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 A B S T R A C T

Electric vehicles (EVs) offer a promising solution for mitigating greenhouse gas emissions and minimizing the 
transportation sector’s dependency on non-renewable energy sources. However, efficient energy management 
poses a significant challenge for their broader adoption, particularly optimizing battery usage, maximizing 
driving range, and improving overall vehicle performance. This paper presents the state-of-the-art Artificial 
Intelligence (AI) techniques used in electric vehicle energy management systems (EV-EMS), discussing a variety 
of deep learning algorithms of AI methodologies, such as , neural networks, and fuzzy logic. Additionally, This 
paper discusses the role of auxiliary techniques like transfer learning, which enhances model adaptability and 
reduces training time in AI-driven EMS applications. Through a systematic analysis of each method, this review 
identifies key trends, highlights the challenges and limitations of each technique, and offers perspectives on 
potential solutions and future research directions. The paper aims to support researchers, industry professionals, 
and policymakers in developing advanced, sustainable, and adaptable EV-EMS solutions that maximize battery 
life, improve vehicle performance, and facilitate real-time adaptive control. Finally, this review highlights the 
importance of AI-driven strategies in making EV technology more efficient, reliable, and scalable.
1. Introduction

The transportation sector significantly contributes to global carbon 
emissions, highlighting the need for cleaner and more sustainable 
alternatives. EVs have emerged as a promising solution for reducing 
environmental degradation and dependence on fossil fuels. However, 
EV success depends on charging infrastructure and grid integration and, 
on efficient internal EMS to optimize performance and energy use.

While internal and external energy management strategies play 
important roles in EV operations, this paper focuses on internal EMS 
for pure EVs, which control energy flow among the vehicle’s elements, 
ensuring that power from the battery and regenerative braking systems 
is utilized efficiently. This paper considers external energy management 
approaches, such as vehicle-to-grid (V2G) and grid-to-vehicle (G2V) 
interactions, where applicable. Nevertheless, it focuses on optimizing 
in-vehicle power distribution, not grid operations.

Effective energy management strategies in EVs are critical for op-
timizing internal energy distribution, enhancing vehicle performance, 
minimizing power loss, and enabling border sustainability objectives 
such as reducing grid stress and integrating renewable energy sources. 
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These strategies’ primary goals are optimizing overall efficiency and en-
suring the smooth operation of the vehicle’s power system. The primary 
goals are minimization of power loss, controlling voltage fluctuations, 
peak load reduction, and energy cost minimization.

External energy management systems for electric vehicles enhance 
the coordination between the power grid, renewable energy sources, 
and other external systems. Recent advancements include employing 
distributed control and blockchain technologies for dynamic load bal-
ancing and efficient energy distribution. For example, V2G and G2V 
technologies enable bidirectional power flow, which balances demand 
from the grid and lowers energy costs. Moreover, using renewable 
energy sources like solar-powered charging stations contributes to en-
hanced sustainability. These actions deliver grid reliability, suppress 
peak demand, and encourage the utilization of renewable energy (Hu 
et al., 2022; Hu and Li, 2021; Ma et al., 2024).

This paper addresses internal EMS challenges in EVs, including 
battery optimization, energy efficiency, and real-time power flow man-
agement. While external energy interactions are acknowledged where 
relevant (e.g., their impact on in-vehicle charging strategies), the focus 
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remains on in-vehicle energy distribution rather than external grid 
optimization.

Internal energy management in EVs is naturally complex due to 
several challenges, including the dynamic nature of driving conditions, 
variability in power demand from different vehicle subsystems, the 
need to balance energy from diverse sources, and balancing energy 
distribution to maintain high efficiency while extending the battery 
lifespan. The EMS within an EV must effectively control the power flow 
between the battery, powertrain, and auxiliary components, adapting 
in real-time to optimize the performance and life of the battery. This 
kind of balance is particularly challenging with frequent changes in 
driving patterns, acceleration, and regenerative braking, where high 
energy efficiency is essential. A next-generation electric vehicle with 
in-wheel motor technology enhances system efficiency by eliminating 
mechanical intermediaries and optimizing regenerative braking. The 
two-stage predictive controller improves vehicle mileage by over 24% 
while managing key constraints like battery health and safety (Tie and 
Tan, 2013, 2012; Salari et al., 2023; Mastoi et al., 2022).

Uncontrolled energy management approaches, commonly known 
as ‘‘dumb charging’’, often consider user convenience over system 
efficiency. This approach of plug-and-charge allows for immediate 
charging without regulating power flow based on vehicle demand 
or grid conditions. This method manages the timing of the charging 
process based on reliance on time-of-use (TOU), leading to potential 
overloading of the distribution system. High penetration levels for 
uncontrolled EV charging can also exceed the network capacity, caus-
ing load imbalance and potential power quality issues. Despite these 
drawbacks, uncontrolled charging remains popular among EV users due 
to its simplicity and flexibility (Upadhyaya and Mahanta, 2023; Katkar 
and Goswami, 2020).

In contrast, intelligent or ‘‘smart’’ internal energy management 
strategies leverage advanced control systems to optimize the charging 
and discharging cycles of the vehicle. These strategies cover both the 
timing and power levels to mitigate the likelihood of system over-
loading and congestion and improve energy distribution. Moreover, 
intelligent EMS supports various energy management applications such 
as G2V, V2G, and vehicle-to-home (V2H), enhancing both economic 
and environmental outcomes.

Although some EMS strategies interact with external power sources 
(e.g., V2G, G2V, V2H), this paper primarily focuses on in-vehicle 
decision-making for energy allocation, ensuring that AI-driven solutions 
optimize power distribution at the vehicle level.

AI techniques are increasingly being used for their potential to 
address these challenges by enabling advanced energy management 
strategies tailored to the dynamic nature of EV operation. By incorpo-
rating machine learning, neural networks, and predictive analytics, AI 
can dynamically adjust energy usage to suit varying driving conditions, 
user preferences, and external factors such as temperature or terrain. 
Existing literature includes numerous reviews of recent advances in 
internal energy management systems schemes for EVs. In comparison to 
the previous studies, this paper offers a comprehensive and up-to-date 
overview and comparison of qualitative and quantitative AI-based en-
ergy management strategies, making a detailed analysis of the current 
research landscape. The paper aims to identify key trends, challenges, 
and opportunities for future research, offering valuable insights for 
policymakers, industry professionals, and researchers.

By concentrating on internal EMS, this study directly addresses the 
critical challenges EVs face, such as optimizing battery performance, 
reducing internal power losses, and improving real-time energy allo-
cation. This emphasis aligns to make EVs more efficient, reliable, and 
widely adopted.

The paper is organized as follows: Section 2 reviews prior research 
studies on both internal and external energy management methodolo-
gies. Section 3 offers an overview of the AI techniques employed in EV 
energy management systems. Section 4 examines various EMS strate-
gies, emphasizing their role in optimizing internal energy distribution 
and enhancing vehicle performance. Finally, Section 5 summarizes the 
essential findings and outlines potential future research directions.
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2. Background

Over the past decade, there has been a significant interest in the 
research of energy management strategies for EVs. The reason behind 
such an increase in interest is the necessity to address the challenges 
related to the limited availability of oil resources and environmental 
concerns resulting from emissions from ICEs. The transition to EVs is an 
essential step toward sustainable transportation, offering benefits such 
as reduced greenhouse gas emissions, improved energy efficiency, and 
enhanced vehicle performance. However, a significant challenge for 
electric cars relies on optimizing energy usage within EVs, especially 
in extending the battery life, minimizing power losses, and ensuring 
efficient power distribution to various subsystems

An effective EMS balances energy consumption among the vehicle’s 
powertrain, auxiliary systems, and energy storage units. The EMS must 
dynamically distribute power in real-time based on demand and driving 
patterns, making it a complex optimization problem that requires so-
phisticated control strategies. Uncontrolled energy management in the 
form of instant and unregulated charging and discharging is responsible 
for inefficient energy use, battery degradation, and reduced driving 
range (Suhail et al., 2021).

Understanding the dynamics between vehicle subsystems is crucial 
in designing efficient internal EMS for EVs. Fig.  1 illustrates the struc-
tural framework of the internal energy distribution in EVs, highlighting 
the main components and their interrelations. This layout highlights 
the intricacy of energy flow among battery, powertrain, and auxiliary 
systems that must be dynamically controlled to meet variable power 
demands while optimizing energy consumption. The figure presents 
the requirement for advanced control algorithms to manage the energy 
distribution efficiently, thereby ensuring enhanced performance and 
extended battery life under various driving conditions.

Over the past few years, various machine learning techniques have 
been applied to EV-EMS, offering innovative solutions to optimize 
energy usage and enhance vehicle performance. As illustrated in Fig.  2, 
these techniques are broadly categorized into reinforcement learning, 
semi-supervised learning, unsupervised learning, and supervised learn-
ing, each of which tackles the EV energy optimization problem differ-
ently. Reinforcement learning, which comprises policy-iteration-based 
and value-iteration-based approaches, excels at real-time adaptive de-
cision making for EV charging and energy distribution tasks. Semi-
supervised learning techniques, e.g. hybrid models, pseudo-labeling, 
graph-based models, consistency regularization, and generative models, 
apply both labeled and unlabeled data to enhance accuracy while 
reducing the reliance on big labeled datasets. Unsupervised learning 
techniques, such as clustering, dimensionality reduction, and density 
estimation, uncover hidden patterns in the data, facilitating optimized 
energy usage without labels. On the other hand, supervised learning, 
focusing on classification and regression, predicts essential parameters 
like state-of-charge (SoC), energy consumption, and driving range. Fig. 
2 categorically classifies these techniques, presenting their roles in 
improving energy efficiency, extending battery life, and guaranteeing 
efficient energy distribution in EVs.

