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An Agent-Based Social Simulation Approach to
Task Allocation in Aircraft Maintenance Teams

Eva de Winkel

Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Tighter profit margins and rising aircraft complexity are cur-
rently driving the need for aircraft maintenance organizations
to increase efficiency. Many organizations believe that digitiza-
tion is key for improving operational performance. Digitization
of the task allocation process at a large aircraft maintenance
organization did unexpectedly not lead to increased efficiency.
Anthropological research concluded that the implemented tech-
nologies did not accommodate for the social nature of team-
work. This research studies the relationship between the so-
cial aspects of teamwork and the performance of task allocation
methods in aircraft maintenance. An Agent-Based Social Simu-
lation model has been created and simulated for different types
of task allocation methods as well as different types of teams.
The presented model includes social influence relations between
team members and decision-making based on trust in others’
performance. The model has been simulated for a case study of
an Airbus A310 main landing gear replacement. Independent
teams provided the best performance using a mediated feed-
back automated negotiation method. The most beneficial re-
sults for compliant teams were obtained through task allocation
by the team lead. Social teams presented significantly better
results for voting than for other task allocation methods. The
combination of socially oriented mechanics and task allocation
by voting provided the most advantageous task execution per-
formance for all simulations. It was shown that, in line with
the wisdom of crowds theory, diversity in initial trust levels in
combination with shared trust among mechanics over time in-
creased collaborative task allocation performance.

Agent-Based Social Simulation | Task Allocation | Aircraft Maintenance |
Teams | Voting | Automated Negotiation | Agent-Based Modeling & Simulation

1. Introduction

Digitization is currently one of the main aspirations of many
large organizations. It is no surprise that in the increasingly
competitive airline industry, digitization has been airlines’
key focus in order to enhance their operational efficiency [1].
Only recently, tighter profit margins in combination with ris-
ing aircraft complexity drove the need for aircraft mainte-
nance organizations to uplift their operations as well [2].
The introduction of new technologies at a large aircraft
maintenance organization did unexpectedly not increase ef-
ficiency [3]. Anthropological research concluded that the
implemented technologies did not accommodate for the so-
cial nature of the maintenance work [3]. In particular, one
of the mechanics in this research emphasized how helpful it
is to know who to trust with certain tasks [3]. He explained
the importance of working with a team that fits him best: he
knows how others think and what they will take extra notice
of [3]. Hence, "teaming" is a fundamental characteristic of
the aircraft maintenance work [4]. As a response, the me-

chanics at the aircraft maintenance organization created their
own democratic planning systems to accommodate for col-
laborative decision-making. The organization was, however,
hesitant to adopt the improvised democratic systems.

The anthropological study suggests that the social nature
of aircraft maintenance teams impacts the performance of
planning systems [3]. Understanding the relationship be-
tween teamwork and the performance of planning mecha-
nisms could therefore assist aircraft maintenance organiza-
tions in adopting appropriate decision-making protocols. Yet,
no research has been performed on studying these relations.

This research sets out to investigate the relationship be-
tween the social aspects of teamwork and the performance
of task allocation methods in aircraft maintenance. We fo-
cus on task allocation, because of its essential role in the task
execution performance of aircraft maintenance teams [5]. A
team is referred to as "a group of people restricted to having
a common goal and typically cooperate and assist each other
in achieving their common goal" [6]. People create trust in
each other to cooperate in uncertain environments [7]. This
research therefore focuses on trust relations between mechan-
ics for their decision-making on the allocation of tasks.

A mathematical model of an aircraft maintenance team
using different task allocation methods has been proposed in
this research. The modeling technique needed to adhere to
three requirements. First, it needed to include the cognitive
and social teaming factors in a detailed manner. Moreover, it
was required to capture relations between local social aspects
and global team performance. The dynamic nature of task
allocation also needed to be considered.

Agent-Based Modeling and Simulation (ABMS) was ap-
pointed as the most appropriate technique for developing
this model. Agent-based methods are applicable for systems
with a high level of localization as well as distribution [8].
Besides, they allow for capturing emergent phenomena [9],
which can appear when local properties form more complex
mechanisms as a collective than as the sum of the individuals
[10]. Finally, agent-based models are flexible [9].

The mathematical model has been simulated for a case
study on a main landing gear replacement. Three task alloca-
tion methods have been modeled: task allocation by a team
lead, voting and automated negotiation. Furthermore, the fo-
cus was on three types of teams: an independent team, a team
compliant with their superior and a socially oriented team.
The task execution performance was evaluated for each team
type as well as task allocation method. Additionally, the re-
lation between the level of agreement on the task allocation
and task execution efficiency was investigated.



Bottom-up modeling methods have not been used for
task allocation in aircraft maintenance management research.
Usually top-down methods are applied [5]. That is why dif-
ferent research areas were assessed for this study. Next to air-
craft maintenance management research, automated negotia-
tion research has been studied for developing task allocation
methods. Moreover, the focus on social teaming aspects re-
quired a review of Agent-Based Social Simulation research.

This paper has been organized as follows. It starts by
providing an overview of the related work in the three re-
search fields in Section 2. After that a description of the case
study is provided in Section 3. Section 4 is concerned with
the methodology. The theoretical background of teamwork is
outlined in Section 5. An informal specification of the pro-
posed agent-based model is presented in Section 6. Section 7
addresses the verification and validation appproach. Section
8 provides the experimental set-up and results. Section 9 dis-
cusses the main findings of this research as well reflections
on the methodology. Conclusions are drawn in Section 10.

2. Related Work

This multi-disciplinary study contributes to three main re-
search areas: aircraft maintenance management, automated
negotiation and agent-based social simulation. The following
sections describe related work within these research fields.

2.1. Aircraft Maintenance Management

Research into the process of allocating tasks among mechan-
ics within aircraft maintenance is very limited [11]. More re-
search exists on task scheduling [2] or workforce scheduling
[12, 13]. Most studies use top-down approaches for task or
workforce scheduling [12—17]. Agent-based modeling tech-
niques have been applied in the aircraft maintenance domain
before, both on task [18] or workforce [19] scheduling. So-
cial teaming aspects are not considered in any of these stud-
ies. Task scheduling determines when and where mainte-
nance tasks are performed [20]. Workforce scheduling deals
with the problem of scheduling mechanics in shifts [12]. Task
allocation acts on a lower operational level than task or work-
force scheduling. Research into the operational control of
aircraft maintenance focuses on the development of Decision
Support Systems [11, 21, 22]. None of these studies consid-
ers specifically decision-making on task allocation.

2.2. Automated Negotiation

Automated negotiation has been of increasing interest within
agent-based modeling [23]. Task allocation is one of the ap-
plications for automated negotiation [24]. Previous research
presented a cooperative negotiation method for task alloca-
tion problems [25]. Game theoretic approaches have been
used for task allocation as well [26]. Time constraints have
been implemented in an automated task allocation protocol
[27]. Others focus on the negotiation on resource allocation
[28, 29]. Socially optimal allocations of resources have been
aimed for as well [30]. None of these studies have analyzed
the behavior of negotiation protocols in varying social en-
vironments rather than finding theoretical optimal solutions.

Researchers addressed the use of Negotiation Support Sys-
tems within real world applications [31]. Attempts for mod-
eling cognitive biases in negotiation have been presented as
well [32]. No previous research has applied automated nego-
tiation to task allocation in aircraft maintenance.

2.3. Agent-Based Social Simulation
Social simulation is a relatively new field of research [33].
Yet, a simulation study has been performed on mechanics’
motivation for compliance with safety regulations at an air-
craft ground service organization [34]. Another research fo-
cused on social influences within aircraft maintenance teams
on their compliance with safety regulations [35]. Organiza-
tions have been studied using social simulation [36]. So-
cial simulation of teamwork dynamics focused on reputa-
tion [37], diversity [38], skill [39], trust [40] and power [41]
within groups. No integrated model of the social aspects of
teamwork has been proposed in research yet. Moreover, re-
searchers have not explored the relation between the sociality
of a team and its performance in an applied case study.

The next section will describe the case study that has been
modeled in this research.

3. Case Description

A case study has been performed in order to simulate the task
execution of an aircraft maintenance team. The requirements
for selecting the case were three-fold. First, it needed to
facilitate many interactions between mechanics and prefer-
ably between different teams. The case sets therefore at a
base maintenance environment, where generally large main-
tenance tasks are performed. Moreover, the tasks needed to
have different skill level and safety requirements.

The case therefore comprises the main landing gear re-
placement of an Airbus A310, which needs to be finished in
48 hours. The tasks are performed by three consecutive teams
of five mechanics each. Every shift has a duration of 8 hours.
In the beginning of each shift the mechanics join together to
discuss the allocation of tasks. Halfway through the shift they
can re-allocate tasks. At the end of a shift they communicate
the current state of the work with the next team. Performance
is evaluated on both time efficiency and ensuring safety.

A specific aircraft maintenance team has been defined in
order to simulate the task execution process in detail. This
team is an abstraction of an observed team at an aircraft main-
tenance organization. The team has one mechanic with an
EASA C-license, which allows him to sign off all base main-
tenance tasks. This mechanic is highly skilled and therefore
leads the team. Since the team lead has the final responsibil-
ity for delivering the aircraft to the airline on time, it prefers
time efficiency above safe maintenance work. Three other
mechanics have an EASA B1-license, which allows them to
perform all tasks of a main landing gear replacement. Their
skills are, compared to others, medium level. Most of these
mechanics do not have significantly different priorities. Only
one mechanic is extremely focused on thorough task execu-
tion. Another does not care about efficient task execution at
all. The fifth mechanic has no EASA license, but is allowed



to work on the main landing gear replacement. Its skill level
is low and it does not aim for skillfulness within the team.

Six scenarios have been defined to evaluate the perfor-
mance of different task allocation methods. In order to make
sure that the time needed for simulation was within the time
constraints of this research, five scenarios only consider the
first shift of the main landing gear replacement. The first
scenario comprises a team with relatively independent me-
chanics, not focused on their fellow team members. The sec-
ond scenario represents a team motivated by the team lead
or management. The third scenario represents an inherently
social team. Two variations have been introduced to the so-
cial team. In the first variation a new mechanic, which does
not know the other mechanics, is introduced to the team. The
second variation introduces three new mechanics to the team.
The sixth scenario involves the total main landing gear re-
placement for all six shifts, consisting of socially oriented
teams. A detailed overview of these scenarios and the corre-
sponding simulations is presented in Section 8.1.

The next section explains the methodological approach
that has been followed for modeling these scenarios.

4. Methodological Approach

Our methodological approach is defined by using a generic
agent-based modeling framework, which allows for an all-
encompassing specification of an agent-based model [42].
Social simulation approaches, however, require additional
methodological considerations to ensure scientific validity.
The methodology for the specification of an agent-based
model is outlined in Section 4.1 and the approach for agent-
based social simulation is explained in Section 4.2.

4.1. Agent-Based Modeling and Simulation

An agent-based model specification consists of three main
elements [42]. First, the agents and their local properties
should be described. In this study, agents represent the me-
chanics, and the local properties describe their internal states
and actions within the environment. Next, the specification
of the environment in which the agents act is provided. The
environment contains a description of dynamic processes of
all non-agent objects. Furthermore, the interactions between
agents and their environment should be specified. Interac-
tions among agents could be induced by communication or
coordination mechanisms [43]. Negotiation is a form of co-
ordination and is characterized by agents with conflicting in-
terests still trying to come up to a mutually acceptable agree-
ment [6]. Negotiation requires additional elements to be in-
cluded in the model specification.

The main ingredients for defining an automated negotia-
tion process are the negotiation set, protocol and strategies
[6]. The negotiation set comprises all possible negotiation
outcomes. The negotiation protocol describes the rules of
interaction for the agents to find an agreement. Common ne-
gotiation protocols are alternating-offer protocols, auctions,
contract net protocols or voting protocols [23]. Agents’
strategies specify the proposals agents make. Agents usually
aim at maximizing their utility, which represents their level

of satisfaction with a particular outcome [6]. Strategies can
be game-theoretic, heuristic or argumentation-based [23].

4.2. Agent-Based Social Simulation
Agent-Based Social Simulation (ABSS) uses agent tech-

nology to simulate social phenomena [44]. This research
field is still maturing, so no all-encompassing methodology
is available [45]. Scientific methodologies, however, require
a systematic procedure to reproduce results [46]. Formal lan-
guages allow for systematical model descriptions [45].

Social theories can be classified in two categories: norma-
tive and descriptive theories. A normative approach to social
science aims at representing how people should behave, but
the current trend is shifting to descriptive approaches: how
people are observed to be behaving. The main criterion for
selecting theories from social science in our model is there-
fore empirical validity: a substantial body of research should
confirm the descriptive nature of these theories.

The next section presents the theoretical background on
the social theories that have been included in our model.

5. Theoretical Background

This section elaborates on the social theories that represent
the social aspects of teamwork in our model. Three charac-
teristics underlie our notion of teamwork.

The first is that teams work together to achieve a com-
mon goal [41]. Our work considers the motivation and com-
mitment of agents to specific team-oriented and individual
goals. That is why we used an empirically supported theory
on human motivation to model people’s motivational drivers:
Self-Determination Theory. More on this theory can be found
in Section 5.1. Moreover, working closely together makes
social influences within a team inevitable [47]. Section 5.2
therefore elaborates on social influence research.

The second characteristic of teams is that they collabo-
ratively monitor progress and team efforts [41]. Situation
Awareness enables people to evaluate the current state of the
environment and is elaborated on in Section 5.3.

The final characteristic is that teams coordinate individual
actions for optimal team performance [41]. Our teams coor-
dinate through task allocation. In order to make decisions on
task allocation, the mechanics need to predict future states.
Reasoning about trust allows for predicting future states in
uncertain environments [48]. Section 5.4 therefore describes
the theoretical background on trust.

5.1. Self-Determination Theory

Self-Determination Theory considers intrinsic motivation to
be driven by internal psychological needs, required for pro-
activity, development and psychological health [49]. It de-
fines three main needs: the need for competence, the need for
relatedness and the need for autonomy. The need for compe-
tence is the desire to be competent in one’s actions, skills and
desires. The need for relatedness reflects the desire to ex-
perience a sense of belonging to and interaction with others.
The need for autonomy encompasses the desire of being in
control of one’s own actions.



Later work on Self-Determination Theory identified dif-
ferent types of motivation, called causality orientations [50].
The three causality orientations are the autonomy orientation,
in which persons are motivated by their basic needs, the con-
trolled orientation, in people are focused on rewards and the
amotivated orientation, driven by anxiety of incompetence.

5.2. Social Influence

Social influence relates to all processes "in which people’s
attitudes or beliefs are altered or controlled by some form of
social communication” [51]. Although many different types
of social communication underlie social influence [51], the
focus is in this research on compliance and conformity. We
refer to compliance as an "agreement to an, explicit or im-
plicit, request" [52]. Conformity captures "a person’s change
in behavior to adjust to the reactions of others" [52]. This
implies that people are externally motivated to comply, while
internal motivation for relatedness drives conformity.

People use power to influence others by exercising pres-
sure to stimulate compliance or conformity [53]. We refer to
power as "the capacity or ability to change the beliefs, atti-
tudes, or behaviors of others" [53]. Power relations between
mechanics have been modeled based on French and Raven’s
six bases of power [54]. These power bases are the following:
legitimate power, based on internalized values of the sub-
missive, referent power, based on relatedness, expert power,
based on experience or knowledge, persuasion power, based
on information or persuasion, reward power, based on posi-
tive incentives and coercive power, based on punishments.

The Social Contagion model by [55] has been adopted to
represent social influence dynamics. This model describes
how a person adjusts its attitude or belief when meeting an-
other person, based on their difference in attitude or belief
and some convergence parameter that reflects the tendency
of that person to adopt another’s viewpoint. We model this
parameter based on social influence and power elements.

5.3. Situation Awareness

Situation Awareness is defined as "the level of awareness a
person has of a situation: the dynamic understanding of what
is going on" [56]. A widely accepted framework for mod-
eling situation awareness specifies three levels [56]. At the
first level a person perceives a state in an environment. The
second level is achieved when a person interprets data from
level one in relation to its own states and goals. When some-
one predicts future states of the system based on the current
states, the third level of situation awareness is achieved. The
prediction of future states in this model is based on trust.

5.4. Trust

Trust can be defined as "a cognitive state in which a person
intends to accept vulnerability due to positive expectations of
other’s intentions or behavior" [57]. Trust can reduce social
complexity and allows for decision-making on issues that are
otherwise too complex for people [58]. It can be based on di-
rect interactions, such as impressions of another person, or in-
direct interactions induced by reputation [59]. We model trust
in line with the situation awareness framework. Level one

situation awareness relates to agents’ impressions of other
agents. Level two situation awareness is formed when agents
construct reputational views of other agents out of these im-
pressions. Level three situation awareness refers to the level
of trust that an agent has in another agent.

Trust is self-preserving and self-amplifying [48]. Experi-
mental research, however, showed that negative impressions
had a stronger effect on decreasing trust between people than
positive impressions increased it [60]. This is in line with
Prospect Theory, which assumes that people have a subjec-
tive S-shaped value function. Figure 1 shows that this value
function is concave for positive and convex for negative ex-
periences, relative to a reference point [61]. Prospect Theory
is considered in agents’ impressions, reputation and trust.

value

Losses Gains

Reference point

Fig. 1. Subjective value function from Prospect Theory [61]

This concludes the theoretical background. The next sec-
tion will outline the model design.

6. The Agent-Based Model

Figure 2 shows an overview of the model dynamics. Each
arrow represents a causal relation between two components.
The next sections will present the model’s detailed proper-
ties. Section 6.1 outlines the environment specification, fol-
lowed by the agent specification in Section 6.2. Section 6.3
describes the interaction properties including the task alloca-
tion methods. Additional properties for the specification of
the interactions between multiple shifts can be found in [62].

6.1. Environment Specification

The environment encompasses the maintenance tasks that
are required for a main landing gear replacement. Every
shift has the goal of accomplishing a fixed subset of the to-
tal amount of tasks. Every task has an associated number of
estimated man-hours, number of mechanics required, safety
criticality and a number of tasks that are dependent on the
completion of this task. Fixed task demands are the skill
level required and the thoroughness level required. An agent
also creates its own belief about the situational task demands,
which depends on its experienced time pressure and the tasks
dependency. The task characteristics have been estimated and
have been checked by aircraft maintenance technicians.

The tasks assigned to a shift have been grouped into a
number of task packages equal to the number of mechanics in
a team. The task packages were constructed in collaboration
with a certified C-engineer. Negotiation over these packages
is also called a package deal procedure and is used in this
model for three reasons. First, negotiation over tasks with
many dependencies is computationally hard. It has also been
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Fig. 2. Overview of the model elements and interactions

shown that when the ratio of agents over tasks is small, util-
itarian social welfare increases when package deals are used
[63]. The utilitarian social welfare is the total sum of all par-
ticipating agents’ utilities for a negotiation outcome. A high
utilitarian social welfare indicates a high level of agreement
within the team. Furthermore, allocation of task packages
rather than individual tasks is more time efficient in real life.

6.2. Agent Specification

The model consists of five aircraft maintenance technician
agents, one of which is the team lead (TL) and the other four
are mechanics (MECH). The agents have the following char-
acteristics: motivational goals, efforts, skill level and experi-
enced time pressure. Agents’ goals will be elaborated on in
Section 6.2.1 and the other properties in Section 6.2.2.

6.2.1. Agent Goals

Motivation driving agents’ behavior is captured in six differ-
ent goals. A goal is defined as "an end state to which the agent
is striving: the purpose of an activity" [64]. Agent goals are
based on the motivation orientations and basic needs in Self-
Determination Theory. An overview of these goals can be
found in Figure 3. The grey boxes are the theoretical con-
structs defined in Self-Determination Theory and the white
boxes represent the derived agent goals.

Three goals represent the motivational aspects on team-
work: the autonomy goal, relatedness goal and esteem goal.
The autonomy goal captures agent’s inner drive of being in
control of its own decisions. Agents with a high autonomy
goal make their decisions based on their own observations.
The relatedness goal captures the agent’s need for experi-
encing a sense of belonging with its fellow team members.
Agents with a high relatedness goal make their decisions
based on beliefs of others. The esteem goal captures the de-

_— Controlled
Autonomous motivation motivation
L,/ Need for Need for Need for
competence autonomy relatedness
Mastery Autonomy Relatedness Esteem
goal goal goal goal
|, Efficiency
goal
Thoroughness
goal

Fig. 3. Agent goals derived from Self-Determination Theory [49]

sire of being acknowledged by a superior, such as the team
lead or management. Agents with a high esteem goal are ex-
ternally motivated to comply with a superior’s beliefs.

The need for competence is represented by three differ-
ent goals. The first two goals are associated with the task
execution outcome: an agent can aim to execute a task ef-
ficiently and thoroughly. From an organizational perspec-
tive, time efficiency is the main metric for measuring per-
formance. In safety critical organizations, however, the
efficiency-thoroughness trade-off is key [65]. A trade-off has
to be made between time and effort on preparing to do some-
thing and time and effort on spending doing it. It is therefore
not possible to maximize efficiency and thoroughness at the
same time [65]. The need for competence also encompasses
the mastery goal: the goal of reaching one’s inner potential
[66]. When tasks and skills are perfectly aligned, people ex-
perience a state of flow: intense focus and concentration [67].

All agents have numerical values for these goals. These
values represent their motivational drive for achieving a goal
and provide an ordering of importance for all goals. A high
drive for achieving a goal is represented in the range [0.7-
1.0], medium drive [0.4-0.7] and low drive [0.0-0.4].

6.2.2. Agent Efforts, Skill and Experienced Time Pressure
Effort is "the physical or mental activity needed to achieve
something" [68]. The agents in this model have two differ-
ent types of efforts: efficiency effort and thoroughness effort.
For model simplicity we assume agents’ thoroughness and
efficiency effort to be independent. The effort generated by
a person is influenced by their motivation [69], task demands
[69], maximum capabilities [69] and social influences [35].
In this model, physical factors limiting a person’s capabili-
ties, such as fatigue or mental cognitive load are not consid-
ered. Rather the agent’s effort is initially defined by its moti-
vation, however, influenced over time by task demands, time
pressure and social influences from other team members.
Agents have a skill level that reflects their level of mastery
of the main landing gear replacement tasks. No differentia-
tion in skill type is made, since most are mechanical tasks.
Moreover, agents have a personal experienced time pres-
sure. This property resembles the agents’ stress level. Their
experienced time pressure changes over time by monitoring
the task execution process and due to social influences.
These characteristics are represented by numerical values



in the same ranges as the agent goals. [62] provides a detailed
description of the meaning for each variable range.
The next section presents the interaction properties.

6.3. Interaction Specification

The interaction properties are grouped in four categories.
Section 6.3.1 presents the interactions between agents during
task execution. The interactions between agents for task al-
location are outlined in Section 6.3.2. Section 6.3.3 provides
the interactions after task allocation. Interactions between
agents and the environment can be found in Section 6.3.4.

6.3.1. Interactions between Agents during Task Execution

Interactions between agents occur when they encounter one
another during task execution. This happens mostly ran-
domly. If agents are working together on a task, however,
they will be influenced by their co-worker. Two types of
dynamic properties represent the interactions between agents
during task execution: social influence and trust properties.

Social influence - Three cognitive states of agents are
influenced by their fellow team members: efficiency effort,
thoroughness effort and experienced time pressure. We
defined two types of social influence properties: compliance
with the team lead and conformity with team members. Five
properties represent these social influence dynamics:

1. Efficiency Effort Compliance Property: If a mechanic
agent has a belief about its efficiency effort, and it encounters
the team lead agent, then at the next time point, it will adjust
its efficiency effort according to Equation 1, based on [55].

efif, =efirs tvsicgoali(es) - (efeyy, —efips) ()
t is the time point, ef.;y, is agent i’s efficiency effort,
efery; 1s the team lead agent j’s efficiency effort, +;; is the
power influence of the team lead agent j on agent i. The
social influence between agents is captured in the agent’s
esteem goal, goal;(es), which reflects an agent’s motivation
to comply with the team lead. If for example, team lead j has
almost no power over agent i, it is not expected that agent i
will adjust to the team lead’s efficiency effort. This increases
if the agent’s high esteem goal motivates him to comply.

2. Efficiency Effort Conformity Property: If a mechanic
agent has a belief about its efficiency effort, and it encounters
another mechanic agent, rather than the team lead agent, it
will adjust its efficiency effort according to Equation 2.

efefs, = elips; +mingoai(re) - (eflyy, —efir) @
The agent is now driven by its relatedness goal, goal;(re),
which is its motivation to conform with another agent’s effort.

3. Experienced Time Pressure Compliance Property: If
a mechanic agent has a belief about its experienced time
pressure, etp;, and it encounters the team lead agent, then
at the next time point, it will adjust its experienced time
pressure similar as efficiency effort in Equation 1.

4. Experienced Time Pressure Conformity Property: If
a mechanic agent has an experienced time pressure, and it
encounters a mechanic agent, it will adjust its experienced
time pressure similar as efficiency effort in Equation 2.

5. Thoroughness Effort Conformity Property: If an agent
has a thoroughness effort, ef,,,, and it encounters another
agent, then at the next time point it will adjust its thorough-
ness effort similar to efficiency effort in Equation 2. Our case
represents a team lead valuing efficiency and ignorant for
thoroughness. Since efficiency and thoroughness effort are
assumed to be independent, the team lead has no thorough-
ness effort demands that can be complied with by a mechanic.

Trust - Agents create trust in three aspects of other agents:
efficiency effort, thoroughness effort and skill level. These
three aspects are represented by the variable ¢. Six properties
represent the creation of impressions, reputation and trust:

1. Impression Property: Agents create perceptions of
other agents’ efficiency effort, ef.;s, thoroughness effort,
efino, and skill, sk. In line with social comparison theory,
agents form perceptions about other agents relative to their
own norms [70]. These relative perceptions, pe;_,;(¢), are
therefore modeled as the observed aspect minus the agent’s
own internal goal. Equation 3 shows agent i’s perception of
agent j’s efficiency effort, based on its internal goal for effi-
ciency, goal;(eff). Similarly, an agent creates a relative per-
ception of an agent’s skill level in relation to its mastery goal,
goal;(mas), and a perception of an agent’s thoroughness effort
in relation to its thoroughness goal, goal;(tho).

pel (eff) =efly;, —goali(eff) 6)

In line with prospect theory, agent i’s impression of agent
j on aspect ¢ is modeled according to Equation 4 [61]. X rep-
resents an agent’s loss aversion factor and « its risk aversion
factor. Experimental research has indicated that the values
for these variables are 2.25 and 0.88 respectively [71]. If we
consider efficiency effort again as an example, the agent’s ef-
ficiency goal is then its reference point for evaluating other’s
effort. If an agent’s efficiency goal is high, it will perceive a
lower efficiency effort as a higher loss for the team than an
equally higher efficiency effort as a gain.
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2. Personal Reputation Property: If agents have had impres-
sions of other agents, they will create reputational views of
these agents over time. People generally remember recent
impressions better than older ones [72]. We therefore adapted
the REGRET model [40], where agent i’s reputational view
of agent j is modeled according to Equation 5. The equation’s
first fraction gives more weight to recent impressions.
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3. Social Reputation Property: Research shows that rep-
utation is not only based on individual observations, but also
on secondhand information [73]. So when an agent has a rep-
utational view of another agent, it will create a belief about
the agent’s reputation within the team. Equation 6 shows the
creation of the reputation agent j has in the group of agents
I. The weights, w;, s, for each agent are calculated as the
weighted mean of their abstract power influence within the
group, illustrated in Equation 7. ;s is the power influence
of agent i on its entire group I, representing social influences
within the team, and is modeled according to Equation 8 [74].
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If an agent has a relatively high power influence on
other agents within its group, it is expected that its rep-
utational view will be internalized by other agents faster
than for agents with a smaller power influence. In the
scenarios with new team members, agents are only influ-
enced by the reputational views of their fellow social group
members. Agent i is then influenced by members of social
group L. Otherwise, the agent is influenced by the entire team.

4. Personal Group Reputation Property: If new mechan-
ics enter a team, an agent creates a reputational view on both
social groups ("old" or "new"). These in-group out-group
reputations, R'*' (¢), are calculated as in Equation 6: as
a weighted mean of the individual reputations for agent j,
R;_,;(¢). Again using a weighting factor, wj,;, which is,
similar as in Equation 7, the weighted mean of the power
influences of all agents within group J on agent i, ~;,;.

5. Social Group Reputation Property: If an agent has a
reputational view of a social group, R!_, ;(¢). its own group
creates a shared view on this other group. This property is
updated as in Equations 6, 7 and 8, however for group repu-
tation J, R _ ;(¢). This results in group reputation RITL (9),
which is an abstract representation of social influences

within the groups to decrease computational complexity.

6. Trust Property: If an agent has a belief about the per-
sonal and social reputations of an agent, it will create a belief
about its trust in agent j on aspect ¢. If all team members are
part of the same social group, they do not have any group
reputations and trust is therefore formed according to Equa-
tion 9. If there are two social groups within the team, trust
is also impacted by their in-group out-group reputations and
is updated according to Equation 10. Weights are introduced
to represent whether an agent is more inclined towards its
own observations, goal;(au), or others’ opinions, goal;(re). In
Equation 10, a factor of % is introduced to average the two
reputational beliefs for each weighting factor.

1+ goal;(au) - R;?_)j (#) + goal;(re) - R’}ﬁj((ﬁ)
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We add 1 and divide by 2 for these two equations to model
trust between [0,1], rather than as for impressions and reputa-
tion on a scale of [-1,1]. This is in line with our definition of
trust: the intention to accept vulnerablity for others’ behav-
ior. Although negative beliefs for impressions and reputation
seem natural, negative intentions for acceptance are rather
counter-intuitive. Zero trust indicates no intention to accept
vulnerability and trust equal to one means full acceptance.

1+ 5 -goal(au); - (RL_, ;(¢) + R_, ;(¢))
2-(goal(au); + goal(re);)
L. goal(re); - (RL_,, () + R}, ,(6))
2-(goal(au); + goal(re);)
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Task allocation based on agents’ trust is explained next.

6.3.2. Interactions between Agents for Task Allocation

The interactions between agents for task allocation are mod-
eled using the three negotiation elements: negotiation sets,
protocols and strategies. The negotiation set is represented as
all possible allocation options. It is therefore necessary for
agents to create a belief on their value for a specific alloca-
tion option. An overview of the properties representing the
agents’ valuation of options is therefore provided first. The
three task allocation protocols and strategies are explained af-
terwards, starting with team lead decision-making, followed
by voting and mediated feedback automated negotiation.

