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Abstract

With cockpit crew costs being the second largest costs of an airline, making optimal use
of the available crew is very important. The productivity of the crew is limited by the
labor agreement and law regulations, which prevent the crew members from working
irregularly or excessively. In this thesis we present several methods to solve the crew
scheduling problem as to calculate the crew productivity based on the labor agreements
and law regulations.

The crew scheduling problem is decomposed into the crew pairing problem and the
crew rostering problem. A set covering approach is used to solve the traditional crew
pairing problem and a matching algorithm is used to solve the crew pairing problem
that arises when we allow flights being retimed. The crew rostering problem is tackled
by a minimum cost flow network method and a column generation approach. All the
methods are tested on a variety of flight schedules deviating in the number of night
flights included.
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1. Introduction

In addition to fuel costs, crew costs are one of the highest expenses of an airline. Crew
consists of cabin crew and cockpit crew, but the costs for cockpit crew members are
exceedingly larger than the costs for cabin crew members. As any other employee,
pilots and co-pilots receive a monthly salary, but their working days and hours can vary
heavily depending on the composition of the flight schedule. Beside the fact that a pilot
cannot perform multiple flights at the same time, restrictions on rostering crew members
consist of the location of the crew member at a given time and many labor agreements
and law regulations that protect the pilots from working excessively or irregularly. It
is of paramount importance that the pilots are fit during their duties. Therefore, the
labor agreements are a bit stricter when they concern flights during the night time hours
which may lead to a reduction of productivity of crew members who execute a lot of these
night flights. All these rules and regulations constitute the crew scheduling problem, the
assignment of individual crew members to flights such that the rosters conform with
labor and law regulations.

1.1. Literature Overview

Traditionally, airlines divide the crew scheduling problem into two separate problems,
the crew pairing problem and the crew rostering problem [1]. While the goal of the crew
pairing problem is to string the flight duties together to create pairings, unassigned work
packages that start and end at the same location, the crew rostering problem concerns
the assignment of these pairings to individual crew members. These problems are solved
separately because of the high complexity of the crew scheduling problem. However,
because solving these problems sequentially may lead to suboptimal solutions, some
researchers have tackled the crew rostering problem in its entirety [8, 20].

The objective of the crew scheduling problem can vary. Mostly, the crew scheduling

Figure 1.1: Crew Scheduling
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problem is solved when the number of available crew members has already been iden-
tified. The goal of the crew scheduling is then to balance the workload, to optimize
the robustness of the schedule or to account for individual preferences of crew members
[9, 11, 12]. But in order to have an idea of how many crew members should be hired,
another optimal crew scheduling problem should be solved previously to calculate the
minimum number of crew members necessary to perform a certain flight schedule. Be-
cause this crew scheduling problem does not assign individual crew members to pairings,
but determines the minimum number of crew members necessary to realize a schedule,
sometimes this problem is treated as an extended pairing problem [6]. The benefit of solv-
ing the optimal crew scheduling problem long in advance is that the flight schedule can
be adjusted accordingly. The most common formulation for the crew pairing problems
as well as the crew rostering problems is the set covering formulation [9, 11, 19, 15, 2, 20].
Due to the enormous number of variables considered, many scholars use a column gener-
ation approach to solve the set covering problem [2, 9, 11, 20]. A more detailed overview
of the various methods used by scholars to solve the crew scheduling problem is given
in Chapter 4.

1.2. Summary of Methods and Results

This thesis focuses mainly on optimal crew scheduling. Given various flight schedules, we
try to solve the crew scheduling problem for optimality of certain key performance indi-
cators such as the minimum number of crew members required. Since we will show that
the flight schedules we are dealing with already imply the construction of the majority
of the pairings, we focus mainly on the crew rostering problem. However, we do include
some solution methods to solve some of the pairing problems that are not previously
determined and as an extension, a graph matching method is used to compute optimal
pairings when we allow flight retimings. We exploit several mathematical methods to
solve the crew rostering problem such as a layered graph approach based on a minimum
cost flow network [16] to solve the minimum number of crew members necessary and
the minimum amount of idle time as well as a column generation approach for crew
scheduling [2]. Additionally, we created a bottleneck model that optimizes the schedule
for block time, the time the aircraft is in the air, and identifies the pairings that are the
least productive.

To compare the various mathematical approaches, we test their accuracy performance
as well as their computational performance on a variety of flight schedules based on the
schedule of the summer period of 2019 consisting of 677 flights per week. We solve the
daily pairing problem according to traditional method and solve it when we allow flights
being retimed and a slight improvement of retimed pairings is observed. While the
column generation approach to optimal crew scheduling allows for a lot of features and
has room for many additional constraints, its computation time shows very poor results
and even with rapid branching strategies it is not apt to solve our large crew scheduling
problem for optimality. The layered graph approach has very promising computational
results but the constraints that can be set on the roster-lines individually are very limited.
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However, it works well enough to analyze the impact of certain flight schedules for the
productivity of the crew. By testing the model on a variety of flight schedules, we see
how the reduction of flights during the night leads to increased productivity, but this
effect is only limited.

1.3. Research Questions

In order to structure this thesis, we initially formulated two research questions. The first
research question encompasses the formal exploration of the problem and gives rise to
the construction of a mathematical simulation model.

What is the exact impact of various sorts of night flights concerning the
additional labor requirements of night flights compared to day flights and how
do these requirements affect the productivity of the cockpit crew?

The second research question relates to the results of the mathematical model and
involves the practical relevance of the problem.

What are the exact costs we make when utilizing an extra aircraft and exact
costs we save on cockpit crew when we use that aircraft to replace night flights
with day flights?

We get back to the initial research questions in Chapter 9, when we summarize the
answers to these questions or explain why we have deviated from the initial research
questions.

In Chapter 2 and Chapter 3 we give a brief introduction of the mathematical concepts
we will use throughout this thesis. In Chapter 4 a thorough description of the problem
analysis is presented, including a general overview of the roster process as well as the
technical details involved. We propose several methods to improve the crew pairing
solution methods compared to the traditional crew pairing solution method in Chapter
5. A motivation of the solution methods for crew rostering is presented in Chapter
6 and we discuss the solution methods for crew rostering in Chapter 7. In Chapter
8 the results we obtained from the crew rostering solutions methods as well as the
crew pairing solution methods are discussed. These results are summarized and future
research directions are proposed in Chapter 9.

This work has been carried out at the airline Transavia within the team Integrated
Planning. The flight schedules and labor regulations used in this paper have been ex-
tracted from the airline.
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2. Integer Linear Programming

In this chapter we give an introduction to integer linear programming that is relevant for
this thesis. The mathematical concepts, notations and terminology will be extensively
used throughout this thesis. First we introduce the concept of linear programming.
Linear programming is a method for optimizing a given objective function over a subset
of Rn described by m linear inequalities. We write the linear program in the form of the
set covering problem, which we frequently use:

min

n∑
i=1

cixi (1.1)

s.t.

n∑
i=1

bi,jxi ≥ dj ∀j ∈ {1, . . . ,m} (1.2)

xi ≥ 0 ∀i ∈ {1, . . . , n}. (1.3)

In the given formulation, (1.1) is the objective function consisting of the variables xi to
be determined and the cost values ci ∈ R for i ∈ {1, . . . , n}. The inequalities represented
by (1.2) are the constraints with bi,j , dj ∈ R for all j ∈ {1, . . . ,m}. Inequalities (1.3)
are called the nonnegativity constraints and inequalities (1.2) and (1.3) together shape
the feasible region, which is the convex set over which the objective function should
be determined. An element in the feasible region is a feasible solution. For a feasible
solution x, an inequality is called tight if equality holds for x.

The minimum value of a linear program (LP) is related to the maximum value of
a dual linear program, which we can formulate relative to the primal linear program
(1.1)–(1.3) by:

max
m∑
j=1

djyj (2.1)

s.t.
m∑
j=1

bi,jyj ≤ ci ∀i ∈ {1, . . . , n} (2.2)

yj ≥ 0 ∀j ∈ {1, . . . ,m}. (2.3)

For a feasible solution x and y for the primal and dual linear program respectively,
the relation between the primal and the dual linear program can be formulated by the
following system of the inequalities:
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n∑
i=1

cixi ≥
n∑
i=1

( m∑
j=1

bi,jyj

)
xi (3.1)

=

m∑
j=1

yj

( n∑
i=1

bi,jxi

)
(3.2)

≥
m∑
j=1

djyj . (3.3)

The system of inequalities proves weak duality, meaning that the value of a feasible
solution in the primal linear program (1.1)–(1.3) is greater than or equal to the value of
any feasible solution in the dual linear program (2.1)–(2.3). The strong duality theorem
implies that the minimum value of the primal linear program (1.1)–(1.3) equals the
maximum value of the dual linear program (2.1)–(2.3), given that both are feasible. For
a proof of this theorem, we refer to [5]. Another important relation between the primal
and the dual program is the Complementary Slackness theorem. This theorem gives
necessary and sufficient criteria for optimality:

Theorem 2.1 (Complementary Slackness [5]). Let x and y be feasible solutions to the
primal and dual LP respectively. Then inequality (3.1) is tight if and only if (4.1) holds
and inequality (3.3) is tight if and only if (4.2) holds.

∀i ∈ {1, . . . , n} either ci =
m∑
j=1

bi,jyj or xi = 0 (4.1)

and ∀j ∈ {1, . . . ,m} either dj =

n∑
i=1

bi,jxi or yi = 0. (4.2)

In this thesis we often require the variables to be integer. Therefore, we add integrality
constraints xi ∈ Z for all i ∈ {1, . . . , n} to the system of equations. The resulting problem
is called an integer linear program (ILP):

min
n∑
i=1

cixi (5.1)

s.t.
n∑
i=1

bi,jxi ≥ dj ∀j ∈ {1, . . . ,m} (5.2)

xi ≥ 0 ∀i ∈ {1, . . . , n} (5.3)

xi ∈ Z ∀i ∈ {1, . . . , n}. (5.4)

Sometimes the ILP can only take variables that are 0 or 1. In this situation constraint
(5.4) can be further specified to xi ∈ {0, 1} and constraint (5.3) can be removed. The
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problem is then called a 0-1 ILP. While linear programs are solvable relatively easy
(in polynomial time), integer linear programs are much harder to solve (NP hard). In
this thesis we use the state of the art ILP-solver Gurobi to solve general integer linear
programs. Because we use other techniques to solve 0-1 ILPs throughout this thesis as
well, we will also discuss other methods to solve integer linear programs in this chapter.
Therefore, the general idea of an algorithm that is widely used to solve integer programs
called the branch and bound (B&B) algorithm is discussed. For a formal description of
this algorithm we refer to [4].

2.1. Branch and Bound

The general idea of the branch and bound algorithm is to split the feasible region into
multiple sets and then explore the feasible solutions in these sets systematically without
computing the value of every feasible solution. In the algorithm we make use of the LP-
relaxation, which is the system of inequalities when we remove the integrality constraints
while maintaining the bounds of the original problem. The algorithm evaluates the sets
of feasible solutions in a rooted tree structure where the root node contains the complete
feasible region. We describe the basic concept of the algorithm based on a minimization
problem. At every node an optimal solution to the LP-relaxation is computed and

• If the LP-relaxation on that node is unfeasible, the feasible region is not evaluated
any further and the tree is pruned by infeasibility.

• If the LP-relaxation on that node has an optimal solution that is integer, there is
no need to split the feasible region any further and the tree is pruned by integrality.
The objective value of the solution is an upper bound on the optimal solution.

• If the LP-relaxation on that node has a fractional solution and the objective value
of this solution is higher than the lowest upper bound, then there exists no further
better solution in the feasible region and the tree is pruned by bound.

• If the LP-relaxation on that node has a fractional solution and the objective value
of this solution is lower than the lowest upper bound, then the feasible region is
split into two parts where the fractional solution is excluded in both parts.

The efficiency of the algorithm depends heavily on the branching strategies incorporated,
which can be chosen specifically for the problem. Most commonly, when xi is a variable
with fractional value xi ∈ (0, 1), we split the feasible region by imposing integer value
xi = 0 or xi = 1 in the next node. In Chapter 7 a branching strategy is introduced that
best fits the problem considered. We use the branch and bound framework embedded
in a column generation approach to solve ILPs.

