
Applying hierarchical tabu search to an adapted version of the flexible job shop
problem

Robin Jansen
Supervisor(s): Kim van den Houten, Mathijs de Weerdt

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
The scheduling departments of batch manufactur-
ing plants have to repeatedly solve a complex
scheduling problem for the operation of their pro-
duction lines. This problem can be modeled as a
flexible job shop problem (FJSP) in which a set of
operations has to be assigned to a set of machines
and then the order of operations on each machine
has to be determined. The main difference to the
general FJSP is that there are changeover times that
appear between two sequential operations on the
same machine. To solve this extended problem, a
hierarchical tabu search method has been chosen.
This algorithm makes use of a global selection ini-
tialization procedure as well as two neighborhood
functions for the assignment and sequencing sub-
problems. The objective of this project is to show
the effectiveness of tabu search on this version of
FJSP compared to a mathematical model serving as
a baseline. The initialization procedure performs
well compared to the baseline on larger instances
while the neighborhood functions worsen the ini-
tially found result. This is also the case for a ran-
dom initialization method which leads to believe
that these neighborhood functions are non-optimal
and should be replaced which could not have been
achieved due to time constraints.

1 Introduction
The scheduling departments of batch manufacturing systems
have to repeatedly solve a complex scheduling problem for
the operation of their production lines [11]. In this problem,
the example of a DSM enzyme plant is used. The enzymes
that are produced in this plant each have to follow a specific
recipe to be manufactured. These recipes each have a set of
operations that have to be performed in order for the final
product to be produced correctly and each of the operations
can be performed on a certain type of machine. One addi-
tional caveat is that machines have to be cleaned in between
operations, which complicates the scheduling. These clean-
ing times depend on which products are produced on the ma-
chine and in what order. The cleaning time might be different
between two operations on the same machine if they are be-
ing swapped in order. The image below shows an illustration
of a three step process for some enzyme to be produced [11].

The goal of scheduling these operations on machines is to
optimize some objective criterion. This can be the makespan
of the overall schedule, the idle time of all the machines in
the plant or the tardiness of production related to due dates
of incoming orders. This paper will focus solely on the

makespan of the produced schedules.

This scheduling problem of a DSM plant enzyme produc-
tion line can be modeled as an adapted version of a flexible
job shop problem, which is a combinatorial NP-Hard prob-
lem in computer science [4]. The mentioned adaptation is
the inclusion of changeover times that might occur between
operations which depends on the order in which operations
for certain products are performed on a machine. Although
this problem can be used in more occasions, the project starts
off with the specific example of a DSM plant. During this
project, an algorithm to solve the general flexible job shop
problem is altered to fit the adapted version of the problem.
The knowledge gained during the project comes from apply-
ing this adapted algorithm to provided problem instances and
compare the obtained results with a baseline. Due to the
complexity of the problem and the size of the problem in-
stances, finding an exact solution in reasonable time seems
almost impossible. To this end a heuristic method, which cre-
ates a trade-off between the optimality of the solution and the
running time of the algorithm, is a good alternative. This pa-
per will therefore concentrate its efforts towards hierarchical
tabu search [2] [5] and its performance. Since this version
of FJSP with the added complexity of changeover times has
not been looked at in other research, there is no direct im-
plementation that can be found. Instead, an adapted version
of the algorithm has to be produced. The performance of an
algorithm is measured in the optimality of its solution to the
set of test instances. To accurately measure its performance,
a mixed integer linear programming approach [7] is used to
create a baseline of results that other results will be compared
to. Mixed integer linear programming is an exact method that
makes use of a mathematical model using a set of constraints
to solve each problem instance.

Following this introduction, some background information
on both algorithms used is discussed in section 2. This sec-
tion also contains a formal description of the flexible job shop
problem. Section 3 explains in detail how hierarchical tabu
search works and highlights the most important steps. Sec-
tion 4 covers the experimental setup and the results obtained
from those experiments. The aspect of responsible research is
talked about in section 5. Finally, the conclusion and possible
future work are presented in section 6.