Valuation - The negotiation set is represented by the set of
all possible allocation outcomes. Each agent determines its
value for the assignment of task packages among all agents.
An agent’s valuation is calculated using three properties:

1. Task Demands Property: If an agent has a belief
about its experienced time pressure, and tasks need to be
distributed within the team, then at the next time point it
will create a belief about the demands, dem(¢)! ;. for every
task. The thoroughness and skill demands are equal to
task f’s required thoroughness level, tho'?, and task f’s
required skill level, sk%“. The level of efficiency required,
however, does not depend only on the task, but also on the
current state of the task execution. If an agent’s experienced
time pressure is low, the efficiency demand will be low for
every task. If the agent’s experienced time pressure is high,
the task with the largest number of tasks dependent on its
completion can be viewed as the most urgent task. The
efficiency demand is therefore modeled as a multiplication
of an agent’s experienced time pressure and the normalized
number of tasks dependent on the completion of task f within
this shift, dep;. The efficiency demand of task f is then
calculated as follows: dem(eff);f =depy - etp!.

2. Trust in Tasks Property: If an agent has a belief about
the demands for every task, it will create a belief about its
trust in the competence of agent j executing tasks f within the
task package p. Agents aim to minimize under-competence,
such that the task demands are satisfied as much as possible.
This is calculated according to Equation 11, based on [75].
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So, if the efficiency demand for task f is equal to or lower
than agent i’s trust in agent j’s efficiency effort, then agent
i’s trust in agent j efficiently executing task f is equal to 1. If
agent i has half the trust in agent j’s efficiency effort than the
efficiency demand, its trust in agent j efficiently executing
task f is also 0.5. For each task package, the agent sums its
trust in the execution of all tasks for each aspect ¢.

3. Valuation Property: Agent i’s valuation, V;(o), for an
allocation option, o, of all agents j in team ¢ assigned to
packages p; is then calculated according to Equation 12. We
model this for the total allocation of task packages within the
team, since the value of assigning package 1 to agent A, de-
pends on which package is then assigned to agent B etc.

1, goali(mas) - T, (sk(p;))*
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Agent i believes that the option with the highest valuation
presents the best fit between mechanics and tasks. We model
this as an additive utility function, since the three aspects of
mechanics’ work are independent variables. Agent i’s inter-
nal goals define whether it gives more weight to efficient task
execution, goal;(ef f), thorough task execution, goal;(tho), Or
the alignment of tasks and skills, goal;(mas).

The task allocation procedures will be described next.

Team Lead Decision-Making - The introduced technologies at
the maintenance organization under consideration required
the team lead to allocate tasks. The team lead chooses the
allocation option it values the most. This is formally repre-
sented in Equation 13, where o« is the chosen allocation.

ox't! = argmaz, Vi(o)? 13)

Voting Protocol and Strategies - A voting protocol is ex-
plored, because the mechanics at the maintenance organiza-
tion used self-built voting protocols for scheduling. The vot-
ing protocol can be found in Figure 4 (a). First, all team mem-
bers evaluate the optional allocations according to Equation
12 and communicate two of their most preferred options to an
auctioneer. The auctioneer communicates the proposed op-
tions to all agents, which will then pose a bid for every option.
The auctioneer uses the Clarke tax algorithm to calculate the
winning option according to Equation 14 [76]. The Clarke
tax is a mechanism that motivates agents to reveal their pref-
erences truthfully, therefore preventing strategic voting [76].

oxttl = argmaz, Z Vi(o)t (14)
The introduction of a Clarke tax'has truthful bidding as a

dominant strategy [77]. It is however not resistant to col-
lusion [77]. We introduce an additional tax to discourage

collusion between two agents belonging to the same group.
Agents are not expected to collude if their combined utility
will not increase, since power influences within groups are
assumed to be similar. Agents’ utilities are calculated accord-
ing to Equation 15, where taz; is the Clarke tax and tax;; the
group tax, calculated by Equations 16 and 17 respectively.

u; (o*)t+1 = Vi(o*)t — ta:z:f — tarth- (15)
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Mediated Feedback Based Protocol and Strategies - An au-
tomated negotiation protocol could increase the performance
of the decision-making process. The Mediated Feedback
Based Protocol allows agents to provide feedback to a medi-
ator on proposals. This protocol was selected, because it rep-
resents the team dynamics of exchanging arguments and has
shown to produce good results under time constraints [78].
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Fig. 4. Agent’s states and interactions for both negotiation protocols

Figure 4 (b) provides an overview of the Mediated Feed-
back Based Protocol. The mediator generates a first bid ran-
domly and sends it to all agents. Each agent evaluates the
offer and compares this offer to the previous offer. The agent
communicates to the mediator if this new offer is ’better’,
worse’ or the ’same’ as the previous offer. The mediator
keeps updating its offer, using preference profiles deducted
from the received feedback, until the negotiation deadline.
The winning option is then the last offer that did not receive
a ’worse’ feedback. For a more detailed explanation refer
to [78]. We adopt the hill-climber agent strategy from [78],
since it produced a good agreement in a short time.

6.3.3. Interactions between Agents after Task Allocation

After task allocation has been performed, mechanics can
estimate their reputation within the team based on the task
package that has been assigned to them. This cognitive pro-
cess is often referred to as theory of mind.

Theory of mind - Theory of mind is "an agent’s ability to
reason about the beliefs of others" [79]. The agents aim for
a reputation in line with their own efforts. If their believed
reputation is lower than their effort, they will increase their
effort in order to increase their reputation. Three properties
represent agents’ theory of mind capabilities:



1. Trust Impression Property: An agent will create a be-
lief about the team’s trust in its efficiency and thoroughness
effort based on the chosen allocation. We only consider ef-
fort since agents cannot instantly change their skills. For effi-
ciency effort for example, this is modeled using Equation 18,
where I'mp{f! (T,i(eff)) is the impression that agent i has
of team q’s trust in agent i on its efficiency effort. Team q has
assigned task package p; to agent i.
goal(ef f) Timi(eff(pi))

F, P

T;—:(é(p;)) 1s agent i’s own trust in carrying out its
assigned task package efficiently, and is again calculated
according to Equation 11. In order to evaluate all task
packages on the same scale, we divide by the number of
tasks within package p, F},. This results in the average trust
for all tasks within a package, which is multiplied with the
agent’s efficiency goal to accommodate for the fact that
efficiency could be unimportant to agent i. Thoroughness
effort has been modeled in a similar manner.

Impl ) (TE, (ef 1)) = as)

2. Reputation in Team Property: If an agent has formed
an impression on the team’s trust in its effort, it will create
a belief about its reputation within the team, R! _,(Ti—4(¢)).
This is again calculated according to Equation 5.

3. Reputation Effort Change Property: If an agent has
a belief about its reputation, it will adjust its efficiency and
thoroughness effort, based on the gap between their believed
reputation and their real effort, according to Equation 19.

erf, =elipr, —wa (Rami (Tl g (ef ) —efly,) (19

wq determines how motivated the agent is to adjust its ef-
fort and is calculated according to Equation 20. ~,; is the
power influence of team q on agent i and goal;(re) agent i’s
internal drive for relatedness with its peers.

It depends, however, whether the agent’s believed repu-
tation is higher or lower than its effort. Remember that the
agents aim to have a reputation in line with their efforts or
higher. If an agent’s efficiency effort is higher than its be-
lieved reputation, the agent will increase its effort in order to
increase its reputation. A high relatedness goal and team in-
fluence will motivate the agent to have this desired reputation
within the team. If an agent’s efficiency effort is lower than
its believed reputation, the agent could decrease its effort,
since it already has its desired reputation. But if the agent has
a high relatedness goal and team influence, the agent would
still aim for maintaining its efficiency effort close to its be-
lieved reputation rather than decreasing it.
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The abstract representation of the entire team’s power in-
fluence on the agent is modeled using the Dynamic Theory
of Social Impact [80]. N is the number of agents within the
team and it is assumed that the agents interact with each other
without intermediate agents and therefore their closeness pa-
rameter cl; = 1. 8 is a constant that compensates for group
size and experimental research found it to be around 0.5 [81].
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Agents also have theory of mind capabilities for team lead
decision-making. In all of the previous properties, ¢ should
then be replaced with the team lead j. Moreover, the agent’s
relatedness goal, goal;(re), should be replaced with the agent’s
esteem goal, goal;(es), in Equation 20. The team lead has no

theory of mind properties for team lead decision-making.
Interactions between agents and tasks are presented next.

6.3.4. Interactions between Agents and the Environment
Two types of properties represent interactions between
agents and tasks: task execution and tracking progress.

Task Execution - All agents will start executing tasks after
task allocation has been performed. The following four
properties represent the task execution dynamics:

1. Start Task Property: If the chosen task allocation
has been communicated to the agent, it will start with the
execution of the first task of its assigned package.

2. Task Execution Property: If an agent has started ex-
ecuting a task, it will continue executing this task until the
task is finished. The task execution time is impacted by an
agent’s efficiency effort, thoroughness effort and skill level.
These temporal relations are calculated relative to the num-
ber of man-hours for each task and have been verified with
maintenance engineers. A low efficiency effort on a large
task therefore results in more additional execution time than
for a small task. Assuming that multiple mechanics work-
ing on the same task perform the same share, the number of
man-hours is divided by the number of mechanics.

We model the task execution dynamics as p! . represent-
ing the part of a task f that has been finished by agent i at time
t. This part is updated every time step according to Equation
22, where mechy is the number of mechanics for a task, h the
time step in hours and mh; the number of man-hours for a
task. The additional part of a task that has been performed
in a time step is the length of the time step divided by the
total number of man-hours per mechanic. efiy;, skiy; and
thig,; are influences of efficiency, skill and thoroughness on
execution time. These three factors are elaborated on further.
h-mechy

mhy ’

t+1 t
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Obviously, high efficiency effort results in less execution
time. In our model it is assumed that if an agent has average
efficiency effort, ef.;; = 0.5, it will take as much time as the
number of man-hours for task f. Extremely low efficiency
effort, equal to 0, is assumed to increase execution time with
half the task’s man-hours per mechanic. High efficiency ef-
fort leads to only half of the task’s man-hours per mechanic.
The efficiency influence, efi, on the part that has been per-
formed in a time step is calculated according to Equation 23.
1
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If a mechanic has lower skills than required for a task,
it takes more time for this agent to get to know the task,
read documentation and understand what is expected. That
is why additional time is calculated as the relative difference
between the required skill level, sk}** and the agent’s skill
level skt multiplied with the amount of man-hours for a task.
This is calculated according to Equation 24.

ski‘}’i = maz(sk;eq —skt,0) 24

If an agent’s thoroughness effort is equal or higher than
the required thoroughness level, the agent is expected to be
as thorough as necessary. A lack of thoroughness effort for
a specific task, however, can lead to a safety incident. To
model this, we draw a uniformly distributed variable, o, be-
tween [0,1]. If this variable is smaller than half the difference
in thoroughness effort and thoroughness required, a safety in-
cident occurs. This is modeled according to Equation 25.

-t
thzf’i

_ { scp ifop< %(tho?eqfeft"hol_) 25)
0

else

For example, if the required thoroughness is 1 and an
agent’s thoroughness effort is 0, the expected value of a
safety incident is 1 in 20 minutes of task execution. 0.1
thoroughness difference results in an expected value 1
safety incident in 200 minutes of task execution. No main
landing gear replacement task takes such a long time for
one mechanic. Thus, a safety incident is much less likely
to occur. But if a safety incident occurs, the agent needs
to re-do certain parts of the task. The part, pf .. is then
decreased with the tasks’ safety criticality, sc;. It is assumed
that a safety incident can only happen once per task.

3. Start New Task Property: 1If p’ ; > 1, the agent has
finished task f. The agent will check whether all the required
tasks for starting its next task, task f+ 1, have been finished
and afterwards start executing task f+ 1.

4. Skill Dynamics Property: At each time point, if an
agent is executing a task with a higher skill level required
than its own skill, its skill level increases according to Equa-
tion 26. It is expected that mechanics with a high mas-
tery goal will be more open for learning from new experi-
ences, which is why the agent’s mastery goal, goal;(mas), is
included. Agents are not assumed to lose skills over time.

skf+l = slc}b-t + goal;(mas) skztfl (26)
Tracking Progress -The team lead agent tracks the team’s
progress during the shift. The following three properties are
defined for the team lead to track progress:

1. Track Packages Property: At each time point, if any of
the agents has finished a task, the team lead will update its
belief about the to be executed task packages for each agent.

2. Experienced Time Pressure Change Property: At each
time point, if the team lead has a belief about the to be exe-
cuted task packages, it creates a belief about its experienced
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time pressure according to Equation 27. etp is the experi-
enced time pressure, mhrt the ratio of the total man-hours
left over the shift’s total scheduled man-hours and timer? the
ratio of the remaining time over the total shift time.

t timert

. timer o
etpl = 1.5 —min(1.5, % if e <1 @7
¢ 1.5 —maxz(0.5, timer else
mhr

For example, four equally large tasks need to be finished
in four hours. At the start, the share of man-hours to be
performed is equal to the share of remaining time. The
team lead’s experienced time pressure is then 0.5. If two
tasks still need be performed in three hours, the team lead’s
experienced time pressure will drop to 0, since they have 1.5
times the expected task execution time to finish. In contrast,
if two tasks need to be performed in one hour, the team lead’s
experienced time pressure will be equal to 1, since the team
has now only half of the estimated time to finish these tasks.

3. Efficiency Effort Property: If the team lead has an ex-
perienced time pressure, it will change its efficiency effort ac-
cording to Equation 28. If the team lead’s experienced time
pressure is higher than the average time pressure of 0.5, it
will increase its efficiency effort. If it is lower the team lead
will decrease its efficiency effort. The magnitude depends on
the team lead’s esteem goal, goal(es), which motivates him to
comply with its manager’s requirements.
t4+1
effi

This concludes the model description. The next section
elaborates on the verification and validation approach.

e = eféffl + goal(es) - (etpl — 0.5) (28)

7. Verification and Validation

Model verification has been performed by testing the under-
lying model assumptions with experts and face validity of the
conceptual models [82]. The implementation has been veri-
fied by unit testing as well as solving compile errors. Face va-
lidity of the implemented model provided insights in whether
the conceptual model resulted in the expected model behav-
ior, which was derived from the underlying model assump-
tions and social theories. Every iteration several properties
were added to the model and the resulting model behavior
was evaluated for different inputs. Sensitivity analysis has
been performed for the final model. Both the sensitivity anal-
ysis and an overview of the model assumptions are provided
in [62]. Moreover, we compared our results with other re-
search on group decision-making for further validation.
The results and experimental set-up are presented next.

8. Experiments

This section presents the experiments. Section 8.1 elaborates
on the scenarios as well as the simulations that have been
performed. The performance indicators for assessing these
simulations are described in Section 8.2. An explanation of
the statistical evaluation of the results is provided in Section
8.3. The results are presented in Section 8.4.



8.1. Scenarios and Simulation Set-up

The characteristics of the aircraft maintenance team, spec-
ified for our described case, can be found in Table 1. The
initial states were drawn from a uniform distribution in three
ranges: low [0.1-0.4], medium [0.4-0.7] or high [0.7-1.0].

Table 1. Fixed agent characteristics for all simulations

Agent sk goal(eff) | goal(tho) | goal(mas)
TL-1 High High Low High
MECH-2 | Medium | Medium | High Medium
MECH-3 | Medium | Low Medium Medium
MECH-4 | Medium | Medium | Medium Medium
MECH-5 | Low Medium | Medium Low

The following sections will elaborate on the defined sce-
narios as well as the simulations that have been performed
for each scenario, including initial parameters and states.

8.1.1. Main Scenarios and Simulations
Three main scenarios have been modeled: an independent
(SC-IND), compliant (SC-COM) and social (SC-SOC) team.

SC-IND - The first scenario represents a team of independent
mechanics that have been working together for a long time.
They share common goals for efficient and safe task execu-
tion, but have different beliefs on how to reach those goals.
The mechanics value autonomous decision-making and their
behavior is relatively independent of their fellow teammates.

SC-COM - In the second scenario the mechanics have known
each other for a long time as well, but value compliance with
a superior instead of independence. They are driven by exter-
nal rewards for adhering to their superior’s goals. They are
not completely driven by their superior, however, and still
have individual goals as well.

SC-SOC -The third scenario represents an inherently social
team, with mechanics mostly valuing their peer’s opinions.
They know each other well and therefore have beliefs about
other’s competence and created social norms on work effort.

The first shift of a main landing gear replacement is sim-
ulated for all three task allocation methods in each scenario.
The performed simulations and initial states can be found in
Table 2. In every simulation either the mechanics’ autonomy
goal, esteem goal or relatedness goal is high. All agents are
part of the same social group in these scenarios. Power rela-
tions between mechanics that know each other well are based
on high referent and legitimate power, which is derived by
[35] to be 7;; ~ U[0.8,0.9]. The team lead’s additional pun-
ishment and reward power will not increase this value, since
using its formal power would decrease its legitimate and ref-
erent power. The simulations have been initialized for three
shifts to represent the mechanics’ long working relationship.

8.1.2. Scenario Variations and Simulations

Three additional scenarios have been introduced to evaluate
variations to the model: the introduction of a new team mem-
ber (SC-NEW-1), three new team members (SC-NEW-3) and
task execution by multiple shifts (SC-SHIFTS).
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Table 2. Overview of all simulations

Simulation goal(au) | goal(es) | goal(re) | Allocation protocol
SC-IND-TL High Low Low Team lead
SC-IND-VO High Low Low Voting
SC-IND-MF High Low Low Mediated feedback
SC-COM-TL | Low High Low Team lead
SC-COM-VO | Low High Low Voting
SC-COM-MF | Low High Low Mediated feedback
SC-SOC-TL Low Low High Team lead
SC-SOC-VO | Low Low High Voting
SC-SOC-MF | Low Low High Mediated feedback
SC-NEW-1 Low Low High Voting

SC-NEW-3 Low Low High Voting
SC-SHIFTS Low Low High Voting

SC-NEW-1 -1t is common in aircraft maintenance to hire tem-
porary workers to fill in the gaps of a workforce shortage [3].
The first variation therefore evaluates what happens when a
new mechanic will join the socially oriented team.

SC-NEW-3 - The second variation introduces three new team
members to a social team, one of which is the team lead.
This is in line with current social dynamics at aircraft mainte-
nance organizations, of which many are dealing with an aging
workforce [83]. The transition phase can create an in-group
out-group environment within the team [84].

SC-SHIFTS -The final variation considers the entire main
landing gear replacement, with six consecutive shifts. This
scenario can evaluate whether social influences between me-
chanics of different shifts impact the task allocation outcome.

These scenarios could only be simulated for one task al-
location method due to time constraints. We chose the voting
protocol since it was one of the self-built democratic planning
systems at the aircraft maintenance organization. The initial
parameters for these simulations are also provided in Table 2.
SC-NEW-1 and SC-NEW-3 have been simulated for the first
shift, while SC-SHIFTS considers the total main landing gear
replacement. The older mechanics have been initialized for
three shifts again. The new mechanics entered the simulation
after two shifts to create at least some initial trust beliefs.

The power relations between old (o) and new (n) mechan-
ics have again been derived form [35]. The older mechan-
ics have not only referent and legitimate power over the new
mechanics, but also expert power: they know the organiza-
tional norms and their peers better: 7., ~ U[0.8,1.0]. New
mechanics have only persuasion power over older mechanics
and due to their lack of knowledge, this is very low: v, ~
U[0.0,0.1]. High referent power is present between new me-
chanics: vyn,, ~ U[0.1,0.4] and as before: 7,, ~ U[0.8,0.9].
The time step was 10 minutes for all 12 simulations.

8.2. Performance Indicators

Six performance indicators have been defined to evaluate and
compare the simulations. The first is the total task execution
time in minutes (TIM), which ultimately provides insights
into the overall time efficiency performance. The number of
safety incidents (SAF) illustrates the safety performance. The



absolute task execution time in minutes (TAS) is the sum of
the absolute execution time for all tasks within a shift. This
measure is relevant since it provides an indication of the ef-
ficiency of all team members’ task execution efforts. The
Utilitarian Social Welfare (USW) is the sum of all agents’
utilities for a task allocation outcome averaged over the num-
ber of task allocations within a shift. This measure reflects
the level of agreement within a team on an allocation out-
come. An agent’s utility is calculated as its valuation for an
option divided by its maximum valuation for all options. In
order to be able to compare all scenarios, the Clarke tax has
not been considered in the calculation of USW for the vot-
ing protocol. The average percentile deviation of man-hours,
A MH, represents the average of the relative change in ex-
ecution time for all tasks. This shows how well the average
mechanic-task fit is within a simulation. The allocation out-
come (ALL) checks whether the allocations within a shift are
the same (1) or different (0). This measure provides insights
into the task allocation protocol’s behavior over time.

8.3. Statistical Evaluation

The Kolmogorov-Smirnov test showed that the simulation
outcomes were not normally distributed. The number of sim-
ulations was therefore determined by evaluating the coeffi-
cient of variation on all performance indicators [85]. It was
observed that after 200 runs the coefficient of variation for
all single shift simulations remained stable. SC-SHIFTS was
already stable after 45 runs. Statistical significance has been
calculated for all performance indicators using the Vargha-
Delaney A-test [86], except for the task allocation check
(ALL). The A-test values express the probability that the per-
formance indicator is higher for the first than for the second
algorithm. ALL is evaluated using the Fisher test [87].

8.4. Results

The results of the first scenario with relatively independent
mechanics (SC-IND) are provided in Section 8.4.1. After
that a description of the results for the scenario with me-
chanics that value compliance (SC-COM) is provided in Sec-
tion 8.4.2. The scenario with social mechanics (SC-SOC)
is discussed in Section 8.4.3. The results of the social sce-
nario variations are described in Section 8.4.4. A comparison
across scenarios is performed in Section 8.4.5 and a more de-
tailed evaluation of the relation between the performance in-
dicators and the social welfare can be found in Section 8.4.6.

8.4.1. SC-IND: Results
The summary statistics for the scenario with independent
mechanics are presented in Table 3. Table 4 shows the test
statistics for both negotiation protocols compared to task al-
location by the team lead. These results are discussed next.
The total task execution time mean is lowest for decision-
making by the team lead, followed by the mediated feedback
protocol. This can be explained by the fact that in this sce-
nario agents make decisions relatively independent of oth-
ers and the team lead has a high efficiency goal. The abso-
lute time for all tasks is therefore also lowest for the team
lead. The number of safety incidents, however, is signifi-

12

Table 3. SC-IND: summary statistics

TIM [min] | SAF [-] | TAS [min] |USW [-]| A MH [-]| ALL [-]

Team n|434.4 7.340 [1505 4969 ]0.250 0.000
lead o |12.94 2.034 [34.63 0.010 [0.027 0.000
Voting 1500.8 5.560 |1547 4986 [0.099 0.175
o |15.50 1.820 [26.63 0.001 |[0.016 0.391
Mediated | p |470.5 5.520 (1514 4974 10.248 0.075
feedback | o |68.99 2.030 [61.04 0.008 [0.058 0.264

Table 4. SC-IND: test statistics

TIM SAF TAS USW |AMH |ALL

(A-Test) | (A-Test) | (A-Test) | (A-Test) | (A-Test) | (Fisher)

Voting 0.00 0.74 0.21 0.00 1.00 1.00
Mediated feedback | 0.38 0.47 0.73 0.41 0.55 1.00

cantly higher for the team lead than for the voting or mediated
feedback protocol. Only allocating for efficiency therefore
results in more safety incidents.

The standard deviation for both the total execution time
and the absolute execution time of the mediated feedback
protocol is relatively high compared to the other two proto-
cols. An explanation is that the mediator could not yet create
accurate preference profiles of the agents. This could result
in local optima, dependent on the mediator’s initial proposal.
The standard deviation of the number of safety incidents,
however, is not significantly higher than for the other two
methods. A possible explanation for this might be that there
is a maximum thoroughness violation that can be accepted by
one or more agents, regardless of the offer sequence.

The voting protocol’s mean social welfare is the highest of
all task allocation methods. This was expected, because the
voting protocol selects the outcome with the highest social
welfare. The social welfare mean for the team lead and me-
diated feedback protocol are in the same range with a larger
standard deviation. The A-test results in Table 4 show a
probability of 0.41 that the team lead provides a better social
welfare than the mediated feedback protocol. The mediated
feedback protocol has therefore a significant probability of
achieving a better social welfare than the team lead.

The voting protocol has a significantly lower average per-
centile deviation to the number of man-hours than the other
two protocols. The additional time for the voting protocol is
therefore caused by large tasks. A small percentage devia-
tion still results in a lot of absolute additional time. The team
lead and mediated feedback protocol have on average higher
deviations, but on shorter tasks, resulting in less lost time.

The team lead’s allocation check of 0 means that it always
changes the allocation half-way through the shift. This can
be explained by its changing experienced time pressure over
time. The other agents are less susceptible to time pressure
due to their autonomous decision-making, which results in
the same negotiation outcome more often for the voting and
mediated feedback protocols. This difference in experienced
time pressure for the team lead and other agents can be seen
in Figure 5 (a). Another interesting observation is that the ex-
perienced time pressure has an oscillatory shape. This shows
that an increase in time pressure leads to increased efficiency
effort of the mechanics, which results in a decrease in time
pressure and therefore decreasing efficiency effort.
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Table 5. SC-COM: summary statistics

gus _ o =i TIM [min] | SAF [-] | TAS [min] |USW [-]| A MH [-] | ALL [-]
fl e Team |u|4155  |5.025 [1502  |4.948 |0.213 | 0.000
qu Te— lead o|11.68 1.786 |37.67 0.007 |0.039 0.000
| ) ——— Voting |1 4397|4575 [1520 (4974 10210 [ 0340
Time minl c[13.96 1.688 [35.23 0.003 |0.034 0.475
(a) SC-IND Mediated | 1| 481.8 4.590 |1490 4.974 10.217 0.210
. feedback (o |81.79 1.833 |69.55 0.006 |0.060 0.405
%Us - B ey Table 6. SC-COM: test statistics
- - - TIM [SAF |TAS |USW [AMH |ALL
S e (A-Test) | (A-Test) | (A-Test) | (A-Test) | (A-Test) | (Fisher)
T e w w m w w e w Voting 0.10 |057 037 [0.00 [052 | 1.00
(b) SC-COM Mediated feedback | 0.22 0.57 0.53 0.01 0.46 1.00
Tos- The voting and mediated feedback protocol provide more
e . G often the same outcome during re-allocation than in the pre-
é“ B — e vious scenario. This is somewhat surprising since the agents
é“ o have internalized the experienced time pressure more. This
T e w w m o m ow w w . influence is less evident than for the team lead since the other
(¢) SC-SOC agents do not have a high efficiency goal. Part of the ex-

Fig. 5. Experienced time pressure for team lead allocation

8.4.2. SC-COM: Results

Table 5 provides an overview of the summary statistics for
the scenario with compliant mechanics. The test statistics,
compared to team lead allocation, can be found in Table 6.

The total execution time is again smallest for the team
lead, but this time followed by the voting protocol. The team
lead and voting protocol show statistically significant better
results for total execution time as well as safety incidents
compared to the previous scenario. In the current scenario,
agents are driven by their esteem goal, therefore susceptible
to the team lead’s high efficiency goal. The team lead also has
an increased experienced time pressure due to its high esteem
goal. It is therefore counter-intuitive that the mediated feed-
back protocol has a higher total execution time than before.
The A-test value, however, indicates that this probability is
0.51: there is no significant difference.

The decrease in the number of safety incidents for all pro-
tocols with respect to the previous scenario is striking. For
the team lead this could partly be explained by the agents’
theory of mind capabilities. An explanation for the other
simulations is a decrease in absolute execution time due to
the higher efficiency effort of agents. Less execution time de-
creases the probability of a safety incident in our model, since
safety incidents can occur randomly at every time point.

The team lead and voting protocol both have a decrease
in social welfare with respect to the previous scenario, which
indicates more divergent preference profiles among agents.
Further analysis showed a significant difference between the
social welfare of the first and second task allocation. This is a
result of the larger variations in experienced time pressure at
the time of re-allocation (t=240), which can be observed for
the first two scenarios in Figure 5. The maximum social wel-
fare is therefore lower during re-allocation. Similar patterns
were observed for voting and mediated feedback.
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planation can be found in the agents’ trust in others. It was
observed that the minimum and maximum trust values of all
mechanics were less extreme than in the previous scenario. In
this scenario the agents are more prone to the opinions of oth-
ers for establishing trust relations, which creates more shared
trust beliefs. Shared trust values lead to more agreement on
the allocation outcome. Small differences in trust over time
have therefore less impact on the final outcome. Figures of
agents’ trust over time for each scenario can be found in [62].
Table 6 shows that the differences between the team lead
allocation and other protocols are less significant than in
the previous scenario. This shows that when all agents are
strongly motivated by their superiors, the decision-making
protocol is of less importance than for independent teams.
One could argue that to a certain degree a norm has been es-
tablished on how to allocate the tasks within the team.

8.4.3. SC-SOC: Results
Table 7 presents the summary statistics for the scenario with
social mechanics. The team lead has significantly better re-
sults for total execution time and safety incidents compared
to the independent scenario, but not compared to the compli-
ant scenario. The absolute task execution time has decreased
with respect to both scenarios. This can partly be explained
by the social influences between team members: norms on
thoroughness effort are created. The agents’ efforts have con-
verged faster during initialization than in the previous sce-
narios, which increases the team lead’s thoroughness effort,
resulting in less safety incidents and absolute execution time.
The voting protocol has statistically significant better re-
sults for both time performance indicators as well as safety
incidents compared to the previous scenarios. The mean ab-
solute execution time and the number of safety incidents of
the voting protocol is lowest for all methods and scenarios.
The variance of the task execution time is highest, which can
illustrate the uncertainty of how norms develop over time.
The mediated feedback protocol has a significantly in-
creased task execution time, but there is no statistical sig-



Table 7. SC-SOC: summary statistics

Table 9. SC-SOC variations: summary statistics

TIM [min] | SAF [-]| TAS [min] |USW [-]| A MH [-] | ALL [-] TIM [min] | SAF [-]| TAS [min] |USW [-]| A MH [-] | ALL [-]
Team w|417.6 4.580 (1474 4985 (0.208 0.000 SC.NEW. 1 1]450.3 7.565 [1551 4949 10.259 0.000
lead o|11.96 1.564 |34.63 0.007 (0.022 0.000 o|17.72 2.116 [40.49 0.016 [0.040 0.000
Voting 1|431.6 3.660 |1437 4995 (0.139 0.000 SC.NEW.3 w|445.8 4.850 |1524 4967 (0.278 0.000
o |30.56 1.688 |33.69 0.001 [0.026 0.000 " o|21.67 1.712 |37.26 0.005 [0.029 0.000
Mediated | 1| 533.0 5.140 [1488 4981 (0.203 0.140
feedback | o |56.23 2.472 196.85 0.008 [0.099 0.348
Table 8. SC-SOC: test statistics Table 10. SC-SOC variations: test statistics
TIM SAF TAS USW |AMH |ALL TIM SAF TAS USW |AMH |ALL
(A-Test) | (A-Test) | (A-Test) | (A-Test) | (A-Test) | (Fisher) (A-Test) | (A-Test) | (A-Test) | (A-Test) | (A-Test) | (Fisher)
Voting 0.34 0.569 ]0.80 0.00 0.97 0.00 SC-NEW-1(0.19 0.08 0.02 1.00 0.00 0.00
Mediated feedback | 0.02 0.45 0.55 0.91 0.65 1.00 SC-NEW-3|0.27 0.31 0.04 1.00 0.00 0.00

nificant difference with respect to the safety incidents. The
absolute execution time, however, is not significantly higher
than for the other scenarios. This shows that the increase in
total execution time is mostly caused by coordination.

