and
one journal paper:
I. Roldan, F. Fioranelli and A. Yarovoy, "Total Variation Compressive Sensing for Extended
Targets in MIMO Radar," 2022 IEEE 12th Sensor Array and Multichannel Signal Processing
Workshop (SAM), Trondheim, Norway, 2022, pp. 61-65.
I. Roldan, F. Fioranelli and A. Yarovoy, "Total Variation Compressive Sensing for 3D Shape
Estimation in Short-Range Imaging Radars," in IEEE Transactions on Radar Systems, vol.
1, pp. 583-592, 2023.

Chapter 6 - Deep Automotive Radar Detector and RaDelft Dataset.
This chapter introduces the novel collected RaDelft dataset, showing how conventional
window-based CFAR detectors fail to perform well in real automotive scenes. Also, a
novel radar detector based on deep learning is presented. Since the proposed detector
outperforms window-based CFAR detectors, research question Q5 is positively answered
in this chapter. This research resulted in two publications where the detector and the
collected dataset are presented and made available for researchers:
I. Roldan, A. Palffy, J. F. P. Kooij, D. M. Gavrila, F. Fioranelli and A. Yarovoy, "See Further
Than CFAR: a Data-Driven Radar Detector Trained by Lidar," 2024 IEEE Radar Conference
(RadarConf24), Denver, CO, USA, 2024, pp. 1-6.
I. Roldan, A. Palffy, J. F. P. Kooij, D. M. Gavrila, F. Fioranelli and A. Yarovoy, "A Deep Auto-
motive Radar Detector using the RaDelft Dataset," in IEEE Transactions on Radar Systems.
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FMCW MIMO RADAR

FUNDAMENTALS AND

TERMINOLOGY

While completing this PhD thesis, I worked at different levels of the radar processing chain
and read papers from researchers with very different backgrounds. Sometimes, various
concepts are called by the same name, and sometimes, the same concept is called differ-
ently. To give an example that often triggered some misunderstandings: in the computer
vision community, ‘detection’ means assigning a label/class to a region of pixels such as
‘human’ or ‘car.’ In contrast, within the radar community, ‘detection’ is a binary decision
to determine whether a target is present or not. Some terms are ambiguous and context-
dependent even within the radar community, and even within the same radar research
group.

In this short chapter, I have briefly reviewed the relevant radar concepts and provided a
list of definitions I will use throughout the thesis. If, at some point in the reading of other
chapters, you find some term and are unsure what I am referring to, hopefully, you can
find the answer in the following pages.
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2.1. SIGNAL MODEL

2.1.1. FMCW
Current standard automotive radars are frequency-modulated continuous-wave
(FMCW), which modulate the transmitted frequency with a sawtooth pattern. The main
advantages of FMCW over other waveforms include simultaneous range and Doppler es-
timation, low sampling frequency, narrow-band processing, and simplicity, among oth-
ers. An example of FMCW signal in the time-frequency domain can be seen in Figure 2.1,
where the chirp duration is denoted with T0. As it can be seen, there is some idle time
after the frequency reaches the maximum value to allow the hardware components to
restart the correct initial frequency; this is representative of what happens in mm-wave
automotive radar chips, in contrast to more ideal models of FMCW radars with instan-
taneous frequency transition.

Figure 2.1: FMCW chirp model. T0 is the chirp time, i.e., the useful part of the signal that can be sampled, ti dle
is the needed time for the hardware to reset to the initial frequency, and T is the chirp period.

During one coherent processing interval (CPI), a sequence of FMCW chirps is trans-
mitted with a pulse repetition interval (PRI) equal to T . A transmitted chirp can be mod-
eled as:

s0(t ) =
{

e2π j ( f0t+0.5µt 2) t ∈ [0,T0],

0 t ∈ [T0,T ],
(2.1)

where f0 is the start frequency, µ= B
T0

is the frequency modulation rate (or chirp slope),
and B is the transmitted bandwidth. A sequence of transmitted chirps can be decom-
posed in the fast-time domain t ′ ∈ [0,T0] and the slow-time domain l = 0,1,2, ...,L − 1,

where l =
⌊

t
T

⌋
, t ′ = t − l T , and L is the total number of chirps in a CPI (being ⌊.⌋ the floor

function). Then, the periodic transmitted signal can be modeled as:

s(t ) = s(t ′+ lT ) = s(l , t ′). (2.2)
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The received signal, backscattered by K targets with unknown range and radial velocity,
will be a superposition of time delayed versions of the transmitted signal. Considering
the k−th target with Rk range and vk radial velocity, the round trip delay is:

τk (l , t ′) = 2Rk

c
+ 2vk

c
(t ′+ l T ), (2.3)

where c is the speed of light and γk = 2Rk
c ≪ T0. The received signal is correlated with

the conjugate of the transmitted signal in the analog implementation of the matched
filter (this process is also called ’de-chirping’) to generate the beat frequency signal. This
signal for the k−th target can be defined as:

yk (l , t ′) =αk e−2π j ( f0
2vk

c T l+µγk t ′)e−2π jµ
2vk

c T l t ′ , (2.4)

where αk is the complex amplitude of the received signal related to the target proper-
ties. This model assumes that the Doppler frequency is negligible compared to the beat
frequency, which is typically the case in automotive radar. Then, the signal is sampled
with the analog-to-digital converter (ADC) at a sampling frequency fs . The discretized
version of yk , omitting the range migration coupling term, can be expressed as:

yk (l ,n) =αk e2π j ( fD (vk )l )e2π j ( fr (rk )n), (2.5)

where n = ⌊t ′ fs⌋ ∈ [0,1,2, ..., N ] is the fast-time index, N is the number of fast-time sam-
ples in a chirp, fr (rk ) =− µ

fs
γk and fD (vk ) =− f0

2vk
c . Directly in equation (2.5), it is pos-

sible to compute the ambiguities of the system according to the Nyquist criterion, i.e.,
fr (rk ) ∈ [−0.5,0,5) and fD (vk ) ∈ [−0.5,0,5), resulting in:

Rmax = cN

2B
= N∆r, vmax = c

4T f0
, (2.6)

being ∆r = c
2B the theoretical range resolution. These ambiguities are the maximum

range and velocity the system can measure without frequency folding, meaning larger
values beyond these limits will be estimated incorrectly.

However, the described signal model only accounts for one receiving antenna. In
the following subsection, the concept of MIMO is explained, and the signal model is
expanded to take this into account.

2.1.2. MIMO
As shown in Figure 2.2, the basic principle of angle estimation in an antenna array relies
upon the extra distance a signal must travel to reach different elements. For a uniform
linear array (ULA) with m ∈ [0,1,2, ..., M −1] number of elements, it is possible to expand
(2.3) to take into account this new additional delay given the target angle θk as:

τk (l , t ′,m) = 2Rk

c
+ 2vk

c
(t ′+ l T )+ f0dm

c
sinθk . (2.7)

This extra time delay is translated to a phase shift in the de-chirped signal, and after
digitization, the received signal can be expressed as:
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yk (l ,n,m) =αk e2π j ( fD (vk )l )e2π j ( fr (rk )n)e2π j ( md
λ

sinθk ), (2.8)

where d is the distance between the antenna elements. The wide-band coupling term,

e2π j (µ d
c fs

)nm , can be neglected in automotive radar since the fractional bandwidth is
small. Looking at the newly added term in (2.8) compared to the single receiver ex-
pression, it can be seen that the angular resolution (i.e., the distance between the first
two nulls of the beam pattern) is inversely proportional to the product Md , which
is also known as the antenna aperture. The angular resolution can be expressed as
∆θ ≈ λ

Md cosθ .
As it can be seen, the straightforward way to improve the angular resolution is to in-

crease the number of elements in the array. However, the angular resolution rises linearly
with the number of new physical antennas, and the system’s cost and complexity limit
this approach. Therefore, another approach must be used to overcome this limitation,
which is where MIMO technology comes into play.

...................

Target
located

at Plane wave

d d d d

Figure 2.2: A wave scattered from a target located at θk , arriving at an antenna array. The time delay between
each antenna element depends on the target angle θk .

MIMO radars use a transmit array with widely-spaced elements to add spatial di-
versity to the received signals. Figure 2.3a shows an example of a MIMO system with
MT x = 2 transmit elements and MRx = 4 receive elements. As it can be seen, assum-
ing the target is in the far field, the phase shifts induced by the difference in position
of the two Tx elements are equivalent to having one transmitter and MT x MRx receiver
elements, as shown in Figure 2.3b. Therefore, the antenna aperture is being virtually
increased, with its corresponding gain in the angular resolution.

In a general formulation for ULA topologies, the baseband signal model in (2.8) can
be modified to take into account the phase shifts due to the transmit and receive arrays
as:

yk (l ,n,mT x ,mRx ) =αk e2π j ( fD (vk )l )e2π j ( fr (rk )n)e2π j (
mT x dT x+mRx dRx

λ
sinθk ), (2.9)
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Phase Shift with respect to Tx1:
0

Tx1

Tx2

Rx

0

Tx

Rx

(a) (b)

Figure 2.3: On the left in (a), a MIMO system with two transmitters and four receivers. On the right in (b), the
equivalent virtual ULA with eight elements.

where mT x ∈ [0,1,2, ..., MT x−1] is the transmit element number, mRx ∈ [0,1,2, ..., MRx−1]
is the receive element number, dT x is the distance between transmit elements and dRx

is the distance between receive elements. In this case, both arrays are considered to be
ULA, but generalization to non-uniform arrays can be easily made by modifying the mi d
products to the positions of the elements. The improvement in angular resolution can
also be seen from the point of view of the array pattern. In a MIMO system, the two-way
array pattern will be the product of the transmit and receive array patterns. Using as
an example the same topology shown in Figure 2.3a with d = λ/2, the generated array
patterns can be seen in Figure 2.4.
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Figure 2.4: In red, the Tx array pattern, with grating lobes due to the wide space between the two elements. In
yellow, the 4-elements ULA Rx array pattern. In blue, the combination of both patterns with MIMO approach,
equivalent to the one of an 8-elements ULA.

As it can be seen, the array pattern of the transmit array presents grating lobes since
the spacing between elements is one wavelength. On the other hand, the array pat-
tern of the receiver does not have grating lobes since the elements are separated by
half-wavelength. However, with the MIMO approach, it is possible to get an array pat-
tern equivalent to an 8-element (virtual) ULA when combining both patterns. Therefore,
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writing the equations for the virtual array is more convenient than keeping the distinc-
tion between transmit and receive elements. The baseband signal model can be sim-
plified from (2.9) back to (2.8) just using m as the virtual element number and d as the
distance between virtual elements. Each receiver will receive each transmitted signal,
and thus, the resulting number of virtual elements is M = MT x MRx . Therefore, adding
a new receive element will increase the angular resolution by a factor of MT x (and vice-
versa) unless the elements are placed so that the virtual elements overlap.

The signal model in (2.8) can now be organized in matrix form, which is convenient
for many of the following chapters. First, the DoA steering vector a(θk ) ∈CM×1, the fast-
time sinusoidal vector fr (rk ) ∈ CN×1, and the slow-time sinusoidal vector fD (vk ) ∈ CL×1

are defined as:

a(θk ) = [1,e−2π j ( d
λ

sinθk ), ...,e−2π j ((M−1) d
λ

sinθk )]T , (2.10)

fr (rk ) = [1,e−2π j ( µfs
γk ), ...,e−2π j ((N−1) µfs

γk )]T , (2.11)

fD (vk ) = [1,e−2π j (
2vk

c f0), ...,e−2π j ((L−1)
2vk

c f0)]T . (2.12)

Then, the three-dimensional baseband received signal Y ∈CN×L×M in the presence of K
point targets in matrix form is expressed as:

Y =
K∑

k=1
αk a(θk )◦ fr (rk )◦ fD (vk )+N (2.13)

where, ◦ is the outer product and N ∈ CN×L×M is a complex Gaussian noise tensor. As
it can be seen, with the few assumptions made to build this signal model, each of the
variables to be estimated (θk , rk , vk ) are independent. Finally, some of the chapters of
this thesis will use a 2D antenna array; therefore, the signal model must be expanded to
consider the targets’ elevation angle as well. This can be easily done by modifying the
steering vectors to take into account the new array topology, as:

a(θk ,φk ) =


1

e2π j d
λ

(cosθk sinφk+cosφk )

...

e2π j d
λ

((Mx−1)cosθk sinφk+(Mz−1)cosφk )

 , (2.14)

where φk is the elevation angle of the k−th target, and Mx and Mz are the number of
antenna elements of the 2D uniform rectangular array (URA).

In a MIMO system, the transmitted signals must be orthogonal to separate them
on the receiver side. While many MIMO waveforms have different trade-offs [15], this
thesis uses time division multiple access (TDMA) for its simple implementation. The
detrimental effects of this approach and how to compensate for them will be treated in
Chapter 6.
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2.2. TERMINOLOGY
In recent years, automotive radar has become part of a wider multidisciplinary field in
autonomous vehicles where scientists from rather different backgrounds cooperate. As
different research communities might use different terms [13, 14], a list of definitions
used in this work is provided before reviewing the classical FMCW signal processing
chain.

• Raw radar data or ADC data refers to the complex-valued baseband samples the
ADC provides at each receiver channel.

• Virtual channel or channel refers to one of the multiple unique combinations of
Tx-Rx antenna in a MIMO radar, meaning the signal transmitted from a Tx is re-
ceived, down-converted and sampled at the Rx.

• Radar frame refers to the set of ADC samples from each virtual channel’s CPI. It has
dimensions of N×L×M, where these are the number of samples in fast time, num-
ber of samples in slow time, and number of virtual channels, respectively. This
radar frame corresponds with the signal model presented in (2.13).

• Radar cube refers to the spherical coordinate, discretized representation of the
radar data, meaning the range, azimuth, elevation, and Doppler estimation have
already been performed. When the elevation is also estimated, this is a 4D hyper-
cube, but for simplicity, the term radar cube will be used to refer to the 3D and 4D
versions. Each cell in the radar cube contains a scalar value indicating the reflected
power in that cell. The size of each cell is related to the characteristics of the radar,
such as the transmitted bandwidth or the antenna array topology. Hence, the cells
are generally not the same size over the whole grid.

• An extended target is a target occupying multiple cells in one or several dimen-
sions, in contrast to a point target, which occupies a single cell. Point targets
present a clear peak in the estimation space (range-Doppler-angle), while ex-
tended targets do not.

• Detection is the binary decision problem determining whether a radar cube cell
contains only noise or noise plus target. On the other hand, classification aims to
associate a class to each detected cell, such as ’pedestrian’, ’vehicle’, or ’light pole’,
and so on. These two tasks are generally treated as two blocks in a conventional
radar processing pipeline.

• 3D occupancy grid refers to a binary cube, also in spherical coordinates, which
contains ones in voxels that are occupied by detected targets and zeros otherwise.
Such a 3D occupancy grid could be generated directly from a lidar point cloud,
but also from a radar cube through a detector. In the latter case, the resulting 3D
occupancy grid and the radar cube share the same grid.

• Point cloud refers to a set of P points, each containing PL features that result from
selecting only those cells containing ones in a 3D occupancy grid and (typically)
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Figure 2.5: Typical processing pipeline in FMCW automotive radar, from the raw ADC samples to the output of
classification & tracking steps. N and L are the number of samples in a chirp and chirps in a CPI, respectively.
M are the number of virtual channels in a MIMO system given by the product of the number of Tx and Rx
channels. Nr ,ND , Na , and Ne are the number of range, Doppler, azimuth and elevation cells. Finally, P is the
number of points after the detector, with the three spatial coordinates plus Doppler and power.
The ovals with dashed lines indicate at which point in the pipeline the chapters of this thesis contribute to.

converting them to Cartesian coordinates. For radar point clouds, it is usually as-
sumed that PL = 5, adding Doppler and power information to the three spatial
dimensions, while for lidar point clouds, PL = 4 since Doppler is not provided.

2.3. BRIEF RECAP OF FMCW SIGNAL PROCESSING
Figure 2.5 illustrates the conventional FMCW radar processing pipeline and to which
step each of the chapters of this thesis is contributing. The steps are as follows:

1. Range and Doppler spectral estimation is performed from the baseband or ADC
samples organized in fast-time, slow-time, and channel dimensions. Usually, this
is achieved by applying a window with the fast Fourier transform (FFT) algorithm
independently in fast time-and slow-time. However, this step may be enhanced by
compensating the range/Doppler migration due to ego-vehicle and target motion
[16].

2. Once a range-Doppler matrix is computed per channel, the angle estimation is
performed (1D in azimuth or 2D in both azimuth and elevation, depending on
the antenna array topology). Direction of arrival (DoA) estimation is a current
area of widespread interest, with much active research. Usually, digital beam-
forming (DBF) is used for simplicity, employing FFT-based implementations.
Still, many research works explore alternatives such as compressive sensing ap-
proaches [17, 18], Doppler beam sharpening [19, 20], or machine learning [21].
Sometimes, especially in real-time embedded systems, the detection stage is per-
formed before the angle estimation to reduce the computational load [22], sacrific-
ing the increase in signal-to-noise ratio (SNR) due to spatial coherent integration
before detection. This process outputs a 4D radar (hyper)cube.

3. The detection stage then identifies the cells that contain the targets. Usually, a
combination of a CFAR detector in some dimensions and peak finding in the rest is
used. However, some works have also explored using machine learning algorithms
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[10, 23–28]. In this stage, the data is often sparse since most of the space in the field
of view does not reflect sufficient power or is simply empty. The detector outputs
a 3D occupancy grid, but a conversion to a point cloud is usually performed since
it is a convenient format for visualizations or dataset storage.

4. After the detection process and generating a point cloud, additional steps can be
implemented to extract more task-relevant information. For instance, in the auto-
motive context, it is critical to know the nature of each detected point to make the
appropriate decisions, meaning if this originated from a pedestrian, a vehicle, or
some road infrastructure, amongst others. Therefore, applying a classifier on the
point cloud is common, usually based on DL techniques [13, 29, 30].

If needed for the application, tracking algorithms can also be implemented on the
point cloud using past information to reduce the estimation noise, eliminate false
detections, and predict future target positions based on the trajectory. In the au-
tomotive radar domain, tracking algorithms have to deal with the problem of the
extended nature of targets over the angular domain [31, 32].
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Upscaling images from lower to higher resolution using artificial intelligence (AI) is al-
ready happening in real-time in many consumer devices without us noticing. With such
approaches, a lower-cost camera can be used to capture an image or a lower-cost GPU can
be used to render a frame. After that, the captured/generated image is enhanced with AI.
In automotive radar, angular resolution is one of the main challenges, since increasing it
natively is not trivial for many reasons. In this chapter, I propose a way to enhance this
resolution following a similar upscaling concept: capture the data with a lower angular
resolution automotive radar and try to augment it using AI. However, unlike in images
from cameras, upscaling after the image is formed is not the best strategy. Therefore, the
enhancement is introduced in the time domain radar signal before the ‘image’ is formed
(i.e., before the angle estimation).

Parts of this chapter have been published in:

I. Roldan, F. Fioranelli and A. Yarovoy, "Enhancing Angular Resolution Using Neural Networks in Automotive
Radars," 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 2022, pp. 58-61.

I. Roldan, F. Fioranelli and A. Yarovoy, "Self-Supervised Learning for Enhancing Angular Resolution in Auto-
motive MIMO Radars," in IEEE Transactions on Vehicular Technology, vol. 72, no. 9, pp. 11505-11514, Sept.
2023.

21



3

22 3. ANGULAR RESOLUTION ENHANCEMENT USING SELF-SUPERVISED LEARNING

3.1. INTRODUCTION
As explained in Chapter 1, high angular resolution is crucial for fully autonomous driv-
ing. Firstly, automotive radars need to have high azimuth discrimination capability
to separate targets on the road located at the same distance and moving at the same
speed. Secondly, high elevation resolution is needed to discriminate which objects can
be driven over, such as small debris on the road or speed bumps, which objects can be
driven under, such as bridges or tunnel entrances, and which objects should be safely
avoided as significant obstacles on the road for the vehicles. Finally, typical automotive
targets have multiple scattering points due to their different curvatures and corners [6–
8]. A high-angular resolution system makes it possible to capture them, leading to denser
point clouds. These richer representations can help for subsequent processing steps in
the signal processing pipeline, such as target classification [13, 33–35], road mapping
[36, 37], or scene semantic segmentation [29].

