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A Linear AC-OPF Formulation for Unbalanced
Distribution Networks

Juan S. Giraldo Member, IEEE, Pedro P. Vergara Member, IEEE, Juan Camilo López Member, IEEE,

Phuong H. Nguyen Member, IEEE, and Nikolaos G. Paterakis Member, IEEE

Abstract—Linear optimal power flow (OPF) formulations are
powerful tools applied to a large number of problems in power
systems, e.g., economic dispatch, expansion planning, state esti-
mation, congestion management, electricity markets, among oth-
ers. This paper proposes a novel mixed-integer linear program-
ming formulation for the AC-OPF of three-phase unbalanced
distribution networks. The model aims to minimize the total
energy production cost while guaranteeing the network’s voltage
and current magnitude operational limits. New approximations
of the Euclidean norm, which is present in the calculation of
nodal voltage and branch current magnitudes, are introduced by
applying a linear transformation of weighted norms and a set
of intersecting planes. The accuracy, optimality, feasibility, and
scalability of the proposed linearizations are compared with com-
mon linear approximations in the literature using two unbalanced
distribution test systems. The obtained results show that the
proposed formulation is computationally more efficient (almost
twice) while being as accurate and more conservative than the
benchmarked approaches with maximum errors lower than 0.1%.
Thus, its potential application in a variety of distribution systems
operation and planning optimization problems is endorsed.

Index Terms—AC optimal power flow, unbalanced distribution
networks, mixed-integer linear programming, Euclidean norm
approximation.

NOMENCLATURE

Sets

ΩB Set of nodes

ΩG Set of nodes with distributed generation (DG) units

ΩN Set of intersecting planes for the current magnitude

approximation.

ΩR Set of nodes with renewable energy source (RES)

ΩT Set of time periods

ΩΦ Set of phases {a, b, c}

Parameters

β Coefficient for the voltage magnitude approx.

∆t Duration of the time period t

λ Coefficient for the voltage magnitude approx.

Θ Range angle for the voltage magnitude approx.

Tφ Rotation coefficient for phase φ

cdgg Unitary cost of energy at DG unit g
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cst Unitary cost of energy at the substation at period t

Ik,j Maximum current magnitude at branch k-j

N Number of intersecting planes current approx.

pfg Minimum operational power factor of DG unit g

Pg Maximum rated active power of DG unit g

Sld
k,t Vector of complex loads at node k, period t

Sre
k,t Vector of complex generation from the RES at node

k, period t

V Maximum voltage magnitude

V0
k,t Vector of estimated voltage at node k, period t

V Minimum voltage magnitude

Yk,j Admittance submatrix between nodes k-j

Variables

Γk,j,t,φ,n Approximated current magnitude at branch k-j,

period t, phase φ, intersecting plane n

Ψ(z) Approximated Euclidean norm of vector z

µg,t Unit commitment of DG unit g, period t

Ik,j,t Vector of three-phase currents at branch k-j, pe-

riod t

I
dg
g,t Vector of three-phase currents from the DG at node

g, period t

Ildk,t Vector of three-phase currents from the loads at

node k, period t

Irew,t Vector of three-phase currents from the RES at

node w, period t

Isk,t Vector of three-phase currents from the substation

at node k, period t

P dg
g,t Three-phase active power from the DG at node g,

period t

Qdg
g,t Three-phase reactive power from the DG at node

g, period t

Vk,t Vector of three-phase voltages at node k, period t

I. INTRODUCTION

SECURE and economic operation of power systems relies

on accurate and efficient AC optimal power flow (AC-

OPF) models. The objective of an AC-OPF is to obtain the

optimal dispatch of controllable energy resources to optimize

a given objective while satisfying technical, physical, and

operational limits. For a long time, AC-OPF problems were ex-

clusively focused on bulk transmission systems. However, the

growing penetration of distributed energy resources (DERs)

into electrical distribution systems has created the need for

accurate and efficient AC-OPF models aimed at medium/low-

voltage networks [1]. One of the main characteristics of
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reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works



2

such systems is that unbalances between phases are more

pronounced than in high-voltage ones, mainly due to single

and two-phase loads, single phase laterals, and untransposed

lines [2]. Classical AC-OPF formulations are nonlinear, non-

convex, optimization problems containing both continuous and

discrete variables. Hence, they are classified into the mixed-

integer nonlinear programming (MINLP) family [3]. Including

three-phase models for branches, transformers, voltage regu-

lators, and DERs increases the size of the problem and the

complexity of finding optimal solutions in deterministic poly-

nomial time, since MINLP models are NP-hard [4]. Although

mixed-integer linear programming (MILP) problems share the

same computational complexity class, their tractability and

the existence of mature solvers have motivated the derivation

of approximated/relaxed formulations of originally nonlinear

problems for over six decades [5]. Furthermore, linearized AC-

OPF formulations are preferred in multi-period setups with

integer variables since the implementation of decomposition

techniques, such as Benders cuts, are straightforward in linear

problems [6].