Several studies have introduced novel approaches to energy man-
agement in EVs, categorizing them into two broad categories: external 
EMS that maximize power grid interactions and internal EMS for 
efficient utilization of energy within the vehicle itself.

Abdullah et al. (2021) provided a comprehensive review of rein-
forcement learning (RL)-based models, objectives, and architectures for 
EV charging coordination approaches in power systems. The study pre-
sented a detailed comparative analysis of various charging coordination 
approaches under a number of constraints with special application to 
the design of optimized internal energy management systems for EV 
charging. The paper also highlighted the contribution of RL towards 
stimulating research and development efforts in creating efficient en-
ergy management systems, offering valuable context and guidance for 
researchers working on EV charging schedule optimization problems. 
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Fig. 1. Schematic representation of internal energy distribution in EVs.
Fig. 2. Classification of machine learning techniques utilized in EV energy management systems (EV EMS).
The main drawback of this study is that it primarily addresses theoret-
ical and simulation-based findings, lacking real-world implementation 
and validation through experimental case studies.

Golder and Williamson (2022) investigated the incorporation of 
renewable and clean sources of energy, such as fuel cells, solar photo-
voltaic panels, and energy storage systems, into EV charging stations, 
aiming to mitigate their impact on the grid. The study investigated var-
ious strategies and forms of EMS implemented in charging stations. The 
authors analyzed existing research approaches to develop EMS for EV 
Charging Stations (EVCS), focusing on optimization models, machine 
learning (ML), and game theory. Furthermore, they expounded on the 
possibility of future research exploring other alternative approaches, 
such as Multi-Agent Systems (MAS), Model Predictive Control (MPC), 
genetic algorithms (GA), and particle swarm optimization (PSO). The 
study primarily focuses on existing EMS approaches but lacks real-
world validation and scalability assessments for large-scale EV charging 
stations. Additionally, while alternative methods such as Multi-Agent 
Systems, Model Predictive Control, Genetic Algorithm, and Particle 
Swarm Optimization are not included, their feasibility and comparative 
advantages remain unexplored.
5537 
In Chen et al. (2023), the authors introduced an energy manage-
ment strategy for fast-charging stations based on deep reinforcement 
learning. A mathematical optimization model is formulated to minimize 
day-to-day electricity purchase costs while managing peak power con-
straints. The control strategy is developed using the deep deterministic 
policy gradient algorithm. A case study is performed to validate the ef-
fectiveness of the proposed control strategy. The outcomes demonstrate 
a significant decrease in peak load power, validating the strategy’s 
effectiveness. The computational complexity and scalability of the deep 
reinforcement learning approach for large-scale fast-charging networks 
remain unaddressed.

Qian et al. (2023) proposed a mathematical model to characterize 
the radial distribution network (RDN) load. The EV charging control 
issue is formulated as a Markov decision process (MDP) to determine 
an optimal charging control strategy that balances V2G profits, RDN 
load, and driver anxiety. A federated deep reinforcement learning algo-
rithm is proposed to effectively derive the optimal EV charging control 
strategy. The obtained results illustrate the efficacy and superiority 
of the proposed algorithm in terms of the diversity of the charging 
control strategy, power fluctuations on RDN, convergence efficiency, 
and generalization capability.
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Raja et al. (2023) introduced a collaborative optimal navigation and 
charge planning (CONCP) framework utilizing multi-agent deep rein-
forcement learning. The proposed framework computed the optimum 
route from source to final destination for each autonomous EV planning 
charge intervals, avoiding obstacles, minimizing traffic congestion, and 
optimizing energy consumption. Experimental results show that CONCP 
achieves 27% higher success rates, 31% fewer collisions, and 37% 
higher rewards per episode than other state-of-the-art algorithms.

Katkar and Goswami (2020) provided a comprehensive review of 
EMSs applied to Hybrid EVs (HEVs) and Plug-in Hybrid EVs (PHEVs). 
The study categorized current strategies into two frameworks, rule-
based and optimization-based strategies, including applying AI algo-
rithms for real-time optimization. These AI-based EMSs can tackle 
internal energy management challenges like speed prediction, state-
of-charge estimation, and multi-parameter optimization. Although this 
paper provided a systematic review of various techniques, it does 
not compare the strengths and weaknesses of each method in detail 
to provide specific recommendations on the most suitable EMS for 
different vehicle types and operational scenarios.

Lee et al. (2020b) investigated advanced control strategies focusing 
on the application of reinforcement learning (RL) to refine internal 
energy management for HEVs. The study compared RL-based strate-
gies with deterministic dynamic programming (DDP) and stochastic 
dynamic programming (SDP) across multiple driving cycles to evaluate 
their impact on fuel efficiency and overall power management. The 
results demonstrated that RL-based EMS strategies can achieve near-
optimal results comparable to SDP and DDP, demonstrating their effi-
ciency for time-variant control problems with complex boundary con-
straints. Furthermore, the authors examined how value initialization 
with transfer learning could improve the rate of RL-based controller 
convergence, thus increasing their applicability for real-time energy 
management in dynamic driving scenarios. The computational com-
plexity and hardware implementation challenges of RL-based strategies 
for real-time energy management remain unaddressed.

In a similar context, Han et al. (2021) introduced a multidimen-
sional matrix framework to derive the parameters of an actor-network 
for a deep deterministic policy gradient (DDPG)-based EMS. A
Hardware-in-the-loop (HiL) experiment is performed to verify the real-
time feasibility of the proposed strategy. Through HiL experiments, the 
study validated the real-time feasibility of the proposed strategy for 
energy management, showing a 13.1% improvement in performance 
compared to a Double Deep Q-Learning (DDQL)-based strategy. This 
framework also showed improved robustness in fuel economy with a 
3.5% improvement over the DDQL. This strengthened the idea that 
state of the art deep learning methods could be applied to complicated 
energy flow environments that involve electric vehicles (EVs).

Additionally, Shin et al. (2019) developed a cooperative control 
strategy for decentralized EV charging station scheduling. The pro-
posed approach efficiently handles real-time dynamic data to generate 
scheduling solutions for several charging stations, significantly reduc-
ing operating costs. The study shows the benefit of both real-time data 
processing and decentralized control in EV energy management and 
demonstrates how internal EMS strategies can be expanded to enhance 
EV charging efficiency and reduce overall energy costs.

These studies highlighted the growing importance of AI-driven ap-
proaches in addressing internal energy management problems in EVs. 
Nevertheless, most research has focused on hybrid configurations or 
external energy management strategies, partly due to the challenges 
of integrating renewable energy sources into the grid and the need to 
manage charging infrastructure to ramp up EV adoption intentionally. 
External energy management strategies, such as V2G systems, have 
garnered attention because they directly address grid stability and 
peak demand issues, which are critical for supporting large-scale EV 
deployment. Hybrid configurations have been the focus of research 
because they offer a transition pathway between ICE cars and full EVs, 
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providing immediate reductions in emissions while leveraging existing 
technologies.

However, the analysis of the previously mentioned solutions did not 
capture the details and challenges of pure EVs, especially regarding 
their internal energy management system (EMS). Pure EVs only depend 
on batteries to store and distribute energy. Without hybridization, pure 
EVs require a sophisticated solution to manage energy utilization in 
real-time, maximize battery lifespan, and support vehicle performance 
under various driving conditions and driver demand. This paper iden-
tifies those gaps by providing a comprehensive review of AI-based 
EMS approaches applied to internal energy management in pure EVs. 
The review will specifically focus on and expand on the various AI 
approaches relevant to pure EVs, e.g., machine learning, reinforcement 
learning techniques, and neural networks, and their role in optimizing 
energy distribution to support battery life and vehicle performance.

3. Research methodology

We perform a systematic literature review (SLR) to explore various 
AI methodologies applied to EV-EMS. This SLR examines how these 
techniques enhance energy distribution, improve vehicle performance, 
and facilitate the integration of renewable energy sources. Originally 
developed in the medical sciences, SLRs are now widely employed 
across various disciplines to ensure a comprehensive and unbiased 
synthesis of existing knowledge. We adhered to the structured guide-
lines proposed by Kitchenham et al. (2004) for conducting systematic 
reviews in software engineering and related domains. The primary 
objective of our SLR is to address the following overarching research 
question:

How can energy management techniques be integrated with AI? 
What is the desirable characteristics for energy management?.

It is crucial to consider key desirable characteristics such as com-
putational efficiency, real-time adaptability, cost-effectiveness, and ro-
bustness to varying driving conditions to evaluate and compare differ-
ent energy management strategies.

This broad inquiry is divided into the following specific research 
questions (RQs) to focus the investigation and provide actionable in-
sights:

3.1. Research questions

To provide a comprehensive understanding of AI’s role in EV-EMS, 
we address the following research questions:

RQ1 How can state-of-the-art machine learning models leverage gran-
ular vehicle data in EVEMS, ensuring optimal performance and 
longevity under diverse operating conditions?
This question explores the specific role of advanced AI models 
in handling EV operations’ dynamic and multi-faceted nature. 
By addressing RQ1, we intend to uncover how granular data 
(e.g., battery status, driving patterns, energy consumption) can 
be harnessed to optimize energy usage, improve battery life, and 
adapt to varying conditions.

RQ2 What are the common taxonomies for energy management in 
electric vehicles?
With this question, we aim to classify and understand the pri-
mary categories of EMSs in EVs, such as rule-based,
optimization-based, and AI-driven strategies. This taxonomy 
helps identify the evolution of EMS approaches and their ap-
plications across different scenarios.
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RQ3 What are the most commonly and widely used AI applications 
energy management methods? What are the advantages and 
disadvantages of each AI method?
This question analyzes popular AI techniques used in EV EMSs, 
highlighting their strengths and weaknesses. Addressing this will 
offer insights into the trade-offs involved in selecting a particular 
method for specific applications.

