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Electric vehicles (EVs) offer a promising solution for mitigating greenhouse gas emissions and minimizing the
transportation sector’s dependency on non-renewable energy sources. However, efficient energy management
poses a significant challenge for their broader adoption, particularly optimizing battery usage, maximizing
driving range, and improving overall vehicle performance. This paper presents the state-of-the-art Artificial
Intelligence (AI) techniques used in electric vehicle energy management systems (EV-EMS), discussing a variety
of deep learning algorithms of AI methodologies, such as , neural networks, and fuzzy logic. Additionally, This
paper discusses the role of auxiliary techniques like transfer learning, which enhances model adaptability and
reduces training time in Al-driven EMS applications. Through a systematic analysis of each method, this review
identifies key trends, highlights the challenges and limitations of each technique, and offers perspectives on
potential solutions and future research directions. The paper aims to support researchers, industry professionals,
and policymakers in developing advanced, sustainable, and adaptable EV-EMS solutions that maximize battery
life, improve vehicle performance, and facilitate real-time adaptive control. Finally, this review highlights the

importance of Al-driven strategies in making EV technology more efficient, reliable, and scalable.

1. Introduction

The transportation sector significantly contributes to global carbon
emissions, highlighting the need for cleaner and more sustainable
alternatives. EVs have emerged as a promising solution for reducing
environmental degradation and dependence on fossil fuels. However,
EV success depends on charging infrastructure and grid integration and,
on efficient internal EMS to optimize performance and energy use.

While internal and external energy management strategies play
important roles in EV operations, this paper focuses on internal EMS
for pure EVs, which control energy flow among the vehicle’s elements,
ensuring that power from the battery and regenerative braking systems
is utilized efficiently. This paper considers external energy management
approaches, such as vehicle-to-grid (V2G) and grid-to-vehicle (G2V)
interactions, where applicable. Nevertheless, it focuses on optimizing
in-vehicle power distribution, not grid operations.

Effective energy management strategies in EVs are critical for op-
timizing internal energy distribution, enhancing vehicle performance,
minimizing power loss, and enabling border sustainability objectives
such as reducing grid stress and integrating renewable energy sources.

* Corresponding author.

These strategies’ primary goals are optimizing overall efficiency and en-
suring the smooth operation of the vehicle’s power system. The primary
goals are minimization of power loss, controlling voltage fluctuations,
peak load reduction, and energy cost minimization.

External energy management systems for electric vehicles enhance
the coordination between the power grid, renewable energy sources,
and other external systems. Recent advancements include employing
distributed control and blockchain technologies for dynamic load bal-
ancing and efficient energy distribution. For example, V2G and G2V
technologies enable bidirectional power flow, which balances demand
from the grid and lowers energy costs. Moreover, using renewable
energy sources like solar-powered charging stations contributes to en-
hanced sustainability. These actions deliver grid reliability, suppress
peak demand, and encourage the utilization of renewable energy (Hu
et al., 2022; Hu and Li, 2021; Ma et al., 2024).

This paper addresses internal EMS challenges in EVs, including
battery optimization, energy efficiency, and real-time power flow man-
agement. While external energy interactions are acknowledged where
relevant (e.g., their impact on in-vehicle charging strategies), the focus
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remains on in-vehicle energy distribution rather than external grid
optimization.

Internal energy management in EVs is naturally complex due to
several challenges, including the dynamic nature of driving conditions,
variability in power demand from different vehicle subsystems, the
need to balance energy from diverse sources, and balancing energy
distribution to maintain high efficiency while extending the battery
lifespan. The EMS within an EV must effectively control the power flow
between the battery, powertrain, and auxiliary components, adapting
in real-time to optimize the performance and life of the battery. This
kind of balance is particularly challenging with frequent changes in
driving patterns, acceleration, and regenerative braking, where high
energy efficiency is essential. A next-generation electric vehicle with
in-wheel motor technology enhances system efficiency by eliminating
mechanical intermediaries and optimizing regenerative braking. The
two-stage predictive controller improves vehicle mileage by over 24%
while managing key constraints like battery health and safety (Tie and
Tan, 2013, 2012; Salari et al., 2023; Mastoi et al., 2022).

Uncontrolled energy management approaches, commonly known
as “dumb charging”, often consider user convenience over system
efficiency. This approach of plug-and-charge allows for immediate
charging without regulating power flow based on vehicle demand
or grid conditions. This method manages the timing of the charging
process based on reliance on time-of-use (TOU), leading to potential
overloading of the distribution system. High penetration levels for
uncontrolled EV charging can also exceed the network capacity, caus-
ing load imbalance and potential power quality issues. Despite these
drawbacks, uncontrolled charging remains popular among EV users due
to its simplicity and flexibility (Upadhyaya and Mahanta, 2023; Katkar
and Goswami, 2020).

In contrast, intelligent or “smart” internal energy management
strategies leverage advanced control systems to optimize the charging
and discharging cycles of the vehicle. These strategies cover both the
timing and power levels to mitigate the likelihood of system over-
loading and congestion and improve energy distribution. Moreover,
intelligent EMS supports various energy management applications such
as G2V, V2G, and vehicle-to-home (V2H), enhancing both economic
and environmental outcomes.

Although some EMS strategies interact with external power sources
(e.g., V2G, G2V, V2H), this paper primarily focuses on in-vehicle
decision-making for energy allocation, ensuring that Al-driven solutions
optimize power distribution at the vehicle level.

Al techniques are increasingly being used for their potential to
address these challenges by enabling advanced energy management
strategies tailored to the dynamic nature of EV operation. By incorpo-
rating machine learning, neural networks, and predictive analytics, Al
can dynamically adjust energy usage to suit varying driving conditions,
user preferences, and external factors such as temperature or terrain.
Existing literature includes numerous reviews of recent advances in
internal energy management systems schemes for EVs. In comparison to
the previous studies, this paper offers a comprehensive and up-to-date
overview and comparison of qualitative and quantitative Al-based en-
ergy management strategies, making a detailed analysis of the current
research landscape. The paper aims to identify key trends, challenges,
and opportunities for future research, offering valuable insights for
policymakers, industry professionals, and researchers.

By concentrating on internal EMS, this study directly addresses the
critical challenges EVs face, such as optimizing battery performance,
reducing internal power losses, and improving real-time energy allo-
cation. This emphasis aligns to make EVs more efficient, reliable, and
widely adopted.

The paper is organized as follows: Section 2 reviews prior research
studies on both internal and external energy management methodolo-
gies. Section 3 offers an overview of the Al techniques employed in EV
energy management systems. Section 4 examines various EMS strate-
gies, emphasizing their role in optimizing internal energy distribution
and enhancing vehicle performance. Finally, Section 5 summarizes the
essential findings and outlines potential future research directions.
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2. Background

Over the past decade, there has been a significant interest in the
research of energy management strategies for EVs. The reason behind
such an increase in interest is the necessity to address the challenges
related to the limited availability of oil resources and environmental
concerns resulting from emissions from ICEs. The transition to EVs is an
essential step toward sustainable transportation, offering benefits such
as reduced greenhouse gas emissions, improved energy efficiency, and
enhanced vehicle performance. However, a significant challenge for
electric cars relies on optimizing energy usage within EVs, especially
in extending the battery life, minimizing power losses, and ensuring
efficient power distribution to various subsystems

An effective EMS balances energy consumption among the vehicle’s
powertrain, auxiliary systems, and energy storage units. The EMS must
dynamically distribute power in real-time based on demand and driving
patterns, making it a complex optimization problem that requires so-
phisticated control strategies. Uncontrolled energy management in the
form of instant and unregulated charging and discharging is responsible
for inefficient energy use, battery degradation, and reduced driving
range (Suhail et al., 2021).

Understanding the dynamics between vehicle subsystems is crucial
in designing efficient internal EMS for EVs. Fig. 1 illustrates the struc-
tural framework of the internal energy distribution in EVs, highlighting
the main components and their interrelations. This layout highlights
the intricacy of energy flow among battery, powertrain, and auxiliary
systems that must be dynamically controlled to meet variable power
demands while optimizing energy consumption. The figure presents
the requirement for advanced control algorithms to manage the energy
distribution efficiently, thereby ensuring enhanced performance and
extended battery life under various driving conditions.

Over the past few years, various machine learning techniques have
been applied to EV-EMS, offering innovative solutions to optimize
energy usage and enhance vehicle performance. As illustrated in Fig. 2,
these techniques are broadly categorized into reinforcement learning,
semi-supervised learning, unsupervised learning, and supervised learn-
ing, each of which tackles the EV energy optimization problem differ-
ently. Reinforcement learning, which comprises policy-iteration-based
and value-iteration-based approaches, excels at real-time adaptive de-
cision making for EV charging and energy distribution tasks. Semi-
supervised learning techniques, e.g. hybrid models, pseudo-labeling,
graph-based models, consistency regularization, and generative models,
apply both labeled and unlabeled data to enhance accuracy while
reducing the reliance on big labeled datasets. Unsupervised learning
techniques, such as clustering, dimensionality reduction, and density
estimation, uncover hidden patterns in the data, facilitating optimized
energy usage without labels. On the other hand, supervised learning,
focusing on classification and regression, predicts essential parameters
like state-of-charge (SoC), energy consumption, and driving range. Fig.
2 categorically classifies these techniques, presenting their roles in
improving energy efficiency, extending battery life, and guaranteeing
efficient energy distribution in EVs.