Convex relaxation models have been proposed in the liter-

ature for the AC-OPF problem as summarized in [7], where

classic formulations and recent advances are shown. Convex

relaxations based on second-order cone programming (SOCP)

have been proposed in [8] for reconfiguration problems, or

in [9], where authors expose the conditions for obtaining an

exact equivalent model in balanced distribution networks. A

two-step algorithm composed of a MILP and a quadratically

constrained programming approach is proposed in [10] for

managing overloads in balanced distribution systems.

Linear OPFs were initially based on the DC power flow as

in [11], where different techniques are analyzed. However, lin-

ear approximations make it possible to obtain AC-OPF models

as in [12], for balanced networks, using binary expansion

discretization and piecewise linear approximations. Authors

in [13] propose a MILP approach to the AC-OPF for balanced

three-phase radial systems including piecewise linear approx-

imations of nonlinear functions. In [14], a linear AC-OPF

model is proposed for AC-DC networks, and in [15] a MILP

formulation is introduced. Notice that the works above do

not consider unbalanced networks. However, unbalances are a

natural consequence of line configurations, i.e., untransposed,

two-phase and single-phase laterals, and load characteristics,

where single-phase and two-phase connections prevail [16].

A three-phase AC-OPF for distribution systems is proposed

in [17] and [18] as a semidefinite programming model dis-

regarding integer variables or in [19] as a mixed-integer

quadratically-constrained AC-OPF. Unbalanced linear formu-

lations have also been used for different applications as in [20]

for the optimal charging coordination of electric vehicles,

in [17] and [19] as semidefinite relaxations, in [21] for the

optimal operation of islanded microgrids, in [22] for optimal

network restoration, or in [23] for short circuit analysis.

However, theses models show some drawbacks regarding their

accuracy, optimality, feasibility, and/or scalability.

This paper proposes a novel MILP formulation for the AC-

OPF problem of three-phase unbalanced distribution networks.

The model aims to minimize the network’s total operational

cost while guaranteeing voltage and current magnitude opera-

tional limits. The proposed formulation is an extension of the

authors’ previous work in [24], introducing a generalization of

the methodologies and additional results. Specifically, the in-

tersecting planes linearization for current magnitudes has been

generalized, along with introducing a linear transformation to

reduce the approximation error of voltage magnitudes. The

proposed MILP model accounts for dispatchable distributed

generation (DG) units, and it can be easily extended to include

energy storage systems, on-load tap changers, voltage regu-

lators, controllable capacitor banks, among other distribution

automation devices. Hence, it could be applied to various

problems in power systems by introducing the corresponding

linearized models. The accuracy, optimality, feasibility, and

scalability of the proposed linearizations have been com-

pared to common approximations in the literature in two

unbalanced distribution test systems with 25 and 123 nodes.

Compared with similar works, the proposed formulation offers

an improvement in the accuracy of the approximations with

maximum errors lower than 0.1%, providing more conserva-

tive results (no violations of operational limits), and without

scarifying computational efficiency. The main contributions of

this paper are twofold:

• An accurate and scalable MILP model for the AC-OPF

problem for unbalanced three-phase distribution systems

that can be solved using commercial solvers.

• Two novel accurate linear approximations to the Eu-

clidean norm in R
2 that can be potentially applied in

a wide variety of problems in power systems where

magnitudes are involved, e.g., voltage, current, apparent

power, distance, etc.

II. MIXED-INTEGER NONLINEAR PROGRAMMING MODEL

The MINLP model can be summarized in (1).














min f(V, I) (2)

s.t. h(V, I) = 0 (3)–(9)

g(V, I) ≤ 0 (10)–(14)

(1)

The proposed formulation minimizes the total energy pro-

duction cost over a period of time, discretized in a finite

number of time-steps t ∈ ΩT, each with a duration of ∆t
hours as shown in (2), where the first term relates the cost

of importing energy from the main grid and the second one

the operation cost of the DG units. Notice that a quadratic

cost function could be linearized by using piece-wise linear

approximations as in [21] or [25]. However, a linear function

has been implemented for the sake of simplicity. The nodal

current balance is expressed in complex form in (3), where
[

Yk,j

]

is the (3× 3) admittance submatrix of the branch

connecting nodes k and j, both nodes belonging to the set

of buses, i.e., k, j ∈ ΩB. It should be pointed out that

some three-phase transformer connections may have numer-

ical implications when dealing with the admittance matrix.

Detailed transformer models can be found in [26]. Three-

phase complex components are expressed by bold symbols,

e.g., nodal voltages are expressed by the column vector

Vk,t =
[

Vk,t,φ

]

=
[

vrk,t,φ + jvik,t,φ

]

for all buses k ∈ ΩB,
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all periods t ∈ ΩT, and all phases φ ∈ ΩΦ. Similarly,

nodal complex currents injected by the substation, DG units,

renewable sources, or loads are defined as Ixk,t, with x being

the nature of the current injection.

For example, the current injected by the substation is identi-

fied as x = s, and must be set to zero for all buses but the sub-

station bus (S), i.e, Isk,t = [0] , ∀ k ∈ ΩB, t ∈ ΩT : i 6= S.