RQ4 What are the promising research directions for energy manage-
ment in EVs?
This question aims to identify gaps in the current research land-
scape and suggest potential areas for future exploration. This 
includes emerging AI technologies, integration with renewable 
energy, and enhancing the scalability and adaptability of EMSs.

The research questions are designed to systematically address the 
challenges and opportunities in using AI for EV energy management. 
RQ1 focuses on leveraging granular data because effective EMSs rely 
on accurate and detailed input to make informed decisions. RQ2 is 
necessary to establish a clear framework for understanding the scope 
of EMS methodologies, serving as a foundation for the subsequent 
analysis. RQ3 seeks to evaluate the practical effectiveness of existing 
AI approaches, aiding researchers and practitioners in selecting suitable 
methods. Finally, RQ4 ensures that the study not only reflects the field’s 
current state but also guides future research and development efforts, 
aligning with the evolving needs of EV technology.

By structuring our review around these questions, we aim to pro-
vide a comprehensive overview of the role of AI in EV-EMSs and 
offer actionable insights to researchers, policymakers, and industry 
professionals.

3.2. Search query formation

To ensure a comprehensive review, the IEEE Xplore digital library is 
utilized to search for relevant research articles published between 2018 
and 2024. Our search focused on journals and conference proceedings 
that addressed the intersection of AI methodologies and EV energy 
management.

The search process focused on the topic ‘‘Electrical vehicle Energy 
Management’’ with the other existing phrases related to the domain of 
‘‘Artificial intelligence’’. We define five sets of keywords presented as 
follows:

1. Electric vehicle
2. Energy management
3. Charging infrastructure
4. Charging network
5. Artificial intelligence OR machine learning
The search query was refined iteratively to include synonyms and 

closely related terms, and the IEEE search engine was configured 
to filter results by title, abstract, and keywords, ensuring a targeted 
selection process.

3.3. Study selection

The selection process was conducted systematically to identify high-
quality papers addressing the above research questions. This process 
included the following steps:

1. Initial Search and Filtering: We began by executing our defined 
query on the IEEE Xplore database, which resulted in 1975 
papers. These papers were filtered based on relevance, resulting 
in 1925 unique papers after removing duplicates.

2. Applying Inclusion and Exclusion Criteria: We then applied spe-
cific criteria to refine the results further. Papers that did not 
focus on EV energy management or did not incorporate AI, 
Machine Learning, or related techniques were excluded. Addi-
tionally, non-English papers and articles from low-impact venues 
were filtered out, reducing the set to 133.
5539 
Exclusion criteria. By checking the body of the selected papers, we 
excluded:

• Articles not related to electric vehicles energy manage-
ment.

• Articles not covering ML, AI, DL.
• Articles not written in English.
• Articles not published in high-quality conferences (cited 
less than 20)

Inclusion criteria.
• If multiple versions of an article are available, such as a 
conference paper and a subsequent journal publication, we 
prioritize and include the more detailed and comprehen-
sive version, typically the journal version.

3. Manual Review: The remaining articles were manually reviewed 
by analyzing their titles, abstracts, and main content. This pro-
cess identified 58 highly relevant papers covering both internal 
and external EMSs. Since this study focuses on internal EMSs, 
the selection was further refined to 23 papers.

4. Snowballing Process: To ensure comprehensive coverage, the 
reference lists of the selected articles were examined to iden-
tify additional relevant studies. Titles, publication venues, and 
years were assessed to determine suitability for inclusion. The 
inclusion and exclusion criteria were applied for any potentially 
relevant articles. This process accounted for limitations in the 
initial search phase and added three more papers, bringing the 
final set to 26 papers.

3.4. Search results

The systematic selection process resulted in a final set of 65 papers 
published between 2018 and 2024, concentrating on AI-based energy 
management strategies for EVs. Out of these, 26 papers specifically 
address internal energy management systems for EVs using AI method-
ologies. These papers are categorized and summarized in Table  1, with 
particular attention to the research questions identified.

4. Discussion

In this section, the selected papers have been studied based on three 
main categories, including ‘‘Energy Consumption’’, ‘‘Charging Strat-
egy’’, and ‘‘Battery Management’’ to address our research questions:

RQ1: How can state-of-the-art machine learning models leverage 
granular vehicle data in EVEMS, ensuring optimal performance and 
longevity under diverse operating conditions? The state-of-the-art ma-
chine learning models applied to EV-EMS leverage granular vehicle 
data to optimize energy consumption, charging strategies, and battery 
management, enhancing performance and longevity. Techniques like 
reinforcement learning, deep learning, and transfer learning enable the 
EMS to adapt dynamically in real-time, optimizing energy use and bat-
tery management through predictive maintenance and targeted energy 
distribution. Optimization algorithms and multi-agent models provide 
collaborative and scalable solutions that support multi-objective goals 
and efficient system coordination. These advanced models enable EV-
EMSs to balance the immediate demands for optimal vehicle per-
formance, such as acceleration and power delivery, with long-term 
objectives like preserving battery health and extending its lifespan, 
ensuring sustainable energy efficiency across diverse driving scenarios.

1. Energy Consumption: Recent research on energy consumption 
for EVEMS highlights the application of advanced machine 
learning and optimization methods to enhance energy efficiency 
and battery life under varying driving conditions. Adaptive 
optimization techniques, such as particle swarm optimization 
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Table 1
 Journals and conferences selected for the study.
 Sources Acronyms Number of papers 
 IEEE Transportation Electrification Conference and Expo ITECAsia 1  
 IEEE Vehicle Power and Propulsion Conference VPPC 3  
 International Conference on Intelligent Systems and Advanced Computing Sciences ISACS 1  
 IEEE Access – 5  
 IEEE Journal of Emerging and Selected Topics in Power Electronics JESTPE 1  
 IEEE Transactions on Industrial Informatics TII 2  
 IEEE Internet of Things Journal JIOT 2  
 IEEE Vehicular Technology Conference VTC 1  
 IEEE Intelligent Vehicles Symposium IV 1  
 IEEE Transactions on Transportation Electrification TTE 4  
 IEEE Transactions on Vehicular Technology – 4  
 IEEE Transactions on Intelligent Transportation Systems T-ITS 1  
(PSO), focus on reducing computational overhead while im-
proving energy distribution. These methods rely heavily on 
accurate digital twin models for reliable results. Deep learning 
and deep reinforcement learning (DRL) offer robust solutions 
for capturing complex system relationships and enabling real-
time adaptability, although their implementation demands sub-
stantial computational resources. Reinforcement learning (RL) 
and multi-agent reinforcement learning (MARL) are well-suited 
for dynamic and collaborative environments, supporting multi-
objective optimization but requiring extensive data and careful 
parameter tuning. By leveraging high-resolution vehicle teleme-
try data, these models can improve predictive accuracy and op-
timize energy usage in real-time while reducing gradual perfor-
mance degradation over time. Furthermore, combining knowl-
edge of the driving domain with the data-driven models can 
enhance robustness to (i.e., being robust against) unseen driving 
conditions and guarantee uniform EMS efficiency over widely 
varying operations (Ma et al., 2024). Transfer learning (Guo 
et al., 2020) accelerates model adaptation by reusing knowledge 
from existing systems, effectively reducing training time but 
occasionally facing challenges with generalizing across signifi-
cantly different contexts.
The methodologies reviewed are broadly classified into opti-
mization algorithms (Zhang et al., 2022), deep learning models 
(Liu et al., 2019; Tang et al., 2021; Sotoudeh and HomChaud-
huri, 2023; Wang et al., 2020, 2023; Li et al., 2021), RL (in-
cluding MARL) (Xiao et al., 2023; Li et al., 2019; Lin et al., 
2021; Yang et al., 2023; Hu et al., 2023; Guo et al., 2020; Lee 
et al., 2021; Xu et al., 2020; Lee et al., 2020a; Liessner et al., 
2019), and transfer learning (Xu et al., 2022; Lian et al., 2020). 
Optimization algorithms like PSO enhance energy efficiency 
in dynamic scenarios, leveraging their adaptability to evolving 
conditions. Deep learning models excel in modeling complex 
system behaviors but are resource-intensive. DRL and MARL 
enable multi-objective optimization and adaptability, utilizing 
data from diverse sources to achieve energy-efficient decision-
making. Standard RL methods effectively address changing oper-
ational demands, while transfer learning facilitates rapid adapta-
tion across HEV types, minimizing training overhead. Together, 
these methods enable energy-efficient and adaptive EV-EMS so-
lutions, optimizing both performance and longevity in diverse 
operating conditions.

2. Charging Strategy: AI-based charging strategies leverage dy-
namic vehicle and environmental data to optimize energy distri-
bution in EV charging networks and stations. In particular, DRL 
models, such as DDPG and multi-agent DRL approaches, are in-
creasingly used to improve the efficiency and reliability of charg-
ing processes. These strategies enable real-time adaptation to 
fluctuating demands, grid conditions, and vehicle battery states, 
reducing operational costs, minimizing peak loads, and optimiz-
ing renewable energy sources. Federated Reinforcement Learn-
ing (FRL) also provides a decentralized and privacy-preserving 
5540 
solution for managing charging control across multiple EVs and 
charging stations. The focus on multi-agent systems enables 
scalable, cooperative charging management for electric vehicle 
fleets. It enhances load balancing, making it particularly ben-
eficial for addressing grid stability challenges and energy cost 
reduction in charging stations.
ML techniques, DRL, and multi-agent systems are transforming 
the management of EV charging strategies by enabling real-
time, adaptive energy allocation across diverse scenarios. These 
models optimize energy distribution by balancing load demands, 
reducing peak power, and improving efficiency in individual 
EV charging stations and more extensive distributed networks. 
For example, methods like DDPG and FRL facilitate cooperative, 
decentralized energy management, reducing costs and enhanc-
ing grid stability. Furthermore, these techniques are scalable, 
adaptable, and capable of handling dynamic, data-intensive en-
vironments, making them ideal for next-generation EV charging 
solutions in urban and industrial contexts.

