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ABSTRACT

In proton therapy, robust treatment planning is currently used to account for uncertainties in patient align-
ment and proton beam range. A way to overcome the limitations of robust treatment planning is to use prob-
abilistic treatment planning, which can be computationally expensive due to the calculations of statistical
measures of stochastic dose parameters. For this purpose, the method of Polynomial Chaos Expansion (PCE)
has been introduced to alleviate computational costs. PCEs are helpful to evaluate the statistical measures
analytically, or via sampling, and can usually be evaluated faster than through calculations with the dose en-
gine. In this research, the work of Salverda et al. (2019) is extended upon improving probabilistic treatment
planning with Polynomial Chaos Expansion for proton therapy. Probabilistic treatment plan optimizations
with patient data in ErasmusMC’s iCycle were found to be too costly for clinical use with computation times
in the order of 1-3 weeks. The goal of this research is to alleviate the computational cost of probabilistic treat-
ment planning, in which percentiles of stochastic dose volume parameters are used, with the aim of a proof
of principle for clinical use.

New methodologies on the calculation of the value, gradient and Hessian of percentiles of dose volume
parameters, and treatment plan optimizations with these methods, are tested on a simplified 3D geometry
with a tumor and an organ in Matlab. The optimizations are performed with the fmincon solver, using the de-
fault interior-point algorithm. The construction of PCEs is performed with the OpenGPC package, developed
by Z. Perkó et al. (2016).

Three exact improvements on the calculation of the value, gradient and Hessian of percentiles of dose
volume parameters have been implemented and show an overall reduction in computation time of 30%.
These improvements yield a similar speed-up in the total optimization time of a probabilistic treatment plan,
depending on the dose parameters in the objectives and constraints, and their computation times. Further-
more, the accuracy of the gradient and Hessian of percentiles of dose volume parameters has been improved
through the introduction of a monotonicity constraint on the PCE coefficients. To reduce the computation
time even further, an approximation method is devised for the calculation of the gradient and Hessian of per-
centiles of dose volume parameters. This method shows a decrease in computation time from 5,600 seconds
to only 220 seconds per calculation of the value, gradient and Hessian of a percentile of a dose volume pa-
rameter for the 3D geometry and a sample size of 500,000. The problem is that the approximation method
is quite heuristic and its accuracy cannot be predicted in general. However, relatively accurate percentile
approximations are produced with small absolute errors. Optimizations of probabilistic treatment plans are
performed with the exact and approximate method, yielding small differences in terms of dose distributions
due to differences in sample size. The cases with the approximation method yield the fastest optimization
times and are shown to be 7.6 times faster, from 5.3 days to 16.5 hours, than the case with the exact method
and a sample size of 500,000. The cases with the exact method show to be 2.5 and 1.2 times faster for a sample
size of 50,000 and 250,000 than for a sample size of 500,000 respectively. The higher number of iterations in
cases with the approximation method and cases with the exact method for smaller sample sizes outweigh the
rapid increase in computation time for higher sample sizes with the exact method.

A decrease in computation time is shown for probabilistic treatment planning, in which percentiles of
dose volume parameters are used, in general, and also in implementations in the 3D geometry with and
without the approximation method. In future research, the decrease in computation time with the exact
improvements should be investigated in optimizations with patient data in iCycle. Also, the approximation
method should be tested on different geometries and for multiple uncertain parameters in the geometry to
investigate whether this method is robust enough to be tested in optimizations with patient data in iCycle.
As a conclusion, the new methodologies in this research do improve probabilistic treatment planning with
Polynomial Chaos Expansion for proton therapy by alleviating computational cost, but a proof of principle
for clinical use is not yet achieved.
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1
INTRODUCTION

1.1. CANCER TREATMENT

According to the World Health Organization, cancer has the second highest mortality rate of diseases world-
wide with an estimated 9.6 million deaths in 2018 [1]. When a patient is diagnosed with cancer, there are
several treatment methods to consider. The three most common modalities to treat cancer are surgery,
chemotherapy and radiotherapy [2–4]. The first mentioned treatment method is removing the tumor through
surgery. When the tumor cannot be reached without sparing enough healthy tissue and organs, chemother-
apy or radiotherapy is often used. Chemotherapy uses chemical drugs to kill cancer cells. These drugs can be
injected directly into the blood stream, or can be consumed by the patient in pill form. Chemotherapy avoids
the use of surgery, but can cause serious side effects due to the powerful drugs that are used, which also reach
other regions of the body besides the tumor [5]. Radiotherapy is the third method that is frequently used to
treat cancer. It is estimated that half of all cancer patients are treated with radiotherapy [4]. Radiotherapy
makes use of high doses of ionizing radiation, which induce damage to the DNA of tumor cells, finally result-
ing in cell death. All three methods can be used separately, or in a combined manner, as palliative treatment,
focusing on pain and symptom relief, or as curative treatment to remove the tumor as much as possible and
improve the patient’s life expectancy.