Social relations between agents have created decision-
making norms, which can be derived from the highest social
welfare for all decision-making methods compared to other
scenarios. This can be explained by the creation of trust
norms. As mentioned in Section 8.4.2, a relative increase
of agents’ relatedness goals compared to autonomy goals, re-
sults in more influences within the team on their trust be-
liefs. This creates more coherent preferences profiles across
the team, resulting in a higher utilitarian social welfare.

The deviation of man-hours for the voting protocol is, as
explained in Section 8.4.1, significantly lower than for the
other methods. The voting protocol’s absolute execution time
is also lower than for the other methods. This shows that the
mechanic-task fit is on average highest for the voting proto-
col, since all temporal relations for task execution are based
upon the task’s relative duration in this model.

The voting protocol never chooses the same option dur-
ing re-allocation in this scenario. This can be explained by
the agents’ relatively close efforts as well as increased social
influences. The agents’ utilities are similar for all options.
Small differences over time, caused by increased social influ-
ences, will therefore lead faster to another voting outcome.
This is amplified by the increased theory of mind influences.
[62] shows figures of these changes in effort over time.

The statistical results in Table 8 show that the absolute
execution time, safety incidents, social welfare and percentile
deviation of man-hours are all statistically significant better
for voting than for team lead decision-making. The mediated
feedback protocol, however does not show significant better
results for both time parameters or safety incidents, but does
for social welfare and percentile deviation of man-hours.

8.4.4. SC-SOC Variations: Results

The results of the three additional scenarios are elaborated
on in this section. First, we will discuss the results of the
scenarios involving one new team member (SC-NEW-1) and
the scenario with three new team members (SC-NEW-3). Ta-
ble 9 presents the summary statistics. The statistical signifi-
cance results compared to SC-SOC-VO can be found in Table
10. The total execution time and the absolute execution time
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are both significantly higher than for SC-SOC-VO, which is
caused by the agents’ biased trust beliefs.

The number of safety incidents is significantly higher for
SC-NEW-1 than for SC-SOC-VO. This could be caused by
the high power influence of the team lead, with a low thor-
oughness goal, on the new mechanic. The number of safety
incidents is also significantly higher for SC-NEW-1 than for
the SC-NEW-3, This is due to the power relations between
mechanics and the team lead. In SC-NEW-3 the new team
lead has less power influence on the other mechanics.

The increase in percentile man-hours per task illustrates
a lower mechanic-task fit than in SC-SOC-VO. The higher
percentile deviation of man-hours for SC-NEW-1, however,
shows that the team with one new member knows each
other’s strengths and weaknesses better than SC-NEW-3.

The mean social welfare is in both simulations smaller
than for SC-SOC-VO. The simulations with new mechanics
also have a higher standard deviation for social welfare. This
is caused by more diverging preference profiles, which could
be a sign of polarisation within the team. SC-NEW-3 has a
higher social welfare than SC-NEW-1, since the three new
mechanics created a new, but less strong, sub-culture.

Additionally, we have evaluated the entire main landing
gear replacement task execution, involving multiple shifts
(SC-SHIFTS). In 16 % of the simulations all 184 tasks
were finished in time. Table 11 presents the summary
statistics of this scenario. For the total main landing gear
replacement, the number of completed tasks (NTA) has been
evaluated. Results show that the average social welfare
is lower for SC-SHIFTS than for voting, which could be
caused by biases across teams or task demands in other shifts.

Table 11. SC-SHIFTS: summary statistics

‘USW [-1|SAF [-]|NTA [-]
n(4.988 [52.13 |182.5
(0.004 [8.074 |0.933

8.4.5. Scenario Comparison

Figure 6 shows the total execution time set out to the num-
ber of safety incidents for all single shift scenarios. Figure 7
illustrates a similar trade-off for the absolute execution time
over the number of safety incidents. The blue dots represent
the simulations that on average finish the required set of tasks
within the shift, while the red simulations do not.
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Fig. 6. TIM and SAF trade-off

Figure 6 shows that the mean values of the three simu-
lations at the right do not finish the tasks on time, which
is one for every scenario. The best performing simulations
in terms of total time and safety incidents are SC-SOC-VO,
SC-SOC-TL and SC-COM-TL. When minimizing the num-
ber of safety incidents, SC-SOC-VO provides the best mean
values. When minimizing total execution time, SC-COM-TL
provides the best results and SC-SOC-TL is somewhere in
between. Figure 7 illustrates that in terms of absolute exe-
cution time, SC-SOC-VO outperforms all simulations. With
the introduction of a new team member, the outcome is least
favorable, illustrated by SC-NEW-1 in the upper right corner.

The scenario with social mechanics presents the best per-
formance for the voting protocol. The team lead allocation
method has a similar total task execution time for both social
as well as compliant teams. In terms of absolute task ex-
ecution time, the social team performs better. The mediated
feedback protocol performs significantly worse than the other
two methods. Only in the independent scenario the mediated
protocol finishes in time. It could be the case that it performs
better with divergent preference profiles.

8.4.6. Utilitarian Social Welfare Evaluation

These results made us wondering whether there is a relation
between a team’s social welfare and the task execution
performance. This can provide an indication of whether
the social welfare of an allocation can predict the global
task execution performance. An initial analysis of the
relation between the social welfare and other performance
indicators is performed using the Pearson correlation factor,
p [88]. The correlation factors have been assessed for the
three allocation methods across the previously mentioned
scenarios. The correlation factors at a significance level of
0.1 can be found in Table 12. N/A indicates a p-value lower
than the significance level: p is not statistically significant.

Table 12. Pearson correlation factors with USW (« = 0.1)

TIM | SAF |TAS |AMH| ALL
Team lead 0.23 |[N/A |-0.17]0.09 | N/A
Voting 0.07 [-0.45 |-0.48 | -0.66 | 0.06
Mediated feedback | 0.27 | 0.09 |-0.39|0.10 |[-0.10

For all allocation methods, a strong negative correlation
exists between absolute execution time and social welfare.

15

SC-SOG-NEW-1
.
751 SC-IND-TL
.

iy
3 SC-IND-MF SC-IND-VO
. .

SC-SOC-MF,
o 'SC-COM-TL
* SC-SOC-NEW-3

SC-SOC-TL SC-COM-MF SC-COM-VO
. . .

SC-SOC-VO
.

L L L |
1480 1500 1540 1560

TAS [min]

L
1440 1460 1520

Fig. 7. TAS and SAF trade-off

This indicates that the group has more knowledge about the
mechanic-task fit than an individual. This can also be de-
duced from the significantly high and negative correlation
between USW and A MH as well as SAF for the voting pro-
tocol. This is confirmed by the correlation for SC-SHIFTS:
p(USW,SAF) = —0.49. There is a weak positive correla-
tion, however, between total execution time and social wel-
fare, indicating that a higher social welfare increases the total
execution time. This correlation is less evident for the voting
protocol and is counteracted by the correlation between USW
and NTA for SC-SHIFTS: p(USW, NT A) = 0.25. This re-
sult indicates that increased social welfare decreases the total
execution time for the entire main landing gear replacement.
The next section will discuss the findings from this re-
search in a broader context and reflect on the methodology.

9. Discussion

These results show that the performance of an aircraft main-
tenance team changes with the social environment as well as
the type of task allocation method. In Section 9.1 we will first
discuss the presented results in a broader theoretical context.
Section 9.2 discusses the implications of this research for air-
craft maintenance practices. Limitations to this research as
well as future recommendations are discussed in Section 9.3.

9.1. Decision-Making in Teams
The results of this research show that shared trust between
team members increases the social welfare of an allocation,
which on its turn increases the absolute execution time. This
relates to the concept of shared situation awareness: "the de-
gree to which team members have the same situation aware-
ness on shared situation awareness requirements"” [56]. Our
results show that the team’s shared situation awareness on
the strengths and weaknesses of all other agents yields better
team performance in terms of absolute task execution time.
A related concept is the shared cognition construct. Ex-
perimental research has found a positive relation between
shared cognition and team performance [89]. The concept of
shared cognition is however not well-defined [90]. [89] out-
lines four categories of ’shared’ in this context: shared task
specific knowledge, shared task related knowledge, shared
knowledge of teammates and shared attitudes or beliefs.



Our model has demonstrated that shared knowledge of
team members and shared attitudes increases team perfor-
mance. Shared experienced time pressure, part of shared task
related knowledge, did not lead to better task execution per-
formance in our research. This could be caused by the un-
derlying assumption that only the team lead tracks task ex-
ecution progress. Further research could explore the impact
of all agents tracking task execution progress on coordination
performance. The shared cognition construct, founded in so-
cial psychology, only describes a relation between shared be-
liefs and team performance, rather than providing an expla-
nation. The wisdom of crowds, a statistical concept on group
decision-making, describes the phenomenon that the average
judgement in a group converges to the accurate solution [7].

Empirical researchers argued that social influences under-
mine the wisdom of crowds effect [91]. In order for wisdom
of crowds to apply, they concluded, individual judgements
should be independent. Later mathematical research how-
ever showed that the impact of social influences depends on
the initial opinions of the group. Groups with opinions rel-
atively far from the truth benefit from social influences. So-
cial influences however deteriorate the collective opinions of
groups with initial opinions relatively close to the truth [92].
Another study showed that a diverse group makes better col-
lective guesses than a group of experts, as it avoids getting
stuck in locally sub-optimal solutions [93]. Biases within
the group could however deteriorate the outcome, which has
been shown in our simulations with the introduction of new
team members and has also been illustrated in [93].

We have shown that diversity in initial trust levels in com-
bination with shared trust among mechanics over time in-
creases collaborative task allocation performance. This is in
line with the wisdom of crowds theory.

9.2. Implications for Aircraft Maintenance

Our research has illustrated the added value of collabo-
rative decision-making for task allocation in aircraft main-
tenance. Although the team goal for high performance is
shared between all mechanics, different views on safety
compliance, efficiency needs and the competence of team-
members have shown to be driving the performance of col-
laborative decision-making within the team.

The analysis of the results focused on the trade-off be-
tween safety and efficiency that drives every decision in air-
craft maintenance. If a team lead has a high preference for
efficiency, it will allocate tasks in the most efficient manner,
however overlooking thoroughness. Yet, the team decided in
all but one simulation for safer task execution. Using col-
laborative decision-making mechanisms, the team could pro-
vide a counterbalance to explicit preferences for either thor-
oughness or efficiency. The aggregation of varying priorities
in collaborative decision-making provides more equity to the
efficiency-thoroughness trade-off than individual decisions.

Another trade-off showed a significant difference between
the absolute task execution time and the total execution time
for many simulations. The decision-maker therefore needs to
make a trade-off between the best allocation considering all
other tasks and agents within the shift, and the best mechanic-

16

task fit. Socially oriented teams performed best in terms of
absolute task execution time. The results were however not
significantly better in terms of total execution time compared
to team lead decision-making or voting by compliant teams.

It was found that a mediated feedback automated negoti-
ation method provided the most favourable results in terms
of efficiency and safety for independent teams. Teams that
value compliance with their team lead showed the best per-
formance if tasks were allocated by the team lead. Socially
oriented teams presented the most favorable results for the
voting task allocation protocol.

In line with the anthropological study [3], our research
indicates that the aircraft maintenance organization should
encourage the sociality of teamwork. The combination of a
voting protocol and a socially oriented team has provided the
best results in terms of time efficiency and safety. It should
be noted, however, that different sub-cultures within a team
could deteriorate the voting outcome. Moreover, the voting
process can take more time than team lead allocation.

Nevertheless, we should be cautious with generalized
conclusions from descriptive social simulation models [94].
Our model describes the relation between several observed
processes, rather than the entire system. Further research
should therefore consider other aspects of the aircraft main-
tenance work, such as uncertain task demands, exhaustion,
cognitive workload, or personal preferences.

9.3. Reflections on Methodology

The proposed model has illustrated its ability of capturing
the social elements of teamwork in the task allocation process
of aircraft maintenance. It considers human elements in the
socio-technical aircraft maintenance system, rather than ne-
glecting these aspects due to social complexity. The diverse,
subjective trust relations between mechanics capture part of
this social complexity. The developed model was able to rep-
resent the task allocation decision-making process based on
trust. Moreover, our model represents the dynamics of in-
group and out-group relations in groups.

The model has, however, several limitations. First of all,
the model requires assumptions on initial values. Sensitiv-
ity analysis showed that the model output is sensitive to the
team lead’s internal competence goals. More elaborate sen-
sitivity analysis should be performed for agents’ goals as
well as other parameters. Time step variables for social in-
fluence relations, theory of mind influences and time pres-
sure adoption could change the simulation results. Real-life
data should be used to validate whether the model simulates
the true practise of aircraft maintenance teams. Mechanics’
motivational goals could be identified using questionnaires
on Self-Determination Theory. Moreover, experimental re-
search could evaluate the performance of the three presented
task allocation mechanisms in different teams.

Moreover, it should be investigated whether differences
in the constructed task packages yield different outcomes. It
is unknown whether the same model outcomes would hold
for tasks that have less dependencies, such as a regular A-
Check. In real life, team members can swap tasks between
packages. It should therefore be investigated what the effect



of proposing adjustments to the task packages, either before
or after allocation, would be on the overall outcome.

The absolute execution time of a task is not represented
in the decision-making of the agents. This created a voting
outcome for the first scenario with a high mechanic-task fit,
however also high execution time. The small relative ad-
ditional time resulted in a high absolute additional time for
large tasks. It is therefore recommended to consider the esti-
mated man-hours for a task in agents’ decision-making.

Simulations showed that the probability of a safety inci-
dent is higher for larger tasks. This is caused by the model
assumption that at every time point the agent has a probabil-
ity of causing a safety incident. This is not representative for
the actual work and should be enhanced.

The implemented mediated feedback protocol did not per-
form as expected. This is caused by how we modeled agents’
preferences and how the mediator creates preference profiles
of other agents. The mediator requires multiple independent
issues to vary proposals and therefore generalizes agents’
preferences. In our model, however, the preferences are rep-
resented as one allocation option. The only preference rela-
tions our mediator could deduce is that agent A values option
1 over option 2, but no additional information is gained from
this feedback. It was expected that using 60 rounds for the
feedback protocol and by remembering preference relations
for re-allocation, the mediator would have enough informa-
tion. The results, however, indicate that enhancement is nec-
essary. Itis recommended to design a mediated feedback pro-
tocol for allocation purposes, in which dependencies between
offers for different agents can be considered. The mediator
would need additional coordination properties to create dif-
ferent preference profiles, such as agent A prefers package 1
to be allocated to agent B rather than to agent C.

Time constraints prevented us from including mecha-
nisms to avoid collusion for the mediated feedback task al-
location method. Truth revealing incentives were investi-
gated for a slightly different protocol: the Mediated Single
Text protocol [95]. They introduced for each agent a limit of
mixed accepts, which are wins of an agent despite the nega-
tive feedback of other agents on this option. This means that
all agents can only have a certain given advantage over time.
Similar as for the voting protocol, an additional limit for the
number of mixed accepts for a group can be introduced, to
accommodate for group collusion. Task allocation in aircraft
maintenance teams is performed repeatedly, so agents’ mixed
accepts could be tracked over multiple negotiations.

The model’s theory of mind properties have not shown
any significant impact on the simulation results. This is
caused by the model assumption that agents aim for a rep-
utation in line with their efforts. It could therefore be con-
cluded that agents have, in general, reputations close to their
efforts. Mechanics could, however, aim for a higher reputa-
tion than their current effort or could aim for a specific rep-
utation to avoid getting assigned certain tasks. The theory
of mind properties should be extended to incorporate other
cognitive aspects of people’s desire for specific reputations.

10. Conclusions and Future Work

The main goal of this research was to study the relation-
ship between the social aspects of teamwork and the perfor-
mance of task allocation methods in aircraft maintenance. A
model has been created to represent social influences within
these teams, as well as mechanics’ subjective trust in others.
The model has been simulated for a case study of an Airbus
A310 main landing gear replacement. We simulated indepen-
dent, compliant and socially oriented teams. For each team,
the task allocation method was varied, either by team lead
decision-making, voting or a mediated feedback protocol.

The results showed that the teams’ task execution perfor-
mance, in terms of time efficiency and safety, varied for the
different types of teams as well as the different task allocation
methods. Independent teams provided the best performance
using a mediated feedback automated negotiation method.
The most favorable results for compliant teams were obtained
through the allocation of tasks by a team lead. Social teams
presented significantly better results for the voting protocol
than for the other task allocation methods.

The combination of socially oriented mechanics and task
allocation through voting provided the most advantageous
task execution performance for all simulations. The diversity
in initial trust levels in combination with shared trust among
mechanics over time increases collaborative task allocation
performance. It was therefore recommended that the aircraft
maintenance organization should encourage the sociality of
teamwork in socially oriented aircraft maintenance teams.

The proposed model could be adapted to include more un-
certain elements or explore more sophisticated voting proto-
cols. For example, a voting protocol could be designed with
more incentives for truthful bidding such as voting weights
based on reputation. Moreover, uncertainty about task char-
acteristics or task schedules can be of interest for task allo-
cation purposes. This research has however shown that the
performance of a task allocation method depends on the way
members of an aircraft maintenance team make decisions.
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Introduction

Digitization is currently the main aspiration of many large organizations. In the present-day digital age, it
is commonly believed that technology could be an essential ingredient for a more efficient [6], faster [7]
and eventually more profitable company [8]. If this is not enough to start a company’s 'Digital Transfor-
mation’ right away, consulting companies stress that digitization is otherwise necessary for companies
in order to keep up with their competitors [9].

So it is no surprise that in the increasingly competitive airline industry, digitization has been airlines’
key focus in order to enhance their operational efficiency. In the past many processes in the aircraft
industry have been optimized with the help of technology, such as the optimization of flight routes [10],
airline network structures [11], flight operations [12] or crew schedules [13]. Only recently, tighter profit
margins in combination with an increased complexity of aircraft (systems) drove the need for aircraft
maintenance companies to uplift their maintenance operations as well, in order to increase their ca-
pacity as much as possible [14].

It is generally understood that the present-day challenges of digitization efforts are not about the tech-
nology itself, but revolve around the technology’s interaction with humans. This relates to the field of
socio-technical research, which aims at increasing the understanding of social processes in relation to
technology. Ropohl [15] described the understanding of this relationship between humans and technol-
ogy to be crucial in order to "shape both the technical and social conditions of work, such that efficiency
and humanity would not contradict one another [15]. Many organizations as well as their consultants
are currently aware of the fact that, as Poole and DeSanctis [16] state, "lhuman use makes a technol-
ogy what it is”. Nevertheless, recommendations for problems with digitization, in which technologies
appeared not to be aligned with their human use, all provide a similar answer: increase the human will
to change, human behavioural change, human adaptation and so on [6-9].

In a recent anthropological research at a large aircraft maintenance organization, it was argued that
the assumption of the need for human behavioural change subordinate to technological change is
unfounded and in some cases untrue. Jeroen van den Hoven, Professor in Ethics at Delft University of
Technology, argued in an article in De Volkskrant that the digital age requires a new way of looking to
these problems [17]. Animportance research field for this new perspective is complexity science, which
is characterized by non-linear, dynamic and interconnected relationships [18] and aims at collecting
theories from different disciplines [19]. Complex socio-technical system research is one of the multi-
disciplinary approaches within complexity science. This research aims at contributing to the body of
research in this field in order to increase the understanding of socio-technical systems, in particular
for aircraft maintenance applications. An increased understanding of these socio-technical systems
could provide more valid insights into the issues with digitization and create a base for more founded
recommendations to improve our socio-techncial systems.
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26 1. Introduction

1.1. Literature Research Scope

Socio-technical systems are rather complex. It is therefore necessary to scope this research to one
of the digitization processes in aircraft maintenance. Experts in the aircraft maintenance field recom-
mended to focus on task allocation processes for task execution. This is because of three reasons.
First, task allocation is a highly dynamic process. Second, social structures play a large role in these
task allocation procedures in aircraft maintenance organizations. Furthermore, there is a constant in-
teraction between the task allocation system (the technology) and the mechanics (humans). All these
aspects make task allocation in aircraft maintenance of interest for socio-technical research.

The goal of this literature research is to gain a better understanding of the current practises in the al-
location of tasks within aircraft maintenance and how these efforts could be supported by technology.
This is done by assessing literature through Google Scholar, involving (parts) of the terms ’task allo-
cation in aircraft maintenance’, and the other identified research areas presented later. Furthermore,
relevant journals have been evaluated for topics of interest, such as the "Journal of Atrtificial Societies
and Social Simulation” or "Artificial Intelligence”. Finally, several relevant text books have been studied,
such as Fatima et al. [20], Shoham and Leyton-Brown [21] or Helbing and Balietti [22]. An elaborate
overview of all considered literature can be found in the Bibliography.

1.2. Literature Research Structure

The structure of this report is as follows. Firstly, a literature review into the domain of task allocation for
aircraft maintenance is necessary. Chapter 2 therefore provides an overview of the literature available
in this domain. Besides, a potential case study is briefly described. The chapter concludes with the
literature gaps that have been found during the domain research. These literature gaps shaped the
rest of the research areas that have been looked in to for this report. This is outlined in Figure 1.1
below. Three main literature gaps were found: a lack of (flexible) bottom-up approaches, a lack of
short-term planning and a lack of the social aspects of maintenance work. That is why more research
is performed in the available approaches to incorporate these three aspects in a new research project
on task allocation for aircraft maintenance.

LITERATURE GAP 1: LITERATURE GAP 2: LITERATURE GAP 3:
BOTTOM-UP APPROACHES SHORT-TERM PLANNING SOCIAL ASPECTS

Figure 1.1: Literature review structure and relevance

In Chapter 3 literature on bottom-up modeling will be explored. Distributed Artificial Intelligence is the
main bottom-up modeling approach and can provide more insights in bottom-up model design. Chapter
4 will provide an elaborate overview on the literature in task allocation procedures using bottom-up
approaches in general. This is related to the second gap in literature: a lack on short-term planning.
Task allocation procedures are rare in literature on aircraft maintenance management and therefore a
more elaborate literature research into task allocation methods in general will be executed. The third
gap touches upon the social aspects of aircraft maintenance and introduces the research area of social
simulation. Social simulation is a modeling approach for social structures and factors and is further
explored in Chapter 5. This chapter provides an insight in applicable social factors for task allocation in
aircraft maintenance and how these social aspects could be modeled. It should be noted that in every
chapter the three focus areas (bottom-up approaches, short-term planning and social simulation) are
key throughout the entire literature research. For example, social factors are also considered in the
chapter on negotiation for task allocation in Chapter 4. Chapter 5 also focuses mostly on the use of
bottom-up approaches for social simulation. This is necessary to bridge the gap between these different
literature gaps in the task allocation methods for aircraft maintenance and eventually come up with a
research proposal that aims to integrate these three approaches. The research proposal following the
conclusions in Chapter 6 is provided in Chapter 7.



Task Allocation in Aircraft Maintenance

Maintenance management in industrial application has been transformed significantly during the past
decade [23]. In the past, maintenance was considered to be an inevitable part of production. However
nowadays, most companies view maintenance as an important element of their business strategy [23].
According to Pintelon and Parodi-Herz [23], a reason for this changing perspective is the increasing
competition across all industrial sectors, which asks for the optimization of all processes across the
supply chain. Another cause is the large-scale introduction of more automatic and technological prod-
ucts, that are more demanding in terms of maintenance due to their complexity and criticality [23].

This new perspective led to an increasing demand for structuring and optimizing the maintenance pro-
cess. While the main purpose of maintenance is to guarantee a higher reliability and availability of
installations, the right allocation of resources (personnel, spares and tools) and deciding on a suitable
combination of maintenance actions have become leading topics within maintenance research [23].

This is also the case for aircraft maintenance practises [14]. An important challenge in aircraft main-
tenance is to decide which maintenance actions should be executed at what moment in time. In the
aircraft industry these decisions mostly revolve around three types of maintenance actions: correc-
tive maintenance, preventive maintenance and condition-based maintenance. There has been quite
some research into that decision-making process [24]. Yet in this research the focus will be on the
allocation of resources, most importantly personnel, which is also intertwined with spares, tools and
other resources. The concept of aircraft maintenance management revolves around the planning and
scheduling of these aircraft maintenance activities. The different aspects of aircraft maintenance man-
agement will be elaborated on in the next section.

2.1. Aircraft Maintenance Management

Aircraft maintenance management is defined by Dekker [25] as the "combination of all technical and
associated administrative actions intended to retain an item or a system, or restore it, to a normal state
in which it can perform its required function”. A general accepted framework for aircraft maintenance
management has been developed by Dinis and Barbosa-Pdévoa [14]. According to Dinis and Barbosa-
Pévoa [14], aircraft maintenance management consists of three sub-problems:

+ Capacity planning of manpower to face uncertain demand
» Spare parts forecasting and inventory management
» Task scheduling and resource allocation

Capacity planning refers to the planning phase, where the amount of manpower needed to face future
demand is estimated. Similarly, inventory management and spare parts forecasting is needed to ensure
that the right amount of resources is present to perform the maintenance tasks. Task scheduling and
resource allocation focus on optimal scheduling of maintenance tasks , based on available resources.
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28 2. Task Allocation in Aircraft Maintenance

These scheduled maintenance tasks then need to be allocated to particular mechanics. This is a dy-
namic process, with for example the arrival of unscheduled maintenance tasks or unforeseen problems
that arose during task execution. Dinis and Barbosa-Pévoa [14] focused mostly on the strategic and
tactical problems within aircraft maintenance, while the operational phase is of interest for the allo-
cation of personnel to tasks. That is why for this literature research Dinis and Barbosa-Pévoa [14]'s
framework was extended, covering the three problems described by Dinis and Barbosa-Po6voa [14] as
well as maintenance management challenges on operational level. This framework can be found in
Figure 2.1. It is important to note that there is no systematic and integrated methodology to solve these
sub-problems all together and integrate the strategic, tactical and operational maintenance phases in
an all-encompassing manner [14].

Capacity Planning & Spare Parts Forecasting

Task Scheduling & Resource Allocation

Task Allocation

Control & Disrupt?ons Management

Figure 2.1:  Aircraft maintenance management framework

This literature research focuses on the operational maintenance planning phase, specifically task al-
location. However, current research within task scheduling and resource allocation will also be ex-
plored, since the integration of these two levels of decision-making can be of importance. Besides,
task scheduling has been quite extensively researched and bears similarities to task allocation pro-
cesses. Similarly, disruptions management and task allocation are interrelated, since the dynamic
nature of task allocation partly originates from unexpected disturbances. So, an overview of some
relevant research into disruptions management and operational control will be provided as well.

2.2. Task Scheduling and Resource Allocation

Most research on the planning of maintenance tasks revolves around task scheduling. Paz and Leigh
[26] explain task scheduling as "how, when and where maintenance work is performed” and stress
that human resources increase the costs of a product extensively. Besides, human resources are the
most variable and relatively difficult to control. That is why optimal scheduling plays a major role in
the productivity of the workforce [26]. The Cambridge Dictionary refers to resource allocation as the
process of dividing resources within an organization, such as money or skills. In the case of aircraft
maintenance, this mostly refers to facilities and tools. Resource allocation and task scheduling are
interdependent, since task scheduling does not make sense without knowledge about the availability
of the required resources. Coolen [27] refers to three main types of problems in literature, that are
applicable to maintenance task scheduling and resource allocation within aircraft maintenance:

+ Job Shop Scheduling Problem (JSSP): aims at determining a schedule of jobs that have specific
sequences in a multi-machine environment [28].

» Resource-Constraint Project Scheduling Problem: Aims at scheduling tasks such that prece-
dence and resource constraints are obeyed and the total makespan is minimized [29].It assumes
that tasks have a finite required resource capacity, which is predefined, known and constant over
time.

* Resource Allocation Problem: Aims at scheduling tasks including precedence relations between
resources for a specific activity that requires multiple resources in a specific order. This is very
similar to the resource-constraint problem, but now the sequencing of tasks is emphasized, in-
stead of the distribution of resources to the tasks to be performed [14].

The goal of the aforementioned problems is to schedule tasks in an optimal way, taking into account
different constraints, such as sequences in tasks, required resources for tasks, or sequences of the
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required resources. However in task allocation, the focus is on how mechanics split up tasks into
sub-tasks and divide them among each other [30]. It is therefore assumed that the task schedule is
already (to a certain degree) decided upon before task allocation starts. The next section will present
an overview of the literature available for task allocation in aircraft maintenance.

2.3. Task Allocation

Baron [31] refers to task allocation as "the way that tasks are chosen, assigned, and coordinated”.
Research into the process of allocating tasks among mechanics within aircraft maintenance is marginal
[32]. However, there is more research available on workforce scheduling within aircraft maintenance.
Workforce scheduling, in contrast to task scheduling and resource allocation, takes mechanics as the
foundation for optimizing the maintenance process. That is why research into workforce scheduling,
which sometimes also incorporates (aspects of) task allocation, will be evaluated below.

2.3.1. Workforce Scheduling and Allocation

A model for workforce scheduling was proposed by Belién et al. [33], specifically for line maintenance
practices. A mixed-integer linear program is used to solve for every promising combination of team
size and weeks in the roster cycle. The model does not account for the variational nature of aircraft
maintenance and therefore introduced several safety factors to ensure the system’s capacity also in
unforeseen circumstances [33]. So the main limitation of this model is that it does not cover the opera-
tional phase of aircraft maintenance and therefore neglects the dynamic nature of aircraft maintenance.
Besides, the model does not consider the process of allocating tasks within scheduled teams.

A similar case study was performed by Alfares [34], at airline Saudi Aramco, for optimizing work sched-
ules and man power distribution of the company’s aircraft maintenance personnel. An optimal mainte-
nance workforce schedule was determined to satisfy growing labor requirements with minimum costs,
using an integer linear programming model. The results of this model were discussed with manage-
ment to change the schedule in such a way that practical constraints regarding working hours as well
as other preferences of the workforce were taken into account [34]. This was an attempt to consider
mechanics’ preferences to some extend, but the main objective was to develop an optimal schedule in
terms of (personnel) costs, which was leading in the decision-making process.

Another study considered preferences for workforce scheduling within a linear programming model for
the allocation of tasks. This has been done by Quan et al. [35] in an optimization model for preventive
maintenance scheduling. The multi-objective model used an evolutionary algorithm, aiming at mini-
mizing labor costs as well as carrying out tasks in time. A notable assumption in this model is that the
preferences that are taken into account are assumed to be the manager’s preferences, instead of the
preferences of mechanics themselves. Another limitation is that only two levels of skills are considered
in the model. However, skill levels are important drivers for task allocation within aircraft maintenance,
and vary from mechanic to mechanic and task to task. Section 2.3.2 will dive deeper into skill diversity
and licence requisites within aircraft maintenance.