3. Battery Management: State-of-the-art machine learning models 
can leverage granular vehicle data in EV-EMS by employing var-
ious techniques that adapt to EVs dynamic and diverse operating 
conditions. Fuzzy logic and adaptive neuro-fuzzy inference sys-
tems (ANFIS) controllers offer interpretable and efficient battery 
performance management, making them suitable for stable and 
predictable systems. However, their reliance on predefined rule 
sets and static models can limit their effectiveness in complex 
environments with highly variable or unpredictable conditions, 
such as frequent driving pattern changes, irregular battery usage, 
or extreme environmental factors. On the other hand, DRL and 
deep learning techniques, by utilizing vast amounts of data, 
can optimize battery usage, extend lifespan, and improve ef-
ficiency, although they are computationally demanding. Con-
current learning-based methods further enhance hybrid energy 
storage system performance, reducing energy loss and providing 
robustness to disturbances. While varying in complexity, these 
models aim to optimize energy consumption, ensure battery 
longevity, and adapt to diverse driving conditions using granular 
data on vehicle performance, battery status, and environmental 
factors.
Machine learning models, such as fuzzy logic, ANFIS, deep rein-
forcement learning, and deep learning, provide capable meth-
ods for optimizing energy management in EVs by leveraging 
more detailed information from the vehicle. These methodolo-
gies will ensure optimal performance by adapting dynamically 
to changes and optimizing battery performance and life. The 
proposed taxonomy ensures clear distinctions between energy 
consumption, charging strategies, and battery management by 
minimizing conceptual overlaps. Energy consumption focuses 
on AI-driven optimization of driving efficiency and power dis-
tribution while charging strategies address scheduling, grid in-
teraction, and infrastructure utilization. Battery management 
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is dedicated to maintaining battery health and longevity, in-
dependent of charging logistics or vehicle energy efficiency. 
This structured framework enhances clarity, enabling a focused 
analysis of AI-driven solutions within each domain.
While the fuzzy logic model applies to a stable system, ap-
proaches like DRL and deep learning will perform better with 
their learning abilities, though they introduce significant com-
putational demands. These demands necessitate advanced hard-
ware accelerations and algorithmic optimizations to ensure real-
time performance. Hardware accelerations primarily include the 
use of Graphics Processing Units (GPUs) and Tensor Process-
ing Units (TPUs), which efficiently handle the parallel compu-
tations required for deep learning models. Additionally, Field 
Programmable Gate Arrays (FPGAs) and Application-Specific 
Integrated Circuits (ASICs) offer customized acceleration with 
lower power consumption, making them suitable for embedded 
EV applications.
Furthermore, model compression techniques such as quanti-
zation, pruning, and knowledge distillation can significantly 
reduce computational overhead by decreasing model size and 
inference latency. Hybrid approaches that combine rule-based 
control with AI-driven adaptations further enhance real-time 
feasibility by leveraging domain knowledge to simplify com-
plex decision-making processes. By integrating these hardware 
and software advancements, AI-driven EV energy management 
systems (EV EMS) can achieve more efficient, responsive, and 
real-time optimization of energy management strategies.

RQ2: What are the common taxonomies for energy management 
in electric vehicles? Based on the analysis of various papers on EV-
EMS, three primary categories emerge as standard taxonomies: energy 
management, charging strategy, and battery management. These cat-
egories provide a structured framework to understand the different 
dimensions of energy management in EVs, including optimizing energy 
distribution, strategies for effective charging, and maintaining battery 
health and performance.

. Energy consumption strategies focus on optimizing power distribu-
tion across various vehicle components to enhance energy efficiency 
and overall vehicle performance. This includes methodologies such 
as rule-based approaches, which rely on predefined rules set by 
engineers, optimization-based techniques such as dynamic program-
ming and model predictive control, and learning-based methods 
leveraging machine learning algorithms such as DRL to adapt to 
dynamic driving conditions. The recent papers focused on energy 
management in HEVs and EVs could be classified into:

• DRL and its Variants: DRL methods, such as multi-agent DRL 
(MADDPG) and DDPG, aim to improve power coordination in 
EVs. They have been widely applied in fuel cell HEVs (FCHEVs) 
and PHEVs (Xiao et al., 2023; Liu et al., 2019; Zhang et al., 
2022; Li et al., 2019; Tang et al., 2021; Lin et al., 2021; Yang 
et al., 2023; Hu et al., 2023). Integrating DRL with transfer 
learning (TL) addresses the challenge of adapting EMS to di-
verse driving conditions and vehicle types, enhancing training 
speed and efficiency (Xu et al., 2022; Lian et al., 2020; Guo 
et al., 2020).

• Hierarchical and Model-based Approaches: Hierarchical frame-
works combine high-level and low-level decision-making, em-
ploying strategies like eco-driving and deep neural networks 
(DNN) for real-time optimization (Liu et al., 2019; Wang et al., 
2023). Model-based methods like Equivalent Consumption 
Minimization Strategy (ECMS) and Deep Q-Networks (DQN) 
leverage stochastic conditions and future driving informa-
tion to derive near-optimal solutions. In DRL-based EMSs 
for HEVs, multi-objective optimization is increasingly being 
adopted, considering not just fuel economy but also factors 
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like battery health. Research shows that DRL-based EMSs with 
multi-objective reward functions perform better under high-
speed conditions while ensuring better battery longevity and 
fuel efficiency

• Hybrid Approaches with Optimization Algorithms: DRL com-
bined with optimization techniques, such as GA and PSO, 
enhances real-time performance and adaptability of EMS, vali-
dated through hardware-in-the-loop simulations and real-
world driving tests (Liu et al., 2019; Zhang et al., 2022; 
Tang et al., 2021). MARL incorporates game theory to balance 
multiple objectives like fuel economy and battery degradation 
by treating power sources as intelligent agents (Yang et al., 
2023).

Energy management strategies in EVs encompass various techniques, 
from DRL and model-based approaches to hybrid methods integrating 
optimization algorithms. These strategies aim to efficiently allocate power 
across components to reduce energy consumption and enhance vehicle 
performance.

. The charging strategies optimize the charging process, minimize 
battery degradation, and ensure efficient energy utilization. These 
strategies include time-based charging schedules and predictive al-
gorithms that incorporate factors such as grid demand and electricity 
pricing.

• Time-based and Predictive Approaches: Basic time-based
strategies optimize charging based on user preferences and 
cost minimization, while more advanced predictive algorithms 
consider dynamic electricity pricing, grid load, and user driv-
ing patterns to recommend optimal charging times. These 
approaches protect battery health by avoiding overcharging 
and ensuring the battery remains within safe operating limits 
(Chen et al., 2023).

• Smart Charging and Grid Integration: Smart charging protocols 
leverage grid integration and time-of-use pricing to optimize 
when and how the vehicle charges, providing a dynamic re-
sponse to grid demand and energy pricing (Raja et al., 2023; 
Qian et al., 2023).

• AI-Driven Grid Stability in Renewable-Integrated EMS: The 
advanced penetration of renewable energy sources (RES) in-
creases volatility in grid stability. To achieve efficient energy 
management, AI-based methodologies optimize energy man-
agement systems (EMS) by adjusting and optimizing charg-
ing/discharging schedules for EVs as energy becomes avail-
able.

– Real-Time Forecasting and Demand-Supply Matching: 
Deep Learning models (i.e., LSTM) will predict renewable 
generation expectations, enabling effective coordination 
of EV charging systems.

– Reinforcement Learning for Dynamic Load Balancing: 
Reinforcement Learning (RL)-based controllers actively 
monitor charging schedules to mitigate or eliminate over-
loading and overall grid destabilization involving EV 
charging based on real-time energy supply needs.

– V2G Optimization: AI-based intelligence will optimize EV 
discharging to the grid while EVs are in a parking mode 
during peak load periods to reduce dependency on fossil 
fuel-utilized power generation.

– Blockchain and Federated Learning for Decentralized 
EMS: Smart contracts using blockchain enable energy 
trading between EVs and grid in support of dynamic dis-
patch needs through instantaneous EV charging schedul-
ing while federated learning will optimize grid stability 
without compromising data privacy principle.
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Fig. 3. Battery Management Diagram.
1

Charging strategies in EVs include time-based and predictive approaches 
that optimize charging schedules to balance battery health, grid demand, 
and electricity pricing. Advanced AI-driven techniques integrate with 
renewable energy sources and smart grids to enhance grid stabil-
ity and energy efficiency, ensuring a scalable and sustainable EV 
infrastructure.

. Battery management deals with maintaining and monitoring a bat-
tery’s health to maximize its lifespan and ensure safety. Key tasks 
include real-time monitoring of the SoC and state of health (SoH), 
balancing cell voltages, and thermal management to prevent over-
heating. Advanced machine learning models and data analytics are 
increasingly used to predict battery degradation and optimize charg-
ing and discharging cycles. Together, these categories form a com-
prehensive framework for managing the energy needs of electric 
vehicles, enhancing efficiency, longevity, and overall performance. 
Battery management in EVs can be categorized into three primary 
classes: Learning-based Approaches, Intelligent Control Systems, and 
Hybrid Storage with Machine Learning Techniques. These categories 
provide a structured framework for understanding various battery 
management techniques and their applications (see Fig.  3).