1.2. RADIOTHERAPY

Radiotherapy itself covers a variety of treatment concepts, such as brachytherapy and external beam radio-
therapy. In brachytherapy a sealed radiation source, containing a radioactive isotope, is placed inside or near
the region of the body that requires treatment. The isotope irradiates the patient with ionizing particles. In
external beam radiotherapy the patient will, most frequently, be irradiated with a concentrated beam of pho-
tons, electrons or protons. Nowadays, photon therapy is the conventional way of radiotherapy. However, the
use of proton therapy is on the rise in the field of radiotherapy, with three proton therapy centers having al-
ready been opened in the Netherlands between 2018 and 2019. These centers are located in Delft, Groningen
and Maastricht.

1.2.1. PROTON THERAPY

In proton therapy patients are irradiated with proton beams via a gantry, a medical machine that can rotate
around the patient, while the patient is placed on the gantry table. Figure 1.1 shows a schematic illustration
of a gantry and the gantry table. The protons in the beams deposit their energy along their path through the
patient’s body. Due to the differences in density between types of tissue, organs and the tumor, the amount
of deposited energy differs per location. Therefore, the resulting energy deposition profile depends on the
trajectory of the beam. However, it also depends on the type and energy of the particles in the beam and the
beam’s intensity, which is correlated to the number of particles in the beam.

3



4 1. INTRODUCTION

Figure 1.1: Schematic illustration of a medical proton therapy gantry, which can rotate around the patient. The patient
lays on the gantry table, which can also be rotated and/or displaced. All these movements change the position of the
isocenter, which is the center of irradiation, in the patient’s body. Figure from [6].

Protons have a different energy deposition profile along the trajectory in the patient’s body than photons.
Photons deposit their energy starting with a peak at a small depth and a gradual decrease afterwards along
their trajectory, whereas protons deposit very little energy, except for a peak at a specific position in depth.
This peak of energy deposition for protons is called the Bragg peak. Figure 1.2 shows the difference in energy
deposition profiles between a photon and a proton beam.

Figure 1.2: Comparison of the energy deposition profiles of a photon beam (X-ray) and a proton beam. On the horizontal
and vertical axis, the depth along the trajectory in the patient’s body and the delivered dose as a fraction of the prescribed
dose in the tumor are shown respectively. The yellow line corresponds to a photon beam, and the blue dashed line
corresponds to a single proton beam with its characteristic Bragg peak. When combining multiple proton beams with
different energies together, a spread-out Bragg peak (SOBP) is formed, which corresponds to the solid blue line. Figure
from [7].

Even though the use of proton therapy is on the rise, it had already been proposed by American physicist
R.R. Wilson in 1946 [8]. The narrow Bragg peak and the sudden drop afterwards is a big advantage of proton
therapy in comparison with conventional photon therapy, as more healthy tissue and organs can be spared.
Conversely, the Bragg peak causes the dose distribution in proton therapy to be more sensitive to uncertain-
ties. Translational and rotational errors in patient alignment, called set-up uncertainty, and errors in the
energies of the proton beams that cause shifts in the Bragg peaks, called range uncertainty, are two important
examples of such uncertainties.
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1.2.2. HANDLING UNCERTAINTIES IN RADIOTHERAPY
Radiotherapy treatment planning starts with a CT scan of the patient. The tumor that is visible on the CT
images is called the gross tumor volume (GTV). Due to the possible existence of microscopic extensions of
the tumor, which are not visible on the CT images, a small margin around the GTV is considered. The GTV
and this margin together form the clinical target volume (CTV). In photon therapy treatment planning, un-
certainties are accounted for by irradiating a larger volume than the CTV. The CTV together with this extra
margin is called the planning target volume (PTV). Figure 1.3 shows a schematic illustration of these margin
definitions and three example scenarios of CTV motion in which the CTV receives the desired target dose in
the case that the full PTV is irradiated with the target dose.

Figure 1.3: In the left image, a schematic illustration of the definitions of the gross tumor volume (GTV: tumor that is visi-
ble on the CT images), the clinical target volume (CTV: margin around GTV to account for microscopic tumor extensions)
and the planning target volume (PTV: margin around CTV to account for set-up and range uncertainties) is visible. On
the right, three scenarios of CTV motion are shown in which the CTV receives the desired target dose in the case that the
full PTV is irradiated with the target dose. Figure from [9].

Unfortunately, this methodology is not suitable for proton therapy, because the energy deposition of protons
is more sensitive to density variations in the body, as compared to photons. In proton therapy, robust treat-
ment planning is currently used to account for set-up and range type of uncertainties [10]. In robust treat-
ment planning, a discrete set of error scenarios is defined, with an error scenario being a specific realization
of the considered uncertain parameters. With this discrete set of error scenarios a worst-case optimization
is performed over the different scenarios. This means that the resulting treatment plan is robust against all
these predefined discrete scenarios. However, each of these scenarios has statistically a zero probability of
occurrence during treatment.

A way to overcome the limitations of robust treatment planning is to use probabilistic treatment plan-
ning. In probabilistic treatment planning one assumes the uncertain parameters to follow a certain prob-
ability density function (PDF) and an optimization is performed on statistical measures of stochastic dose
parameters. A downside is that optimization for probabilistic treatment planning can become computation-
ally expensive when these statistical measures are not analytically available, but dose distributions need to
be sampled for many error scenarios with the dose algorithm to approximate these metrics.