Like most scheduling and task-allocation methods, the model proposed by Quan et al. [35], assumes
that supplies and tools are always available. In an attempt to steer clear of this common assumption,
Bertsimas et al. [36] developed a binary optimization framework for resource allocation within aircraft
maintenance for both job scheduling and maintenance scheduling, explicitly considering flexibility. The
model was optimized for the two most applicable objective functions within aircraft maintenance, the
makespan (total completion time of all tasks) and minsum (average completion time per task) [36]. One
of the main limitations of this model is the computational efficiency. With some extra functions, reducing
the size of formulations and by adjusting time windows to reduce the search space, the authors were
able to create a model that needs a run-time of 10 minutes at most.

A different approach was taken by Brimberg and Hurley [37], who developed a method for scheduling
personnel for aircraft maintenance where physical space is constricted, such as the aircraft cockpit.
Unfortunately, precedence between tasks is not considered in this model. This approach of taking into
account the maximum amount of mechanics that fit in a physical space is however relevant to task
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allocation with limited resources. The overall objective of this model is to minimize the total makespan
of all tasks, which is mostly constrained by a lack of physical space in and around the aircraft [37].

2.3.2. Mechanic Skills and Licences

This section will provide an overview of the formal licences within aircraft maintenance, as well as lit-
erature on workforce scheduling and task allocation specifically based on skills and licences. This is a
key aspect of task allocation, as only particular mechanics are allowed to execute specific tasks and
are therefore the only ones that should be assigned to that specific task.

The International Civil Aviation Organization (ICAO) has prescribed the licensing of aircraft mainte-
nance engineers [38]. In Europe, however, the European Aviation Safety Agency (EASA) issues these
licences. They maintain five main categories [39]:

» Cat. A: Allows for signing off certain routine maintenance tasks.

» Cat. B1: Incorporates the Category A licence and additionally allows for issuing Certificates of
Release to Service, and maintenance of the aircraft structure, mechanics, electronics, avionics
and powerplant.

» Cat. B2: Includes issuing Certificates of Release of Service, as well as maintenance of the
avionics, electronics and powerplant.

» Cat. B3: Allows for the same qualifications as Category B1, only without the authorization of
Category A.

» Cat. C: Allows for base maintenance on aircraft as well as issuing Certificates of Release of
Service for the aircraft after base maintenance tasks are completed and signed off.

This does not necessarily mean that only licensed mechanics can execute these particular tasks, but
licensed mechanics are always obliged to sign-off these tasks and ensure that the execution of the task
has been performed properly [40].

According to a literature review research by van den Bergh et al. [41] all task scheduling approaches
considering different skill levels and licenses are modeled using operations research techniques. An
example is a model developed by Zhaodong et al. [42], which considers different capabilities of workers
using a genetic algorithm. This research particularly focuses on developing a work flow of predefined
sequences to assist the optimization model. For modeling human capabilities, a binary variable, w;;,
was introduced for each task j per worker i. A w;; equal to 1, means the mechanic is extremely capa-
ble of performing the task and a 0 indicates the opposite. A limitation of this model is that a complete
overview of all inter-dependencies between tasks is needed before scheduling can be performed, which
is almost impossible to establish in real maintenance practises.

Workers’ capabilities and skills are also considered in a model developed by Dietz and Rosenshine [43].
This model aims at optimizing the level of specialization of a maintenance workforce, including all types
of training and wage costs, while satisfying manpower constraints. Task allocation is not considered in
this research, but the focus is rather on strategic decision-making.

2.4. Operational Control and Disruptions Management

Most research on disruptions management within the aviation industry focuses on disruption man-
agement for airlines [44]. This relates to disruptions within maintenance practises, since a delay in
maintenance execution results in a disruption of the aircraft’s intended flight schedule. Next to aircraft
delay, other considerations play a role for the operational control of aircraft maintenance operations,
such as the absence of spare parts, incoming unscheduled maintenance tasks or a lack of manpower.
The purpose of reviewing operational control in this research is not to present an all-encompassing
overview of methods for operational control and disruptions management in aircraft maintenance, but
to give the reader an idea of how the dynamic aspects of aircraft maintenance planning, and preferably
task allocation, could be managed.

Research into the operational control of aircraft maintenance quickly leads to the subject of Decision
Support Systems. A simple definition of Decision Support System (DSS) is presented by Dekker and
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Scarf [45]: "a system that supports the choice between alternatives”. Another generally accepted
definition on Decision Support Systems was introduced by Sprague [46], which argued that Decision
Support Systems:

» Focus on unstructured, unspecified, complex problems.

» Use analytic techniques or models to evaluate data on specific problems.
+ Are interactive and easy to use for people on the ground.

» Serve flexibility and take into account changes in the environment.

Callewaert [24] states that there are two types of decision support systems: operational and strategic
systems. The first two aspects by Sprague [46] could be considered as strategic DSS, while the latter
two are more focused on the operational strength of DSS.

Operational Decision Support Systems could account for the dynamics of task allocation. A DSS for
task allocation in aircraft maintenance was developed by Cheung et al. [32], using an Analytic Hierar-
chy Process. This tool was developed because, as Cheung et al. [32] state: "the intuitive decisions
of managers are biased and they have too limited personal experience, knowledge and perception for
obtaining an optimal decision”. A limitation of this research is that the model decides per task which me-
chanic would be the most suitable, but does not optimize or consider the entire system. Furthermore,
the authors focus on the assumption that humans are not (always) capable of judging the capabilities
of their fellow colleagues.

A limitation of Decision Support Systems in general is that (most) maintenance Decision Support Sys-
tems act like a black box [25]. A DSS will only be of help when the user of the system can interpret the
results, validate the calculations and convince his or her management of their value [25].

2.5. Identification of Literature Gaps

The previous sections of this chapter presented an overview of the literature in the domain of task
allocation for aircraft maintenance. In order to contribute to the existing research within this field, it is
key to identify the main gaps in literature. These gaps can then be further explored in the next chapters,
in order to end up with a suitable research objective and method. Based on the information presented
before in this chapter, the following main research gaps are recognized:

* Lack of flexibility and bottom-up approaches: All literature that has been found for task allocation,
workforce scheduling or task scheduling used top-down approaches (mostly linear programming
methods). These top-down approaches are not able to capture the dynamics of aircraft main-
tenance as well as the flexibility that is needed for the execution of tasks in the most efficient
manner. In some models flexibility has been considered (still using a top-down approach), but
the run time of these model constrains their use in real-life maintenance. Bottom-up approaches
are needed to account for the dynamic nature of task allocation and incorporate flexibility.

* Lack of research on short term planning: Most research focuses on strategic or tactical decision-
making and there is especially a lack of research on task allocation purposes. A reason for this
could be the difficulty of considering the dynamics of the operational phase within optimization
models. However, optimal strategic and tactical plans only pay-off when these are properly inte-
grated with the operational plans. These operational models require an accurate representation
of the availability of resources and man-power and need to be able to deal with uncertainty.

» Lack of the mechanics’ perspective and social factors: Only a few amount of researchers has
tried to incorporate worker preferences in task allocation and scheduling. Approaches from the
mechanics’ point of view or considering any social aspects of the maintenance work have not
been presented. Aircraft maintenance is, however, a collective effort involving many social rela-
tions. Besides, mechanics have the local knowledge of, for example, the task execution, efficient
ordering of tasks, others’ skills, but also have individual preferences for task execution, working
hours or fellow team-members. If mechanics do not internalize the plans proposed by the task
allocation model, the task allocation optimization process could be useless.

Most of these literature gaps are interrelated. Bottom-up approaches allow for flexibility in a system,
can easily incorporate the perspective of "lower-level” people, as well as "lower-level” information, such
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as the actual availability of resources, and are specifically suitable for short-term planning, involving
operational dynamics. It is believed that due to this interrelation, this research project could be ad-
dressing these three gaps all together. The next chapters will therefore explore the use of bottom-up
models, task allocation and social aspects of task allocation procedures. Based on this elaborate re-
view, the research proposal will narrow the direction in order to create a feasible research scope for a
MSc. thesis project.

The three literature gaps also relate closely to issues that were observed recently at a large Mainte-
nance, Repair and Overhaul organization (MRO) by a team of anthropologists. The next section briefly
elaborates on this research, which could be a potential case study for the upcoming research project.

2.6. Case Study

This section presents the main takeaways from a study performed by three anthropologists at a large
aircraft maintenance organization (MRO). They have been studying the behaviour of mechanics in the
MROs hangars to uncover social rules, hierarchies and other social constructs at place. This research
was initiated by the company’s management, since the outcomes of a recent digital transformation did
not meet expectations, and they thought the mechanics were “digitally illiterate”. However, the anthro-
pologist argued that this is a biased assumption and does not consider any inadequate properties of the
digital system at all. The main issue with the technology currently in place, they argue, is its structure:
it provides a rigid schedule that is decided upon in advance, and does not support the agile practises
of aircraft maintenance task execution. Furthermore, there is distrust between mechanics and other
departments, which makes collaborative improvement of the system a complex matter.

Three main recommendations are presented by the anthropologists with respect to task allocation sys-
tems. Firstly, to allow for a more agile system, teaming protocols should be integrated into the existing
task allocation and rostering software. The anthropologists noticed that the completion of each task
is a collective effort between mechanics within or across shifts. The current system in place does not
allow for teaming efforts at all. Besides, the technology should allow the jointly negotiation of solutions
to problems by mechanics, where arguments are presented in the following five categories: availability
of materials (also people or tools), rules and regulations, experience with a problem, time pressure
and the fact that some details are unknown. Thirdly, the technology should find a way to cope with
fragmentation, since the team lead does not feel supported by the people of the planning stage. The
technology currently in place does not assume fragmentation at all and is therefore only able to function
in an utopian way.

The anthropologists call efforts of the mechanics to solve these disconnects hybrids. These hybrids
are already more or less supported by the organization and should be incorporated in the wider or-
ganization of the company. An example of these hybrids is related to the way rostering is performed:
the team lead first discusses rostering options with other departments. Based on these discussions,
the team lead provides three to four options for rosters, which are voted upon democratically by the
mechanics. The schedule is then updated in a spreadsheet and the mechanics keep the team lead
informed of any changes through a WhatsApp group. This WhatsApp group also facilitates negotiation
among the mechanics on shift changes. When a shift change is agreed upon by the team, it is updated
in the spreadsheet and the mechanic applies for a formal shift change in the official system.

This report shows that a top-down approach to task allocation can cause problems, since it does not
allow for the agility required for aircraft maintenance. A bottom-up approach could be beneficial to
incorporate some of these 'hybrid’ attempts as well as existing social rules in task allocation procedures.
This was also one of the observed gaps in literature on task allocation in aircraft maintenance, see
Section 2.5. That is why the next chapter will be focused on the topic of Distributed Artificial Intelligence,
the main bottom-up modelling approach available.



Distributed Artificial Intelligence

As top-down approaches showed not be sufficient for the agile work environment of aviation mechan-
ics, a bottom-up modelling approach is needed. That is why the field of Distributed Atrtificial Intelligence
(DAI) is introduced in this chapter. Ponomarev and Voronkov [47] state that Distributed Artificial Intel-
ligence can be defined by three main characteristics: a method for distributing tasks between agents,
for distributing powers and for communication by agents. According to Kraus [48], Distributed Artifi-
cial Intelligence "aims to increase the power, efficiency, and flexibility of intelligent automated systems
(agents) by developing sophisticated techniques for communication and cooperation among them”.
Bond and Gasser [49] argument that one of the main area’s of interest for DAI is the analysis and
development of mixed collections of machines and human agents.

3.1. System Classifications
Distributed Atrtificial Intelligence can be roughly divided in three classes [50]:

+ Distributed Problem Solving, with cooperative agents aiming to solve a global problem [48]

» Multi-Agent Systems, which includes self-motivated agents that use interaction with other agents
and environments to learn and make autonomous decisions [50]

+ Parallel-Al, which aims to develop algorithms, languages and architectures to increase efficiency
of classical Al algorithms [50]

According to Shoham and Leyton-Brown [21], an agent is considered to be self-motivated when it has
its own description of which states of the world he likes, which can also be good things happening to
other agents and does not necessarily mean that the agent only cares about himself. It is important
to note that self-motivated agents could also join together to work towards the same joint goal [48].
The aircraft maintenance mechanics are considered to be self-motivated, since they have their own
internal goals and states (although work cooperatively towards a common goal). So, that is why the
next chapter will cover literature on multi-agent systems in particular.

According to Sycara [51] research in multi-agent systems covers "the study, behavior, and construction
of a collection of possibly preexisting autonomous agents that interact with each other and their envi-
ronments”. Autonomous agents are sometimes also referred to as intelligent agents, and no general
accepted definition of agents exist. Bonabeau [52] refers to agents as entities that make their own
decisions in a dynamic environment. Franklin and Graesser [53] refer to an autonomous agent as a
system that is situated in an environment, senses it and acts over time, aiming to achieve its own goals.
Wooldridge [54] refers to an agent as a computer system present in an environment and can act in this
environment, based on the designers’ or users’ goals, instead of being told what to do. Although the
emphasis of these definitions differ, it is generally accepted that agents are: autonomous, flexible, have
their own control, interact (with other agents) and are situated in an environment.

A classification for the use of modeling and simulation for multi-agent systems is provided by Davidsson

[1]. The intersection of the three areas that are of importance for multi-agent systems in social con-
text is presented in Figure 3.1. Multi-Agent Based Simulation (MABS) generally studies the use of the
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agent paradigm for computer simulations of complex phenomena. Social Simulation (SocSim), how-
ever, corresponds to the simulation of social phenomena using simple models with basic interactions.
Social Aspects of Agent Systems (SAAS) studies social aspects such as norms and organization. that
intersect between social sciences and agent-based computing. It is argued that agent-based social
simulation is key for using "agent technology to simulate social phenomena on a computer” [1].

Agert-
haszed
cotn puting

Computer
sitmulation

Figure 3.1: Agent-Based Social Simulation classification [1]

Agent-based social simulation is a subset of agent-based modeling and simulation (ABMS) [1]. Agent-
based modeling and simulation has the goal of gaining insights into the collective behavior of agents
obeying rules, typically in natural systems, and not particularly solving straightforward distributed prob-
lems, which is the case for multi-agent modeling and simulation [55].

Since in this research, the social aspects of task allocation and negotiation in aircraft maintenance
are believed to be of importance, agent-based social simulation is expected to be the main modeling
method. Since this is part of the wider applied agent-based modeling and simulation perspective, the
next section will focus on ABMS. The application of ABMS to social simulation is elaborated on in
Chapter 5. The next section will cover the general concepts of agent-based modeling and simulation
in more detail and present some existing research in that area.

3.2. Agent-Based Modeling and Simulation

Agent based methods are believed to be most applicable for systems with a high level of localization
as well as distribution [56]. Two decades ago, Sycara [51] stressed that the majority of agent-based
research and systems in place at that time was focused on only single agents. However, currently,
the application of agent-based modeling revolves around the use of multiple agents that interact and
communicate [50]. Agent-based simulations generally have the goal of either providing explanation of
a certain system or phenomenon, or prediction the future states of a system [57].

3.2.1. Advantages and Disadvantages of Agent-Based Modeling

These explanations are mentioned by Bonabeau [52] as one of the main advantages of the usage of
agent-based modeling: it allows to capture emergent phenomena. Moreover, an agent-based model
provides a natural description of a system and is flexible [52]. Furthermore, it can be easily combined
with other modeling methods, which can speed up the modeling process [22].

Several concerns regarding the use of agent-based modeling can be found in literature. First, Bonabeau
[52] states that the level of description remains an art more than a science and no real protocols ex-
ist for this purpose. Furthermore, it can be hard to quantify, or justify human behaviour, which can
be irrational, involve subjective choices and complex psychology [52]. That is why validation of an
agent-based model is generally a difficult task. Ahmad [58] stresses that since agent-based modeling
is a bottom-up approach, simulating small units for a large system can be computationally expensive.
However, this can be reduced by introducing so-called 'middle agents’ that speed up the communica-
tion or knowledge sharing between other agents. Another common pitfall is that the combination of a
relatively easy implementation in contrast to the hard to grasp concepts often leads to improper use of
agent-based modeling techniques [58].
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Two similar modeling methods that involve decision-making and distributing knowledge are object-
oriented programming and expert systems. Dorri et al. [50] provided a table with the results of their study
on the differences of agent-based modeling with these methods. The main difference is that agents
are able to base decisions on their goals and not only on inputs (object-oriented programming) and
knowledge (expert systems). Expert systems have a human in the loop that is advised by the computer
program, but the decisions are made by people. In object-oriented programming the actions are pre-
defined by the designer of the system. The use of agents allows for a free-er and more autonomous
way of simulation. But how these agents make their decisions differs from model to model: many
types of agent architectures can be distinguished in literature. The next section will highlight the main
categories of agents in current research.

3.2.2. Agent Decision-Making Architectures

Many different agent types and architectures have been developed. An early overview of the different
types of agents was presented by Weiss [59]. He distinguished four different types of architectures:
logic-based agents, reactive agents, belief-desire-intention agents and layered-architectures. A recent
survey on agent decision-making by Balke and Gilbert [60] explored most literature up till then and
provided a different classification of architectures. The logic-based agents, reactive agents and layered
architectures, as classified by Weiss [59], are part of the production-rule systems in Balke and Gilbert
[60]. Thus, an overview will be presented of the classification of agent models [60]:

* Production Rule Systems: Models based on behavioral if-then rules.

— Pro: Relatively simple to understand outcomes and decision trees.
— Con: Only based on predefined rules, which do not account for human behavior.

 Belief-Desire-Intentions (BDI) and derivatives: Mental states, beliefs, desires and intentions are
the bases for decision-making.

— Pro: Can deviate from if-then rules, goal-persistent, therefore dynamic.
— Con: Assumes agents to be (bounded) rational, does not provide agent communication and
explicit learning mechanisms.

» Normative Models: Based on norms (external factors) that influence agents decision-making.

— Pro: Can capture external motivators instead of only internal motivators, like beliefs.
— Con: Research covers mainly abstract representations rather than implementations.

» Cognitive and Psychologically or Neurologically Inspired Models: Use cognitive research as a
basis for agent architecture or even structural properties of the human brain.

— Pro: Aims at modeling the human decision-making process as it is.
— Con: With increased realism of the decision-making process comes increased complexity,
making it harder to analyze the results and have a proper functioning model.

The BDI agent model is relatively popular in the agent community [60]. Originally, the theory of belief,
desires and intentions was developed by philosopher Bratman [61]. Over the years, many variations on
the model have been developed, such as the emotional BDI (eBDI) [62], the beliefs-desires-obligations-
intentions model (BOID) [63], which also takes norms into account, and BRIDGE, which aims to inte-
grate social awareness of agents [64]. Sun [65] argues that social simulation researchers mostly make
agent-models specifically for a particular problem, which limits realism as well as general relevance
for social simulation. That is why Sun [65] claims that cognitive models are key for social simulation
practises.

3.2.3. Specification and Implementation

Capturing the dynamics of a multi-agent system is important for agent-based modeling. Differential and
difference equations are often used to represent dynamics in mathematical models [66]. Dynamical
Systems Theory is another method for modeling the global dynamics of a system [66]. However, for
agent-based modeling, the local behaviour of agents is of importance, which requires mostly qualitative,
logical language [66]. Bordini et al. [67] argue that the use of formal logic allows for both specification
as well as verification that is well founded and interrelated.
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Dastani and Meyer [68] gathered the most leading theories and articles on agent modeling languages
and their verification in a book on the specification and verification of multi-agent systems. Many logic-
based methods for modeling agents were presented, mostly using temporal logic or modal logic with
intentions, desires or motivations. Examples of temporal logical methods are Linear-Time Logic (LTL),
Computation Tree Logic (CTL and CTL), Propositional Dynamic Logic (PDL), and Modal Logics with
agent-specific concepts such as beliefs, goals and plans [69] are for example KD and KD4 [67].

Most modeling languages make use of these logics. Examples are: 3APL and 2APL [70], SimpleAPL
[71], BUnity and BUpL [72], CASL [73], AgentSpeak [74], Temporal Trace Language (TTL) [75] and
LEADSTO [76]. It depends on the specific requirements of the model with respect to the level dynam-
ics as well as agent-specific properties such as beliefs, desires or intentions, which of these languages
would be the most appropriate and useful.

Regarding to the implementation of an agent-based model, there are many alternatives available. Abar
et al. [77] provided an overview on the state-of-the-art agent-based modeling and simulation tools
available. In the early days of the development of agent-based models, conventional programming
languages, such as C and Java were mainly used. However, currently, there are many existing tools
available, especially for modeling and simulation in social and human sciences [77]. In order to be able
to choose which tool would be most suitable, Abar et al. [77] developed a table with these tools and
evaluated them on the level of effort necessary for model development and the models’ scalability level.

Since the author of this research is a MSc. student, and not very familiar with agent-based modeling yet,
it would be best to find an instrument that is rather easy to implement (among others: TAgentScript,
AgentSheets, BehaviourComposer, FLAME, Framsticks, JAS-mine, MIMOSE, MOBIDYC, NetLogo,
Scratch, SeSAm, SimSketch, StarLogo, StarLogo TNG, Sugarscape, VisualBots, VSEit). From the
tools classified as easy to use NetLogo and SeSAM are presented as the most scalable ones. Next to
Netlogo, Dorri et al. [50] also mentioned Anylogic, Repast and Mason as common tools for agent-based
model development. According to Abar et al. [77] these tools have a high scalability level, but require
moderate to complex development effort. Further research into the specific use of these simulation
tools could be done when the models’ purpose has been more clearly defined and a conceptual, or
formal, model has been developed.

3.2.4. Verification

As in every type of model that is being developed, verification is key for ensuring that an agent system
will behave as it is designed. However, it can be hard to trace the specific behaviour of a multi-agent
system. Wooldridge [54] introduced the problem of ungrounded semantics, which states that it should
be possible to identify what beliefs, desires and intentions of the system are driving certain system
properties, to check whether the system is behaving in line with these beliefs. In their book, Dastani and
Meyer [68] also presented the most recent literature on verification methods for agent-based modeling.
Some of these mostly present a mathematical verification method [71, 78, 79] while others presented
a more practical verification method [67, 80].

3.3. Integrative Agents

A method for using agent models in practice that is worth mentioning in this literature review is the
use of integrative agent models. Integrative agents can be used in multiple ways, which can vary from
the concept of adaptive information presentation, as presented in van der Mee et al. [2], a personal
assistant during demanding task execution [81], or an environment that is able to prevent crime [82].
The first two examples relate to direct integration of agents with individuals, while the latter focuses on
the integration of group processes. A broader futuristic vision of this concept is referred to in literature
as Ambient Intelligence, where people will be constantly monitored, analyzed and supported in their
doings by electronic environments [83].

Reasons for using integrative agents are their ability to coordinate fast and effectively and, most impor-
tantly, the possibility of providing information as well as guiding actions based on the circumstances
[81]. With respect to task allocation, these circumstances can be for example [2]: task characteristics,
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human characteristics, the environment, task status, the cognitive or functional state of people. For
example, in highly demanding situations, human attention and situation awareness decreases, due to
an increased cognitive workload, resulting in less performance [84]. In contrast, autonomous systems
can also decrease human situation awareness [85]. A solution for this is an integrative and adaptive
system, that only offers help when needed [2]. An example of support by an integrative agent in dy-
namic task allocation, is a model that uses the environment to monitor if someone gets overloaded and
then assigns tasks of that person to someone else [81].

3.3.1. Integrative Agent Architecture

Van der Mee et al. (2009) presented an architecture for an integrative agent model, using component-
based agent design. The model consists of a domain and a control model (sometimes also referred to
as ambient agent model). The domain model is a representation of the human process that is being
monitored. The control model consists of two components: an analysis component, which examines
states and processes based on observations and the domain model, and a support component, that
proposes or produces actions for supporting the human, also based on observations and the domain
model [2]. An illustrative overview of this architecture can be found in Figure 3.2. A key difference
between the reasoning methods of the analysis and support models, is that the analysis model predicts
future states based on the domain model, while the support model reasons from the desired future state
backward to the current state.

ambient agent

human and

analysis ]—D[ support .
environment

domain model

Figure 3.2: Integration of domain and control models [2]

3.3.2. Explainable Artificial Intelligence

A key aspectin the use of integrative agents, is that these agents need to be able to explain and commu-
nicate with humans in their environment. People should understand the decision-making process of an
automated system to some extend in order for them to trust the system enough to let it decide for them
[86]. The field of Explainable Artificial Intelligence (XAl) refers to the ability of an automated system to
explain to humans what decisions are being made and, most importantly, why. Currently most research
into Explainable Artificial Intelligence focuses on explanations in Machine Learning techniques, more
specifically deep learning techniques [87]. This is because on one hand the recent breakthroughs in
Machine Learning performance and on the other hand the in-transparent methodologies and outcomes,
which ask for thorough explanations.

Nevertheless, this research is focused on Distributed Artificial Intelligence, so only the explanation of
these approaches will be considered here. Some experimental research has been performed for teams
of humans and agents in Mercado et al. [88], which showed that increased transparency by agents re-
sults in increased human-agent performance and increased trust levels between the two. Earlier it
had been showed by Parasuraman and Riley [85], that transparent explanations were successful in
preventing the abuse of automated systems. Lipton et al. [89] argue that an ideal explanation should
be accurate, hold the minimum amount information possible, and should be easily be interpreted.

Recently, several methods for incorporating explanation in agent-human collaboration are presented.
Firstly, Devin and Alami [90] made use of a theory of mind. In social science, theory of mind covers the
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ability of individuals "to reason about the thoughts, beliefs, and feelings of others to predict behavioral
responses” [91]. Devin and Alami [90] developed an agent that was able to estimate a person’s goals,
plans and actions, instead of only reasoning about the humans’ environment. An implementation of this
model saw an increase in efficiency for the execution of the human and agent’s shared plans. Amgoud
and Prade [92] used argumentation-based approaches to explain decision-making. An advantage of
this approach is that converting arguments to explanations is rather straightforward. Zhong et al. [86]
introduced natural language explanations to these argumentation-based approaches, to explain why
one decision is favourable over another.

Miller [93] states that social research on explanations should be considered more in Explainable Ar-
tificial Intelligence work. It is argued that human biases in the generation of explanations should be
considered to improve Al-human interaction. In an extensive review, the following findings from social
science are believed to be important for Explainable Artificial Intelligence, yet more or less neglected
in current applications:

» People mostly present contrastive explanations: Instead of why someone chose option A, they
will explain why it chose for option A instead of option B.

» People select an explanation: They never give a complete overview of the causes but select one
or two reasons for an explanation.

* People don’t refer to probabilities: Using statistics and probabilities for an explanation is for most
people unsatisfying, in contrast to using causes to explain.

* People perform explanations in social contexts: And are therefore based on beliefs of the ex-
plainer about the explainee’s beliefs about that situation.

The main takeaway of this paper is that explanations are dependent on the environment and the agents
and people involved. This should be taken into account when using Explainable Artificial Intelligence
approaches for human-agent interaction. More research on human-agent interaction can be found in
Section 4.3.2, which covers the use of integrative agents for negotiation purposes.

The general approaches within multi-agent systems and agent-based modeling have been discussed in
this chapter. Since task allocation in aircraft maintenance is the main focus for this literature research,
the next chapter will discuss the use of task allocation methods within multi-agent systems and agent-
based modeling.



Task Allocation Methods

Task allocation is a form of coordination, where tasks arrive dynamically and can change in inten-
sity [31]. Coordination is the management of inter-dependencies between tasks [94]. In Figure 4.1 a
breakdown of the concept of coordination in multi-agent systems is shown. Purely cooperative agents
that aim at coordinating their task execution are part of multi-agent planning, whether centralized or
distributed. As explained in Chapter 3, the distribution of tasks within aircraft maintenance considers
self-motivated agents with common goals. However, when individual goals are not completely aligned,
agents will need to negotiate in order to come to a join decision. That is why for this literature review
on task allocation, multi-agent negotiation is of importance. The next sections will therefore focus on
negotiation in multi-agent systems.

Coordination

Cooperation Competition

Planning Negotiation

Distributed Planning | | Centralized Planning

Figure 4.1:  Coordination framework [3]

In literature, task allocation in multi-agent systems is also classified as: centralized task allocation,
distributed task allocation or a combination of both, called combintarorial task allocation. Centralized
control induces a central controller responsible for task allocation [95, 96]. Since all information is avail-
able for the controller, task allocation will be performed efficiently in small systems and communication
costs are low. However, scalability is limited due to the high computational efforts and a single-point-
of-failure is not favorable. When referring to Figure 4.1, it can be stated that centralized task allocation
is a form of centralized planning.

Davis and Smith [97] introduced the concept of distributed task allocation in multi-agent systems and
many papers have been presented on the topic since then [48, 96, 98-101]. In a distributed task alloca-
tion approach, agents only have a local view of their adjacent neighbors [102]. This has the advantage
that each agent can make its own decisions, which results in a more scalable and flexible method. But
with distribution, communication costs and complexity increase. An attempt to overcome this issue was
performed by Krothapalli [101] to include communication costs for task allocation, but centralized task
allocation was still found to be more efficient (under static conditions). Jiang and Li [103] introduced
three main evaluation factors for decentralized task allocation: agent talents (resources and skills),
centrality (social distance to other agents) and load-balancing of tasks between agents. dos Santos

39
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and Bazzan [100] used a swarm-intelligence approach for distributed planning of tasks and specifically
group forming. A negotiation approach to account for team formation was taken by Wang et al. [98],
where tasks are assigned based on people’s ability, interest, load and resources.

Some researchers aim at linking centralized and distributed task allocation approaches in order to
use the advantages of centralized and distributed task allocation and mitigate their disadvantages
[104, 105]. An example is the use of centralized information access, while task allocation is performed
through negotiation by Rahimzadeh et al. [105]. Another approach is a negotiation mechanism, such
as a contract net, that allows to exchange tasks after an initial (central) task allocation [96].

In this research, information on the initial schedule and available resources could be available to all
agents. However, information and beliefs about other agents’ skill levels or preferences as well as
information regarding task completion times is local. That is why centralized task allocation methods
(using centralized planning) are not believed to be applicable for this literature review. In both the dis-
tributed as well as combinatorial task allocation methods, negotiation will be necessary because of the
presence of self-motivated agents. Furthermore, negotiation is also an important factor for the com-
munication between agents [106]. The next sections will therefore focus on negotiation, its application
in agent-based modeling, and the human aspects of automated negotiation.

4.1. Negotiation Mechanisms

A negotiation is defined by Gimpel [107] as 'a non-individual decision-making process, which involves
two or more parties that jointly determine outcomes of mutual interest to resolve a dispute via ex-
changing ideas, arguments and offers’. However, Kersten et al. [108] focuses on the iterative nature
of negotiation and define it as: "an iterative communication and negotiation process between two or
more participants who cannot achieve their objective through unilateral actions”. An essential aspect
in negotiation, as stated by Rahwan et al. [109], is the conflict of interest between agents, but also the
dependence on the agreement of others to pursue an individual or common goal.