1. Learning-based Approaches: Learning-based techniques, in-
cluding reinforcement learning and concurrent learning, have 
gained prominence in battery management. These methods 
dynamically optimize energy use in hybrid energy storage 
systems (HESS) that combine batteries with ultra-capacitors. 
For instance, learning-based strategies can handle external 
disturbances and uncertainties, improving overall system per-
formance. Mukhcrjee and Sarkar (2023) propose a method 
that reduces energy loss significantly by optimizing the use 
of ultra-capacitors without constraining the SoC, making it a 
robust solution for plug-in hybrid electric vehicles (PHEVs) 
(Chaoui et al., 2018).

2. Intelligent Control Systems: Intelligent control systems, such 
as fuzzy logic and ANFIS, are widely used for managing 
battery energy. These controllers make decisions based on 
parameters like SoC and driving conditions to enhance ef-
ficiency. Suhail et al. (2021) demonstrated how intelligent 
control systems improve battery performance and fuel effi-
ciency in PHEVs, with ANFIS outperforming traditional fuzzy 
logic controllers. This highlights the potential of adaptive 
control techniques in optimizing energy use and extending 
battery life.

3. Hybrid Storage and ML Techniques: HESS, which combines 
Li-ion batteries with supercapacitors, is another promising 
avenue for efficient energy management. Machine learning 
models are increasingly employed to optimize energy distri-
bution between the battery and supercapacitor, particularly 
during peak power demands. Alaoui’s work (Alaoui, 2019) 
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shows how machine learning can maximize the efficiency of 
these hybrid systems, ensuring optimal performance during 
dynamic driving conditions.

Battery management strategies in EVs focus on optimizing energy storage 
system performance, lifespan, and safety. Learning-based techniques, 
such as deep reinforcement learning, enhance efficiency and reduce 
energy loss. In contrast, advanced control methods like fuzzy logic and 
adaptive neuro-fuzzy systems support optimal energy allocation and 
extend battery life. Additionally, integrating lithium-ion batteries with 
supercapacitors improves the performance of HESS. These advancements 
collectively enhance the efficiency and reliability of EVs, boosting their 
market potential.

RQ3: What are the most commonly and widely used AI appli-
cations energy management methods? What are the advantages and 
disadvantages of each AI method? The most used energy management 
methods in AI applications for EVs and HEVs can be categorized into 
energy consumption, charging strategy, and battery management.

. Energy Consumption: This summary draws on insights from recent 
papers focusing on energy consumption in electric and hybrid vehi-
cles. Various AI methods—including RL, DRL, DL, and TL demon-
strate distinct strengths and limitations, making them suitable for 
different energy management strategies (see Table  2).

• PSO and Adaptive PSO: is widely used in EMS due to its simplic-
ity and adaptability. Specifically, adaptive PSO allows for rapid 
convergence to optimal solutions, even in dynamic driving envi-
ronments (Zhang et al., 2022).

• Deep Learning: DL models predict powertrain behavior and opti-
mize energy allocation in complex driving cycles, leveraging large 
datasets for precise control (Liu et al., 2019; Sotoudeh and Hom-
Chaudhuri, 2023; Wang et al., 2023).

• Deep Reinforcement Learning: DRL combines deep neural networks 
with RL frameworks to provide adaptive and dynamic decision-
making in real-time EMS. It optimizes control policies through trial 
and error in simulated environments, such as with Deep Q-learning 
or policy gradient methods. In hybrid battery systems for electric 
vehicles, DRL-based methodologies have shown to be capable of 
reducing energy loss while also improving electrical and thermal 
safety levels, while achieving a higher level of efficiency in energy 
and computation time compared to traditional methods
Challenges in DRL for EMS: DRL is effective, but has a number of 
practical challenges inhibiting actual implementation:

– High Computational Cost: Training a DRL model necessitates 
large amounts of computer power and simulation environ-
ments.
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– Sample Inefficiency: DRL depends on large amounts of train-
ing data that continues to make real-world applications prob-
lematic.

– Training Instability: Performance is sensitive to hyperparam-
eters, and consequently parameters need to be tuned effi-
ciently.

– Real-Time Feasibility Issues: Inference delays can result in 
poor responsiveness of EMS applications.

Potential Solutions: Hybrid RL (combining RL with rule-based op-
timization), Offline RL (training on pre-collected datasets), and 
Model-Based RL (integrating physics models) can mitigate these 
challenges.

• Reinforcement Learning: RL and its variants, particularly model-
based offline RL, are frequently applied in energy management 
techniques that improve the energy efficiency of hybrid electric 
vehicles. These methods alleviate the issues of sample inefficiency 
and unsafe exploration with the aid of historical datasets, which 
improve performance in real-time, and/or reduce the simulation-
to-real gap. Standard RL approaches like Q-learning and SARSA 
are widely used in EMS for their adaptability and effectiveness 
in optimizing fuel and battery management across various driving 
cycles (Li et al., 2019; Xu et al., 2020; Liessner et al., 2019; Lee 
et al., 2020a; Yang et al., 2023; Lin et al., 2021; Lee et al., 2021; 
Guo et al., 2020; Hu et al., 2023).
Explainability Challenge: Although deep learning (DL) and re-
inforcement learning (RL) techniques have a high accuracy level, 
these techniques still work as black-box models and lack trans-
parency in the decision-making process.
Proposed XAI Solutions:

– Feature Attribution Methods: Approaches like SHAP (SHapley 
Additive Explanations) and LIME (Local Interpretable Model-
Agonistic Explanations) can be used to explore the effects 
of input parameters (e.g., battery SoC, driving speed) on the 
predictions of energy efficiency.

– Surrogate Models: Interpretable models (e.g., decision trees) 
approximate more complex DL models so humans can inter-
pret outcomes more easily.

– Hybrid AI Approaches: The use of RL with rule-based opti-
mization can ensure decisions are compatible with engineer-
ing constraints.

These approaches enhance transparency for AI energy consump-
tion prediction models and help ensure compliance with energy 
efficiency regulations.

• Multi-Agent Reinforcement Learning: MARL models multiple vehi-
cle components (e.g., engine, battery, ultracapacitors) as separate 
agents that can cooperate or compete, allowing for multi-objective 
optimization (Xiao et al., 2023).

• TL for EMS Adaptability: TL enhances AI-based EMS by adapting 
models across different driving cycles, vehicle types, and opera-
tional conditions
Key Applications of TL in EMS:

– Driving Cycle Adaptation: AI models trained for urban traffic 
can be fine-tuned for highway driving without full retraining.

– Vehicle-to-Vehicle Transfer: TL allows EMS models trained 
on one EV type (e.g., BEVs) to be adapted for another (e.g., 
PHEVs).

– Simulation-to-Real Transfer: Pre-trained AI models can be 
refined with real-world sensor data to enhance deployment 
reliability.

These applications demonstrate that TL is an indispensable strategy for 
making AI-driven EMS adaptable and scalable.
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Each approach serves specific EMS needs, with RL and DRL providing 
real-time adaptability, TL improving model flexibility, and optimization 
algorithms such as PSO offering computational efficiency. This diversity 
allows EMS designers to choose the most suitable method based on 
application-specific requirements and available computational resources.

. Charging Strategy: Based on the analysis of recent papers on charg-
ing strategy (Han et al., 2021; Shin et al., 2019; Chen et al., 2023; 
Qian et al., 2023; Raja et al., 2023), the most commonly used AI 
methods in energy management for EV charging and energy storage 
are DRL, MADRL, and FRL (see Table  3).

• Deep Reinforcement Learning: DRL, especially the DDPG algo-
rithm, is widely used for energy management in EV charging 
stations and hybrid electric vehicles, offering a continuous learning 
environment for dynamic demands (Han et al., 2021; Chen et al., 
2023). However, DRL requires significant computational resources 
for training and may struggle with convergence in highly complex 
or uncertain environments.
Limitations of DRL for EV Charging: While DRL can develop 
adaptive charging schedules and load balance, its real-world de-
ployment faces significant challenges:

– High Computational Cost: DRL models often require extensive 
training to converge within the training process, sometimes 
taking weeks to train for large-scale changing networks.

– Sample Inefficiency: To learn an optimal charging policy 
suffers from sample inefficiency and likely requires millions 
of interactions, making real-time adaptation to the grid im-
practical.

– Scalability Issues: the challenge of utilizing DRL approaches 
will be complicated by high dimensional state–action spaces 
and multi-agent charging systems.

– Regulatory Challenges: The black-box nature of DRL is a 
challenge when regulating charging decisions.

Proposed Solutions to DRL Challenges:

– Hierarchical RL: Making a distinction between optimizing the 
grid demand for long-time periods (macro decisions) versus 
charging planning (micro decisions) can increase efficiency.

– Hybrid Optimization Models: DRL plus rule-based algorithms 
provide safety compliance and explainable decision-making.

– Offline RL: If a DRL model can be trained by exposure to 
historical grid load data before deployment, sample efficiency 
can be dramatically increased.

– XAI for Regulatory Compliance: Using feature attribution 
methods (e.g., SHAP/LIME) will allow grid operators to in-
terpret charging policies to validate decisions.

Explainability Challenge: DRL models identify optimal charging 
rules through trial-and-error processes. However, the solutions of 
these models are not easily interpretable, making them susceptible 
to scrutiny by regulatory agencies.
Proposed XAI Solutions:

– Attention Mechanisms: RL models with explainability-
enhanced capabilities may include attention layers to high-
light prominent factors influencing charging decisions (e.g., 
energy costs, peak times).

– Rule-Based Hybrid AI Models: Using RL with explicit con-
straints on charging regardless of and in addition to safety 
rules involving batteries permits and promotes the behavior 
of interpretable and safety-compliant decisions.

• Multiagent Deep Reinforcement Learning: MADRL enables dis-
tributed energy management across multiple EV charging stations 
and autonomous vehicles, effectively handling decentralized and 
dynamic environments (Shin et al., 2019; Raja et al., 2023).
Challenges in MADRL:
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– Communication Overhead: Communication Overhead: Coor-
dinating multiple agents adds computational complexity.