The use of larger antenna arrays would increase the angular resolution, but it would
be unfeasible to integrate them into conventional vehicles due to their size and cost.
For this reason, commercial automotive radars use MIMO [38–40] radar principles to
achieve higher angular resolution without increasing the size of the system. A MIMO
radar can synthesize virtual arrays with large apertures with only a few transmit and re-
ceive antennas.

The basic principle for angle estimation in MIMO radars relies on the extra distance
a signal reflected from the same target must travel to reach different antennas in the
system. The easiest way to exploit this, known as digital beamforming (DBF), applies a
Fourier transform to translate the time delay of received signals at each antenna into
a phase shift, which is proportional to the signal’s arrival angle. There are more ad-
vanced algorithms such as MVDR [41], MIMO-Monopulse [42], subspace methods such
as MUSIC [43] or ESPRIT [44], or methods based on compressive sensing [45–47]. How-
ever, these methods usually require higher computational costs and longer integration
times; hence, they are not always easily applicable in automotive scenarios. Moreover,
the angular resolution achieved with all of them is still proportional to the number of
virtual antennas of the system [4]. Therefore, a direct way of improving angular resolu-
tion would be to increase the number of transmitters and receivers of the system, which
is the trend the automotive radar industry is following [22, 48, 49]. For example, the pro-
totype presented in [49] has 4 transmitting elements and 16 receiving elements, or the
Texas Instruments MIMO radar [50] used in this work with 12 transmitters and 16 re-
ceivers. However, this increase also raises the price and the size of the radar, both critical
constraints in the automotive industry.

A recent approach to address this problem is to exploit the relationship between the
responses of each virtual antenna to extrapolate new responses of artificial antennas
not physically present in the system. Correctly estimated, these new responses can be
combined with the aforementioned algorithms, yielding a higher angular resolution. An
example of this approach has been studied in [51], where piecewise cubic extrapolation
is used, and in [52], by using autoregressive (AR) models in a front-looking SAR geome-
try. Also, in [53], the authors propose applying a guided generative adversarial network
(GGAN) to range-angle radar matrices to produce a higher resolution version. However,
this method is used after the angle estimation algorithm; therefore, the data is treated
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Figure 3.1: Scheme of the extrapolation of the channel vector for a fixed range-Doppler-time cell. For sim-
plicity, this is shown only for the real component of cr,D , but the same procedure is applied to the imaginary
part.

as real-valued images. The related results in the state-of-the-art are mostly verified with
simulated or point-like targets in very simple scenarios. Moreover, the undesirable ef-
fects induced by these extrapolation methods (i.e., the creation of ghost targets or ar-
tifacts or the loss of real targets) are not studied in detail despite being critical in an
automotive scenario.

This chapter presents a novel framework to enhance the angular resolution of MIMO
radar systems without increasing the physical number of antennas. The proposed
framework uses the recent advances in machine learning techniques to train a neural
network (NN) with data from a large aperture radar (i.e., with high angular resolution) in
a self-supervised scheme. Afterward, the trained network can be employed to enhance
the angular resolution of a smaller aperture radar in the operational stage without using
the larger radar used to gather training data.

3.2. PROPOSED METHOD
As explained in Section 2.1, the signals measured by each antenna of a MIMO radar re-
ceiver are the sum of time-delayed versions of the original signal. Thus, the response of
each element is highly correlated with the neighbor elements. However, this relationship
can be very complex if many targets at different DoA values are present in the scene.

After down-converting, filtering, sampling, and FFT processing, each signal can be
arranged in a range-Doppler matrix. These matrices can be stacked to form a tensor
with dimensions range-Doppler-channel. For a fixed range-Doppler tuple, the resulting
channel vector cr,D can be used to compute an angular profile using any of the angle
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Figure 3.2: A high-level diagram of the proposed approach. In the design phase, data from a high-resolution
MIMO radar (’large’) is used to train an NN that can extrapolate full channel vectors from subsampled channel
vectors. In the operational phase, the trained NN can be applied directly to data from a low-resolution MIMO
radar (’small’).

estimation methods mentioned in Section 3.1. However, before estimating the angle, the
aforementioned correlation of this vector can be exploited by the proposed method to
extrapolate additional complex-valued samples, as illustrated in Figure 3.1 for the real-
part component.

Time series extrapolation has been extensively studied in the literature [54]. Many
statistical models, such as AR models, are available to describe the likely outcome of a
time series in the immediate future. However, these statistical models have been recently
outperformed by the rise of neural networks (NNs) if enough diverse data is available. In
this work, an NN is used to enlarge the antenna aperture by extrapolating the time series
formed by the response in each antenna element. The proposed approach consists of
two phases, namely, the design phase and the operational phase. In the design phase, a
high angular resolution radar (i.e., a MIMO radar with an extra number of transmit chan-
nels, which results in a larger aperture of the virtual array than the operational radar) is
used to collect data. Then, this data are used to train an NN in a self-supervised scheme
to forecast the response of antenna elements additional with respect to the ones in the
operational radar (i.e., a MIMO radar with less number of transmit antennas and, as a
result, a smaller aperture of the virtual array). In the operational phase, the NN is used
to enhance the angular resolution of an operational radar by forecasting the response of
extra antenna elements. It is important to note that a radar with a large virtual aperture
is needed only during the design phase and that radar will not be used during the opera-
tional phase. In the operational phase, only the operational radar on board the vehicles
will be used to enhance its performance in conjunction with the pre-trained NN. A visual
representation of this approach can be seen in Figure 3.2.

The approach proposed in this work is independent of the radar’s waveform, but the
algorithm’s start point must be a 3D range-Doppler-channel data cube. In most cases in



3.2. PROPOSED METHOD

3

25

1) 2D
FFT

Slow-time

M antennas
Fast-time

Range

Doppler

M antennas

2) 2D
CFAR

4)
Generate
Labels

K outer
samples

3)
Subsample

NN

5) Train
NN

Trained NN

Data from an L
virtual antenna

radar

Artificial enhanced
data with M

samples

6) Operational phase

Subsampled
antennas with L
inner samples

M antennas

Figure 3.3: Block diagram of the proposed method. First, a 2D FFT (1) is applied to the data, followed by
a detection stage (2). The remaining channel vectors (i.e., only those containing targets) are subsampled to
generate the training data (3) and the corresponding labels (4). Afterwards, the NN is trained (5). Finally, the
trained NN can be used to extrapolate the aperture of a compact radar at the operational phase (6).

automotive, an FMCW radar system is used, and therefore, a 2D FFT can be applied to
obtain range-Doppler data [2, 55]. However, given the sparse nature of the data, most of
the cells will contain only noise and must be filtered before applying any extrapolation
algorithm. A cell averaging constant false alarm rate (CA-CFAR) [9] detector is applied for
this, and only the range-Doppler cells containing at least one target will be used. Finally,
the remaining channel vectors must be subsampled to match the number of virtual an-
tennas of the low-resolution radar envisaged to be used in the operational phase after
training. Then, an NN can be trained using the subsampled channel vectors as input
and the extreme samples of the channel vectors as labels (i.e., the samples that must be
extrapolated). Therefore, the NN is trained in a self-supervised manner, where the la-
bels are generated automatically from the data. In summary, the steps of the proposed
pipeline are:

1. Apply classical radar signal processing to the data obtained with a large high an-
gular resolution radar to get range-Doppler-channel data cubes. In this work, a
Hamming window and a 2D FFT have been used.

2. Apply a detector to filter the channel vectors that only contain noise. A CA-CFAR
detector was used in this work.

3. Subsample the resulting channel vectors, taking the inner L samples correspond-
ing to the number of antenna elements of the low angular resolution radar that
will be used in the operational phase.

4. Generate the labels for the design phase by taking the K outer samples of the chan-
nel vectors, where K+L = M, being M the number of virtual antennas of the high-
resolution radar.
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5. Train the NN in a self-supervised scheme, using the subsampled channel vectors
as input and the extreme samples of the channel vectors as labels.

6. Finally, in the operational/testing phase, data captured with a small aperture radar
can be processed with the NN to enlarge its aperture, thus enhancing its angular
resolution.

Figure 3.3 shows a block diagram of the method. It is important to notice that the
proposed method is performed before the DoA estimation algorithm, essentially in or-
der to generate additional artificial antennas from an extrapolation of the available raw
radar signals. Thus, any DoA estimation technique, such as MUSIC, MVDR, or a sim-
pler FFT-based beamformer, can be applied after the proposed method. Because of its
easy implementation, the simple Fourier beamformer [56] has been used as DoA es-
timation technique for most of the results of this work when evaluating the enhanced
performance provided by the proposed method. However, the single snapshot MUSIC
algorithm presented in [57] is also implemented to verify that the proposed approach is
estimator agnostic.

The most common NN model for dealing with sequential data is the so-called long
short-term memory (LSTM) architecture. The main idea is to incorporate a memory cell
that can maintain its state over time, capturing long-term dependencies. LSTMs have
been proven state-of-the-art in many different domains [58]. In this case, each new el-
ement will be predicted by conditioning on the joint probability of previous values, in-
cluding the past predictions. For this reason, the network learns to make conservative
predictions and avoid successive errors accumulating rapidly, causing the signal to di-
verge. The proposed model has two stacked LSTM layers with 128 units each, followed
by a dense layer. A block diagram of the network can be seen in Figure 3.4. Each cr,D has
been normalized only in its absolute value within the range of 0 to 1, while at the same
time taking care that the phase information relevant for subsequent DoA estimation is
maintained. This normalization, a common practice in machine learning, is performed
to speed up the convergence of the NN. For the extrapolation of the initial samples ci

r,D

with i ∈ [1, K
2 ] the complex conjugate of the ’flipped’ signal has been used. Essentially,

the flip(·) operator reverses the order of samples and can be interpreted as the mirrored
sequence with respect to the middle element. For a vector x = (x1, x2, ..., xn) the flip op-
erator is defined as flip(x) = (xn , xn−1, ..., x1). The real and imaginary parts have been
concatenated in a new dimension, treating the problem as a multivariate time series ex-
trapolation.

3.3. EVALUATION ON SIMULATED RESULTS
A MIMO radar has been simulated to evaluate the performance of the presented method.
The transmitter and receiver arrays have been placed closely located in a monostatic ar-
rangement so that targets in the far-field are at the same distance from both arrays. The
transmitted waveforms are assumed to be mutually orthogonal, and the individual el-
ements are isotropic antennas for the y > 0 half-plane. The resulting virtual array is a
ULA with half-wavelength separation between elements. One million scenes have been
generated in a Monte Carlo fashion, where different numbers of point targets have been
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Figure 3.4: The neural network architecture used with two LSTM layers stacked and a dense layer. The input
is a matrix with dimensions L×2 composed of the inner samples of the channel vector. The output is a matrix
with dimensions K

2 ×2, in this case, the extrapolated last K
2 samples of the channel vector. Notice that the first

K
2 can also be extrapolated by using instead the complex conjugate of the input vector after the flip operator.

Table 3.1: Simulation Parameters

Number of scenes 106

Number of targets per scene X ∼U (1,10)
Position of the targets (deg) X ∼U (−70,70)

RCS of each target (dB) X ∼U (0,10)
SNR in the scene (dB) X ∼ (−5,0,5,10,15,20,25)

M = Num virtual antennas large array 86
L = Num virtual antennas small array 44

placed in the angular space, assuming they are at the same range bin. The RCS and loca-
tion of the targets have been sampled from a uniform distribution. Table 3.1 summarises
the simulation parameters.

The LSTM network has been trained using 900.000 scenes, leaving 50.000 for valida-
tion and 50.000 for testing. Adam optimizer has been employed using the default hy-
perparameters (η=0.001, β1=0.9, β2=0.999, ϵ=1e-7), and the mean squared error (MSE)
as loss function. The results shown in the rest of the section have been computed using
only the test data set.

Since the angle information is encoded in the signal phase, the accurate extrapola-
tion of the phase is a requirement for the method to work. As an example of this phase
reconstruction, Figure 3.5 shows the signal phase for a test scene with only one point tar-
get and 5 dB SNR, for the array with the large aperture and the array with a small aperture
processed with the proposed method. It can be seen how the phase is well extrapolated,
which will lead to a higher angular resolution estimation. However, it can also be seen
that the phase is not perfectly reconstructed, which could lead to higher side-lobe lev-
els or false alarms in the worst case. For this reason, a statistical analysis of the 50.000
test cases has been done, addressing the accuracy in the angle estimation, the minimum
angular separation, and the probability of false alarms (P f a).

First, a receiver operating characteristic (ROC) curve has been computed using a
fixed threshold detector, where the threshold is varied by reducing its value from the
maximum. For simplicity, a conventional beamformer, also known as Fourier beam-
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Figure 3.5: Signal phase for the large aperture radar (blue) and for the enhanced version of the small aperture
radar using the proposed method (yellow).

former, has been used for DoA estimation. Since the positions of the targets are gener-
ated randomly, in many cases, the angular separation between them will be too small to
trigger two detections, even for the large aperture array. Moreover, in some scenes, the
SNR is set to -5 dB, and weak targets will be present. For these two reasons, the proba-
bility of detection (Pd ) never reaches 1. Figure 3.6 shows the ROC curves computed for
the 50.000 test cases. Two observations can be made from this plot. First, the P f a is not
increased in the artificial aperture array; therefore, the proposed method introduces no
significant undesirable effects. Second, the Pd is higher in the artificial aperture array
than in the small array, even though they use the same number of physical antennas.
This effect can be explained that due to the increase in angular resolution, more targets
are correctly detected in situations where the targets are closely spaced.

However, the increase of the Pd for a fixed P f a is also induced by the increase of the
SNR when processing more coherent antennas, as the target’s power will add coherently
while the noise will not. For this reason, it is important to analyze the minimum angular
separation between detections independently. For each scene, the minimum angular
separation has been computed as:

min(|θ̂i − θ̂ j |) ∀i , j ∈ [1, Nt ar g et s ] | i ̸= j , (3.1)

where θ̂i is the estimated DoA of the target i and Nt ar g et s is the number of targets in
the scene. The histograms of the minimum angular separation of the detected targets
are presented in Figure 3.7. In Figure 3.7a, it can be seen how the large aperture array is
able to resolve targets that are more closely spaced than the small aperture array. This
is the expected behavior since it is known that the (boresight) angular resolution of an
86-element ULA and a 44-element ULA are 1.33◦ and 2.6◦, respectively. On the other
hand, Figure 3.7b shows the minimum angular separation when applying the proposed
method to the small aperture array. It can be seen how the two distributions are more
similar, indicating that the proposed method can improve the performances of the small
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Figure 3.6: ROC curves using a fixed threshold detector after a Fourier beamformer. In blue, the detection ca-
pabilities of the large aperture array. In red, the detection capabilities of the small aperture array. As expected,
the performance of the small array is lower, both because of the resolution degradation and the decrease in
the SNR due to coherent integration. In yellow, the enhanced version with the proposed method using only 44
channel.

physical array, making it more similar to those of the physically larger array. Neverthe-
less, the distribution for the artificial aperture array is more skewed to a higher angular
separation than the original large array but still performs better than the small aperture
array in most cases.

Finally, it is important to analyze if the method induces a degradation in the accuracy
of the DoA estimation. In this case, two DoA estimation methods have been evaluated:
the same Fourier beamformer used for the previous results in this section and the single
snapshot MUSIC proposed in [57]. The MSE of the angular estimation for each method
has been computed, and the results have been averaged over the test scenes. Moreover,
the Cramer-Rao bound (CRB) has been included for comparison, calculated as [59]:

CRB = σ2
n

2

∣∣∣ℜ[
SH DH (I−A(AH A)−1AH )DS

]∣∣∣−1
, (3.2)

where:

• A = [v(θ1), ...,v(θp )] is the array steering matrix, formed by p steeting vectors.

• D = [d(θ1), ...,d(θp )] contains the first derivative of steering vectors d(θ) = δv(θ1)
δθ

• S = diag(s1, ..., sp ) formed by the p targets complex response.

• σ2
n is the noise variance.

The results are shown in Figure 3.8a for the Fourier beamformer and in Figure 3.8b
for the single snapshot MUSIC. In both cases, it can be seen how the artificial aperture
generated with the proposed method has improved the MSE with respect to the small
aperture array. However, the improvement in the single snapshot MUSIC is lower. This
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(a) (b)

Figure 3.7: Histograms of the minimum detected angular separation per scene. (a) compares the large and
small aperture array, and as expected, the small aperture array cannot resolve very close-spaced targets. (b)
compares the large aperture array and the proposed method applied to the small array. It can be seen how the
two distributions are more similar, meaning that the proposed method enhances the angular resolution.

Table 3.2: Radar Parameters for Experimental Validation

Parameters Value)

Center Frequency 78.58 GHz
Effective Bandwidth 320 MHz
Chirp slope 5 MHz / µs
Samples per chirp 256
Chirp period 80 µs
Chirps per frame 128
Transmitted power +13 dBm
Number of effective azimuthal antennas 86

is because the MSE is only computed in those cases where the targets are resolved cor-
rectly. Since the single snapshot MUSIC requires the exact number of targets in the scene
as input, it resolves more challenging cases than the Fourier beamformer (i.e., cases that
in a real unknown scene would not be resolved). Thus, cases where the DoA angles to be
estimated are very close are included for the single snapshot MUSIC evaluation, degrad-
ing the method’s performance.

3.4. EVALUATION ON EXPERIMENTAL DATA
To evaluate the performance of the presented framework, experimental data from dif-
ferent scenarios have been collected with a commercial FMCW MIMO radar (Texas In-
strument MMWCAS-RF [50]), working at 79GHz and capable of synthesizing 86 virtual
antennas by cascading four conventional radar chips [50]. The details of the parameters
used to collect the data can be seen in Table 3.2. The data collection was designed to
be heterogeneous in terms of the type of targets and the relative position between them
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Figure 3.8: In (a), the results for the FFT beamformer. In (b), the results for the single snapshot MUSIC algo-
rithm. The results for the 86 antenna array with its corresponding CRB are shown in blue. The results for the 44
antenna array and CRB are shown in red. Yellow shows the performance when applying the proposed method
to the 44 antenna array before the angle estimation.

with respect to the radar. Also, different scenarios with different background clutter have
been included.