2.2. Column Generation

A well-known method to solve large-scale linear programs is column generation. The
idea of column generation is that the number of variables in the linear program we want

12



to solve is too vast to consider all variables so one starts with a small subset of variables
and only adds more variables if they have the potential to improve the objective function.
The variables not considered are implicitly equal to 0. The problem is decomposed into
two problems, the so called restricted master problem and the pricing problem. While the
restricted master problem is a restriction of the original problem with only a small subset
of variables considered, the pricing problem is a problem that identifies new variables
that can potentially improve the objective function of the initial master problem. We
keep iterating between the restricted master problem and the pricing problem to add
variables that can improve the objective function of the initial problem.

We return to the 0-1 integer program to describe the process and call the relaxation
of this problem the initial master problem (MP):

min
n∑
i=1

cixi

s.t.
n∑
i=1

bi,jxi ≥ dj ∀j ∈ {1, . . . ,m} (MP)

xi ≥ 0 ∀i ∈ {1, . . . , n}.

Because the initial set of variables {1, . . . , n} is too large, only a small subset of variables
I ⊂ {1, . . . , n} is considered, which can produce a feasible solution. The problem arising
accordingly is the restricted master problem (RMLP). By solving the RMLP we obtain
optimal primal and dual solutions, x and y respectively. Using the dual variable y, we
want to find a k ∈ {1, . . . , n} that minimizes the reduced cost ck = ck −

∑n
j=1 yjbk,j

of a variable. Note that this is the most violated dual constraint when the reduced
cost is negative. Because every dual constraint corresponds to a variable of the primal
linear program, the reduced cost can be interpreted as the potential improvement in the
objective function when we add the variable to the RMLP. This is called the pricing
problem. The pricing problem can yield an optimal solution of negative reduced cost.
In that case, adding the variable will reduce the objective function of the RMLP and
therefore improve the solution of the RMLP.

Then, this process is repeated by solving the RMLP again but now with the augmented
set I. When the pricing problem yields an optimal solution of nonnegative reduced cost,
the subset I of the RMLP already contains all the variables necessary to produce the
same optimal solution as the master problem. In this case one observes the optimal
solution of the RMLP and if this is integral, the process ends and the optimal solution
to the integer linear program is obtained. Else, we start the branching strategy and we
repeat the process in a new node. One can either choose to keep the subset of variables
that remain feasible after the branching or one can eliminate them.

13



3. Minimum Cost Flow Problem

An optimization problem that is widely taken as basic model within this thesis is the
minimum cost flow problem. In order to give the reader some knowledge about this
problem beforehand, we give a brief introduction about this problem. The general idea
of the minimum cost flow problem is to send a certain amount of flow with minimum
costs through a directed graph subject to capacity and flow conservation constraints. In
a general minimum cost flow problem, there are multiple supply and sink nodes, where
the flow will start and end respectively. The problems considered throughout this thesis
only contain one supply node and one sink node, hence the problem description is limited
accordingly in this introduction as well.

We introduce a digraph G = (V,A). The nodes V are connected by arcs a ∈ A where
A ⊆ V 2 and the nodes are appended with supply values sv, which are 0 for all nodes
v ∈ V \{s, t}. In order to make sure there exists a feasible solution, the sink node t
has the negative supply value of the start node s, hence ss = −st. See Figure 3.1 for
an example of such a digraph. Every arc is appended with cost ca, minimum capacity
la ≥ 0 and maximum capacity ua. The variable we want to determine is the amount of
flow xa for each a ∈ A. The flow on arc a should at least be as much as the minimum
capacity, but cannot exceed the maximum capacity of the corresponding arc:

la ≤ xa ≤ ua ∀a ∈ A.

For each node v ∈ V , we define the set of arcs going out of the node as δ+(v) = {a ∈
A|a = (v, w) for w ∈ V } and the set of arcs going into the node as δ−(v) = {a ∈
A|a = (w, v) for w ∈ V }. Evidently, we want that the flow going out a node equals
the flow going in that node except for the start and sink nodes. This leads to the flow
conservation constraints: ∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V.

Now we can formulate the minimum cost flow problem in terms of a linear program

min
∑
a∈A

caxa

subject to xa ≤ ua ∀a ∈ A
xa ≥ la ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V.

(3.1)

There are several algorithms that can solve a minimum cost flow problem. One can

14
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Figure 3.1: Minimum Cost Flow Network

solve the problem by traditional LP solution methods such as interior point method or
the simplex method. We can also use the state of the art solver Gurobi. However, this
problem’s unique structure allows more efficient algorithms to solve this problem such as
the network simplex algorithm or capacity scaling algorithm, which are computationally
very fast algorithms. In this paper we use the capacity scaling algorithm to solve the
minimum cost flow problem.

The reason the minimum cost flow problem is emphasized, is because it attains a
beneficial quality based on the following theorem.

Theorem 3.1. [5] If u, l and s are integer valued and (3.1) has an optimal solution,
then (3.1) has an optimal solution that is integral.

This theorem points out that the solution of the integer program is exactly the same
as the solution of the linear program. Therefore, we can use solution methods to solve
the linear program in order to obtain the solution of the integer program. Even though
in many of the applications throughout the paper, the traditional network flow model is
not suitable to describe the entire problem we want to solve, we find out that using its
formulation can help solving resembling problems.

3.1. Matchings

Another optimization problem that is discussed in one of the solution methods is the
matching problem. Therefore, we briefly discuss this problem and its terminology in
this chapter. We introduce an undirected graph G = (V,E). A matching M is a subset
of edges where no two edges share a common node. A node that is not an endpoint of
an edge in the matching M is called an M -exposed node. A maximum matching is a
matching with the minimum number of exposed nodes. A perfect matching is a matching
in which the edges contain all the nodes.

In addition to this we allow weights we on all the edges e ∈ E. The weight of the
matching is the sum of the weights of the edges in the considered matching. In this the-
sis we consider maximum weight matchings and maximum weight maximum cardinality
matchings. In the maximum weight matching problem we optimize the matching for
the maximum weight, while in the maximum weight maximum cardinality matchings we
optimize for the maximum weight under the constraint that the matching is maximum
as well. In Figure 3.2 is an example of two matchings indicated in red. The left-hand
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Figure 3.2: Matching examples

matching is a maximum weight matching and the right-hand matching is a maximum
weight maximum cardinality matching. In this case, the right-hand matching is also a
perfect matching since no node is M -exposed. To solve these matching problems, we
use an algorithm based on the blossom method for finding augmenting paths and the
primal-dual method for finding a maximum weight matching [5].
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4. Problem Analysis

In this chapter we will give a general overview of the planning stages and we specify where
this thesis fits within the literature that exists for crew pairing and crew rostering. The
problem analysis and the corresponding technical details are also thoroughly described.

4.1. Overview Planning stages

There are four main stages within airline scheduling: the first stage is the flight schedul-
ing problem (FSP) where the flight schedule is created that contains the departure times,
arrival times, origins and destinations while taking into account passenger demand and
ticket price. The second stage is the fleet assignment problem (FAP), where is deter-
mined which aircraft type will be used for which flight such that all flights are covered.
Then the aircraft maintenance routing problem (AMRP) aims to assign a specific air-
craft to specific flights while keeping maintenance feasibility in mind. The last is the
crew scheduling problem (CSP), which is separated into two different problems: the
crew pairing problem (CPP) and the crew rostering problem (CRP). The crew pairing
problem involves the creation of so-called pairings or work packages that can be executed
by a random crew member. After the crew pairing, these pairings will then be assigned
to specific crew members such that an individual roster is created conform labor en law
restrictions. This is called the crew rostering problem.

Traditionally, airlines solve airline schedule planning problems sequentially where the
solution of one problem is the input of the consecutive problem (see Figure 4.1). This
may result in very poor planning results, because an optimal result of one stage may
cause undesired restrictions for the next planning stage. Although it seems efficient to
integrate these planning stages, little research has been done so far on solving these
planning stages integrally due to the many restrictions and computational complexity of
each individual planning stage. The research on each of the planning stages separately
as well as the research on some of the planning stages integrally that exists is summa-
rized [7]. Most of the research on the planning stages solved integrally take the crew

Figure 4.1: Planning Stages
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scheduling problem as the objective and involve the fleet assignment and maintenance
routing problem as constraints [10, 13]. Others aim to solve the crew scheduling problem
integrally, optimizing crew pairing and crew rostering simultaneously [20, 8].

This thesis aims to solve the crew scheduling problem directly after the flight schedule
planning assuming fleet assignment and maintenance routing are solved in the flight
schedule planning stage. Since this thesis is limited to cockpit crew members, the crew
scheduling problem considered only consists of the scheduling of cockpit crew members,
which are captains and first officers. Because the pairing problem considered has a very
specific character, we decided to solve the pairing problem and the rostering problem
separately.

4.1.1. Crew Pairing

The crew pairing problem takes as input the flight legs in the flight schedule that need
to be covered. A leg is a scheduled flight from take-off to landing. Legs are then grouped
to form duty periods, which are series of legs together that form a work day for crew.
Duty periods are subject to many restrictions such as that the legs of one duty period
should follow each other sequentially in time and space. But duty periods should also
conform with a minimum turn around time, the time between two consecutive legs.

Figure 4.2: Example of a duty period in green and leg in black

Sometimes a duty period ends at a different airport than it starts. In that case the
crew can have a lay-over until the next duty period begins. Also, a duty period can
start at a different base than it ends. In this thesis we consider bases in Amsterdam,
Rotterdam and Eindhoven. Any airport that is not a base is called a foreign airport.
The duty periods are finally converted to pairings, which are complete work packages
for crew members conform with all labor and law regulations, starting and ending at the
same base appended with check-in time before the first departure and check-out time
after the last landing.

Figure 4.3 is an example of a pairing that contains four legs. Between the legs are the
turn around times, which is the time at an airport where the passengers leave and enter
the aircraft and the aircraft needs time depending on the activity of the aircraft (fueling,
cargo, etc). Before the departure of the first flight in a duty period is the check-in time
and after the last flight of a duty period we have the check-out time. The check-in time
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Figure 4.3: Example of a pairing with 4 legs

Figure 4.4: Example of a pairing with taxi attached

is exactly one hour before the first departure and the check-out time is exactly half an
hour past the last arrival. The complete pairing cannot exceed the maximum amount
of working time, the time from check-in to check-out. Note that the pairing in Figure
4.3 can be split into two separate pairings. Duty periods consisting of two legs that
can be extended with another duty period of two legs to form a longer duty period and
eventually a feasible daily pairing are called link duty periods and the associated pairings
containing four legs are called double pairings. Similarly, pairings that only contain two
legs are called single pairings. Another example is illustrated by Figure 4.4. In this
pairing the duty period starts and ends in a different base, hence the duty period can
only be extended to a pairing by including a taxi ride from Rotterdam to Amsterdam.
Note that the taxi ride is appended before the duty period in the pairing of Figure 4.4.
The taxi ride could have been appended after the duty period as well.

Most of the literature devoted to the crew pairing problem focuses on pairing optimiza-
tion with respect to pairing costs. However, the flight schedules considered throughout
this paper do not allow a lot of room for optimization. This is because the flight schedule
consists vastly of outbound legs followed by inbound legs, starting and ending at the same
base, which immediately constitutes the pairing. The double pairings such as Figure 4.3
have been pre-assigned by the guidelines in the so-called crew linking document [17], a
document of pre-assigned pairings that determines which link duty periods are merged
to form double pairings as well as which legs are merged to form lay-overs. But there
still remains some pairing constructions where the crew linking document does not have
strict guidelines for and in many cases the guidelines of the crew linking document are
not optimal. In this thesis we use the pairings constructed by the crew linking document
as well as our own pairing optimization model. We also include a pairing retiming model
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where we allow slight changes in aircraft departure and arrival times to potentially create
better pairings. Unlike the crew scheduling models with pairing retiming possibilities of
[10] and [13] that use column generation approaches, the unique composition of the legs
in the flight schedules considered gives us the opportunity to use a simpler approach of
pairing retiming based on graph matching.

4.1.2. Crew Rostering

When all the pairings are created, the next step in the crew scheduling problem is
to assign the pairings to individual crew members to create a roster-line, a sequence
of pairings and/or other duties assigned to one individual crew member conform law-
regulations and labor requirements. All the roster-lines together make up the roster. We
separate two kinds of crew rostering problems.