Several studies have introduced novel approaches to energy man-
agement in EVs, categorizing them into two broad categories: external
EMS that maximize power grid interactions and internal EMS for
efficient utilization of energy within the vehicle itself.

Abdullah et al. (2021) provided a comprehensive review of rein-
forcement learning (RL)-based models, objectives, and architectures for
EV charging coordination approaches in power systems. The study pre-
sented a detailed comparative analysis of various charging coordination
approaches under a number of constraints with special application to
the design of optimized internal energy management systems for EV
charging. The paper also highlighted the contribution of RL towards
stimulating research and development efforts in creating efficient en-
ergy management systems, offering valuable context and guidance for
researchers working on EV charging schedule optimization problems.
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Fig. 2. Classification of machine learning techniques utilized in EV energy management systems (EV EMS).

The main drawback of this study is that it primarily addresses theoret-
ical and simulation-based findings, lacking real-world implementation
and validation through experimental case studies.

Golder and Williamson (2022) investigated the incorporation of
renewable and clean sources of energy, such as fuel cells, solar photo-
voltaic panels, and energy storage systems, into EV charging stations,
aiming to mitigate their impact on the grid. The study investigated var-
ious strategies and forms of EMS implemented in charging stations. The
authors analyzed existing research approaches to develop EMS for EV
Charging Stations (EVCS), focusing on optimization models, machine
learning (ML), and game theory. Furthermore, they expounded on the
possibility of future research exploring other alternative approaches,
such as Multi-Agent Systems (MAS), Model Predictive Control (MPC),
genetic algorithms (GA), and particle swarm optimization (PSO). The
study primarily focuses on existing EMS approaches but lacks real-
world validation and scalability assessments for large-scale EV charging
stations. Additionally, while alternative methods such as Multi-Agent
Systems, Model Predictive Control, Genetic Algorithm, and Particle
Swarm Optimization are not included, their feasibility and comparative
advantages remain unexplored.
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In Chen et al. (2023), the authors introduced an energy manage-
ment strategy for fast-charging stations based on deep reinforcement
learning. A mathematical optimization model is formulated to minimize
day-to-day electricity purchase costs while managing peak power con-
straints. The control strategy is developed using the deep deterministic
policy gradient algorithm. A case study is performed to validate the ef-
fectiveness of the proposed control strategy. The outcomes demonstrate
a significant decrease in peak load power, validating the strategy’s
effectiveness. The computational complexity and scalability of the deep
reinforcement learning approach for large-scale fast-charging networks
remain unaddressed.

Qian et al. (2023) proposed a mathematical model to characterize
the radial distribution network (RDN) load. The EV charging control
issue is formulated as a Markov decision process (MDP) to determine
an optimal charging control strategy that balances V2G profits, RDN
load, and driver anxiety. A federated deep reinforcement learning algo-
rithm is proposed to effectively derive the optimal EV charging control
strategy. The obtained results illustrate the efficacy and superiority
of the proposed algorithm in terms of the diversity of the charging
control strategy, power fluctuations on RDN, convergence efficiency,
and generalization capability.



A. Kermansaravi et al.

Raja et al. (2023) introduced a collaborative optimal navigation and
charge planning (CONCP) framework utilizing multi-agent deep rein-
forcement learning. The proposed framework computed the optimum
route from source to final destination for each autonomous EV planning
charge intervals, avoiding obstacles, minimizing traffic congestion, and
optimizing energy consumption. Experimental results show that CONCP
achieves 27% higher success rates, 31% fewer collisions, and 37%
higher rewards per episode than other state-of-the-art algorithms.

Katkar and Goswami (2020) provided a comprehensive review of
EMSs applied to Hybrid EVs (HEVs) and Plug-in Hybrid EVs (PHEVs).
The study categorized current strategies into two frameworks, rule-
based and optimization-based strategies, including applying Al algo-
rithms for real-time optimization. These Al-based EMSs can tackle
internal energy management challenges like speed prediction, state-
of-charge estimation, and multi-parameter optimization. Although this
paper provided a systematic review of various techniques, it does
not compare the strengths and weaknesses of each method in detail
to provide specific recommendations on the most suitable EMS for
different vehicle types and operational scenarios.

Lee et al. (2020b) investigated advanced control strategies focusing
on the application of reinforcement learning (RL) to refine internal
energy management for HEVs. The study compared RL-based strate-
gies with deterministic dynamic programming (DDP) and stochastic
dynamic programming (SDP) across multiple driving cycles to evaluate
their impact on fuel efficiency and overall power management. The
results demonstrated that RL-based EMS strategies can achieve near-
optimal results comparable to SDP and DDP, demonstrating their effi-
ciency for time-variant control problems with complex boundary con-
straints. Furthermore, the authors examined how value initialization
with transfer learning could improve the rate of RL-based controller
convergence, thus increasing their applicability for real-time energy
management in dynamic driving scenarios. The computational com-
plexity and hardware implementation challenges of RL-based strategies
for real-time energy management remain unaddressed.

In a similar context, Han et al. (2021) introduced a multidimen-
sional matrix framework to derive the parameters of an actor-network
for a deep deterministic policy gradient (DDPG)-based EMS. A
Hardware-in-the-loop (HiL) experiment is performed to verify the real-
time feasibility of the proposed strategy. Through HiL experiments, the
study validated the real-time feasibility of the proposed strategy for
energy management, showing a 13.1% improvement in performance
compared to a Double Deep Q-Learning (DDQL)-based strategy. This
framework also showed improved robustness in fuel economy with a
3.5% improvement over the DDQL. This strengthened the idea that
state of the art deep learning methods could be applied to complicated
energy flow environments that involve electric vehicles (EVs).

Additionally, Shin et al. (2019) developed a cooperative control
strategy for decentralized EV charging station scheduling. The pro-
posed approach efficiently handles real-time dynamic data to generate
scheduling solutions for several charging stations, significantly reduc-
ing operating costs. The study shows the benefit of both real-time data
processing and decentralized control in EV energy management and
demonstrates how internal EMS strategies can be expanded to enhance
EV charging efficiency and reduce overall energy costs.

These studies highlighted the growing importance of Al-driven ap-
proaches in addressing internal energy management problems in EVs.
Nevertheless, most research has focused on hybrid configurations or
external energy management strategies, partly due to the challenges
of integrating renewable energy sources into the grid and the need to
manage charging infrastructure to ramp up EV adoption intentionally.
External energy management strategies, such as V2G systems, have
garnered attention because they directly address grid stability and
peak demand issues, which are critical for supporting large-scale EV
deployment. Hybrid configurations have been the focus of research
because they offer a transition pathway between ICE cars and full EVs,
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providing immediate reductions in emissions while leveraging existing
technologies.

However, the analysis of the previously mentioned solutions did not
capture the details and challenges of pure EVs, especially regarding
their internal energy management system (EMS). Pure EVs only depend
on batteries to store and distribute energy. Without hybridization, pure
EVs require a sophisticated solution to manage energy utilization in
real-time, maximize battery lifespan, and support vehicle performance
under various driving conditions and driver demand. This paper iden-
tifies those gaps by providing a comprehensive review of Al-based
EMS approaches applied to internal energy management in pure EVs.
The review will specifically focus on and expand on the various Al
approaches relevant to pure EVs, e.g., machine learning, reinforcement
learning techniques, and neural networks, and their role in optimizing
energy distribution to support battery life and vehicle performance.

3. Research methodology

We perform a systematic literature review (SLR) to explore various
Al methodologies applied to EV-EMS. This SLR examines how these
techniques enhance energy distribution, improve vehicle performance,
and facilitate the integration of renewable energy sources. Originally
developed in the medical sciences, SLRs are now widely employed
across various disciplines to ensure a comprehensive and unbiased
synthesis of existing knowledge. We adhered to the structured guide-
lines proposed by Kitchenham et al. (2004) for conducting systematic
reviews in software engineering and related domains. The primary
objective of our SLR is to address the following overarching research
question:

How can energy management techniques be integrated with AI?
What is the desirable characteristics for energy management?.

It is crucial to consider key desirable characteristics such as com-
putational efficiency, real-time adaptability, cost-effectiveness, and ro-
bustness to varying driving conditions to evaluate and compare differ-
ent energy management strategies.

This broad inquiry is divided into the following specific research
questions (RQs) to focus the investigation and provide actionable in-
sights:

3.1. Research questions

To provide a comprehensive understanding of AI’s role in EV-EMS,
we address the following research questions:

RQ1 How can state-of-the-art machine learning models leverage gran-
ular vehicle data in EVEMS, ensuring optimal performance and
longevity under diverse operating conditions?

This question explores the specific role of advanced AI models
in handling EV operations’ dynamic and multi-faceted nature.
By addressing RQ1, we intend to uncover how granular data
(e.g., battery status, driving patterns, energy consumption) can
be harnessed to optimize energy usage, improve battery life, and
adapt to varying conditions.

RQ2 What are the common taxonomies for energy management in
electric vehicles?

With this question, we aim to classify and understand the pri-
mary categories of EMSs in EVs, such as rule-based,
optimization-based, and Al-driven strategies. This taxonomy
helps identify the evolution of EMS approaches and their ap-
plications across different scenarios.
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RQ3 What are the most commonly and widely used AI applications
energy management methods? What are the advantages and
disadvantages of each Al method?

This question analyzes popular Al techniques used in EV EMSs,
highlighting their strengths and weaknesses. Addressing this will
offer insights into the trade-offs involved in selecting a particular
method for specific applications.