2 Background information
2.1 Problem description
This research paper focuses on a simulated production line of
a DSM plant in which multiple enzymes are being produced.
The production of each of these enzymes follows the corre-
sponding recipe which consists of multiple steps that have to
be executed in that specific order and each of these steps takes
a certain time to complete. All of the steps can be performed
on a certain subset of the total set of machines available in the
plant. The objective is to minimize the overall makespan of
the plant, but other goals could also be considered, like dead-
lines for each of the orders that come in. This problem can be
efficiently modeled as a flexible job shop problem.

The flexible job shop problem (FJSP) [4] can be explained

as follows: The goal is to schedule n jobs on m machines. A
specific job is denoted with j and a specific machine with i.
Each of these n jobs consists of a set of nj operations denoted
as Oj,1, ..., Oj,nj

. These operations have to be executed in
order one after the other. Each of the operations of a job
can be performed on a predetermined subset of machines and
takes pi,j time.

In this version of the flexible job problem, there exists an
additional cost which has to be taken into account, namely
the changeover time. This can occur between 2 distinct op-
erations that are being performed consecutively on the same
machine. This changeover cost is dependent on the type of
enzymes that are being processed on a certain machine and
the order they are being processed in but not on the choice
of the machine. In the specific case in which the scheduling
of a DSM production line for chemical enzymes is simulated,
these changeover times can be regarded as the cleaning times
of the machines in between operations.

One additional change to the general flexible job shop
problem is that each machine can only support one type of
operation, like filtering or mixing, for each enzyme that is
being produced. This reduces the flexibility of assigning an
operation to a machine and makes the problem slightly less
challenging.

Finally, the time to perform an operation in this version of
FJSP is not dependent on the choice of machine. The running
time is identical for each machine on which that particular
operation can be run.

The flexible job shop problem can be split into two sub-
problems. The first one is an assignment problem in which
each operation of each job is going to be assigned to a cer-
tain machine which can perform that operation. The second
is a sequencing problem, in which the already assigned op-
erations will be given a sequence in which the machine will
perform these operations. This fact gives us the opportunity
to split the algorithm into two main parts, each covering one
of the sub-problems.

For each schedule that is presented as a feasible result to
the FJSP, a certain set of conditions has to fulfilled:

• Each operation is only assigned to one machine
• Two jobs cannot be performed on one machine at the

same time, there must be a precedence relation between
jobs

• All operations of one job have to be performed in order
• The finishing time of a job is the completion time of its

final operation
• The difference between the start and the completion time

of an operation is its processing time on a machine
• The makespan is at least the latest completion time of

any operation

2.2 Mixed integer linear programming
Before starting the implementation of the main algorithm,
namely hierarchical tabu search, an initial algorithm using
mixed integer linear programming provides a baseline for ob-
tained results. Mixed integer linear programming (MILP) [7]
is a mathematical optimization model that tries to optimize

an objective function while adhering to a specific set of con-
straints. The objective function in question is the makespan
of the produced schedule which the MILP algorithm tries to
minimize. There are multiple different models that use dif-
ferent inequalities and constraints to create the mathemati-
cal model, each of which has their own specific advantages.
More details on this can be found in [13], [12] and [14]
The mathematical model used in this research was provided
by the supervisor and its set of constraints has to hold for any
feasible schedule, not just for the ones produced by the MILP
solver. Since this method uses exact values to find a feasible
solution, the constraints have been translated into mathemat-
ical equalities and inequalities which look as follows [11]:

Without going into detail for each of the inequalities, these
formulae are the mathematical representation of the con-
straints listed in the problem description.