On the other hand, three-phase nodal voltages at the sub-

station, which are used as reference, must be fixed as

VT

k,t =
[

1, α2, α
]

∀ k ∈ ΩB, t ∈ ΩT : i = S, where

α = 1∠120◦ hereinafter. Hence, the three-phase active power

injected from the substation in (4) is a linear expression.

Loads are expressed as Sld
k,t in (5), while injections from

renewable sources are represented by Sre
k,t in (6). Total three-

phase active and reactive powers injected by DG units are

expressed in (7) and (8), respectively. Branch currents are de-

fined as Ik,j,t in (9) and the maximum capacity of each branch

in (10). The minimum and maximum voltage magnitude limit

is considered in (11), while operational constraints regarding

the capability curve of the DG units are considered in (12)

and (13), and the ramp-up and ramp-down limits in (14).

f(V, I) =
∑

t∈ΩT

∆t





∑

k∈ΩB

cst P
s
k,t +

∑

g∈ΩG

cdgg P dg
g,t



 (2)

Isk,t +
∑

g∈ΩG:g=k

I
dg
g,t +

∑

w∈ΩR:w=k

Irew,t − Ildk,t =
∑

j∈ΩB

Yk,jVj,t,

∀ k ∈ ΩB, t ∈ ΩT (3)

P s
k,t = ℜ

{

VT

k,tI
s
k,t

∗

}

, ∀ k ∈ ΩB, t ∈ ΩT : k = S (4)

Ildk,t
∗

= diag
(

Vk,t

)−1
Sld
k,t ∀ k ∈ ΩB, t ∈ ΩT (5)

Irek,t
∗ = diag

(

Vk,t

)−1
Sre
k,t ∀ k ∈ ΩR, t ∈ ΩT (6)

P dg
g,t = ℜ

{

VT

g,t I
dg
g,t

∗
}

, ∀ g ∈ ΩG, t ∈ ΩT (7)

Qdg
g,t = ℑ

{

VT

g,t I
dg
g,t

∗
}

, ∀ g ∈ ΩG, t ∈ ΩT (8)

Ik,j,t =
[

Yk,j

] (

Vk,t − Vj,t

)

,

∀ k, j ∈ ΩB, t ∈ ΩT : k 6= j (9)

∥

∥Ik,j,t
∥

∥

2
≤ Ik,j , ∀ k, j ∈ ΩB, t ∈ ΩT : k 6= j (10)

V ≤
∥

∥Vk,t

∥

∥

2
≤ V, ∀ k ∈ ΩB, t ∈ ΩT (11)

∣

∣

∣Q
dg
g,t

∣

∣

∣ ≤ P dg
g,t tan

(

cos−1
(

pfg

)

)

, ∀ g ∈ ΩG, t ∈ ΩT (12)

µg,tPg ≤ P dg
g,t ≤ µg,tPg, ∀ g ∈ ΩG, t ∈ ΩT (13)

Pdwn
g ≤ P dg

g,t − P dg
g,t−1 ≤ P

up

g , ∀ g ∈ ΩG, t ∈ ΩT (14)

where µg,t ∈ {0, 1} is a binary variable for the unit com-

mitment of DG unit g at period t, and diag (·) represents a

diagonal matrix containing the elements of the vector. Note

that nonlinearities are introduced by the product between

variables in (5)–(8), as well as by the calculation of current

and voltage magnitudes in (10) and (11), respectively.
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Fig. 1. Euclidean norm approximation using intersecting planes.

III. PROPOSED MILP MODEL

A. Linearization of Power Injections

A linear expression for (5) can be obtained using Taylor

series expansion, evaluated on estimated/historical values for

the real and imaginary parts of the nodal voltages, namely,

V0
k,t. The first-order approximation is:

Ildk,t,φ ≈ Ildk,t,φ

∣

∣

∣

V0

k,t,φ

+
∂Ildk,t,φ
∂Vk,t,φ

∣

∣

∣

V0

k,t,φ

(

Vk,t,φ−V0
k,t,φ

)

,

∀ k ∈ ΩB, t ∈ ΩT, φ ∈ ΩΦ (15)

The error of these approximations depends on the estimated

values V0
k,t. Furthermore, the accuracy of the first order linear

approximation for injected power has been assessed consider-

ing voltage magnitude around 1.0 pu in [27]. These values

can be set using an initial three-phase load flow analysis,

experience-based values, or even a flat-start [22]. Similarly,

(6)–(8) are approximated as:

Sre
k,t ≈ V0

k,t
T Irek,t

∗, ∀ k ∈ ΩR, t ∈ ΩT (16)

P dg
g,t ≈ ℜ

{

V0
g,t

T I
dg
g,t

∗
}

, ∀ g ∈ ΩG, t ∈ ΩT (17)

Qdg
g,t ≈ ℑ

{

V0
g,t

T

I
dg
g,t

∗
}

, ∀ g ∈ ΩG, t ∈ ΩT (18)

B. Proposed Approximation for Branch Current magnitudes

The Euclidean norm is defined as the root sum square of a

vector. A new underestimate approximation to the Euclidean

norm in R
2 is proposed in this paper using intersecting planes.