– Coordination Complexity: Coordinating both EV stations ne-
cessitates extensive bandwidth data communications.

– Scalability Concerns: Increasing numbers of EVs may cause 
MADRL models to not generalize to large-scale charging net-
works.

Potential Solutions for MADRL Scalability:

– Decentralized Learning: Direct interactions decrease reliance 
on a central controller, improving real-time feasibility.

– Graph Neural Networks (GNNs): GNNs will model efficiently 
shared interdependencies between charging stations.

– Hierarchical Coordination: Clustering EVs into local groups 
simplifies multi-agent learning and reduces overhead.

• Federated Reinforcement Learning: FRL merges the advantages of 
multiagent learning with data sharing and privacy preservation, 
making it suitable for managing EV charging from disparate grid 
operators (Qian et al., 2023). FRL poses serious challenges for 
practical implementations in the real world. The main realistic 
barriers to FRL implementations are communication latency, data 
privacy, and scalability.
Challenges in FRL-Based Charging Optimization:

– Communication Latency: FRL requires frequent model up-
dates to occur between the distributed EVs and the aggre-
gators. These updates can exacerbate network congestion 
issues.

– Data Privacy Risks: Although FRL prevents direct data shar-
ing, an explosive number of model updates can also expose 
sensitive EV charging patterns.

– Scalability Issues: As the number of participating EVs grows, 
the cost of model aggregation becomes an issue due to the 
computational burden it imposes.

Potential Solutions for FRL Challenges:

– Asynchronous Learning: Allow local models to update asyn-
chronously to reduce waiting times.

– Edge Computing: Performing updates at the local level mini-
mizes delays from transmission to the cloud.

– Hierarchical FRL: Grouping EVs into clusters based on region 
makes federated updates more efficient.

Proposed XAI Solutions:

– Differential Privacy with XAI: Adding explainability layers 
to encrypted model updates can ensure model updates have 
interpretability while maintaining privacy protection.

– Hierarchical Interpretability Models: Explainability
techniques can be used to analyze FRL-driven decisions
through a regional interpretability approach at the microgrid 
and urban levels.

Applying these explanatory techniques not only promotes regula-
tory acceptance of AI, but also presents value to practical imple-
mentation in the real world.

Charging strategies for electric vehicles increasingly leverage multiple AI 
methodologies to enhance energy management, including DRL, MADRL, 
FRL, machine learning, fuzzy logic, and optimization algorithms. Each 
method offers unique strengths and faces specific challenges, making them 
suited to different aspects of EV energy management. In conclusion, each 
of these methodologies contributes uniquely to optimizing EV charging 
strategies.
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. Battery Management: AI-based methods are crucial for battery man-
agement in electric and hybrid vehicles, each with specific advan-
tages and challenges. Based on the four papers, AI is increasingly 
adopted in electric vehicle energy management to address the com-
plexity and variability of energy demands. The most commonly used 
AI methods include Fuzzy Logic Control (FLC), ANFIS, DRL, and DL.
Fuzzy Logic and ANFIS provide straightforward, interpretable con-
trol for stable hybrid systems, effectively handling uncertainty with 
minimal computational demand. In contrast, deep reinforcement 
learning and deep concurrent learning offer more adaptable, effi-
cient energy management and dynamically optimized battery use 
for immediate needs and long-term health, but at the cost of high 
computational requirements. Deep Learning also supports complex 
hybrid systems, optimizing energy flows across multiple sources, 
but demands extensive data and computational resources to perform 
optimally.

• Deep Reinforcement Learning: DRL leverages complex policy learn-
ing for energy management, allocating resources optimally under 
diverse operational conditions. It is beneficial for managing sys-
tems with multiple energy storage devices, such as batteries with 
different charging behaviors (Chaoui et al., 2018).
Limitations of DRL in Battery Management: Despite its advan-
tages, DRL has several difficulties associated with using it for 
battery control:

– Battery Degradation Risks: The control policy based on DRL 
may suboptimally prioritize short-term energy efficiency over 
long-term battery degradation, often increasing battery aging 
and thermal instability.

– High Computational Cost: DRL models require substantial 
computational resources to discover optimal battery manage-
ment policies, but they are limited to application in real-time.

– Sample Inefficiency: Collecting large amounts of data needed 
to train the DRL for battery state of charge/state of health 
(SoC/SOH) estimates is expensive and time-consuming.

– Lack of Explainability: Due to its black-box nature, DRL raises 
feasibility questions around battery longevity, thermal safety, 
and possible regulatory approval.

Proposed Solutions to DRL Challenges:
– Physics-Informed DRL: Incorporating battery degradation
models and electrochemical constraints into DRL training 
ensures battery longevity is preserved.

– Hybrid AI Approaches: Using DRL in conjunction with rule-
based controllers provides battery management, which is not 
only safe but interpretable.

– Offline RL for Battery Health Monitoring: Pretraining DRL 
on historical battery degradation data reduces the need for 
excessive real-time exploration.

– Transfer Learning for Battery SoH Estimation: TL DRL models 
trained on particular battery chemistries, such as lithium-ion, 
can be transferred to explore and estimate battery SoH in 
future battery types (e.g., solid-state batteries).

Explainability Challenge: DRL-based battery management poli-
cies lack interpretability, which raises battery degradation and 
thermal stability concerns, particularly when the battery is under 
load.
Proposed XAI Solutions:

– Physics-Informed Neural Networks (PINNs): These artifi-
cial intelligence approaches embed battery physics equations 
into deep learning models to account for electrochemical 
boundaries while making decisions.

– Bayesian Deep Learning (BDL): Provides uncertainty esti-
mation for battery SoC (state of charge) estimates, which is 
an important resource for understanding how confident the 
AI is in its decision.
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• Deep Concurrent Learning (DCL): This advanced technique uses a 
concurrent learning framework to manage HESS in PHEVs. DCL 
minimizes energy loss and handles external disturbances by in-
troducing a reward structure that optimizes the control policy 
(Mukhcrjee and Sarkar, 2023).

• Deep Learning: DL models are used to manage energy demands 
between batteries and supercapacitors in hybrid systems, focusing 
on maximizing the efficiency of these storage devices (Alaoui, 
2019).
Challenges in DL-Based Battery Management:

– Data Requirements: Training correct DL-based models for 
battery health monitoring requires vast labeled datasets that 
are not easy to obtain.

– Generalization Issues: DL models trained in specific battery 
types may not generalize well to newer battery chemistries.

Proposed Solutions for DL Battery Management:

– Transfer Learning for SoH Adaptation: TL is a tool that al-
lows battery models to be pre-trained on different battery 
chemistries and fine-tuned for different battery chemistries.

– Hybrid DL Models: Combining data-driven models with
physics-based constraints helps address generalization issues.

• FLC and ANFIS: Fuzzy logic is particularly effective in dealing 
with the uncertainty and imprecision inherent in battery data, such 
as fluctuations in SoC or temperature. FLC and ANFIS combine 
human-like reasoning with mathematical control to handle energy 
distribution in HEVs. These systems use battery state of charge 
and engine speed to manage the torque and energy requirements 
(Suhail et al., 2021). FLCs are relatively simpler to design and 
implement than AI techniques. Fuzzy logic systems are robust 
against variations in battery behavior and external conditions, 
making them reliable for real-time applications.
Proposed XAI Solutions:

– Fuzzy Rule-Based AI Enhancements: Combining Fuzzy Logic 
with reinforcement learning helps improve explainability 
while maintaining adaptability

Fuzzy Logic and ANFIS provide straightforward, interpretable control 
suited for stable hybrid systems, while Deep Reinforcement Learning and 
Deep Concurrent Learning offer more adaptable, efficient energy man-
agement at the expense of higher computational demands. Deep Learning 
is effective in hybrid setups with multiple energy sources but requires 
extensive data and computational resources to achieve optimal results. 
Each method has strengths in different operational contexts, making the 
choice of AI technique dependent on the specific energy management 
needs and available computational resources.
To provide a structured and quantitative comparison, Table  4 eval-
uates AI-based energy management strategies concerning key per-
formance indicators frequently reported in EVENS research. These 
indicators help assess the performance trade-offs between computa-
tional efficiency, energy savings, battery life, and real-time decision-
making capability.

• Computational Complexity: Refers to the process demands 
the algorithm requires to run, a contributing factor in deter-
mining the feasibility of real-time applications.

• Training Time: The duration needed for the AI model to learn 
the strategies for optimal energy management.

• Convergence Rate: The number of iterations for the AI model 
to achieve stable performance.

• Gain in Energy Efficiency (%): The improvement in EV en-
ergy consumption is attributable to the AI strategy.

• Gain in Battery Life (%): The estimated battery life extension 
due to the optimized charge/discharge cycles. 
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• Computational Cost (ms per decision): The processing time 
required for the AI system to generate a decision for real-time 
applications.

• Real-Time Adaptability (ms response time): The ability of 
the AI method to adapt to capabilities for both changing driv-
ing conditions and fluctuation on the grid.

• Interpretability (XAI): The extent to which the AI model’s 
decisions can be explained and understood.