The method of Polynomial Chaos Expansion (PCE) can be used to alleviate the computational cost in both
robust and probabilistic treatment planning. PCE is a mathematical tool that can be used to approximate the
functional dependence of the desired stochastic dose parameters on the considered uncertain parameters.
The advantage of this method is that the PCEs can be evaluated fast for many error scenarios, alleviating com-
putational cost in the evaluation of the objective functions and constraints, and their gradients and Hessians,
in either robust or probabilistic treatment plan optimization.

1.3. PREVIOUS RESEARCH
In the past five years S.R. van der Voort (2015) and C.E. ter Haar (2018) have investigated the use of PCE
to describe stochastic dose parameters and to construct robustness recipes for robust treatment planning
within proton therapy [9, 11].

Furthermore, J.H. Salverda (2019) has performed research on the implementation of PCE in probabilistic
treatment planning for proton therapy [12]. This research involved describing several statistical measures of
stochastic dose parameters with PCE and, for some of those metrics, investigating their use in treatment plan-
ning. For the probabilistic function the expected value of the sum of the quadratic differences between the
delivered dose and the prescribed dose explicit expressions were found in terms of characteristics of PCEs.



6 1. INTRODUCTION

This probabilistic function was used in probabilistic planning on a simplified one- and three-dimensional
geometry and good results were found with relatively low computational cost. For the 1D geometry also the
effect of fractionation, dividing the treatment in separate parts, on the dose distribution has been investi-
gated, however, this will not be covered in this research.

From a clinical perspective statistical measures like the expected value are less valuable than, for example,
the percentile of a stochastic dose parameter, from which one can make statements about the percentage of
error scenarios in which a treatment plan will be satisfied. Unfortunately, the percentile of a dose param-
eter cannot be expressed explicitly in terms of characteristics of PCEs, but sampling is needed to produce
approximations. Implementation of the percentile as statistical measure in probabilistic planning on data of
a patient with skull base meningioma, a type of brain tumor, with ErasmusMC’s treatment planning software
environment iCycle was found too costly for clinical use with computation times in the order of 1-3 weeks
and has, in some cases, lead to problems with convergence [12].

1.4. RESEARCH GOAL
This research will contribute to the work of J.H. Salverda by improving probabilistic treatment planning with
PCE for proton therapy. This will consist of developing new methods to speed up the calculation of the value,
gradient and Hessian of percentiles of stochastic dose volume parameters and to test the new methods in
treatment plan optimization. The goal of this research is to alleviate the computational cost of probabilistic
treatment planning, in which percentiles of stochastic dose volume parameters are used, with the aim of a
proof of principle for clinical use.

1.5. THESIS OUTLINE
This thesis is structured as follows. In Chapter 1, an introduction about different types of cancer treatment,
and in particular external beam radiotherapy, is given with a short explanation of handling uncertainties in
photon and proton therapy. Also, recent proton therapy research with the use of PCE within both robust and
probabilistic treatment planning is discussed. In Chapter 2, the relevant theory of proton therapy physics and
the concept of the pencil beam scanning technique in intensity modulated proton therapy are discussed.
Also, different uncertainties in proton therapy are explained in more detail. In Chapter 3, several clinical
treatment parameters, different concepts of treatment planning and treatment planning with ErasmusMC’s
software environment iCycle are explained. Chapter 4 contains the relevant mathematical background of
PCE and the theory of numerical integration that is needed for the construction of PCEs. Also, the construc-
tion of PCEs with the OpenGPC package is explained. Chapter 5 shows how three probabilistic functions for
this research can be described with PCEs. In Chapter 6, the different implementations of this research are ex-
plained. In Chapter 7, the results of this research are presented. Chapter 8 contains the important discussion
points and conclusions of this research. Also, recommendations for future research are mentioned.



2
PROTON THERAPY

As discussed in Chapter 1.1, one of the methods to treat a patient with cancer is through the use of proton
therapy. The radiation dose of the proton beams induces damage to the DNA of tumor cells, finally result-
ing in cell death. A patient is only treated completely when all cancerous cells are killed and do not return
[13]. However, even after being cured, cancer patients can still encounter side effects of the radiotherapy
treatment, due to damage to healthy tissue and organs near the tumor or along the trajectory of the proton
beams.

It is important to understand how interactions between protons and matter occur, and what the effects
are. These interactions affect the energy deposition of the protons along the trajectory in the patient’s body.
Chapter 2.1 covers the physics behind proton therapy, Chapter 2.2 introduces the application of intensity
modulated proton therapy and Chapter 2.3 addresses three different uncertainties in proton therapy.

2.1. PHYSICS OF PROTON THERAPY
This section covers three important interactions of protons with matter that affect the energy deposition of
the protons in a beam along the trajectory in the patient’s body, and thus also the location of the Bragg peak.
For this purpose, the definition of the range of a proton beam is introduced.