The first problem is the balanced or gross crew rostering problem. In this problem
we assume to have a fixed number of crew members and the pairings are combined with
rest periods, vacations, training duties and weekends so that eventually individual work
schedules are generated. The goal of this process can be to equally divide the work load
while taking into account individual preferences of crew members, but scholars vary in
their goal when studying the gross crew scheduling problem. Some try to solve the crew
scheduling problem with the objective to create schedules that have regular work times
or contain work patterns [9, 11], while other scholars attach more value to the robustness
of the schedule [3].

The second crew rostering problem is the optimal crew rostering problem where we
allow the number of crew members to vary, but we limit ourselves to rostering the
pairings only. The goal is then to minimize certain key performance indicators such as
the minimum number of required crew members to perform a schedule, the total idle
time of the crew members in the roster or the total number of working hours. This roster
process is part of the manpower planning stage, where is determined long in advance
how many crew members should be hired and how their hours should be allocated. By
doing this process beforehand, we can still allow for minor modifications in the flight
schedule if that turns out to improve some of the key performance indicators. Most of
the research has been done for gross crew rostering. In this thesis we focus mainly on
optimal crew rostering.

A traditional way to state either one of the crew rostering problems is the set covering
problem, used by many scholars [9, 11, 19, 15, 2, 20]. Since the set covering problems is
NP-hard and the crew rostering problems considered by the scholars differ, the solution
methods of these scholars vary. Most of the crew rostering approaches based on the
set covering problem contain column generation techniques where some combine column
generation with heuristic approaches [2, 9, 11] and others combine pure ILP solution
methods with constraint logic programming to create a hybrid column generation ap-
proach [20]. Other approaches are based on scatter search algorithms [12], a network flow
formulation [16] and a solution method based on a LP-neighborhood structure within
tabu-search metaheuristics [19]. In this thesis we use a network flow formulation [16] as
well as a column generation approach [2] and a branching strategy accordingly [15].
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Figure 4.5: Example of a roster-line of 5 days including free time period

Similarly as the crew pairing problem, the crew rostering problem is also bound by
limitations imposed by the labor agreements and law regulations. To remedy fatigue of
the crew, every pairing is followed up by a mandatory rest period. The length of the rest
period depends on the check-out time of the pairing, where is taken into account that
working irregular hours requires more rest time to recover. Also, a complete roster period
of 35 days contains at most 20 working days. This corresponds with the traditional crew
working pattern of maximum 4 days of work and 3 days of free time, which we use
throughout this report. The free time period consists of a continuous period of 72 hours
which may or may not overlap with the rest period of the last pairing depending on the
check-out time of the last pairing. An example of a 5-day roster-line including free time
at the end is given by Figure 4.5. Note that in this case the free time period indicated
by the green bar overlaps with the rest period of the last pairing. In the next section
we specify the details in the labor agreement and law regulations that constitute the
guidelines for the crew pairing and crew rostering problem.

4.2. Technical details

As stated before, the crew pairing stage and the crew rostering stage are solved separately
in this thesis. Therefore we also separate the labor regulations that concern the crew
pairing from the labor regulations that concern crew rostering although they sometimes
do overlap. All the specifications of these regulations have been extracted from the labor
agreement [18]. Because in all the cases mentioned the labor agreement is stricter than
the law requirements [14], the law requirements are omitted in this chapter. Throughout
this thesis we focus mainly on the impact of night flights within a flight schedule. In
the definition of crew rostering, a night flight is a flight for which the pairing in which
it is contained has a check-out time between (and not included) 01:00 and 06:00. The
corresponding pairing is called a night pairing.

4.2.1. Crew Pairing

In the crew pairing stage we discern different labor agreements divided in the maximum
work time, the next check-in and check-out times and the minimum required rest time
after a pairing. First we describe the maximum work time, which is the time from the
check-in to the check-out of a pairing. The length of the maximum work time depends
on the check-in time, where is taken into account that crew members can work more
when they work regular hours. Therefore, the check-in time has a parabolic relation
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with the maximum allowed working time, which is given in Table 4.1

Check-in 04:00-05:45 05:46-08:00 08:00-13:00 13:00-15:45 15:45-19:00

Max work 12:00-13:30 14:00-15:55 16:00 15:55-14:00 13:40-12:00

Table 4.1: Maximum working hours per check-in time frame

The check-in time of a certain pairing also affects the check-in time of a pairing the
next day. In order for crew members to keep a certain structure in their time table
and to limit the number of changes between early workdays and late workdays, several
rules have been incorporated in the labor agreement. In Table 4.2 the limitations on the
check-in times given the previous check-in times are presented by the minimum number
of hours between the first and the second check-in time. An example of how this pairings
regulation works in in practice is given by Figure 4.6.

Check-in 00:00-02:29 02:30-03:59 04:00-05:59 06:00-07:59 ≥ 08:00

Next Check-in 27h later 26h later 24h later 23h later ≥ 05:30

Table 4.2: Minimum number of hours between check-in time of two pairings

Figure 4.6: Example where pairing at day 4 cannot be sequential to pairing at day 3

Similarly for check-in time, the check-out time of a pairing also affects the next check-
in time of a pairing. The restrictions on the next check-in time are first defined by
the mandatory rest requirement after a pairing, which also depends on the check-out
time. Additionally, there are extra check-in restrictions to prevent early pairings to be
sequential to late pairings. In Table 4.3 we describe the minimum rest and the restrictions
imposed on the check-in time of the pairing the next day based on the check-out time of
the previous pairings (given that the previous pairing starts before or including 23:59).

Check-out until 02:00 02:01-03:00 03:01-04:00 04:01-05:00 from 05:01

Rest 13h 13:30h 14h 15h 29h

Next Check-in Not in
23:00-06:59

Not in
23:00-07:59

Not in
23:00-08:59

Not in
23:00-09:59

No
Restriction

Table 4.3: Rest and restrictions on check-in time based on previous check-out time
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Note that there is no restriction on the check-in times for pairings ending from 05:01,
since the 29 hours rest requirement already prohibits the next pairing to start early in
the morning.

4.2.2. Crew Rostering

Labor agreements concerning crew rostering are divided in requirements regarding recu-
peration periods and regulations on free time periods. First we discuss the recuperation
periods. Recuperation periods are continuous periods of 24 hours in which a crew mem-
ber cannot work due to recuperation of specific pairings. The recuperation period is
positioned directly after the pairing which generates the recuperation period and may
always overlap with the rest corresponding with that pairing, but may never overlap
with the free time. There are exactly three situations when a recuperation period is
generated:

• Three sequential pairings generate a recuperation period if exactly one of these
pairings has a check-out time after 03:00. The recuperation period is placed exactly
after the pairing which ends after 03:00.

• Two sequential pairings generate a recuperation period if exactly one of these
pairings has a check-in time before 02:30. The recuperation period is placed exactly
after the pairing which starts before 02:30.

• Three sequential pairings generate a recuperation period if exactly one of these
pairings has a check-in time before 03:30. The recuperation period is placed exactly
after the pairing which starts before 03:30.

Figure 4.7: Example of a recuperation period within a roster-line

See Figure 4.7 for an example of a recuperation period that is generated by the check-
out time of last pairing. A pairing that has the potential to generate a recuperation
period is called a recuperation generating pairing. Note that not every recuperation
generating pairing actually generates a recuperation period.

The next regulations we consider are the regulations on free time periods. As stated
earlier, a roster period spans 35 days from which at most 20 are working days and at
least 15 are free time days. The weekly working pattern corresponding to this contains
(maximum) 4 days of work and 3 days of free time. This free time period contains
exactly 72 hours, but the exact starting time of the free time period depends on the last
pairing before the free time following these three rules:
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• If the last pairing before the free time generated a recuperation period, then the
free time period starts exactly after the recuperation period rounded above by the
hour (see Figure 4.7).

• If the last pairing before the free time period is a night pairing, but does not
generate a recuperation period, then the free time period starts after the rest of
the last pairing rounded above by the hour.

• If the last pairing before the free time period has a check-out time between and
including 20:01-01:00, then the free time period starts exactly at 05:00.

• If the last pairing before the free time period has a check-out time before and
including 20:00, then the free time period starts exactly at 01:00.

Figure 4.8: Example of a night pairing before free time

In Figure 4.8 is an example of a pairing that ends past 01:00 and therefore affects
the position of the free time period. The night pairing before the free time causes the
earliest possible check-in time of the pairing past the free time to be late on day 5, which
may or may not affect the productivity of the crew as we will show in the Chapter 8.
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5. Solution Methods for Pairing and
Retiming

As mentioned before, the crew linking document determines vastly how the pairings
should be constructed. However, the pairings created in the crew linking document may
very well be suboptimal. This information gives rise to create the pairings in a different
way than previously determined. This chapter contains solution methods to solve the
pairing problem according to the crew linking document as well as solution methods to
solve part of the pairing problem differently. Additionally, we solve the pairing problem
when we allow for minor changes in the flight schedule. First we describe how we create
the pairings via the crew linking document.

5.1. Classical Pairing Creation

The goal of this stage is to assign all the scheduled legs to pairings, such that all the
legs are exactly in one pairing and the crew linking document is warranted. First the
duty periods are created. Therefore, we take the set of all legs and create all the duty
periods that have been preassigned by the crew linking document, which are duty periods
containing 4 legs as well as lay-overs. All the legs that are contained in the document are
deleted from the leg set and the remaining legs are sorted by aircraft registration. Then
the legs are checked for triangle duty periods; these are duty periods that have two stops
at a foreign airport before they return to a base. After creating duty periods containing
these legs and removing them from the leg set, duty periods are created for legs that
return to a different base than where they started and hence they are deleted from the
leg set. Finally, all duty periods involving regular outbound and inbound are created
and deleted from the leg set. When the leg set is empty, the process is terminated and
all the legs have been included in exactly one duty period. The pseudo code of this
entire process is given by Algorithm 1.

When all the legs have been assigned to duty periods, duty periods are extended to
pairings. Therefore the duty periods have to be extended such that the beginning base
is exactly the same as the end base. This process takes two steps.

First the lay-over pairings are completed by extending the duty period that ends at
a foreign airport with the duty period that starts at that foreign airport the next day
such that the duty period starts and ends at a base. In this way two duty periods can
be converted to one two-day pairing. An example of such a lay-over pairing is given by
Figure 5.1.
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Data: Leg set
Result: Duty periods
initialization;
for legs in leg set do

Check if leg is in leg set;
if leg in crew linking document then

Create duty period involving all legs in crew linking document;
Delete these legs from leg set;

end

end
Divide remaining leg set into leg set per aircraft registration;
for aircraft registration do

if triangle duty period recognized in leg set then
Create duty period involving all legs in triangle sequence;
Delete these legs from leg set;

end
if duty period involving different home bases recognized in leg set then

Create duty period involving all legs in this duty period;
Delete these legs from leg set;

end
if regular outbound-inbound duty period is recognized in leg set then

Create duty period involving all legs in this duty period;
Delete these legs from leg set;

end

end

Algorithm 1: Pseudo code to create duty periods

26



Figure 5.1: Example of a pairing with lay-over

Secondly, every pairing starting at a base has to end at the same base. Therefore a
taxi ride has to be appended to every pairing that ends at a different base than where
it starts. However, a duty period starting at Amsterdam and ending in Rotterdam can
have a crew from Rotterdam being taxied to Amsterdam before the duty period or it
can have a crew from Amsterdam being taxied to Rotterdam after the duty period.
Generally, we use the following guideline as to where to append a taxi; if in anyway the
pairing can become a night pairing because of the taxi, we append the taxi in such a
way that the pairing does not become a night pairing. For every duty period that either
start or ends in Amsterdam, we append a taxi such that the crew starts and ends in
Amsterdam. For a pairing that starts in Eindhoven and ends in Rotterdam or the other
way around, we append a taxi such that the pairing starts and ends at Rotterdam. For
exact taxi times see Appendix A.2. For an example of a leg set being converted to a
pairing see Appendix A.3.

Finally, the pairings are completed by extending the pairing with pairing check-in
time which is one hour before the first departure and with pairing check-out time which
is half an hour after the last arrival. Additionally, the pairing next check-in time is
attached to every pairing based on the rest requirements in Table 4.3, the check-in
limitations of Table 4.2 and recuperation periods. Instead of appending recuperation
periods after three or two pairings in a row, a recuperation period is scheduled after
every recuperation generating pairing, because the difference in results of the schedules
we will test are negligible (see Chapter 9).