The proposed approximation is a generalization of the formu-

lation in [28] for non-unitary norms. Take z = {x, y} and

f (x, y) = ‖z‖2 ,
√

x2 + y2. Three non-collinear points,

A = {0, 0, 0}; Bn =
{

cos (θn− θ) , sin (θn− θ) , 1
}

;

Cn =
{

cos (nθ) , sin (nθ) , 1
}

, are defined such as they

belong to a set of intersecting planes with f (x, y) for each

plane n ∈ ΩN, where ΩN = {1, 2, ..., N} is the set

of intersecting planes used to perform the approximation.

A general representation of the approximation is shown in

Fig. 1, where θ = 2π/N represents the angle between vectors
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x
x

y y

E% E%

b)a)

Fig. 2. Error of the Euclidean norm approximation – a) N = 8. b) N = 32.

−→
b & −→c . With

−→
b and −→c it is possible to obtain planes

Zn = ABnCn ∀n ∈ ΩN, such as:

Zn = (Anx+ Bny) /Cn (19a)

An = sin (θn− θ)− sin (nθ) (19b)

Bn = cos (nθ)− cos (θn− θ) (19c)

Cn = cos (nθ) sin (θn− θ)− cos (θn− θ) sin (nθ) (19d)

A graphical representation of the error is shown in Fig. 2 for

N = {8, 32}. It can be demonstrated that the maximum error

at each plane n happens at θ0 = θ (2n− 1) /2. For the sake

of clarity, take x0 = cos
(

θ0
)

, y0 = sin
(

θ0
)

, and n = 1. An

analytic expression for the maximum error at each intersecting

plane as a function of N is obtained:

E =
∣

∣

∣1− sec
(

π/N
)

∣

∣

∣ (20)

It should be noted that (20) applies for each plane n ∈ ΩN

and it is valid for {x, y} ∈ R.

Branch currents Ik,j,t are complex numbers. Thus, their

magnitude is described as a Euclidean norm in R
2. After

using the proposed approximation in (19), constraint (10) is

transformed into (21) and (22).

Γk,j,t,φ,n =
(

irk,j,t,φAn + iik,j,t,φBn

)

/Cn

∀ k, j ∈ ΩB, n ∈ ΩN, t ∈ ΩT, φ ∈ ΩΦ : k 6= j (21)

Γk,j,t,φ,n ≤ Ik,j ,

∀ k, j ∈ ΩB, n ∈ ΩN, t ∈ ΩT, φ ∈ ΩΦ : k 6= j (22)

Note that (21) is not the actual value of the branch

current magnitude. Instead, it returns a value for each

plane n that must satisfy the inequality constraints in (22).

Thus, guaranteeing current limits. However, the approxi-

mated value of the current magnitude can be obtained by
∥

∥Ik,j,t,φ
∥

∥

2
≈ maxn∈ΩN

{

Γk,j,t,φ,n

}

if needed. Furthermore,

the proposed linearization can be applied in other models that

involve norm limits, e.g., maximum apparent power of devices,

distance constraints in routing problems, etc.

C. Proposed Approximation for Nodal Voltage Magnitudes

In principle, the approximation in Sec. III-B could also be

applied for voltage magnitudes. However, from (20), it can

be seen that the approximation error is proportional to N ,

increasing the computational burden if low errors are required.

This paper proposes using specific regression parameters and

vrvr

vivi

2Θ2Θ

VaVa

Vb

Vc

Vb α

Vc α
2

VV

VV
T

Fig. 3. Representation of rotated voltage magnitudes, limits, and range
angle Θ.

a limited angle range for linearizing nodal voltage magnitudes.

As stated in [29], any norm on R
n can be approximated as a

positive linear combination of other norms. The linearization

approximates the Euclidean norm, ‖z‖2, as a linear combi-

nation of the ‖z‖1 norm and the ‖z‖
∞

norm. By definition,

‖z‖
∞

≤ ‖z‖2 ≤ ‖z‖1. Hence, it is possible to approximate

‖z‖2 as a linear combination of the other two:

‖z‖2 ≈ Ψ(z) = λ ‖z‖
∞

+ β ‖z‖1 , λ, β ≥ 0 (23)

where ‖z‖
∞

, max
{

|x|, |y|
}

and ‖z‖1 , |x| + |y|. Us-

ing (23), voltage magnitudes are approximated as:

Ψ
(

Vk,t,φ

)

= λφ

∥

∥Vk,t,φ

∥

∥

∞
+ βφ

∥

∥Vk,t,φ

∥

∥

1

∀ k ∈ ΩB, t ∈ ΩT, φ ∈ ΩΦ (24)

with Vk,t,φ = vrk,t,φ+jvik,t,φ. Due to power quality standards,

distribution systems are designed such as voltages are close to

nominal values under normal operation, i.e., magnitudes within

0.90–1.10 pu, phase angles deviations as small as possible,

and a voltage unbalance factor lower than 5% [30]. Thus, a

nonnegative angle range, namely Θ, is introduced to tighten up

the approximation. This range must contain system’s voltage

phase deviations, as depicted in Fig. 3, where Va = 1, Vb =
α2, and Vc = α, represent phase nominal voltages.