Role of Transfer Learning in EV Energy Management Transfer 
Learning (TL) plays an integral role in helping to develop smart and 
adaptive EV energy management systems (EV EMS). It facilitates 
the transfer of existing, pre-trained models to new driving condi-
tions and operational circumstances with minimal re-training. TL 
improves model generalization, can ease issues with scarce data, and 
supports AI-driven optimization techniques such as deep reinforce-
ment learning (DRL) to converge rapidly. Moreover, TL also reduces 
computational overhead while increasing the efficiency and/or ac-
curacy of energy management decisions. TL is particularly advanta-
geous in the following EV EMS methods:

(a) Fostering Domain Adaptation Between Driving Cycles: AI 
models trained on a specific driving cycle (e.g. urban driving 
with frequent stops) may not generalize to another driving 
scenario (e.g., highway driving with less frequent stops).
TL Solution: Instead of training a new model from scratch on 
the second driving scenario, using TL, one can instead fine-
tune the existing model with a limited set of driving data for 
the second cycle. This allows the model to be adapted and 
the energy efficiency predictions improved without having to 
re-train the model extensively (Lian et al., 2020; Xu et al., 
2022).

(b) Transfer from Simulation to Real World: Due to constraints 
on safety and cost, AI models to evaluate EV energy mgmt 
strategies are often developed and evaluated in simulator 
environments, however, AI models or other models trained 
within simulations do not perform as well in real-world driv-
ing because real-world driving contains uncertainties that are 
not modeled and addressed in the simulation environment.
TL Solution: Pretraining an AI model within a high-fidelity EV 
simulator (e.g., CARLA, SUMO) and fine-tuning this model 
with real-world data from a limited number of sensors will 
allow for better adaptation while avoiding the costs and time 
associated with collecting additional data (Wang et al., 2020; 
Li et al., 2021).

(c) Adapting AI Models to New Battery Chemistries: When-
ever battery materials and chemistries change (e.g., lithium-
ion vs. solid state), the charging dynamics and capacity fade 
behavior will change, necessitating new control strategies.
TL Solution: Rather than fully retraining the AI model for the 
battery type, you can similarly transfer the model’s features 
and fine-tune it with limited experimental data on the new 
battery type, greatly reducing training costs (Yang et al., 
2023).

(d) Vehicle-to-Vehicle (V2V) Knowledge Transfer: BEVs have 
a different energy management strategy than PHEVs because 
they require different powertrain configurations (and electric 
range).
TL Solution: Even if an AI model would require retraining 
for the type of EV, it is still not equivalent to retraining 
an AI model for another vehicle. In this case, transferring 
knowledge from the BEV will allow the model to adapt to the 
PHEV more efficiently in real-world deployment (see Table 
5).

RQ4: What are the promising research directions for energy man-
agement in EVs? Promising research directions for energy man-
agement in electric vehicles (EVs) can be categorized into three 
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Table 2
Energy consumption methods classifications.
 Methodology Advantages Disadvantages  
 Optimization algorithm (Zhang et al., 2022) - Adaptive optimization specific to dynamic 

driving environments. 
- Improves energy efficiency and reduces 
computational time through adaptive PSO.

- Limited by the effectiveness of the particle swarm 
model in complex, unpredictable environments. 
- Relies on adequate digital twin fidelity and 
calibration for effective implementation.

 

 Deep learning (Liu et al., 2019; Sotoudeh and 
HomChaudhuri, 2023; Wang et al., 2023)

- Models complex relationships effectively 
- High accuracy in real-time applications 
- Scales with large datasets

- High computational needs 
- Requires long training time

 

 Deep Reinforcement Learning (DRL) (Wang et al., 
2020; Tang et al., 2021; Li et al., 2021)

- Allows learning from visual input (e.g., camera 
data) and complex environments. 
- Improves fuel economy and emission 
management with deep neural network integration. 

- Distributed training enables efficient processing 
in complex scenarios.

- Heavy computational load due to deep neural 
networks. 
- It may be challenging to optimize for real-time 
applications due to large data input.

 

 Reinforcement learning (Li et al., 2019; Xu et al., 
2020; Liessner et al., 2019; Lee et al., 2020a; Yang 
et al., 2023; Lin et al., 2021; Lee et al., 2021; Guo 
et al., 2020; Hu et al., 2023)

- Adaptive learning in complex, changing 
environments. 
- Improves energy management and fuel economy. 
- Handles uncertain environments effectively. 
- Supports multiple-objective optimizations in 
real-time.

- High computational demands and training may 
require extensive data. 
- Training can be complex and time-intensive 
- Stability issues in extended scenarios require 
careful tuning.
- Performance is highly dependent on tuning 
learning rates and reward functions.

 

 Multi-Agent reinforcement learning (Xiao et al., 
2023)

- Supports collaborative and scalable solutions 
- Optimizes multi-agent interactions 
- Increases system efficiency

- Complex implementation 
- High computational and coordination 
requirements

 

  Auxiliary AI techniques: Transfer learning (Lian 
et al., 2020; Xu et al., 2022)

- Reduces the need for retraining 
- Speeds up convergence in new environments 
- Transfers knowledge effectively 
- Enables reusability of knowledge across different 
HEV types, reducing training time 
- Facilitates efficient development and adaptation 
for different vehicle configurations

- Adaptation challenges if tasks differ significantly 
- May not generalize perfectly to new or highly 
distinct models 
- Performance depends on the quality and 
adaptability of pre-trained models

 

Table 3
Charging strategy methods classifications.
 Methodology Advantages Disadvantages  
 Deep Reinforcement Learning (DRL) (Han et al., 
2021; Chen et al., 2023)

- Real-time adaptability for dynamic energy 
demands. 
- Improves fuel economy and reduces peak loads.
- Suitable for handling fluctuating load 
characteristics in EV charging.

Computational overhead: Requires extensive 
training resources. 
Mitigation: Efficient model compression and 
distributed training. 
Limited generalization: Performance depends on 
SOC training. 
Mitigation: Transfer learning techniques for 
adaptation.

 

 Multi-agent Deep Reinforcement Learning 
(MADRL) (Shin et al., 2019; Raja et al., 2023)

- Effective in decentralized, distributed EV 
charging management. 
- Reduces operational costs and enhances energy 
efficiency.
- High success rate in complex environments for 
autonomous navigation.

High coordination complexity: Synchronizing 
multiple agents requires large-scale computations. 
Mitigation: Asynchronous updates and reward 
shaping. 
Scalability issues: Managing many EVs can be 
inefficient. 
Mitigation: Hierarchical multi-agent coordination 
frameworks.

 

 Federated Deep Reinforcement Learning (FLR) 
(Qian et al., 2023)

- Balances V2G/G2V modes while maintaining 
driver privacy.
- Reduces power fluctuations and optimizes 
distribution network load.
- High generalization ability and convergence 
efficiency.

Communication latency: Model synchronization 
delays affect decisions. 
Mitigation: Edge computing and adaptive update 
frequency. 
Data privacy risks: Model updates may reveal 
user behavior. 
Mitigation: Differential privacy and homomorphic 
encryption. 
Scalability concerns: Large-scale participation 
increases computation. 
Mitigation: Hierarchical FRL and blockchain-based 
aggregation.

 

main areas: energy consumption, charging strategies, and battery 
management.

1. Energy Consumption: In the area of energy consumption, DRL and 
its various extensions, such as MADDPG and deep Q-networks 
(DQNs), have demonstrated substantial potential in optimizing 
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EMS by coordinating power output and reducing energy con-
sumption. Developing model-based offline reinforcement learning 
to improve sample efficiency and safety are promising research 
directions for energy management in EVs, as well as data-driven 
dynamic models to close the simulation to reality gap. These 
approaches will aim to improve the adaptability and real-time 
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Table 4
Quantitative comparison of AI-Based energy management methods for EVs.
 Metric Reinforcement learning Deep learning 

(CNN/RNN/DNN)
Transfer learning Fuzzy Logic & ANFIS  

 Best use case Real-time energy 
optimization

Energy prediction Model adaptation 
across EVs

Rule-based energy 
control

 

 AI architecture Deep Q-Networks 
(DQN), PPO, DDPG

CNN (image-based), 
RNN (time-series), DNN 
(multi-variable)

Fine-tuned pre-trained 
models

Expert-defined fuzzy 
rules

 

 Computational complexity High (𝑂(𝑛2) - 𝑂(𝑛3)) Medium (𝑂(𝑛 log 𝑛)) Low (𝑂(𝑛)) Very Low (𝑂(1))  
 Training time Long (10+ hours) Medium (5–10 h) Short (2–5 h) Instant (<1 h)  
 Convergence rate Slow (1000+ episodes) Moderate (100–500 

iterations)
Fast (50–200 iterations) Very Fast (few 

iterations)
 

 Energy efficiency gain (%) Moderate (5%–15%) High (15%–30%) High (20%–35%) Low (5%–10%)  
 Battery life improvement (%) Moderate (10%–20%) High (20%–40%) High (30%–50%) Low (5%–15%)  
 Computational cost (ms per decision) High (100–500 ms) Medium (50–200 ms) Low (10–50 ms) Very Low (<10 ms)  
 Real-Time adaptability (Response time) High (<500 ms) Medium (<1 s) High (<500 ms) Very High (<100 ms)  
 Interpretability (XAI) Low (Requires 

SHAP/LIME)
Low (Requires 
surrogate models)

Moderate (Transferable 
weights)

High (Inherently 
transparent)

 

2

Table 5
Application Scenarios for Transfer Learning in EV Energy Management.
 Application Role of transfer learning  
 Driving cycle adaptation Transfers knowledge from one driving 

scenario (e.g., urban) to another (e.g., 
highway) to improve adaptability.

 

 Simulation-to-Real transfer Fine-tunes AI models trained in 
simulators for real-world deployment, 
reducing the need for costly real-world 
data collection.

 

 Battery chemistry adaptation Adapts AI models trained on one battery 
type (e.g., lithium-ion) to another (e.g., 
solid-state) without full retraining.

 

 Vehicle-to-Vehicle knowledge transfer Transfer control strategies between 
different EV models (e.g., BEV vs. PHEV) 
to enhance cross-platform efficiency.