First, an analysis of the performance using corner reflectors has been done. To this
end, 25 scenes were recorded in two scenarios, with corner reflectors with different RCS
at the same range and different angles. The detections obtained with the full array have
been used as ground truth in this case to avoid errors induced by the lack of equipment
for measuring the exact positioning of the targets. Similar to the simulated scenes in
the previous section, the ROC curve averaging the results for the 25 recordings has been
computed. Figure 3.9 shows the result when performing the DoA estimation using only
44 virtual antennas and the result when the trained NN is used beforehand to augment
the resulting aperture artificially. The same data was used to generate both curves, which
consist of 11 points each. It is important to mention that the NN has only been trained
with simulated data to push its generalization capabilities to unseen, in this case ex-
perimental, data. As it can be seen, the artificial aperture, enhanced with the NN, can
have better detection probability while keeping the probability of false alarm low. This
is because the small aperture is merging targets together due to the limited angular res-
olution; on the other hand, the proposed method can help separate such targets. More-
over, an example of the angular domain estimation is shown in Figure 3.10a, where two
corner reflectors are placed at -30 degrees in the same range. As can be seen when the
angular domain is estimated using the whole array (’full aperture’), two main peaks are
distinguishable. However, when only 44 virtual elements are used, emulating a smaller
aperture array, these two peaks are merged due to poor angular resolution. On the other
hand, if the proposed method is applied before the angle estimation, the two peaks can
be clearly seen again (’artificial aperture’). It is also possible to observe that the peaks in
the artificial aperture estimation are slightly shifted from the full version. The average es-
timation accuracy using the full aperture estimation as ground truth has been computed
for the small and artificial apertures. The mean MSE over the 25 scenarios is 0.0268 deg2
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Figure 3.9: ROC curves for 25 scenes with a different number of corner reflectors using the estimation com-
puted with the large aperture array as ground truth. In red, the performance when only 44 virtual antennas are
used. In yellow, the performance when the proposed method is applied before the angle estimation.

for the small aperture and 0.0075 deg2 for the artificial aperture. These numbers con-
firm the simulation results, where the proposed method does not degrade the accuracy
performance but improves it. Finally, the proposed method has been tested with more
realistic automotive targets. To this end, a new set of measurements has been collected
where two people are present in the scene. Figure 3.10b shows one angle estimation ex-
ample where the small aperture radar cannot generate two peaks corresponding to the
two pedestrians. This is a crucial result since the radar will report a single large object
instead of two independent targets, which may lead to critical errors in the subsequent
decision-making system. To illustrate this phenomenon better, a dynamic experiment
was carried out, where two pedestrians walked towards the radar at the same speed and
range, maintaining a constant separation of approximately 1 meter between them in the
angular direction. After applying standard radar processing and filtering out the static
clutter, the angular domain has been estimated with an FFT for the large, the small, and
the artificial aperture. A simple peak detector has been applied in each snapshot, and
the results have been plotted in Figure 3.11. If two detections are triggered in the snap-
shot (i.e., the two pedestrians have been detected), the detections are plotted in black
and considered correct detections. On the other hand, if only one peak is found, the two
pedestrians have been merged due to poor angular resolution; thus, the detection is plot-
ted in red and counted as an incorrect detection. As seen in the left-hand side of Figure
3.11, when using the 86 virtual antennas, the trajectory of both pedestrians can be clearly
followed since in more than 94% of the snapshots, both people are detected. However,
when the angular domain is estimated with only 44 virtual antennas, both pedestrians
started to merge into a single detection after approximately 15 meters and became com-
pletely indistinguishable after 25 meters, as seen in the middle Figure 3.11. In this case,
only in 30% of the snapshots can both people be detected. This decrease in resolving ca-
pabilities is only due to the lower angular resolution since the targets’ SNR is always high
in this recording. Finally, if the method presented in this paper is applied before estimat-
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Figure 3.10: Angle estimation of a scene with two corner reflectors (a) and with two people (b) with a small
angular separation. In blue, the estimation with the original large aperture array; in red, the estimation with the
small aperture array; in yellow, the estimation with the artificial aperture enhanced via the proposed method.
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Figure 3.11: Detections triggered in a scene where two people walk toward the radar. If two detections are
triggered, meaning that both people have been detected, the detections are plotted in black. On the other
hand, if only one peak is detected, the detection is plotted in red. More than 94% of the snapshots are correctly
resolved with the full aperture array. With the small aperture array, only 30% are correctly detected, while this
number is boosted to 55% with the proposed method.

ing the angular domain, the percentage of correct snapshots is boosted to 55.62%. This
effect can be seen in the right-hand side of Figure 3.11, where both trajectories are again
discernible. These results show a clear benefit of applying the proposed method since
the enhanced radar system can distinguish the two targets at a greater distance. Thus,
the decision-making system of the autonomous vehicle will have more time to react.
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3.5. CONCLUSIONS
This chapter presents a novel framework to enhance the angular resolution in MIMO
radars without increasing the number of physical antennas. A neural network with a
self-supervised learning scheme is used to extrapolate the antenna array’s response, in-
creasing its aperture artificially. Data from a high angular resolution radar (i.e., a radar
with a large aperture) is used to train an LSTM Network that is later used to increase the
angular resolution of a low-resolution radar (i.e., a radar with a small aperture). One mil-
lion simulated scenes have been used to train the system, validating its performance in
terms of detection capabilities and estimation accuracy. Two angular estimators, a sim-
ple Fourier beamformer and the single snapshot MUSIC, were used, and their perfor-
mances were compared with and without applying the proposed method. This demon-
strated that the proposed method can enhance the angular resolution of MIMO radars
without introducing false alarms or degradation in the estimation accuracy.

Moreover, results in experimental data show that this method can help in automotive
scenarios to resolve closely spaced targets, such as pedestrians walking closely together,
providing accurate information earlier to the decision-making system. To the best of
the author’s knowledge, this is the first time that neural networks have been used to in-
crease the angular resolution of MIMO radars. Finally, it is important to mention that
the presented work aims to propose a framework in which different neural network ar-
chitectures could be used.
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BAYESIAN COMPRESSIVE SENSING

APPLIED TO AUTOMOTIVE RADAR

When working in engineering research, we often focus on our particular task and develop
an algorithm to solve a specific problem. This is sometimes reinforced by the academic and
publication system itself, where individualism is often rewarded. In automotive radar, like
probably in most engineering fields, this is, in my opinion, the wrong approach, and the
big picture should always be kept in mind. Suppose you are researching angular estima-
tion algorithms. In that case, you may want to talk with the person researching array
topologies or MIMO waveform design. No part of the automotive radar will be alone in
the vacuum, and awareness of the other components is necessary.

During my second year of PhD, I started to supervise the master thesis of Lucas Lamberti.
Initially, the idea was to use compressive sensing to improve the angular resolution of an
automotive radar. However, Lucas realized that since we knew which algorithm we would
use for angle estimation, we could also try to find an array topology specifically designed
for that particular algorithm. From there comes the first part of the chapter, trying to
connect angular estimation and array topology design together. The second part started
in one of our many meetings about compressive sensing. The angular estimation had to
run fast, given the constraints of the automotive radar. Could we exploit the Bayesian
Compressive Sensing theory to speed up the angular estimation?

Parts of this chapter have been published in:

L. L. Lamberti, I. Roldan, A. Yarovoy and F. Fioranelli, "Sparse Array Placement for Bayesian Compressive Sens-
ing Based Direction of Arrival Estimation," 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA,
2024, pp. 1-6.

I. Roldan, L. Lamberti, F. Fioranelli and A. Yarovoy, "Low Complexity Single-Snapshot DoA Estimation via
Bayesian Compressive Sensing," 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 2023, pp.
1-6.
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4.1. INTRODUCTION
In Chapter 3, a method to enhance the angular resolution of MIMO radars before per-
forming the actual angular estimation has been presented. In this and the next chapter,
the angular estimation problem is explored. Many DoA algorithms have been developed
in the last decades, where the most commonly used ones are the multiple signal classi-
fication (MUSIC) or the signal estimation parameter via rotational invariance technique
(ESPRIT), and their many variants. However, two of the main drawbacks of these algo-
rithms are the need for the a priori knowledge of the number of signals impinging on the
array, and the need for multiple snapshots of the same scene for an accurate covariance
matrix estimation. From an automotive radar perspective, both constraints present a
problem. First, the number of targets (i.e., signals) present on the scene is unknown and
stochastic. Second, targets can move at high velocities; thus, coherently processing mul-
tiple snapshots is not always possible. In this single-snapshot scenario, the estimation
of the inverse of the noise covariance matrix cannot be computed since the estimate is
rank deficient. Several variations of the MUSIC algorithm have been developed to in-
crease the performance or to deal with broadband signals, such as Root-MUSIC [60] or
polynomial MUSIC (P-MUSIC) [61], but they generally present the same two mentioned
problems.

In recent years, a new family of approaches in DoA estimation has been explored,
which exploits the fact that the signals are intrinsically sparse in the spatial domain, i.e.,
only a few signals or targets are present in the scene. In automotive scenes, this is the
case when the radar used has a very high range and Doppler resolution, and thus, only
a few targets per range-Doppler cell are present. These methods are based on the com-
pressive sensing (CS) theory [17, 62–64].

The CS problem aims to invert or reconstruct a K-sparse signal x from a set of lin-
ear measurements y in the form y = Ax + n, being A the ’sensing matrix’. The sparse
reconstruction approach enables us to solve this linear problem even in the underde-
termined case where the number of samples in space, time, and frequency is less than
demanded by the Nyquist-Shannon criteria [65]. A unique solution can only be found by
imposing the assumed sparsity property in the estimation problem, yielding the spars-
est solution. The straightforward formulation utilizes an l0-pseudo norm optimization
problem, which can recover the sparse x exactly. However, as this combinatorial search
problem is computationally expensive, the most popular relaxation is to use the ℓ1-norm
convex optimization problem as:

min
x

||x||1 s.t . Ax = y, (4.1)

also known as the basis pursuit (BP) problem. However, in practice, measurements will
always contain noise, and therefore, the least absolute shrinkage and selection operator
(LASSO) [66] is commonly used:

min
x

||x||1 s.t . ||Ax−y||2 < ϵ, (4.2)

where ϵ is a parameter to bound the noise in the data [67]. It has been proved that CS
algorithms provide a guaranteed stable solution of the sparse signal x for a given sensing
matrix if the product Ax satisfies the restricted isometry property (RIP) defined as:
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(1−δK )||x||22 ≤ ||Ax||22 ≤ (1+δK )||x||22, (4.3)

for all K-sparse vectors x. However, verifying the RIP for practical sensing matrices is
computationally unfeasible, and therefore, this condition is relaxed by employing the
mutual coherence property µ(A) instead:

µ(A) = max
1≤i ̸= j≤M

|〈a∗
i ,a j 〉|

||ai ||2||a j ||2
(4.4)

where |〈 , 〉| is the inner product between any two columns ai , a j of the sensing matrix A.
For a good convergence of any recovery algorithm, the mutual coherence µ(A) must be
< 1 [65, 68].

In the DoA estimation problem, assuming the range and Doppler estimation opera-
tions have already been performed, equation (2.13) can be simplified to:

y =
K∑

k=1
αk a(θk )+n (4.5)

where a(θk ) is the steering vector pointing to the kth target, as defined in equation
(2.10). Grouping all the steering vectors into the so-called steering matrix as in Â =
[a(θ1), . . . ,a(θK )] ∈CM×K , the signal model can be expressed in a compact form as:

y = Âα+n (4.6)

where α ∈ CK is the complex amplitude of the K targets. However, this problem formu-
lation is unsuitable for the CS framework since it is not linear (i.e., the parameters to be
estimated are in the complex exponential function) and is not sparse. To linearise the
problem of estimating θk and make it sparse, the angular domain is discretized into a
grid of G equally-spaced angles. The steering matrix can then be generated as an over-
complete dictionary matrix A ∈CM×G where each column is a steering vector ag = a(θg )
with g = 1, . . . ,G corresponding to each possible target direction. Moreover, since the
number of targets K is not known but G ≫ K , the vector of signal coefficients α is now
expanded into a sparse vector x ∈ CG with unknown support, corresponding to the tar-
gets present at those angles. The resulting signal model is denoted as:

y = Ax+n. (4.7)

This over-complete dictionary matrix A ∈ CM×G can now be used directly in the CS or
BCS framework. It should be noted that with the chosen on-grid formulation, targets
with DoAs falling not exactly onto one of the G angles will lead to some losses similar to
straddle losses in the application of DFTs [9].

4.2. BAYESIAN COMPRESSIVE SENSING
The Bayesian compressive sensing (BCS) framework, as it is typical in Bayesian statistics,
introduces a prior belief formulated as a probability density function (PDF) [69–72] to
the weights x. In this case, the prior enforces sparsity in the vector x. The BCS problem
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then aims to estimate a posterior PDF of this vector x. Due to this full posterior PDF,
confidence levels about the estimates are also derived.

Using the assumption that x in (4.7) is compressible, a new vector xs ∈ CG can be
defined identically to x for the K elements with the largest magnitude, and zero values
in the remaining G-K elements, resulting in a K-sparse vector. Similarly, a vector xe ∈CG

can be defined identically to x for the lowest G-K elements and zeroes in the rest, yielding
a (G-K)-sparse vector. Then, (4.7) can be reformulated as follows [69]:

y = Axs +Axe +n = Axs +ne +n = Axs +n (4.8)

where the influence of Axe may be approximated as zero-mean Gaussian noise ne and
merged into the measurement noise n for simplicity 1. Therefore, using the Gaussian
assumption for the noise, the model likelihood can be modeled as [69]:

p(y|x,σ2) = 1

(2πσ2)K /2
exp

{
− 1

2σ2 ∥y−Ax∥2
2

}
. (4.9)

Now, the problem is to estimate the full posterior PDF for x and σ2 given the sensing
matrix A and the measurements y. Different alternatives are presented in the literature
for choosing the sparsity-promoting prior, and a common choice is the Laplace PDF.
Then, the point estimates of x can be found using the maximum a posteriori (MAP) esti-
mate. However, the Laplace PDF is not conjugate to the Gaussian likelihood model, and
therefore, the posterior cannot be evaluated in closed form [69]. Another alternative is
to use a hierarchical prior with similar sparsity-promoting characteristics [69]. First, a
zero-mean Gaussian PDF is defined as the prior on each element in x as:

p(x|α) =
G∏

i=1
N (xi |0,α−1

i ), (4.10)

where α = [α1, ...,αG ] is the precision of each Gaussian distribution and α−1
i = σ2

i the
variance of each distribution of xi . However, this Gaussian prior alone does not enforce
sparsity over x. A hyperprior in the form of Gamma distributions is then imposed in α
and the noise variance σ2 with precision β= 1/σ2 as:

p(α) =
G∏

i=1
Γ(αi |a,b), (4.11)

p(β) = Γ(β|c,d), (4.12)

where a,b,c and d are usually set to zero. When the posterior is evaluated analytically
[69], the result shows that the distribution will strongly peak around xi = 0, and there-
fore, the hierarchical structure will favor most xi being equal to zero, thus promoting the
sparseness.

The posterior over the weights can be evaluated as a multivariate Gaussian distribu-
tion using Bayes’ equation, as follows:

1Since we are only interested in xs , the subscript s will be omitted in the rest of the chapter, considering x the
sparse solution.
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p(x|y,α,σ2) = p(y|x,σ2)p(x|α)

p(y|α,σ2)
= 1

(2π)(G+1)/2|Σ|1/2
e
− 1

2 ||x−µ||2Σ−1 (4.13)

with mean and covariance defined as:

Σ= (σ−2AT A+D)−1 (4.14)

µ= (σ−2ΣAT y) (4.15)

where D = diag(α0,α1, ...,αG ). The closed-form solution can be obtained by marginaliz-
ing over x as:

p(y|α,σ2) =
∫

p(y|x,σ2)p(x|α)dx (4.16)

= 1

(2π)G/2|C|1/2
exp

{
−1

2
yT C−1y

}
(4.17)

with C =σ2I+AD−1AT . The solution can be found by a type-II maximization (or evidence
maximization) analytically as:

L (α) = log p(y|α,σ2) (4.18)

=−1

2

[
G log(2π)+ log(|C|)+yT C−1y

]
(4.19)

Considering some known initial values for α and β, expression (4.14) and (4.15) can be
evaluated. Following this, α and β can be re-estimated using 4.18 in an iterative pro-
cedure such as the expectation maximization (EM) algorithm. An efficient algorithm
to solve this is the relevance vector machine (RVM) inversion derived in [71], which is
used in the next sections. However, this formulation is only valid for real-valued mea-
surements and sensing matrices. In this case, both the measurement vector y and the
steering matrix A are complex-valued. Therefore, an extra step is needed to adapt the
signal model in (4.7) to the BCS framework. Following [73], the signal model is expanded
into a real-valued formulation as:[ℜ(y)

ℑ(y)

]
=

[ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

][ℜ(x)
ℑ(x)

]
+

[ℜ(n)
ℑ(n)

]
(4.20)

where ℜ(·) and ℑ(·) denote the real and imaginary parts of the complex numbers. By
using this expansion, the dimensions of the problem are doubled.

4.3. ARRAY PLACEMENT FOR BCS DOA ESTIMATION
In Section 4.2, the sensing matrix A is assumed to be known. In the DoA estimation
problem, this matrix is defined by the array topology, and it has been proved that not
all sensing matrices will yield a stable, sparse solution [74]. The question this section
aims to answer is how to find an appropriate array topology with recovery guarantees,
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knowing that BCS will be used as the DoA estimation algorithm. This problem has been
theoretically addressed in [75] and inspires the formulation of the proposed approach
for designing sparse arrays for radar-based DoA estimation.

Each iteration of the RVM inversion will estimate the covariance matrix (4.14) and
mean values (4.15) of each xi , and the estimated DoA can be obtained by the index of
the non-zero mean values. With the covariance matrix Σx the differential entropy of the
reconstructed signal can be defined as:

h(x) = 1

2
log |Σx |+ c =−1

2
log |D+α0AT A|+ c (4.21)

The differential entropy can be understood as the overall uncertainty in the recon-
struction [76], and therefore, the goal is to select the new sensor position that minimizes
this uncertainty. In [75], it is proposed to add new measurement projections based on
the Eigenvalue analysis of the covariance matrixΣ. However, in our model for the radar-
based DoA estimation, the sensing matrix is not a random or arbitrary matrix but rather
the array manifold matrix with columns obtained from discretized steering directions,
where each row is directly related to a physical antenna position [77]. Taking the eigen-
vector ofΣx with maximum eigenvalue as a new measurement is not realizable in terms
of antenna array geometry. The differential entropy, therefore, has to be minimized in
another, different way. To this end, each new candidate antenna position within a search
space has to be evaluated in terms of how including this measurement would benefit the
minimization of the entropy. Inspired by [75], an update equation is proposed which al-
lows testing a new candidate row for how much it reduces the entropy if it is included in
the sensing matrix [77]:

hnew = hol d − 1

2
log(1+α0rnew Σ̂x rH

new ) (4.22)

Here,α0 denotes the noise variance, Σ̂x is the estimate of the covariance matrix obtained
in the previous run of the BCS algorithm, and rnew denotes a new candidate row of the
sensing matrix A, which in the DoA case is equivalent to a row of the steering matrix.
Therefore, adding a new candidate row amounts to including a new candidate antenna
position in the sparse array. The important term is the second one in (4.22). This term
has to be maximized for each new candidate in order to minimize the entropy as much
as possible with each new antenna. This term is defined as inspired by [78]:

δh(rnew ) = log(1+α0rnew Σ̂x rH
new ) (4.23)

This general approach based on entropy estimation via BCS and its minimization is
formulated and adapted in the rest of this chapter to the problem of designing effective
sparse arrays for radar-based DoA. Figure 4.1 shows a visual representation of the inclu-
sion of new antenna positions based on a uniform linear grid of candidate positions. To
guarantee the largest possible aperture and, thus, the best angular resolution, the two
outer positions (marked in grey) are always included. Two different versions of the ap-
proach have been developed and presented here for the case of a physical linear array
and MIMO architecture, respectively [77].
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Sensor candidates

max

candidate sensor positions

new sensor = new row 

Figure 4.1: Concept visualization for sparse array generation for DoA estimation: the effect of adding each
candidate antenna position is checked via differential entropy, and the one which achieves max(δh) in (4.23)
is selected.

4.3.1. CASE OF A PHYSICAL ULA
In this version, the algorithm assumes an array of candidate positions based on a phys-
ical ULA, thus giving maximum freedom for antenna placement on the underlying grid.
This case applies to a system with an array of receiving antennas, such as the ones used
in communications, or to a radar system with a single transmitter and multiple receivers.
Starting with only the two outer antennas shown in grey in Figure 4.1, a new antenna is
included at each iteration until the sparse array is filled. At its core, the proposed method
runs the BCS algorithm to estimate the covariance matrix Σ based on a set of training
scenes. This estimate of Σ, which models the uncertainty of the recovered sparse vector
of coefficients directly related to the DoA estimates, is then used to compute (4.23). This
is done to select the next row r that should be added to the steering matrix based on en-
tropy minimization. The algorithm repeats these steps in an iterative manner, as shown
in Figure 4.2.