Negotiation is a widely applied research field, both within law and social sciences, economic sciences,
management, as well as computer science and information systems [107]. Automated negotiation
refers to negotiation performed (partly) by autonomous agents. Fatima et al. [20] consider several ad-
vantages of using automated negotiation, which includes: a higher quality of negotiation outcomes,
reduced costs for negotiation processes, and cultural issues such as human stress relief. However,
disadvantages are a lack of trust in automated solutions, legal considerations, incomplete models of
preferences, ethical considerations and the possibility of people losing their jobs due to automation.

Several negotiation mechanisms are distinguished in literature. The main techniques are contract net
protocol methods, auctions, bargaining strategies and voting protocols [106]. These techniques will be
elaborated on below, with a focus on their use within task allocation procedures.

4.1.1. Contract Net Protocol

Smith [110] introduced the concept of contract nets and consequently Davis and Smith [97] introduced
the contract net protocol for negotiation in multi-agent systems. The purpose of a contract net protocol
is to break down a problem into sub-tasks, that are distributed among a set of agents [21]. These
agents will negotiate by repeatedly contracting out assignments among themselves, where each con-
tract involves the exchange of tasks or money. This makes the contract net protocol a many-to-many
negotiation technique. Smith [110] presented six key stages for contract net protocol negotiation. These
are summarized by Fatima et al. [20] in the following four main stages:

» Recognition and announcement: An agent decides to act as a manager and recognizes that it
needs a contractor for task execution. The manager will therefore announce the contract net
protocol and additional information, such as bid specification and expiration time.

* Bidding: The potential contractors evaluate the announcement and potentially send out a bid.

* Bid selection and awarding: The manager will select a bid (in the case of multiple bidders) and
awards the task to the winning bidder, which is now the contractor.

* Reporting results: The contractor reports back to the manager when it has accomplished the task.
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Decommitment of a contract was introduced by Sandholm and Lesser [111], through so-called levelled-
commitment contracts. An agent can decommit from a contract by paying a decommitment penalty to
the other party. They showed that the option for decommitment increases the efficiency of the system,
since it allows for escaping local optima.

Sandholm [112] introduced different types of contracts for reallocating tasks: original contracts (single
task contracting), cluster contracts (bundling tasks), swap contracts (exchanging tasks) or multi-agent
contracts (simultaneous task exchange by multiple agents). It was found that every contract type avoids
some local optima and that the combination of the four contract types will eventually reach a global opti-
mum when agents are rational. The time for reaching this goal could however be large and local optima
still exist. Experimental research found that original contracts found local optima with a higher social
welfare than others when the ratio of agents to tasks is large. Cluster contracts are most favourable in
terms of social welfare when the ratio of agents to tasks is small [113].

4.1.2. Auctions
An auction is a negotiation technique that uses an explicit set of rules to determine resource allocation
and prices on the basis of bids made by participants [108]. Auctions always consider self-interested
agents that are assumed to bid in a way to maximize their personal payoff [21]. Single-sided auc-
tions consider one auctioneer with multiple bidders, while double-sided auctions also allow competition
among auctioneers.

Kersten et al. [108] consider several characteristics to be differentiating auctions from other negotiation
techniques. The first is that the rules are explicit and known beforehand to both the auctioneer and
the bidder. Secondly, these rules are decisive in defining the winner, so auctioneers have no say in
choosing the winner of the auction. Auction rules include: bidding rules (how bids should be formulated
and communicated), allocation rules (allocation of resources on basis of submitted bids) and pricing
rules (prices bidders have to pay). These rules focus mainly on the price of bids and ensure therefore
either an efficient allocation or revenue maximization for the auctioneer.

Agents’ valuations for an object can differ within auctions. Three types of auctions with respect to ob-
ject valuations are distinguished in literature [20]: common value auctions, private value auctions and
correlated value auctions. In common value auctions, the value of an object is based on the same
aspect for all bidders (mostly derived from a market price). In private value auctions agents have their
own independent valuation of an object. In a correlated-value auction agents have their own private
values, but also consider others’ valuations, in case they want to resell later.

Another feature of auctions is whether the bidders know each others’ bids. An open-cry auction al-
lows all bidders to see other bids. In a sealed-bid auction, however, agents present their bids to the
auctioneer in private. The highest bidder always wins, but that could be for both its own bid (called
first-price), or the second-highest bid (second-price). Besides, a one-shot auction allows only one bid,
while sometimes auctions are performed in many rounds. The bidding order also changes for different
types of auctions, both ascending-price as well as descending-price auctions can be used.

The traditional auction types are the English Auction, Dutch Auction, First-Price-Sealed-Bid Auction
and the Vickrey Auction. Some also refer to the Japanese Auction when considering the traditional
auction types [114]. In an English auction, an auctioneer raises an, initially low, price until there is only
one interested bidder left. On the contrary, the Dutch auction is a descending-price auction where the
auctioneer starts at a high price and keeps lowering the price until someone is willing to pay that price.
The First-Price-Sealed-Bid auction is a simultaneous auction, where every bidder presents a private
bid to an auctioneer, and the highest bidder wins the auction for its own bid. In the Vickrey auction, all
bidders also presents private bids to the auctioneer, and the highest bidder also wins, but now for the
second-highest price [115]

There are two main perspectives for evaluating which auction performs ’best’. The first is the perspec-
tive of the auctioneer, measured in expected revenue. Second is the efficiency of the overall system in
allocating the object to the bidder that values the object the most. Krishna [115] presented an overview
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of these auctions as well as a comparison of different criteria, for example its resistance against col-
lusion between bidders. There is also research available on the best strategies of bidders in different
types of auctions [116, 117].

Many other types of auctions exist, for example hybrids of classical auction types or combinatorial
auctions, which cover the sales of multiple units in one auction. Zheng and Koenig [96] considered
three types of auctions currently in place for task allocation specifically:

» SSl auctions: Tasks are assigned in rounds to an agent with the lowest team cost [118].

+ Auctions with Regret Clearing: The task with largest regret is assigned to an agent with the largest
increase in team cost [119].

» Sequential Bundle-Bid Auctions: Two tasks are assigned to agents in order to increase the team
cost the least [120].

4.1.3. Bargaining

Bargaining is defined by the Cambridge Dictionary as "discussions between people in order to reach
agreement on something such as prices, wages, working conditions, etc.”. Winoto et al. [117] mention
that bargaining can be beneficial over auctions when, for example, feedback from negotiators is impor-
tant, or social factors such as trust and friendship play a role. Besides, auctions generally need multiple
bidders to perform well, while sometimes an auctioneer does not have the time to wait for multiple bid-
ders to join the process. Bargaining is alternatively also referred to as the alternating-offer-protocol.

The first one-to-one alternating-offer-protocol was analyzed by Stahl [121] and later Rubinstein [122].
Rubinstein’s model is mostly studied for game theory as well as multi-agent system theory [123]. The
idea is quite straightforward: agents make offers in multiple rounds, and the other agent can reject
or accept this offer. When the offer is rejected, the agent can, on its turn, make a counteroffer. This
continues until an agreement is reached. While auctions require one-to-many negotiations (in some
cases also one-to-one) and contract net protocol focuses on many-to-many negotiations, bargaining is
used both for one-to-one negotiations as well as many-to-many. Many-to-many bargaining requires the
formation of teams of agents that aim for a joint payoff (which they can distribute among themselves if
favoured). In the many-to-many bargaining protocol, proposed by Osborne and Rubinstein [124], play-
ers can make offers and all others need to agree. Thus every agent has a veto-right to reject a proposal.

Time is extremely important in bargaining, also referred to as the impatience of agents [20]. Since
negotiation cannot go on forever, it makes sense to pose a deadline on bargaining. Sandholm and
Vulkan [125] developed a model for one-to-one bargaining of agents with deadlines. It was observed
that agents waited with sending out offers until the deadline is reached. Murnighan et al. [126] also
observed this phenomenon in human experiments. The optimal agent for bargaining under deadlines
would be to wait until the deadline or the other agent accepts. Sandholm and Vulkan [125] propose giv-
ing agents time discount functions instead of deadlines in agent models to account for this phenomenon.

Winoto et al. [117] considers two categories of bargaining theory: strategic bargaining and axiomatic
bargaining. Axiomatic bargaining, introduced by Nash [127], is based on the concept of axioms that
are set initially and will define the solution later. Common axioms are: the egalitarian solution (splitting
surplus among all bargainers), the utilitarian solution (maximum sum of participants utility), the Nash
solution (noncooperative payoff for each player as well as a share of the payoff from cooperation) [127]
and the Kalay-Smorodinsky solution (maintains the ratios of maximal gains) [128].

4.1.4. Voting

Winoto et al. [117] refer to voting as "a social choice mechanism in selecting social preferences over
a set of alternatives”. This mechanism is generally considered to be not as effective as the other ne-
gotiation techniques, because the agent that needs the task most will not have a higher chance in
obtaining the task. Furthermore, communication costs are relatively high [117]. However, since voting
was performed for decision making on task allocation in one of the hangars at KLM Engineering and
Maintenance, it could be of interest for this research.
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Voting is part of a more formal theory called social choice theory. In social choice theory preferences are
usually assumed as a linear ordering over the set of possible outcomes [20]. A social welfare function
is used to display the overall preferences of individuals. A social choice function, however, produces
a single output, namely the most preferred option by the individual preferences of the voters. Marquis
de Condorcet (1743-1794) showed one of the difficulties with respect to voting, by showing that there
are scenarios that no matter which option is chosen, the majority of voters will be unhappy with that
outcome and can point out another candidate that they would all prefer [20]. Arrow and Debreu [129]
showed mathematically that there can be no reasonable social choice function. Several properties of
a social welfare function are proposed by Campbell and Kelly [130]:

» Pareto condition: If every voter ranks A over B, than A is preferred over B.

» Condorcet winner condition: The majority prefers the outcome over all other outcomes.

* Independence of irrelevant alternatives: The social raking of A and B should depend only on the
way that A and B are ranked in the preference orders, and not on some other option C.

» No Dictatorship: The social welfare function should never display one voters’ preferences, irrel-
evant of the preferences of other voters.

Many research has been focussing on strategic behaviour among voters [20]. Conitzer and Sandholm
[131] added an extra preround to an existing voting protocol to discourage manipulation of voters by
making it computational hard. Another way to deal with strategic voting is to apply a Clarke mecha-
nism, where agents need to pay an initial price in order to be able to vote [132]. Lev and Rosenschein
[133] evaluated an iterative voting process where agents were allowed to change their votes, one by
one, after the initial voting rounds. Meir et al. [134] proved that, assuming all voters have equal weight
and vote according to their preferences, this process of iterative voting, using the plurality voting rule
converges to a Nash equilibrium.

Other research into voting mechanisms was for example performed by Pitt et al. [135], that introduced
institutional powers into a voting model. Conitzer [136] compared voting mechanisms with combinato-
rial auctions in terms of outcomes. Conitzer [137] evaluated whether a social network should be taken
into account during elections. Nitzan and Paroush [138] showed that more skilled people should have
a larger weight, since they are more likely to be right. Better connected people are more likely to be
right, but should, in contrast to better skilled people, not receive a more weight in voting protocols [137].

4.2. Modeling Negotiation Processes

The negotiation process can be modeled in four phases: the information phase, intention phase, agree-
ment phase and the settlement phase [20]. The first, information phase, requires agents to communi-
cate and receive information on the negotiation. Then, agents will define their strategies in the intention
phase. During the agreement phase, the negotiations will take place and finally in the settlement phase,
the final decision is agreed upon. The next subsections will cover these different phases of a negotiation
process in more depth.

4.2.1. Information - Resource Valuation

Resource valuation is generally based on economic theory. In this literature research the main theories
present in economics will briefly be described, whereas afterwards an example will be presented on
utility theory for resource valuation within agent-based modeling.

Economic Theories

There are many economic theories on the valuation of goods in economic research. It is important to
note that in general, the usefulness of a resource is referred to as 'use-value’, while ’exchange-value’ is
the resource’s proportion at which it is exchanged with other resources [139]. So, price could be seen
as a type of exchange value: as the ratio at which a resource exchanges with money.

There are two main streams of theories of value, namely intrinsic (also objective) and subjective theory
of value. Intrinsic value theory assumes the existence of an objective value, which is not related to
what people are willing to pay, but what the resource is really worth [140]. Many intrinsic value theories
exist. For example, Karl Marx defined the Labor Theory of Value, where a good or service is defined by



44 4. Task Allocation Methods

the labor required to produce it [141]. Another is the Exchange Theory of Value [142], which focuses
on the use-value of resources, where the need of a resource as well as the physical needs (and labor)
create together the intrinsic value of a resource. Other intrinsic theories are more recently developed
ones, such as the Monetary Theory of Value [143] and the Power Theory of Value [144].

Subjective theory of value, however, assumes that people have their own idea of determining the value
of a resource, which is based on their marginal utility: the additional satisfaction of an additional re-
source [145]. In this theory the availability of a resource is a key aspect, while this is not considered in
intrinsic value theories [145]. Subjective theory of value introduces the concept of an individual’s utility,
which is a function of the person’s preferences over a set of choices. Utility functions can be expressed
in two different ways, namely:

 Cardinal, which assumes that utility differences can be measured quantitatively [146].
+ Ordinal, which assumes that ordering of preferences based on utility differences is possible, but
not the strength of these preferences [129].

The question is how these preferences could be retrieved from real-life applications. Revealed prefer-
ence theory assumes that by analyzing purchasing habits, the preferences of buyers can be 'revealed’
[147]. Similarly, for resources that are not buy-able, a method called Contingent Valuation (also refe-
tred to as “stated preference” in literature) is frequently used, and uses surveys to ask people how they
value certain resources [148].

A not all-encompassing, but interesting theory that should to be mentioned is Kahneman and Tver-
sky’s Prospect Theory [149]. The key finding of this research is as follows: people are risk averse for
gains and risk seeking for losses of high probability, while for a low probability, humans appear to be
risk seeking for gains and risk averse for losses. They conclude that people base their valuation of
resources based on gains and losses, instead of the final objective outcome.

Examples of Resource Valuation Modeling

Information about characteristics of negotiation, such as a deadline or utility functions can be assumed
to be perfect as well as imperfect in multi-agent systems [150]. In case of perfect information ne-
gotiations, an agent is assumed to know all this information, while imperfect information considers
uncertainty. A model for uncertain utility functions is presented by Goeree and Offerman [151] and
Fatima [150]. Similarly, Fatima et al. [20] also outlines an analysis for discount factors. A discount
factor considers the importance of time for valuations.

Goeree and Offerman [151] modeled a single-object resource valuation for both common and private
values, with incomplete information. The common value (V) of the object to the number of bidders (n)
is equal, but the bidders do not know this value in the beginning. Every bidder bases its valuation on its
available information, which is modeled as an estimate (v;) of the object’s true value V from a probability
density function A(v) with support [v;, V4]. The true value, however, is the same for all bidders and is
modelled as the average of the bidder’s estimates, as illustrated in Equation 4.1.

1 n
W= v (4.1)

i=1
A participant’s private value is modelled as its cost, c;, which is drawn from a distribution function G(c)
and is independently distributed from the value estimates. If participant i wins and pays b, then the
utility it gets is V4 - ¢; - b. A summary statistic, surplus, is used to determine bid (b) based on v; and
ci, which is equal to Equation 4.2. Fatima [150] considers an extended version of this model, including
multiple resources to be negotiated in a sequential order.

Vi

Si = z — CL' (42)

4.2.2. Intention - Decision Theory
Parmigiani [152] refers to the goal of decision theory as "the study of logics and mathematical proper-
ties of decision making under uncertain conditions”. An important division in theoretical decision theory
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that should be mentioned is the difference between normative and descriptive models. While normative
models describe how an agent 'should’ behave, a descriptive model describes how an agent ’really’
behaves [149]. With respect to decision-making models, three types of strategy modeling for agents
were distinguished by Kraus [48] and Wooldridge [54]: game-theoretic strategies, heuristic strategies
and argumentation-based strategies. The following sections will provide more information on these
three techniques.

Game-Theoretic Approaches

Game Theory is defined by Myerson [153] as "the study of mathematical models of conflict and co-
operation between intelligent rational decision-makers”. The general question in game theory is, what
specific option any rational agent, when presented with a scenario of alternatives, will choose regard-
less of what an other agent does [21]. There are two main ways of representing a game: normal-form
(using a matrix with options) or extensive-form (using a game tree) [146]. A normal-form game re-
quires complete, perfect information, while extensive-form games allow for incomplete information and
sequencing of decisions [21]. Zhang et al. [99] considers four main characteristics of game theory
methods: its players, the use of payoff functions, strategies and the order of decision-making. These
characteristics will be elaborated on below.

Players - One can distinguish in cooperative and non-cooperative game theory [21]. The essential
difference between the two branches is that in non-cooperative game theory the basic modeling unit
is the individual (including his beliefs, preferences, and possible actions), while in cooperative game
theory the basic modeling unit is the group [21].

Payoff Functions - Utility theory is often used to quantify preferences across a set of available alterna-
tives [21]. Sometimes the expected value of an utility function is taken from a probability distribution
utility function [21]. However, the assumption that agents would base their decisions on the expected
value of their outcomes is unjustified. That is why a preference-based method was introduced by von
Neumann and Morgenstern [146]. This theory makes use of ordering outcomes, in which an agent is
able to express its preference of one alternative over the other.

Strategies - Agents’ strategies in game-theory represent their available choices [99]. There are two
distinct strategy profiles: a pure strategy profile and a mixed strategy profile. A pure strategy results
from the choice of one action over other actions. A mixed strategy makes use of a randomization of the
choice for an action based on a probability distribution [21]. Some games have dominant strategies,
where a rational player has no incentive to choose another strategy than the dominant strategy.

Ordering Strategies - When analyzing individual strategies, many different concepts could be applied.
A sole agent can have an optimum strategy, that say, is the best strategy for maximizing the agent’s
utility. However, for multi-agent environments, there are several solution concepts to consider for anal-
ysis of the system [21]. A Pareto dominant strategy means that an agent can increase its utility without
decreasing another agent’s utility. Strategy 'S’ is a Pareto optimal strategy, if there is no other strategy
that Pareto dominates that strategy 'S’. A strategy profile is a Nash equilibrium, if for all agents i, a
strategy A is the best response (the highest utility gain) to every strategy by another agent.

Criticism - A general criticism on decision theories making use of a finite amount of possibilities, is that
only the "known unknowns” and not the "unknown unknowns” are considered. This is also referred
to "ludic fallacy” in literature [154]. One of the most discussed disadvantages of game theoretic ap-
proaches in particular is that it assumes all players to be completely rational [99, 117]. However, real
people are assumed to be bounded rational. Section 4.3.1 explains more about bounded rationality
in human decision making. Some researchers have been trying to incorporate aspects of bounded
rationality in game-theoretic approaches, such as only providing local information [155], considering
players’ personal traits [156], using machine learning techniques for agents’ reasoning power or set-
ting computational limits for alternative generation [157]. However, Cimini and Sanchez [156] argue
that statistics from experimental research to back up bounded rationality elements, and to be able to
assign significant values to players, remains insufficient for game theoretic approaches. More research
is required in order to develop a game that accurately considers human bounded rationality. The issue
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with game theory is that it aims for finding optimal solutions, but without this information, these 'optimal’
solutions will not hold for bounded rational models. This is where heuristics or argumentation-based
approaches come into play.

Heuristic Approaches

Another approach of modeling decision-making involves heuristic strategies. Heuristics are defined by
social scientist Myers [158] as a mental shortcut that eases the cognitive load of making a decision.
Jennings et al. [154] state that the goal of using heuristic methods in multi-agent systems is to over-
come limitations of game-theoretic models, since heuristic methods acknowledge that computation and
decision-making are costly and explicitely considers agent bounded rationality [20]. Heuristic methods
are not about producing optimal solutions, but solutions that are good (enough). Fatima et al. [20] out-
line the three main heuristic negotiation research areas: the generation of counter offers, the prediction
of other agents’ strategies and finding and setting optimal negotiation agendas. Since setting of the
agendas does not relate directly to the current task allocation problem in aircraft maintenance, only the
first two research areas will be elaborated on.

Generating Counter Offers - Faratin et al. [159] defined three types of strategies for counter-offer gen-
eration using heuristics: time-dependent strategies, resource-dependent strategies and behaviour-
dependent strategies. Time dependent-strategies focus on the eagerness of agents to compromise
as deadlines approach. Resource dependent strategies reflect the available resources in the environ-
ment. Behaviour-dependent strategies incorporate all other approaches when there is no pressure in
terms of time or resources and offers are based on previous attitudes. Since in task allocation for aircraft
maintenance both time as well as resources could be of importance, behaviour-dependent strategies
will not be considered further. The mathematical representation of the time and resource dependent
strategies are similar, since time could be seen as a limited available resource. A time dependent
negotiation strategy is modeled by Faratin et al. [159] as follows: Letj € {1,2...,m} be an issue, with a
certain price, to be negotiated. The price offered by agent A at time t is calculated according to:

min} + aff (t)(maxj —min}) if A’s utility decreases with price

J
t) =
*a- (6) min{ + (1 — ai (t))(maxj —min}) if A's utility increases with price

At t=0 the offer will be in a point between minj} and max; and when the deadline t,,ax“ is reached,
the offer will be the reserve price max;?‘. The definition function a}l(t) could have different shapes (as

a function of time), such as a polynomial function using a parameter 8 (8 being real and positive):

1
a}('l(t) = K}q +(1- K;'l)(min(t' thax)/tmax) F

In this case, for a small g, the initial offer is maintained until close to the deadline and then a fast
compromise is made. While for a large B, the reserve value will be offered much earlier. A similar
model could be applied to resource-dependent strategies, only making the value of t3,,, dynamic for
the scarcity of the resource or making the function « dependent on an estimation of the resources that
are still available [20].

Strategy Prediction - Many approaches for predicting opponents’ strategies have been developed over
the years, by Genetic Algorithms [160], Bayesian learning frameworks [161], or fuzzy approaches
[159, 162]. An overview of strategy prediction using heuristics can be found in Fatima et al. [20].

Criticism - Jennings et al. [154] considers the fact that models are based on realistic assumptions as
an advantage of heuristic models, since they can be applied in a wide range of domains. Besides, us-
ing alternative models than game theory can provide other insights in multi-agent systems. However,
heuristic outcomes are sub-optimal, since not all possibilities are explored. Secondly, heuristic models
need extensive evaluation for verification and validation purposes, because it is impossible to predict
how the system will behave under certain circumstances [109].

Argumentation-Based Approaches
In argumentation-based approaches, arguments are exchanged between agents influencing each oth-
ers’ states [109]. This allows agents to explicitly communicate their opinions about a proposal. The
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arguments presented by the agents are not necessarily true. An agent can modify its opinion to an
argument, such that it will be convincing for the other agent [92]. Within game-theory and heuristic
methods, the utilities of agents are assumed to be fixed, while the focus of argumentation-based ap-
proaches is on the evolution of beliefs about preferences. Therefore, an argument can be used to
justify a proposal, or to influence another agents opinions [163].

Rahwan et al. [109] provided an extensive overview of the elements argumentation-based negotia-
tion should contain and the frameworks that have been proposed until then. Generally, compared
to game-theoretic or heuristic approaches, more elaborate interaction protocols, negotiation protocols
and communication languages are necessary to accommodate for the additional information exchange
in argumentation-based negotiation models. Most argumentation-based agents contain a knowledge
base of their mental attitudes as well as the environment [109]. This knowledge is then used to evaluate
and generate proposals. Arguments can be used to update this knowledge base. Moreover, the knowl-
edge base can help to generate candidate outgoing arguments as well as select one of the available
arguments. Rahwan et al. [109] argued that the evaluation, generation and selection of arguments are
the main phases of argumentation-based negotiation. These will be elaborated on below.

Argument Evaluation - Argument considerations can be divided between objective and subjective con-
siderations. In the first case, an agent can evaluate an argument according to some standard mecha-
nism. Elvang-Goransson et al. [164] based this on the strength of the construction of the argument, and
Dung [165] defined an argument to be acceptable if every other argument that attacks it, is attacked
by yet another argument. Besides, an agent can also consider its own preferences and motivations
in evaluating arguments, which leads to subjective considerations. For example, Bench-Capon et al.
[166] included the preferences of values for different agents in their evaluation protocol. Rahwan et al.
[109] argues that in order to satisfy agents’ individual as well as common goals, both objective as well
as subjective argument evaluation is necessary.

Argument Generation - Generally, proposals are generated based on agents’ utility gain [167] or a
central planner agent is used to generate options [48]. Argument generation can incorporate many
influences, such as authority or honesty elements [109]. An example of argument generation was pre-
sented by Kraus [48], which provided an informal approach to model a threat argument [109].

Argument Selection - Finally, an agent should select the most suitable argument for the corresponding
negotiation partner. Rahwan et al. [109] stress that it is not needed to generate all possible arguments,
but the generation process can stop when a suitable argument has been found. An example criteria
for argument selection is the level of trust of an agent related to the strength of an argument [168].
One could wonder why agents would ever send a weak argument. However, when a strong argument
is presented, the chances of decreasing trust of the opponent are higher, which will make it harder
for the agent to have the opponent accept future proposals [109]. Many other selection criteria have
been presented, such as the availability of a counter example [48], the promise of future reward [48],
the costs of alternative plans [169] and preferential ordering of alternatives (such as the argumentation
evaluation by Amgoud and Prade [92] or Dung [165]).

Criticism - Next to the advantages explained in the beginning of this section, argumentation-based ne-
gotiation also has the advantage that it allows for rather straightforward explanation of the decision that
has been made [86]. A problem however is that communication overhead will become very large [92].
Besides, the technique is relatively new and therefore not many frameworks or implementations are
present [109]. Moreover, the social aspects of argumentation in groups of agents are key in estab-
lishing solid argumentation-based negotiation frameworks, with trust being an essential social factor.
However, formal theories of these social elements are scarce.

4.2.3. Agreement and Settlement
The solution of negotiations can be evaluated on many aspects. Specific game-theoric concepts have
already been elaborated on in Section 4.2.2. A share of other negotiation performance indicators are:

* Pareto efficiency: No option will make someone better off without making another worse off [21].
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» Guaranteed payoff: If a player has an expected payoff of at least a certain value [21].

» Guaranteed welfare: If the sum of each players’ utilities is at least a certain value [21].

» Maximum Social Welfare: If the outcome of the utilities is the best for the entire system, most
generally modeled using a welfare function [153].

4.3. Negotiation with People

The goal of socio-technical modeling is to uncover relations between technologies and human soci-
eties. That is why this section will be focused on the relation of automated negotiation with people.
According to Fatima et al. [20], game-theory is not applicable for accurate analysis and simulation of
negotiations with people, because of its rationality assumption. Kahneman et al. [170] provided a list
with experimental evidence against the Bayesian rationality in human decision-making processes. The
notion of bounded rationality focuses on the 'deviations’ of human-decision making on pure rational
decision-making processes.

4.3.1. Bounded Rationality

The idea of bounded rationality was first introduced and defined by Simon [171]. Bounded rationality
assumes that rationality of humans is limited by the available information, human cognitive abilities and
the finite amount of time for making a decision [171]. Gimpel et al. [172] performed a literature survey
on cognitive biases in negotiation, of which a summary is provided below:

Offer analysis

* Framing: A choice can be framed positively or negatively.

* Fairness: People have their own idea of fairness, which is subjective.

* Fixed pie illusion: People frequently focus on specific issues, instead of looking at all available
alternatives and finding a compromise.

Beliefs

* Probability weighting: According to prospect theory, people overestimate low probabilities and
underestimate high probabilities [149].

* Availability: People can be mislead by a probability of some consequence by an easy available
experience in their memory.

» Overconfidence: People tend to overestimate their abilities and correctness.

Preferences
* Reference points: People evaluate an outcome as gain or loss with respect to a reference point
[149].
» Attachment: People can be attached to expectations on the outcome of the negotiation process.
Strategies
* Ignorance of others’ behaviour: People do not always take into account the strategies of others,
while that is assumed in game theoretic approaches.
Offer specification

» Anchor and adjust: People tend to start with a certain value with available information at that
moment and adjust it according to new available information, instead of evaluating the issue
again from the start with this new information.

Internal states
* Escalation of conflict: Sometimes people rather avoid a loss than postponing the decision.
* Memory: People tend to selectively store information, or forget certain information over time.

A limitation of this psychological perspective is that it lacks mathematical formalization. However, the
descriptive validity of these biases could be useful.
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4.3.2. Automation in Human Negotiation

Automated negotiating agents can be beneficial for humans in two ways [20]. Firstly, automation of
negotiations can relieve some of the effort from people [4] or even replace humans [173]. Secondly,
these agents can assist humans in their decision making in the negotiation process [108] or be used
as a training tool [174], in order to improve human negotiation abilities. The latter is also referred to as
Negotiation Support Systems [175]. The next subsection will focus on the use of support systems in
negotiation, followed by a more thorough analysis of the use of automated negotiation agents and their
interaction with humans.

Support Systems in Human Negotiation Processes

Several variations on Decision Support Systems have been developed for negotiation purposes. Ker-
sten and Lai [4] consider different types: Negotiation Support Systems (NSS), E-Negotion Systems
(ENS), Negotiation Software Agents (NSA) and Negotiation Agents-Assistants (NAA). A negotiation
support system is "software that implements models and procedures, has communication and coordi-
nation facilities and is designed to support two or more parties and/or a third party in their negotiation
activities.” An e-negotiation system however focuses on internet technologies for facilitating on negoti-
ation. The difference between a NSA and a NAA is that a Negotiation Software Agent actively makes
decisions on behalf of a person, while a Negotiation Agents-Assistant only provides support [4].

Kersten and Lai [4] also presented the difference between negotiations in social and socio-technicial
systems. While in a social system software could be used as a tool (such as email), in a socio-technical
system negotiators rely on software that actively engages in the negotiation process. A schematic
overview of how these different types of support systems could be used in a social versus a socio-
technical system can be found in Figure 4.2. A directional arrow indicates the usage of tools by people,
while an arrow in two directions shows communication between these systems.

Negotiations Negotiations
(_) ,H\ Jj’!ﬂf“\) NSS ¢ NsA »—l
; | ENT | [ DSS
DSS | m\"“* NAA w Tools |
| Tools |
Social system Socio-technical system

Figure 4.2: Negotiations in social and socio-technical systems [4]

The review paper by Kersten and Lai [4] stresses the role of a neutral third party that computer systems
could take. This could be in a facilitating role (allowing communication and coordination), a supporting
role (assist in cognitive aspects of negotiation) and a mediating role (actively shape the process to find
an agreement). The facilitating role is a physical support system, while the other two are extending
human mental capabilities. Several configurations of negotiation software and their implications are
presented in this review and could be useful when designing an architecture for supporting software.
An overview of these configurations can be found in Figure 4.3.

One of the key challenges of Negotiation Support Systems is a lack of theoretical foundation [176].
Kersten and Lai [4] argue that a more systematic approach to designing instruments and experiments
is required. This includes the impact on people’s cognition, but also attitude and the interactions be-
tween negotiators [176]. Research has therefore been performed on the social acceptance of NSS
for example, by Pommeranz et al. [177]. Another study by the same research group focused on the
emotional state of negotiators and how to incorporate affection in these systems [175].