2.3 Hierarchical tabu search
Hierarchical tabu search [9] is the combination of two more
general search algorithms. Tabu search is a general meta-
heuristic search algorithm that can be applied to a number
of optimization problems. It employs a local search method,
meaning that it moves from one solution to another by apply-
ing changes to that solution until one considered to be optimal
is found. At the start of the algorithm, tabu search creates an
empty list with moves that are considered tabu. A move in
this case is a schedule out of the neighborhood which is a set
of schedules that are similar to the current schedule and are
obtained by applying small changes to the current schedule.
The algorithm always tries to take the best possible move out
of this neighborhood based on some criterion, in this case the
makespan of the schedule. If however that schedule is present
in the list of tabu moves, the algorithm tries to find the next
best solution, until one which is not considered tabu is found
and picked. At the end of each iteration of the algorithm, the
current schedule is being placed into the tabu list. The main
goal of this approach is to avoid getting stuck in a local mini-
mum of the makespan in which the algorithm would go back
and forth between two or more solutions without gaining an
improvement in the result.

Hierarchical algorithms are specific to the flexible job shop
problem [8]. An FJSP can be split into two sub-problems,
namely assignment and sequencing. When the two sub-
problems are handled simultaneously, the algorithm is con-
sidered integrated. A hierarchical approach splits the two
sub-problems and creates a hierarchy between them. In this
case, the assignment problem is handled first, and based on
the assignment of operations on machines, sequencing is per-
formed.

The main advantages of hierarchical tabu search are the

computational simplicity of the algorithm itself and the sim-
ple implementation. As will be explained in the next section,
the algorithm consists of two main parts, each of them cov-
ering one of the sub-problems. These parts are very similar
in nature and implementation. Based on the stopping condi-
tions that are chosen, the algorithm runs rather fast, especially
compared to the mixed integer linear programming method.

3 Implementation
The methodology used in this paper is to use an existing algo-
rithm that solves the flexible job shop problem and see how
an adapted version of that algorithm would perform on the
adapted version of FJSP detailed in section 2. To accurately
compare the final results, an algorithm is needed to provide
initial results that will act as a baseline. This baseline algo-
rithm makes use of mixed integer linear programming. The
algorithm that will be repurposed for this specific flexible job
problem is hierarchical tabu search.

This section explains in detail how the overall algorithm
functions, what the most important parts of it are, and how
each of them functions. These parts include the initialization
procedure and two neighborhood functions. This section also
contains information on the graph representation that is being
used throughout the entire algorithm to represent a feasible
schedule.

Note that this section will only cover the specific imple-
mentation and will not contain any results obtained after run-
ning the algorithms. These will presented in section 4.

3.1 Hierarchical tabu search

In the image above, a block representation of the algorithm
can be found. There is an inherent symmetry found in this
graph. This is due to the hierarchical nature of the algorithm
and the fact that both the assignment and sequencing sub-
problems of the flexible job shop problem are solved using
tabu search.

Both parts of the algorithm start off with an initial solution
and initialize an empty tabu list. Some stopping conditions

will also be defined. These can take multiple forms like the
number of overall iterations the loop will go through or the
number of iterations without improvement in the makespan
of the schedule. The loop starts by creating a neighborhood to
the current schedule. In the assignment part of the algorithm,
the changes applied to the current schedule will only swap
operations around between machines and will not consider
the sequencing of these operations. In the sequencing step
of the algorithm the neighborhood set will only be made up
of schedules in which some sequence of operations on a ma-
chine is changed without swapping operations between ma-
chines. From this neighborhood, the schedule with the lowest
makespan will be chosen for the next iteration as long as it
is not in the list of tabu moves. If this is the case, the second
best will be considered and so on. During the assignment step
of the algorithm, this schedule will be sent to the sequencing
step for further improvement in the makespan and serves as
the initial schedule for that part of the algorithm. At the end,
the current schedule will be added to the list of tabu moves
for a certain number of iterations. This number is determined
beforehand. During the whole looping process, the algorithm
keeps track of the best schedule it has encountered up until
that point and at the end, when one of the stopping conditions
has been reached, will return this schedule as a result.