RQ4 What are the promising research directions for energy manage-
ment in EVs?

This question aims to identify gaps in the current research land-
scape and suggest potential areas for future exploration. This
includes emerging Al technologies, integration with renewable
energy, and enhancing the scalability and adaptability of EMSs.

The research questions are designed to systematically address the
challenges and opportunities in using Al for EV energy management.
RQ1 focuses on leveraging granular data because effective EMSs rely
on accurate and detailed input to make informed decisions. RQ2 is
necessary to establish a clear framework for understanding the scope
of EMS methodologies, serving as a foundation for the subsequent
analysis. RQ3 seeks to evaluate the practical effectiveness of existing
Al approaches, aiding researchers and practitioners in selecting suitable
methods. Finally, RQ4 ensures that the study not only reflects the field’s
current state but also guides future research and development efforts,
aligning with the evolving needs of EV technology.

By structuring our review around these questions, we aim to pro-
vide a comprehensive overview of the role of Al in EV-EMSs and
offer actionable insights to researchers, policymakers, and industry
professionals.

3.2. Search query formation

To ensure a comprehensive review, the IEEE Xplore digital library is
utilized to search for relevant research articles published between 2018
and 2024. Our search focused on journals and conference proceedings
that addressed the intersection of AI methodologies and EV energy
management.

The search process focused on the topic “Electrical vehicle Energy
Management” with the other existing phrases related to the domain of
“Artificial intelligence”. We define five sets of keywords presented as
follows:

. Electric vehicle

. Energy management

. Charging infrastructure

. Charging network

. Artificial intelligence OR machine learning

g wWwhN =

The search query was refined iteratively to include synonyms and
closely related terms, and the IEEE search engine was configured
to filter results by title, abstract, and keywords, ensuring a targeted
selection process.

3.3. Study selection

The selection process was conducted systematically to identify high-
quality papers addressing the above research questions. This process
included the following steps:

1. Initial Search and Filtering: We began by executing our defined
query on the IEEE Xplore database, which resulted in 1975
papers. These papers were filtered based on relevance, resulting
in 1925 unique papers after removing duplicates.

2. Applying Inclusion and Exclusion Criteria: We then applied spe-
cific criteria to refine the results further. Papers that did not
focus on EV energy management or did not incorporate Al,
Machine Learning, or related techniques were excluded. Addi-
tionally, non-English papers and articles from low-impact venues
were filtered out, reducing the set to 133.
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Exclusion
excluded:

criteria. By checking the body of the selected papers, we

« Articles not related to electric vehicles energy manage-
ment.

« Articles not covering ML, Al, DL.

« Articles not written in English.

« Articles not published in high-quality conferences (cited
less than 20)

Inclusion criteria.

« If multiple versions of an article are available, such as a
conference paper and a subsequent journal publication, we
prioritize and include the more detailed and comprehen-
sive version, typically the journal version.

. Manual Review: The remaining articles were manually reviewed
by analyzing their titles, abstracts, and main content. This pro-
cess identified 58 highly relevant papers covering both internal
and external EMSs. Since this study focuses on internal EMSs,
the selection was further refined to 23 papers.

. Snowballing Process: To ensure comprehensive coverage, the
reference lists of the selected articles were examined to iden-
tify additional relevant studies. Titles, publication venues, and
years were assessed to determine suitability for inclusion. The
inclusion and exclusion criteria were applied for any potentially
relevant articles. This process accounted for limitations in the
initial search phase and added three more papers, bringing the
final set to 26 papers.

3.4. Search results

The systematic selection process resulted in a final set of 65 papers
published between 2018 and 2024, concentrating on Al-based energy
management strategies for EVs. Out of these, 26 papers specifically
address internal energy management systems for EVs using Al method-
ologies. These papers are categorized and summarized in Table 1, with
particular attention to the research questions identified.

4. Discussion

In this section, the selected papers have been studied based on three
main categories, including “Energy Consumption”, “Charging Strat-
egy”, and “Battery Management” to address our research questions:

RQ1: How can state-of-the-art machine learning models leverage
granular vehicle data in EVEMS, ensuring optimal performance and
longevity under diverse operating conditions? The state-of-the-art ma-
chine learning models applied to EV-EMS leverage granular vehicle
data to optimize energy consumption, charging strategies, and battery
management, enhancing performance and longevity. Techniques like
reinforcement learning, deep learning, and transfer learning enable the
EMS to adapt dynamically in real-time, optimizing energy use and bat-
tery management through predictive maintenance and targeted energy
distribution. Optimization algorithms and multi-agent models provide
collaborative and scalable solutions that support multi-objective goals
and efficient system coordination. These advanced models enable EV-
EMSs to balance the immediate demands for optimal vehicle per-
formance, such as acceleration and power delivery, with long-term
objectives like preserving battery health and extending its lifespan,
ensuring sustainable energy efficiency across diverse driving scenarios.

1. Energy Consumption: Recent research on energy consumption
for EVEMS highlights the application of advanced machine
learning and optimization methods to enhance energy efficiency
and battery life under varying driving conditions. Adaptive
optimization techniques, such as particle swarm optimization
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Table 1
Journals and conferences selected for the study.

Energy Reports 13 (2025) 5535-5550

Sources Acronyms Number of papers
IEEE Transportation Electrification Conference and Expo ITECAsia 1
IEEE Vehicle Power and Propulsion Conference VPPC 3
International Conference on Intelligent Systems and Advanced Computing Sciences ISACS 1
IEEE Access - 5
IEEE Journal of Emerging and Selected Topics in Power Electronics JESTPE 1
IEEE Transactions on Industrial Informatics TII 2
IEEE Internet of Things Journal JIOT 2
IEEE Vehicular Technology Conference VTC 1
IEEE Intelligent Vehicles Symposium v 1
IEEE Transactions on Transportation Electrification TTE 4
IEEE Transactions on Vehicular Technology - 4
IEEE Transactions on Intelligent Transportation Systems T-ITS 1

(PSO), focus on reducing computational overhead while im-
proving energy distribution. These methods rely heavily on
accurate digital twin models for reliable results. Deep learning
and deep reinforcement learning (DRL) offer robust solutions
for capturing complex system relationships and enabling real-
time adaptability, although their implementation demands sub-
stantial computational resources. Reinforcement learning (RL)
and multi-agent reinforcement learning (MARL) are well-suited
for dynamic and collaborative environments, supporting multi-
objective optimization but requiring extensive data and careful
parameter tuning. By leveraging high-resolution vehicle teleme-
try data, these models can improve predictive accuracy and op-
timize energy usage in real-time while reducing gradual perfor-
mance degradation over time. Furthermore, combining knowl-
edge of the driving domain with the data-driven models can
enhance robustness to (i.e., being robust against) unseen driving
conditions and guarantee uniform EMS efficiency over widely
varying operations (Ma et al.,, 2024). Transfer learning (Guo
et al., 2020) accelerates model adaptation by reusing knowledge
from existing systems, effectively reducing training time but
occasionally facing challenges with generalizing across signifi-
cantly different contexts.

The methodologies reviewed are broadly classified into opti-
mization algorithms (Zhang et al., 2022), deep learning models
(Liu et al., 2019; Tang et al., 2021; Sotoudeh and HomChaud-
huri, 2023; Wang et al., 2020, 2023; Li et al., 2021), RL (in-
cluding MARL) (Xiao et al., 2023; Li et al.,, 2019; Lin et al.,
2021; Yang et al., 2023; Hu et al., 2023; Guo et al., 2020; Lee
et al., 2021; Xu et al., 2020; Lee et al., 2020a; Liessner et al.,
2019), and transfer learning (Xu et al., 2022; Lian et al., 2020).
Optimization algorithms like PSO enhance energy efficiency
in dynamic scenarios, leveraging their adaptability to evolving
conditions. Deep learning models excel in modeling complex
system behaviors but are resource-intensive. DRL and MARL
enable multi-objective optimization and adaptability, utilizing
data from diverse sources to achieve energy-efficient decision-
making. Standard RL methods effectively address changing oper-
ational demands, while transfer learning facilitates rapid adapta-
tion across HEV types, minimizing training overhead. Together,
these methods enable energy-efficient and adaptive EV-EMS so-
lutions, optimizing both performance and longevity in diverse
operating conditions.

. Charging Strategy: Al-based charging strategies leverage dy-
namic vehicle and environmental data to optimize energy distri-
bution in EV charging networks and stations. In particular, DRL
models, such as DDPG and multi-agent DRL approaches, are in-
creasingly used to improve the efficiency and reliability of charg-
ing processes. These strategies enable real-time adaptation to
fluctuating demands, grid conditions, and vehicle battery states,
reducing operational costs, minimizing peak loads, and optimiz-
ing renewable energy sources. Federated Reinforcement Learn-
ing (FRL) also provides a decentralized and privacy-preserving
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solution for managing charging control across multiple EVs and
charging stations. The focus on multi-agent systems enables
scalable, cooperative charging management for electric vehicle
fleets. It enhances load balancing, making it particularly ben-
eficial for addressing grid stability challenges and energy cost
reduction in charging stations.