Although the time to achieve an agreement is higher using NSS, it has been shown that they reached
higher joint outcomes as well as more balanced individual outcomes than negotiations without these
systems [178, 179]. In negotiation with automated agents, humans appeared to be performing slightly
better [179]. An explanation given for this phenomenon is that humans forced the agents to compro-
mise and agents therefore need to be designed to resist human manipulation.
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Figure 4.3:  Configuration of negotiation software [4]

Automated Negotiating Agents in Human Negotiation Processes

Fatima et al. [20] classify the existing automated negotiation agents in two categories: rule-based
agents and utility-based agents. The first makes use of rules for decision-making that are set by ex-
perts, based on for example human-to-human negotiation situations [180] or negotiation over payments
for tasks in crowd-sourcing domains [181, 182]. Haim et al. [183] created a rule-based agent using ma-
chine learning techniques without the need of expert knowledge for rule development.

A key aspect of automated negotiating agents with humans is that the agents need to be able to predict
human decisions. An approach to this is modeling personality traits of its negotiation partners. The
DIPLOMAT agent, developed by Kraus and Lehmann [184], was the first to make use of personality
mapping. Another approach was to model participants on two personality characteristics: reliability
and helpfulness [20]. Santos et al. [185] used a concept from psychology, the Five Factor Model of
personality traits (FFM), which stands for Openness, Conscientiousness, Extraversion, Agreeableness
and Negative emotionality [186]. This model has not been validated in experiments with people, though.

Another approach in predicting decisions is making use of subjective expected utility Fatima et al. [20].
Subjective expected utility assumes that each person has its own subjective evaluation of alternatives,
given certain actions and inputs from the environment [187]. However, Simon [171] argues that this
subjective expected utility theory (in psychology) does not fit empirical findings in human decision-
making. Selten [188] also argues that it does not lead to a realistic description of bounded rational
decision-making. Rosenfeld and Kraus [189] used the aspiration adaptation theory to improve pre-
diction on how people negotiate. The aspiration adaptation theory uses human satisfaction as a core
instead of optimization [188].

A social utility function could also be used to model social preferences, which reflects the fact that people
take the preferences of their opponents in consideration when making a decision. Gal and Pfeffer [190]
proposed a model of several social factors together with individual utility and developed an algorithm for
determining these factors from data of people’s negotiation performance. Other approaches include
the use of reinforcement learning on the behaviour of opponents [191] as well as the use of visual
expressions in automated negotiation [192].
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An essential part of this literature research is the understanding of social aspects in task allocation.
While in most research, only the technical implications of these systems are evaluated (see Chapter
4), the focus of this chapter is to consider the functioning of the task allocation system as a whole: not
only the technology, but also the social context in which it operates. This chapter will first provide some
information on social structures in organizations, as well as existing methods for modeling these social
structures. Subsequently, the social factors that are believed to be relevant for task allocation in aircraft
maintenance are presented and elaborated on.

5.1. Social Structures

Social structures represent interactions and patterns in social systems. The term was firstly used by
Alexis de Tocqueville and consequently used by Karl Marx and Max Weber. Crothers [193] provides
an overview of the many different definitions available in sociological research. After an extensive
evaluation of the existing definitions, Crothers [193] therefore states that social structures "are at least
somewhat-enduring sets of relationships among a group of roles which emerge, are maintained, change
and eventually cease.” Many classifications on social structures exist, but most sociologist seem to
agree that there is at least a distinction to be made between, firstly, the study of relationships between
individuals or groups of people, and secondly, behavioural (or normative) patterns by individuals in a
social system that emerge over time [193].

Sociologist Max Weber described an organization as a "social relationship which is either closed or
limits the admission of outsiders, when its regulations are enforced by specific individuals: a chief and
possibly, an administrative staff, which normally also has representative powers” [194]. Organization
theory research started with engineers trying to standardize not only units and bolts, but also the way
organizations are set-up and organize themselves [195]. Soon, researchers from psychology, anthro-
pology, economy, management and sociology joined to provide another view on how organizations
are, and should, be organized [195].

The research of social psychologists within this field provided more insights into individual motives and
anthropologists and sociologists showed unofficial, informal patterns of cooperation, shared norms and
conflicts between and among managers and workers [195]. Many sociologists emphasize the dualist
nature of organizations: on one hand organizations can be viewed as production systems, but on
the other hand as adaptive social systems [196, 197]. Helbing [198] argues that it is inefficient (and
sometimes impossible) to try and rule over self-organization within complex systems. That is why social
structures and social self-organization within the organizational context of this research are key.

5.2. Modeling and Simulation of Social Structures

Modeling social structures is however still a relatively unexplored research area. That is why some
recommendations on modeling social processes in general could be helpful for this research. Firstly,
Epstein [199] argues that the purpose of the model should be clearly defined. This could for example
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be the prediction of social processes, explanation of these processes or the training or education of
people involved. Jonker and Treur [200] argue that, next to a purpose, a design rationale is key. This
design rationale is the guiding theme for model development and is able to explain most (if not all)
design decisions that have been made. In Jonker and Treur [200] a formal approach for designing
agent-based models in organizations is presented.

A common misunderstanding in the simulation of human processes is that the model should include
all the human cognitive aspects that could be distinguished. However, in most cases, a much simpler
model serves the modeling goals better [200]. Besides, as Sharpanskykh [66] argues, when a large
number of variables and functions is used to model complex organizations, the models’ complexity
increases enormously and controlling the model gets hard. As Mercuur et al. [201] puts it: "social
simulation gains strength when agent behaviour can represent human behaviour and be explained in
understandable terms”.

5.2.1. Emergence

A key concept in social simulation (and social sciences in general) is emergence, which concerns
the relation between system-level properties and the properties of the system components individually
[202]. Two perspectives on emergence are distinguished in literature [202]: the ontological view and
the epistemological view. The ontological view assumes that the overall (global) result, is more than
the sum of all the individual results. In contrast, the epistemological view assumes that the total system
is nothing more than the sum of these parts, but that it is simply to hard to explain or quantify all the
different parts precisely [202].

Usually emergence serves as an outcome of a simulation model, based on individuals, with beliefs,
intentions and relations with others. Yet sometimes these types of models can be too limiting in rep-
resenting higher level system properties. In these cases, Sawyer [202] argues that macro concepts
could also be incorporated in the design of these models, next to the individual agent properties, with
inter-agent connections between these two entities as relations between the two system levels.

5.2.2. Social Simulation Drawbacks
In literature several drawbacks of social simulation could be differentiated. In this section a brief a
summary of these issues is presented:

» A challenge for social simulation is the lack of formal models for many social concepts. This
makes it difficult to verify models and accurately represent social processes [203].

» Social simulation is on the edge of computer science, mathematics and social science. Since
social scientists generally do not have any experience with or knowledge of mathematics or com-
puter science, social scientists generally make use of informal models for social simulation. These
informal models make it easier to rush into conclusions and lack validity [203].

* When social simulation has been successful, overconfidence in explanations of real-world pro-
cesses could be risky. Sawyer [202] argues that, even when the model fits empirical validity, the
explanation might not be complete.

» Sawyer [202] also states that the meaning and implications of social simulation results can be
difficult to communicate to non-technical social scientists.

» A key aspect of social simulation, and more specifically agent-based social simulation, is incor-
porating diversity within the system. Barreteau et al. [204] argues that this does not only relate to
individual beliefs, but also viewpoints, expectations of the system and decision-making. Involv-
ing stakeholders in the modeling process could be a way of introducing different viewpoints and
expectations to the modeling process.

5.3. Social Factors

In this section an overview of the social factors that could be of interest for this research is presented.
These factors were established by accurately studying the task allocation process currently in place
and evaluating possible factors that could be playing a role. These social factors also influence each
other and overlap in some instances. These aspects are categorized into individual properties, social
interactions and interactions with the environment.
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5.3.1. Individual Properties

This section elaborates on some general properties that are of interest for human decision-making in
general, but more specifically for task allocation in aircraft maintenance. The factors considered are:
human goals, values, motivation and skills.

Goals

A goal is defined by the Oxford Dictionary as an 'objective of an individual’s ambition or effort’. In social
psychology, a distinction is made between implicit and explicit goals. Implicit goals refer to the non-
conscious goals that people pursue, while explicit goals are set consciously by people themselves (or
others) [205]. People switch between goals regularly [206].

This temporal aspect of goals is also considered in Sharpanskykh [66]. The author outlines the impor-
tance of making the distinction between the overall goals of an organization and the individual goals
of the actors that perform tasks in this organization. These goals can be conflicting or not completely
aligned. Based on the self-determination theory [66, 207], three different types of needs are distin-
guished that drive individual goals:

* Extrinsic needs: An individual’s biological comfort and material rewards.
» Social interaction needs: Social approval, affiliation and companionship.
* Intrinsic needs: Self-development, self-actualization, mastery and challenge.

A well-known example of modeling agent goals and values is the concept of BDI-agents (belief-desire-
intention agents) [208]. For more information on the BDI agent architecture, see Section 3.2.2.

Values

In contrast to the changing nature of goals, values are lasting convictions that people feel that should
be aimed for in general [209]. Values can be intrinsic, a purpose in itself, or instrumental, a means
to reach an intrinsic value [209]. Generally people have multiple values driving their actions. But,
Miles [210] stressed that these connections are rather weak. A choice between options with multiple
relevant values gives rise to a value conflict, specifically when no option is obviously the best one [209].

Several possibilities for dealing with these conflicts exist for human decision-making [209]. The first is
a cost-benefit analysis, where the advantages and disadvantages are expressed in some number and
the overall cost or benefit of each alternative is calculated. This method, however, has the underlying
assumption that values can be expressed in terms of some utility number (or money). Another method
is a multiple criteria analysis, where each alternative is scored on several values and an overall score
is calculated. This method also assumes that values can be traded-off. However, it does not assume
explicitly that all values can be converted to the same utility unit. Furthermore, thresholds can be used
to compare values. In that case, a minimum required level is set for all values separately. Finally, a
non-calculative approach is the judgment of and reasoning about values. In this approach three steps
are identified: find the relevant values, specify these values and then look for common ground in these
values. This method is more a philosophical approach than a simple solution to value trade-offs [209].

Mercuur et al. [201] represented an agent in terms of its values using the ten basic values defined by
Schwartz et al. [211]. In this model Mercuur et al. [201], only modeled the values wealth and fairness
of agents, which are negatively correlated and allowed for quite straightforward decision-making. It is
therefore questionable how this model would be operating if more (and less correlated) values would
be considered. Furthermore, human dynamics in multi-round decision-making cannot be reproduced
based on values, since values stay the same over time.

Motivation

Although many definitions for motivation hold, it all comes down to the degree to which an individual
is ‘'moved’ to do something [212]. Similar to goals, motivations can also be intrinsic or extrinsic [213].
Intrinsic motivation refers to the motivated behaviour that follows interests for the inherent satisfactions,
while extrinsic motivation follows some consequence or outcome of the action [213].
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An example of an agent-based model using one of the motivation theories from social science, is
Sharpanskykh [66]'s model for the motivation of agents using Vroom'’s expectancy theory. This theory
makes estimations for three factors: expectancy (likelihood of some first-level outcome), instrumentality
(likelihood of some second-level outcome) and valence (strength of a desire for an outcome). The
motivational force for act F; and valence V; can then be calculated as follows:

n m
F=fQ) Ey- W) V= Vil
j=1 k=1

With E;; being the expectancy of act i followed by outcome j, V; the valence of first-level outcome j, Vj;
the valence of second-level outcome k that follows j, I, the instrumentality of outcome j for outcome k.

Other motivation theories combine expectancy with values instead of direct outcomes. A similar model
has been presented by Sharpanskykh and Haest [214], where employee compliance at an aircraft
ground service organization was studied based on a model of the employees’ motivation. Eccles and
Widfield [215] argued that most motivation theories implicitly assume rational behaviour, but there is a
need to also consider affection when studying motivation. A theory that includes affect is the attribu-
tion theory, which holds the fundamental point of view that individual’s interpretations of outcomes are
driving motivation rather than actual outcomes [216]. Besides, the environment is key for motivation
and should therefore not be left out [215].

Skills

In Chapter 2 the different types and levels of skills among mechanics were discussed. This mostly
relates to the mechanics’ technical skills for executing tasks. However, also interpersonal, managerial
and problem-solving skills are important within organizations [217]. So, in aircraft maintenance teams
skills as leadership, goal-setting, planning and delegation could also be of interest.

The abstraction of skill levels is considered to be a limitation of the models incorporating skills in Chap-
ter 2. This abstraction makes it easier for a central planner to assign tasks, but it does not account for
the entire range of capabilities that people possess. The skills and capabilities of different agents are
generally more accurately known and acknowledged on the work floor. These skills could therefore
be taken into account more accurately in bottom-up, decentralized (agent-based) systems, than in a
central task allocation method.

Grow et al. [218] presented an agent-based model in order to uncover the conditions under which hi-
erarchical differentiation between separate groups creates the belief that one of these groups is more
skillful than the other, although that is objectively not the case. It was observed that hierarchical differ-
ences were most likely to occur in smaller teams that work together for a very short or very long time.
This research did not account for an actual existing difference in experience and how that relates to
status formation within groups.

5.3.2. Social Interaction
This section elaborates on theories that describe sociality aspects, such as the dynamics of teamwork,
social influences, power relations, norms and the diffusion of innovations.

Teaming

Weiss [59] defined a team as "a group in which agents are restricted to having a common goal of some
sort. Typically, team members cooperate and assist each other in achieving their common goal”. The
four stages of team processes that are generally distinguished in literature are [219]:

1. Potential recognition: A team lead recognizes potential team members for a potential goal.

2. Team formation: The team lead establishes collective intention between team members.

3. Plan formation: All team members agree to create collective commitment for realizing the goal.
4. Team action: All members will be executing their shares of the tasks.

A lot of research exists in the first two phases [220, 221]. Yet this research focuses mainly on the
phases of plan formation and team action, since in aircraft maintenance teams are already established
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beforehand [222]. Teams distinguish themselves from other social groups by the presence of a team
leader that aims at solving a problem for which it needs to recruit team members with the right qualifi-
cations for solving that set of problems [223]. Dunin-Keplicz and Verbrugge [224] highlighted five main
characteristics of teaming for cooperative problem solving:

» Working together to achieve a common goal. There is no competition among team members with
respect to achieving the common goal.

» Constantly monitoring progress of the team efforts as a whole.

» Coordinating individual actions in order to avoid interference.

+ Communicating successes and failures if necessary for the team to succeed.

* Helping one another out when needed.

The two latter characteristics have been supported by experimental research, where the problem solv-
ing performance of groups outperformed individual problem solving, since the groups profited from
complementary knowledge and ideas [225]. This depends also on the communication structure of
teams. Unidirectional communication can reduce performance, but on the other hand, communication
could also be inefficient if there are too many people in the team communicating [22].

Social simulation research on teamwork within multi-agent systems is, in less amount, also present in
literature, for example evaluating reputation [226], diversity [227] and power between and within groups
[218, 224]. A way of modeling team dynamics is elaborated on by Dunin-Keplicz and Verbrugge [224].
Three main collective properties were distinguished:

* Collective beliefs and knowledge: Agents can have a general belief or knowledge, which means
that every agentin the group beliefs or knows ’A’ and a common belief, which means that everyone
in the team believes or knows that everyone in the team believes or knows A’

+ Joint intentions and goals: Being aware of and care about the status of group effort as a whole,
by creating an individual intention towards that goal.

» Social commitment: The individual's commitment towards the social plan, which outlines the re-
sponsibilities for every agent, in order to realize the team’s goal. The strength of this commitment
depends on the situation and the agent.

Poole and DeSanctis [16] state that groups (or teams) share common social practices, such as: making
decisions, accomplishing work, socializing, joking, teaching others skills and norms, fighting, establish-
ing power and status relations, meeting individual needs for sympathy, acceptance or self-development.
The authors argue that technological support systems should be used to pursue the same social prac-
tises that other (social) resources would do.

Social Influence

Social influence lays at the foundation of dynamics in teams as well as interpersonal relations in gen-
eral [228]. Through social influence people make changes in the social world [229]. Although former
research into social influence encompasses the entire spectrum of influences in social context, current
research focuses on the subtle, indirect and non-conscious social influences [230].

A general accepted framework for social influence is presented by Cialdini and Trost [230], that encom-
passes most of the social research into the topic. It is argued that two main behavioral aspects are of
interest for social influence: compliance and conformity. Compliance refers to some sort of agreement
to a, explicit or implicit, request [230]. Conformity refers to the change in behavior of a person to adjust
to the reactions of others. In both cases people adjust their behavior, but compliance does not hold a
change in attitude [230]. A person can comply without changing its beliefs for example under obedi-
ence, which is social influence based on authority [231], or social pressure [232].

These changes in behavior due to social influences can have many different motivations. Cialdini and
Trost [230] argue in a extensive literature review that three main goals for compliance or conformity
can be distinguished in literature:

» Goal of accuracy: Responding accurately to social situations asks for correct interpretation.
» Goal of affiliation: Creating and maintaining sincere social relationships.
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» Goal of a positive self concept: Behaving consistently with personal beliefs, actions or traits.

Bachrach and Baratz [233] argue that it can be hard to draw the line between power and influence
in real-life, since most people are not aware of the power relations that drive their views on certain
matters. The next section will provide some more information on power relations, which are generally
referred to in cases of more explicit social influences [230].

Power Relations

In social science, power is considered to be of importance for social structures [233]. No comprehen-
sive definition of power exists. One of the influential papers on power is Bachrach and Baratz [233],
which argues that a person cannot just 'have’ power in itself, but power is always related to someone
else. Three conditions are true in the case of (relational) power use: a conflict of interests or values
between persons or groups, one person bows to the other persons wishes, and one of the parties can
threaten to invoke sanctions [233]. Sibertin-Blanc et al. [234] focus on conflicts over resources, when
referring to power as “an instrument for people to obtain means from others to achieve their own ob-
jectives”.

A widely accepted framework for power relations is proposed by Raven [235]. This framework has been
formalized, implemented and simulated in an aircraft maintenance organizational model by Passenier
et al. [236]. This model considers six different types of power relations:

* Reward power: Based on resources.

* Punishment power: Based on the possibility of penalties.
 Legitimate power: Based on internalized values of the submissive.
» Expert power: Based on knowledge or expertise.

» Referent power: Based on relatedness.

Informal influence: Based on persuasion.

Authority considers a normative relationship between two persons, where one person is higher in rank-
ing (within an organization or society) than the other [237]. Sharpanskykh [66] argues that authority has
a formal basis, since it involves norms and explicit rules. Sharpanskykh [66] presented a formal model
on authority modeling in an electronic enterprise information system, where agents are authorized to
execute tasks in an organizational setting.

Reputation also plays a role in power relations. Trust, on its turn is influenced by people’s reputation
of their skills, intentions or motivation. Besides, trust in (automated) systems driving teams could be
important [86]. According to Giardini et al. [238], reputation allows people to predict or approximate
what kind of social interaction they can expect from others. Frith and Frith [239] state that one can
learn about another by direct experience, observation or cultural information. This latter aspect is not
commonly used in agent-based models or social simulation in general.

Norms

Standard, acceptable or permissible behavior in groups can be captured by the concept of norms [240].
Neumann [241] refers to norms as a type of social constraints on the actions of people. An important
aspect of norms is that people internalize norms in their decision-making process. Neumann [241]
considers three components of norms: an individual component (a belief), a social component (shared
beliefs) and a deontic component (an obligation). Similarly, Ostrom and Crawford [242] considered four
elements for norms: attributes (individual component), deontic, aim (also an individual component) and
condition (social component), which he referred to as the 'ADIC’-elements.

Neumann [241] evaluated the options for the implementation of norms and social constraints for several
agent architectures. Influential work in social simulation on norms was performed by Axelrod [243], who
modelled a basic game using an evolutionary approach. The establishment of norms was measured
using the level of boldness: the chance of being seen when defecting of cooperation, and vengefull-
ness: the probability of punishing someone when observed to be defecting. A norm is established
when boldness is low and vengefullness is high.
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An overview of agent models taking norms into account is presented in Neumann [241]. It is argued
that in literature, three types of norms are implemented: norms as constraints, norms as obligations
and norms as abstract concepts. The first are simple rules that are dictated by the designer and restrict
the agents freedom, such as in Garcia-Camino et al. [244]. When modeled as obligations, norms are
considered mental states that allow for conscious deliberation on norms. Under certain circumstances
norms could therefore be violated [169]. Furthermore, norms can be seen as abstract concepts that
drive obligations [245]. In this case agents take an outer perspective and evaluate in their decision-
making process how others think they 'ought to’ behave [246].

Innovation Diffusion

Theory on the diffusion of innovations can be an important social aspect for this research. One of the
most influential works on the diffusion of (technological) innovations within social systems has been
performed by Rogers [5]. He distinguishes five different phases in this diffusion process:

Knowledge: Awareness of the innovation.

Persuasion: Interest in the innovation rises.

Decision: Evaluate whether to use the innovation or not.
Implementation: Use of the innovation and evaluation of its use.
Confirmation: Decide whether to keep using the innovation or not.

a0~

Social influences between individuals or groups play a major role in the level of success of this diffusion
process [5]. Four variables are believed to be key for this level of success: the innovation itself, how
it is communicated, how long the group is exposed to the innovation and the (social) characteristics of
this group. Rogers [5] innovation adoption curve among people can be found in Figure 5.1. This curve
aims at explaining that people differ in their reaction on new elements being introduced in their lives.
It is interesting to see that when around 15% of the people has adopted the innovation, the adoption
process speeds up significantly. This can be explained by social influences between people as well as
a decrease in uncertainty that attracts risk averse people.

135% 34% 34% 16%

Innovators  Early Early Late Laggards
Adopters Majority Majority

Figure 5.1: Rogers’ innovation adaption curve [5]

5.3.3. Interaction with the Environment

Finally, three concepts that are based on agents’ view on and interaction with the environment are elab-
orated on: situation awareness, case-based reasoning and social practice theory. These concepts also
relate to social interaction, but are more focused on the agents internal evaluation and decision-making
than the concepts described in the previous section.

Situation Awareness

The most common accepted framework and definition regarding situation awareness was developed by
Endsley [247]. He refers to situation awareness as "the perception of the elements in the environment
within a volume of time and space, the comprehension of their meaning, and the projection of their
status in the near future”. This relates to the outcome of gaining awareness, but other researchers also
refer to situation awareness as the process of gaining awareness [248]. Endsley [247] emphasizes
that situation awareness relates specifically to the dynamic nature of decision-making, the decision-
maker’s experience and other influences on decision-making, such as stress and attention. Endsley
[247]'s framework distinguishes three levels of situation awareness:

» Level 1: Perception of status, attributes and dynamics of relevant elements in the environment.
» Level 2: Comprehension of the situation through combining Level 1 elements and agent goals.
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» Level 3: Prediction of future states using the understanding of the current situation.

Endsley and Robertson [249] performed a research related to situation awareness in aircraft mainte-
nance teams, particularly on task performance and the prevention of mistakes. In teams, both individ-
ual situation awareness on the individual tasks, as well as shared situation awareness of the team’s
shared goals and interdependencies between tasks can be distinguished. One of the findings from
this research is the lack of information provision to the mechanics. Without this information they are
not able to perform key functions of teams, such as helping each other out or swapping tasks. With
an increased understanding of the organizational goals, the mechanics would be able to make better
decisions in line with organizational expectations.

Case-Based Reasoning

Another social aspect related to situations and the environment is case-based reasoning, in which a
person remembers similar situations to the current situation and uses these situations to solve the
current problem [250]. A case represents specific knowledge, related to a specific situation, when gen-
eral knowledge is unavailable [250]. The concept of case-based reasoning was constructed during
research that aimed at understanding how people remember information and retrieve this information
[251]. It was found that people often solve problems by remembering how they solved similar problems
[251]. Explanations by humans are sometimes also constructed by remembering a similar case, using
its explanation and adapting it to the current situation [252].

Kolodner [250] argues that the quality of a case-based reasoner depends on its experiences, its ability
to understand new situations based on these experiences, its ability to adapt, its ability to evaluate and
its ability to memorize experiences in the right way. This relates to the general deliberation process of
a case-based reasoner that is presented by Dignum and Dignum [253]:

1. Formulate the problem

2. Retrieve former experiences

3. Use these experiences for problem solving

4. Revise the new obtained experience

5. Memorize (the evaluation of) this new experience

Kolodner [252] elaborates on the advantages and disadvantages of case-based reasoning techniques.
It allows for a quick deliberation process, since answers do not have to be constructed from the be-
ginning. Secondly, it allows for finding solutions to problems that the reasoner does not understand
completely. Case-based reasoning can be helpful in preventing to repeat a past mistake. Furthermore,
it can provide a method for finding solutions to a problem when no systematic method is available.

However, it can be dangerous for a reasoner to rely on an old case without properly validating its use to
the new situation. People are often not reminded of all applicable past experiences during reasoning.
A drawback of using case-based reasoning in social simulation is that it is hard to find an algorithm
that could calculate the revision of plans accurately. Moreover, a large case base is needed to provide
agents with enough information to reason correctly. In some instances it is not possible to generate
such a large case base (due to the severity of the consequences for example). Simulation could be a
solution to generate these cases and provide decision-makers with a more elaborate case base.

Social Practise Theory

Another concept that is used to explain human decision-making involves the concept of social prac-
tises. Social Practise Theory originated from Wittgenstein and Heidegger, who aimed at describing
the world from the viewpoint of practises (daily actions) instead of the agency (the individual) or social
structures (organizations) [254].

In social science, practises were either explained as a personal habit [255] or a social act [256]. Reck-
witz [257] combined these two notions of practises in the concept of social practices, which are everyday
practices and are typically habitually performed in a society. The social aspect of these practises lies
in the similarity between individuals, at different moments in time and environments [257]. Reckwitz
[257]'s conception of social practises underlies most studies within Social Practice Thoery.
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Present-day research on Social Practise Theory is all based on Giddens [258]’s adaptive structuration
theory, that aims at finding a balance between the individual and structure. The use of Social Practise
Theory in social (simulation) research can be key in connecting actions and the environment within
larger social systems. Most researchers in Social Practise Theory use Shove et al. [259]’s conception
of the three core elements for social practises:

» Materials: the physical elements that are needed to perform a practise.
* Meanings: the beliefs, values, intentions and emotions that are related to the material.
» Competence: the skills or knowledge that is needed to perform the practise.

Social practises can form bundles of interrelated practises [259, 260]. These elements influence the
enactment of social practises, but these activities also influence these elements, and change the social
practises dynamically [261]. Social interaction can also influence these elements, creating shared
social practises, that can serve as a common ground for coordination between agents [253]. Mercuur
et al. [254] provided a framework for the sharedness of social practises in three different ways:

* Habits: the repetition of behaviour as a response to a regular experienced context [262].
» Social intelligence: the way that people act in a shared world [254].
* Interconnected activities: the connection of these activities, w both temporal or causal [254].






Conclusions

This chapter presents the final conclusions of this literature research, with an overview of the most
significant findings that could be of interest for the research proposal.

Task Allocation in Aircraft Maintenance - Research into the task allocation processes for aircraft
maintenance is scarce. Task allocation encompasses the way that tasks are chosen, assigned and
coordinated among people. Other maintenance planning processes, such as task scheduling and
resource allocation were more available. The main literature gaps were:

* A lack of bottom-up approaches instead of top-down optimization approaches.
» A lack of short term planning in contrast to the strategic and tactical planning phases.
+ A lack of the mechanics’ perspective and social factors in aircraft maintenance literature.

These literature gaps drove the need for understanding these different aspects and a more thorough
literature study on the available methods and research to contribute to these existing gaps. It was ar-
gued that these gaps all relate to a dynamic environment, with local information, that requires bottom-up
models and tools. That why the field of Distributed Artificial Intelligence is of importance.

Distributed Artificial Intelligence - Agent-based modeling was found to be most applicable for model-
ing and simulation of these task allocation procedures. The main advantage is that it allows to capture
emergent phenomena and is well suited for social simulation. Many different agent architectures exist
and even more specification languages as well as implementation tools. Verification and validation
of agent-based models, specifically in social simulation, is however difficult. A field of interest within
agent-based modeling and multi-agent systems is the use of integrative agents, which can support hu-
mans in many of their doings based on their personality, mental states or environment. This integration
of agents in human decision-making asks for the alignment of decisions between people and agents. A
research field of interest for this application is Explainable Artificial Intelligence, which aims to explain
decision-making by automated systems to humans in an understandable way.

Negotiations - In order for self-motivated agents with individual goals to coordinate, negotiation is
necessary. The main negotiation mechanisms that could be used are contract net protocols, auc-
tions, bargaining and voting. Three phases are generally distinguished for modeling negotiation pro-
cesses. The first phase is the process of resource valuation, which is driven by and generally modeled
using economic theories. Secondly, decision theory is used to model decision-making in negotia-
tion. Three main methods for decision theory are distinguished: game theory, heuristic methods and
argumentation-based negotiation. The assumption of rational behaviour makes game theoretic ap-
proaches unsuitable for this research. Heuristic methods and argumentation-based negotiation both
allow for modeling bounded rationality and could therefore be of interest for social simulation. Another
advantage of argumentation-based methods is that it allows for straightforward explanations. The final
phase revolves around the negotiation agreement and outcomes. Integrated agent models can be of
interest for this research. Negotiation Support Systems could support mechanics with decision-making.
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Social Simulation - An understanding of human bounded rationality as well as the observed social
elements of task allocation and execution in aircraft maintenance led to the understanding that cur-
rent task allocation methods lack a social perspective. Challenges for social simulation are that formal
modeling is hard (and sometimes impossible), explaining outcomes as well as validating these results
can be even more difficult, and generalizing these explanations to real-wold processes can be risky.
However, social simulation can provide a new perspective of social processes that allows for a better
understanding of the mechanisms involved. Several social factors have been identified and researched
that could be of importance for this research into task allocation in aircraft maintenance. Two of these
aspects are believed to be essential: teaming and social practises.

Teaming Aspects - Aircraft maintenance tasks are performed in teams, which allows mechanics to:
constantly monitor progress of the team efforts as a whole, coordinate actions such that these do not
interfere with each other, communicate failures and successes in order for the system to be more suc-
cessful and to help each other out when needed. Since aircraft are extremely complex, teams embrace
the specialization of mechanics in different expertise’s, which allows for collectively finishing all mainte-
nance activities. These differences in expertise and experience could however lead to power structures
and relations within this team. Power relations, and even more important, social influence lays at the
foundation of the dynamics within teams. Furthermore, social research into team dynamics empha-
sized the importance that supporting technology should accommodate social practises of teams, such
as making decisions, but also teaching and socializing, or establishing power relations.

Social Practises - Social practises have also been of increasing interest in social simulation research.
Social Practise Theory aims to look at the world from the perspective of (daily) activities, called prac-
tises. This is in contrast to most conventional methods that look from the individual or organizational
perspective. Social practises allow for a better integration of actions and the environment. Besides,
social practises can also influence other people, which creates shared social practises. These shared
social practises can then serve as common ground for coordination between agents. Several frame-
works for Social Practise Theory application in social simulation are presented. The research area is
however relatively new and validation of the existing models is still lacking.