The algorithm generates a reduced (in terms of the number of rows) steering matrix,
which serves as the dictionary matrix for the BCS algorithm. The columns of the steer-
ing matrix, corresponding to possible target locations (basis functions), are not altered
during the process and depend on the angular grid resolution that has been chosen. It
should be noted that as the complex-valued steering matrix is expanded into the real-
valued matrix described in (4.20), each sensor corresponds to two rows in the expanded
steering matrix. Therefore, when the algorithm selects a row from the expanded steer-
ing matrix that achieves the highest score for δh, also its twin-row resulting from the
complex to real values expansion will be included to represent the new sensor location
correctly. This can be graphically seen in Figure 4.3.

4.3.2. CASE OF A MIMO ARRAY
The MIMO array architecture is more challenging since the resulting virtual receiver ar-
ray used in the DoA estimation results from two separate arrays, the physical transmitter
array, and the physical receiver array. Using the algorithm explained in the previous sec-
tion for the virtual array will lead to the problem of factorizing this array into a physical
transmitter and receiver array afterward. This is not trivial, and it might be the case
that a feasible factorization cannot be found (especially when overlapping virtual ele-
ments are considered). To address this, the iterative approach from the previous section
is modified, and new antennas are added to either the transmitter or receiver arrays.
This decision is again made based on the BCS entropy, but evaluated on the resulting
virtual array [77]. This ensures that no virtual arrays are obtained that cannot be realized
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Figure 4.2: Block diagram of the proposed BCS entropy-based sparse array design algorithm for the physical
ULA case.

2 rows = 1 new sensor

 

Expanded

Figure 4.3: Conceptual visualization of the relationship between sensor elements and rows in the expanded
steering matrix for the physical ULA case. The upper row is the one for which the entropy update equation
maximizes. However, adding the corresponding sensor will add the lower row as well due to the matrix expan-
sion from a complex to a real-valued one.
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Figure 4.4: Block diagram of the proposed BCS entropy-based sparse array design algorithm for the MIMO
case.

in terms of physical transmitter and receiver arrays. Figure 4.4 shows a block diagram of
the proposed algorithm.

In the MIMO architecture, adding a new antenna element to either of the two phys-
ical arrays usually leads to more than one new element in the virtual array. Unlike in
the physical ULA case, this, in a sense, reduces the degree of freedom to place new an-
tennas to maintain the physical feasibility of the resulting sparse array. Moreover, due
to the expansion of the complex steering matrix to real values, each of the new virtual
sensors leads to two new rows in the expanded matrix. In total, this can cause the ad-
dition of many rows to the steering matrix during just one iteration of the algorithm for
the MIMO case, illustrated in Figure 4.5.

4.3.3. EVALUATION WITH SIMULATED DATA

Once an array topology has been selected for a desired number of elements, the perfor-
mance of the DoA estimation using BCS can be evaluated. As explained in the previ-
ous section, the antenna elements’ possible positions have to be defined to generate the
topology. In this case, the array layout of the Texas Instruments MIMO board [50] used
in previous chapters has been used as a reference since it will be used in the next section
for evaluation with experimental results. On this board, several virtual antenna positions
are overlapped, leading to additional constraints to be considered in the sparse array de-
sign with the proposed BCS approach with respect to a generic MIMO architecture. The
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New Tx candidate Expanded

Figure 4.5: Illustration of the relation between new sensors in the Tx MIMO array, resulting in new sensors in
the virtual array and new rows in the expanded steering matrix. The Rx MIMO array is considered unchanged
in this specific example.

total number of non-overlapped channels for DoA estimation in azimuth is 86.

A case study is presented with 5 simulated point targets placed in a field of view of
±40◦. The minimal distance between two targets is never closer than the Rayleigh resolu-
tion limit of the underlying array aperture, which is∆θ ≈ 1.33◦ in this case of an aperture
of 86 · λ2 ≈ 16.96cm. The steering matrix that is used as input to the BCS method and
determines the angular resolution capabilities is therefore discretized to 1◦, which will
be sufficient for each simulation in this case. The BCS framework is implemented as a
single-task method using only one data snapshot. Noise has been added to achieve an
SNR ranging from -20dB to 15dB.

The ROC curves are plotted in Figure 4.6 for two different sparse array topologies
with different numbers of elements. For both cases, the proposed method performs bet-
ter than the average random array of the same number of virtual antenna elements, as in
line with the results in [78] from the sonar literature. It should be noted that the number
of antennas/sensors indicated in the legend by 9-10 refers to the physical Tx and Rx an-
tennas that would constitute resulting virtual arrays with 20 and 25 sensors, respectively.
A zoomed-in version can be seen in Figure 4.6b for better visibility. For an array of 25 vir-
tual antennas, the improvement in terms of the ROC curves is indicated for a constant
false alarm probability and is approximately 1.6%. In a conventional MIMO setup, these
25 virtual antennas could be realized with 5 Tx and 5 Rx antennas. Translating this to the
TI board hardware with 3 Tx antennas and 4 Rx antennas per radar chip, only two such
chips would be necessary to realize the sparse array. This would directly translate to a
reduction of 50% of the utilized chips, as two of the four implemented chips could be,
in principle, removed. While this assessment in terms of required radar chips for given
DoA performances is crude and does not consider the full implications of altering the
hardware [79], it shows an initial quantitative assessment of the possible benefits of the
proposed approach to realize sparse arrays for DoA.

4.3.4. EVALUATION WITH EXPERIMENTAL DATA

The generated sparse arrays have been tested with experimental data collected with the
Texas Instruments Cascade board [50] used in previous chapters, which has a total of
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Figure 4.6: ROC curves and zoomed version (b) for two different sparse arrays where the solid line represents
the sparse array generated by the proposed method, compared to the average random one with the same
number of elements shown in dashed line

Figure 4.7: Measured scenarios: separated corner reflectors (a); two persons forming an extended target (b).

86 unique virtual antenna positions for DoA azimuth estimation. The data has been
collected with all 86 virtual antennas, but only the antenna elements selected by the
proposed BCS sparse array design approach will be used for DoA processing. Two scenes
have been measured and shown for reference in Figure 4.7, namely 5 corner reflectors
with good separation between them (Figure 4.7a) and 2 people together to generate an
extended target (Figure 4.7b).

The five corner reflectors have been placed at a fixed distance of 5 or 10 m, with
varying angles to the radar’s line of sight. A transmitted bandwidth that yields a range
resolution of 37.5cm has been set so that the range bin where the targets are placed can
be easily identified in post-processing. Using all the 86 unique virtual antennas, the
theoretically resulting angular resolution is:

∆θ = λ

d ·M ·cosθ
· 180◦

π
(4.24)

and for a zero-degree azimuth angle equal to∆θ0 =1.33◦. Good detection performance is
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Figure 4.8: Example of BCS-based DoA estimation (red dots) for 5 corner reflectors in the scene.

reached when up to 37 out of 86 possible virtual antennas are included, which is shown
in Figure 4.8 compared to a classical FFT-based spectrum using the full 86 virtual sen-
sors.

Also, the trade-off between Pd and P f a has been analyzed with a fixed threshold de-
tector to compare the performance with the average random array with the same num-
ber of elements. Figure 4.9 shows the ROC curve for the two generated topologies and
the average random array. As expected, the algorithm assuming total freedom in the
choice of the positions of the elements (the physical ULA) has the best performance.
However, this may not be realizable in a MIMO array, and therefore the red curve is more
representative. In any case, both approaches outperform the average random array, and
therefore, it would be beneficial to design the array topology using the proposed algo-
rithm.

Finally, it is interesting to test the generated topologies with extended targets. To this
end, two people have stood shoulder to shoulder to form an extended target spanning
about 10◦. Figure 4.10 shows the results of an FFT beamformer (blue) compared with
DoA values (red dots and green crosses) estimated by the BCS method using a proposed
sparse antenna array. The BCS approach returns high-valued detections in the region
where the extended target is located, and also, the highest peaks of the FFT are present.
These peaks are most likely related to the scattering centers of the extended target. For
the physical ULA-based array and this data capture, around 30 channels are to be suf-
ficient so that the BCS algorithm obtains non-zero coefficients that cover the angular
span of the extended target. Similarly, the MIMO-based generated sparse array with 30
virtual elements is able to recover those coefficients as well, which is displayed by the
green cross marks in Figure 4.10. In both cases, fewer than 50% of the sensors from the
original, full (virtual) ULA of 86 sensors are needed.
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4.4. EFFICIENT SINGLE-SNAPSHOT BCS DOA ESTIMATION
The previous section has introduced a method for finding a suitable array topology for
BCS DoA estimation. With this, the hardware complexity of a MIMO radar can be re-
duced by using fewer antenna elements at the cost of using an iterative algorithm to
estimate the DoA. However, many applications require a very fast DoA estimation; for
example, current automotive radars provide a whole radar cube every 50ms. Moreover,
the DoA estimation must be implemented in embedded hardware with low computa-
tional resources. For this reason, the computational complexity of the DoA algorithms
should not be overlooked, and new low-complexity methods are needed.

As explained in Section 4.2, BCS is usually solved efficiently with the RVM inversion
and has been proven effective in DoA estimation, using both the standard BCS and the
multi-task BCS (MT-BCS) [72] by processing multiple snapshots. However, in any CS-
based DoA estimation algorithm, the estimation performance depends on how fine the
space discretization is done: the finer the grid, the better the performance, until a point
where the sensing matrix starts to be coherent, and the performance degrades. How-
ever, increasing the search space also greatly impacts the computational cost of the algo-
rithms since most of them have an exponential computational complexity with respect
to the grid size. Thus, different strategies have been proposed to overcome this limita-
tion. For example, in [80], the authors propose a multi-scaling approach where a coarse
grid is defined first. Then, by using the estimation uncertainty provided by BCS, a refined
grid is formed in the regions of interest.

This section introduces a low-complexity DoA estimation method based on BCS that
uses multiple non-overlapping small grids. The proposed method is verified using sim-
ulated and measured data, analyzing the estimation accuracy, the resolution capabili-
ties, and the computational cost. Moreover, the performance is compared with differ-
ent state-of-the-art methods, namely Fourier beamformer, single snapshot MUSIC al-
gorithm [57], and the BCS implementation from [73].

In [72], a sequential method is derived from the fast RVM algorithm [71]. This al-
gorithm works in a constructive manner, adding, deleting, or re-estimating a relevant
vector in each iteration. Thus, the complexity of the algorithm is related to the number
of relevant vectors k (i.e., the number of targets present in the scene), and it is proved to
be O (Gk2), where G is the number of angular grid cells. The proposed method adapts
this algorithm by dividing the estimation space into smaller sections and performing in-
dependent BCS estimations. Then, a common stage is used to combine the estimations
per sector into a global estimate, where signal leakage between sectors is resolved.

The first step of the proposed approach is to build W new sensing matrices Aw , being
W the number of sectors covering the same angular space. Figure 4.11 shows a visual
representation of these sensing matrices. Then, W BCS algorithms are run in parallel,
and the output of each of them is concatenated to form a single output. The reduction
in computation cost in this step comes from two main reasons. First, because of the
quadratic dependency of the complexity with the number of targets and knowing that
the sum of squares is less than the square of sums. Thus:

O (k2
1 +k2

2 + ...+k2
W ) <O ((k1 +k2 + ...+kW )2), (4.25)

where ki is the number of targets in sector i . Second, due to the sparse nature of the
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Figure 4.11: Schematic of the DoA angle discretization. In the upper part, a large grid covers the G possible
DoAs in a conventional approach. In the lower part, three non-overlapping smaller grids cover the same G
possible DoAs with the proposed approach.

scene (i.e., there are only a few targets in each range-Doppler cell), many sectors will
contain no targets, leading to a speed-up in the processing. However, signals cannot be
physically separated in sectors, and thus, leakage between sectors may happen when
the DoA to be estimated is close to the edge between sectors. As an example of this phe-
nomenon, Figure 4.12a and Figure 4.12b are presented. In this case, the discretization
grid is 0.5◦, and the sectors are defined such as the last cell of one of them is located at
-0.5◦, and the first cell of the adjacent one is at 0◦. Two cases are analyzed, where the tar-
gets are placed on-grid and off-grid (i.e., at 0◦ and at -0.2◦). As can be seen in the upper
plot of both figures, many targets (i.e., relevance vectors) are generated due to the signal
leaking. Thus, a correction stage is needed to compensate for this effect.

After the W BCS estimations have been performed, a new BCS algorithm is run, but
in this case, using the full A. However, only those relevance vectors generated from the
previous stage are used as candidate basis vectors. This implies that only the condi-
tions in steps 7 and 8 of the algorithm in [71] need to be evaluated to asses if a relevance
vector should be removed. Therefore, the computational cost of this step is very small.
The middle plots of Figure 4.12a and Figure 4.12b show the DoA estimation after the
proposed correction step, while the lower plots show the estimation with the standard
BCS for comparison. As can be seen, both estimations are very close, but the proposed
method is much faster.

It is important to note that, unlike for BCS, this approach cannot be applied to most
of the DoA estimation methods since their computational complexity is related to the
grid size (i.e., the complexity of an FFT is O (G logG) while the complexity of the MUSIC
algorithm is O (G3)). The next section presents an analysis to quantify the reduction in
computational complexity, as well as some performance analysis.

4.4.1. RESULTS

SIMULATION RESULTS

To evaluate the performance of the proposed approach, a ULA with half-wavelenght sep-
aration between elements has been simulated, with isotropic radiation patterns for the
y > 0 half-plane. Seven thousand scenes have been generated in a Monte Carlo fashion,
where a different number of point targets have been placed at different azimuth angles.
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Figure 4.12: DoA estimation for the on-grid (a) and off-grid (b) cases at the boundary between sectors. On the
upper plot, the estimation before the correction stage. The middle plot shows the result after the correction
stage, and the lower plot shows the standard BCS for comparison

The RCS and location of these targets have been sampled from a uniform distribution.
Table 4.1 summarizes the parameters of the Monte Carlo simulation.

First, an evaluation of the estimation accuracy has been performed. To this end,
several DoA estimators are compared:

1. The single-snapshot MUSIC (SS-MUSIC) estimator from [57] with a grid size of
0.5◦.

2. The conventional Fourier beamforming with a 0.5◦ grid.

3. The standard BCS with a grid size of 0.5◦ [72].

4. The proposed approach, sectorized BCS with W = 10 sectors covering 18◦ each,
with a grid size of 0.5◦.

Figure 4.13 shows the mean squared error (MSE) for the four different estimators.
As can be seen, the sectorized BCS slightly outperforms the classical BCS, while the SS-
MUSIC and the Fourier beamformer have the worst performance.
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Table 4.1: Monte Carlo Simulation Parameters

Parameter Value

Number of scenes 7000
Number of targets per scene X ∼U (1,10)
Position of the targets [◦] X ∼U (−70,70)
RCS of each target [dBsm] X ∼U (0,10)
SNR in the scene [dB] X ∼ (−5,0,5,10,15,20,25)
Number elements in array 86
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Figure 4.13: MSE for the different DoA estimators as a function of the SNR.

In addition to the MSE, it is important to analyze the resolution capabilities of the
proposed method. To this end, the same approach as in [81] is used, where the following
random inequality is defined as:

γ(θ1,θ2) = 1

2
[x̂(θ1)+ x̂(θ2)]− x̂(

θ1 +θ2

2
) > 0. (4.26)

With this, two signals are said to be resolvable if the inequality holds and to be irresolv-
able otherwise. Therefore, the probability of resolution can be written as a binary deci-
sion problem as:

Pr es = Pr {γ> 0}. (4.27)

Figure 4.14a shows the probability of resolution for the DoA estimators mentioned
above as a function of the true angular separation of the targets. As can be seen, the
proposed approach follows the same trend as the standard BCS, with a very similar per-
formance. Moreover, it can be seen how the BCS-based methods have much higher
Pr es than the SS-MUSIC and the Fourier beamformer. Furthermore, in Figure 4.14b,
the probability of resolution for different SNRs can be seen, where the methods behave
similarly to the previous result.
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Figure 4.14: Probability of resolution of the DoA estimators. In (a) as a function of the true angular separation
of targets. In (b) as a function of the SNR

Table 4.2: Computational Time for Different DoA Estimators

Method Time (ms)

SS-MUSIC [57] 16.3
FFT 0.035
BCS [73] 101.5
Sectorized BCS (Proposed Approach) 5.0

From the results presented in this section, it is clear that the proposed sectorized BCS
has estimation accuracy and resolution capabilities similar to the standard BCS, overper-
forming the Fourier beamformer and the Single Snapshot MUSIC algorithm. However,
as explained in the previous section, the more considerable improvement is in the com-
putational cost of the method. To analyze this improvement, the average computational
time over the 7000 scenes for each DoA estimator has been calculated, and results are
shown in Table 4.2. As it can be seen, the proposed method can perform the DoA esti-
mation in only 5ms, which is approximately 20 times faster than the standard BCS (68%
of the time is spent in the first step of the method, and 28% on the following correction
stage).

EXPERIMENTAL RESULTS

A field experiment has been carried out with a 77GHz FMCW radar with an 86 virtual
ULA to evaluate the performance of the proposed method with experimental data. Two
corner reflectors have been placed at a range of 5.6m with a distance of 13cm (equivalent
to approximately 1.3◦) between the centers, as shown in Figure 4.15. A single snapshot
has been captured, and the same estimators mentioned in the previous section have
been applied. As seen in Fig. 4.16, both BCS-based methods can resolve two peaks, while
the FFT and SS-MUSIC fail to do so. Notice that the targets are placed in the boundary of
two sectors, so the example shown is the most challenging case for the proposed method.
The estimation is as good as the standard BCS, but with significantly less computational
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Figure 4.15: Placement of the corner reflectors with 13cm between their centers, leading to 1.3◦ separation at
5.6m distance from the radar.

complexity.
Finally, it is important to mention that the estimation accuracy cannot be evaluated

due to the lack of an accurate ground truth. The experimental results are shown only as
an example, and future work will perform a statistical analysis with additional data.

4.5. CONCLUSIONS
This chapter introduces two different topics related to BCS. The first one is how to gen-
erate an array topology given that BCS will be used as the DoA estimation method. The
second one tackles how to reduce the computational load of BCS when using the RVM
implementation. Leveraging both studies, it may be possible to design an automotive
radar that uses BCS as the angle estimation method.

The array topology generation works based on the intrinsic measurement of uncer-
tainty provided by BCS. This approach is versatile and applicable to both physical ULA
and MIMO architectures. The approach works by selecting a suitable number of antenna
elements based on an entropy minimization operation. It is shown by means of simu-
lations and experimental results with corner reflectors and an extended target that the
proposed approach for antenna element selection results in faster uncertainty reduction
compared to random selection, confirming the results of [78] in sonar. This decreased
uncertainty leads to a noticeable performance improvement in the detection of targets
while maintaining accuracy in their DoA estimation. From a practical perspective, the
results in this work suggest the feasibility of utilizing sparse arrays when combined with
a BCS DoA estimation algorithm, offering the possibility to reduce hardware complexity,
cost, and energy consumption by utilizing fewer antenna elements.

The second part of the chapter has shown a low-complexity single-snapshot DoA es-
timation method that uses a sectorized approach to exploit the advantages of BCS. The
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Figure 4.16: DoA estimation results of two corner reflectors with 1.3◦ separation between them. The proposed
sectorized BCS as well as the standard BCS can resolve the two targets. The FFT beamformer and SS-MUSIC
only show one peak.

performance of the proposed method has been analyzed in terms of estimation accu-
racy, resolution capabilities, and computational cost. To this end, a Monte Carlo simu-
lation has been performed with 7000 runs, simulating different scenarios with a varying
number of targets with different characteristics. Results prove that the proposed method
can perform as well as the standard BCS in terms of accuracy and resolution but with a
significant reduction of 20 times the computational cost. Moreover, the method’s per-
formance has been verified experimentally using commercially available radar, proving
that the proposed method can work well with measured data.
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TOTAL VARIATION COMPRESSIVE

SENSING APPLIED TO AUTOMOTIVE

RADAR

This chapter may look like a contradiction to the previous one. I mentioned a few pages be-
fore that in automotive radar the angular estimation space is sparse due to the high range
and Doppler resolution; therefore, we can apply compressive sensing. However, I realized
this may not always be true at close ranges, especially with the rapid increase in the num-
ber of antenna elements in automotive radars. Luckily, if you can find a domain where the
signal you want to estimate is sparse, you can still apply compressive sensing. This chap-
ter is about transforming the ’maybe-not-so-sparse’ angular domain into a sparse domain
using the discrete gradient. The advantage is that even if the original space was sparse, this
transformation would also yield a sparse domain, so nothing would be broken or lost. The
disadvantage is that the algorithm is computationally heavy and not (yet) implementable
in real time without further optimization.