ML techniques, DRL, and multi-agent systems are transforming
the management of EV charging strategies by enabling real-
time, adaptive energy allocation across diverse scenarios. These
models optimize energy distribution by balancing load demands,
reducing peak power, and improving efficiency in individual
EV charging stations and more extensive distributed networks.
For example, methods like DDPG and FRL facilitate cooperative,
decentralized energy management, reducing costs and enhanc-
ing grid stability. Furthermore, these techniques are scalable,
adaptable, and capable of handling dynamic, data-intensive en-
vironments, making them ideal for next-generation EV charging
solutions in urban and industrial contexts.

. Battery Management: State-of-the-art machine learning models

can leverage granular vehicle data in EV-EMS by employing var-
ious techniques that adapt to EVs dynamic and diverse operating
conditions. Fuzzy logic and adaptive neuro-fuzzy inference sys-
tems (ANFIS) controllers offer interpretable and efficient battery
performance management, making them suitable for stable and
predictable systems. However, their reliance on predefined rule
sets and static models can limit their effectiveness in complex
environments with highly variable or unpredictable conditions,
such as frequent driving pattern changes, irregular battery usage,
or extreme environmental factors. On the other hand, DRL and
deep learning techniques, by utilizing vast amounts of data,
can optimize battery usage, extend lifespan, and improve ef-
ficiency, although they are computationally demanding. Con-
current learning-based methods further enhance hybrid energy
storage system performance, reducing energy loss and providing
robustness to disturbances. While varying in complexity, these
models aim to optimize energy consumption, ensure battery
longevity, and adapt to diverse driving conditions using granular
data on vehicle performance, battery status, and environmental
factors.

Machine learning models, such as fuzzy logic, ANFIS, deep rein-
forcement learning, and deep learning, provide capable meth-
ods for optimizing energy management in EVs by leveraging
more detailed information from the vehicle. These methodolo-
gies will ensure optimal performance by adapting dynamically
to changes and optimizing battery performance and life. The
proposed taxonomy ensures clear distinctions between energy
consumption, charging strategies, and battery management by
minimizing conceptual overlaps. Energy consumption focuses
on Al-driven optimization of driving efficiency and power dis-
tribution while charging strategies address scheduling, grid in-
teraction, and infrastructure utilization. Battery management
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is dedicated to maintaining battery health and longevity, in-
dependent of charging logistics or vehicle energy efficiency.
This structured framework enhances clarity, enabling a focused
analysis of Al-driven solutions within each domain.

While the fuzzy logic model applies to a stable system, ap-
proaches like DRL and deep learning will perform better with
their learning abilities, though they introduce significant com-
putational demands. These demands necessitate advanced hard-
ware accelerations and algorithmic optimizations to ensure real-
time performance. Hardware accelerations primarily include the
use of Graphics Processing Units (GPUs) and Tensor Process-
ing Units (TPUs), which efficiently handle the parallel compu-
tations required for deep learning models. Additionally, Field
Programmable Gate Arrays (FPGAs) and Application-Specific
Integrated Circuits (ASICs) offer customized acceleration with
lower power consumption, making them suitable for embedded
EV applications.

Furthermore, model compression techniques such as quanti-
zation, pruning, and knowledge distillation can significantly
reduce computational overhead by decreasing model size and
inference latency. Hybrid approaches that combine rule-based
control with Al-driven adaptations further enhance real-time
feasibility by leveraging domain knowledge to simplify com-
plex decision-making processes. By integrating these hardware
and software advancements, Al-driven EV energy management
systems (EV EMS) can achieve more efficient, responsive, and
real-time optimization of energy management strategies.

RQ2: What are the common taxonomies for energy management
in electric vehicles? Based on the analysis of various papers on EV-
EMS, three primary categories emerge as standard taxonomies: energy
management, charging strategy, and battery management. These cat-
egories provide a structured framework to understand the different
dimensions of energy management in EVs, including optimizing energy
distribution, strategies for effective charging, and maintaining battery
health and performance.

1. Energy consumption strategies focus on optimizing power distribu-
tion across various vehicle components to enhance energy efficiency
and overall vehicle performance. This includes methodologies such
as rule-based approaches, which rely on predefined rules set by
engineers, optimization-based techniques such as dynamic program-
ming and model predictive control, and learning-based methods
leveraging machine learning algorithms such as DRL to adapt to
dynamic driving conditions. The recent papers focused on energy
management in HEVs and EVs could be classified into:

» DRL and its Variants: DRL methods, such as multi-agent DRL
(MADDPG) and DDPG, aim to improve power coordination in
EVs. They have been widely applied in fuel cell HEVs (FCHEVSs)
and PHEVs (Xiao et al., 2023; Liu et al., 2019; Zhang et al.,
2022; Li et al., 2019; Tang et al., 2021; Lin et al., 2021; Yang
et al., 2023; Hu et al., 2023). Integrating DRL with transfer
learning (TL) addresses the challenge of adapting EMS to di-
verse driving conditions and vehicle types, enhancing training
speed and efficiency (Xu et al., 2022; Lian et al., 2020; Guo
et al., 2020).

Hierarchical and Model-based Approaches: Hierarchical frame-
works combine high-level and low-level decision-making, em-
ploying strategies like eco-driving and deep neural networks
(DNN) for real-time optimization (Liu et al., 2019; Wang et al.,
2023). Model-based methods like Equivalent Consumption
Minimization Strategy (ECMS) and Deep Q-Networks (DQN)
leverage stochastic conditions and future driving informa-
tion to derive near-optimal solutions. In DRL-based EMSs
for HEVs, multi-objective optimization is increasingly being
adopted, considering not just fuel economy but also factors
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like battery health. Research shows that DRL-based EMSs with
multi-objective reward functions perform better under high-
speed conditions while ensuring better battery longevity and
fuel efficiency

Hybrid Approaches with Optimization Algorithms: DRL com-
bined with optimization techniques, such as GA and PSO,
enhances real-time performance and adaptability of EMS, vali-
dated through hardware-in-the-loop simulations and real-
world driving tests (Liu et al., 2019; Zhang et al., 2022;
Tang et al., 2021). MARL incorporates game theory to balance
multiple objectives like fuel economy and battery degradation
by treating power sources as intelligent agents (Yang et al.,
2023).

Energy management strategies in EVs encompass various techniques,
from DRL and model-based approaches to hybrid methods integrating
optimization algorithms. These strategies aim to efficiently allocate power
across components to reduce energy consumption and enhance vehicle
performance.

. The charging strategies optimize the charging process, minimize

battery degradation, and ensure efficient energy utilization. These
strategies include time-based charging schedules and predictive al-
gorithms that incorporate factors such as grid demand and electricity
pricing.

+ Time-based and Predictive Approaches: Basic time-based
strategies optimize charging based on user preferences and
cost minimization, while more advanced predictive algorithms
consider dynamic electricity pricing, grid load, and user driv-
ing patterns to recommend optimal charging times. These
approaches protect battery health by avoiding overcharging
and ensuring the battery remains within safe operating limits
(Chen et al., 2023).

Smart Charging and Grid Integration: Smart charging protocols
leverage grid integration and time-of-use pricing to optimize
when and how the vehicle charges, providing a dynamic re-
sponse to grid demand and energy pricing (Raja et al., 2023;
Qian et al., 2023).

Al-Driven Grid Stability in Renewable-Integrated EMS: The
advanced penetration of renewable energy sources (RES) in-
creases volatility in grid stability. To achieve efficient energy
management, Al-based methodologies optimize energy man-
agement systems (EMS) by adjusting and optimizing charg-
ing/discharging schedules for EVs as energy becomes avail-
able.

- Real-Time Forecasting and Demand-Supply Matching:
Deep Learning models (i.e., LSTM) will predict renewable
generation expectations, enabling effective coordination
of EV charging systems.

- Reinforcement Learning for Dynamic Load Balancing:
Reinforcement Learning (RL)-based controllers actively
monitor charging schedules to mitigate or eliminate over-
loading and overall grid destabilization involving EV
charging based on real-time energy supply needs.

- V2G Optimization: Al-based intelligence will optimize EV
discharging to the grid while EVs are in a parking mode
during peak load periods to reduce dependency on fossil
fuel-utilized power generation.

- Blockchain and Federated Learning for Decentralized
EMS: Smart contracts using blockchain enable energy
trading between EVs and grid in support of dynamic dis-
patch needs through instantaneous EV charging schedul-
ing while federated learning will optimize grid stability
without compromising data privacy principle.
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Fig. 3. Battery Management Diagram.

Charging strategies in EVs include time-based and predictive approaches
that optimize charging schedules to balance battery health, grid demand,
and electricity pricing. Advanced Al-driven techniques integrate with
renewable energy sources and smart grids to enhance grid stabil-
ity and energy efficiency, ensuring a scalable and sustainable EV
infrastructure.

3. Battery management deals with maintaining and monitoring a bat-

tery’s health to maximize its lifespan and ensure safety. Key tasks
include real-time monitoring of the SoC and state of health (SoH),
balancing cell voltages, and thermal management to prevent over-
heating. Advanced machine learning models and data analytics are
increasingly used to predict battery degradation and optimize charg-
ing and discharging cycles. Together, these categories form a com-
prehensive framework for managing the energy needs of electric
vehicles, enhancing efficiency, longevity, and overall performance.
Battery management in EVs can be categorized into three primary
classes: Learning-based Approaches, Intelligent Control Systems, and
Hybrid Storage with Machine Learning Techniques. These categories
provide a structured framework for understanding various battery
management techniques and their applications (see Fig. 3).