5.2. Optimal Pairing

In this section we try to optimize part of the pairing problem by ignoring the crew linking
document. The pairing part we want to optimize are the link duty periods. These are
the duty periods that can be combined with other link duty periods on the same day to
form double pairings, which are pairings containing 4 legs. In this way a crew member
can do more than two flight legs in one day and therefore enhance his/her productivity.
Basically, we want to maximize the number of double pairings under the constraint that
the turn around times between the legs are sufficient and the maximum work time does
not exceed the labor constraints of Table 4.1, but we allow another prioritization of the
variables as well.
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More specifically, let f ∈ F be all the link duty periods in the schedule. The link duty
periods contain two legs, an inbound and an outbound leg. Let P ∈ P represent a feasible
pairing and P the set that contains all feasible pairings. These pairings can contain either
4 legs (double pairing) or 2 legs (single pairing). We define dP , dtP and tP as the work
time, departure time and turn around time respectively for every pairing P . We define
the cost of a pairing cP as 1 for single pairings P and cP = dP

dmax
+ tmin

tP
∈ [1.5, 2] for

double pairings. In this way we make sure it is always cheaper to create double pairings
instead of two single pairings. The problem can then be formulated as a weighted set
covering problem:

min
∑
P∈P

cPxP

subject to
∑

P∈P: f∈P
xP = 1 ∀f ∈ F

xP ∈ {0, 1} ∀P ∈ P.

(5.1)

Contrary to the set covering problem for crew rostering, solving this set covering
problem is relatively easy, because we solve the pairing problem per day. This limits
the number of feasible pairings considered. Consequently, the number of feasible double
pairings is limited and enumerable. Note that it is possible that the optimal solution
does not provide the maximum number of double pairings, since we work with a cost
function per pairing. In order to get the maximum number of double pairings, we take
cost function cP = 1 for every double pairing P .

5.3. Retiming

In addition to the traditional pairing problem, we try to solve another pairing problem
where we allow for minor changes in the schedule. Making minor changes in the depar-
ture and arrival time of a flight can ensure that certain links become feasible, because
the minimum turn around time between flights is slightly modified or because the to-
tal pairing time does not exceed the maximum turn around time. An example of an
unfeasible pairing becoming feasible by retiming is given by Figure 5.2. By retiming
the AMS-OLB pairing 10 minutes later, the turn around time in AMS indicated by the
black arrow extends and reaches its minimum required. In this way the pairing becomes
feasible. Although this problem can also be formulated as a set covering problem, the
number of feasible pairings increases rapidly when we allow for changes in departure
time. Therefore, we introduce a new method to solve this pairing problem.

Let f ∈ F be all the link duty periods in the schedule and create for each link duty
period 3 copies f1, f2 and f3 where each copy represents the same link duty period with
a minor change in arrival and departure time. We create an undirected graph G = (V,E)
where the nodes are all the copies of the link duty period, f1, f2 and f3 for all f ∈ F .
In addition to these, we create control nodes f4 and f5 for all f ∈ F . Edges (f i, f j) are
created within the same link duty period nodes for all i ∈ {1, 2, 3}, j ∈ {4, 5} and for all
f ∈ F with artificial high weight we = c. Within different link duty period nodes, we
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Figure 5.2: Example of unfeasible pairing, becoming feasible by retiming

only create edges between the nodes if the corresponding double pairing of the node is
feasible. Note that the feasibility depends on the copy version of the link duty period
nodes, since the copies differ in departure and arrival time. Formally, for all f, g ∈ F and
1 ≤ i, j ≤ 3, edge (f i, gj) is created if and only if f i and gj is a feasible double pairing.
The weight on edge e is we = 1

cP
where cP is the cost of double pairing P defined in

Section 5.2. For an example of such a graph see Figure 5.3.

f1

f4 f2

f5 f3

g1

g4g2

g5g3

h1

h4 h2

h5 h3

i1

i4i2

i5i3

Figure 5.3: Example of an unmatched graph with 4 link duty periods f, g, h, i ∈ F

Now a maximum weight maximum cardinality matching in G is created. The match-
ing gives the copy versions of the link duty period that are used as well as the double
pairings that are created given the considered weight. The maximum cardinality prop-
erty guarantees that the maximum number of double pairings is formed. The artificial
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cost c imposes that we can only match one of the copies of a pairing but not multiple
copies. The matching is a maximum cardinality matching, but often not a perfect or
near-perfect matching. This is because often a number of nodes can only be matched
with one other node, but only one of these nodes can be matched leaving the other nodes
exposed. This is also visible in the maximum weight maximum cardinality matching M
in Figure 5.4. Note that node f2 and i2 are M -exposed. The artificial high weights on
the edges within the nodes of link duty period g are such that at most one link duty
copy nodes of g can be matched, which leaves the nodes f2 and i2 M -exposed.

Similarly as the set covering problem in Section 5.2, besides finding the maximum
number of double pairings, it can also be interesting to find those double pairings that
sum up to the highest total weight. Therefore, we also make a maximum weight match-
ing, while not imposing maximum cardinality. Note that the given structure of the
control nodes still ensures that at most one copy of a link duty period can be matched.

f1

f4 f2

f5 f3

g1

g4g2

g5g3

h1

h4 h2

h5 h3

i1

i4i2

i5i3

Figure 5.4: Example of a maximum weight maximum cardinality matching.
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6. Motivation of Solution Methods for
Crew Rostering

In order to better understand the magnitude of the problem, past planned schedules are
observed and analyzed for the impact of the night pairings. The schedules concerned are
cockpit crew schedules from the entire year from 2014 to 2017. We distinguish different
features of night pairings and we count how much each of these features occur and
how this affected the productivity consequently. Eventually, these effects are converted
to a loss of productivity in hours. We will see that the determination of the loss of
productivity gives rise to a certain approach for a solution method discussed in Chapter 7.
The three main features of night pairings we distinguish are night pairings that generate
recuperation periods, night pairings that generate 29 hours of rest and night pairings
that are scheduled before the free time period and therefore affect the productivity.

6.1. Night Pairings with 29 hours rest

As described in Chapter 4, the rest associated with a pairing depends on the check-out
time. In particular, pairings that have a check-in time before 23:59 and check-out time
after 05:00 have an associated rest period of 29 hours (see Table 4.3). In Figure 6.1 is
presented how frequently this occurs per year.

Figure 6.1: Frequency of 29h rest pairings
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The loss in associated productivity can be described as the number of hours of extra
rest due to these pairings.

6.2. Recuperation

Although there are many pairings that can generate a recuperation period, very few
recuperation periods are actually generated. This is because the actual roster system
Tbids uses various tricks to prevent recuperation periods from being generated. One of
these tricks is to schedule a non-flight duty such as a stand-by between flight duties, such
that the recuperation generating pairings are not sequential anymore. In Figure 6.2 is
indicated how many recuperation periods are assigned. The rostering system Tbids was
introduced in 2016 and the use of these tricks of this system is clearly visible in Figure
6.2.

Figure 6.2: Frequency Recuperation Periods

In order to estimate the loss in crew productivity due to recuperation generating
pairings, we subtract the mandatory rest requirements from the recuperation period,
since the rest requirement is associated with every pairing.

6.3. Night Pairings before Free Time

In the last section we consider the night pairings that are positioned before the free time
period, which subsequently affects the position of the free time period (see Figure 4.8).
In Figure 6.3 is indicated how frequently this occurred.
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Figure 6.3: Frequency night pairings for free time

Unlike recuperation periods, night pairings have been increasingly assigned before
the free time period since the introduction of the new rostering system Tbids in 2016.
In contrast to normal pairings before the free time, night pairings cannot have their
associated rest overlapped with the free time period. We try to estimate the loss in
productivity caused by this feature of night pairings by projecting the average overlap of
normal pairings with the free time period to night pairings multiplied by the frequency
of night pairings before the free time.

6.4. Conclusion

Figure 6.4: Total hours of unavailability due to night pairings

33



The total estimated loss of productivity in hours is given in Figure 6.4. Important to
note is that the loss in productive hours is a loss in available hours of the crew member.
That is, the hours indicated by Figure 6.4 are hours that crew members could not work
due to the effects of night pairings, but that does not necessarily mean that the crew
members would have worked if they were available. This completely depends on whether
or not there is a pairing available for this crew member and in fact it is likely that the
negative effects of night pairings have been positioned in the part of the roster where a
loss in availability will not cause a loss in productivity. This is why this data analysis
does not provide enough insight in the impact of night pairings on the productivity and
calls for a solution method that estimates the crew productivity within the context of
the entire schedule.
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7. Solution Methods for Crew Rostering

The goal is to create a model that estimates the crew productivity based on the number
of night pairings. Chapter 6 has illustrated that it is hard to calculate the impact per
night pairing, because this impact is related to the rest of the pairings. Therefore, the
impact of night pairings is calculated within the context of the complete flight schedule.
In order to find out what part of the crew productivity is due to night pairings, we test
on a variety of schedules, where some schedules involve many night pairings and other
schedules involve fewer night pairings. In this way the difference in productivity defines
the impact of the night pairings within a certain schedule.

We use certain key performance indicators (KPIs) that define the productivity of the
crew. The most dominant KPI is the minimum number of crew members necessary such
that a certain schedule is feasible, that is, such that all the pairings can be performed
at least by one crew member and the labor regulations are warranted. However, it
can happen that n pairings can be performed by m crew members, but n + 1 pairings
can also be performed by m members. In this case the crew is more productive, but
this is not indicated by the first KPI. Therefore we add two additional KPIs. First we
calculate the full time equivalent (FTE), which is the total amount of time required to
realize the schedule including idle time relative to the total possible work time. Next
we calculate the total idle time (TID), which is the amount of time a crew member
is available but does not work. This can be either because no pairing is available or
because the corresponding crew member is currently in its free time or recuperation
period. Note that the TID and FTE are interchangeable as one can easily calculate the
total amount of idle time by calculating the necessary FTE, multiply it by the total
amount of possible work time and subtract the total amount of work and rest time. In
Figure 7.1 an example of the concepts of idle time and full time equivalent is given. The
length of the long red arrow divided by the total length of the blue arrows is the FTE
and the total length of all the green arrows is the TID.

The problem can be solved in several stages. First, we use one of the methods described
in Chapter 5 to create feasible pairings. All these pairings together make up the pairing
schedule, a timetable of pairings and associated rest periods. Secondly, the minimum

Figure 7.1: Example of idle time and full time equivalent
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number of crew members necessary to perform a certain pairing schedule is calculated.
Then, given the minimum number of necessary crew members, the problem is optimized
for the minimum amount of FTE and total idle time. The resulting KPIs determine the
productivity of the crew. In this chapter we present several methods to optimize for the
minimum number of crew members required and the minimum amount of idle time and
FTE. Additionally, a method is proposed to check which pairings are dropped when we
maximize the amount of block time.

7.1. Set Covering Approach

The first problem that needs to be solved is to calculate the minimum number of crew
members necessary to realize a certain schedule. A standard way to tackle this problem
is the set covering approach. Let F be the set of pairings that need to be covered and let
P be the set of the feasible roster-lines. A roster-line is a sequence of pairings conform
law-regulations and labor requirements, hence for all f ∈ F , there exists a P ∈ P such
that f ∈ P . Let xP be the decision variable for each roster-line P ∈ P. That is, the
decision variable xP has value 1 if roster-line P is assigned to a crew member and has
value 0 otherwise. The ILP can then be formulated as follows.

min
∑
P∈P

xP

subject to
∑

P∈P: f∈P
xP ≥ 1 ∀f ∈ F

xP ∈ {0, 1} ∀P ∈ P

(7.1)

The objective function of the ILP aims to minimize the number of crew members nec-
essary to realize the schedule where the first constraint ensures that every pairings is
performed at least once. When a pairing is contained in multiple roster-lines, one can al-
ways take the subset of the roster-line to obtain an exact solution. The second constraint
ensures that we have an integral solution.

The problem with this solution method is that the number of feasible roster-lines
increases exponentially when the number of pairings considered increases. Taking into
account all the regulations and labor requirements that should be checked for each
roster-line, enumerating all roster-lines and solving the ILP becomes prohibitive.

7.2. Basic Minimum Cost Flow Model

In this section we try an alternative approach based on graph theory. At first, we assume
that crew members have no days off or free time periods and can work continuously as
long as the labor and law requirements (except those concerning days off and free time)
are satisfied. Later we introduce a method that includes days off and free time along
with the concerning labor and law requirements.