2.1.1. PROTON BEAM INTERACTIONS
Unlike the photons used in conventional radiotherapy, protons have a mass and are positively charged.
Therefore, the interactions of protons with matter are different from that of photons. Most interactions of
protons are with electrons and nuclei, possibly resulting in a change of kinetic energy and trajectory. Figure
2.1 shows the three most common types of interactions, in which p and p ′ denote a proton and e, n and γ

denote an electron, a neutron and a photon respectively.

Figure 2.1: The three most common types of interactions between protons and other particles. (a) Inelastic Coulombic
scattering. (b) Elastic Coulombic scattering. (c) Non-elastic nuclear interaction. p and p ′ denote a proton and e, n and γ
denote an electron, a neutron and a photon respectively. Figures from [14].

The first type of interaction is inelastic Coulombic scattering of a proton with an electron. This causes a
decrease in kinetic energy of the proton, but the trajectory of most protons is not changed due to the fact

7
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that the rest mass of a proton is 1832 times the rest mass of an electron [14]. Figure 2.1a shows a schematic
illustration of this type of interaction.

The second type of interaction is elastic Coulombic scattering of a proton with a nucleus, which is caused
by the repulsive force between the positively charged proton and the positively charged nucleus. This re-
pulsive force changes the kinetic energy and trajectory of the proton, as Figure 2.1b shows in a schematic
illustration.

The third type of interaction is the non-elastic nuclear interaction of a proton with a nucleus, which is
less common than the first two types of interactions [14]. This type of interaction occurs when there is direct
impact of a proton with a nucleus. Figure 2.1c shows a schematic illustration of an example of this type of
interaction.

All these interactions are not deterministic, but stochastic processes, and affect the kinetic energy and
trajectory of the protons in a proton beam. In external beam radiotherapy, the choice can be made by con-
sidering the overall energy and trajectory of the proton beam, or instead looking at single protons. The latter
is done by Monte Carlo dose calculations, however, in this research the former is used.

2.1.2. RANGE OF A PROTON BEAM
One important characteristic of the energy deposition profile of a proton beam is its range. The range of a
proton beam is defined as the position at which the dose of the beam has decreased to 80% of the maximum
dose, i.e., the 80% distal fall-off point [15]. Figure 2.2 illustrates the definition of the range of a single proton
beam. The energy loss per unit length of a proton beam depends on the different stopping powers of the
absorbing materials along the trajectory of the beam [16]. The range and the energy deposition profile of
a proton beam can be determined with the use of these stopping powers. To calculate the energy loss per
unit length of a proton beam, a conversion has to be made from the Hounsfield units of a CT scan to units of
stopping power. In this conversion, however, uncertainties arise as the stopping power of a material is related
to its density and the conversion of Hounsfield units to material density is not exact, but an approximation
[17].

Figure 2.2: Example of an energy deposition profile of a proton beam with the delivered dose as a fraction of the pre-
scribed dose in the tumor drawn as a function of the trajectory of the beam in water. As important dosimetry character-
istics the plateau region, the width of the Bragg peak and the range of the proton beam are shown. The range of a proton
beam is defined as the position at which the dose of the beam has decreased to 80% of the maximum dose. Figure from
[18].

2.2. INTENSITY MODULATED PROTON THERAPY
In this research, the pencil beam scanning (PBS) technique is used. A pencil beam is a narrowly shaped beam
of, in this case, protons. Each pencil beam can be characterized by its angle of irradiation, lateral position
and energy. The combination of these three characteristics is called a beamspot. This research focuses on
intensity modulated proton therapy (IMPT), in which a weight is assigned to each beamspot. This weight
is proportional to the number of protons in the beam, defining its intensity. The goal in IMPT is to find
the optimal weights for the beamspots, such that the resulting dose distribution has the best possible tumor
coverage, whilst sparing the surrounding tissue and organs [19]. Figure 2.3 visualizes how PBS in IMPT works
for the different energy layers of the pencil beams.
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Figure 2.3: Schematic illustration of a cross-section of a tumor. The methodology of the pencil beam scanning technique
in intensity modulated proton therapy for the different energy layers of the pencil beams is displayed, resulting in a
beamspot grid in the tumor. The beamspots have different weights/intensities, which are visible through the size of the
black dots. Figure from [20].

2.3. UNCERTAINTIES IN PROTON THERAPY
Handling uncertainties in proton therapy is of high importance to ensure adequate dose coverage in the tu-
mor and sparing of surrounding tissue and organs. There are four main types of uncertainties in proton
therapy, namely set-up and range uncertainties, the uncertainty in the delineation of the tumor and organs
on the CT images of a patient and the uncertainty of internal motion of organs and the tumor. In this sec-
tion, the first three types of uncertainties are discussed, however, in this research only set-up uncertainties
are considered.

2.3.1. SET-UP UNCERTAINTY
A treatment plan is made according to a CT scan, and if any errors occur in the positional information from
the CT scan and/or in the alignment of the patient during treatment, this causes a shift in the dose distri-
bution, which is not desired. These errors are called set-up errors and can be divided into a systematic and
a random component. A systematic set-up error is caused by errors in positional information from the CT
scan, and is therefore constant for each treatment fraction. The assumption here is that only one CT scan is
regarded for the whole treatment plan. A random set-up error originates from misalignment of the patient
during treatment compared to its position during the CT scan, and is, therefore, different for each treatment
fraction. Both the positioning of the patient and the gantry table itself contribute to the misalignment of the
patient. The set-up error could be a translational or rotational error, or a combination of the two. A rotational
set-up error could arise from a tilted gantry table.