1. Learning-based Approaches: Learning-based techniques, in-
cluding reinforcement learning and concurrent learning, have
gained prominence in battery management. These methods
dynamically optimize energy use in hybrid energy storage
systems (HESS) that combine batteries with ultra-capacitors.
For instance, learning-based strategies can handle external
disturbances and uncertainties, improving overall system per-
formance. Mukhcrjee and Sarkar (2023) propose a method
that reduces energy loss significantly by optimizing the use
of ultra-capacitors without constraining the SoC, making it a
robust solution for plug-in hybrid electric vehicles (PHEVs)
(Chaoui et al., 2018).

2. Intelligent Control Systems: Intelligent control systems, such
as fuzzy logic and ANFIS, are widely used for managing
battery energy. These controllers make decisions based on
parameters like SoC and driving conditions to enhance ef-
ficiency. Suhail et al. (2021) demonstrated how intelligent
control systems improve battery performance and fuel effi-
ciency in PHEVs, with ANFIS outperforming traditional fuzzy
logic controllers. This highlights the potential of adaptive
control techniques in optimizing energy use and extending
battery life.

3. Hybrid Storage and ML Techniques: HESS, which combines
Li-ion batteries with supercapacitors, is another promising
avenue for efficient energy management. Machine learning
models are increasingly employed to optimize energy distri-
bution between the battery and supercapacitor, particularly
during peak power demands. Alaoui’s work (Alaoui, 2019)
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shows how machine learning can maximize the efficiency of
these hybrid systems, ensuring optimal performance during
dynamic driving conditions.

Battery management strategies in EVs focus on optimizing energy storage
system performance, lifespan, and safety. Learning-based techniques,
such as deep reinforcement learning, enhance efficiency and reduce
energy loss. In contrast, advanced control methods like fuzzy logic and
adaptive neuro-fuzzy systems support optimal energy allocation and
extend battery life. Additionally, integrating lithium-ion batteries with
supercapacitors improves the performance of HESS. These advancements
collectively enhance the efficiency and reliability of EVs, boosting their
market potential.

RQ3: What are the most commonly and widely used AI appli-
cations energy management methods? What are the advantages and
disadvantages of each AI method? The most used energy management
methods in Al applications for EVs and HEVs can be categorized into
energy consumption, charging strategy, and battery management.

1. Energy Consumption: This summary draws on insights from recent
papers focusing on energy consumption in electric and hybrid vehi-
cles. Various Al methods—including RL, DRL, DL, and TL demon-
strate distinct strengths and limitations, making them suitable for
different energy management strategies (see Table 2).

» PSO and Adaptive PSO: is widely used in EMS due to its simplic-
ity and adaptability. Specifically, adaptive PSO allows for rapid
convergence to optimal solutions, even in dynamic driving envi-
ronments (Zhang et al., 2022).

» Deep Learning: DL models predict powertrain behavior and opti-
mize energy allocation in complex driving cycles, leveraging large
datasets for precise control (Liu et al., 2019; Sotoudeh and Hom-
Chaudhuri, 2023; Wang et al., 2023).

» Deep Reinforcement Learning: DRL combines deep neural networks
with RL frameworks to provide adaptive and dynamic decision-
making in real-time EMS. It optimizes control policies through trial
and error in simulated environments, such as with Deep Q-learning
or policy gradient methods. In hybrid battery systems for electric
vehicles, DRL-based methodologies have shown to be capable of
reducing energy loss while also improving electrical and thermal
safety levels, while achieving a higher level of efficiency in energy
and computation time compared to traditional methods
Challenges in DRL for EMS: DRL is effective, but has a number of
practical challenges inhibiting actual implementation:

- High Computational Cost: Training a DRL model necessitates
large amounts of computer power and simulation environ-
ments.
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- Sample Inefficiency: DRL depends on large amounts of train-
ing data that continues to make real-world applications prob-
lematic.

- Training Instability: Performance is sensitive to hyperparam-
eters, and consequently parameters need to be tuned effi-
ciently.

- Real-Time Feasibility Issues: Inference delays can result in
poor responsiveness of EMS applications.

Potential Solutions: Hybrid RL (combining RL with rule-based op-
timization), Offline RL (training on pre-collected datasets), and
Model-Based RL (integrating physics models) can mitigate these
challenges.

Reinforcement Learning: RL and its variants, particularly model-
based offline RL, are frequently applied in energy management
techniques that improve the energy efficiency of hybrid electric
vehicles. These methods alleviate the issues of sample inefficiency
and unsafe exploration with the aid of historical datasets, which
improve performance in real-time, and/or reduce the simulation-
to-real gap. Standard RL approaches like Q-learning and SARSA
are widely used in EMS for their adaptability and effectiveness
in optimizing fuel and battery management across various driving
cycles (Li et al., 2019; Xu et al., 2020; Liessner et al., 2019; Lee
et al., 2020a; Yang et al., 2023; Lin et al., 2021; Lee et al., 2021;
Guo et al., 2020; Hu et al., 2023).

Explainability Challenge: Although deep learning (DL) and re-
inforcement learning (RL) techniques have a high accuracy level,
these techniques still work as black-box models and lack trans-
parency in the decision-making process.

Proposed XAI Solutions:

- Feature Attribution Methods: Approaches like SHAP (SHapley
Additive Explanations) and LIME (Local Interpretable Model-
Agonistic Explanations) can be used to explore the effects
of input parameters (e.g., battery SoC, driving speed) on the
predictions of energy efficiency.

- Surrogate Models: Interpretable models (e.g., decision trees)
approximate more complex DL models so humans can inter-
pret outcomes more easily.

- Hybrid AI Approaches: The use of RL with rule-based opti-
mization can ensure decisions are compatible with engineer-
ing constraints.

These approaches enhance transparency for Al energy consump-
tion prediction models and help ensure compliance with energy
efficiency regulations.

Multi-Agent Reinforcement Learning: MARL models multiple vehi-
cle components (e.g., engine, battery, ultracapacitors) as separate
agents that can cooperate or compete, allowing for multi-objective
optimization (Xiao et al., 2023).

TL for EMS Adaptability: TL enhances Al-based EMS by adapting
models across different driving cycles, vehicle types, and opera-
tional conditions

Key Applications of TL in EMS:

- Driving Cycle Adaptation: Al models trained for urban traffic
can be fine-tuned for highway driving without full retraining.

- Vehicle-to-Vehicle Transfer: TL allows EMS models trained
on one EV type (e.g., BEVs) to be adapted for another (e.g.,
PHEVs).

- Simulation-to-Real Transfer: Pre-trained AI models can be
refined with real-world sensor data to enhance deployment
reliability.

These applications demonstrate that TL is an indispensable strategy for
making Al-driven EMS adaptable and scalable.
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Each approach serves specific EMS needs, with RL and DRL providing
real-time adaptability, TL improving model flexibility, and optimization
algorithms such as PSO offering computational efficiency. This diversity
allows EMS designers to choose the most suitable method based on
application-specific requirements and available computational resources.

. Charging Strategy: Based on the analysis of recent papers on charg-

ing strategy (Han et al., 2021; Shin et al., 2019; Chen et al., 2023;
Qian et al., 2023; Raja et al., 2023), the most commonly used Al
methods in energy management for EV charging and energy storage
are DRL, MADRL, and FRL (see Table 3).

» Deep Reinforcement Learning: DRL, especially the DDPG algo-
rithm, is widely used for energy management in EV charging
stations and hybrid electric vehicles, offering a continuous learning
environment for dynamic demands (Han et al., 2021; Chen et al.,
2023). However, DRL requires significant computational resources
for training and may struggle with convergence in highly complex
or uncertain environments.

Limitations of DRL for EV Charging: While DRL can develop
adaptive charging schedules and load balance, its real-world de-
ployment faces significant challenges:

- High Computational Cost: DRL models often require extensive
training to converge within the training process, sometimes
taking weeks to train for large-scale changing networks.

- Sample Inefficiency: To learn an optimal charging policy
suffers from sample inefficiency and likely requires millions
of interactions, making real-time adaptation to the grid im-
practical.

- Scalability Issues: the challenge of utilizing DRL approaches
will be complicated by high dimensional state-action spaces
and multi-agent charging systems.

- Regulatory Challenges: The black-box nature of DRL is a
challenge when regulating charging decisions.

Proposed Solutions to DRL Challenges:

- Hierarchical RL: Making a distinction between optimizing the
grid demand for long-time periods (macro decisions) versus
charging planning (micro decisions) can increase efficiency.

- Hybrid Optimization Models: DRL plus rule-based algorithms
provide safety compliance and explainable decision-making.

- Offline RL: If a DRL model can be trained by exposure to
historical grid load data before deployment, sample efficiency
can be dramatically increased.

- XAI for Regulatory Compliance: Using feature attribution
methods (e.g., SHAP/LIME) will allow grid operators to in-
terpret charging policies to validate decisions.

Explainability Challenge: DRL models identify optimal charging
rules through trial-and-error processes. However, the solutions of
these models are not easily interpretable, making them susceptible
to scrutiny by regulatory agencies.

Proposed XAI Solutions:

- Attention Mechanisms: RL models with explainability-
enhanced capabilities may include attention layers to high-
light prominent factors influencing charging decisions (e.g.,
energy costs, peak times).

- Rule-Based Hybrid AI Models: Using RL with explicit con-
straints on charging regardless of and in addition to safety
rules involving batteries permits and promotes the behavior
of interpretable and safety-compliant decisions.