All pairings f ∈ F have a check-in time f1 and check-out time f2. We introduce a
digraph G = (V,A). The node set V can be written as a disjoint union V = VF1 ∪ VF2 ∪
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Figure 7.2: Basic Network with |K| = 2 and f, g, h, i ∈ F

VK ∪{s}∪{t} where VF1 and VF2 contain the pairing check-in and check-out time nodes
f1 and f2 respectively for all f ∈ F . VK consists of the crew nodes k ∈ K where |K| is
the maximum number of start crew members. Additionally, we add a source node s and
sink node t to V . Hence |V | = 2|F |+ |K|+ 2.

For every crew member k ∈ K, we create an arc (s, k) from the source to the crew
nodes. For every crew member k ∈ K and every pairing f ∈ F , we add arcs (k, f1) from
all crew nodes to all pairing check-in nodes. Similarly, for every pairing f ∈ F we create
arcs (f2, t) from pairing check-out nodes to the sink node. We create arcs (f1, f2) for
all f ∈ F , between all the check-in nodes to the check-out node of the corresponding
pairing. Finally, for every pair of pairings, f, g ∈ F , we create arcs (f2, g1) if the
law regulations and labor requirements allow pairing g to be sequential to pairing f .
For an exact overview about the law and labor rules concerning pairings allowed to
be sequential to each other, see Section 4.2. The total number of arcs then becomes
|A| = |VK | + |VK | · |F | + 2|F | + |S|, where the set S contains the arcs that connect
pairings to other pairings. This number is unknown until all pairing combinations are
checked for feasibility, but an upper bound is given by |F | · |F − 1|, since no pairing is
connected to itself. An example of such a network is given by Figure 7.2, where the
network is restricted to 2 crew members and 4 pairings.

7.2.1. Minimum Crew Required

The first objective we have is to find out the minimum number of crew members necessary
to perform the schedule. We append the nodes with supply data sv where sv has value
|K| if v = s and sv has value −|K| if v = t. All the other nodes have supply 0.
The arcs are appended with costs, minimum capacity and maximum capacity values
(c, umin, umax). Because we want to minimize the number of crew necessary, we add
arc values (c, umin, umax) = (1, 0, 1) to a = (s, k) for all k ∈ K. In order to ensure
that every pairing is covered, we add values (c, umin, umax) = (0, 1, 1) to a = (f1, f2)
for all f ∈ F . The rest of the arcs are appended with values (c, umin, umax) = (0, 0, 1).
We introduce flow variable xa for which umin(a) ≤ xa ≤ umax(a). Now in order to
minimize the number of crew members necessary to perform a schedule, the problem
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can be formulated in a way that resembles the minimum cost flow problem:

min
∑
a∈A

caxa

subject to xa ≤ umax(a) ∀a ∈ A
xa ≥ umin(a) ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V \{s, t}

(7.2)

Because the only arcs appended with non-zero costs are the arcs from the source
node to the crew nodes, the objective function minimizes the number of crew members
required. The source and the sink node are excluded for having flow conservation,
because the maximum number of crew members equals the supply value, but we do not
want to force the program to use the maximum amount, since we are actually optimizing
for the minimum number of crew members we need. In Figure 7.3 the flow corresponding
to an optimal solution of linear program (7.2) is given.

s

k1

k2

f1 f2

g1 g2

h1 h2

i1 i2

t

Figure 7.3: Flow of an optimal solution of the network in Figure 7.2 indicated in red

This formulation is not an exact minimum cost flow network since the flow conservation
constraints do not apply for nodes s and t. However, one can easily work around this
by allowing an arc from t to s and impose flow conservation on s and t. This guarantees
that there is an integral optimal solution. Also, one can force fixed supply and demand
values on s and t and reduce these values when the problem contains a feasible solution.
Finding a feasible solution in a minimum cost flow problem can be solved by finding a
maximum flow in the network. This can be solved in polynomial time by Edmonds–Karp
algorithm [5].

7.2.2. Minimum TDI and FTE

The linear program stated in (7.2) gives a solution to the first KPI, namely the minimum
numbers of crew members required to realize a schedule. In order to obtain the second
and third KPI, a few changes should be made to the digraph:

• The number of crew nodes is reduced to the output value of the former linear
program (7.2), which is the minimum number of crew members necessary.
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• For all k ∈ K, arcs (s, k) from the source node to the crew nodes have cost 0
instead of cost 1.

• For all arcs from the check-out pairing nodes to check-in pairing nodes, we add
cost Z(f, g) where Z(f, g) is the idle time from the check-out time of pairing f
plus the associated rest of pairing f to the check-in time of pairing g. Note that
Z(f, g) can only be positive since the arcs are created in such a way that the labor
agreements allow pairing g to be sequential to pairing f .

Now with a slightly modified formulation of linear program (7.2), we can create a roster
where we minimize the total amount of idle time between pairings given a fixed number
of crew members:

min
∑
a∈A

caxa

subject to xa ≤ umax(a) ∀a ∈ A
xa ≥ umin(a) ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V.

(7.3)

Including the source and the sink node in the flow conservation constraint ensures
that the exact number of crew members is used as the previous model showed to be
required. Also, because we impose the conservation constraint on every node, we now
have a proper minimum cost flow problem. Integrality constraints are redundant by
Theorem 3.1 and therefore omitted.

Note that the amount of idle time between pairings is minimized and not the idle
time from the beginning time of the schedule to the check-in of the first pairing or the
idle time from the last pairing to the end of the schedule time. The reason for this is
of course that the total amount of idle time in the latter case is fixed, since it will be
a function of the number of crew members and the sum of the pairing times with their
associated rests.

When the total idle time is low, it means that the pairings follow each other up
properly and even though this does not decrease the number of crew members needed
in the optimal crew rostering schedule, it can make all the difference in the gross crew
rostering schedule. If we take the minimum amount of total idle time and add the total
amount of working time with their associated rest time, we obtain the minimum amount
of FTE required to perform the schedule. Similar to the minimum total idle time, the
FTE can make a major difference in the gross schedule.

7.3. Extended Minimum Cost Flow Model

In order to tackle the problem including the free time periods, we extend the model by
creating layered graphs. First the basic model is presented. Then is described how the
model is adapted specifically to tackle the different problems separately.
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7.3.1. Basic Model

A roster period for a crew member contains 35 days. These 35 days contain at most 20
working days and 15 days off. This corresponds to the traditional working pattern where
crew members work at most four days and have three days off. Sometimes the working
pattern is slightly changed to 5 working days and 2 days off and then to 3 working days
and 4 days off as long as the total number of working days per roster period does not
exceed 20 days. In this chapter we only consider traditional workweeks of (at most) 4
days working and 3 days off.

We define layered directed graphs G1, G2, G3 and G4 where Gi = (Vi, Ai) for 1 ≤ i ≤ 4
represents a layer. For every layer, we define the node set in that layer as Vi := V i

1 ∪ V i
2

where the nodes in V i
1 and V i

2 still correspond to the check-in and check-out time of all
pairings f ∈ F . Note that we have 4 copies of the exact same pairing in the 4 different
layers. Additionally, for every f ∈ F and i ∈ {1, 2, 3, 4}, we add arcs (f i1, f

i
2) to Ai with

arc data (c, umin, umax) = (0, 0, 1).
Arcs are constructed between the layers and between the different pairing nodes as

before in the following way.

• For all f, g ∈ F for which labor requirements allow pairing g being sequential to
pairing f and the check-in of pairing g is exactly one day after the check-in of
pairing f , create arc (f i2, g

i+1
1 ) for i ∈ {1, 2, 3}. For an example of such an arc see

Figure 7.4.

• For all f, g ∈ F for which labor requirements allow pairing g being sequential to
pairing f and the check-in of pairing g is at most two days after the check-in of
pairing f , create arc (f i2, g

i+2
1 ) for i ∈ {1, 2}.

• For all f, g ∈ F for which labor requirements allow pairing g being sequential to
pairing f and the check-in of pairing g is at most three days after the check-in of
pairing f , create arc (f12 , g

4
1).

This construction of different layers keeps track of the working days of a crew member.
If pairing f is followed by pairing g and the starting day of g is exactly one day after
the starting time of f , then the arc connecting these pairings goes one layer up as the
working days before the free time period decreases by one.

Now in order to go back to working day one, there is a free time period that should be
bridged first, but the start of the free time period depends on the last pairing performed
before the free time period. Generally, a free time period lasts 72 hours, but there are
several labor regulations that define more specifically when the free period starts and
what it can overlap. For an exact overview of these rules, see Section 4.2.

We create a function Y (f, g) for f, g ∈ F that determines whether or not we can
connect two different pairing nodes while bridging the free time period: from all arcs
from pairing check-out nodes in G4 to check-in pairing nodes in G1 we create arcs (f42 , g

1
1)

if and only if the idle time conform the free time period regulations, Y (f, g), exceeds 72
hours. For an example of such an arc see Figure 7.5.
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Figure 7.4: Example of an arc between two layers i and i+1 for i ∈ {1, 2, 3} and f, g ∈ F .

Layer 1
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f11 f12

g11 g12

f41 f42

g41 g42

Figure 7.5: Example of an arc between layer 4 and layer 1 bridging a free time period.
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Figure 7.6: Example of the complete network with pairing nodes contained in the layers

Then we add |K| crew nodes and for all k ∈ K, f ∈ F and i ∈ {1, 2, 3, 4}, we add arcs
(k, f i1) from each crew node to every pairing check-in node in every layer1. Additionally,
we add source and sink nodes s and t and for all k ∈ K we create arcs (s, k) from
the source node to all crew nodes. Similarly, for every f ∈ F and every i ∈ {1, 2, 3, 4}
we create arcs (f i2, t) from all check-out pairing nodes in every layer to the sink node2.
Again, the nodes are appended with supply value sv where sv has value |K| if v = s and
sv has value −|K| if v = t. All the other nodes have supply value 0. In Figure 7.6 is
the complete graph structure outlined, but the pairing nodes are contained in the layers.
Each thick arc represents multiple arcs between nodes in the different layers.

7.3.2. Minimum Crew Required

First we use this basic model to calculate the minimum number of crew members neces-
sary to perform a schedule taking into account the free time periods that crew members
have. Arc values are defined in the following way:

• All arcs created in the basic model are appended with arc value (c, umin, umax) =
(0, 0, 1), except for

• All arcs (s, k) from the source node to all the crew nodes k ∈ K, which we append
with arc value (c, umin, umax) = (1, 0, 1).

Note that similar to the graph used to determine the minimum number of crew mem-
bers necessary without the free time requirement, the only arcs with non-zero costs are
the arcs running from the source node to the crew nodes. However, the major difference

1Assuming every crew member can start at any working day.
2Assuming every crew member can end at every working day.
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between this model and the model before is that the minimum flow in the arcs from the
check-in pairing nodes to the check-out pairing nodes is 0 and not 1 as before. This is
because we do not have unique pairing nodes, but we have four identical pairing nodes
positioned in the different layers in the graph and exactly one of the four pairing nodes
should be covered. To ensure that this constraint is satisfied, we formulate the linear
program in the following way:

min
∑
a∈A

caxa

subject to xa ≤ umax(a) ∀a ∈ A
xa ≥ umin(a) ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V \{s, t}

4∑
i=1

∑
f∈Fi

xf i1f i2
≥ 1 ∀f ∈ F

xa ∈ {0, 1} ∀a ∈ A.

(7.4)

The second constraint can be simplified to x(a) ≥ 0 since umin(a) = 0 for all a ∈ A. The
fourth constraint ensures that at least one of the copies of the pairing is covered, but it
also increases the complexity of the problem. Now the problem is not a minimum cost
flow problem anymore, hence integrality constraints should be included. This means
that the problem should be tackled with an integer linear program solver. Note that
that it does not matter if a pairing is covered multiple times since we can always take
the sub roster-line and the solution remains feasible.

7.3.3. Minimum TDI and FTE

After the previous problem is solved, one obtains the minimum number of crew members
necessary to perform a certain pairing schedule. Now we want to minimize the total
amount of idle time time given a fixed number of crew members. We make the following
changes to our digraph:

• For all arcs of the form (f i2, g
i+1
1 ), (f i2, g

i+2
1 ) and (f i2, g

i+3
1 ) for f, g ∈ F and i ∈

{1, 2, 3}, i ∈ {1, 2} and i = 1 respectively, replace arc values by (c, umin, umax) =
(Z(f)(g), 0, 1) where Z(f)(g) is the idle time value from pairing f to pairing g
defined in Subsection 7.2.2.