Parts of this chapter have been published in:

I. Roldan, F. Fioranelli and A. Yarovoy, "Total Variation Compressive Sensing for Extended Targets in MIMO
Radar," 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), Trondheim, Nor-
way, 2022, pp. 61-65.

I. Roldan, F. Fioranelli and A. Yarovoy, "Total Variation Compressive Sensing for 3D Shape Estimation in Short-
Range Imaging Radars," in IEEE Transactions on Radar Systems, vol. 1, pp. 583-592, 2023.
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5.1. INTRODUCTION
In the previous chapter, a CS-based method was presented, and like every CS problem,
the estimated signal needed to be sparse in some domain. It was argued that because
of the high resolution in range and Doppler in automotive radars, the angular estima-
tion space will be sparse (i.e., only a few targets will be present per range-Doppler cell).
This is the case in many applications, and the previous method can be applied directly.
However, it may happen that with the increase in the number of antennas in automotive
radars, targets start behaving like extended objects in short and mid ranges, resulting
in new challenges that must be addressed [2]. From this, two main problems can be de-
rived for conventional direction of arrival (DoA) algorithms [4]. First, targets will be com-
posed of many coherent scatterers; thus, subspace methods such as MUSIC or ESPRIT
are not directly applicable (even in multiple snapshots). These methods assume that the
covariance matrix of the measurements is not singular, meaning that the sources are to-
tally uncorrelated concerning each other. Several algorithms have been proposed to deal
with coherent sources, spatial smoothing being the most common one [82, 83]. The spa-
tial smoothing technique divides the array into smaller overlapping subarrays and aims
to build a smoothed covariance matrix by averaging the subarrays’ responses. However,
this algorithm was developed for the case of only a few correlated sources present, for
example, with multi-path components or jamming situations. In [84, 85], it is proved
that a necessary condition for the covariance matrix to have full rank is to apply the
smoothing operator at least the same number of times as the largest coherent sources
group. Therefore, in the situation of extended targets with many coherent sources, this
smoothing approach is not applicable. Furthermore, these algorithms rely on multiple
snapshots to estimate the covariance matrix, which may also not be available due to the
fast-changing scenes in automotive scenarios. For these reasons, the DoA estimation
problem using large arrays in automotive radar does not fulfill the typical requirements
to apply subspace methods.

The second problem of dealing with extended targets with high-resolution radars is
that the estimation space may not be sparse anymore. For a fixed distance (i.e., a fixed
radar range cell), several extended targets may be present, especially in dense urban en-
vironments, such as the facade of a building and a few vehicles. Each target will return
detected power within several azimuth and elevation cells, making the scene for DoA
estimation not sparse. Therefore, all methods based on conventional compressive sens-
ing (CS) will not be reliable. A valid alternative is to apply data-independent approaches
such as delay-and-sum (DaS) beamforming [86] (also known as Fourier beamformer for
narrow band signals). However, they suffer from low resolution and high sidelobe levels,
which is undesirable in automotive applications.

For the above reasons, it is necessary to design algorithms for the new generation
of 4D imaging radars. This chapter presents two methods to overcome the problem of
angular estimation for extended targets using the compressive sensing theory but with a
total variation (TV) regularization. With this proposed formulation, there is no need for
the estimation space to be sparse, but sparsity is required only for the estimated signal’s
discrete gradient. The discrete gradient of the signal will be high when sharp changes
in the signal occur and low, theoretically zero, when the signal is essentially constant.
Specifically, the discrete gradient will only contain high values when the power of adja-
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Figure 5.1: Sketch of a simplified generic signal to illustrate the concept of sparsity related to the proposed
methods. In (a), an example of a sparse signal, where only 9 spikes are present. In (b), a signal with two
relatively large, extended areas of high values is shown, making this signal no longer sparse. Finally, (c) shows
a signal generated from the computation of the discrete gradient of the signal in (b), which makes the resulting
signal sparse again.

cent cells is very different, for example, in the transitions between a DoA cell occupied by
a target and one with empty space. For this reason, even large extended targets occupy-
ing many cells will only generate two spikes in the gradient, at the beginning and at the
end of the target’s shape in an angular profile. Figure 5.1 shows a simplified sketch illus-
trating the concept of sparsity and discrete gradient. As seen, only 5% of the values are
occupied by useful signal, i.e., they have higher values, easily detected compared to the
noise floor of the other values. Thus, the signal can be considered sparse. However, if two
large, extended areas of high values are present as in the other generic signal shown in
Figure 5.1(b), the number of cells/bins with high detectable values will be much higher
(e.g., approximately 50% of all the cells in this example). This means that this second
signal is not sparse. However, if the discrete gradient of the non-sparse signal is taken,
the resulting signal will have only a few high values in the transitions between target and
noise. The discrete gradient output can be seen in Figure 5.1(c), where only about 1% of
the cells are occupied.

Previous research has used the concept of TV regularization and CS applied to radar
data. In [87] TVCS is applied to ultrashort range synthetic aperture radar (SAR) imaging
with non-uniform sampling. While the performance reported is impressive, the pro-
posed approach is challenging to apply to automotive radar for several reasons. The
imaging method presented, based on SAR, needs observation times in the order of tens
of minutes while the target is static. Moreover, the observation space is in the order of
hundreds of millimeters. In automotive radar, only one snapshot is usually available,
which is in the order of milliseconds, while the observation space can be in the order
of hundreds of meters. In the work presented in [88], the authors applied TVCS using
an antenna array, and the results were evaluated using uncorrelated point-like sources.
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While the presented scenario is more similar to those relevant to automotive radar, the
hypothesis of uncorrelated point-like sources is hardly applicable to realistic automotive
radar.

In this chapter, two different TVCS methods are presented. The first one indepen-
dently estimates the azimuth and elevation space for each range cell, whereas the sec-
ond one performs a joint range-azimuth-elevation estimation. It is important to note
that these methods promote a sharper reconstruction of the target’s edges, which makes
the data more suitable for estimating the extent of targets in the radar field of view and
classifying them in subsequent processing steps.

5.2. INDEPENDENT 2D TVCS
In this section, the beat frequency contained in fr (rk ) in equation (2.11) is estimated
using a Fourier transform, and N sub-problems are solved to estimate the azimuth-
elevation space, where N is the number of range cells. To cast the problem in a CS form,
the azimuth-elevation space is discretized in a G points grid, with G being the product of
the cells in azimuth Gθ and the cells in elevation Gφ. Targets are assumed to lie on this
grid. Then, a dictionary matrix A ∈ CMx Mz×G can be constructed with steering vectors
pointing to the defined grid, as explained in Section 4.1, expressed as:

y = Ax+e, (5.1)

where y ∈CMx Mz×1 is the sample vector for a fixed range cell, and x ∈CG×1 is an unknown
complex-valued vector containing the reflected power of the targets and encoding their
angular position. Note that the A matrix is known, pre-computed a priori by stacking
a(θg ,φg ) steering vectors pointing to each g = 1,2, ...,G grid cell. The definition of the
steering vectors can be found in (2.10).

In the standard CS framework, the undetermined system of equations in (5.1) is
solved by enforcing sparsity in the signal x, i.e., G ≫ K , and thus x contains only a few
non-zero elements. The following ℓ1-norm minimization problem is then solved:

min
x

||x||1 + µ

2
||Ax−y||2, (5.2)

where µ is the quadratic penalty parameter that balances the data fidelity to account for
the noise and ||.||2 is the ℓ2-norm.

Some studies have solved the optimization problem in (5.2) for radar-related applica-
tions [89, 90], but with the assumption that the signal of interest x is sparse. As discussed
in the introduction, this may not always be the case in the problem of DoA estimation
in automotive radar discussed in this work, where many multiple extended targets can
be present in the scene of interest. For this reason, an alternative approach is proposed
by using the TVCS framework. In this case, the assumption is that the discrete gradient
of the signal is sparse, which is a more appropriate model for large extended targets (i.e.,
there are only a few transitions between empty cells and cells with returned power from
targets). Moreover, TVCS enforces a sharp estimation of the targets’ boundaries, which is
essential for object classification and estimation of their extent. The TVCS optimization
problem is formulated as follows:

min
x

||∇x||1 + µ

2
||Ax−y||2, (5.3)
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However, for MIMO radars with a large number of channels, a discretization of the
angular space at the sub-degree level is desired. Therefore, the above problem becomes
unsolvable in a reasonable time (e.g., assuming a 48×48 URA and 1◦ cell in both azimuth
and elevation dimensions, A would be a 2304×32400 complex matrix). In this work, the A
matrix is substituted by a partial 2D inverse discrete Fourier transform. To better under-
stand this implementation, let us assume a generic time signal z ∈ CG×1 and its Fourier
transform in matrix form as:

ζ= Wz (5.4)

where ζ ∈CG×1 is the transformed frequency domain and W is the standard DFT matrix.
This formulation is still valid if, instead of a single signal, we have many signals orga-
nized in a matrix form. However, in our case, the time signal has fewer samples than the
desired frequency domain one, and is not necessarily uniformly sampled. Therefore, the
DFT matrix W has to be modified accordingly by selecting only those columns in which
we have samples in the z vector. Since the frequency domain is in a generic case also
non-uniform, this transformation is at times also known as non-uniform discrete Fourier
transform type III (NUDFT-III) [91]. Moreover, knowing that the DFT matrix W is unitary,
we can define the IDFT matrix as WH. Again, in our case, only the appropriate rows of
the IDFT matrix will be used due to the sparse sampling in the time domain. Instead
of computing the matrix multiplication, the fast Fourier transform algorithm is solved,
using only some of the coefficients (due to the sparse sampling), and therefore, the op-
erator pIFFT(·) is defined as the application of the partial Fast Inverse Fourier transform
algorithm, which yields the same results as multiplying the matrix by the IDFT matrix
WH with only the appropriate rows. In our case, we apply the pIFFT(·) operator in two
dimensions, so a new operator, pIFFT2(·) is defined as pIFFT2(·) = pIFFT(pIFFT(·)T)T.

Then, by reshaping x into a matrix X ∈ CGθ×Gφ and y into a matrix Y ∈ CMx×Mz , the
new formulation is given by:

min
X

||∇X||1,1 + µ

2
||pIFFT2(X)−Y||F. (5.5)

where || · ||F is the Frobenius norm, and ∇(·) is the isotropic gradient. The optimization
problem in (5.5) can now be solved efficiently using the total variation minimization by
augmented Lagrangian and alternating directions algorithm (TVAL3) [92, 93]. This algo-
rithm casts the problem into a sequence of unconstrained optimization problems, and
the well-known augmented Lagrangian is used. TVAL3 has been proven to be one of the
most efficient total variation regularization solvers in many fields [94, 95], and in combi-
nation with the fast partial Fourier transforms, it allows the estimation of the complete
2D angular space in azimuth and elevation. The first step of TVAL3 is to reformulate (5.5)
into an equivalent form, introducing a set of auxiliary variables as:

min
W,X

||W||1,1 + µ

2
||pIFFT2(X)−Y||F s.t . ∇X = W. (5.6)

Then, to cast the problem into a sequence of unconstrained optimization problems, the
well-known augmented Lagrangian is used:

L (W,C) = ||W||1,1 − vT (∇X−W)+ β

2
||∇X−W||2F +

µ

2
||pIFFT2(X)−Y||2F, (5.7)
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where .T is the transpose operator, β is the penalty term, and v is the Lagrangian multi-
plier. Therefore, (5.6) can be reformulated as:

min
W,X

L (W,X). (5.8)

Finally, this unconstrained optimization problem series is solved using the alternating
direction method proposed in [92], where the pseudo-code of the algorithm can be
found. Following the authors’ recommendations [92], the default hyperparameters are
used, and the only one tuned for the problem at hand is the hyperparameter µ, which
has to be related to the noise level and sparsity of the specific scene. However, since
these values are not known a priori, µ has been selected using a data-driven approach
based on the simulations described in section 5.4. In this case, µ has been selected as 28.
Moreover, the isotropic operator has been used. Additionally, it should be noted that the
authors also provided the necessary adaptations of the algorithm to deal with complex-
valued measurements [92].

5.3. 3D TVCS
Automotive radars can also provide high-resolution range estimation. Therefore, tar-
gets will occupy several cells in the range dimension as well. Thus, the extension of the
method explained in the previous section to the 3D joint range-angle estimation is a log-
ical step. This 3D estimation problem can be modeled as follows:

Y3D = Fr XAT +e, (5.9)

where Y3D ∈ CN×Mx Mz is the sample matrix with the N fast-time samples stacked per
receiver, X ∈CGr ×GθGφ is an unknown matrix containing the reflected power of the targets
and encoding their angular and range position, and Fr is the inverse Fourier time shift
matrix of size Gr with N selected Fourier coefficients. Fr is formed with the fast-time
vectors fr (rk ) defined in (2.11). A common approach to cast this two-matrix problem
into a suitable form for CS is by the use of the Kronecker product ⊗ as:

vec(Y3D) = (A⊗Fr )vec(X)+e. (5.10)

where vec(·) is a linear transformation of a matrix which converts the matrix into a vec-
tor. However, this problem is again unfeasible in both computational and memory com-
plexity (e.g., following the same example of a 48×48 URA and 1◦ cell in both angular di-
mensions, 128 fast-time samples, and 256 range cells, A⊗Fr would be a 294912×8294400
complex matrix).

To solve this problem, the same approach of using partial inverse Fourier transform
discussed in the previous sub-section is used, by reshaping Y3D into a N×Mx×Mz tensor
and X into a Lr ×Lθ×Lφ tensor, and solving the optimization problem given by:

min
X

||∇X||1 + µ

2
||pIFFT3(X)−Y3D||2. (5.11)

where pIFFT3(·) is the partial inverse FFT operator, equivalent to applying the pIFFT(·)
operator in each of the dimensions independently. Then, (5.11) can be solved efficiently
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Table 5.1: Performance metrics derived from the PSF

-3dB MLW -3dB MLW SLL
(θ = 0◦,φ= 0◦) (θ = 60◦,φ= 60◦)

A
n

gl
e FFT 5.76◦ 9.39◦ −13.18dB

2D TVCS 2.75◦ 3.93◦ −21.37dB
3D TVCS 3.72◦ 5.60◦ −18.50dB

R
an

ge FFT 0.468m 0.468m −13.15dB
2D TVCS 0.468m 0.468m −13.15dB
3D TVCS 0.256m 0.256m −21.9dB

using the TVAL3 algorithm, adapting it for the 3D case by computing the discrete gradi-
ent in the three dimensions and using the Lagrangian expansion defined in (5.7). Sim-
ilarly to the 2D case, the default hyperparameters of TVAL3 indicated in [92] have been
used, except for the hyperparameter µ, which has been tuned following a data-driven
approach, resulting in a value of 213. Moreover, this work has adapted the algorithm by
computing the 3D isotropic TV operator.

Before exploring the performance of the proposed method in complex extended tar-
gets, it is important to analyze the response for single scatter points, also because targets
far from the radar may occupy a single angular cell. To this end, the point spread function
(PSF) has been computed by placing a single scatter point at boresight with a distance of
10 meters and using a 20×20 URA. Figure 5.2 shows in the middle column two cuts of the
PSF computed with the proposed 2D method, and in the left column, the PSF computed
with a conventional Fourier beamformer. As can be seen, the main lobe width (MLW)
in the azimuth-elevation plane is thinner in comparison with the FFT-based method,
which will result in higher angular resolution. Moreover, the sidelobe level (SLL) of the
proposed approach is lower than that of the FFT-based method without any windowing,
which is desirable not to mask weak targets. On the other hand, since the range dimen-
sion is computed with a conventional Fourier transform, both approaches have similar
performance in the range domain. When looking at the performance of the 3D version
on the right column of Figure 5.2, it can be seen how the main lobe in the range dimen-
sion is now reduced while at the same time maintaining the suppression of the range
sidelobes.

A comparison of the PSF performance metrics of the two proposed TVCS methods
and conventional Fourier beamformer can be seen in Table 5.1. For the 2D version, the
MLW is reduced by 3◦ and the SLL is reduced by 4dB, for targets located at boresight as
well as at θ = 60◦,φ= 60◦. For the 3D case, the MLW is reduced, and the SLL is suppressed
in both angle and range with respect to the Fourier estimation, maintaining the scanning
capabilities. However, the angular MLW is larger than in the 2D case at the expense of
reducing the range MLW.



5

62 5. TOTAL VARIATION COMPRESSIVE SENSING APPLIED TO AUTOMOTIVE RADAR

-1 -0.5 0 0.5 1

cos( )sin( )

-1

-0.5

0

0.5

1

c
o
s
(

)

Fourier Beamformer Azimuth-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(a)

-1 -0.5 0 0.5 1

cos( )sin( )

-1

-0.5

0

0.5

1

c
o
s
(

)

2D TVCS Azimuth-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(b)

-1 -0.5 0 0.5 1

cos( )sin( )

-1

-0.5

0

0.5

1

c
o
s
(

)

3D TVCS Azimuth-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(c)

-1 -0.5 0 0.5 1

cos( )

5

10

15

20

25

30

35

40

45

R
a

n
g

e
 (

m
)

Fourier Estimation Range-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(d)

-1 -0.5 0 0.5 1

cos( )

5

10

15

20

25

30

35

40

45

R
a

n
g

e
 (

m
)

2DTVCS Range-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(e)

-1 -0.5 0 0.5 1

cos( )

5

10

15

20

25

30

35

40

45

R
a

n
g

e
 (

m
)

3D TVCS Range-Elevation cut PSF

-50

-40

-30

-20

-10

0
dB

(f)

Figure 5.2: Point Spread Function of the conventional Fourier beamformer and of the two TVCS proposed
methods using a 20×20 array. As can be seen in (a) and (d), the Fourier beamformer presents higher sidelobes
and a wider main beam compared to the other plots. In (b) and (e) the PSF of the 2D TVCS method is shown,
where the angular mainlobe is reduced and the sidelobes are suppressed, maintaining the same properties in
the range domain. Finally, (c) and (f) show the PSF when the proposed 3D TVCS is applied. In this case, the
range is also improved at the cost of minor degradation in the angular domain.

5.4. DATA GENERATION
As explained in the previous section, the aim of the proposed methods is the DoA estima-
tion of extended targets in the context of automotive radar; therefore, a target simulator
has been developed to evaluate the algorithms’ performance for complex targets. In the
literature, many researchers have studied the properties of automotive targets at the W
band [96–98], and some have proposed models to simulate them. However, this thesis
does not aim to design a realistic and precise extended target simulator but to develop a
tool to validate the proposed TVCS algorithms. Therefore, the simulator has been devel-
oped accounting for a trade-off between computational complexity and electromagnetic
fidelity, and for this reason, full electromagnetic simulations have been avoided. More-
over, multi-path, second-order scattering mechanisms, and different material properties
have been ignored. Two different simulation versions have been developed to evaluate
the proposed method’s performance. The first one only simulates simple shapes in the
azimuth-elevation plane, suitable for the 2D version of the algorithm, while the second
one simulates more complex targets with realistic shapes.