Multiagent Deep Reinforcement Learning: MADRL enables dis-
tributed energy management across multiple EV charging stations
and autonomous vehicles, effectively handling decentralized and
dynamic environments (Shin et al., 2019; Raja et al., 2023).
Challenges in MADRL:
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- Communication Overhead: Communication Overhead: Coor-
dinating multiple agents adds computational complexity.

- Coordination Complexity: Coordinating both EV stations ne-
cessitates extensive bandwidth data communications.

— Scalability Concerns: Increasing numbers of EVs may cause
MADRL models to not generalize to large-scale charging net-
works.

Potential Solutions for MADRL Scalability:

- Decentralized Learning: Direct interactions decrease reliance
on a central controller, improving real-time feasibility.

— Graph Neural Networks (GNNs): GNNs will model efficiently
shared interdependencies between charging stations.

- Hierarchical Coordination: Clustering EVs into local groups
simplifies multi-agent learning and reduces overhead.

 Federated Reinforcement Learning: FRL merges the advantages of
multiagent learning with data sharing and privacy preservation,
making it suitable for managing EV charging from disparate grid
operators (Qian et al., 2023). FRL poses serious challenges for
practical implementations in the real world. The main realistic
barriers to FRL implementations are communication latency, data
privacy, and scalability.
Challenges in FRL-Based Charging Optimization:

- Communication Latency: FRL requires frequent model up-
dates to occur between the distributed EVs and the aggre-
gators. These updates can exacerbate network congestion
issues.

- Data Privacy Risks: Although FRL prevents direct data shar-
ing, an explosive number of model updates can also expose
sensitive EV charging patterns.

- Scalability Issues: As the number of participating EVs grows,
the cost of model aggregation becomes an issue due to the
computational burden it imposes.

Potential Solutions for FRL Challenges:

- Asynchronous Learning: Allow local models to update asyn-
chronously to reduce waiting times.

- Edge Computing: Performing updates at the local level mini-
mizes delays from transmission to the cloud.

- Hierarchical FRL: Grouping EVs into clusters based on region
makes federated updates more efficient.

Proposed XAI Solutions:

- Differential Privacy with XAI: Adding explainability layers
to encrypted model updates can ensure model updates have
interpretability while maintaining privacy protection.

- Hierarchical Interpretability = Models:  Explainability
techniques can be used to analyze FRL-driven decisions
through a regional interpretability approach at the microgrid
and urban levels.

Applying these explanatory techniques not only promotes regula-
tory acceptance of Al but also presents value to practical imple-
mentation in the real world.

Charging strategies for electric vehicles increasingly leverage multiple Al
methodologies to enhance energy management, including DRL, MADRL,
FRL, machine learning, fuzzy logic, and optimization algorithms. Each
method offers unique strengths and faces specific challenges, making them
suited to different aspects of EV energy management. In conclusion, each
of these methodologies contributes uniquely to optimizing EV charging
strategies.
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3. Battery Management: Al-based methods are crucial for battery man-

agement in electric and hybrid vehicles, each with specific advan-
tages and challenges. Based on the four papers, Al is increasingly
adopted in electric vehicle energy management to address the com-
plexity and variability of energy demands. The most commonly used
Al methods include Fuzzy Logic Control (FLC), ANFIS, DRL, and DL.
Fuzzy Logic and ANFIS provide straightforward, interpretable con-
trol for stable hybrid systems, effectively handling uncertainty with
minimal computational demand. In contrast, deep reinforcement
learning and deep concurrent learning offer more adaptable, effi-
cient energy management and dynamically optimized battery use
for immediate needs and long-term health, but at the cost of high
computational requirements. Deep Learning also supports complex
hybrid systems, optimizing energy flows across multiple sources,
but demands extensive data and computational resources to perform
optimally.

» Deep Reinforcement Learning: DRL leverages complex policy learn-
ing for energy management, allocating resources optimally under
diverse operational conditions. It is beneficial for managing sys-
tems with multiple energy storage devices, such as batteries with
different charging behaviors (Chaoui et al., 2018).

Limitations of DRL in Battery Management: Despite its advan-
tages, DRL has several difficulties associated with using it for
battery control:

- Battery Degradation Risks: The control policy based on DRL
may suboptimally prioritize short-term energy efficiency over
long-term battery degradation, often increasing battery aging
and thermal instability.

- High Computational Cost: DRL models require substantial
computational resources to discover optimal battery manage-
ment policies, but they are limited to application in real-time.

- Sample Inefficiency: Collecting large amounts of data needed
to train the DRL for battery state of charge/state of health
(SoC/SOH) estimates is expensive and time-consuming.

- Lack of Explainability: Due to its black-box nature, DRL raises
feasibility questions around battery longevity, thermal safety,
and possible regulatory approval.

Proposed Solutions to DRL Challenges:

- Physics-Informed DRL: Incorporating battery degradation
models and electrochemical constraints into DRL training
ensures battery longevity is preserved.

- Hybrid AI Approaches: Using DRL in conjunction with rule-
based controllers provides battery management, which is not
only safe but interpretable.

- Offline RL for Battery Health Monitoring: Pretraining DRL
on historical battery degradation data reduces the need for
excessive real-time exploration.

- Transfer Learning for Battery SoH Estimation: TL DRL models
trained on particular battery chemistries, such as lithium-ion,
can be transferred to explore and estimate battery SoH in
future battery types (e.g., solid-state batteries).

Explainability Challenge: DRL-based battery management poli-
cies lack interpretability, which raises battery degradation and
thermal stability concerns, particularly when the battery is under
load.

Proposed XAI Solutions:

- Physics-Informed Neural Networks (PINNs): These artifi-
cial intelligence approaches embed battery physics equations
into deep learning models to account for electrochemical
boundaries while making decisions.

- Bayesian Deep Learning (BDL): Provides uncertainty esti-
mation for battery SoC (state of charge) estimates, which is
an important resource for understanding how confident the
Al is in its decision.
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» Deep Concurrent Learning (DCL): This advanced technique uses a
concurrent learning framework to manage HESS in PHEVs. DCL
minimizes energy loss and handles external disturbances by in-
troducing a reward structure that optimizes the control policy
(Mukhcrjee and Sarkar, 2023).

Deep Learning: DL models are used to manage energy demands
between batteries and supercapacitors in hybrid systems, focusing
on maximizing the efficiency of these storage devices (Alaoui,
2019).

Challenges in DL-Based Battery Management:

- Data Requirements: Training correct DL-based models for
battery health monitoring requires vast labeled datasets that
are not easy to obtain.

- Generalization Issues: DL models trained in specific battery
types may not generalize well to newer battery chemistries.

Proposed Solutions for DL Battery Management:

- Transfer Learning for SoH Adaptation: TL is a tool that al-
lows battery models to be pre-trained on different battery
chemistries and fine-tuned for different battery chemistries.

- Hybrid DL Models: Combining data-driven models with
physics-based constraints helps address generalization issues.

FLC and ANFIS: Fuzzy logic is particularly effective in dealing
with the uncertainty and imprecision inherent in battery data, such
as fluctuations in SoC or temperature. FLC and ANFIS combine
human-like reasoning with mathematical control to handle energy
distribution in HEVs. These systems use battery state of charge
and engine speed to manage the torque and energy requirements
(Suhail et al., 2021). FLCs are relatively simpler to design and
implement than AI techniques. Fuzzy logic systems are robust
against variations in battery behavior and external conditions,
making them reliable for real-time applications.

Proposed XAI Solutions:

- Fuzzy Rule-Based AI Enhancements: Combining Fuzzy Logic
with reinforcement learning helps improve explainability
while maintaining adaptability

Fuzzy Logic and ANFIS provide straightforward, interpretable control
suited for stable hybrid systems, while Deep Reinforcement Learning and
Deep Concurrent Learning offer more adaptable, efficient energy man-
agement at the expense of higher computational demands. Deep Learning
is effective in hybrid setups with multiple energy sources but requires
extensive data and computational resources to achieve optimal results.
Each method has strengths in different operational contexts, making the
choice of AI technique dependent on the specific energy management
needs and available computational resources.

To provide a structured and quantitative comparison, Table 4 eval-
uates Al-based energy management strategies concerning key per-
formance indicators frequently reported in EVENS research. These
indicators help assess the performance trade-offs between computa-
tional efficiency, energy savings, battery life, and real-time decision-
making capability.

Computational Complexity: Refers to the process demands
the algorithm requires to run, a contributing factor in deter-
mining the feasibility of real-time applications.

Training Time: The duration needed for the AI model to learn
the strategies for optimal energy management.

Convergence Rate: The number of iterations for the Al model
to achieve stable performance.

Gain in Energy Efficiency (%): The improvement in EV en-
ergy consumption is attributable to the Al strategy.

Gain in Battery Life (%): The estimated battery life extension
due to the optimized charge/discharge cycles.
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» Computational Cost (ms per decision): The processing time
required for the Al system to generate a decision for real-time
applications.

» Real-Time Adaptability (ms response time): The ability of
the AI method to adapt to capabilities for both changing driv-
ing conditions and fluctuation on the grid.

« Interpretability (XAI): The extent to which the AI model’s
decisions can be explained and understood.