Any uncertainty vector will be denoted by ξ= (ξ1, . . . ,ξN )T , having N components. Usually, both a system-
atic and a random set-up error have three components, corresponding to the three dimensions in Euclidean
space. Furthermore, these components are assumed to be Gaussian distributed with zero mean and a positive
variance, and are assumed to be mutually independent. The assumption of this type of PDF is in accordance
with results of clinical research [21].

For a component of the systematic set-up error, ξi , the variance is denoted by Σ2
i . This means that ξi ∼

N
(
0,Σ2

i

)
, whereN(·, ·) denotes a Gaussian distribution. The PDF pξi (ξi ) of ξi can be formulated as in Equation

2.1.

pξi (ξi ) = 1

Σi
p

2π
e
− ξ2

i
2Σ2

i (2.1)

Similarly, for a component of the random set-up error, ξi , the variance is denoted by σ2
i . This means that

ξi ∼N
(
0,σ2

i

)
and the PDF pξi (ξi ) of ξi can be formulated similarly as Equation 2.1 with the substitution ofσ2

i
at the position of Σ2

i . In Figure 2.4, a schematic illustration of two different realizations of a systematic set-up
error, Σ1 and Σ2, is shown with three different realizations of a random set-up error, σ1-σ3 and σ4-σ6, drawn
for both.
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Figure 2.4: Schematic illustration of two different realizations of a systematic set-up error, Σ1 andΣ2. For each systematic
set-up error three different realizations of a random set-up error, σ1-σ3 and σ4-σ6, are drawn. Figure from [12].

2.3.2. RANGE UNCERTAINTY
Range errors are present when the range of a proton beam is over- or underestimated. Range errors can
be expressed in an absolute or a relative sense. There are two common causes of range errors. The first
cause originates from the conversion of Hounsfield units of a CT scan to units of stopping power [22]. This
conversion is used to calculate the range of a proton beam and in this calculation certain errors arise, as stated
in Chapter 2.1.2. The second cause is a wrong calibration of the gantry. Figure 2.5 shows the differences in
changes in energy deposition for a photon beam, a proton beam and a proton SOBP when range errors are
present due to a change in the densities of the structures along the beam’s trajectory. For the photon beam
little changes, however, for the proton beams the Bragg peaks are shifted, resulting in a shifted SOBP, which is
not desired when an organ-at-risk (OAR) is close-by. This is also the reason why the PTV margin methodology
does not work for proton therapy, since the full PTV would be irradiated as if it is all tumor, but the resulting
dose distribution will be different due to a wrong assumption of the densities in the PTV.

Figure 2.5: Illustration of the differences in changes in energy deposition for a photon beam, a proton beam and a proton
SOBP when range errors are present due to a change in the densities of the structures along the beam’s trajectory. Figure
from [23].

2.3.3. DELINEATION UNCERTAINTY
Radiotherapy treatment planning starts with a CT scan of the patient. The CT scan is made up of images of
adjacent cross-sectional slices of the body. Next, a physician will have to delineate the tumor and all organs
of interest. The delineation will be done on all 2D images of the cross-sectional slices. A requirement is that at
least all structures that will receive a dose are delineated. Besides the tumor, also the OARs get delineated by
the physician. Of course, in the end one would like the tumor to receive a relatively high dose, while the OARs
receive a relatively low dose. Due to the finite resolution of the CT images and possible issues with contrast,
delineation errors arise. Furthermore, this type of error is observer-specific, due to a different interpretation
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of the images by different physicians [24]. Figure 2.6 gives an example of the differences in delineation of the
GTV for a brain tumor by different physicians.

Figure 2.6: GTV delineation by nine different observers on an axial CT image (left) and an axial MRI image (right). Figure
from [24].





3
TREATMENT PLANNING

In this chapter, different aspects of treatment planning are discussed. Chapters 3.1 and 3.2 address the def-
initions of relevant clinical treatment parameters and two ways to examine the quality of a treatment plan
respectively. In Chapters 3.3 and 3.4, the methodology of automated treatment planning at the ErasmusMC
and three important concepts of treatment planning are explained.

3.1. CLINICAL TREATMENT PARAMETERS
This section covers relevant clinical parameters that are involved in treatment planning. For convenience,
the same notations as in [12] are used.

3.1.1. UNCERTAINTY VECTOR
The uncertainty vector is used to describe set-up and range type of errors. The uncertainty vector ξ is formu-
lated according to Equation 3.1.

ξ= (ξ1, . . . ,ξN )T (3.1)

The number of variables N in the uncertainty vector depends on the considered uncertain parameters. Usu-
ally, these variables are the three components of the random and systematic set-up error and the relative or
absolute range error. The nominal scenario corresponds to ξ= 0, which is when no errors are present.