5.4.1. 2D SIMULATION WITH SIMPLE SHAPES

For the first method, several extended targets with different shapes were simulated as a
cloud of scatter points with the same radar cross-section (RCS). Examples of these tar-
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gets can be seen in Figure 5.3. The scatter points have been spaced 1° in both azimuth
and elevation and have been randomly shifted by ±0.25° to avoid the so-called ’inver-
sion crime’ (i.e., the points lie precisely in the discretized grid). Also, the convex haul,
which will be used as the target boundary, can be seen in the black dotted line. Then,
a 20Tx-20Rx MIMO radar system that yields a 20×20 virtual URA with half-wavelength
separation between elements is simulated. The signal reflected by each scatter point is
computed and aggregated in each virtual element to generate the y sample vector.

5.4.2. 3D SIMULATION WITH CAD MODELS
Computer-aided design (CAD) models from the 3D shape categorization benchmark
(3DSCB) [99–103] dataset have been used to generate the target models, considering ve-
hicles, pedestrians, and bicycles. Figure 5.4 shows some examples of the shapes from
the dataset.

Once the appropriate CAD models have been selected, a scatterer point is placed at
each of the vertices, setting the same RCS for every point. Therefore, after superposition
of the contributions from each scatterer, the RCS of the whole object is not uniformly
distributed in space, but will be higher where more vertices are present. Higher vertex
density means essentially more complex shapes where the EM waves can backscatter.
However, once the target is placed in a scene with a given position and orientation with
respect to the line of sight of the radar, not all its scatter points will be visible due to self-
occlusion. For this reason, the hidden point removal operator [104] is used to compute
which scatter points should be included in the simulation and contribute to the received
radar signal. An example of the visibility of a car model located at 8 meters from the radar
with two different orientations can be seen in Figure 5.5. As shown, different numbers of
scatter points are seen by the radar depending on the aspect angle of the target and its
orientation. With this approach, the perceived RCS will also depend on the perspective.

An automotive radar with a virtual URA of 100×20 elements spaced half-wavelength
has been simulated, with isotropic antennas for the y > 0 half-space, and the complex
response from the targets has been computed as the superposition of the scattering from
the visible scatter points on the target model. To this end, a Monte Carlo simulation was
carried out where the response from 1680 targets was calculated, varying their position
and aspect angle, and different CAD models were used for each target type. Moreover,
the SNR of each simulation was chosen between -10dB and 20 dB, and it was computed
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Figure 5.3: Examples of simulated extended targets as a cloud of scatter points. In black dotted line the convex
haul, which will be used as the target boundary
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Figure 5.4: Examples of different CAD models used for the generation of synthetic data. Three different cate-
gories relevant to automotive have been selected: cars, pedestrians, and bicycles, and two types of pedestrians
are shown as examples (standing and walking).

Figure 5.5: The same CAD model of the car is seen from two different points of view, where the red point
represents the position of the radar. As can be seen, the number of visible vertices and, therefore, the related
perceived RCS depends on the perspective.
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Table 5.2: Simulation Parameters

Radar Parameters Value

Center Frequency (GHz) 77
Bandwidth (MHz) 200
Array Topology 100×20 URA (Azimuth×Elevation)
Element separation λ / 2
Height from ground (cm) 30

Scene Parameters Value

Number of scenes 1680
Range of targets (m) X ∼U (5,100)
Azimuth of targets (deg) X ∼U (−70,70)
Orientation of targets (deg) X ∼U (0,360)
Scene SNR (dB) X ∼ (−10,−5,0,5,10,15,20)
Type of target Car, Pedestrian, Bicycle
Models per target type 8

in the time domain before any processing gain. The parameters of the simulation can be
seen in Table 4.1.

5.5. RESULTS
In this section, results using both simulation strategies are presented. First, the 2D
method will be applied to the simple shapes, and then, the results using the CAD models
will be shown.

5.5.1. 2D RESULTS

After simulating the baseband signal y received by a MIMO radar described in (2.13) us-
ing the point scatterers given by the extended targets, two methods are computed: a
conventional delay and sum (DaS) beamformer and the proposed 2D TVCS estimation.
A visual example of both angle estimations, with a zoom in the region of interest, can be
seen in Figure 5.6. The result yielded by the TVAL3 algorithm can be seen in the right-
most column of Figure 5.6. The default TVAL3 parameters proposed by the authors have
been used, except µ, which has been lowered to 24 to guarantee a good performance in
the cases with a high noise level. By visual inspection, it is clear that the reconstruction
using TVAL3 represents better the shape of the targets, as well as having lower sidelobes.
These two aspects are the key metrics to assess the algorithm’s performance.

In order to evaluate the similarity between the real shape and the reconstructed
shape of the target, a shape must be extracted from the azimuth-elevation matrix. In this
paper, the boundary at the -10dB drop from the maximum value in each image has been
chosen to define the reconstructed shape. It is not in the scope of the article to discuss
an appropriate value for this definition of the shape, and changing this -10 dB thresh-
old does not change the results from a qualitative point of view. An example of these
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Figure 5.6: On the leftmost column, the cloud scatter points simulate distributed targets. In the middle, the
reconstructed azimuth-elevation matrix using a conventional DaS beamformer. On the rightmost column the
output of the TVAL3 algorithm is shown. The simulations assumed 9dB of SNR.

boundaries can be seen as the dotted black line in the middle and rightmost columns of
Figure 5.6. Moreover, Figure 5.7 shows an example of the real and reconstructed shapes
as colored areas for one realization of a rectangular target. Once the target shape has
been determined given the aforementioned threshold, the Jaccard index, also named in-
tersection over union (IoU), is computed between the real and estimated shape. The
IoU metric is equal to 1 when two areas perfectly overlap and goes to 0 when there is no
union between them. A Monte Carlo simulation has been implemented, modifying the
target shape, position, and SNR. 100 trials were simulated using three shapes: rectangu-
lar, triangular, and circular. The position of the targets has been uniformly sampled in
±60°for both angles. The results aggregated for each SNR are presented in Figure 5.8a. It
is important to note that the SNR refers to the ratio before the angular processing, i.e.,
before the DS gain or TVAL3 gain. It can be seen that the IoU is higher in the TVAL3 case
for every SNR and only starts decaying for rather low values. This appears to indicate
that it is a robust method against noise.

However, the IoU metric only provides an indication of how well the shape is recon-
structed but does not consider how the energy is spread into secondary lobes. This is
important not only because of its influence on the reconstruction quality but also be-
cause it could prevent weak target detection. For this reason, a pseudo integrated side
lobe level ratio (P-ISLR) is computed, where all the energy inside the real target bound-
ary is considered as the main lobe, and all the energy outside is considered as sidelobes.
Again, this test is repeated in a Monte Carlo fashion for different target shapes and lo-
cations. The results for different SNRs are shown in Figure 5.8b. It can be seen how the
TVAL3 reconstruction outperforms significantly in terms of P-ISLR.
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Figure 5.7: Original and reconstructed shapes using a DS beamformer and TVAL3. In this case, a rectangular
target has been simulated. It can be seen how the TVAL3 reconstructs the target’s shape better, yielding an IoU
of 0.892.

-5 0 5 10 15 20

SNR (dB)

(a)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Io
U

IoU vs SNR

DS

TVAL3

-5 0 5 10 15 20

SNR (dB)

(b)

-12

-10

-8

-6

-4

-2

0

P
-I

S
L

R
 (

d
B

)

P-ISLR vs SNR

DS

TVAL3

Figure 5.8: In (a) the IoU vs. SNR for different targets’ shape and locations. In (b) the P-ISLR vs. SNR also for
different targets’ shape and locations.
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5.5.2. 3D RESULTS

As explained in the section 5.3, the proposed TVCS methods aim to better estimate the
3D shape of extended targets in range, azimuth, and elevation. Moreover, the edges of
objects are reconstructed in a sharper manner, and thus, it is expected that classification
methods based on neural networks such as the one proposed in [35] will have higher ac-
curacy when used in combination with the proposed methods. After processing the sim-
ulated baseband signals to obtain the range-azimuth-elevation radar cube, the target’s
shape is estimated to compare it with the ground truth shape. A fixed -20 dB threshold
detector is applied to the result of all three methods, i.e., proposed 2D TVCS, proposed
3D TVCS, and a Fourier-based estimation. This allows us to filter out the noise and ob-
tain only those cells where the target is present. Moreover, a fourth method based on ℓ1

minimization with quadratic constraints is used for comparison. The ℓ1-magic package
available at [105] is used for the implementation, which uses a log-barrier algorithm in
the optimization algorithm. It should be noted that a Hann window is applied before
the Fourier-based estimation so that the sidelobe level is below -20dB. An example of
the estimated point clouds with each method can be seen in Figure 5.9a for a car and
in Figure 5.10a for a walking pedestrian. The subplots (a) show where the scatter points
are placed, as explained in the previous section. As can be seen, they are extended tar-
gets composed of multiple scatter points, occupying more than one resolution cell. The
subplots (b) show the result after conventional Fourier processing, and it can be seen
how almost no detailed shape information is preserved, with all the points clustered in
a single large shape. However, both proposed methods reconstruct more details. For ex-
ample, in Figure 5.9c and Figure 5.9d, it can be seen that the middle part of the car has a
higher height, and the two wheels are visible. On the other hand, Figure 5.10c and Figure
5.10d show how the head and some limbs of the walking pedestrian are separated from
the main body.

However, it is important to provide a quantitative metric to assess the shape estima-
tion performance of each method. In a 2D case, this can be easily done by generating the
bounding box of the 2D point cloud and then computing the IoU between the estimated
and the ground truth surfaces. However, two challenges are presented when the prob-
lem is formulated in three dimensions. First, automatically generating a tight bound-
ing box around the point cloud is not trivial since most available algorithms generate a
cuboid that does not capture the realistic volumetric details of objects of interest. Sec-
ond, computing the IoU on a 3D continuous space is only solved for oriented cuboids,
and calculating it for complex, arbitrary 3D volumes is still an open problem.

For this reason, this work uses an alternative, simplified approach where the 3D
range-azimuth-elevation space is discretized into voxels. A voxel is then occupied if at
least one point of the point cloud generated by the different algorithms under evaluation
is inside the voxel. This process is known as voxelization and allows for a more straight-
forward computation of the IoU, comparing the occupied voxels between the estimation
and the ground truth. It is also the approach routinely followed by the latest research in
autonomous driving using computer vision and Lidar data [106, 107]. The IoU will have
a value of 1 if both volumes perfectly overlap and 0 when the two volumes are completely
disjoint.

In this work, the voxel size has been selected as half the resolution cell in each di-
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(a) (b)

(c) (d)

Figure 5.9: In (a) the scatterer-points of a car; in (b) the estimated point cloud with a Fourier beamformer after
a fixed threshold; in (c) the estimated point cloud with the 3D TVCS method; in (d) the estimated point cloud
with the 2D TVCS. As it can be seen, the Fourier beamformer generates a single large shape without details,
whereas in the 3D TVCS and 2D TVCS results, more details are preserved: for instance, it can be seen that the
middle part of the vehicle is higher and the wheels are visible

(a) (b) (c) (d)

Figure 5.10: In (a) the scatterer-points of a pedestrian; in (b) the estimated point cloud with a Fourier beam-
former after a fixed threshold; in (c) the estimated point cloud with the 3D TVCS method; in (d) the estimated
point cloud with the 2D TVCS. As it can be seen, the Fourier beamformer generates a single large shape without
details, whereas in the 3D TVCS and 2D TVCS more details can be appreciated.
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Figure 5.11: Average 3D IoU for each compared method as a function of SNR. As can be seen, both proposed
methods outperform the standard CS and FFT-based methods. The 2D version of the proposed algorithm has
a better performance under higher SNR conditions.

mension to minimize the quantization errors. The average IoU over the whole dataset
has been computed for the four methods, and the results can be seen in Figure 5.11 as
a function of the SNR. As can be seen, both proposed methods outperform the Fourier-
based and the standard ℓ1 minimization approach. It is important to note that in the
simulation, single extended targets are considered in the scene, and therefore, the stan-
dard ℓ1-norm method is stable. This may not be the case in a realistic automotive scene
with additional targets. On the other hand, it is also possible to observe that the 2D ver-
sion of the proposed algorithm yields a higher IoU than the joint 3D version. From the
PSF analysis, it was noted that the angular spread was lower in the 2D case than in the
3D case. Since the range resolution is already high, improving the angular resolution
appears to have a higher impact on the overall IoU. Moreover, it is possible to observe
that the impact of the noise is higher in the 2D version. A possible explanation for this
phenomenon can be found in the high difference in the dimensionality of the estimation
space between the 2D and 3D problem formulations. Since the estimation space of the
3D problem is two orders of magnitude larger, also the sparsity level of the estimation
space is two orders of magnitude higher. The hyperparameter µ of the TVAL3 algorithm
is supposed to be tuned using both the sparsity level and the noise level in the observa-
tions, but in practice, it is not possible to know these values. Therefore, µ has been kept
constant for a fair comparison, but its impact on the 2D version is higher, making the
algorithm under-perform in low SNR conditions.

It is also interesting to analyze the algorithms’ performance when the resolution of
the system changes. To this end, two independent analyses have been performed, where
the angular and range resolutions are analyzed separately. A constant SNR of +10dB has
been used for both tests. For the first analysis, the system’s aperture has been modified
by changing the number of elements in the array, from 25 to 200 elements on the x-axis
and from 5 to 40 on the z-axis. Moreover, the voxel size has been kept constant, ensuring
it is equal to half the smaller resolution cell. The results averaged over the whole dataset
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Figure 5.12: Average 3D IoU for each compared method at +10dB SNR as a function of array size (a) and as
a function of signal bandwidth (b). In both cases, it can be seen that the proposed methods outperform the
standard CS and FFT-based methods, and the performance increase is higher with larger apertures.

can be seen in Figure 5.12a. As expected, the results show that the IoU is higher when
a larger array is used due to increased angular resolution and, thus, the capability to
reconstruct more details of the objects. Moreover, it can be seen how the difference be-
tween both proposed methods remains quite constant, while the improvement against
the other methods rises. With a larger array (i.e., smaller angular resolution cells), the
targets will spread over more angular cells even at long ranges. Therefore, the proposed
two methods specifically designed for extended targets will perform better.

Finally, the impact of the range resolution on the algorithms’ performance has been
analyzed. The transmitted bandwidth has been changed from 100 to 400 MHz (i.e., half
and double the baseline bandwidth, respectively) while keeping the original array size.
Figure 5.12b shows the results for the different bandwidth values.

5.6. CONCLUSIONS

Two compressive sensing based methods to estimate the 3D range-azimuth-elevation
space of extended targets with MIMO radars have been developed. Based on the to-
tal cariation regularization to enforce sparsity in the signal’s gradient, these methods
are specifically designed for the next generation of automotive radars, where the targets
will be extended into multiple resolution cells in the cross-range due to the expected
improvements in angular resolution. The first proposed method performs an indepen-
dent 2D azimuth-elevation estimation at each range cell, whereas the second proposed
method performs a complete joint 3D range-azimuth-elevation estimation. Extensive
radar simulations using CAD models of typical targets for automotive applications have
been developed to validate the algorithms in terms of their shape reconstruction ca-
pabilities. Results show an improvement in the shape reconstruction for both meth-
ods with respect to the standard Fourier estimation and the standard CS based on ℓ1

minimization with quadratic constraints. The 2D version of the proposed approach (2D
TVCS), where the range is estimated with a Fourier transform, outperforms the 3D ver-
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sion (3D TVCS) on higher SNR conditions, but it is more sensitive to the tuning of the
algorithm hyperparameter µ. Moreover, it has been proved that the proposed methods
significantly increase performance when using high-resolution radars with larger array
apertures, due to targets’ signatures spreading over more resolution cells. Future work
will assess the impact on classification accuracy by using the presented methods.



6
DEEP LEARNING DETECTOR AND

RADELFT DATASET

In the original plan, this chapter was supposed to be about classification (and in reality,
the whole thesis was supposed to be just about classification). However, when we finally
mounted the radar on the car, solved the many technical and non-technical issues in-
volved, collected lots of data, and started to process it, I realized that I had to implement
a detector (in the ’radar sense’ of the word) before diving into classification. The problem
was that designing a suitable detector for the heterogeneous types of targets and scenes
was not easy. What worked in some situations did not work in others, and tuning the hy-
perparameters of the available detectors for all the situations was impossible. The content
of this chapter is about designing a detector where there is no need to tune its parameters
for each specific target or scene, leveraging on artificial intelligence.

Also, this chapter is about data. Unlike the computer vision community, where many
public datasets are available, only some are available for radar practitioners (although
this is rapidly changing). There are many reasons for this, from the costly data collection
process in terms of time and finances, to the little reward of sharing such data. To do my
bit in changing things, I have shared all the data we collected, including radar, camera,
lidar, odometry, and the code to use it.

Parts of this chapter have been published in:

I. Roldan, A. Palffy, J. F. P. Kooij, D. M. Gavrila, F. Fioranelli and A. Yarovoy, "See Further Than CFAR: a Data-
Driven Radar Detector Trained by Lidar," 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA, 2024,
pp. 1-6.

I. Roldan, A. Palffy, J. F. P. Kooij, D. M. Gavrila, F. Fioranelli and A. Yarovoy, "A Deep Automotive Radar Detector
using the RaDelft Dataset," in IEEE Transactions on Radar Systems.
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6.1. INTRODUCTION
Previous chapters have dealt with the angular estimation problem and how to gener-
ate a high resolution radar cube. This cube contains not only returns from targets, but
also noise. The question this chapter tries to answer is how to effectively select only
those cells containing target and drop those containing noise, i.e., how to design a de-
tector for high resolution automotive radar data. The most common detectors are the
well-know window-based constant false alarm rate (CFAR) detectors. While CFAR de-
tectors have proven optimal in other environments [9], their application in the dynamic
and unpredictable conditions of road traffic scenarios suffers from poor performance
[10, 11]. Namely, they are designed to maintain a constant rate of false alarms amidst
varying clutter, but they struggle to adapt to the rapidly changing environments typical
of roadways. Complications such as non-uniform clutter (or the lack of reliable clutter
models for this task), target masking, and shadowing can significantly reduce the effec-
tiveness of CFAR detectors in automotive radar settings. Additionally, CFAR detectors are
constrained by a fundamental limitation: they typically assume a fixed, expected target
size based on predefined guard and training cell hyperparameters. However, in an auto-
motive context, this assumption is problematic as the size of potential targets can widely
vary, ranging from medium-sized objects such as pedestrians to large vehicles like trucks
or buses. Moreover, the perceived size of these targets in the radar’s angular dimension
changes with distance. Large objects occupying multiple cells at close range can appear
as simpler point-like targets at further distances. This relationship between angular tar-
get size and distance adds another layer of complexity to using CFAR detectors in auto-
motive radar, necessitating alternative solutions to accurately detect and classify objects
under varying road conditions.

To address these limitations, a new data-driven radar target detector using a unique
cross-sensor supervision pipeline has been developed. The proposed data-driven de-
tector is initially trained with synchronized radar and lidar data together and can subse-
quently generate denser point clouds using only raw data from a high-resolution auto-
motive radar. The proposed approach is extensively validated using the RaDelft dataset.
This dataset is a large-scale, real-world multi-sensory dataset recorded in various driv-
ing scenarios in the city of Delft, collected as part of this thesis and shared publicly.
This chapter then introduces two contributions: the recording & sharing of the RaDelft
dataset and the proposed data-driven detector. Therefore, two related work subsections
are included to review the state-of-the-art and highlight the need for new radar datasets
and new detection algorithms.

6.1.1. RADAR DATASETS RELATED WORK

Several automotive radar datasets have recently been published for different tasks, cov-
ering many of the processing steps listed in Section 2.3. However, most of them are un-
suitable or, at the very least, limited for radar practitioners since the data is already pro-
cessed, often to the point cloud level. Thus, it is impossible to apply signal processing
algorithms that operate on lower-level data. Some datasets also provide the radar cube
data, but few give the raw ADC data needed to test advanced signal processing methods.
Essentially, each already-performed processing step limits the scope of the research that
can be performed with that data. On the other hand, this simplifies the steps needed to
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make it suitable for other subsequent tasks.
A recent summary of the available automotive radar datasets can be found in [108].