Role of Transfer Learning in EV Energy Management Transfer
Learning (TL) plays an integral role in helping to develop smart and
adaptive EV energy management systems (EV EMS). It facilitates
the transfer of existing, pre-trained models to new driving condi-
tions and operational circumstances with minimal re-training. TL
improves model generalization, can ease issues with scarce data, and
supports Al-driven optimization techniques such as deep reinforce-
ment learning (DRL) to converge rapidly. Moreover, TL also reduces
computational overhead while increasing the efficiency and/or ac-
curacy of energy management decisions. TL is particularly advanta-
geous in the following EV EMS methods:

(a) Fostering Domain Adaptation Between Driving Cycles: Al
models trained on a specific driving cycle (e.g. urban driving
with frequent stops) may not generalize to another driving
scenario (e.g., highway driving with less frequent stops).
TL Solution: Instead of training a new model from scratch on
the second driving scenario, using TL, one can instead fine-
tune the existing model with a limited set of driving data for
the second cycle. This allows the model to be adapted and
the energy efficiency predictions improved without having to
re-train the model extensively (Lian et al., 2020; Xu et al.,
2022).
Transfer from Simulation to Real World: Due to constraints
on safety and cost, Al models to evaluate EV energy mgmt
strategies are often developed and evaluated in simulator
environments, however, Al models or other models trained
within simulations do not perform as well in real-world driv-
ing because real-world driving contains uncertainties that are
not modeled and addressed in the simulation environment.

TL Solution: Pretraining an Al model within a high-fidelity EV

simulator (e.g., CARLA, SUMO) and fine-tuning this model

with real-world data from a limited number of sensors will
allow for better adaptation while avoiding the costs and time

associated with collecting additional data (Wang et al., 2020;

Li et al., 2021).

Adapting AI Models to New Battery Chemistries: When-

ever battery materials and chemistries change (e.g., lithium-

ion vs. solid state), the charging dynamics and capacity fade
behavior will change, necessitating new control strategies.

TL Solution: Rather than fully retraining the AI model for the

battery type, you can similarly transfer the model’s features

and fine-tune it with limited experimental data on the new
battery type, greatly reducing training costs (Yang et al.,

2023).

(d) Vehicle-to-Vehicle (V2V) Knowledge Transfer: BEVs have

a different energy management strategy than PHEVs because
they require different powertrain configurations (and electric
range).
TL Solution: Even if an Al model would require retraining
for the type of EV, it is still not equivalent to retraining
an Al model for another vehicle. In this case, transferring
knowledge from the BEV will allow the model to adapt to the
PHEV more efficiently in real-world deployment (see Table
5).

b

=

(c

~

RQ4: What are the promising research directions for energy man-
agement in EVs? Promising research directions for energy man-
agement in electric vehicles (EVs) can be categorized into three
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Table 2
Energy consumption methods classifications.
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Methodology

Advantages

Disadvantages

Optimization algorithm (Zhang et al., 2022)

- Adaptive optimization specific to dynamic
driving environments.

- Improves energy efficiency and reduces
computational time through adaptive PSO.

- Limited by the effectiveness of the particle swarm
model in complex, unpredictable environments.

- Relies on adequate digital twin fidelity and
calibration for effective implementation.

Deep learning (Liu et al., 2019; Sotoudeh and
HomChaudhuri, 2023; Wang et al., 2023)

- Models complex relationships effectively
- High accuracy in real-time applications
- Scales with large datasets

- High computational needs
- Requires long training time

Deep Reinforcement Learning (DRL) (Wang et al.,
2020; Tang et al., 2021; Li et al., 2021)

- Allows learning from visual input (e.g., camera
data) and complex environments.
- Improves fuel economy and emission

management with deep neural network integration.

- Distributed training enables efficient processing
in complex scenarios.

- Heavy computational load due to deep neural
networks.

- It may be challenging to optimize for real-time
applications due to large data input.

Reinforcement learning (Li et al., 2019; Xu et al,,
2020; Liessner et al., 2019; Lee et al., 2020a; Yang
et al., 2023; Lin et al., 2021; Lee et al., 2021; Guo
et al., 2020; Hu et al., 2023)

- Adaptive learning in complex, changing
environments.

- Improves energy management and fuel economy.
- Handles uncertain environments effectively.

- Supports multiple-objective optimizations in
real-time.

- High computational demands and training may
require extensive data.

- Training can be complex and time-intensive

- Stability issues in extended scenarios require
careful tuning.

- Performance is highly dependent on tuning
learning rates and reward functions.

Multi-Agent reinforcement learning (Xiao et al.,
2023)

- Supports collaborative and scalable solutions
- Optimizes multi-agent interactions
- Increases system efficiency

- Complex implementation
- High computational and coordination
requirements

Auxiliary Al techniques: Transfer learning (Lian
et al., 2020; Xu et al., 2022)

- Reduces the need for retraining

- Speeds up convergence in new environments

- Transfers knowledge effectively

- Enables reusability of knowledge across different
HEV types, reducing training time

- Facilitates efficient development and adaptation
for different vehicle configurations

- Adaptation challenges if tasks differ significantly
- May not generalize perfectly to new or highly
distinct models

- Performance depends on the quality and
adaptability of pre-trained models

Table 3
Charging strategy methods classifications.

Methodology

Advantages

Disadvantages

Deep Reinforcement Learning (DRL) (Han et al.,
2021; Chen et al., 2023)

- Real-time adaptability for dynamic energy
demands.

- Improves fuel economy and reduces peak loads.
- Suitable for handling fluctuating load
characteristics in EV charging.

Computational overhead: Requires extensive
training resources.

Mitigation: Efficient model compression and
distributed training.

Limited generalization: Performance depends on
SOC training.

Mitigation: Transfer learning techniques for
adaptation.

Multi-agent Deep Reinforcement Learning
(MADRL) (Shin et al., 2019; Raja et al., 2023)

- Effective in decentralized, distributed EV
charging management.

- Reduces operational costs and enhances energy
efficiency.

- High success rate in complex environments for
autonomous navigation.

High coordination complexity: Synchronizing
multiple agents requires large-scale computations.
Mitigation: Asynchronous updates and reward
shaping.

Scalability issues: Managing many EVs can be
inefficient.

Mitigation: Hierarchical multi-agent coordination
frameworks.

Federated Deep Reinforcement Learning (FLR)
(Qian et al., 2023)

- Balances V2G/G2V modes while maintaining
driver privacy.

- Reduces power fluctuations and optimizes
distribution network load.

- High generalization ability and convergence
efficiency.

Communication latency: Model synchronization
delays affect decisions.

Mitigation: Edge computing and adaptive update
frequency.

Data privacy risks: Model updates may reveal
user behavior.

Mitigation: Differential privacy and homomorphic
encryption.

Scalability concerns: Large-scale participation
increases computation.

Mitigation: Hierarchical FRL and blockchain-based
aggregation.

main areas: energy consumption, charging strategies, and battery
management.

1. Energy Consumption: In the area of energy consumption, DRL and
its various extensions, such as MADDPG and deep Q-networks
(DQNs), have demonstrated substantial potential in optimizing
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EMS by coordinating power output and reducing energy con-
sumption. Developing model-based offline reinforcement learning
to improve sample efficiency and safety are promising research
directions for energy management in EVs, as well as data-driven
dynamic models to close the simulation to reality gap. These
approaches will aim to improve the adaptability and real-time
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Table 4
Quantitative comparison of Al-Based energy management methods for EVs.

Metric

Reinforcement learning

Deep learning
(CNN/RNN/DNN)

Transfer learning

Fuzzy Logic & ANFIS

Best use case

Real-time energy
optimization

Energy prediction

Model adaptation
across EVs

Rule-based energy
control

Al architecture

Deep Q-Networks
(DQN), PPO, DDPG

CNN (image-based),
RNN (time-series), DNN
(multi-variable)

Fine-tuned pre-trained
models

Expert-defined fuzzy
rules

Computational complexity

High (0(n?) - O(n*))

Medium (O(nlogn))

Low (O(n))

Very Low (O(1))

Training time

Long (10+ hours)

Medium (5-10 h)

Short (2-5 h)

Instant (<1 h)

Convergence rate

Slow (1000+ episodes)

Moderate (100-500
iterations)

Fast (50-200 iterations)

Very Fast (few
iterations)

Energy efficiency gain (%)

Moderate (5%-15%)

High (15%-30%)

High (20%-35%)

Low (5%-10%)

Battery life improvement (%)

Moderate (10%-20%)

High (20%-40%)

High (30%-50%)

Low (5%-15%)

Computational cost (ms per decision)

High (100-500 ms)

Medium (50-200 ms)

Low (10-50 ms)

Very Low (<10 ms)

Real-Time adaptability (Response time)

High (<500 ms)

Medium (<1 s)

High (<500 ms)

Very High (<100 ms)

Interpretability (XAI)

Low (Requires
SHAP/LIME)

Low (Requires
surrogate models)

Moderate (Transferable
weights)

High (Inherently
transparent)

Table 5
Application Scenarios for Transfer Learning in EV Energy Management.

Moreover, supplementary learning controllers (SLC) based on DRL
enhance existing rule-based EMS, reducing uncertainty and improv-

Application Role of transfer learning

Driving cycle adaptation Transfers knowledge from one driving
scenario (e.g., urban) to another (e.g.,

highway) to improve adaptability.

Fine-tunes Al models trained in
simulators for real-world deployment,
reducing the need for costly real-world

Simulation-to-Real transfer

data collection.

Battery chemistry adaptation Adapts Al models trained on one battery
type (e.g., lithium-ion) to another (e.g.,

solid-state) without full retraining.