The code block below shows pseudo code of the general
algorithm. The symmetry between the two parts of the algo-
rithm can clearly be seen here. After a move has been chosen
from the assignment neighborhood, it will then be processed
in the sequencing part of the algorithm for further optimiza-
tion.

def a s s i g n m e n t (n) :
i n i t = g e t I n i t i a l ()
t a b u = []

c u r r e n t = i n i t
o p t i m a l R e s u l t = getMakeSpan (i n i t)
o p t i m a l = i n i t
s t o p p i n g C o n d i t i o n = f a l s e

whi le (not s t o p p i n g C o n d i t i o n) :
n e i g h b o u r s = ge tNe ighbo rhoodAss ignmen t ()
move = se lec tBes tNonTabuMove (n e i g h b o u r s)
sequencedMove = s e q u e n c i n g (move)

moveResul t = getMakeSpan (sequencedMove)
i f (moveResul t < o p t i m a l R e s u l t) :

o p t i m a l R e s u l t = moveResul t
o p t i m a l = move

tabuAdd (c u r r e n t)
i f (l e n (t a b u) == n)

remove t h e l a s t v a l u e o f t a b u
c u r r e n t = move
u p d a t e (s t o p p i n g C o n d i t i o n)

re turn o p t i m a l

def s e q u e n c i n g (n , i n i t) :
t a b u = []

c u r r e n t = i n i t
o p t i m a l R e s u l t = getMakeSpan (i n i t)

o p t i m a l = i n i t
s t o p p i n g C o n d i t i o n = f a l s e

whi le (not s t o p p i n g C o n d i t i o n) :
n e i g h b o u r s = g e t N e i g h b o r h o o d S e q u e n c i n g ()
move = se lec tBes tNonTabuMove (n e i g h b o u r s)

moveResul t = getMakeSpan (move)
i f (moveResul t < o p t i m a l R e s u l t) :

o p t i m a l R e s u l t = moveResul t
o p t i m a l = move

tabuAdd (c u r r e n t)
i f (l e n (t a b u) == n)

remove t h e l a s t v a l u e o f t a b u
c u r r e n t = move
u p d a t e (s t o p p i n g C o n d i t i o n)

re turn o p t i m a l

3.2 Graph representation
To illustrate and manipulate schedules in the implementation
of the algorithm, a disjunctive graph representation is used
[1]. This representation proved to be useful mainly for the
neighborhood functions. The disjunctive graph can be ex-
plained as follows:

Each operation of each job is represented with its own node
with a certain cost attached to it, which is the cost of perform-
ing this operation on an available machine.

Two dummy nodes, called the starting and ending nodes,
are constructed to represent the beginning and ending of the
schedule. These two nodes do not carry any cost and are used
only for simplification.

An edge with zero cost originating from the starting node
will lead to the first operation of each job. Similarly, an edge
with zero cost will go out from the last node of each job and
lead to the ending node.

Operations belonging to the same job have to be performed
consecutively and without overlap. To this end each operation
in a certain job, with the exception of the last operation, has
an outgoing edge with zero cost towards the next operation in
the same job.

The following graphic shows a simple example of an FJSP
with two jobs, the first with operations 0-2 and the second
with operations 3 and 4. Each node and edge is accompanied
by their cost.

During the assignment step of the algorithm, each operation
is assigned to a certain machine. There is also the addition
that changeover times might occur between these operations.
This will be represented by edges going from each operation
to each of the other operations that are being performed on
the same machine. The cost of these edges is determined

by the changeover times between operations. Note that the
changeover times might differ following the order in which
two operations are performed on a machine. As such the two
edges going in opposite directions between two nodes might
have different costs associated to them.

The next image shows the same instance as before, but op-
erations 2 and 3 are now assigned to the same machine.

During the sequencing step of the algorithm, all operations
assigned to the same machine will be given an order in which
they are performed on that machine. To represent this, the
edges between these operations will be used. With the excep-
tion of the last operation, each operation will retain an edge
going from itself to the next operation in the sequence. All
other edges from the previous step will be removed.

After sequencing the operations, it is shown in the next
image that operation 3 precedes operation 2.