The quality of the approximation in (24) relies on using

suitable values for λφ and βφ, which can be obtained using

regression techniques. These coefficients are a function of Θ
and are independent of the voltage magnitude, as shown in [24]

where 10,000 randomly generated samples were used for the

regressions. Notice that no additional power flows must be

performed in this step. However, the main drawback of the

formulation in [24] corresponds to the errors for φ = {b, c},

which are approximately five times greater than errors for φ =
{a}. The reason for this drawback has been explained in [24],

highlighting the location of each phase in the complex plane

as the main cause.

A new formulation is proposed in this paper to reduce

the approximation error for φ = {b, c} by performing a

linear rotation to the voltages as depicted in Fig. 3. A similar

approach was performed in [31], for different purposes. In our

paper, the rotation reduces the maximum expected error of

the approximation for φ = {b, c} to the same levels obtained

for φ = {a}. The maximum approximation errors are shown

in Fig. 4a for φ = {b, c} before and after the rotation as a

function of Θ. It can be seen that the maximum expected error
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after performing the rotation is 0.58% at Θ = 15◦, which is

approximately four times lower than without performing the

rotation (2.3%). Fitting functions are displayed in the figure

with an obtained coefficient of determination r2 > 0.97.
Notice that performing the rotation also reduces the number

of required parameters, i.e., λa = λb = λc = λ and

βa = βb = βc = β. Furthermore, after 10,000 samples,

it was found that λ and β follow a quasi-linear relationship

within the range of interest, 0◦ < Θ ≤ 15◦, as can be seen

in Fig. 4b where the fitting functions for parameters λ and

β are displayed with an obtained coefficient of determination

r2 > 0.99.
Once the parameters of the linearization are defined, the

operational constraints for voltage magnitudes in (11) can be

rewritten as:

V ≤ Ψ
(

Vk,t,φ

)

≤ V, ∀ k ∈ ΩB, t ∈ ΩT, φ ∈ ΩΦ (25)

where Vk,t,φ are the rotated voltages, i.e., Vk,t,φ = Vk,t,φTφ,

and Tφ =
{

1, α, α2
}

are the rotation coefficients. Notice

that ℜ
{

Vk,t,φ

}

≥ 0. Hence,
∣

∣

∣ℜ
{

Vk,t,φ

}

∣

∣

∣ = ℜ
{

Vk,t,φ

}

.

Furthermore, since ℜ
{

Vk,t,φ

}

> ℑ
{

Vk,t,φ

}

for Θ < 45◦,

then,
∥

∥Vk,t,φ

∥

∥

∞
= ℜ

{

Vk,t,φ

}

. Therefore, (24) is rewritten as:

Ψ
(

Vk,t,φ

)

= λℜ
{

Vk,t,φ

}

+β
(

ℜ
{

Vk,t,φ

}

+ |ℑ
{

Vk,t,φ

}

|
)

,

∀ k ∈ ΩB, t ∈ ΩT, φ ∈ ΩΦ (26)

It should be pointed out that the proposed rotation does not

modify the rectangular components of the nodal voltages in

any other constraint of the model. The rotation is performed

only for the voltage operational limit constraints. Furthermore,

the accuracy of the proposed voltage magnitude linearization

is only dependant on Θ; thus, it is perfectly scalable.

D. Obtained MILP Model

The obtained MILP model can be summarized in (27).














min (2)

s.t. (3), (4), (9), (12)–(18),

(21), (22), (25), (26)

(27)

IV. TEST CASES

A. Case I - Assessment of Accuracy, Optimality, and Feasibil-

ity

An unbalanced 25-bus test system has been used for testing

the accuracy, optimality, and feasibility of the proposed model.

TABLE I
VALUES AND UNITS OF PARAMETERS.

Parameter Value Unit

D
G

u
n

it
s cdg

0.04 $/kWh

pf 0.9 –

P 700 kW

P
up

= −Pdwn
350 kW

S
y

st
em

cs
0.03 $/kWh

I 530 A

V 1.05 pu

V 0.95 pu

All system branches are three-phase with three conductors

and only one line-to-line voltage level (4.16 kV). All loads

are three-phase, and some of them are unbalanced. Topology,

lines’ parameters, and loads nominal data can be found in [32].

Three DG units have been added to the original system at buses

13, 19, and 25. DG units’ parameters and system information

can be found in Table I. Without loss of generality, parameters

for DGs and maximum current magnitude limits have been

arbitrarily chosen and are the same for all the DG units

and feeders, respectively. The problem has been solved for

ΩT = {1, 2, ..., 5} with different operating points. Results

were obtained using the proposed MILP model, containing the

introduced linearizations for voltage and current magnitudes,

and benchmarked with other linearization techniques for the

Euclidean norm applied to power systems. State variables were

compared to those found using a conventional power flow after

fixing the obtained power injections. These power injections

are the results from dispatchable DG units and were obtained

for each tested linearization technique. The flow chart of the

comparison process is shown in Fig. 5.

All linearization techniques have been implemented in the

modelling language AMPL [33] and solved with CPLEX [34].

Due to the lack of real measurements, the results from a

traditional power flow have been used as initial estimated

values. However, in practical implementations, recent SCADA

measurements could also be used if they are available.