Vehicle-to-Vehicle knowledge transfer Transfer control strategies between
different EV models (e.g., BEV vs. PHEV)

to enhance cross-platform efficiency.

optimization of energy management systems. Combining DRL
with TL is another promising avenue, enabling quicker adaptation
and reduced training times by transferring knowledge from one
driving domain to another, thus enhancing EMS’s efficiency and
real-time applicability (Ma et al., 2024; Alaoui, 2019; Chaoui
et al., 2018).

Eco-driving strategies that incorporate hierarchical control frame-
works are also gaining traction. These frameworks optimize driv-
ing cycles and powertrain energy management, leveraging long-
term and short-term decision-making for improved computational
efficiency and fuel economy. Hybrid approaches integrating deep
learning and genetic algorithms further enhance EMS by opti-
mizing power splits between batteries and internal combustion
engines, leading to better fuel economy and real-time adaptabil-
ity. Digital twin (DT) technology, combined with adaptive PSO,
offers a robust EMS optimization platform, significantly improv-
ing fuel economy and computational efficiency through virtual
simulations and real-world validations (see Table 6).

Incorporating computer vision with DRL is another innovative direc-
tion, where visual inputs from onboard cameras are used to optimize
control policies, improving fuel economy by leveraging real-time
visual information. Multiobjective optimization using multiagent re-
inforcement learning (MARL) addresses various EMS objectives, such
as fuel economy and battery SoC maintenance, ensuring a balanced
approach to energy management. In conjunction with DRL, Bayesian
optimization further refines EMS by optimizing energy management
and powertrain configurations, leading to significant reductions in
fuel consumption.
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ing convergence speed, thus facilitating the transition from simula-
tion to real-world applications. Adaptive and real-time EMS strate-
gies, incorporating improved reinforcement learning algorithms and
hierarchical frameworks, are also crucial for ensuring the adaptabil-
ity and efficiency of EVs in diverse driving conditions and vehi-
cle types. These advancements collectively point towards a future
where Al-driven, adaptive, and highly efficient energy management
systems become integral to the operation of electric vehicles.

. Charging Strategy: Promising research directions for energy man-

agement in EVs include advancements in battery technology, such
as solid-state batteries, which promise higher energy densities, im-
proved safety, and longer lifespans. Enhanced battery management
systems (BMS) that utilize machine learning and predictive algo-
rithms can better monitor and adapt to usage patterns, extending
battery life and reliability. Additionally, exploring efficient thermal
management techniques, such as leveraging real-time data from on-
board sensors to dynamically control cooling systems (e.g., reducing
heat during high-demand charging), can prevent overheating and
improve overall efficiency. For instance, multi-state energy manage-
ment strategies using DRL, as proposed for hybrid electric-tracked
vehicles (HETVs), have improved fuel economy by 13.1% through
dynamic demand modeling and robust optimization (Han et al.,
2021). Integrating renewable energy sources, such as solar panels,
into EVs for auxiliary power is another promising avenue, as demon-
strated by MADRL for distributed EV charging stations equipped
with solar photovoltaic systems and energy storage systems. This
approach reduces operation costs by dynamically scheduling EV
charging across multiple stations while adapting to varying data
in real-time (Shin et al., 2019). Research into V2G and G2V tech-
nologies is also vital. For instance, FRL has been shown to balance
V2G profits, mitigate power fluctuations in RDN, and respect driver
privacy through decentralized learning frameworks (Chen et al,,
2023). Innovative charging infrastructure developments, such as the
use of DRL-based control strategies, have been shown to significantly
reduce peak load power at EV fast-charging stations, addressing
high peak demands and fluctuations (Qian et al., 2023). Addition-
ally, advancements like the CONCP framework for autonomous EVs,
powered by MADRL, enhance charging efficiency by scheduling op-
timal charging stops while improving traffic flow and reducing con-
gestion (Raja et al., 2023). Furthermore, investigating lightweight
materials and aerodynamic designs can reduce energy consumption
and increase vehicle range. Collectively, these research directions
aim to improve electric vehicles’ efficiency, sustainability, and user
experience.
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Table 6
Battery management methods classifications.
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Methodology

Advantages

Disadvantages

Fuzzy Logic and ANFIS Control (Suhail et al., 2021)

- Simple and interpretable control
techniques.

- Improves battery performance and
efficiency.

- Suitable for energy management of
PHEVs.

- May achieve a different level of
precision than other methods like
machine learning, which can limit their
effectiveness in some scenarios.

- Often requires manual tuning of
membership functions and rules, which
can be labor-intensive and may only
sometimes yield optimal results.

- May need help with scalability when
applied to large or complex systems.

Deep Reinforcement Learning (DRL) (Chaoui et al., 2018; Ma et al., 2024)

- Learns optimal energy management
policies automatically.

- Improves battery lifespan by balancing
SoC across multiple batteries.

- Optimizes battery usage over the long
term, balancing immediate energy needs
with future battery health and longevity.

- Suitable for complex energy
management in electric vehicles.

- Requires significant computational
resources and training time.

- Complexity increases with the number
of batteries and operating conditions.

- Face challenges in balancing
exploration (trying new actions) with
exploitation (using known actions that
work well), which can affect
performance.

Deep Concurrent Learning (DCL) (Mukhcrjee and Sarkar, 2023)

- Reduces energy loss in HESS.

- Handles external disturbances and
modeling uncertainties effectively.

- Efficient energy management using
continuous-time problem formulation.

- Complexity increases with multiple
energy sources and system dynamics.
- High computational overhead during
the learning phase.

Deep learning (Alaoui, 2019)

- Maximizes energy efficiency in HESS.

- Combines batteries and supercapacitors
for better performance.

- Suitable for hybrid vehicle energy
management.

- Requires a large amount of data for
training.

- Computationally intensive and may
require significant tuning.

3. Battery Management: Battery management in electric vehicles (EVs)
is a rapidly evolving field with several promising research directions
to improve efficiency, longevity, safety, and overall performance.
They enhance AI algorithms for more precise SoC and SoH esti-
mation, predictive maintenance, and real-time battery performance
optimization. Also, developing digital twin models of batteries that
simulate their physical and chemical processes in real-time allows
for more accurate monitoring and predictive analysis. Moreover,
new technologies can significantly reduce charging times without
compromising battery health or safety. Research in these areas will
help address the current challenges in EV battery management,
paving the way for more advanced, efficient, and sustainable electric
vehicles.

Addressing the Main Research Question: How can energy man-
agement techniques be integrated with AI? What is the desirable
characteristics for energy management?

Integrating energy management with AI methodologies in EVs must
address computational efficiency, adaptability to real-time conditions,
and resilience to data loss or system failures. These Al techniques,
which include deep reinforcement learning and transfer learning, can
also be the basis for pathways to optimize energy flow in an adaptive
and predictive manner, which is essential for managing complex en-
ergy distribution and varying demands. One of the primary challenges
lies in generalizing AI models, as simulations often fail to capture
real-world variations in driving behavior, environmental conditions,
and battery degradation. Additionally, computational constraints and
safety concerns make direct deployment of complex AI models difficult,
necessitating robust adaptation strategies.

To bridge this gap, digital twins have emerged as a promising
solution, enabling real-time validation by continuously synchronizing
a virtual EV model with real-world data. Furthermore, transfer learn-
ing and domain adaptation techniques allow AI models trained in
simulations to be fine-tuned using limited real-world datasets, improv-
ing their applicability. Hybrid control architectures, where Al-driven
energy management is supplemented with traditional rule-based or
optimization-based controllers, can enhance robustness and reliability.
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For example, fuzzy logic and neural networks can monitor operating
conditions and real-time battery and power distribution, effectively
and efficiently utilizing power resources while responding to dynamic
vehicle performance data. Hardware-in-the-loop (HiL) testing further
aids in validating Al models by integrating them with actual EV com-
ponents before full-scale deployment. The preferred combination of
characteristics for Al-related energy management tools in EVs includes
cost-effectiveness for model deployment, scalable algorithms for han-
dling large data volumes, resilience to changing operational conditions
(e.g., unpredictable driving), and reliability to meet electricity grid
demands and variable driving conditions.

Thus, by integrating these strategies, Al-based EV energy manage-
ment systems can effectively transition from simulation to practical im-
plementation, ensuring efficiency, reliability, and real-time adaptabil-
ity. These Al-driven energy management strategies not only enable ef-
ficient EV operation but also contribute to longer battery longevity and
a more sustainable future for mobility and autonomous transportation.

5. Conclusion

This paper discussed the current landscape of Al applications in
EVEMS, highlighting the potential of DL, RL, fuzzy logic, and optimiza-
tion algorithms to transform energy management. Al-driven models
allow for efficient and real-time energy distribution, extended battery
life, and adaptive vehicle performance management, which are crit-
ical to addressing the challenges of dynamic driving conditions and
energy demands. The findings emphasize that while DL and RL offer
high adaptability and predictive power, simpler models such as fuzzy
logic excel in specific stable environments with fewer computational
demands. As electric vehicle technology evolves, the integration of Al
in energy management will be essential to achieve higher efficiency,
greater sustainability, and widespread adoption. This paper encour-
ages further exploration of scalable and adaptable Al approaches that
support the diverse needs of the electric vehicle industry, ultimately
contributing to a more sustainable transportation future.
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In conclusion, this review paper serves as a valuable resource for
researchers, practitioners, and policymakers by contributing to ongoing
efforts to create more efficient and intelligent energy management
solutions, paving the way for the broader adoption of EVs in the global
market.
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