Research Approach

This chapter presents a summary of the research approach that has been defined based on the litera-
ture study. Moreover, the methodological approach for executing this research has been introduced.

The literature research in this report revealed several literature gaps for bottom-up task allocation in
aircraft maintenance. Although many approaches could be applicable in order to address these gaps,
the previous section elaborates on the specific elements that were believed by the author to be partic-
ularly of interest for the specific problem of task allocation in aircraft maintenance. Combining these
separate elements leads to the following research question:

What is the relationship between the social aspects of teamwork and the per-
formance of task allocation methods in aircraft maintenance?

Sub questions will assist the author in shaping the thought process as well as generating manageable
work-packages for the execution of this research. The following sub-questions are formulated:

1. What domain knowledge could be useful for evaluating conventional task allocation methods as
well as negotiation on task allocation in aircraft maintenance teams?

2. How could the characteristics of agents, environment and their interactions within the task allo-
cation environment be modeled?

3. How does a conventional task allocation method impact team performance?

4. How does the process of negotiation on task allocation, explicitly considering social teaming as-
pects, impact team performance?

5. How could the results from (3) and (4) present insights into the impact of social teaming aspects
on the performance of task allocation methods within aircraft maintenance teams?

The following methodological steps have been identified for the execution of the research project:

Work Package 1: Initial Hypotheses and Research Scope
Work Package 2: Conceptual Model Development

Work Package 3: Formal Model Development

Work Package 4: Model Implementation and Simulation
Work Package 5: Result Analysis, Validation and Conclusion

abrwbd=

63






65

Supporting Work






Theoretical Elaboration

This chapter elaborates on the theoretical content that has been considered in this research. The first
section will provide additional insights on the purpose of social simulation. The second outlines the
main definitions that have been used in this research.

8.1. The Purpose of Social Simulation

Social simulation has been around for about 20 years [202]. Yet, there is no all-encompassing frame-
work for developing, analyzing and explaining these simulations. Moreover, there is no agreement on
the purpose of social simulation among scientists. This section will therefore briefly elaborate on the
different views on the purpose of social simulation and the theoretical foundations underlying this study.

There is no general agreement on whether social simulation should be used as a way of constructing
social theories or as performing virtual experiments [202]. Some argue that building computer simu-
lations requires rigorously specified axioms in contrast to theorizing in sociology [208]. A simulation
could require filling in gaps that are needed for the simulation to work and therefore reveal gaps in a
theory [202]. Others argue that social simulations are needed to test a social theory. In these simula-
tions, a model simulates a social phenomenon and is modified to create different conditions that can be
compared [202]. Performing these experiments in the real world is often impossible. The simulation is
therefore used to generate data that can help in building theories [202]. This study is of the latter type:
the simulations have been used for different experiments to uncover and explain relationships between
the local social properties and the global task allocation performance in aircraft maintenance teams.

Some researchers argue that an explanation in social science requires identifying social laws [202].
Social laws, if they exist, always have exceptions. The current trend is more shifting to the mechanism
approach, which aims at sufficiently describing the underlying mechanism that cause a certain observed
phenomenon [202]. The question is however when a causal explanation is sufficient. Sawyer [202]
illustrates this with an example of the ideal gas law. In the mechanistic approach, the location and
movement of all molecules is necessary to explain pressure. The ideal gas law is therefore not sufficient
in explaining the behavior of a gas. There is a fine line between identifying and explaining relations
in social simulation models. In this research specific variables impacting model behavior and global
properties have been identified and explained as much as possible.

8.2. Definitions

Often many definitions of a concept are presented in social science. In order to ensure consistency,
Table 8.1 provides an overview of the definitions for this research in alphabetical order.
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8. Theoretical Elaboration

Concept

Table 8.1: Definitions of social concepts

Definition

Agent

”A computer system, situated in an environment and capable of autonomous
action in this environment in order to meet its objectives” [54]

Causality orientation

"The extent to which people are self-determined in general” [213]

Coercive power

"Power based on the possibility of penalties” [235]

Compliance A response to a request, in which a person recognizes to be urged to respond
in a desired way” [230]
Effort "The physical or mental activity needed to achieve something” [263]

Expert power

"Power based on knowledge or expertise” [235]

Extrinsic motivation

"Motivation for an activity in order to attain some separable outcome [264]

Flow "An intense focus and concentration” [265]
Group ”A number of people or things that are put together or considered as a unit” [266]
Impression "An idea, feeling, or opinion about something or someone, especially one formed

without conscious thought or on the basis of little evidence” [267]

Intrinsic motivation

"The motivational instantiation of the proactive, growth-oriented nature of
human beings” [207]

Legitimate power

"Power based on internalized values of the submissive” [235]

Mastery

"Reaching one’s inner potential” [268]

Motivation

"The degree to which an individual is ‘'moved’ to do something” [212]

Need for autonomy

"The desire to obtain a feeling of being in control of one’s own actions” [207]

Need for competence

"The desire to be competent in one’s actions, skills and desires” [207]

Need for esteem

"The desire for a high evaluation of one’s self based on achievement” [269]

Need for relatedness

"The desire to experience a sense of belonging to and interaction with others” [207]

Need for safety

"The desire to work safely and prevent mistakes or injuries” [269]

Negotiation A non-individual decision-making process, which involves two or more parties
that jointly determine outcomes of mutual interest to resolve a dispute via
exchanging ideas, arguments and offers” [107]
Performance "How well a person, machine, etc. does a piece of work or an activity” [270]
Persuasive power "Power based on persuasion capabilities” [235]
Power "The capacity or ability to change the beliefs, attitudes, or behaviors of others” [271]
Referent power "Power based on relatedness” [235]
Reputation "A perception that someone has of another’s intentions and norms” [272]

Reward power

"Power based on resources” [235]

Situation awareness

"The level of awareness an agent has of a situation: the dynamic understanding
of what is going on” [247]

Shared cognition

"The collective cognitive activity of individuals where the collective activity has
an impact on the group goals and activities” [273]

Shared situation awareness

"The degree to which team members have the same situation awareness on
shared situation awareness requirements” [274]

Skill level

"Level of an ability to do something” [275]

Social influence

A process in which people’s attitudes, opinions, beliefs, or behavior are altered or
controlled by some form of social communication, including conformity, compliance,
obedience, persuasion and influence of social norms” [231]

Task

"A piece of work that has to be done, especially one regularly, unwillingly
or with difficulty” [276]

Task allocation

"The way that tasks are chosen, assigned, and coordinated” [277]

Team A group in which people are restricted to having a common goal of some sort and
typically cooperate and assist each other in achieving their common goal” [59]

Theory of mind "The ability of individuals to reason about the thoughts, beliefs and feelings of
others to predict behavioral responses” [91]

Thoroughness A large amount of care and attention to detail” [278]

Time efficiency

"Performing in the best possible manner with the least waste of time” [279]

Time pressure

"The subjective feeling of having less time than is perceived to be required to
complete a task and be motivated to complete the task in the available time” [280]

Trust

A psychological state comprising the intention to accept vulnerability based upon
positive expectations of the intentions or behavior of another” [281]

Wisdom of crowds

"The phenomenon that the average judgement in a group converges to the
accurate solution” [282]



Model Elaboration

This chapter presents additional information on the proposed model. The first section will elaborate on
the underlying model assumptions. The second section presents additional properties for the simulation
with multiple shifts working on the maintenance tasks. The third section provides an overview of the
variable ranges and their respective meanings.

9.1. Model Assumptions
The following main assumptions underlie the proposed model:

Task duration uncertainty - It is assumed that maintenance organizations are dealing with a lack of
up to date information on the duration of maintenance tasks. This is in line with mechanics’ reports that
task execution times depend on the performance of the mechanic executing the task.

No personal preferences - The model aims to investigate the group decision-making process towards
the team’s common goals of performing the tasks as soon and as safe as possible. It is therefore not
considered that agents can have personal preferences for specific tasks or fellow team members.

No skill types - It is assumed that all mechanics have the same skill types. A main landing gear re-
placement mostly involves mechanical tasks and does not require any specific specialties, such as
avionics or sheet work. That is why only skill levels are considered in this model.

Effort as important as skill - Skills are more often considered in decision-making models rather than
effort. The maintenance work depends, however, not only on skill levels, but also on mechanics’ will-
ingness to work in a desired way. The authors believe that this is mostly due to the variation in people’s
effort. That is why this model also considers effort and assumes efficiency and thoroughness effort to
be of equal importance for successful task execution as skill level.

Efficiency and thoroughness independence - Efficiency and thoroughness effort are in general in-
tertwined, according to the efficiency-thoroughness trade-off. In this model, however, no property has
explicitly considered this relationship. This is due to the requirement of independent issues in additive
utility functions. That is why agents do not have a high efficiency and thoroughness goal simultaneously.

Personal goals in group context - The agent goals are not only representing their individual aims
for effort and skill, but also capture their goals for the entire team. The mastery goal therefore also
considers the agent’s motivation for the entire group at reaching their inner potential.

Social comparison influence - There is no clear answer in social comparison theory about the direc-
tion of comparative influence [283]. A person can be judged less skilled in the context of extremely
skilled people, than in then context of less skilled people [284]. Sometimes, however, comparison
leads to opposing outcomes: people evaluate their own self more skilled after comparison with a skilled
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person than with a less skilled person [285]. The social contagion theory assumes that people are as-
similated towards a given standard. Impression formation as well as reputation and trust hold the same
assumption in this model. It is therefore also assumed that a mechanic will view the efforts of other
mechanics positive when these are higher than its own effort and vice verse.

Time pressure - The model assumes that the team lead has a level of experienced time pressure,
based on its information on the current task execution progress, and communicates this with the other
agents. It is assumed that the other agents do not have the relevant information to know which tasks
have been completed and which tasks still need to be performed.

Minimizing under-competence - It is assumed that all agents aim for minimizing under-competence
when evaluating the task allocation options. The agents want to make sure that at least the minimum
required task demands are satisfied.

Team lead expertise - The team lead is not assumed to be any more experienced in judging the ca-
pabilities and efforts of its fellow team members. Moreover, the team lead does not encounter the
mechanics more often by checking up on them.

Limited number of voting options - The voting protocol assumes that people are not capable of eval-
uating large numbers of options accurately. That is why the agents only vote on 10 proposed options.

Collusion within groups - It is assumed that only old or new mechanics will be inclined to collude with
fellow group members. The power relations in these groups are assumed to be similar. Agents do not
have any incentive to manipulate when their combined utility will not increase by colluding.

Safety criticality - The safety criticality of a task is assumed to be driven by the effort, time and re-
sources needed to undo the safety incident. It is assumed that all mistakes are noticed during task
execution and the aircraft leaves the hangar free of any mistakes or damages.

Desired reputation within theory of mind - Mechanics are assumed to aim for having a reputation in
line with their efforts. If mechanics believe that they have a higher reputation than their internal goal,
they will generate less effort, since they do not specifically aim for such a high reputation. The other
way around, if their goal is higher than their believed reputation, they are assumed to increase their
effort to obtain their desired reputation within the team.

9.2. Model Specification: Shift Changes

This section provides the additional properties that have been used for modeling multiple shifts for the
complete main landing gear replacement. These have been outlined in the three before-mentioned cat-
egories of an agent-based model specification. There have not been any changes to the environment
specification, so the next sections will describe the additional properties for the agent characteristics,
interactions between agents and interactions between agents and the environment.

9.2.1. Agent Characteristics

All agents have two additional characteristics for the model with multiple shifts. The first is that all
agents have a belief about the current team, ct, that is performing tasks. Furthermore, the agents have
a belief about the current shift, cs, of agents. The main landing gear replacement should be finished in
6 shifts, performed by 3 different teams. The team lead agents have two additional beliefs. First, they
have a belief on whether a shift change is happening, shc. If agents are not part of the current team,
they have additional persistence properties, which is elaborated on next.

Persistence properties - If agents do not believe that they are part of the current team, they will not
execute the previously mentioned properties, and only have persistence properties for their character-
istics, such as efficiency effort, thoroughness effort, skill, reputation and trust.
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9.2.2. Interactions between Agents

During shift changes, the agents have interactions with agents from other teams. Moreover, they need
to start with the task execution where the previous team has finished. Furthermore, the team lead
agents of both teams communicate on the task execution progress. These three types of properties
will be elaborated on below.

Social influence and trust - The social influence and trust properties that have been outlined before
still hold during shift changes. Nevertheless, during a shift change, an agent encounters specific agents
at certain time points, rather than randomly its own team members or an agent that it is working with.
Table 9.1 shows for every moment in time during a shift change, which agents encounter one another.

The new team members enter the hangar at time t,;,; . and consecutively communicate with the team
lead about the task packages and planning. Afterwards, voting starts and the agents interact with their
own team members randomly. After task allocation, the previous team members update the new team
on the progress of their task sets. The new team members then start executing the tasks.

Table 9.1: Agent encounters during shift changes

Time Team 1 Team 2

tshift Own team members randomly Own team lead

tshife +1 | Own team members randomly Own team lead

tsnife +2 | Own team members randomly Own team members randomly
tsnife +3 | Own team members randomly Own team members randomly
tsnire + 4 | Agent team 2 with the same task set | Agent team 1 with the same task set
tsnife +5 | Agentteam 2 with the same task set | Agent team 1 with the same task set

Task communication - If an agent of a new shift starts executing a task, and the agent with that task
set in the previous shift has not yet finished, it will start where that agent was left. This is illustrated in
Equation 9.1, where agent j is part of the first shift and agent i part of the second shift.

tshift+5 tshifet+4
pr’ = (9.1)

Team lead communication - At the time point before all other agents arrive, tgp;r; — 1, the team lead
of the new shift communicates with the previous team lead. This previous team lead j communicates
the current state of the task execution as well as its experienced time pressure to the new team lead i.
Team lead i updates its beliefs according to Equations 9.2 and 9.3. etp! is agent i's experienced time
pressure at time t, goal;(re) is agent i's relatedness goal, y;; the power influence of team lead j on
team lead i and tp; is team lead i’s belief on the task packages that need to be performed by everyone.
= tpt (9.3)

t+1

etp; t+1

= etp{ +v;; - goaly(re) - (etp} —etpf) (9.2) tp;

9.2.3. Interactions between Agents and the Environment
Additional interactions between agents and the environment represent the agents’ interactions with
time. The first set of properties holds for all agents. The other property is only valid for the team lead.

Shift change properties all agents- All agents update their beliefs on the current team and shift
according to Equations 9.4 and 9.5 at the start of a shift change. This holds until a new shift change
starts. ct! is agent i's belief about the current team at time t and cs! its belief about the current shift.

t H — t .
cti+1 it =tgup A ctf#3 st = csf4+ 1 ift = teppe (9.5)
ctftt =41 if t = topipe A ctf =3 (9.4) t cst else '
ctt else

Shift change properties team lead agents - The team lead agents track the time and communicate
when a shift change starts. This is illustrated in Equation 9.6.

0 else (96)

shcft = {
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9.3. Variable Meanings
This section describes the meaning of the different ranges for the variables that have been introduced
in this model. Table 9.2 illustrates these ranges for the agent variables and Table 9.3 for task variables.

Table 9.2: Meaning of agent variable ranges

Variable Meaning [0.1,0.4] Meaning [0.4,0.7] Meaning [0.7,1.0]
Does not aim much for time Aims for time efficient task execution, |Aims for time efficient task execution
goal(eff) efficient task execution at all but not at the cost of thoroughness above everything
Aims for only limited Aims for thoroughness, but not at the | Aims for thorough task execution
goal(tho) . i~ .
thorough task execution expense of efficiency above everything
Does not aim for reaching its own |Aims for reaching its own and the Aims for reaching its own and the
goal(mas) and the team’s inner potential team’s inner potential, but not above all [team’s inner potential above everything
Does not desire to make its own  |Does aim for making its own decisions |Aims at making decisions solely based
goal(au) e L ) . . ) .
decisions and being in control but also susceptible for others’ opinions |on its own observations and reasoning
Does not have the desire for Aims for a sense of belonging with Aims at having a sense of belonging
goal(re) |asense of belonging: team members: moderately influenced |with team members: influenced by
slightly influenced by others by other team members others rather easily
Does not aim for recognition and | Aims for recognition and rewards by a |Aims for recognition and rewards by
goal(es) . . . . .
rewards by a superior superior, but not above everything a superior above everything
Limited effort for time efficiency, up | Average effort for time efficiency, High level of effort for time efficiency,
efesr to half of the estimated time takes approximately the estimated takes less than the estimated time
extra for a task amount of man-hours for a task for a task, up to half of the time
Lack of attention to thoroughness |Medium attention to thoroughness, High attention to thoroughness and
eftho and skips safety measures often |and sometimes skips safety measures |skips safety measures hardly ever
sk Has limited experience with Has average experience with the tasks |Has performed the main landing gear
mechanical maintenance tasks of a main landing gear replacement replacement tasks before, at least once
etp Relaxed working conditions, the Normal working conditions, the team is |Stressed working conditions, the team
team has more time than needed |on schedule for meeting the deadline |needs to hurry to meet the deadline
Ager?t i does not trust that agent j Agent i has average trust in agent j's Agent i trusts thgt ggent] is highly
Ti~j(d) is skilled enough, works skills, efficiency or thoroughness effort skilled, works efficiently or
efficiently or thoroughly enough ’ thoroughly when desired for a task
Limited power influence of agentj |Medium power influence of agent j High power influence of agent j on
on agent i, mostly based on on agent i, mostly based on medium agent i, mostly based on high referent
Vii referent power and little referent and legitimate power and and legitimate power and optionally
persuasion power optionally expert power high expert power
Variable Meaning [-1,0] Meaning 0 Meaning [0,1]
Impi () Agent i has a negative impression |The impression of agent i on agent j Agent i has a positive impression
=) of agent j on aspect ¢ coincides with its own norms on ¢ of agent j on aspect ¢
Rii(d) Agent i has a negative reputation |The reputation of agent i on agent j Agent i has a positive reputation
=] of agent j on aspect ¢ coincides with its own norms on ¢ of agent j on aspect ¢
Table 9.3: Meaning of task variable ranges
Variable |Meaning [0.1,0.4] Meaning [0.4,0.7] Meaning [0.7,1.0]

Low level of thoroughness is needed,

Average level of thoroughness needed,

High level of thoroughness needed:

tho™1 |mostly for removal operations: for general installation of components: |f.e. topping up hydraulic reservoirs

f.e. remove wheels from structure f.e. install wheels to structure or performing functional tests

General skills that most mechanics | Tasks that can be performed by Specifically high levels of skills
skmed have are required: f.e. jacking-up average mechanics: f.e. bleeding a are required: f.e. checking the

an aircraft braking system condition of specific parts

Simple corrective actions can fix a Corrective actions take half of the A task can induce serious damage:
sc violation of a safety measure: planned work for a task: f.e. area under landing gear is not clear

f.e. lubrication tasks f.e. removing wheels goes wrong when landing gear comes down

A small amount of tasks within this The number of dependent tasks is in | The number of dependent tasks is
depg shift depends indirectly on the the middle of the maximum and in the highest range for this task f,

completion of this task f minimum within this shift compared to the other tasks
timer |The team is approaching the deadline | The team is halfway through the shift |A lot of time for task execution left
mhr There is only a limited amount of Half of the estimated man-hours for Most man-hours for this shift still

man-hours still to be performed

this shift still need to be performed

need to be performed
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Simulation Elaboration

This chapter presents elaborations on the simulation of the proposed model. Sections 10.1 and 10.2
provide an overview of the input parameters for the task and temporal parameters respectively. Elab-
orations on the statistical evaluation of the results can be found in Section 10.3. Additional results are
presented in Section 10.4. Section 10.5 presents the agent states after model initialization.

10.1. Task Parameters

First, an overview of the task input parameters that have been used for the case study are presented.
Next, an explanation of the calculation for the relative dependency variable is provided.

10.1.1. Task Input Values

The main landing gear replacement tasks were retrieved from a task card. One could distinguish six
phases within the main landing gear replacement:

* A: Job Set-Up

* B: Removal

» C: Preparation of Replacement Component
» D: Installation

» E: Tests

» F: Close-Up

The variables for all involved tasks can be found in Table 10.1. Note that many tasks need to be
performed for the main landing gears on both the right (R) and left-hand side (L).

10.1.2. Normalized Dependency Calculation

In order to normalize the number of dependent tasks in a shift, a general normalization function was
used. For all tasks within a shift, the number of direct dependent tasks was determined from Table
10.1. The indirect number of dependent tasks was then determined by evaluating the entire chain of
tasks. So for example, if task F was dependent on task D and E, and these tasks were both dependent
on tasks B and C, which were on their turn dependent on task A, the number of dependent tasks on
task A is equal 6, while the number of dependent tasks on task B is 3.

The normalized dependency values are then calculated according to Equation 10.1. depy is the normal-
ized number of dependent tasks on task f, ndey is the absolute number of tasks (indirectly) dependent
on task f in a shift and nde,,,, is the maximum number of dependent tasks in a shift.

deps = (10.1)
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Table 10.1: Task input values
Task |Description mh |sk™4|tho"®?|mech|sc |Dependent on
A1 Set MLG control lever in down position 0.33/0.1 |01 1 0.7|-
A.2 |Set MLG freefall extension handle in normal position 0.17|0.2 |0.1 1 0.5|-
A.3 Position access platforms 0.50|0.4 |0.5 2 0.4|-
A.4R |Position safety barriers at gear door travel ranges 0.33(]0.4 |0.4 1 0.8]-
A4L |Position safety barriers at gear door travel ranges 0.33(04 |04 1 0.8]-
A.5R |Open main gear doors 0.08/0.2 |0.8 1 0.3|1A1,A2, A3 A4R
A.5L |Open main gear doors 0.08/0.2 |0.8 1 0.3|A.1, A2, A3, A4L
A.6 |Depressurize green hydraulic system 0.33(0.7 |0.8 1 0.8|A5R, A5L
A.7  |Depressurize yellow hydraulic system 0.33(0.7 |0.8 1 0.8|A.5R, A5L
A.8 |Depressurize green and hydraulic reservoirs 0.33(0.7 |0.5 1 0.8|A6,A7
A.9 |Open, safety and tag circuit brakers 0.50|0.2 |0.6 1 0.9/A.8
A.10 |Jack up aircraft until wheels are clear of ground 1.00|0.7 |0.8 |4 0.9|A.9
A.11R |Remove four wheels from right MLG 2.67|0.2 |03 |2 0.5/A.10
A.11L |Remove four wheels from left MLG 2.67|0.2 |0.3 2 0.5/A.10
A.12R|Remove brake units from right MLG 2.67|0.2 |0.3 2 0.4|A.11R
A.12L |Remove brake units from left MLG 2.67|0.2 |0.3 2 0.4|A.11L
A.13R|Remove wheel tachometers right MLG 0.50/0.2 |0.3 1 0.3/A.12R
A.13L |[Remove wheel tachometers left MLG 0.50/0.2 |0.3 1 0.3|A.12L
A.14R|Disconnect secondary door control rod of MLG leg 0.33(0.2 |0.3 1 0.5|A.13R
A.14L |Disconnect secondary door control rod of MLG. Leg 0.33(0.2 |0.3 1 0.5|A13L
A.15R|Remove cylinder door 0.33|]0.5 |05 1 0.5/A.9
A.15L |Remove cylinder door 0.33(0.5 |0.5 1 0.5|A9
A.16R|Position hydraulic fluid container 0.17/0.1 0.1 1 0.1]A.13R, A.15R
A.16L |Position hydraulic fluid container 0.17/0.1 |0.1 1 0.1|A.13L, A.15L
B.1R |Disconnect aircraft systems at main gear attachment point|1.00{0.3 |0.7 1 0.6|A.16R
B.1L |Disconnect aircraft systems at main gear attachment point|{1.00{0.3 |0.7 1 0.6|A.16L
B.2R |Disconnect actuating cylinder and main gear leg 0.33/0.3 |0.3 1 0.5|B.1R
B.2L |Disconnect actuating cylinder and main gear leg 0.33(0.3 |0.3 1 0.5/B.1L
B.3aR|Mark and disconnect hydraulic lines on actuating cylinder |0.67|0.5 |0.7 1 0.7|B.2R
B.3aL |Mark and disconnect hydraulic lines on actuating cylinder |0.67(0.5 |0.7 1 0.7|B.2L
B.3bR|Position hoisting device on actuating cylinder 0.33(0.4 |0.6 2 0.4|B.3aR
B.3bL |Position hoisting device on actuating cylinder 0.33|0.4 |0.6 2 0.4|B.3aL
B.3cR |Attach hoisting equipment to structure 0.33|0.4 |0.6 1 0.4|B.3bR
B.3cL |Attach hoisting equipment to structure 0.33|0.4 |0.6 1 0.4|B.3bL
B.3dR|Position minilift 0.33|]0.2 |05 |2 0.2|B.3cR
B.3dL |Position minilift 0.33(0.2 |05 |2 0.2|B.3cL
B.3eR|Remove pints, nuts and bolds and lubricate 0.50|0.2 |0.3 1 0.1/B.3dR
B.3eL |Remove pints, nuts and bolds and lubricate 0.50/0.2 |0.3 1 0.1/B.3dL
B.3fR |Disengage actuating cylinder eye from trunnion 0.17|0.2 |0.3 1 0.1|D.3eR
B.3fL |Disengage actuating cylinder eye from trunnion 0.17(0.2 |0.3 1 0.1/D.3eL
B.3gR|Temporarly attach all parts on structure 0.17(0.1 |0.8 1 0.3|B.3fR
B.3gL | Temporarly attach all parts on structure 0.17(0.1 |0.8 1 0.3|B.3fL
B.4R |Disconnect locking springs from attachments 0.67(0.7 |0.6 2 0.5|B.3gR
B.4L |Disconnect locking springs from attachments 0.67|0.7 |0.6 2 0.5|B.3gL
B.5aR|Install hoisting clamp on brace strut 0.17(0.6 |0.6 1 0.3|B.4R
B.5aL |Install hoisting clamp on brace strut 0.17|0.6 |0.6 1 0.3|B.4L
B.5bR [Position minilift 0.33|0.2 |0.5 1 0.2|B.5aR
B.5bL |Position minilift 0.33|0.2 |05 1 0.2|B.5aL
B.5cR |Install brace strut handling fixture 0.33(0.4 |0.6 1 0.4|B.5bR
B.5cL |Install brace strut handling fixture 0.33(0.4 |0.6 1 0.4|B.5bL
B.5dR|Remove pins, nuts and bolds and brace strut fitting 0.67(0.2 |0.3 1 0.2|B.5cR
B.5dL |Remove pins, nuts and bolds and brace strut fitting 0.67/0.2 |0.3 1 0.2|B.5cL
B.5eR |Fold brace strut and attach to upper arm 0.17|0.6 |0.6 1 0.3|B.5dR
B.5eL |Fold brace strut and attach to upper arm 0.17|0.6 |0.6 1 0.3|B.5dL
B.6R |Remove rubber coating at bearings 0.33|/0.3 |0.8 1 0.1|B.5eR
B.6L |Remove rubber coating at bearings 0.33(0.3 |0.8 1 0.1|B.5eL
B.7R |Mark parts coated with sealant 0.33|0.1 |0.6 1 0.2|B.6R
B.7L |Mark parts coated with sealant 0.33|/0.1 |0.6 1 0.2|B.6L
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Task |Description mh |sk™?|tho"|mech|sc |Dependent on
B.8R |Depressurize shock absorber 0.50/0.8 |0.5 2 0.7|B.7R

B.8L |Depressurize shock absorber 0.50(0.8 |05 2 0.7|B.7L

B.9R |Position mean gear handling trolley and secure leg 1.00{0.9 |0.9 2 0.9/B.8R

B.9L |Position mean gear handling trolley and secure leg 1.00/0.9 |0.9 2 0.9|B.8L
B.10aR|Remove pins, nuts and two-half seals 0.25|0.2 |0.2 1 0.3|B.9R
B.10aL |Remove pins, nuts and two-half seals 0.25|/0.2 |0.2 1 0.3|B.9L
B.10bR|Remove lubrication and check condition seals, replace if necessary|1.00|0.8 |0.7 1 0.6|B.10aR
B.10bL |Remove lubrication and check condition seals, replace if necessary|1.00/0.8 |0.7 1 0.6|B.10aL
B.10cR |Remove grease nipples, screws and half-seals 0.33|/0.2 |0.3 1 0.3|B.10bR
B.10cL |Remove grease nipples, screws and half-seals 0.33/0.2 |0.3 1 0.3|B.10bL
B.10dR|Maneuvre handling trolley to shock strut eye end 0.83|/0.3 |0.8 |2 0.9(B.10cR
B.10dL |Maneuvre handling trolley to shock strut eye end 0.83/0.3 |0.8 2 0.9|B.10cL
B.10eR|Disengage trunnion from spherical bearing 0.50(0.8 |0.8 2 0.9|B.10dR
B.10eL |Disengage trunnion from spherical bearing 0.50/0.8 |0.8 |2 0.9(B.10dL
B.10fR |Remove and discard grease seal 0.02(0.2 |0.3 1 0.6|B.10eR
B.10fL |Remove and discard grease seal 0.02(0.2 |0.3 1 0.6|B.10eL
C.1R |Remove protective coverings of replacements landing gear leg 1.50/0.2 |0.3 2 0.1]-

C.1L  |Remove protective coverings of replacements landing gear leg 1.50|0.2 |0.3 2 0.11-

C.2R |Remove axle protection and install on new leg 0.50[0.6 |0.4 1 0.1/B.10fR, C.1R
C.2L |Remove axle protection and install on new leg 0.50(0.6 |0.4 1 0.1|B.10fL, C.1L
C.3R |Install replacement landing gear leg on trolley (remove other) 2.00/0.7 |04 |2 0.8|C.2R

C.3L |Install replacement landing gear leg on trolley (remove other) 2.00/0.7 |0.4 2 0.8|C.2L

C.4R |Remove safety and servo valves of removed leg 0.50(0.2 |0.3 1 0.1|B.10fR
C.4L |Remove safety and servo valves of removed leg 0.50(0.2 |0.3 1 0.1|B.10fL
C.5R |Install safety and servo valves on replacement leg 0.50(0.7 |0.4 1 0.1|{C.4R

C.5L |Install safety and servo valves on replacement leg 0.50(0.7 |0.4 1 0.1|C.4L

C.6R |Clean all parts and dry with compressed air 2.00(0.1 (0.6 2 0.1|{C.3R

C.6L |Clean all parts and dry with compressed air 2.00/0.1 |0.6 2 0.1|C.3L

C.7R |Check condition of all parts to installed and replace if necessary 0.50(0.8 |0.8 1 0.7|C.6R

C.7L  |Check condition of all parts to installed and replace if necessary 0.50(0.8 |0.8 1 0.7|C.6L

C.8R |Position landing gear leg at its attach fittings 0.50(0.7 |0.4 2 0.5|C.7R, C.5R
C.8L |Position landing gear leg at its attach fittings 0.50(0.7 |0.4 2 0.5|C.7L, C.5L
D.1R |Position landing gear leg on engagement of trunnion 0.67|0.6 |0.6 2 0.5|C.8R