The computational burden for solving the models has been

measured in terms of ticks and seconds. Ticks are consistent

measures of computational burden independent of the concur-

rent load of the workstation. It is also considered fairer than

comparing only time since the ratio of ticks per second stays

roughly constant for the same platform and the same load,

independent of the model solved [34].

1) Current magnitudes: Three techniques were used to

compare the approximation for current magnitudes: A1 is an

approximation with intersecting planes and a fixed accuracy,

as in [24]; A2 is a pure piecewise linearization in which the

accuracy depends on the number of blocks, B as in [12],

[13], [20]; and A3, where the polyhedral ǫ - approximation is

proportional to parameter ν, as in [8]. On a first test, only cur-

rent magnitude limits were enforced using the aforementioned

techniques, disregarding voltage magnitude limits. The pro-

posed formulation was tested using N = {12, 24, 32, 64},

while parameters for A2 and A3 are shown in Table II. The

accuracy of the tested approximations can be contrasted in

Table II by the mean squared error (MSE) and the maximum

error between the obtained results and a conventional power

flow. Phase current magnitudes at branch 1–2 are plotted in

Fig. 6 using the proposed approximation with N = 32 and A3

with ν = 4. Branch 1–2 is prone to overcurrents because it

connects the substation to the rest of the distribution system.

Regarding the feasibility of the tested techniques, it can

be seen that the proposed approximation is always lower

than the maximum magnitude limit independently of the

number of cutting planes. This result was expected since the

proposed formulation was deducted as an underestimate of

the Euclidean norm, asymptotically approaching the actual

current magnitude as N increases. In other words, the proposed
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Fig. 4. Voltage magnitude approximation – a) Maximum error. b) Linearization parameters.
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Vk,t,
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Fig. 5. Chart flow of the approximation comparison.

approximation will always provide a conservative solution as

long as it is feasible. On the other hand, the techniques used

for comparison (A1, A2, and A3) are not able to guarantee

the current magnitude limit, providing solutions that can be

infeasible in terms of current limits.

The computational burden of the proposed techniques can

be compared in Table II. One can see that the computational

burden and the accuracy of the approximation are indirectly

proportional. In the case of the proposed formulation, it is due

to the increasing number of constraints and variables with the

number of intersecting planes. However, the maximum error

stabilizes around 0.45% for N ≥ 32. This error is linked to

other linearizations within the model, such as the linearization

of power injections. Note that the proposed approximation pro-

vides satisfactory results with a lower computational burden

compared to the other tested techniques. In the case of A2 and

A3, the accuracy of the solution is also adjustable. However,

as previously discussed, the feasibility of the original problem

cannot be guaranteed.

TABLE II
COMPARISON OF TECHNIQUES FOR CURRENT MAGNITUDE

APPROXIMATION.

Technique Parameter MSE [%] Max. Error [%] Max. ‖I‖ [A] Ticks Time [s]

Proposed

N = 12 45.64E-3 1.7619 517.03 150.24 0.23

N = 24 4.83E-3 0.5272 525.96 393.10 0.47

N = 32 2.38E-3 0.4547 529.91 558.03 0.72

N = 64 1.97E-3 0.4547 529.95 1030.98 1.29

A1 [24] – 15.73E-3 2.5543 532.03 327.24 0.38

A2 [20]

B = 4 2.27E-3 0.4913 529.88 811.85 1.16

B = 8 2.25E-3 0.4781 530.83 1116.13 1.65

B = 16 2.12E-3 0.4547 530.20 2384.59 4.49

A3 [8]

ν = 4 317.9E-3 1.2792 539.88 727.28 1.29

ν = 6 7.81E-3 0.4678 530.61 970.72 1.54

ν = 8 2.00E-3 0.4638 530.03 1035.33 1.64
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Fig. 6. Current magnitudes with two different techniques – N = 32 and A3

with ν = 4.

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.954

1 2 3 4 5

Prop. φ = a
Prop. φ = b
Prop. φ = c

A5 φ = a
A5 φ = b
A5 φ = c

Min. Voltage

V
o
lt

ag
e

m
ag

n
it

u
d
e

[p
u
]

Time period

Fig. 7. Voltage magnitudes with two different techniques – Θ = 10◦ and
and A5 with θ+ = 10◦.

2) Voltage magnitudes: Two different techniques were used

to compare the approximation for voltage magnitudes. Ap-

proximation A4 is controlled by the same range angle used

in the proposed formulation, Θ, but without the introduced

rotation [24]. While approximation A5 uses a geometrical

representation driven by θ+, as in [22]. Only voltage mag-

nitude limits were enforced using the techniques mentioned

earlier, while current magnitude limits were disregarded in

this test case. The proposed formulation was tested using

Θ = {1, 5, 10}
◦
, and the corresponding values for A5, as

shown in Table III. The accuracy of the tested approximations

can be contrasted in Table III by the MSE and the maximum

error between the obtained results and a conventional power
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flow.