• For all f, g ∈ F for which arcs exist between (f42 , g
1
1), replace arc values by

(c, umin, umax) = (Z(f)(g), 0, 1).

• For all arcs (s, k) from the source node to the crew nodes for k ∈ K, replace arc
values by (c, umin, umax) = (0, 0, 1).

Even though we use the function Y (f, g) to calculate whether or not an arc should be
created between pairings bridging free time periods, the function calculates the idle time
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depending on the last pairing before the free time. This means that for a night pairing,
the idle time starts after the rest period, while the idle time for day pairings can overlap
with the rest period. However, we need a universal definition of idle time regardless of
the additional features of the last pairing before free time. Therefore, we make use of the
earlier defined function Z where Z(f)(g) describes the total time between the check-out
of pairing f with associated rest and the check-in time of pairing g. The linear program
formulation then becomes:

min
∑
a∈A

caxa

subject to xa ≤ umax(a) ∀a ∈ A
xa ≥ umin(a) ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V

4∑
i=1

∑
f∈Fi

xf i1f i2
≥ 1 ∀f ∈ F

xa ∈ {0, 1} ∀a ∈ A.

(7.5)

7.4. Column Generation

We follow the column generation approach for crew scheduling of Borndörfer and Schel-
ten [2]. Assuming we have a directed graph G = (V,A) where the node set V consists
of the pairings f ∈ F that need to be covered and the arc set A contains the links that
connect the pairings. Also, there is a source node s and a sink node t such that a roster
line can be viewed as a path P from s to t. The links are labeled with costs ca that
indicate the idle time of a crew member from one pairing to another. We apply a positive
penalty cost ca when using a crew member for arcs of the form (s, f) for all f ∈ F . A
path P from s to t has costs cP =

∑
a∈P ca. We introduce decision variables xP for each

path P ∈ P. The goal is to minimize the number of necessary crew members and total
amount of idle time given that every pairing is covered at least once. The problem can
be stated as:

min
∑
P∈P

cPxP

subject to
∑

P∈P: f∈P
xP ≥ 1 ∀f ∈ F

xP ∈ {0, 1} ∀P ∈ P.

(7.6)

In order to apply column generation we first reformulate the set covering problem
where we introduce the pairing path incidence matrix B := (bfP ) where bfP = 1 if
pairing f ∈ P and bfP = 0 otherwise. Hence a column P of matrix B corresponds to the
incidence vector of the set of pairings in P . Let c ∈ RP+ and x ∈ RP , then the problem
can be reformulated as a set covering problem:

min cTx subject to Bx ≥ 1 x ∈ {0, 1}P .
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7.4.1. Column Generation Algorithm

The linear relaxation of the set covering problem can be formulated as:

min cTx subject to Bx ≥ 1 0 ≤ x ≤ 1.

The dual of the relaxation of the set partitioning problem is:

max
∑
i∈V

πi subject to BTπ ≤ c π ≥ 0.

We start with an initial solution B′ = BP ′ for a subset of roster lines P ′ ⊂ P, which is
feasible. Associated with B′ are the costs c′ vector and the decision variable x′ ∈ RP ′ .
By solving the restricted master LP (RMLP)

min c′Tx′ B′x′ ≥ 1 0 ≤ x′ ≤ 1 (RMLP)

one obtains dual solution π. With the dual solution one can compute the reduced cost
of a path by c̄P := cP − πTB. The goal will be to find the path with the most negative
reduced cost and add this one to the initial solution, hence the pricing problem becomes:

min
P∈P

c̄P . (Pricing)

The reduced cost of a path can be decomposed into the sum of the reduced cost of all
the arcs in the path where the reduced cost of an arc (i, j) can be formulated as

c̄ij := cij − πi.

In this way the pricing problem becomes a shortest path problem with possibly negative
costs but without negative cycles:

min
∑
a∈A

c̄axa

subject to
∑

a∈δout(v)

−
∑

a∈δin(v)

=


1 if v = s

−1 if v = t

0 ∀v ∈ V \{s, t}

xa ∈ {0, 1} ∀a ∈ A.

(Pricing)

Because the shortest path problem allows the costs to be negative, we solve the pricing
problem with the Bellman Ford algorithm. The idea will be the following: first the
restricted master problem will be solved and dual variables π will be generated. Then the
dual variables are used to solve the pricing problem. The solution of the pricing problem
is a new column that can be added to the restricted master problem if its reduced cost
is negative. In this way the process repeats until no path in the pricing problem can
be found with negative reduced cost. If that is the case, the optimal solution of the
restricted master problem does not have to be integer. In order to continue a branching
strategy should be implemented.
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7.4.2. Branching strategy

In the classical branching strategy, one looks at the fractional component xP for which
0 < xP < 1 and branches into two new nodes, one where we impose the restriction
xP = 0 and one where xP = 1. However, in the context of the set cover problem, this
technique generates a very unbalanced growth of the branch and bound tree. That is,
the restriction xP = 0, which simply means not using a certain path, has very little
effect since there are many available paths very similar to the path that is branched
upon. On the other hand xP = 1 imposes a radical restriction on the solution by forcing
a certain path in the solution while many similar paths might not have been checked.
Therefore, Ryan and Foster [15] call for a more balanced branching technique based on
the following theorem:

Theorem 7.1. [15] Let B be an n ×m, 0 − 1 matrix and let the solution Bx = 1 be
fractional. That means that there exists at least one j for which 0 < xj < 1. Additionally,
assume that all columns of B are distinct and non-zero. Then there exist two rows, i
and i′ such that

0 <
∑

k:bik=bi′k=1

xk < 1.

Proof. Consider some j for which 0 < xj < 1 and consider any row i for which bij = 1.
Since

∑m
k=1 bikxk = 1 and we considered fractional variable xj , we know that there is

another column j′ such that 0 < xj′ < 1 and bij′ = 1. Consider now a row i′ for which
bi′j = 1 or bi′j′ = 1, but not both. This row exists because otherwise we would have a
duplicate column in the matrix. Using this information we know:

1 =

m∑
k=1

bikxk

=
∑

k:bik=1

xk

>
∑

k:bik=bi′k=1

xk

> 0

where the strict inequality follows from the fact that only j or j′ is included in the last
summation where the previous summation contains both.

The branching strategy resulting from this theorem is that we branch on∑
k:bik=bi′k=1

xk = 0 or
∑

k:bik=bi′k=1

xk = 1.

In the context of our crew scheduling problem, this strategy basically means that we
branch on whether pairings will be covered by the same path or different paths. When
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Figure 7.7: Example of how the digraph changes when
∑

k:b1k=b4k=1 xk is close to 1

we branch on the left-hand side we assume that pairings i and i′ are not covered together
while the right-hand side assumes the two are covered by the same path. An example for
when

∑
k:b1k=b4k=1 xk is close to 1 is given by Figure 7.7. It is likely that pairings f1 and

f4 are contained in the same roster-line. The branching strategy imposes subsequently
that all columns that will be generated from then on either contain pairing f1 and f4
together or contain neither pairing.

Note that our pairing path incidence matrix B has non-zero columns since a zero
column would mean that no pairing is included in a path which would not be included
in the optimal solution. The columns in our pairing path incidence matrix B are distinct,
since we only allow unique paths to enter the column B, because identical paths would
never improve the objective function given that the cost vector is positive. In contrast to
the theorem, we do not have the equality Bx = 1, but the inequality Bx ≥ 1. However,
we can easily work around this by taking subpaths P ⊂ P and adjust the path incidence
matrix B accordingly such that we obtain the equality Bx = 1. Of course subpaths of
paths are still feasible paths.

When we do not satisfy the fractional condition of the theorem, the solution found
was already optimal. In this way the branching tree evolves in a more balanced way
since branching in both direction eliminates many variables from the process.

7.4.3. Initial Matrix

There are multiple choices for initial matrix B′. The most trivial choice is the solution
where every crew member executes exactly one pairing. Then B′ = I|V |, the identity
matrix with length the number of pairings available. While this choice is obviously a
feasible solution, one already start with as many columns as pairings that should be
rostered. Therefore the initial column generation algorithm has to start with an already
vast matrix which may slow down the process. It might be beneficial to start with a
small subset of columns that can already produce a feasible solution, which is better
than the trivial choice. We use a simple greedy algorithm to construct such a subset of
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columns given by Algorithm 2.

Data: Pairings
Result: Feasible initial matrix
initialization;
for Pairing do

Check if crew member is available;
if Crew member available then

Assign pairing to crew which ended last pairing the latest;
else

Create new crew member;
Assign pairing to new crew;

end
Update available crew

end
Algorithm 2: Greedy Algorithm

This algorithm can provide a limited subset of columns that can produce a feasible
integer solution. We call this initial matrix Bgr. Using initial matrix Bgr the column
generation process can proceed faster since the linear program involved starts off with a
very restricted number of variables compared to the trivial choice B′ = I|V |.

7.5. Bottleneck Indication

Even though the previous solutions shed some light on the efficiency of the flight schedule,
in order to find out which flight schedule is the most efficient, several flight schedules
should first be composed and should all be tested by the previous models for crew
productivity. This process takes up a lot of time and since it only supplies us with some
final numbers, it does not tell us why one schedule is better than another. Therefore, we
introduce a new model similar to the models described in Section 7.3 that can provide us
with some more insight with respect to the efficiency of the flight schedule and can help
in improving the schedule beforehand. The idea is to use the solution of linear program
(7.4), the minimum required crew members to realize a certain flight schedule. We call
this solution Csol. Then we find out what pairings we execute when we do not have Csol
but Csol−x, x crew members fewer than necessary to execute the entire flight schedule.
We use the same digraph as in Section 7.3, but we introduce a couple changes:

• The number of crew nodes are modified to Csol−x and the arcs going to and from
these nodes are adjusted accordingly.

• For all a ∈ A, we define the cost of arc a as ca = 0 except when a = (f i1, f
i
2) for

all f ∈ F and 0 ≤ i ≤ 4.

• For arcs of the form (f i1, f
i
2) for all f ∈ F and 0 ≤ i ≤ 4, we modify the arc cost to

be the total block time of pairing f ∈ F .
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The total block time of a pairing is the amount of time the aircraft is in the air in the
corresponding pairing. Then we formulate the linear program as follows:

max
∑
a∈A

caxa

subject to xa ≤ umax(a) ∀a ∈ A
xa ≥ umin(a) ∀a ∈ A∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = sv ∀v ∈ V

4∑
i=1

∑
f∈Fi

xf i1f i2
≤ 1 ∀f ∈ F.

(7.7)

Knowing that there are not enough crew members to perform the entire schedule, this
model identifies the pairings that are executed when we maximize over the total amount
of block time of the schedule. But even more interesting are the pairings that are not
executed. These pairings are the bottleneck pairings in the sense that they are the least
efficient pairings when it comes down to crew productivity with respect to block time.
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8. Results

In this chapter we discuss the results of the solution methods of the previous chapters.
First the results of the pairing model and the retiming pairing model of Chapter 5
based on the different flight days in July and June 2019 are presented. Then, several
key performance indicators regarding crew productivity based on the models of Chapter
7 for different flight schedules are discussed where we change the length of the flight
schedule, its composition of flights and the pairing method of Chapter 5 that is used.
The network flow models of Section 7.3 and Section 7.5 as well as the column generation
model of Section 7.4 are tested.

8.1. Pairing and Retiming

We use the solution methods of Chapter 5 to determine the optimal assignment of double
pairings. First the weighted set cover approach of Section 5.2 is used to determine
how many pairings are needed in total and which link duty periods should be grouped
together to form double pairings per day in the summer period when not using the crew
linking document. In Table 8.1 the total number of single pairings, the number of double
pairings and the total number of pairings are presented. To compare the results with
the traditional pairings method of Section 5.1, the number of double pairings in the crew
linking document is also included. Because the primary goal is to minimize the total
length of the maximum number of double pairings, we use cost cP = dP

dmax
for all double

pairings P where dP corresponds with the length of pairing P and cP = 1 for all single
pairings P . We have set the maximum allowed work time dmax = 12.5 hours for all
double pairings, since longer pairings are not advisable taking into account crew fatigue.
Comparing with the results for cost function cP = 1 for all pairings P tells us that Table
8.1 yields the maximum number of double pairings. For a destination specification of
the double pairings, see Appendix A.4.