D.1L |Position landing gear leg on engagement of trunnion 0.67|06 |06 |2 0.5/C.8L

D.2R |Install guiding tool on trunnion 0.33|0.5 |0.7 1 0.1|D.1R

D.2L |Install guiding tool on trunnion 0.33(0.5 |0.7 1 0.1|D.1L

D.3R |Position spherical bearing 0.33(0.7 |0.7 1 0.7|D.2R

D.3L  |Position spherical bearing 0.33|0.7 |0.7 1 0.7|D.2L

D.4R |Smear trunnion and spherical bearing surfaces 0.33(0.2 |0.4 1 0.3|D.3R

D.4L |Smear trunnion and spherical bearing surfaces 0.33|]0.2 |04 1 0.3|D.3L

D.5R |Enter trunnion in spherical bearing using handling trolley 0.50|0.7 |0.7 2 0.7|D.4R

D.5L  |Enter trunnion in spherical bearing using handling trolley 0.50(0.7 |0.7 2 0.7|D.4L

D.6R |Push home trunnion in spherical bearing and remove guiding tool |0.50{0.8 |0.7 |2 0.3|D.5R

D.6L  |Push home trunnion in spherical bearing and remove guiding tool |0.50(0.8 |0.7 2 0.3|D.5L

D.7R |Install and safety half-seals with screws 0.67(0.4 |0.6 1 0.4|D.6R

D.7L |Install and safety half-seals with screws 0.67|0.4 |0.6 1 0.4|D.6L

D.8R |Blank greaseway holes using grease nipple 0.33(0.2 |0.2 1 0.1|D.7R

D.8L |Blank greaseway holes using grease nipple 0.33(0.2 |0.2 1 0.1|D.7L

D.9R |Push home trunnion in spherical bearing 0.17|0.2 |04 1 0.3|D.8R

D.9L |Push home trunnion in spherical bearing 0.17|0.2 |0.4 1 0.3|D.8L
D.10R |Guide shock strut eye end fitting into structural clevis 0.33(0.8 |0.7 2 0.5|D.9R
D.10L |Guide shock strut eye end fitting into structural clevis 0.33|0.8 |0.7 2 0.5/D.9L
D.11aR|Smear hinge shaft bearing surface with grease 0.50(0.2 |0.4 1 0.2]-

D.11aL |Smear hinge shaft bearing surface with grease 0.50|0.2 |0.4 1 0.2|-
D.11bR|Install hinge shaft with lubrication insert 0.50|/0.6 |04 1 0.4|D.10R, D.11aR
D.11bL |Install hinge shaft with lubrication insert 0.50|0.6 |0.4 1 0.4|D.10L, D.1MaL
D.11cR |Smear thred of hinge shaft with grease 0.33|0.2 |04 1 0.3|D.11bR
D.11cL |Smear thred of hinge shaft with grease 0.33(0.2 |0.4 1 0.3|D.11bL
D.11dR|Install nut and tighten to 6.8 and 13.6 DaN 0.33|]0.2 |04 1 0.3|D.11cR
D.11dL |Install nut and tighten to 6.8 and 13.6 DaN 0.33|0.2 |04 1 0.3|D.11cL
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Task |Description mh |sk™4|tho"?|mech|sc |Dependent on
D.11eR |Check that clearance is between 0.114 and 0.721 mm |0.17|0.6 |0.9 1 0.7|D.11dR
D.11eL |Check that clearance is between 0.114 and 0.721 mm |0.17|0.6 |0.9 1 0.7|D.11dL
D.11fR |Smear and install and safety two cotter pins 0.50(0.5 |0.4 1 0.3|D.1MeR
D.11fL |Smear and install and safety two cotter pins 0.50(0.5 |0.4 1 0.3|D.11eL
D.11gR |Clean surfaces smeared with grease and apply sealant|{0.33{0.5 (0.4 1 0.1/D.11fR
D.11gL |Clean surfaces smeared with grease and apply sealant|0.33{0.5 |0.4 1 0.1/D.1MfL
D.12R |Install two half seals on spherical bearing and wirelock {0.50{0.7 |0.5 1 0.4/D.1MgR
D.12L |Install two half seals on spherical bearing and wirelock |0.50|0.7 [0.5 1 0.4|D.1MgL
D.13R |Coat identified zones during removal with sealant 0.67|0.8 (0.4 1 0.2|D.12R
D.13L |Coat identified zones during removal with sealant 0.67(0.8 |0.4 1 0.2|D.12L
D.14R |Install grease nipples 0.17|0.4 |05 1 0.3|/D.13R
D.14L |Install grease nipples 0.17|0.4 |0.5 1 0.3|D.13L
D.15R |Remove landing gear leg handling trolley 1.00{0.6 |0.8 2 0.8/D.14R
D.15L |Remove landing gear leg handling trolley 1.00|/0.6 |0.8 2 0.8|D.14L
D.16R |Connect brace strut to main gear leg 1.00{0.7 |0.9 1 0.7|D.15R
D.16L |Connect brace strut to main gear leg 1.00{0.7 |0.9 1 0.7|D.15L
D.17R |Connect locking springs to lock-link assembly 1.00|/0.8 |0.8 1 0.7|D.16R
D.17L |Connect locking springs to lock-link assembly 1.00/0.8 |0.8 1 0.7|D.16L
D.18aR |Install all bolts, nuts, pins and apply sealant 1.33|/0.7 |0.8 1 0.7|D.17R
D.18aL |Install all bolts, nuts, pins and apply sealant 1.33|0.7 |0.8 1 0.7|D.17L
D.18bR |Remove minilift 0.33|0.2 |0.6 1 0.2|D.18aR
D.18bL |Remove minilift 0.33(0.2 |0.6 1 0.2|D.18aL
D.18cR |[Remove hoisting device from actuating cylinder 0.50|0.3 |0.6 1 0.2|D.18bR
D.18cL |[Remove hoisting device from actuating cylinder 0.50/0.3 |0.6 1 0.2|D.18bL
D.18dR |Connect hydraulic lines one by one 1.00{0.6 |0.5 1 0.6/D.18cR
D.18dL |Connect hydraulic lines one by one 1.00{0.6 |0.5 1 0.6/D.18cL
D.19R |Connect secondary control rod on main gear leg 1.00{0.5 |0.8 1 0.9/D.18dR
D.19L |Connect secondary control rod on main gear leg 1.00{0.5 |0.8 1 0.9/D.18dL
D.20R |Connect actuating cylinder to main gear leg 0.33(0.6 |0.6 1 0.9/D.19R
D.20L |Connect actuating cylinder to main gear leg 0.33|0.6 |0.6 1 0.9|/D.19L
D.21R |Connect gear leg to structure 0.67|0.7 |0.6 1 0.9|D.19R
D.21L |Connect gear leg to structure 0.67(0.7 |0.6 1 0.9/D.19L
D.22R |Install cylinder door 0.50|0.6 |0.5 1 0.8|/D.20R, D.21R
D.22L |Install cylinder door 0.50(0.6 |0.5 1 0.8|D.20L, D.21L
D.23R |Install wheel tachometers 0.67|0.5 |0.5 1 0.8|D.22R
D.23L |Install wheel tachometers 0.67|0.5 |0.5 1 0.8|D.22L
D.24R |Install brake units 267(05 |06 |2 0.9|D.23R
D.24L |Install brake units 267(05 |06 |2 0.9/D.23L
D.25R [Install wheels 2.67|05 |06 |2 0.9|D.24R
D.25L |Install wheels 267(05 |06 |2 0.9|D.24L
D.26R |Charge pitch damper 1.00/0.6 |0.5 1 0.8|D.25R
D.26L |Charge pitch damper 1.00|/0.6 |0.5 1 0.8|D.25L
D.27R |Charge shock absorber 1.00/0.6 |0.5 1 0.8|D.26R
D.27L |Charge shock absorber 1.00{0.6 |0.5 1 0.8|D.26L
D.28R |Bleed normal braking system 2.00/0.7 |05 2 0.6/D.27R
D.28L |Bleed normal braking system 2.00(0.7 |0.5 2 0.6|D.27L
D.29R |Bleed alternate braking system 2.00(0.7 |0.5 2 0.6/D.28R
D.29L |Bleed alternate braking system 2.00/0.7 |0.5 2 0.6/D.28L
D.30R |Carry out lubrication operations 1.00{0.5 |0.6 1 0.5|D.29R
D.30L |Carry out lubrication operations 1.00{0.5 |0.6 1 0.5|D.29L
E.1 Functional test of normal landing gear 1.00|/0.6 |0.9 3 0.8|D.30R, D.30L
E.2 System test with shock absorbers compressed 1.00{0.6 |0.9 3 0.8|E.1
E.3 Functional test of landing gear Free Fall extension 1.00{0.6 |0.9 3 0.8|E.2
E.4 Normal braking operational test 1.00|0.6 |0.9 3 0.8|E.3
E.5 Test of braking upon main gear touch down 1.00{0.6 |0.9 3 0.8|E.4
E.6 Operational test of alternate braking system 1.00{0.6 |0.9 3 0.8|E.5
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Task |Description mh |sk™4|tho"?|mech|sc |Dependent on
F.1R |Remove hydraulic fluid container 0.33(0.1 |0.2 1 0.2|E.6

F.1L |Remove hydraulic fluid container 0.33|0.1 |0.2 1 0.2|E.6

F.2 |Make certain that working area is clean and. clear of tools 1.00/0.1 |0.8 1 0.9|E.6

F.3 |Lower the aircraft on its wheels 1.33/0.8 |0.8 4 0.8|F.1R, F.1L, F.2
F.4 |Remove safety tags and close circuit brakers 1.00|/0.5 |0.5 1 0.5|F.3

F.5 |Pressurize hydraulic reservoirs 0.33|0.7 |0.8 1 0.7|F.3

F.6 |Close main gear doors 0.33|0.5 |0.6 1 0.4|F.4,F.5

F.7 |Top up hydraulic reservoirs if necessary 0.50|0.6 |0.7 1 0.7|F.5

F.8 |Remove warning notices 0.33|0.2 |0.2 1 0.3|F.5

F.9 |Close access doors, remove access platforms and safety barriers{1.00/0.5 |0.5 3 0.5|F.6

10.2. Temporal Parameters

Some of the agent properties needed additional assumptions for time during implementation. For the
social influence properties, it needed to be estimated how fast mechanics adopt others’ opinions in
aircraft maintenance teams. It was observed that with a time step of 0.01 the efforts of agents con-
verged after about 10 days of full-time collaborative work. In real maintenance practises, however,
personal aspects, such as fatigue, or environmental aspects, such as lacking tools, could also influ-
ence mechanics’ effort and motivation. Considering only social influences, two weeks of intense team
work were believed to accurately represent the creation of team norms. The time step of 0.01 was
also introduced to the team lead effort change as well as the theory of mind effort change properties.
For the theory of mind properties an additional factor of 1/4 was introduced. This factor represents the
average power of one team member on the agent. The impact of an entire team at every time step was
observed to be too large compared to the social influence properties.

A similar estimation needed to be performed for agents’ skills. The time step for skill level development
was also assumed to be 0.01. If agents execute tasks with a higher required skill level for 5 days and
they have a high mastery goal, their skill level will increase with 0.1. This would mean that if an agent
has a skill level of 0, it could in theory be completely experienced after 10 weeks. This would however
not be possible in the real world. This research only aims to represent small skill differences during 3
days of work, rather than providing a model of skill development over longer time periods. None of the
mechanics in real aircraft maintenance practises is constantly executing tasks above its skill level for
10 weeks. Moreover, mechanics’ cognitive load would not permit long working hours on difficult tasks.

10.3. Statistical Evaluation

This section elaborates on two aspects of the statistical evaluation of the performed simulations. First,
an overview of the evaluation of the number of Monte Carlo runs has been presented. The next section
describes additional information on the statistical A-test that could be helpful for understanding the
presented statistical results.

10.3.1. Coefficient of Variation

All simulations have been evaluated on the stability of their coefficient of variation for all performance
indicators. The coefficient of variation evaluation is common for models without normally distributed
outcomes. It is calculated for every KPI according to Equation 10.2, where u is the KPI's mean value
and o the KPI's standard deviation.

_ o(kpi)
= ulkpi)

(10.2)

Figures 10.1, 10.2, 10.3, 10.4 and 10.5 present the coefficient of variation for the SC-IND-TL simulation.
For all simulations and for all KPIs the variation in ¢, was smaller than 0.01 after 200 runs. It was
therefore concluded that the results were stable enough after 200 runs for the purpose of this research.
In the multiple shifts simulation c,, was already within this range after 45 runs.
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10.3.2. Vargha-Delaney A-test

Since the Vargha-Delaney A-test is relatively new, this subsection briefly explains how to calculate and
evaluate this statistic. The calculation of the A-test variable can be found in Equation 10.3 [286]. This
variable compares the results of algorithm 1 and 2. R, is the ranksum of the two data samples, as in
the Mann-Whitney-Wilcoxon test. m is the size of data set 1 and n the size of data set 2.

Ry m+1

m 2

A, = — (10.3)
The result is a variable between 0 and 1, which represents the probability that an observation from the
first data set is higher than an observation from the second data set [286]. If the A-test value is 0.5,
the medians of the data sets are exactly equal. If the A-test value is either 0 or 1, there is no similarity
between the data sets. Guidelines are that values between 0.51-0.56 indicate a very small difference,
values between 0.56-0.71 a medium difference and values over 0.71 a large difference [287]. If one
assumes that a larger value is better, the results are in favor of the first data set. Values below 0.5
then indicate a beneficial difference for the second data set. Values between 0.44-0.49 indicate a small
difference, between 0.31-0.44 a medium difference and values below 0.31 a large difference.

10.4. Additional Results

The presented results in this section illustrate the observed phenomena that have been described in
the scientific paper. Figure 10.6 presents the efficiency efforts of all agents for the voting protocol
simulations. It shows that the social and compliant team’s efficiency efforts have converged more than
for the independent team. Moreover, the agent with a low efficiency effort is still converging towards
the other agents faster within the social team than for the other teams.
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Figure 10.7 shows MECH-3’s thoroughness trust in other agents for the mediated feedback protocol
simulations. These figures show that the compliant and social teams have more shared trust beliefs
than the independent teams, which can be derived from the smaller difference between the maximum
and minimum trust values. Moreover, the trust levels in these graphs look constant. The trust val-
ues vary so little that it cannot be observed in these graphs. The high number of impressions during
initialization makes the new impressions almost negligible.
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10.5. Initialization

In this section the initialization graphs for thoroughness effort, efficiency effort as well as thoroughness
and efficiency trust are presented. After 3 days of interaction, 1440 minutes, the task allocation starts.
All simulations have been initialized for three shifts of constant encounters every 10 minutes. It can be
seen that the efforts and trust values have converged, but still deviate. The mechanics are not only
acting according to social norms, but also still act in line with their personal goals.

For the scenario with multiple shifts (SC-SHIFTS), initialization has been performed differently due to
time constraints. The introduced time step for internalizing another person’s effort has been increased
by a factor of 3. The initialization has therefore been performed for only 480 minutes instead of 1440.
The introduced time step creates slightly different, but similar dynamics as in the other scenarios.

It can be observed that there is a gap in trust values for the scenarios involving new team members. It
differed for every simulation run at which time point agents would encounter a newly introduced agent.
This resulted in inaccurate average trust values in these figures. It was therefore decided to leave that
part out of the trust graphs and represent the trust values only when stable average trust values were
formed for all simulation runs.
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Sensitivity Analysis

A sensitivity analysis has been performed to examine the model’s validity and evaluate the robustness
of the observed emergent properties. The large amount of variables in the model made global sen-
sitivity analysis impossible within the available time period. That is why a one-at-a-time (OAT) local
sensitivity analysis was performed. Yet, the number of variables was too large to evaluate all of them.
It was observed during the analysis of the results that the team lead’s internal goals significantly im-
pacted the simulation results. That is why the sensitivity of its three competence goals: efficiency goal,
mastery goal and thoroughness goal, has been evaluated.

The following changes have been made to these variables for analyzing sensitivity. For the efficiency
and mastery goal, which were initially high, it was investigated what the effect on the results was if
one of these goals would be low. To limit the number of runs, the variables have been simulated for
the median of the variable range, in this case 0.3. Furthermore, a higher thoroughness goal could
influence the model outcomes significantly. A high efficiency goal and a high thoroughness goal would
in the real world violate the efficiency-thoroughness trade-off. So, the team lead’s thoroughness goal
was simulated for the median of the medium interval, which is 0.6.

The next sections evaluate the results of these three variations for the nine main simulations. Due to
time constraints the simulations for sensitivity analysis were performed for 30 runs. It was observed
that for most simulations the coefficient of variation was starting to stabilize. It should be kept in mind,
however, that the results for 200 simulation runs could deviate a little from the ones provided below.
Only significant differences will therefore be discussed.

11.1. Efficiency Goal Sensitivity

The summary statistics for the simulations with the team lead’s low efficiency goal can be found in Table
11.1. These values show that, as expected, both the total execution time (TIM) and absolute execution
time (TAS) are higher for most simulations. Only the mediated feedback simulation for social teams
has lower TIM, but higher TAS. This difference is however not statistically significant.

The team lead’s low efficiency goal decreases the efficiency effort of the other mechanics. Only the
independent team lead decision-making scenario could finish all tasks in time. Social influences in-
crease in the compliant and social teams and therefore generally increase task execution time. That
is why A MH has also increased significantly for all simulations. SAF decreased in most simulations,
since more decisions are made in favor of thoroughness if the efficiency goal is lower.

Itis rather surprising that the voting simulations have a significantly higher execution time than the team
lead decision-making simulations. One could expect that the individual beliefs of all other mechanics
would make up for the team lead’s low efficiency goal. But what we observe here, is a characteristic
of the wisdom of crowds theory. The diversity in initial beliefs and preferences has decreased in these
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simulations with respect to the model results. This can also be observed in the higher USW values.
Moreover, the high standard deviation for execution time shows that these biases can either highly in-
crease or highly decrease the team’s performance. On average, the lack of diversity causes collective
decisions to be worse than individual decision-making.

The mediated feedback execution time for the independent scenario is higher than for the other two
scenarios, which is the opposite of our previous results. The absolute task execution time, however, is
still lowest. Moreover, the number of safety incidents is significantly lower. The decision has therefore
been made in favor of absolute task execution time and safety incidents, neglecting coordination.

Table 11.1: Summary statistics for goaly (eff) = 0.3

TIM [min] SAF [] TAS [min] | USW [-] AMH[-] ALL []
T o T a p o T o K a T
SCIIND-TL | 471.0 | 13.98 | 2.930 | 1.818 | 1762 | 46.68 | 4.966 | 0.006 | 0.497 | 0.051 | 0.167 | 0.379
SC-COM-TL | 490.1 | 10.81 | 4.933 | 1.874 | 1857 | 44.13 | 4.916 | 0.010 | 0.560 | 0.039 | 0.000 | 0.000
SC-SOC-TL |481.0 | 19.54 | 3.533 | 1.737 | 1735 | 45.47 | 4.997 | 0.000 | 0.485 | 0.043 | 0.000 | 0.000
SCIIND-VO |547.6 | 62.52 | 3.133 | 1.548 | 1726 | 41.13 | 4.982 | 0.002 | 0.420 | 0.036 | 0.000 | 0.000
SC-COM-VO | 529.6 | 73.51 | 4.267 | 2.333 | 1766 | 128.1 | 4.983 | 0.004 | 0.486 | 0.129 | 0.000 | 0.000
SC-SOC-VO | 542.7 | 68.24 | 3.833 | 1.724 | 1757 | 54.46 | 4.996 | 0.001 | 0.484 | 0.047 | 0.000 | 0.000
SC-IND-MF | 541.7 | 4557 | 3.567 | 1.330 | 1732 | 60.61 | 4.983 | 0.007 | 0.410 | 0.075 | 0.400 | 0.498
SC-COM-MF | 514.7 | 20.13 | 4.300 | 1.896 | 1864 | 60.27 | 4.977 | 0.010 | 0.560 | 0.041 | 0.600 | 0.498
SC-SOC-MF | 492.7 | 18.74 | 3.600 | 1.850 | 1763 | 64.22 | 4.995 | 0.002 | 0.467 | 0.062 | 0.500 | 0.509

11.2. Mastery Goal Sensitivity

The sensitivity summary statistics of the simulations with the team lead’s mastery goal of 0.3 are pre-
sented in Table 11.2. It can be observed that in most cases TAS is within the same range as for the
presented results. The agents will generally make more decisions in favor of efficiency and thorough-
ness, rather than skill. This however results in more or less the same outcomes in terms of absolute
execution time. The lower TAS for the compliant team lead decision-making simulation can be at-
tributed to the increased influence of its high efficiency goal in its decision-making.

The higher TAS for the social mediated feedback scenario could be attributed to the extremely low
number of safety incidents. This increases the task execution time significantly, which can also be
seen in the high deviation of man-hours. Both TIM and SAF have been changed for the mediated
feedback protocol simulations, more than for the other protocols. It could be the case that the team
lead’s high mastery goal was constraining the mediator’s solution space.

Table 11.2: Summary statistics for goaly;(mas) = 0.3

TIM [min] SAF [] TAS [min] | USW [] AMH [] ALL []
u o u g u g u g u o u g

SC-IND-TL | 432.0 | 14.48 | 6.200 | 1.972 | 1503 | 44.56 | 4.971 | 0.003 | 0.208 | 0.037 | 0.400 | 0.498
SC-COM-TL | 422.7 | 19.64 | 4.966 | 2.025 | 1440 | 58.43 | 4.972 | 0.003 | 0.174 | 0.047 | 0.000 | 0.000
SC-SOC-TL |449.0 | 13.88 | 4.900 | 2.617 | 1520 | 34.04 | 4.991 | 0.002 | 0.222 | 0.027 | 0.000 | 0.000
SCIND-VO |434.3 | 18.51 | 5.433 | 2.046 | 1480 | 34.09 | 4.996 | 0.002 | 0.170 | 0.021 | 0.000 | 0.000
SC-COM-VO | 587.3 | 52.06 | 3.600 | 1.500 | 1475 | 29.44 | 4.982 | 0.002 | 0.244 | 0.027 | 0.000 | 0.000
SC-SOC-VO | 437.3 | 29.53 | 7.700 | 2.136 | 1475 | 35.89 | 4.998 | 0.001 | 0.158 | 0.027 | 0.000 | 0.000
SC-IND-MF | 537.3 | 80.00 | 2.670 | 1.446 | 1401 | 73.20 | 4.983 | 0.007 | 0.162 | 0.084 | 0.167 | 0.380
SC-COM-MF | 461.7 | 62.37 | 6.200 | 1.518 | 1468 | 86.90 | 4.994 | 0.005 | 0.192 | 0.073 | 0.067 | 0.254
SC-SOC-MF | 488.0 | 29.52 | 1.033 | 0.964 | 1756 | 28.34 | 4.988 | 0.006 | 0.501 | 0.027 | 0.133 | 0.346

SAF has decreased for most simulations, which is caused by the team lead’s higher relative weight for
thoroughness. Again, for the social and compliant teams of the voting protocol, it was found that the
less divergent preference profiles result in deterioration of the decision outcome, either in terms of total
execution time or safety incidents.
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11.3. Thoroughness Goal Sensitivity

The summary statistics for the simulations with the team lead’s thoroughness goal of 0.6 can be found
in Table 11.3. Most of these simulations provided faster task execution and less safety incidents. It can
be concluded that the team lead’s low thoroughness goal influences the model outcome significantly.

Team lead decision-making performs generally better than voting and mediated feedback with a higher
thoroughness goal for the team lead. The team lead is in these simulations less biased towards ef-
ficiency than in the case study. It therefore provides more favorable decision-making outcomes. In
terms of absolute task execution time, the voting scenario still presents the best performance and the
best mechanic-task fit. The team lead is still better at coordinating tasks rather than individual task
assignment, due to its high experienced time pressure and efficiency goal.

Table 11.3: Summary statistics for goal;;(tho) = 0.6

TIM [min] SAF [-] TAS [min] | USW [1] AMH [] ALL [-]

u g u g u g u g u o u g
SC-IND-TL | 420.7 | 25.86 | 2.133 | 1.225 | 1446 | 73.32 | 4.981 | 0.010 | 0.177 | 0.055 | 0.000 | 0.000
SC-COM-TL | 407.0 | 18.96 | 2.000 | 1.339 | 1385 | 42.32 | 4.988 | 0.007 | 0.120 | 0.035 | 0.000 | 0.000
SC-SOC-TL |424.3|27.25|1.633 | 1.402 | 1441 | 90.67 | 4.997 | 0.002 | 0.174 | 0.088 | 0.000 | 0.000
SC-IND-VO |477.3 | 54.07 | 2.200 | 1.243 | 1435 | 39.98 | 4.987 | 0.001 | 0.146 | 0.029 | 0.000 | 0.000
SC-COM-VO | 480.3 | 62.39 | 1.733 | 1.112 | 1430 | 25.53 | 4.990 | 0.003 | 0.173 | 0.026 | 0.000 | 0.000
SC-SOC-VO | 462.0 | 43.26 | 2.200 | 1.518 | 1358 | 40.24 | 5.000 | 0.001 | 0.072 | 0.035 | 0.000 | 0.000
SC-IND-MF | 476.3 | 59.16 | 1.933 | 1.285 | 1494 | 69.31 | 4.969 | 0.011 | 0.239 | 0.055 | 0.400 | 0.498
SC-COM-MF | 452.0 | 70.04 | 2.467 | 1.383 | 1419 | 39.51 | 4.987 | 0.003 | 0.177 | 0.041 | 0.367 | 0.490
SC-SOC-MF | 456.7 | 63.15 | 1.600 | 1.303 | 1462 | 105.4 | 4.986 | 0.007 | 0.199 | 0.121 | 0.200 | 0.407

11.4. Sensitivity Analysis Conclusion

Several conclusions can be drawn on the sensitivity of our model. First of all, it can be generally
concluded that the model output is sensitive to the team lead’s internal goals for competence. A low
efficiency goal resulted for all simulations in significantly longer task execution time. The social and
compliant team’s execution time decreased more than for independent teams. The model has shown
to be less sensitive to the team lead’s mastery goal. A higher thoroughness goal made the team lead’s
decisions significantly better in terms of total execution time. It was found that for most simulations, the
introduction of more similar preference profiles within the team deteriorated the voting task execution
outcome. But with variations in mastery and thoroughness goals, the voting protocol still showed the
best performance in mechanic-task fit. For efficiency, these results had not yet been stable enough to
point out any differences. The mediated feedback protocol showed to be less competent in coordination
between tasks with the introduced variations. The team lead decision-making provided in most cases
the best results in terms of total execution time and safety, due to its better coordination performance.
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Recommendations for Future Work

The main recommendations for future work are the following:

More extensive sensitivity analysis - First of all, more extensive analysis of the influence of initial
values for parameters should be performed. It was observed that the initial parameters for the team
lead’s goals could improve or deteriorate task allocation outcomes. It should be investigated whether
initial values for other agent’s goals, power influence parameters or time steps for experienced time
pressure, skills and theory of mind properties impact the task allocation outcomes.

Different types of motivation within a team - Other simulations could evaluate what the impact would
be of different types of agent motivation within a team. For example, a team can have one independent
agent, two compliant agents and two socially oriented agents. The interactions between these agents
could perhaps lead to different emergent properties.

Social influence in wisdom of crowds - This research has shown that the emergent properties arising
within an aircraft maintenance team are in line with the wisdom of crowds theory. It was observed that
in the presented case, social influences increased the team’s decision-making abilities. Research has
shown that this is true for preference profiles relatively far from each other. No explanation or reason for
this phenomenon has however been presented and further research could focus on the mechanisms
underlying social influences within the wisdom of crowds theory.

Experimental validation - The model can be validated by setting up an experimental study that sim-
ulates the task execution process and evaluates the performance of different task allocation mech-
anisms. Mechanics’ basic needs derived from Self-Determination Theory could be estimated using
questionnaires. Other experimental validation studies could deduct preference profiles on task alloca-
tion from mechanics, using for example Discrete Choice Analysis [288].

Design of a specific task allocation automated negotiation protocol - As mentioned before, the me-
diated feedback protocol was not performing as expected. It was recommended to design a mediator
based task allocation automated negotiation protocol. The mediator should therefore have enhanced
coordination properties to include the constraint that only one mechanic can perform a task package
and all task packages need to be performed. Moreover, it could be investigated if this mediator could
also consider precedence constraints between tasks. If that is the case, the protocol could allocate
tasks rather than task packages. Agents could then also swap tasks during task execution, rather than
fixed moments in time for re-allocation of complete packages. Moreover, this design could include in-
centives for truthful bidding in the mediated feedback protocol.

Integrative agents for task allocation - The automated negotiation method and voting protocol could
be included into an integrative agent model. An integrative agent is an agent reflecting the preferences
and behavior of one real mechanic. Mechanics could provide feedback to their integrative agents on
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their preferences for allocation options. The integrative agents would negotiate or vote on a task alloca-
tion for their mechanic. The integrative agents can learn from the mechanic’s input and eventually make
decisions automatically. This could make collaborative task allocation faster eventually. Moreover, it
should be investigated whether these integrative agents could monitor cognitive load and fatigue of
their mechanics. The agents could then incorporate the current cognitive state of a mechanic in their
decision-making as well.

Include more incentives - The proposed model already presented incentives for truthful reporting.
Incentives for participation in the decision-making process are not included. It should be investigated
if that is necessary, given some aircraft maintenance teams are socially oriented and are driven by a
common goal. But if necessary, the model should include participation incentives.

All agents evaluate the task execution progress - In the current model only the team lead has the
available knowledge about the task execution progress. This was observed to create relatively stable
experienced time pressure beliefs for all mechanic agents. The model should therefore be extended
such that all agents know the current state of the task execution. It is expected that this would make
the model’s coordination properties more accurate.

Uncertain and improved task demands - This model assumes that the task demands and times are
known and the same for all agents. Mechanics reported that some people know better than others
how long a task takes. Uncertainty about these variables should therefore be investigated. Moreover,
estimated task time should be integrated in the agents’ decision-making models for efficiency. At the
moment, the efficiency requirement is deduced from the number of dependent tasks, but introducing
the length of a task is expected to increase coordination performance. Moreover, the assumption that at
every time point an agent has a probability of committing a safety incident should be removed. Rather,
all tasks, irrespective of task length, should have the same probability on a safety incident.

Extended theory of mind properties - The agents’ theory of mind properties were not found to be
driving the model outcomes in any of the simulations. This is caused by the model assumption that
agents aim for a reputation in line with their efforts. Mechanics could, however, aim for a higher reputa-
tion than their current effort or could aim for a specific reputation to avoid getting assigned certain tasks.
The theory of mind properties should therefore be extended to incorporate other cognitive aspects of
people’s desire for specific reputations.

Social or personal preferences - This model has not considered personal preferences for certain
tasks or social preferences for working with specific team members. Further research could extend the
current model with personal preferences. In that case, an incentive system could be created to ensure
that mechanics still decide in line with the team goals rather than only their personal interests.
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