Phase voltage magnitudes at bus 15 are plotted in Fig. 7

using the proposed approximation with Θ = 10◦ and A5

with θ+ = 10◦. Bus 15 is prone to undervoltages since it

presents the lowest voltage of the system. One can see that the

proposed approximation obtains results that remain within the

specified voltage magnitude limits, providing feasible results.

This result is true even when the approximation accuracy is

compromised, i.e., when Θ increases. On the other hand, as

shown in Table III, neither A4 nor A5 are able to guarantee

the lower voltage limit constraint, which leads to infeasible

solutions. Moreover, the errors are lower when using the

proposed approach, requiring comparable computational times

with the other tested techniques.

It should be stated that the accuracy of approximation A5

is highly sensitive to the value of θ+, as can be seen in

Table III. Furthermore, due to the way it has been formulated,

a wrong setting of this parameter may lead to infeasibility. For

example, when θ+ is lower than the maximum angle deviation

of the system. On the other hand, although the proposed

formulation’s accuracy is also dependent on how close Θ is

to the maximum deviation, a wrong estimation of the range

angle does not mean instantaneous infeasibility, as it does in

A5. In particular, for the tested system, the maximum angle

deviation was lower than 1◦ for all phases, which upholds

why all tested techniques behaved outstandingly in terms of

accuracy and feasibility for Θ = θ+ = 1◦.

The computational burden shows a dependency on the range

angle. However, this is not caused by an increase in the

number of constraints or variables as in current magnitudes.

The variation in computational times depends on the number

of internal iterations required by the solver to converge, which

is directly related to the error induced by the approximations.

The value of the objective function obtained with different

combinations of the linearization techniques is shown in Fig. 8.

The value of the objective function is shown for the proposed

formulation using N = 32 and different values of Θ. Results

are compared with a combination between A3×A4, and the

combination between A3×A5. The linearization parameter has

been set to ν = 6 for A3. Similarly, the total energy injected

by all DG units and the substation is plotted in Fig. 9.

In Fig. 9, it can be seen that the sharing on the injected

energy differs according to the approximation technique as

the range angle increases. These differences are translated into

TABLE III
COMPARISON OF TECHNIQUES FOR VOLTAGE MAGNITUDE

APPROXIMATION.

Technique Parameter MSE [%] Max. Error [%] Min. ‖V ‖ [pu] Ticks Time [s]

Proposed

Θ = 1
◦

1.29E-9 0.0280 0.9500 176.97 0.26

Θ = 5
◦

6.79E-8 0.0688 0.9505 185.41 0.29

Θ = 10
◦

6.51E-7 0.2866 0.9524 200.43 0.32

A4 [24]

Θ = 1
◦

1.69E-9 0.0266 0.9500 244.70 0.27

Θ = 5
◦

9.42E-8 0.2434 0.9489 299.70 0.33

Θ = 10
◦

8.56E-6 1.0227 0.9451 324.37 0.37

A5 [22]

θ+ = 1
◦

1.39E-9 0.0452 0.9498 187.94 0.23

θ+ = 5
◦

3.75E-8 0.0512 0.9465 190.01 0.22

θ+ = 10
◦
2.03E-7 0.1264 0.9357 196.48 0.23
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Fig. 8. Objective function cost using different techniques as a function of the
range angle.
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Fig. 9. Total injected energy from DG units and the substation.

variations on the total cost in Fig. 8, with a clear tendency of

the proposed formulation to provide more expensive solutions

whereas A3×A5 the cheapest. Note that the tested techniques

got similar results for Θ = θ+ = 2◦, but differ as the

range angle increases. At the same time, the accuracy of the

approximations decreases with the angle, and the feasibility of

the original nonlinear problem can be compromised depending

on the used technique. Furthermore, the proposed model’s

solution has been shown to be more conservative, i.e., both

voltage and current limits are guaranteed irrespective of the

value of Θ or N , providing feasible solutions to the original

nonlinear problem. This conclusion is based on the differences

in power dispatches and the performed accuracy/feasibility

analyses. In other words, cost differences between techniques

can be interpreted as the cost of increasing the feasibility and

accuracy of the approximations.

B. Case II - Scalability and Sensitivity to Unbalance level

The three-phase IEEE 123-node test feeder has been used

in this section to show the scalability of the proposed formu-

lation. The substation transformer is a 5 MVA, 115/4.16 kV

solidly-grounded wye, and it is located at bus 115. The system

counts with overhead and underground lines with single-phase,

two-phase, and three-phase branches feeding spot loads, with

phase a being the most loaded one (around 1.4 MW at peak

hour) and phase b the lightest one (around 0.89 MW at peak

hour). Some modifications were made to emphasize the paper’s

focus; for example, voltage regulators, reactive power com-

pensators, and transformer vector groups were disregarded.

Detailed characteristics can be found in [35].

A planning horizon of 24 periods has been used, resembling

an hourly day-ahead dispatch while loads have been scaled
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Fig. 10. Case II, unb = 1 - a) Voltage magnitudes at phase a. b) Voltage phase angles at phase a.

following a standard daily load curve. Three DG units were

added to the original system with minimum and maximum

power of P = 150 kW and P = 1.5MW, respectively,

and a minimum power factor of pf = 0.9. The DG units

were connected at buses 117, 119, and 120, representing the

interconnection with other feeders in the original network. The

maximum current magnitude of all branches has been set to

I = 500A and voltage magnitude limits to V = 0.90 pu and

V = 1.10 pu.