For this graph representation, it is easy to implement a
method to find the makespan and the critical path of the pro-
posed solution [1]. The critical path is the set of nodes that
make up the longest path in the graph from the starting node
to the ending node. It plays an important role in determining
effective neighborhoods for the solution, which will be dis-
cussed in more detail in the neighborhood functions section.
The makespan is obtained by finding the latest completion
time of any scheduled operation. The method to come by the
critical path is a depth-first search of the graph that takes into
account the makespan and halts as soon as a viable path with
that length is found.

A second advantage of the graph representation is the ease
of swapping operations and thus creating neighborhoods.
This holds for both the assignment and sequencing neigh-
borhoods. No nodes have to be exchanged at any time and
swapping edges is a simple matter of looking up the corre-
sponding changeover times. The base graph, represented by
the first image in this section, will never change. The prece-
dence constraints and running times of operations stay the
same for each schedule.

3.3 initialization method
To create the initial schedule for the algorithm, a global
selection procedure is used. This method allows for assigning
operations on machines by taking into account the maximal

occupation times of each machine. In the image below, the
procedure for a general flexible job shop problem is shown
[10].

Global selection works as follows:
An array, which will be called the time array, is initial-

ized. This array has the same amount of elements as there are
machines to keep track of their total occupation times. All
elements are initialized to zero.

Jobs are picked one after the other in some order. In the
original version of global selection the job is chosen at ran-
dom, but in this version the jobs are ordered in descending
order by the combined running time of all their operations.
This way, jobs that take up the most time will be scheduled
first and jobs with smaller operations can be scheduled around
it. After having chosen a job, the next step is to loop over each
operation of that job in order. For each operation a new array,
called the temporary array, is created. For each machine, if
the operation can be run on it an entry is added to the tem-
porary array. This entry adds up the corresponding element
in the time array, the cost of the operation and a changeover
time if necessary. If the machine cannot run the operation, a
null value is added to the list.

The machine with the smallest non-null value in the tem-
porary array will be chosen to perform the operation in the
final schedule and the time array will be updated accordingly
for that machine. This process will be applied to each opera-
tion of each job in the chosen order until a complete schedule
is created.

The initialization procedure is an important step in finding
an optimal solution for the flexible job shop problem. It pro-
vides a starting point for the rest of the algorithm to improve
upon the original schedule produced by this global selection
method. According to [10], this approach shortens the com-
putational time used and generates better results compared to
data obtained from other research sources.

3.4 Neighborhood functions
Hierarchical tabu search makes use of two distinct neighbor-
hood functions, one that is used during the assignment step
of the algorithm and the other one that is used during the se-
quencing step.

The first neighborhood function concerns itself with the se-
quencing step of the algorithm. Given an initial schedule it
creates a new set of schedules similar to the initial one, each
having some small changes. These changes only concern the
sequence of the operations on a certain machine so no op-
eration will be assigned to a different machine during this
process.

The sequencing neighborhood function makes use of the
critical path of the graph representation of the schedule. This
is the path with the longest cost when going from the starting

node to the ending node. The cost of this path is the makespan
of the schedule. Since the goal of the overall algorithm is to
reduce the makespan of the schedule as much as possible, it
only makes sense to apply changes in the operation sequences
that are part of the critical path. These changes are the only
ones that might possibly reduce the makespan of the given
schedule.

The critical path is represented as a list of nodes. Each
pair of consecutive nodes in this list is connected by an edge
going from the first node to the second with a given cost. The
change that is applied to create a new schedule is to swap the
order of a certain pair in the critical path. If the two nodes in
the pair represent two consecutive operations of the same job,
they cannot be exchanged due to the precedence constrains
imposed by the operation order. If it is possible to swap the
operations, then all edges going in or out of any of the two
nodes will be changed, as long as they come from or go into
nodes from different jobs. The edges going into the first node
will now go into the second one, the edge going from the first
to the second node will be reversed and all edges going out of
the second node will now start at the first node.

The second neighborhood function focuses solely on the
assignment of operations. Starting off with an initial solution,
it creates its set of neighboring schedules by switching two
operations that are performed on a different machine. The
sequences on the two machines will stay the same. Since two
consecutive operations in a job cannot be performed on the
same job, they are impossible to be chosen to swap between
machines and so none of the precedence constraints can be
violated during swapping.