 

optimization of energy management systems. Combining DRL 
with TL is another promising avenue, enabling quicker adaptation 
and reduced training times by transferring knowledge from one 
driving domain to another, thus enhancing EMS’s efficiency and 
real-time applicability (Ma et al., 2024; Alaoui, 2019; Chaoui 
et al., 2018).
Eco-driving strategies that incorporate hierarchical control frame-
works are also gaining traction. These frameworks optimize driv-
ing cycles and powertrain energy management, leveraging long-
term and short-term decision-making for improved computational 
efficiency and fuel economy. Hybrid approaches integrating deep 
learning and genetic algorithms further enhance EMS by opti-
mizing power splits between batteries and internal combustion 
engines, leading to better fuel economy and real-time adaptabil-
ity. Digital twin (DT) technology, combined with adaptive PSO, 
offers a robust EMS optimization platform, significantly improv-
ing fuel economy and computational efficiency through virtual 
simulations and real-world validations (see Table  6).

Incorporating computer vision with DRL is another innovative direc-
tion, where visual inputs from onboard cameras are used to optimize 
control policies, improving fuel economy by leveraging real-time 
visual information. Multiobjective optimization using multiagent re-
inforcement learning (MARL) addresses various EMS objectives, such 
as fuel economy and battery SoC maintenance, ensuring a balanced 
approach to energy management. In conjunction with DRL, Bayesian 
optimization further refines EMS by optimizing energy management 
and powertrain configurations, leading to significant reductions in 
fuel consumption.
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Moreover, supplementary learning controllers (SLC) based on DRL 
enhance existing rule-based EMS, reducing uncertainty and improv-
ing convergence speed, thus facilitating the transition from simula-
tion to real-world applications. Adaptive and real-time EMS strate-
gies, incorporating improved reinforcement learning algorithms and 
hierarchical frameworks, are also crucial for ensuring the adaptabil-
ity and efficiency of EVs in diverse driving conditions and vehi-
cle types. These advancements collectively point towards a future 
where AI-driven, adaptive, and highly efficient energy management 
systems become integral to the operation of electric vehicles.

. Charging Strategy: Promising research directions for energy man-
agement in EVs include advancements in battery technology, such 
as solid-state batteries, which promise higher energy densities, im-
proved safety, and longer lifespans. Enhanced battery management 
systems (BMS) that utilize machine learning and predictive algo-
rithms can better monitor and adapt to usage patterns, extending 
battery life and reliability. Additionally, exploring efficient thermal 
management techniques, such as leveraging real-time data from on-
board sensors to dynamically control cooling systems (e.g., reducing 
heat during high-demand charging), can prevent overheating and 
improve overall efficiency. For instance, multi-state energy manage-
ment strategies using DRL, as proposed for hybrid electric-tracked 
vehicles (HETVs), have improved fuel economy by 13.1% through 
dynamic demand modeling and robust optimization (Han et al., 
2021). Integrating renewable energy sources, such as solar panels, 
into EVs for auxiliary power is another promising avenue, as demon-
strated by MADRL for distributed EV charging stations equipped 
with solar photovoltaic systems and energy storage systems. This 
approach reduces operation costs by dynamically scheduling EV 
charging across multiple stations while adapting to varying data 
in real-time (Shin et al., 2019). Research into V2G and G2V tech-
nologies is also vital. For instance, FRL has been shown to balance 
V2G profits, mitigate power fluctuations in RDN, and respect driver 
privacy through decentralized learning frameworks (Chen et al., 
2023). Innovative charging infrastructure developments, such as the 
use of DRL-based control strategies, have been shown to significantly 
reduce peak load power at EV fast-charging stations, addressing 
high peak demands and fluctuations (Qian et al., 2023). Addition-
ally, advancements like the CONCP framework for autonomous EVs, 
powered by MADRL, enhance charging efficiency by scheduling op-
timal charging stops while improving traffic flow and reducing con-
gestion (Raja et al., 2023). Furthermore, investigating lightweight 
materials and aerodynamic designs can reduce energy consumption 
and increase vehicle range. Collectively, these research directions 
aim to improve electric vehicles’ efficiency, sustainability, and user 
experience.
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Table 6
Battery management methods classifications.
 Methodology Advantages Disadvantages  
 Fuzzy Logic and ANFIS Control (Suhail et al., 2021) - Simple and interpretable control 

techniques. 
- Improves battery performance and 
efficiency. 
- Suitable for energy management of 
PHEVs.

- May achieve a different level of 
precision than other methods like 
machine learning, which can limit their 
effectiveness in some scenarios. 
- Often requires manual tuning of 
membership functions and rules, which 
can be labor-intensive and may only 
sometimes yield optimal results. 
- May need help with scalability when 
applied to large or complex systems.

 

 Deep Reinforcement Learning (DRL) (Chaoui et al., 2018; Ma et al., 2024) - Learns optimal energy management 
policies automatically. 
- Improves battery lifespan by balancing 
SoC across multiple batteries. 
- Optimizes battery usage over the long 
term, balancing immediate energy needs 
with future battery health and longevity. 

- Suitable for complex energy 
management in electric vehicles.

- Requires significant computational 
resources and training time. 
- Complexity increases with the number 
of batteries and operating conditions. 
- Face challenges in balancing 
exploration (trying new actions) with 
exploitation (using known actions that 
work well), which can affect 
performance.

 

 Deep Concurrent Learning (DCL) (Mukhcrjee and Sarkar, 2023) - Reduces energy loss in HESS. 
- Handles external disturbances and 
modeling uncertainties effectively. 
- Efficient energy management using 
continuous-time problem formulation.

- Complexity increases with multiple 
energy sources and system dynamics. 
- High computational overhead during 
the learning phase.

 

 Deep learning (Alaoui, 2019) - Maximizes energy efficiency in HESS. 
- Combines batteries and supercapacitors 
for better performance. 
- Suitable for hybrid vehicle energy 
management.

- Requires a large amount of data for 
training. 
- Computationally intensive and may 
require significant tuning.

 

. Battery Management: Battery management in electric vehicles (EVs) 
is a rapidly evolving field with several promising research directions 
to improve efficiency, longevity, safety, and overall performance. 
They enhance AI algorithms for more precise SoC and SoH esti-
mation, predictive maintenance, and real-time battery performance 
optimization. Also, developing digital twin models of batteries that 
simulate their physical and chemical processes in real-time allows 
for more accurate monitoring and predictive analysis. Moreover, 
new technologies can significantly reduce charging times without 
compromising battery health or safety. Research in these areas will 
help address the current challenges in EV battery management, 
paving the way for more advanced, efficient, and sustainable electric 
vehicles.

Addressing the Main Research Question: How can energy man-
agement techniques be integrated with AI? What is the desirable 
characteristics for energy management?

Integrating energy management with AI methodologies in EVs must 
address computational efficiency, adaptability to real-time conditions, 
and resilience to data loss or system failures. These AI techniques, 
which include deep reinforcement learning and transfer learning, can 
also be the basis for pathways to optimize energy flow in an adaptive 
and predictive manner, which is essential for managing complex en-
ergy distribution and varying demands. One of the primary challenges 
lies in generalizing AI models, as simulations often fail to capture 
real-world variations in driving behavior, environmental conditions, 
and battery degradation. Additionally, computational constraints and 
safety concerns make direct deployment of complex AI models difficult, 
necessitating robust adaptation strategies.

To bridge this gap, digital twins have emerged as a promising 
solution, enabling real-time validation by continuously synchronizing 
a virtual EV model with real-world data. Furthermore, transfer learn-
ing and domain adaptation techniques allow AI models trained in 
simulations to be fine-tuned using limited real-world datasets, improv-
ing their applicability. Hybrid control architectures, where AI-driven 
energy management is supplemented with traditional rule-based or 
optimization-based controllers, can enhance robustness and reliability.
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For example, fuzzy logic and neural networks can monitor operating 
conditions and real-time battery and power distribution, effectively 
and efficiently utilizing power resources while responding to dynamic 
vehicle performance data. Hardware-in-the-loop (HiL) testing further 
aids in validating AI models by integrating them with actual EV com-
ponents before full-scale deployment. The preferred combination of 
characteristics for AI-related energy management tools in EVs includes 
cost-effectiveness for model deployment, scalable algorithms for han-
dling large data volumes, resilience to changing operational conditions 
(e.g., unpredictable driving), and reliability to meet electricity grid 
demands and variable driving conditions.

Thus, by integrating these strategies, AI-based EV energy manage-
ment systems can effectively transition from simulation to practical im-
plementation, ensuring efficiency, reliability, and real-time adaptabil-
ity. These AI-driven energy management strategies not only enable ef-
ficient EV operation but also contribute to longer battery longevity and 
a more sustainable future for mobility and autonomous transportation.

5. Conclusion

This paper discussed the current landscape of AI applications in 
EVEMS, highlighting the potential of DL, RL, fuzzy logic, and optimiza-
tion algorithms to transform energy management. AI-driven models 
allow for efficient and real-time energy distribution, extended battery 
life, and adaptive vehicle performance management, which are crit-
ical to addressing the challenges of dynamic driving conditions and 
energy demands. The findings emphasize that while DL and RL offer 
high adaptability and predictive power, simpler models such as fuzzy 
logic excel in specific stable environments with fewer computational 
demands. As electric vehicle technology evolves, the integration of AI 
in energy management will be essential to achieve higher efficiency, 
greater sustainability, and widespread adoption. This paper encour-
ages further exploration of scalable and adaptable AI approaches that 
support the diverse needs of the electric vehicle industry, ultimately 
contributing to a more sustainable transportation future.
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In conclusion, this review paper serves as a valuable resource for 
researchers, practitioners, and policymakers by contributing to ongoing 
efforts to create more efficient and intelligent energy management 
solutions, paving the way for the broader adoption of EVs in the global 
market.
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