Day Total Single
Pairings

Total Double
Pairings

Total Pairings Crewlinking
Double Pairings

Day 1 107 9 98 7

Day 2 99 8 91 4

Day 3 102 6 96 3

Day 4 104 10 94 7

Day 5 106 8 98 6

Day 6 108 7 101 6

Day 7 107 13 94 9
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Table 8.1: Results of the weighted set cover approach

In Table 8.2 the results are presented for the maximum weight maximum cardinality
retiming model created in Section 5.3. That is, when we create three duplicates of the
same link duty period, one 10 minutes earlier and one 10 minutes later and one original.
Because we maximize (instead of minimize) the weight in this model, we choose weight
wP = dmax

dP
for every double pairing P and wP = 1 for every single pairing P . Artificial

high weights w = 1000 are chosen for all arcs between the same pairing nodes to ensure
every pairing is matched at most once. For a full overview including routes, see Appendix
A.5.

Day Total Single
Pairings

Total Double
Pairings

Total Pairings

Day 1 107 9 98

Day 2 99 9 90

Day 3 102 6 96

Day 4 104 11 93

Day 5 106 11 95

Day 6 108 8 100

Day 7 107 14 93

Table 8.2: Results of the retiming approach

8.2. Network Flow Models

First we run the network flow models of Section 7.3 for the original schedule (S) from
Monday 15-07-2019 up to and including Sunday 28-07-2019 and we start with an initial
maximum number of crew members of 140. The total blocktime of the entire schedule
is 5840 hours and the schedule contains 861 pairings where the construction method is
based on the crew linking document of Section 5.1. The pairings considered are limited to
pairings based in Amsterdam. The operational slack time between pairings is currently
set on 80 minutes. We test the schedule for the extended network flow models proposed
in Subsection 7.3.2 and Subsection 7.3.3.

In order to find out the impact of different flight schedules, especially regarding night
pairings, on the crew productivity, we modify the original schedule (S) in several ways.
First we create a schedule where all the pairings are one hour later (S+1). Similarly,
we make a schedule where all the pairings are one hour earlier (S-1). Also, we include
a schedule where all the pairings that generate recuperation periods are modified such
that they do not generate recuperation time (SNR). That is, a pairing ending at 03:40
is pushed back 40 minutes in this schedule. We include an alternative schedule for when
the aircraft spare capacity blocks are split up (SOP) and a hypothetical schedule for
when another aircraft is used to withdraw flights from the night time hours (SAC).
Additionally, we include the schedules based on the set covering method in Section 5.2
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(SCC) and a schedule based on the retiming model of Section 5.3 (SRT). In order to check
whether the rosters can be extended for more than the 14 days considered, we run the
model twice for flight schedules spanning 28 days; once for schedule (SS1), from Monday
01-07-2019 up to and including Sunday 28-07-2019 and once for schedule (SS2), from
Thursday 04-07-2019 up to and including Wednesday 31-07-2019. These are extended
versions of the original schedule. The results are expressed in minimum number of crew
members required, average block time1 per crew member and total CPU time in Table
8.3:

Schedule Minimum Crew Average
Blocktime (h)

CPU Time (s)

S 115 51h 1998s

S+1 118 49.6h 2552

S-1 119 49.2h 2246s

SNR 114 51.4h 2340s

SOP 114 51.4h 1910s

SAC 113 51.7h 1965s

SSC 113 51.7h 1983s

SRT 112 52h 2140s

SS1 115 102h 9882s

SS2 115 102h 9882s

Table 8.3: Results of the model proposed in Subsection 7.3.2 of various schedules

Because the results for the schedules SOP and SNR are similar, it is worth computing
the total idle time and the total amount of FTE required for both of these schedules
using the model proposed in Subsection 7.3.3. We also show the computational results
of the corresponding model in the Table 8.4. Note that the model of Subsection 7.3.3
actually creates unpersonalized rosters. A gantt chart of one of the rosters entirely is
attached in Appendix A.1.

Schedule Total Idle Time
(d)

Total FTE Time CPU Time (s)

SOP 647.7 1356.7/1596 3263s

SNR 637.2 1346.2/1596 2786s

SAC 632.9 1345.2/1582 3243s

Table 8.4: Results of total idle time and total FTE for various schedules

Finally, the results of the bottleneck model of Section 7.5 are presented. We test the
model on the original schedule (S) and use 114 crew nodes, one fewer than is required

1This exceeds the maximum allowed blocktime, because this is a optimal crew rostering model and
thus only contains pairing duties that generate block time.
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to perform the entire schedule. In Table 8.5 the pairings are presented that would be
eliminated when maximizing the total block time for all pairings.

Pairing-Route Check-in time Check-out time Block time

AMS-OLB-AMS 2019-07-22
04:35:00

2019-07-22
11:20:00

280

AMS-GRO-AMS 2019-07-22
11:45:00

2019-07-22
18:00:00

260

AMS-PSA-AMS 2019-07-22
19:40:00

2019-07-23
01:55:00

250

AMS-NCE-AMS 2019-07-24
05:35:00

2019-07-24
11:45:00

240

AMS-INN-AMS 2019-07-24
12:40:00

2019-07-24
18:15:00

190

AMS-LJU-AMS-VLC 2019-07-21
05:35:00

2019-07-23
01:00:00

790

VLC-AMS-VLC-AMS

Table 8.5: Eliminated pairings when maximizing for total block time

8.3. Column Generation

We share the results of the column generation approach discussed in Section 7.4. In order
to minimize the total number of required crew members, we attach positive penalty cost
ca = 1 for arcs of the form (s, f) for all f ∈ F and all other arcs have cost 0. The model is
run on a subset of the original schedule S′ ⊂ S where S′ runs from Monday 15-07-2019 up
to and including Sunday 28-07-2019 and only contains 25 pairings a day. The minimum
number of crew members necessary is determined in advance by the model created in
Subsection 7.2.1 and equals 32. We start with two different initial matrices, the trivial
variant B′ = I|V | and the greedy variant B′ = Bgr both discussed in Subsection 7.4.3. In
this case Bgr has 62 columns. The column generation approach is embedded in a branch
and bound structure based on the branching strategy discussed in Subsection 7.4.2. We
apply the branching strategy on the rows i, i′ for which∑

k:bik=bi′k=1

xk

is closest to 1 and branch on the 1-tree. In order to speed up the process, we branch on
the three row combinations (if they exist) for which the above summation is closest to
1. Additionally, we branch on every row combination i, i′ for which∑

k:bik=bi′k=1

xk > 0.9.

After the branching strategy, all previous generated columns are discarded and we start
with a subset of columns depending on the initial matrix. When we consider the initial
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matrix B′ = I|V |, we keep the matrix that corresponds with all pairings taken separately
except for those pairings we branch upon. They are grouped together in a column.
After the branching procedure when using the greedy initial matrix B′ = Bgr, we keep
all the variables of the original initial matrix B′ = Bgr except those who have become
unfeasible by the branching. These pairings are replaced by the unit vectors that take
these pairings separately. In this way we always keep a feasible solution at the beginning
of the column generation process.

We keep track of the number of columns generated, the upper bound, which is de-
termined by the number of non-zero variables, and the number of row combinations we
branch upon, the branchpaths in that node. In Table 8.6 the results are shown for the
matrix B′ = Bgr.

Nodes Columns Upper bound Branchpaths

1 167 62 3

2 197 137 3

3 211 141 3

4 204 151 3

5 167 145 3

6 170 136 3

7 106 102 3

8 91 88 3

9 91 88 3

10 91 91 4

11 60 59 3

12 68 79 3

13 64 71 5

14 56 62 9

15 63 59 6

16 54 47 3

17 52 55 3

18 45 49 3

19 51 47 3

20 42 40 3

21 44 37 3

22 39 32 NaN

Table 8.6: Results of the column generation approach with initial matrix B′ = Bgr

Sometimes there will be branched in such a way that the initial matrix B′ = Bgr
does not provide a feasible solution anymore. By keeping a feasible solution after the
branching, the upper bound can increase after the node exploration. Also, in the table
we only give the number of columns that are generated and not columns in the initial
matrix. Therefore the upper bound can be a greater than the column value in Table 8.6.
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The results for initial matrix B′ = I|V | are shown in Table 8.7.

Nodes Columns Upper bound Branchpaths

1 152 125 3

2 141 117 3

3 170 123 3

4 167 126 3

5 166 119 3

6 208 121 2

7 197 114 3

8 181 113 3

9 161 108 3

10 144 113 4

11 148 102 1

12 164 101 3

13 195 103 3

14 144 98 9

15 155 94 6

16 163 96 3

17 165 96 3

18 142 100 3

19 104 86 3

20 144 82 3

21 126 74 3

22 121 73 3

23 102 60 2

24 101 72 3

25 96 53 3

26 101 51 3

27 86 54 3

28 97 64 1

29 101 50 3

30 80 40 3

Table 8.7: Results of column generation approach with initial matrix B = I|V |

The computation time per node ranges from 200 to 600 seconds depending on the
number of columns being generated. That means that the entire process can take up
more than 3 hours. Because the computation time would increase even more when we
apply this approach to the entire flight schedule including free time periods, further
investigation of this solution method is not exploited.
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9. Conclusion

In this chapter we first address the initial research questions we formulated in the intro-
duction. Then, the practical results as well as the mathematical performance of each of
the models individually are discussed, but these results are also compared to the results
and performance of the different models. Furthermore, recommendations for further
research based on these findings are presented.

9.1. General Conclusion

We return to the two initial research question we have phrased in the introduction:

What is the exact impact of various sorts of night flights concerning the
additional labor requirements of night flights compared to day flights and how
do these requirements affect the productivity of the cockpit crew?

The first part of this question has been answered thoroughly in Chapter 4, where the
labor requirements are discussed for various flights with the emphasis on the requirements
and restrictions for variations of flight time arrivals and departures. Chapter 6 has
illuminated that the second part of the question cannot be answered considering night
flights alone, but should be considered within the context of the complete flight schedule.
Finally, Chapter 5 and Chapter 7 provide solution methods as to compute the crew
productivity. The impact of these night flights can be found by comparing the results
of various schedules in Table 8.3, created by the model of Subsection 7.3.2. The second
research question we formulated was:

What are the exact costs we make when utilizing an extra aircraft and exact
costs we save on cockpit crew when we use that aircraft to replace night flights
with day flights?

Although this thesis has focused mainly on the crew productivity based on various sched-
ules, this research question can be answered with Table 8.3 and with the consultation of
the finance department to complete the missing cost values. In Table 8.3 we find that
the flight schedule with an extra aircraft (SAC) requires two fewer crew members than
the original schedule (S). This means two net first captains and two net first officers.
The costs of a captain and first officer together is e300.000. Including the tax gross
up multiplier 1.4, this equals e420.000. For the two extra captains and two extra first
officers in total, e840.000 is calculated. Comparing this with the total cost of an extra
aircraft during the summer period of e3.000.000, we conclude that it is not lucrative to
use an extra aircraft to improve the productivity of the cockpit crew by the reduction
of night flights.
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9.2. Network Flow Models

The results for the network flow model discussed in Table 8.3 show promising results
for various flight schedules. While the use of an extra aircraft (SAC) can result in the
need of two net crew members fewer compared to the original schedule, splitting up the
spare capacity blocks of an aircraft to withdraw pairings from the night time hours, can
already save one net crew member (SOP). In general we see that the number of night
pairings affects the number of necessary crew members exponentially: the removal of the
first couple night pairings leads to a higher reduction of necessary crew members than
the removal of night pairings thereafter.

Concerning total idle time and total FTE, we see that the scenario with the spare
aircraft capacity split up (SOP) yields worse results than the scenario where all the
recuperation generating pairings have been eliminated (SNR). This means that even
though both schedules can be performed by the same number of crew members, the
(SOP) requires more crew time, because the optimal roster has more idle time between
the pairings.

The bottleneck network flow model gives an idea of what pairings are the least pro-
ductive when it comes down to maximizing block time hours. Most pairings that are
eliminated are pairings that are relatively short. For these pairings the block time rela-
tive to the check-in time the next day minus the check-in time of that pairing considered
is relatively small, because every pairing has the same rest period. When these pairings
are also night pairings or have early check-in times, the restrictive labor requirements
make these pairings even more likely to be eliminated.

Even though the lay-over pairings include a lot of block time, these pairings span
two working days where the check-in on the first day is early in the morning while the
check-out of the next day is late at night. This is because the time between the two
duty periods in this pairing includes 24 hours while the mandatory rest requirement is
only 13 hours, see Figure 5.1. As a consequence these pairings are less productive.