Same as the sequencing neighborhood function, the assign-
ment neighborhood function makes use of the critical path.
For each entry on this path that is not one of the two dummy
nodes, the machine that operation is run on is found. For
each other machine that that operation can possibly run on a
random operation on it is chosen to be swapped. When the
operations are being swapped, both the list of possible edges
and the list of chosen edges have to be adapted accordingly.
All edges coming out of the current node from the critical
path will now originate from the chosen node and the other
way around. All edges going into the current node from the
critical path will now go into the chosen node and the other
way around.

An advantage of the both of these neighborhood functions
is their computational simplicity. The longest part of the al-
gorithm is looking for the correct critical path. Since this is
done in a depth-first approach, this method has a squared time
complexity. All the rest is done in linear time which makes
the algorithm very time-efficient compared to other methods
and especially the MILP.

Another advantage is the fact that the graph representation
does not have to be changed drastically to produce new fea-
sible schedules. The edges that are used for swapping two
edges on the same machine during scheduling are already
stored during assignment. The only step is to change the
edges accordingly, which is a simple matter. During assign-
ment, new edges have to be created between nodes and the
costs of these edges can be found in the base information pro-
vided by the problem instance. No precedence relations or

node costs have to be changed at any time during the whole
process of creating neighborhoods.

4 Experimental Setup and Results
To evaluate the performance of the hierarchical tabu search al-
gorithm, a set of thirteen instances was provided at the start of
the project. Each of these instances contains the same amount
of machines for each task and possible enzymes to be pro-
duced. The difference lies in the amount of jobs that have
to be completed which in turn changes the complexity of the
problem instance. The evaluation will be done based on the
makespan of the obtained result, which is the completion time
of the last operation on any machine.

All of the experiments were run on an HP ZBook laptop
with an Intel(R) Core(TM) i7-8750Hz CPU @ 2.20 GHz and
the implementation is written in Python. Although most of
the experiments only focus on the makespan results of the
algorithm, some of them are time-sensitive and depend on
the hardware used.

The first graph contains results obtained after only initialis-
ing the instances and creating the first schedules based on the
aforementioned heuristic. All of the tests make use of global
selection, but the order in which the jobs are processed dif-
fers. For the random order, the initialization process has been
run fifty times and the shown values are the average and min-
imal makespans obtained from these runs. It is expected that
the job length order approach creates superior results than a
random choice approach. It can be seen that sorting the jobs
by the summed length of their operations is a better method
to find an initial schedule than a random order for bigger in-
stances. For the first few, small instances, a random order
initialization might produce superior results. However, due
to the nondeterministic nature of a random approach, these
results are not guaranteed and become worse compared to the
ordered approach when the size of the problem instance in-
creases.

In the next two graphs, the evolution of the makespan of
the chosen moves is shown. These moves are the schedules
with the lowest makespan that are non-tabu resulting from the
neighborhood functions. The algorithm went through twenty
iterations for each of the instances with a tabu length of five,
meaning that after five iterations, a previously picked move

may be chosen again. The algorithm should improve the re-
sult after a few iterations at most. Even if the initially created
schedule is a local minimum, the algorithm tries to get out of
it by temporarily choosing worse moves.

It is rather apparent that the makespan of the initialization
procedure found at iteration 0 produces the best results. After
the initial values, the makespans of the chosen moves keeps
climbing and no new optimum is reached. This climbing pro-
cess keeps going until some critical value is reached which
is different for each instance. The values for larger, more
complex instances keep going up for more iterations of the
algorithm. When the critical point is reached, the values sta-
bilize. The cause of this is most likely the tabu length used
in this experiment. A set of schedules is sequentially picked
to be the next move and on the fifth iteration, when the first
schedule disappears from the set of tabu moves, that schedule
is chosen again and the loop starts anew. It takes longer to
find a set of looping schedules for more complex instances
due to the amount of possible changes made and the slight
randomness used in the assignment neighborhood step of the
algorithm. It becomes nearly impossible to find a sequence
of five schedules that will make the algorithm loop.