Nevertheless, in this section, only those datasets that provide data before the point cloud
level of processing are considered since they are the most useful for radar practitioners.
Table 6.1 summarizes such datasets. As can be seen, most of these available datasets
are recorded with automotive radars with linear antenna arrays, meaning that there is
only azimuth resolution and no information about the elevation of targets. While useful
for some tasks, this type of data is not representative of the data of next-generation 4D
radars that are becoming the standard in the automotive field. On the other hand, some
datasets already include a 4D imaging radar [27, 109, 110]. The RADial [109] dataset pro-
vides ADC data level suitable for radar practitioners, but the array topology used is not
public, and thus, advanced array processing methods cannot be applied. The Color-
Radar [110] dataset uses a commercially available radar, therefore its datasheet is public.
However, most of the scenes are recorded indoors and without a vehicle. Moreover, cam-
era information is not provided. Finally, the K-Radar [27] dataset is the most complete,
providing range-azimuth-elevation-Doppler cubes, many auxiliary sensors, and useful
code to parse the data. However, no ADC-level data is provided, which may limit the
potential research scope of the dataset.

Considering the limitations of the aforementioned public datasets, this work
presents a new dataset, RaDelft, aiming to close the gaps in the existing available datasets
collected with a commercially available radar. Our dataset contains three different levels
of data processing, namely ADC-level, radar cubes, and point clouds as defined in the
previous sections, such that it can serve different future research directions. Addition-
ally, the dataset contains synchronized data from camera, lidar, and odometry, recorded
in real-world driving scenarios in the city of Delft. Additional details are provided in the
following Section 6.2, specifically the sensors used and the developed radar signal pro-
cessing pipeline.
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6.1.2. RADAR DETECTORS RELATED WORK

The radar detection problem can be formulated as a binary decision task for each radar
cube cell, whose objective is to determine whether there is a target or only noise in that
specific cell. As mentioned in the previous sections, the automotive radar field has par-
ticular challenges when tackling the detection problem. First, the definition of clutter
is not univocal in this application since targets of very different natures should be de-
tected, including pedestrians, vehicles, bridges, potholes, road debris, and buildings,
among others. Second, since modern automotive radars have high resolution in range,
Doppler, and, to some extent, angle, targets occupy more than a single cell, behaving
as extended targets. Finally, not only do the sizes of targets to be detected have a large
variance, but also, for the same target, its perceived size can change over time. This is
due to two different physical phenomena: the dependency of the angle estimation with
its cosine with respect to the radar line of sight and the relationship of the Cartesian size
of the cell with the range due to the angle. Due to all these reasons, conventional CFAR
detectors are expected to perform poorly in automotive radar data [10, 11].

In the past years, several works have been published on detecting extended targets in
radar data. Image-based detector techniques have been explored in the literature [116],
but usually rely on high-contrast data where sharp transitions occur between noise and
target. However, due to the finite length nature of signals, spectral leakage in the Fourier
processing makes, in general, these transitions soft. Moreover, subspace detectors for
extended targets in range and Doppler have been developed [117, 118], but still, an ex-
pected spread size of the target energy is needed, in addition to a high computational
cost, making them unsuitable for real-time imaging automotive radars.

Also, DL techniques have been applied to the radar detection problem [10, 23–27].
In [23], a DL detector is proposed, outperforming several 2D CA-CFAR detectors, but
only tested in simulated data. In [119] and [25], the authors propose a similar network
structure using 3 autoencoders in three 2D projections (range-angle, range-Doppler, and
angle-Doppler) using the annotated dataset in [30] by a camera, avoiding full 3D detec-
tion. However, using camera detections as ground truth may be limited due to the 2D
nature of camera images. On the other hand, the works [27] and [10] propose two differ-
ent NNs, but both use the lidar point cloud as ground truth. Since lidar provides high-
resolution 3D point clouds, it seems a more reasonable choice to serve as ground truth.
The proposed method in [10] uses a neural network to detect targets only in the range-
Doppler dimensions, followed by the angle estimation and a spatio-temporal filter to
enhance the resulting point cloud. On the other hand, in [27], a novel sparse approach
to use an NN to detect in the range-azimuth-elevation space is presented. However, the
Doppler information is collapsed into a single value, preventing the network from learn-
ing the possible angular estimation enhancement due to its relationship with Doppler
[19, 20]. Moreover, only the top 10% power cells are used as input to the network, and
therefore, a pre-detection step is used, which can potentially remove target cells. This
may be critical in automotive scenarios, where the angular sidelobes of close-range tar-
gets maybe even 20dB higher than weakly-reflecting distant targets such as pedestrians.
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Figure 6.1: Different frames of different scenes of the RaDelft dataset. As it can be seen, there are city center
environments, suburban, and different road infrastructures such as large bridges.

6.2. RADELFT DATASET
The dataset was recorded with the demonstrator vehicle presented in [120] with an ad-
ditional Texas Instrument MMWCAS-RF-EVM [50] imaging radar mounted on the roof
at 1.5 meters from the ground. The details of the radar and the waveform used are pro-
vided in Section 6.2.1. The collection was performed driving in multiple real-life scenar-
ios in the city of Delft with different scene characteristics, such as suburban, university
campus, and Delft old-town locations. Figure 6.1 shows four different camera frames to
illustrate the differences in the environments. The output of the following sensors was
recorded: a RoboSense Ruby Plus Lidar (128 layers rotating lidar) and the imaging radar
board installed on the roof, a video camera (1936 × 1216 px, ∼30 Hz) mounted behind
the windshield, and the ego vehicle’s odometry (filtered combination of RTK GPS, IMU,
and wheel odometry, ∼100 Hz). The sensor setup can be seen in Figure 6.2. All sensors
were jointly calibrated following [121] and time synchronized. With a 10 Hz frame rate,
each scene contains around 2500 radar frames, adding to a total of 16975 frames.

Example code for loading and visualizing the data is provided in a repository1 to fa-
cilitate the use of the dataset, which can be downloaded from [122]. Moreover, the radar
data is specifically provided at different processing stages for researchers with different
backgrounds and interests, including ADC data, radar cubes, and point clouds. The de-
tails of the radar processing applied to the data can be found in the next subsection.

6.2.1. RADAR CONFIGURATION AND PROCESSING

In terms of the specific details of the radar system, this is the MIMO FMCW evalua-
tion board MMWCAS-RF-EVM from Texas Instruments, with 12 transmitters and 16 re-
ceivers [50]. The resulting virtual array is an 86-dense uniform linear array (ULA) in the
X-direction (shown in Figure 6.2) with half-wavelength spacing, allowing azimuth esti-
mation without grating lobes and a theoretical resolution of 1.33◦ looking at boresight.
However, from the point of view of the 2D angular estimation problem in both azimuth
& elevation, the resulting uniform rectangular array (URA) is very sparse, with only a few
minimum redundancy arrays (MRA) in the Z-direction (shown in Figure 6.2). Thus, the
elevation estimation is very poor in terms of both resolution and ambiguity. The details
of the array topology can be found in [50] with graphical representations of the positions
of all the elements. Moreover, some elements are overlapped, which can be used to ad-
dress some of the problems introduced by using time division multiple access (TDMA)
in transmission, as detailed later in this sub-section.

1https://github.com/RaDelft/RaDelft-Dataset
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Figure 6.2: Vehicle used to collect the dataset presented in this section, equipped with a high-resolution radar,
lidar, camera, and odometry. The radar is shown in the top-right inset, with the defined X and Z coordinate
axes assumed in this work.

Table 6.2: Radar Waveform Parameters used in the Data Collection

Waveform Parameters Value

Start Frequency (GHz) 76
Effective Bandwidth (MHz) 750
Chirp Slope (MHz/µs) 35
Chirps Length (µs) 28
Idle Time (µs) 5
Number ADC Samples per Chirp 256
Number of Chirps per Frame 128
Sampling Frequency (Msps) 12
Tx strategy TDMA

Derived Quantities Value

Range Resolution (m) 0.2
Maximum Unambiguous Range (m) 51.4
Velocity Resolution (m/s) 0.046
Maximum Unambiguous Velocity (without extension) (m/s) 2.48
Maximum Unambiguous Velocity (with extension) (m/s) 17.36
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The radar waveform parameters used can be seen in Table 6.2, with the derived res-
olution and ambiguity values. The complex baseband samples are saved in the dataset
using the same format provided by the radar manufacturer, but MATLAB code is pro-
vided to parse it, reshape it into a N f ast ×Nsl ow ×NV chan 3D tensor, and process it to the
radar cubes.

The first step of the processing is to apply a Hamming windowing and an FFT in the
fast-time and slow-time dimensions to perform range and Doppler estimation. Then,
the detrimental effects of the TDMA have to be compensated. The first effect is related
to the extension of the pulse repetition interval (PRI) by a factor equal to the number
of transmitters. Therefore, the maximum unambiguous Doppler and the corresponding
maximum measurable velocity (without ambiguity) vmax is reduced, as can be seen in
equation (6.1):

vmax = c

4 fc PRI
, (6.1)

where c is the speed of light and fc is the carrier frequency. This effect is especially prob-
lematic in the automotive context, where targets can have high relative speeds. More-
over, the phase difference between signals received from different transmitters will de-
pend on both the angle of arrival of the signal and the velocity of the targets, due to
the target’s movement between transmission times of different transmitters operating in
TDMA mode [123]. This resulting phase migration term is shown in equation (6.2):

φmi g = 4π

λ
v∆t , (6.2)

where λ is the wavelength, v is the relative speed of the target, and ∆t is the time dif-
ference between transmitters. This term must be compensated before performing angle
estimation to avoid significant artifacts.

In this work, both undesirable effects of TDMA are solved using the overlapped vir-
tual antennas present in the radar system with the algorithms provided in [124]. How-
ever, it is important to take into account that the maximum unambiguous velocity ex-
tension only works when a single target is present in a range-Doppler cell. Therefore,
if multiple targets are folded into the same Doppler bin, or there are targets in different
angles at the same range-Doppler bin, the algorithm will not be able to address the prob-
lem. Since this work does not aim to solve the Doppler ambiguity problem in TDMA, the
aforementioned constraint is accepted as a limitation of the current commercial radar
system. Nevertheless, it is assumed that making the ADC samples directly available in
our dataset can be valuable for the research community, for example, applying more ad-
vanced approaches for Doppler/velocity ambiguity in TDMA in the future.

The angle estimation can be performed once the TDMA effects have been compen-
sated. It is important to remember that the resulting virtual array is a very sparse URA
with some structures. While other research works deal with this type of array, for in-
stance by trying to fill/interpolate the missing elements or applying compressive sens-
ing techniques [17, 125], the core of this work is not to improve the angular estimation
with sparse arrays. Therefore, a very simple approach of zero-filling and FFT processing
has been applied. However, due to the sparseness of the radar antenna array in the Z-
direction (shown in Figure 6.2), grating lobes and high-side lobes appear in elevation. To
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mitigate this problem, the field of view in elevation has been restricted to ±15◦ degrees,
and the elevation value with the highest power has been selected and saved, discarding
the rest. Also, the azimuth estimation has been restricted to ±70◦ for two reasons. First,
the angular estimation performance outside this region is rather poor, as:

∆θ∝ 1

cosθ
, (6.3)

being∆θ the angular resolution and θ the estimated angle. Secondly, the radiation power
is almost 10dB lower than at boresight outside this region, making target detection very
challenging.

Subsequently, after zero-padding, FFT processing and field of view (FoV) cropping,
the resulting radar cubes have dimensions Nr ×ND ×Na ×2 (500×128×240×2). This
essentially means that for each range-Doppler-azimuth cell, there are two values: the
elevation value with the highest detected power level, and the power level itself. Note
that the 240 azimuth bins span the ±70◦ degrees of the FoV after cropping, but not uni-
formly, due to the non-linear relation in the equation (6.3). For simplicity and to save
storage space in the shared dataset, the aforementioned values are saved as different
cubes since the elevation can be stored as an integer number (i.e., denoted as elevation
bin), while the power value is a float.

Finally, a detection stage is applied to the radar cubes to generate a point cloud.
This lower dimensionality representation of the data is also provided within the shared
dataset to ease the process for researchers who want to use this highly processed data
straightforwardly without going into the details of radar signal processing.

6.3. PROPOSED DATA DRIVEN DETECTOR
To address the aforementioned shortcomings of current detectors in automotive radar,
a novel data-driven detector is proposed to generate 3D occupancy grids only with radar
data, using neural networks and lidar data as ground truth. A visual summary of the
method can be seen in Figure 6.3.

The first step of the method is to adapt the lidar point cloud to serve as the ground
truth. For each radar cube, the closest lidar point cloud in time is selected based on the
timestamps for both radar and lidar data, assuming that a small error due to different
start times may be present. Since the lidar system used in this work is mechanically ro-
tating, it provides 360◦ coverage. Therefore, the first step is to crop this to the same FoV
of the radar, i.e., ±15◦ in elevation, ±70◦ in azimuth, and a maximum range of 50m. To
illustrate this difference in the FoV, Figure 6.4b shows the cropped lidar point cloud com-
pared to the original point cloud in Figure 6.4a. Moreover, removing all the lidar points
from the road surface is essential as the road surface is hardly visible to the radars and
could lead to noisy ground truth for the training process. The Patchwork++ algorithm is
used to this end [126]. After removing the road surface points, the resulting lidar point
cloud can be seen in Figure 6.4c.

Finally, the processed lidar point cloud has to be converted into a 3D cube to serve
as ground truth. This voxelization process can be understood as generating a 3D occu-
pancy grid, where each voxel contains ‘one’ if at least one lidar point is inside and ‘zero’
otherwise. However, it is important to note that the radar cube grid is not uniform due
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Figure 6.3: Overview of the proposed data-driven detector. The steps to generate the 3D lidar occupancy grid
are shown on the top row, which will then be used as ground truth for training the neural network. The radar
signal processing pipeline is shown at the bottom of the figure and is needed to generate the input data for the
network. RDC stands for range-Doppler-channel (no angle estimation), and RAED stands for range-azimuth-
elevation-Doppler [127].
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Figure 6.4: In (a) the original point cloud as provided by the lidar sensor. In (b) the lidar point cloud after
cropping to mimic the radar field of view (i.e., ±70◦ in azimuth and ±15◦ in elevation). In (c), the lidar point
cloud after the road surface removal using PatchWork++ [126], which will be used as ground truth to train the
proposed data-driven detector.

to the Fourier Transform processing for angular estimation and its relationship with the
cosine of the estimated angle. This effect, which essentially makes the cells thinner at
boresight and broader at the edge of the field of view, must be considered to generate the
same non-uniform lidar 3D occupancy grid. This process of transforming the lidar point
cloud into the 3D occupancy grid effectively reduces the resolution of the lidar since a
grid cell may contain many lidar points. The resulting 3D occupancy grid matches the
dimensions of the radar cube, and thus, have the same resolution. It is important to
notice that all this process can be performed offline, outside the NN training loop

Once the ground truth has been appropriately generated, as described above, the
NN can be trained. The proposed NN is an evolution of the previous model validated
in [127]. Specifically, in this case, the network is modified to use three data frames as
input to model temporal patterns, and the NN simultaneously predicts the 3D occu-
pancy grid for the three frames. This modification has been implemented to reduce the
’flickering’ usually present in the radar point clouds, where isolated points pass the de-
tection threshold due to instantaneous high noise but disappear in consecutive frames.
Therefore, the proposed NN tries to enforce some temporal consistency. A diagram of
the complete network architecture is shown in Figure 6.5. As it can be seen, the input is
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a T×2×R×A×D tensor, where in practice, T = 3 (frames), R = 500 (range bins), A = 240
(azimuth bins), and D = 128 (Doppler bins). As explained in the previous section, these
values are higher than the initial number of fast-time samples, slow-time samples, and
virtual channels due to zero padding applied before the FFT processing. Moreover, the
number of frames T = 3 has been chosen as a trade-off between managing to capture
temporal information and losing useful correlation between frames since the scene is
often not static, and including too many frames will result in inconsistencies.

In terms of architecture, the first part of the proposed NN is the DopplerEncoder
subnetwork. As the lidar cannot measure Doppler information, the detections on the
Doppler dimension of the radar data cannot be directly utilized and compared to the
ground truth. However, there is a known relationship between Doppler and angle in the
case of moving platforms (or moving targets). Thus, the Doppler dimension is not simply
removed from the radar data but rather encoded so that it can still be used in the overall
detection process, as it may be beneficial for angular estimation. Specifically, here the
DopplerEncoder subnetwork extracts all the Doppler information in each range-azimuth
cell and encodes it into the channel dimension. This is achieved by using two 3D con-
volutional layers followed by a 3D max pool layer, transforming the 2×R×A×D input
tensor into a 64×R×A tensor, where the 64 channel dimension contains the encoded
information of Doppler and elevation.

The second part of the proposed network is an off-the-shelf 2D CNN backbone, ap-
plied to estimate the final R×A×E (500×240×44) 3D occupancy grid. The significant
advantage of using such 2D CNN backbones is their compatibility with hardware ac-
celerators (e.g., GPUs and TPUs) and major machine learning frameworks (e.g., Tensor-
Flow, PyTorch), leading to enhanced computational efficiency. While the current pro-
posed implementation employs a feature pyramidal network (FPN) [128] with a Resnet18
backbone [129], our modular design allows for different architectures to be used for this
purpose, enabling the system to be tailored to the specific memory and computational
requirements of the intended platform.

These two parts of the proposed network are applied to each of the three considered
frames independently, as shown in Figure 6.5, but the weights of the layers are shared,
and the output is concatenated into a T×R×A×E (3×500×240×44) tensor. Finally, to take
into account the temporal relationship between the three frames, a third module com-
posed of six 3D convolutional layers is included (referred to as TemporalCoherenceNet-
work in Figure 6.5). It is important to notice that even if the output is a 3D occupancy
grid for each frame, the power information on each cell is not lost, since the indices of
the detected cells from such grid can be used to retrieve the corresponding intensity in-
formation from the original RAED cube.

One of the key characteristics of the radar data is the scene sparsity. Of all the voxels
in the generated 3D occupancy grid, only around 1% contain targets. Therefore, this
must be considered when selecting the loss function for training the neural network. In
this work, the focal loss [130] is used for this purpose, which handles class imbalances in
a similar way to the weighted cross-entropy loss, and adds an extra modulating factor to
focus on the hard cases. The focal loss [130] is defined as:

F L(pt ) =−αt (1−pt )γ log(pt ), (6.4)
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Figure 6.5: Proposed network architecture for the data-driven detector composed of three sub-networks. First,
the DopplerEncoder network aims to encode the Doppler information so that its information is retained even
if not directly comparable with ground truth lidar data. Then, a standard FPN with a Resnet backbone is used.
Note that the three branches process three frames of data separately but share the same weights. Finally, the
three outputs are concatenated to produce an input tensor to the temporal coherence network, which generates
the final occupancy grid for each frame.

with

pt =
{

p if y = 1

1−p otherwise
(6.5)

where y ∈ {±1} is the ground-truth class (i.e., detection or not), αt the weighting factor
to take into account data imbalance defined as α ∈ [0,1] for class 1 and 1−α for class -1,
and γ> 1 is the focusing factor. This loss is especially interesting in radar data, since high
RCS targets can be easily detected, but low RCS targets or targets located at a far distance
are more challenging to detect, and this can be taken into account by the γ parameter.

In terms of training-testing split, 90% of the data from five of the seven recorded
scenarios have been used to train the network using Adam optimizer, leaving 10% for
validation. The network was trained using the DelftBlue Supercomputer [131] from TU
Delft. The remaining two recorded scenarios are used as a test set, i.e., with data com-
pletely new and unseen for the network.

6.4. RESULTS
The trained neural network can estimate the 3D occupancy grid for each radar cube and
thus act as a detector. It should be noted that all the results presented in this section are
evaluated using only the test set, composed of the 2 scenes left out from the training pro-
cess. This ensures data independence and, while still collected in the same geographical
area, the capability of the proposed method to generalize to unseen data with different
characteristics.