The proposed formulation’s scalability is shown by using

an optimization problem more than twenty times bigger than

the one used in Section IV-A with a total of 52,080 variables.

The execution time as a function of the number of binary

variables has been assessed by including additional DG units.

Results are displayed in Fig. 11, where the execution times

for different values of Θ are shown. It can be seen that the

execution time increases with the number of binary variables,

as expected in MILP problems.

The sensitivity of the proposed formulation to the network’s

unbalance level is assessed by increasing the total load of one

of the phases. All nominal loads connected to phase a have

been scaled by a factor, namely unb, where unb = 1.0 stands

for the base case. For all tested cases, the range angle has been

set to Θ = 2◦, while the number of cutting planes to N = 32.

Voltage magnitudes and phase angles at phase a for the base

case are displayed in Fig. 10 for reference. Notice that the

highest voltages occur at period 19, coinciding with the peak

load of the system. This behaviour happens due to the power

contribution from DGs to satisfy operational constraints.

Obtained results are shown in Table IV, where the exe-

cution time of the base case can be seen in the first row

(unb = 1.0), with an average of 13.48 s. Additional tests,

identified by *, were performed using different values for Θ.

Maximum percent errors for different unbalance levels are

shown in Table IV, where the maximum approximation errors

of voltage and current magnitudes are displayed. The obtained
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Fig. 11. Execution time as a function of the number of binary variables for
different values of Θ.

objective function was compared by solving the non-linear

programming problem in (1) after relaxing the integrality.

Errors for voltage and current magnitudes increase with the

unbalance level, as well as the error of the objective function

value obtained with the proposed method. Voltage errors range

from 0.02% to 0.22% while current errors from 0.83% to

1.41% for a load increase of 65%, only in one phase. The

voltage unbalance level has been calculated using sequence

components with a maximum unbalance of 2.98%. Higher

values were not included since they lead to computational

infeasibility.

Maximum percentage errors for voltage magnitudes as a

function of the loading unbalance levels are shown in Fig. 12a

for the tested time periods. It can be seen that the obtained

approximation errors have a similar tendency depending on the

time period due to the loading curve. However, the main reason

causing the error increase is related to the angle deviations of

each phase. Figure 12b displays the maximum absolute angle

deviation from their nominal values (0◦, −120◦, 120◦) of all
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phases at all nodes. It can be seen that the approximation error

increases as the deviation angle stray from the selected range

angle, i.e., from Θ = 2◦ in this case.

As explained in Section III-C, using a proper value for

parameter Θ reduces the expected approximation error; this is,

the range angle must be bigger than or equal to the maximum

angle deviation of the system. This statement is corroborated

in Table IV marked by *, unb = {1.0∗, 1.3∗, 1.5∗, 1.65∗},

where the errors using Θ = {3◦, 4◦, 4.5◦, 5◦} are shown,

respectively. It can be seen that, in the worst case, errors are

reduced by at least 1.5 times, e.g., from 1.4077% to 0.8951%,

just by using a proper range angle value.

V. CONCLUSIONS

A novel linear AC-OPF model for three-phase unbalanced

distribution networks considering binary variables was pro-

posed in this paper. The original MINLP problem has been

derived as an approximated MILP, aiming to minimize the

network’s energy cost respecting operational constraints. Two

novel linearizations for nodal voltage and branch current mag-

nitudes were introduced showing their accuracy and scalability,

indicating their potential application to a variety of problems

in power systems.

The proposed formulation was compared regarding its

accuracy, optimality, and feasibility with five different lin-

earizations for voltage and current magnitudes available in

TABLE IV
APPROXIMATION ERRORS UNDER DIFFERENT PHASE UNBALANCE LEVELS.

unb Unb. Level [%] Max. Error V [%] Max. Error I [%] Obj. Error [%] Time [s]

1.0
1.39

0.0176 0.8260 0.1165 13.48

1.0∗ 0.0095 0.5408 0.0685 13.99

1.3
2.03

0.1021 1.0501 0.3757 22.08

1.3∗ 0.0293 0.6141 0.0881 23.11

1.5
2.53

0.1601 1.2205 0.4598 18.44

1.5∗ 0.0480 0.8138 0.1148 20.02

1.65
2.98

0.2146 1.4077 0.7598 18.65

1.65∗ 0.0628 0.8951 0.1202 19.87

the literature. Results showed improvements in accuracy and

computational burden, providing conservative results in terms

of feasibility for different values of Θ and N . The optimality

was also assessed with a nonlinear power flow after fixing

the power injections, showing satisfactory results; while the

model’s scalability was evident after using different size

networks. A sensitivity analysis was performed regarding the

accuracy of the linearized model to different unbalance levels.

Results showed that errors increased under incorrect estima-

tions of Θ when the maximum angle deviation of the system

increases. However, it was shown that setting an appropriate

value for the range angle reduces considerably the maximum

approximation error.
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