3.1.2. BEAM INTENSITY VECTOR
In this research, the PBS technique is used in combination with IMPT. Via the gantry, a patient is irradiated
with pencil beams of different energies from different positions and angles. As discussed in Chapter 2.2, the
combination of the energy, lateral position and angle of irradiation of a pencil beam is called a beamspot. The
set of beamspot indices in a treatment plan is denoted by B= {1, . . . , Nb}, with Nb the number of beamspots.
In IMPT, a weight is assigned to each beamspot, defining its intensity. The beam intensity vector x contains
the intensities of all beamspots, measured in Monitor Unit [MU]. The definition of the beam intensity vector
is as follows:

x = (
x1, . . . , xNb

)T . (3.2)

The elements of the beam intensity vector are physically constrained to be non-negative [19].

3.1.3. DOSE DEPOSITION MATRIX
The dose deposition matrix D(ξ) describes the contribution of each beamspot to the deposited dose in each
voxel. The set of beamspot indices is again denoted by B= {1, . . . , Nb} and the set of voxel indices is denoted
by V= {1, . . . , Nv }, with Nb and Nv the number of beamspots and voxels respectively. With the element Di j of
matrix D , the contribution of beamspot j to the dose received by voxel i , measured in Gray per Monitor Unit
[Gr · MU−1], is described. The definition of the dose deposition matrix is:

D(ξ) = [
Di j (ξ) : i ∈V, j ∈B]

. (3.3)

The elements of the dose deposition matrix are also constrained to be non-negative. The dose deposition
matrix depends on the uncertainty vector ξ, because set-up and range type of errors affect the contribution
of a certain beamspot to the dose received by a certain voxel.

13
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3.1.4. DOSE VECTOR
The dose vector d (x ,ξ) describes the dose received by each voxel, measured in Gray [Gy], and can be deter-
mined by the matrix-vector product of the dose deposition matrix D(ξ) and the beam intensity vector x , as
described in Equation 3.4.

d (x ,ξ) = D(ξ)x (3.4)

3.1.5. PRESCRIBED DOSE VECTOR

The prescribed dose vector d P describes the clinically prescribed dose at each voxel, and is defined as in
Equation 3.5.

d P =
(
d P

1 , . . . ,d P
Nv

)T
(3.5)

The prescribed dose is relatively high at the voxels that correspond to the GTV, and the prescribed dose is
relatively low at the voxels that correspond to healthy tissue and OARs.

3.1.6. DOSE VOLUME PARAMETERS
Until now, only dose parameters are considered that give information about a single voxel or beamspot. How-
ever, it might also be desirable to have information about how much dose is received by a certain volume
fraction, which is useful to examine the quality of a treatment plan. A dose volume parameter can be used to
describe such information for a discretized structure with Vstr ⊆ V the set of voxel indices and Nv,str ≤ Nv .
The term dose volume parameter is a general name for a family of dose volume-related quantities. An impor-
tant dose volume parameter is the maximum dose that is received by at leastα% of the volume and is denoted
by dα%(x ,ξ) with α ∈ [0,100]. This is equivalent to the maximum lower bound of the dose that is received by
α% of the volume. Equation 3.6 formulates this parameter.

dα%(x ,ξ) = P i
(100−α)%

{
di (x ,ξ) : i ∈Vstr

}
(3.6)

The operator P i
(100−α)%{·} denotes the (100−α)-th percentile of the set of values distinguished by the index i .

Other forms of dose volume parameters are also possible to define, for example, the minimum dose that is
received by at least α% of the volume. For the definition of dα%(x ,ξ) as described in Equation 3.6, there are
two volume fractions for which the parameter has a specific name, namely the near-maximum dose d2%(x ,ξ)
and the near-minimum dose d98%(x ,ξ).

3.2. QUALITY EXAMINATION OF A TREATMENT PLAN
This section covers two approaches in examining the outcome of a treatment plan.

3.2.1. DOSE VOLUME HISTOGRAM
Dose volume histograms (DVHs) are used to visualize dose parameters as a function of the considered volume
fraction. A DVH is an inverse cumulative histogram with on the horizontal axis the dose parameter and on
the vertical axis the volume fraction, and shows for each dose value which volume fraction receives at least
this dose. Figure 3.1 shows an example of a DVH for an optimized probabilistic treatment plan.

Figure 3.1: Dose volume histogram of the expected dose (weighted average of the dose distributions over the joint PDF
of the uncertain parameters) with the red, green and blue line corresponding to the tumor, an OAR and healthy tissue
respectively.
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3.2.2. DOSE POPULATION HISTOGRAM
A dose population histogram (DPH) is used to visualize the probability distribution of a dose parameter. A
DPH is similar to a DVH, but on the vertical axis the probability or population is shown, instead of the volume
fraction. Considering a population, a set of patients, or for a single patient a set of error scenarios, could be
meant. Figure 3.2 shows an example of a DPH.

Figure 3.2: Dose population histogram of the mean dose in an OAR as a function of the fraction of error scenarios. The
red and blue line correspond to a non-robust and a robust plan respectively. Figure from [25].