The computational performance for all network flow models is relatively good with
the highest computation times not exceeding two hours. The computation times of the
bottleneck model are omitted, because these are similar to these of model 7.3.3. In
general we experience a higher computation time for model 7.3.3 than for model 7.3.2.

Testing on extended flight schedules (SS1 and SS2) yields the same number of min-
imum number of crew members required to perform the schedule, meaning that the
rosters are extendable. The main drawback of the network flow models is that we can-
not set requirements on individual roster-lines such as the maximum allowed total work
time or total number of working days. Also, the structure of the graph always imposes
the max 4 days of work and min 3 days of free time pattern, but in practice one can
deviate from this pattern as long as the 20 working days in 35 roster days will not be
exceeded.
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9.3. Column Generation

In contrast to the network flow models, the column generation approach has the potential
of being much more versatile. The reason for this is that one can control what columns
enter the matrix and which columns cannot enter the matrix. However, the column
generation approach yields very poor computational results with computation times
exceeding 3 hours. This is because the columns that are generated give rise to a very
fractional solution in the sense that many columns are used to solve the restricted master
problem. This leads to a high upper bound of the solution and the many fractional
variables cause the branching strategy to be inefficient and sometimes inadequate.

Remarkable is that the choice of the initial matrix has a large effect on the column
generation process. We see that the use of the initial matrix B′ = Bgr leads to fewer
node explorations and eventually leads to a better solution than initial matrix B′ =
I|V |. The branching strategy works better when there are many row combinations with∑

k:bik=bi′k=1 xk close to 1, which is more likely to happen when the initial matrix contains

a lot of columns that take multiple pairings together, such as for initial matrix B′ = Bgr.
We observe that if we branch on the rows for which

∑
k:bik=bi′k=1 xk has the greatest

value for the initial matrix B′ = I|V |, we sometimes branch on rows that cannot produce
an optimal solution. Hence the final solution provided with the choice of initial matrix
B′ = I|V | is suboptimal.

9.4. Pairing Models

The two pairing methods provided in Section 5.2 and Section 5.3 can yield significantly
more double pairings than the classical pairing creation method of Section 5.1. This cre-
ation of pairings leads to better results in the network flow model in Table 8.3, meaning
that both pairing methods suggested can increase the crew productivity. The retiming
model in Section 5.3 can create a set of pairings that yield even better crew productivity
than the set covering model in Section 5.2. The main reason for the improvement of both
methods is that in these pairing methods, the total number of pairings decreases, while
maintaining the same number of block hours. Consequently, the number of mandatory
rest hours decreases and hence the crew can work more productively. An important
assumption is that we do not have a limit on total block time of individual roster-lines.
As crew becomes more productive, sometimes individual crew members exceed their
maximum allowed working time in a certain roster period. One should also keep in mind
that the minimum cost flow models only take the planned schedule into account. In the
actual planning stages, double pairings are more sensitive to delay than single pairings,
since a delay in the first link duty period can lead to a consequent delay of the second
link duty period.
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9.5. Recommendations

The main drawback of the network flow models for the calculation of crew productivity is
that we cannot set requirements on individual roster-lines. Knowing that the maximum
total number of block hours per crew member can be a limitation, it is worth exploring
methods that can account for this restriction. The column generation method does allow
limitations set on individual roster-lines, but yields very poor computational results.
However, because we see a significant better result for the column generation when
using an initial matrix that contains a decent feasible solution, one can try using column
generation with the solution provided by the minimum cost flow model of Subsection
7.3.2. as initial matrix.

Another limitation on this model is the max 4 days work, 3 days of free time structure
of the roster. This structure is very common, because it guarantees that no more than 8
of the 14 days can be working days, corresponding to the maximum 20 working days in
the 35 day roster period. However, sometimes the actual roster-lines deviate from this
pattern. The model would be more exact when allowing different roster-line structures
as long as no more than 8 of the 14 days can be working days. This is also possible with
a more refined column generation approach since the columns entering the matrix can
be filtered for number of working days.

Finally, this thesis assumes that every recuperation generating pairing generates a
recuperation period. This assumption is justified by observing that the structure of
working days considered leaves very little room to avoid recuperation periods in contrast
to the ’tricks’ of the gross schedule described in Chapter 5 and even if some recuperation
periods are avoided, early computations show that the difference would be negligible for
the schedules considered. When allowing different structures of working days and free
time periods, more options arise to avoid recuperation periods and one should find a
more refined method as to when to include recuperation periods.

59



Appendices

60



A. Appendix

A.1. Unpersonalized roster example

Figure A.1 is an illustration of a complete crew roster for flight schedule SAC produced
by model of Subsection 7.3.3. Normal pairings are indicated by green, night pairings
by red and recuperation generating pairings by purple. The pairing times indicated
represent the check-in time and possible next check-in time on the left and right-hand
side respectively. The blue bar represents the free time period which may overlap with
part of the pairing.

A.2. Taxi appendix

Route Total taxi time (h)

AMS-RTM 01:00

AMS-EIN 01:40

AMS-GRQ 02:15

RTM-EIN 01:30

RTM-GRQ 03:00

EIN-GRQ 03:00

A.3. Conversion Leg set to Pairings

Figure A.2 describes the entire process of a leg set being converted to two separate
pairings, with in between the duty periods created by Algorithm 1.
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Figure A.1: Gantt chart representing unpersonalized rosters for schedule SAC
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Figure A.2: Conversion of legs to duty periods and eventually to pairings
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A.4. Pairing appendix

Day 1

-RTM-IBZ-RTM-PUY-RTM
-EIN-PRG-EIN-VLC-RTM

-RTM-ALC-RTM-EGC-RTM
-RTM-BCN-EIN-NCE-EIN
-EIN-CPH-EIN-KRK-EIN

-RTM-PMI-RTM-MPL-RTM
-EIN-BCN-RTM-VIE-RTM

-AMS-VRN-AMS-NCE-AMS
-AMS-GRO-RTM-GRO-AMS

Day 2

AMS-ALC-RTM-EGC-RTM
RTM-IBZ-RTM-NCE-RTM
RTM-SPU-RTM-GRO-RTM

EIN-NCE-EIN-IBZ-EIN
AMS-NCE-AMS-KTW-AMS
RTM-GRO-RTM-TLN-RTM

AMS-BCN-EIN-RJK-EIN
AMS-PSA-AMS-GRO-AMS

Day 3

AMS-VRN-AMS-HEL-AMS
RTM-PMI-RTM-GRO-RTM
EIN-NCE-EIN-BCN-AMS

RTM-ALC-RTM-EGC-RTM
AMS-NCE-AMS-GRO-AMS
AMS-IBZ-RTM-MPL-RTM

Day 4

AMS-ALC-RTM-EGC-RTM
AMS-VRN-AMS-PSA-AMS
AMS-VRN-AMS-NCE-AMS
RTM-ALC-AMS-ORY-AMS
RTM-TLN-RTM-SPU-RTM

EIN-KRK-EIN-VLC-EIN
EIN-BLQ-EIN-NCE-EIN
EIN-BCN-EIN-CPH-EIN
EIN-RJK-EIN-PRG-EIN

RTM-FCO-RTM-GRO-RTM

Day 5

AMS-NCE-AMS-GRO-AMS
AMS-OLB-AMS-KTW-AMS

EIN-PRG-EIN-BCN-EIN
RTM-MPL-RTM-IBZ-RTM
RTM-PSA-RTM-VIE-RTM

RTM-GRO-RTM-BCN-RTM
EIN-CPH-EIN-NCE-EIN

AMS-VRN-AMS-PSA-AMS

Day 6

RTM-EGC-RTM-AGP-RTM
RTM-BCN-RTM-PSA-RTM
RTM-GRO-RTM-SPU-RTM
EIN-BLQ-EIN-BCN-RTM

RTM-ZAD-RTM-PUY-RTM
AMS-NCE-EIN-NCE-AMS

AMS-VRN-AMS-GRO-AMS

Day 7

AMS-GRO-AMS-VRN-AMS
EIN-VLC-EIN-PRG-AMS

AMS-NAP-AMS-ORY-AMS
AMS-NCE-AMS-GRO-AMS
AMS-PMI-RTM-MPL-RTM
AMS-VRN-AMS-PSA-AMS

EIN-NCE-EIN-NCE-EIN
RTM-TLN-RTM-BCN-RTM
AMS-INN-AMS-VLC-GRQ

EIN-VLC-EIN-RJK-EIN
RTM-SPU-RTM-GRO-RTM
RTM-DBV-RTM-EGC-RTM
AMS-LJU-AMS-PSA-AMS
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A.5. Retiming appendix

We refer to a link duty period starting at airport x shifted 10 minutes forward as x+

and shifted 10 minutes backward as x−. A link duty period unshifted at airport x is
simply denoted by x.

Day 1

EIN-CPH-EIN-KRK-EIN
EIN-BCN-RTM-VIE-RTM
EIN-PRG-EIN-ARN-EIN

RTM-PMI-RTM-MPL−-RTM−

EIN+-NCE+-EIN-BLQ−-EIN−

EIN-VRN-EIN-NCE-EIN
RTM-EGC-RTM-PSA-RTM
RTM-IBZ-RTM-PUY-RTM
AMS-GRO-RTM-GRO-AMS

Day 2

AMS-NCE-AMS-KTW−-AMS−

AMS-PSA-AMS-GRO−-AMS−

AMS-BEG-AMS-VRN−-AMS−

RTM-SPU-RTM-GRO-RTM
RTM-NCE-RTM-IBZ-RTM

RTM+-PUY+-RTM-EGC−-RTM−

EIN-NCE-EIN-IBZ-EIN
RTM-GRO-RTM-TLN−-RTM−

AMS-BCN-EIN-RJK−-EIN−

Day 3

AMS-INN-AMS-HEL−-AMS−

RTM-PMI-RTM-GRO-RTM
RTM-PSA-RTM-MPL+-RTM+

EIN-NCE-EIN-BCN-AMS
RTM-SPU-RTM-EGC-RTM

AMS-GRO-AMS-NCE+-AMS+

Day 4

RTM-GRO-RTM-PUY-RTM
AMS-VRN-AMS-BCN−-AMS−

AMS-VRN-AMS-NCE−-AMS−

RTM+-PMI+-AMS-ORY−-AMS−

RTM-NCE-RTM-TLN-RTM
EIN-BCN-EIN-CPH-EIN
EIN-BLQ-EIN-NCE-EIN
EIN-PMI-EIN-PRG-EIN
EIN-RJK-EIN-KRK-EIN

RTM+-EGC+-RTM-SPU−-RTM−

AMS+-LJU+-AMS-PSA−-AMS−

Day 5

AMS+-GRO+-AMS-PSA−-AMS−

AMS+-VRN+-AMS-PSA−-AMS−

AMS+-OLB+-AMS-KTW−-AMS−

RTM+-PUY+-RTM-PMI−-RTM−

EIN-PRG-EIN-BCN-EIN
RTM-MPL-RTM-IBZ-RTM

RTM-DBV-RTM-VIE+-RTM+

EIN-ARN-EIN-CPH+-EIN+

RTM-GRO-RTM-PSA+-RTM+

RTM-SPU-RTM-GRO+-RTM+

AMS+-NCE+-AMS-GRO−-AMS

Day 6

RTM-NCE-RTM-EGC-RTM
RTM-TLN-RTM-BCN+-RTM+

EIN-BCN-EIN-BLQ-EIN
RTM-GRO-RTM-SPU-RTM

AMS+S-GRO+-AMS-PSA−AMS−

AMS+-VRN+-AMS-PMI−-AMS−

AMS-NCE-EIN-NCE-AMS
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Day 7

EIN-RJK-EIN-BCN-AMS
AMS-BCN-AMS-VRN−-AMS−

AMS+-GRO+-AMS-GRO−-AMS−

RTM-SPU-RTM-PUY-RTM
AMS+-PSA+-AMS-PSA−-AMS−

AMS-NAP-AMS-ORY-AMS
EIN-NCE-EIN-NCE-EIN

AMS+-INN+-AMS-VLC−-AMS−

EIN-VLC-EIN-PRG-EIN
RTM+-SPU+-RTM-PUY−-RTM−

RTM-TLN-RTM-MPL-RTM
RTM-BCN-RTM-GRO+-AMS+

AMS+-OLB+-AMS-VRN−-AMS−

AMS+-LJU+-AMS-PSA−-AMS−

AMS-NCE-AMS-PSA-AMS
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