Two main performance metrics are used to evaluate the results of the proposed neu-
ral network: the usual probability of detection and probability of false alarm metrics and
the Chamfer distance (CD). In both cases, the lidar data is used as a reference, either in
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the occupancy grid format for the Pd and P f a computation or in the point cloud format
for the Chamfer distance. While different definitions are given for the Chamfer distance
in the literature, in this work, the following is used:

C D(S1,S2) = 1

|S1|
∑

x∈S1

min
y∈S2

||x − y ||2 + 1

|S2|
∑

y∈S2

min
x∈S1

||x − y ||2, (6.6)

where S1 and S2 are the two sets of points being compared (e.g., the lidar points assumed
as ground truth vs the points from the 3D occupancy grid provided by the proposed data-
driven detector), and |S| is the cardinality of the set. The closer the two sets of points are
the better, and so the lower the Chamfer distance.

However, it is important to note that a caveat is needed when analyzing the Pd and
the P f a metrics. A small misalignment in the calibration of only a few centimeters in
range or of a small angle will cause the probability of detection to fall drastically, while
the probability of false alarms will rise, as can be seen in the examples presented in Fig-
ure 6.6. For instance, considering the example in Figure 6.6b, even though the P f a of
this case is numerically the same as in the case represented in Figure 6.6a, the impact
in terms of quality of the perceived environment can be very different, especially tak-
ing into account the small cell dimensions. While this is not a problem in the proposed
method (as the network used as data-driven detector is able to learn offsets such as those
in this example), it may affect the other methods used in this section for benchmarking,
such as the different variants of CFAR detectors. Moreover, since the radar resolutions
are worse than the lidar’s, many targets will be overestimated in size, raising the P f a .
These false alarms are, in general, assumed to be less relevant for assessing the quality of
automotive radar since a small overestimation of objects in the order of centimeters (i.e.,
few lidar resolution cells) may not be as bad as detecting isolated ghost targets. Never-
theless, all the false alarms are treated equally in the assessment in this work since an
extra clustering or tracking stage may be needed to distinguish between these unfavor-
able cases in terms of P f a . An example of this phenomenon can be seen in Figure 6.6c.
On the other hand, it can be seen how the Chamfer distance is able to capture these spa-
tial relationships, yielding different values for the three different cases. Considering all
this, a point cloud level metric like the Chamfer distance is considered a better evalua-
tion metric for this work.

Table 6.3 shows the performance of the proposed method with the three aforemen-
tioned metrics averaged over the whole test set and compared with different alternative
approaches for detection. Specifically, the different rows on the table are:

• Proposed Method: the results of the proposed method are explained in the previ-
ous section and with the overall architecture shown in Figure 6.5.

• No Doppler & Quantile: an approach similar to the one presented in [27], where
only those power cells with values higher than the 0.9 quantile are kept and the
rest are set to zero. Furthermore, the Doppler information is collapsed by taking
the mean over the Doppler dimension. This is used to ’sparsify’ the data and speed
up processing, with the risk of cutting out weakly reflecting targets. Since there is
no Doppler data anymore, the DopplerEncoder subnetwork is removed from the
general architecture of the proposed data-driven detector.
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Figure 6.6: Illustration of the problem in computing the Pd , P f a , and Chamfer Distance (CD) as performance
metrics. In a), a case where two ghost targets are created. In b), a calibration misalignment shifts the detection
cells, raising the P f a as if two ghost targets were created. In c), the problem of the overestimation of target
size. These three cases have nominally the same P f a , but the implications for overall scene perception are
completely different. It can be seen how the CD captures the spatial relationships and yields a better value in
cases b) and c), where the false alarms have less impact from an application point of view.

• No Doppler: the proposed method without any predefined threshold on the data,
but with the Doppler information collapsed by taking the mean of the data and
thus without the DopplerEncoder subnetwork in the architecture. This is done to
perform an ablation study on the importance of the Doppler domain features and
analyze the effect of each block independently.

• Quantile: the proposed method, but with the pre-detection fixed threshold based
on the 0.9 quantile inspired by [27].

• No Time: in order to assess the impact of inputting several frames into the network
and use the temporal evolution of the scene, this tests the proposed method with-
out the Temporal Coherence subnetwork in the architecture, essentially an ablation
study without inter-frame temporal information.

• OSCFAR: a 2D OS CFAR in range-angle, followed by a 1D OS CFAR in Doppler.
While multiple different CFAR alternatives have been tested (i.e., different com-
binations of CA and OS CFAR detectors), only the best implementation is reported
here for conciseness. An analysis with different variations has been presented in
[127] for completeness. Following [132], the rank has been set to 0.75 times the
number of training cells, and no guard cells have been used.

As it can be seen in Table 6.3, the highest Pd and the lowest Chamfer distance is
achieved by the proposed method while maintaining a similar P f a . On the other hand,
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Table 6.3: Performance Results of the proposed method for data-driven detection, different variations of the
method, and the best-performing CFAR detector implemented.

Method Pd (%) P f a (%) Chamfer distance (m)

Proposed Method 62.13 2.77 1.54
No Doppler & Quantile 52.97 2.63 2.16

No Doppler 50.44 2.50 2.13
Quantile 57.9 2.85 1.92

No Time (single frame) 58.08 2.63 2.16
OSCFAR 0.41 0.015 6.73

No Elevation cases

Proposed Method 74.83 1.12 2.92
Quantile 74.09 1.11 2.78
OSCFAR 11.56 3.1 4.11

applying the quantile cut and removing the Doppler information similarly to [27] re-
duces the Pd from 62.13% to 52.97%, and worsens the Chamfer distance from 1.54m
to 2.16m. Looking at the results for the other versions, it can be seen that this drop in
performance is mostly due to the removal of the Doppler information. Using only the
quantile-based threshold may be a good trade-off since the performance degradation is
not substantial, but the computational cost is reduced. Looking at the version without
the Temporal Coherence subnetwork, which is trained on single frames, it can be seen
how all the metrics are worse than in the baseline. Thus, including temporal informa-
tion in the network is a good strategy to boost performance, with the only downside of
increasing slightly the training time due to the extra layers. Finally, it can be seen that
the conventional OS CFAR is the method that performs the worst, with a much higher
Chamfer distance of 6.73m.

In order to have a fairer comparison against the conventional CFAR detector, a 2D
version of the proposed method has also been evaluated by disregarding the elevation
information, as this can only be estimated rather poorly due to the unfavorable design of
the radar array. To this end, the proposed NN has been trained without elevation infor-
mation, discarding the virtual channels in the Z-direction and, thus, treating it as a ULA
in the azimuth direction. For completeness, the implementation with a quantile-based
threshold has also been assessed in this new analysis. The results are shown in Table 6.3
under the ’No Elevation cases’ rows. For these tests, the Pd of the OS CFAR approach is
increased to 11.5%, but the P f a is also raised. This is mainly due to detections triggered
in the adjacent angle bins of a target generating "ring-like" patterns due to side lobes,
a phenomenon also mentioned in [27]. Both the proposed method and the proposed
method with the quantile-based threshold are shown to outperform the conventional
OSCFAR in the three metrics.

In addition to the quantitative results, some qualitative results are also presented
to show the performance of the proposed method visually. In Figure 6.7, a challenging
frame from the radar point of view is shown, where the vehicle is going under a large
but relatively not tall bridge. The 3D point cloud generated with the proposed method is
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Figure 6.7: Example frame in a challenging situation for the radar system, where the vehicle is going under a
large bridge. In the top figure, the camera image is shown for reference. On the left, the point cloud generated
with the proposed data-driven method is shown, and on the right, the original point cloud provided by the
lidar. The red arrows point to the bus under the bridge and the orange arrow to the pedestrian next to it. Note
that the color in the point clouds refers to the height of the objects.

shown in the left plot, with the original lidar on the right plot. As it can be seen, the road
is clear of false alarms, and the bus (in red arrow) and pedestrian (in orange arrow) are
clearly detected. The bus and the ceiling merge due to the poor elevation resolution of
the radar data, but they could be split and identified in Doppler.

Figure 6.8 shows another scene where the resulting point clouds have been projected
onto the camera image to provide a sense of the 3D scene (top), but the bird’s eye view
projection is also shown (bottom). For simplicity, the point clouds have been cropped to
a maximum range of 30 meters. Moreover, as a visual aid in the bird’s eye view, cyclists
are highlighted with an orange hexagon, cars with a red hexagon, and a large van with
a light blue hexagon. In Figure 6.8a, the original lidar point cloud is presented, where
many details of the scene can be appreciated. Figure 6.8b shows the detections gener-
ated using the proposed data-driven detector, and as can be seen, most of the details
of the relevant targets are preserved. Objects are slightly overestimated in size, but the
overall scene is clear. Also, the shape of the objects is preserved, especially in the case
of cars and the shown large van. Finally, Figure 6.8c shows the output of the previously-
mentioned best-performing CFAR detector, where it can be seen how the output is much
sparser in terms of detected points, and also missing one of the cyclists in the scene.

Finally, an example of results where the elevation information is disregarded in the
detection process is presented in Figure 6.9. Here, the figure shows the camera image for
visual reference (top), and the comparison of the resulting point cloud from the radar
data with the proposed data-driven detector (left), the original lidar data (center), and
the point cloud from the radar data with the best-performing implemented CFAR. Note
that cars are highlighted in red, and there are "ring-like" detections (highlighted in green)
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(a) (b) (c)

Figure 6.8: Example of data frame in urban scenario with related detections. In (a), the original lidar point cloud
projected onto the camera as well as a bird’s eye view. In (b), the radar point cloud generated with the proposed
data-driven detector. In (c), the radar point cloud generated with the best-performing CFAR implemented (i.e.,
2D OS-CFAR in range-azimuth, followed by an OS-CFAR in Doppler).

due to the high side lobes of the van, which can be seen in the figure generated using
the CFAR detector. This phenomenon raises the P f a and is an expected behavior that
has been reported in other automotive radar datasets [27] when using CFAR detectors.
As also reported in the previous qualitative examples, the point cloud generated by the
proposed data-driven detector is denser than the CFAR-generated one and conserves
the correct location and shape of most objects.

6.5. CONCLUSIONS

This work introduces an innovative data-driven detector for automotive radar and the
RaDelft dataset, a newly collected multi-sensor real-world dataset. The proposed detec-
tor is trained exclusively from unlabeled synchronized radar and lidar data, thus elimi-
nating the need for costly manual object annotations. Two types of performance met-
rics were employed to validate the method, i.e., conventional probability of detection
& probability of false alarm, alongside the Chamfer distance, a point cloud-level metric
designed to capture spatial relationships and similarities between point clouds. The pro-
posed method reduces by 4.2 meters (77% reduction) the Chamfer distance when com-
pared with conventional OSCFAR detectors and by 0.62 meters (28% reduction) when
compared with the state-of-the-art. Also, it significantly increases the probability of de-
tection. Moreover, an ablation study showed that including temporal information in the
process is important, and Doppler information is especially crucial for our model’s good
performance. Results show that the probability of detection is increased from 50.44% to
62.13%, and the Chamfer distance is reduced by 27% when using Doppler information.
However, it is important to point out that the proposed detector cannot control the false
alarm rate, which may be a key feature for some applications, and lacks explainability
(i.e., it is a black-box model with inputs and outputs).
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Figure 6.9: Example of data frame where the elevation information is disregarded from the detection process.
In the top figure, the camera image is shown for reference. In the bottom part of the figure, the original lidar
point cloud is shown (center), with the point cloud generated by the proposed data-driven detector (left) and
by the best-performing implemented CFAR (right).

For the experimental evaluation of the proposed approach, a comprehensive dataset
encompassing over 30 minutes of actual driving scenarios was collected using a vehi-
cle equipped with both lidar and radar sensors, resulting in 16975 radar frames paired
with corresponding lidar ground truth. Compared with other existing datasets, RaDelft
provides raw data from a commercial 4D imaging radar needed for radar practitioners
for many research lines. Moreover, it contains data processed at other levels (e.g., radar
cubes and point clouds) suitable for researchers with different backgrounds and inter-
ests. The dataset is publicly available, with code to parse, visualize, and process the data,
as well as the code to reproduce the results reported in this work.
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7.1. MAJOR RESULTS AND NOVELTIES
This thesis introduces new techniques and algorithms to enhance the performance of
automotive radars at different levels of their processing chain and for different percep-
tion tasks. They can be grouped into machine learning and compressive sensing tech-
niques.

7.1.1. RESULTS BASED ON MACHINE LEARNING TECHNIQUES
• Angular resolution enhancement using Machine Learning (Chapter 3)

A novel framework based on neural networks has been proposed to enhance the
angular resolution of automotive radars. The proposed approach artificially ex-
pands the antenna aperture using a self-supervised scheme, where data from a
high angular resolution radar, i.e., a radar with a large aperture antenna, is used
to train a deep neural network to extrapolate the antenna element’s response of a
compact, low angular resolution radar. This framework has been validated with
simulated and experimental data collected with a commercial automotive radar.
A case study with two pedestrians walking towards the radar at the same speed
and range shows that using an 86 virtual element array, the two pedestrians can
be resolved 94.5% of the frames, while with an array of 44 virtual elements, only
30.1% of the frames. If the proposed method is used before the angle estimation,
the probability of resolving the two pedestrians is increased to 55.6%. This re-
sult shows that the maximum distance at which both pedestrians are perceived as
two different targets is increased when using the proposed method. Therefore, the
proposed method can be used for more accurate and faster responses from the
vehicle’s planning and decision-making system.

• Deep Automotive Radar Detector (Chapter 6)

The problem of detecting multiple extended targets in automotive scenes with
high-resolution imaging radars has been studied. A data-driven approach is pro-
posed where unlabeled synchronized lidar data is used as ground truth to train a
deep neural network with only radar data as input. Two types of performance met-
rics were employed to validate the method, i.e., conventional probability of detec-
tion and probability of false alarm, alongside the Chamfer distance, a point cloud-
level metric designed to capture spatial relationships and similarities between
point clouds. The proposed method reduces the Chamfer distance by 4.2 meters
(78% reduction) compared with conventional OSCFAR detectors and by 0.62 me-
ters (28% reduction) when compared with the state-of-the-art. Also, it significantly
increases the probability of detection. Moreover, an ablation study showed that
including temporal information in the process is important, and Doppler infor-
mation is especially crucial for our model’s good performance. Results show that
the probability of detection is increased from 50.44% to 62.13%, and the Chamfer
distance is reduced by 27% when using Doppler information.

• RaDelft Dataset (Chapter 6)

To support the development of machine learning algorithms applied to radar data,
a novel, large-scale, real-life, and multi-sensor has been recorded using a demon-
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strator vehicle in different locations in the city of Delft. RaDelft provides raw data
from a commercial 4D imaging radar needed for radar practitioners for many re-
search lines. Moreover, it contains data processed at other levels (e.g., radar cubes
and point clouds) suitable for researchers with different backgrounds and inter-
ests. The dataset is publicly available, with code to parse, visualize, and process
the data.

7.1.2. RESULTS BASED ON COMPRESSIVE SENSING TECHNIQUES
In the field of angle estimation using automotive radars, Compressive Sensing tech-
niques stand out for their unique properties, such as providing higher resolution than
FFT-based implementations with a single snapshot or being able to deal with sparse ar-
rays. This thesis addresses three main problems while using CS: how to select a proper
sparse array valid for using CS, how to reduce the main drawback of CS, i.e., the compu-
tational load, and how to estimate the angular space when the scene is not sparse.

• Bayesian Compressive Sensing Applied to Automotive Radar (Chapter 4)

Bayesian compressive sensing is a family of algorithms that tackles the CS problem
from a probabilistic point of view. When used, it not only provides the estimations
but also their associated uncertainties. Using this uncertainty, a novel algorithm
has been proposed to generate the optimal array topology for angle estimation us-
ing BCS in MIMO radars. Based on the differential entropy of the measurements,
the algorithm has been executed offline with simulated data to generate the ar-
ray topology and tested with real measurements using a commercial automotive
MIMO radar. The results show that the generated array outperforms the average
random array, which is usually considered the best strategy to generate CS sensing
matrices. Moreover, is it possible to correctly resolve close space targets using 50%
of the elements compared with a fully dense ULA.

The second novelty of this work considers the computational complexity of BCS.
Using a split-and-merge approach algorithm followed by a correction stage, it is
proved that the proposed algorithm can reduce by a factor of 10 the computa-
tional time of the standard BCS. Moreover, the method does not reduce the accu-
racy and probability of resolving close space targets. Results, validated with exper-
imental measurements, show that the proposed method overperforms FFT-based
and single-snapshot MUSIC in accuracy and resolution probability, while running
10 times faster than the MUSIC algorithm.

• Total Variation Compressive Sensing Applied to Automotive Radar (Chapter 5)

The angular estimation for extended targets with a single snapshot in short-range
imaging radar has been analyzed. Conventional compressive sensing methods can
not be directly applied due to the non-sparsity characteristics of the scene, and
super-resolution algorithms based on subspace methods are not applicable to the
constraints of this problem (single snapshot and coherent sources). Therefore, two
novel methods have been proposed based on total variation compressive sens-
ing, where sparsity is enforced in the signal’s gradient. An independent azimuth-
elevation estimation for each range cell is used in the first method, while a joint
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3D range-azimuth-elevation optimization problem is proposed in the second one.
The proposed algorithms have been verified on simulated data generated in a re-
alistic manner using 3D CAD models of different cars, pedestrians, and bicycles.
The results of the two methods have been compared with a conventional Fourier
beamformer and the standard compressive sensing algorithm in terms of shape
reconstruction. The intersection over union between the ground truth shape and
the estimated shape using the four methods has been computed to evaluate the
shape reconstruction capabilities. The two proposed methods consistently out-
perform the FFT-based and conventional CS methods, with a maximum IoU in-
crease of 3.5x in good SNR conditions for the 2D version.

7.2. RECOMMENDATIONS FOR FUTURE WORK
Due to time limitations during this PhD project, some research lines or further devel-
opment of the ideas shown in this document have not been fully performed. A list of
the possible research lines as a continuation of the work in this PhD thesis is presented
below.

• Target Classification and/or Semantic Segmentation using the RaDelft Dataset

This research line is currently being explored by the TU Delft master’s student Bo-
tao Sun, who will graduate at the end of October 2024. The first step of this is to
generate class labels using lidar and camera data to serve as ground truth to the
radar data. These labels, generated with the automatic labeling algorithm devel-
oped by Botao Sun, have already been added to the publicly shared RaDelft dataset
[122]. Then, a semantic segmentation neural network can be designed to classify
the radar targets directly in the radar cube. The initial results of this research line
have been sent to the 2025 International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) [133].

• 2D array design for BCS DoA

In the work presented in Chapter 4, the proposed method is only tested with 1D
arrays, but the extension to 2D arrays can be easily performed. The main limita-
tion here is the need for 2D commercially available MIMO arrays for the validation
of this research line, so this line of work would involve not only the design of the
array, but also the manufacturing and actual testing of it, where the manufactur-
ing aspect can for example consider non-idealities such as the effect of hardware
imperfections and mutual coupling between antennas.

• Extension of the TVCS

The work presented in Chapter 5 proved in simulations that, by using TVCS, the
object’s shape can be better estimated. However, this is the only chapter in which
the proposed method has not been tested with experimentally measured data.
Again, the main limitation is the lack of 2D sparse arrays to test the algorithm in the
real world. Moreover, the better shape estimation enabled by this method would,
in principle, lead to improved classification performance. However, this hypoth-
esis must be confirmed by implementing a classification stage after conventional
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angular estimation methods, and then comparing the results to the ones obtained
with TVCS.

• Comprehensive radar signal processing pipeline

This thesis proposed different methods for different, separate steps in the radar
signal processing pipeline, from enhancing the radar signal before the angle esti-
mation to the detection stage. However, most of the proposed methods have been
developed and studied as an independent block. A future research line can com-
bine all these different methods into a single, end-to-end processing pipeline and
assess the compound effect in the system’s final performance.
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