This next graph shows the comparison between the MILP
and hierarchical tabu search. If the makespan is zero for a cer-
tain instance, this means that the MILP did not have enough

time to produce a result. This is why, for shorter times, the re-
sults seem to plummet at certain instances that were too large
to be processed in time to create a feasible schedule. The re-
sults for hierarchical tabu search are the ones obtained from
the initialization procedure since those were the best in terms
of makespan. Even if the overall algorithm does not work as
expected, the initial results might still be superior to the ones
found by MILP.

For smaller instances, the MILP performs slightly better
than tabu search. As soon as the instance size becomes
larger however, the global selection procedure outperforms
even the longest running MILP, which takes forty-five min-
utes. For real-life use cases, which are often times more
complex in nature, global selection is more efficient. The
set of problem instances is rather small. Nonetheless, it
provides enough information to conclude that the global se-
lection procedure improves upon the MILP in terms of re-
sults for larger instances. Creating new instances will only
confirm what is already known from the initial set of re-
sults. The MILP can find better results for smaller in-
stances but the global selection procedure overtakes it at some
point when the problem instances become more complex.

The set of problem instances is rather small. Nonetheless,
it provides enough information to conclude that the global
selection procedure improves upon the MILP in terms of re-
sults for larger instances. The MILP can find better results for
smaller instances but the global selection procedure overtakes
it at some point when the problem instances become more
complex. For the next experiment, a set of 130 instances has
been created in sets of ten. The complexity for the instances
for each of the sets is comparable to the original instances
since the same instance constructor was used. The changes
lie in the processing and changeover times. The amount of
machines, jobs and possible products stays the same which in
turn means that the complexity of the problem instances stays
the same as well. In the graph below, the makespan of each of
the instances can be found as well as the average makespan
for each of the thirteen sets. The individual makespans can
differ wildly in one set due to the randomness in the cre-
ation. The average makespan for each set is comparable to the
makespan of the corresponding original provided instance.

This last graph shows the running times for different iter-
ation amounts that hierarchical tabu search goes through for
each instance. The time investment scales with the amount of
iterations and the complexity of the instance itself. The ini-
tialization procedure, which is not shown on this graph, never
takes more than two seconds for any instance.

With a duration of just over 18 minutes for the biggest
instance, it is clear that, based on time alone, hierarchical
tabu search is more efficient than the mathematical model.
With the incredibly short running time of the global section
initialization and the improved results from a previous
graph, one can conclude that this method outperforms the
mathematical model in both speed and result.

5 Responsible Research
All of the obtained results discussed in the previous section
can be reproduced by someone else if they follow the same
implementation as described in section 3 and use the same
hardware as mentioned in section 4. The precise code can
also be found in the github repository1. The results might
differ in some places due to the randomness used in the as-
signment neighborhood function for the makespan. The time

1https://github.com/whodatbo1/research project dsm enzymes

investment might also differ slightly based on the computa-
tional power of the hardware on which the MILP and hierar-
chical tabu search algorithms are run on. The conclusions
from those experiments, no matter the hardware choices,
should stay the same as the relative change in time and results
should be identical to the ones obtained during this project.

All of the obtained results are presented in this paper
and no data is left out to prove some hypothesis. Each
of the makespans in the graphs originates from a schedule.
These schedules are checked for correctness using a feasibil-
ity method that looks over the schedule and sees that each of
the constraints mentioned in section 2.3 is met.

6 Conclusions and Future Work
In this paper, a scheduling problem of the enzyme produc-
tion line of a DSM plant is translated into a variation of
the flexible job shop problem (FJSP). The difference to the
general flexible job shop problem arises from the fact that
changeover times can occur between sequential operations
performed on the same machine. This problem is solved by
applying two different algorithms. The first is a mathemati-
cal model making use of mixed integer linear programming
(MILP), whose results serve as a baseline to compare other
results to. The second is a heuristic approach, namely hier-
archical tabu search (HTS). A hierarchical method splits the
FJSP into two sub-problems. These are the assignment and
sequencing problems, the second of which corresponds to a
normal job shop problem. Both of these sub-problems are
solved using a tabu search method.