3.3. AUTOMATED TREATMENT PLANNING WITH ERASMUSMC’S ICYCLE
The ErasmusMC uses the in-house developed software environment Erasmus-iCycle, iCycle in short, to per-
form automated treatment planning [26]. The majority of functionalities in iCycle are coded in Matlab. Auto-
mated treatment planning in iCycle is performed through a multi-criteria optimization according to a speci-
fied wish-list. In this research, treatment plan optimizations are not performed on patient data in iCycle, but
are performed on a simplified 3D geometry in Matlab. However, as this research is closely related to recent
implementations in iCycle in [12], the information about wish-lists and multi-criteria optimizations in iCycle
are shortly discussed to place this research into perspective.

3.3.1. WISH-LIST
The wish-list contains all dose requirements of a treatment plan. Here, two types of requirements are dis-
tinguished, namely constraints and objectives. The first type of requirement is a constraint, which should
always be met in the treatment plan. The second type of requirement is an objective, which is tried to be
reached as close as possible. The wish-list consists of a set of constraints and objective goals, with the objec-
tives having a specified priority of optimization. These criteria are for example the minimum, maximum or
mean dose in the GTV or a certain OAR. Also, one needs to specify whether the criterion should be minimized
or maximized. A wish-list is specific for the tumor site, but is usually not patient specific [27]. In Table 3.1, an
example of a simplified wish-list for a skull base meningioma patient is shown, in which d̄ denotes the mean
dose.

Table 3.1: An example of a simplified wish-list for a skull base meningioma patient, in which d̄ denotes the mean dose.
Note that in this wish-list only the nominal scenario is considered. Source: [12].

Constraints: Volume: Type: Limit [Gy]:

GTV Maximize mini di (x ,0) 0.95 · 50.4
Optic Nerve (L) Minimize maxi di (x ,0) 50
Optic Nerve (R) Minimize maxi di (x ,0) 50

Objectives: Priority: Volume: Type: Goal [Gy]:

1 Brainstem Minimize d̄(x ,0) 1
2 Cerebellum Minimize d̄(x ,0) 1
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3.3.2. MULTI-CRITERIA OPTIMIZATION
The goal of the treatment plan optimization is to find the configuration of pencil beam directions, beamspots
and the beamspot weights that produce the optimal dose distribution with respect to the considered wish-
list. The beam directions are optimized through an iterative process of adding beam directions, calculating
their contributions to the dose in the GTV and the surrounding OARs and omitting beam directions that
contribute the least [28]. In iCycle, the beam directions can also be chosen manually to save computation
time. This is usually based on clinical experience. With the beam directions chosen, a similar iterative process
is performed for the configuration of beamspots [29]. This process is called beamspot resampling. To alleviate
computational cost the iCycle feature voxel reduction can be enabled. This feature uses a representative
subset of voxels in a structure to perform the dose calculations.

The multi-criteria optimization in iCycle works according to the two-phase ε-constraint method to cal-
culate the corresponding beamspot weights [26, 30]. In the first phase, the objectives are optimized in the
order of priority, within the prescribed constraints. The gradient and Hessian of the objective functions and
constraints are needed to guide the optimization in a proper direction. The dose distribution is calculated
with the dose engine, which is a general term for the dose calculation algorithm. Once the assigned goal of
an objective has been reached, this objective is set as a constraint for the next objective. To improve the fea-
sibility of convergence of the next objectives, the limit of this new constraint is slightly relaxed with respect to
the goal of the initial objective. This relaxation factor is set to a margin of around 3%. Subsequently, the next
objective gets optimized, and this goes on until all objectives are optimized. An objective with a lower prior-
ity is less likely to reach its goal, because more constraints are to be met. In the second phase, the objectives
that have been optimized in the first phase are optimized again, but this time further than their assigned goal
value as far as possible. After the two phases, a Pareto optimum is found, which means that no parameters
can be improved without giving up on some other parameter.

A physician or dosimetrist should always review the outcome of the treatment plan. If this person believes
that the current treatment plan does not spare certain OARs enough or the resulting dose distribution is not
optimal to their knowledge, the directions and weights of the proton pencil beams could be changed and a
new treatment plan is constructed.

3.4. CONCEPTS OF TREATMENT PLANNING
With the methodology in Chapter 3.3, a proton therapy treatment plan can be obtained. However, this plan
does not necessarily account for uncertainties that are present. In practice, it is a certainty that set-up and
range type of errors, as mentioned in Chapter 2.3, will occur. All these errors together result in a different
dose distribution than the optimized dose distribution, which is not desired. Therefore, there are different
concepts of treatment planning within proton therapy to consider. In Chapters 3.4.1, 3.4.2 and 3.4.3, the
concepts of conventional, robust and probabilistic treatment planning are explained respectively.