These algorithms are being compared based on time invest-
ment and optimality of the final schedule. A schedule is, in
this case, superior to another one if its makespan, which is
the completion time of the last operation on any machine, is
lower.

The initialization method, which is a global selection algo-
rithm, creates the best schedules for each instance in the case
of HTS. For medium-sized and larger instances, this method
creates more optimal schedules than the MILP at its longest
running time. Since the time invested is only a few seconds at
most, even for the largest instance, this initialization method
can be considered superior to the MILP. As mentioned in sec-
tion 3.3, this initialization method is superior in time invest-
ment and produced results compared to other initialization
methods. According to the obtained results, this also holds
for a mixed integer linear programming approach.

After the initialization procedure, the algorithm only pro-
duces schedules that are worse than the initial one. This issue
can be traced back to the neighborhood functions used in the
HTS algorithm. They fail to find similar schedules that im-
prove on the makespan of the original one. A possible rea-
son for this are the added constraints of this version of FJSP,
namely the changeover times and the fact that only certain
operation types can be performed on certain machines.

The running times of HTS increase with the complexity
of the problem instance and the amount of iterations that the
algorithm goes through. Even so, the running times are below
the time the MILP method necessitates to achieve adequate
results or even produce a result for larger instances.

In future work, it is recommended to look at alternative
neighborhood functions which create schedules that actually
improve the makespan of the solution if possible. One pos-
sible proposal is to look at an integrated approach that com-
bines both the assignment and scheduling sub-problems as
presented in [6] or [3]. Additional future research could look
into the difference of integrated and hierarchical approaches
specifically for a tabu search method and their effectiveness
in solving the flexible job shop problem.

References
[1] Balas E. Machine sequencing via disjunctive graphs: an

implicit enumeration algorithm, 1968.
[2] Hurink J, Jurisch B, and Thole M. Tabu search for the

job-shop scheduling problem with multi-purpose ma-
chines, 1993.

[3] Li J, Pan Q, and Suganthan N. A hybrid tabu search
algorithm with an efficient neighborhood structure for
the flexible job shop scheduling problem, 2010.

[4] Xie J, Gao L, Peng K, Li X, and Li H. Review on flexi-
ble job shop scheduling, 2019.

[5] Dell’Amico M and Trubian M. Applying tabu search to
the job-shop scheduling problem, 1993.

[6] Mastrolilli M and Gambardella M. Effective neighbour-
hood functions for the flexible job shop problem, 2000.

[7] Wagner M. An integer linear-programming model for
machine scheduling, 1959.

[8] Zribi N, Kacem I, Kamel E, and Borne P. Assignment
and scheduling in flexible job-shops by hierarchical op-
timization, 2007.

[9] Brandimarte P. Routing and scheduling in a flexible job
shop by tabu search, 1993.

[10] Yang S, Guohui Z, Liang G, and Kun Y. A novel initial-
ization method for solving flexible job-shop scheduling
problem, 2009.

[11] van den Houten K. Algorithm for smart scheduling of a
dsm enzyme production line, 2022.

[12] Demir Y and Isleyen K. Evaluation of mathemati-
cal models for flexible job-shop scheduling problems,
2012.

[13] Unlu Y and Mason J. Evaluation of mixed integer pro-
gramming formulations for non-preemptive parallel ma-
chine scheduling problems, 2010.

[14] Özgüven C, Özbakır L, and Yavuz Y. Mathematical
models for job-shop scheduling problems with routing
and process plan flexibility, 2009.

	Introduction
	Background information
	Problem description
	Mixed integer linear programming
	Hierarchical tabu search

	Implementation
	Hierarchical tabu search
	Graph representation
	initialization method
	Neighborhood functions

	Experimental Setup and Results
	Responsible Research
	Conclusions and Future Work