3.4.1. CONVENTIONAL TREATMENT PLANNING
In conventional treatment planning, no uncertain parameters are considered. Only the nominal scenario,
written as ξ= 0, is taken into account. If we consider an objective function f (x ,ξ), with x the beam intensity
vector and ξ the uncertainty vector, the optimization as in Equation 3.7 is performed. The resulting treatment
plan is guaranteed to satisfy the objective goals and constraints in the nominal scenario, which has statisti-
cally a zero probability of occurrence. This coincides with the construction of a treatment plan similarly to
the type of objective goals and constraints as in the wish-list in Table 3.1. Conventional treatment planning
has been implemented in iCycle.

min
x

f (x ,0) (3.7)

3.4.2. ROBUST TREATMENT PLANNING
In robust treatment planning, a discrete set of error scenarios is taken into account in the optimization of the
treatment plan. The resulting treatment plan is robust against these predefined scenarios, however, each of
these scenarios has statistically a zero probability of occurrence. Nevertheless, this would be more accurate
than conventional treatment planning. Robust treatment planning is, at the moment, a frequently used con-
cept of handling uncertainties in proton therapy [9, 11, 31]. A multi-criteria minimax optimization approach
is used in which objective-wise the worst-case values over all predefined scenarios are optimized, within the
worst-case values of the constraints, until each objective is optimized. Considering the set of predefined sce-
narios with indices s ∈ S= {1, . . . , Ns } and Ns the number of scenarios, and the objective function f (x ,ξs ) with
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ξs the realization of the uncertainty vector in scenario s, the optimization can be written as in Equation 3.8.
The treatment plan will satisfy the wish-list in all defined scenarios.

min
x

max
s∈S

f
(
x ,ξs) (3.8)

Robust treatment planning has also been implemented in iCycle. In Table 3.2, a possible set of error scenarios
is shown, on which a robust treatment plan could be based. In this treatment plan, set-up and range type of
errors are considered by defining the so-called set-up robustness (SR) and range robustness (RR) settings.

Table 3.2: A possible set of error scenarios to use in robust treatment planning, based on a defined set-up and range
robustness. Source: [9].

Scenario: x [mm] y [mm] z [mm] Range (%)

Nominal scenario 0 0 0 0
Positive shift in x-direction SR 0 0 0
Negative shift in x-direction -SR 0 0 0
Positive shift in y-direction 0 SR 0 0
Negative shift in y-direction 0 -SR 0 0
Positive shift in z-direction 0 0 SR 0
Negative shift in z-direction 0 0 -SR 0
Range overestimation 0 0 0 RR
Range underestimation 0 0 0 -RR

3.4.3. PROBABILISTIC TREATMENT PLANNING
In probabilistic treatment planning, one assumes the uncertain parameters to follow a certain PDF. As men-
tioned in Chapter 2.3, each uncertain parameter is assumed to be mutually independent and Gaussian dis-
tributed with mean zero and a certain positive variance. This defines the continuous sample space of the
uncertainty vector ξ. In contrast to robust treatment planning, in probabilistic treatment planning also ob-
jective goals and constraints containing statistical measures of stochastic dose parameters are used in the
wish-list, such that the full sample space or a subset, both containing an infinite amount of error scenar-
ios, can be taken into account when optimizing the treatment plan. This results in the possibility to make
probabilistic statements about the optimized treatment plan.

Besides the assumed PDF for the uncertain parameters, also a choice has to be made of which statistical
measure to optimize for. As an example, one could guarantee α% of the GTV to receive at least γ Gy in β% of
the error scenarios. Requirements are that such a solution exists, while conforming to the complete wish-list,
and that the optimization converges. In this example, the statistical measure is the percentile, but of course
other statistical measures like the (conditional) expected value, mode or median are also possible to optimize
for. However, from a clinical perspective the percentile is a more relevant type of statistical measure, giving
information about a percentage of error scenarios in which the wish-list is satisfied.

Considering a statistical measure Mξ[·] over the uncertainty vector ξ, an arbitrary objective function f (·)
and an arbitrary stochastic variable g (x ,ξ), which could represent any dose parameter, the optimization in
probabilistic treatment planning is described as in Equation 3.9. Recently, probabilistic treatment planning
has also been implemented in iCycle [12].

min
x

f
(
Mξ

[
g (x ,ξ)

])
(3.9)





4
POLYNOMIAL CHAOS EXPANSION

This chapter covers the relevant theory on the method of Polynomial Chaos Expansion. In Chapters 4.1 and
4.2, related parts of probability theory and statistics are discussed respectively, based on literature [32, 33].
Chapters 4.3, 4.4 and 4.5 treat the mathematics of PCE, numerical integration and the concept of hyperbolic
trimming respectively, based on literature [32–41]. Chapter 4.6 describes how the construction of PCEs is
performed and which notation is used for the characteristics of constructed PCEs.

4.1. PROBABILITY THEORY
The concept of probabilistic treatment planning is heavily related to the uncertain parameters that are con-
sidered. These uncertain parameters define the underlying sample space Ω that needs to be taken into ac-
count when making statements about statistical measures of dose parameters. A random outcome of the
sample space is denoted by θ ∈Ω and is described by a realization of the uncertainty vector ξ(θ) as:

ξ(θ) = (ξ1(θ), . . . ,ξN (θ))T , (4.1)

similarly to Equation 3.1 with N the number of uncertain parameters. The set of possible events is denoted
by F, which is a σ-algebra on Ω. The possible events are mapped to their probability of occurrence through
the probability measure P :F→ [0,1]. Altogether, this constructs the probability space (Ω,F,P ).

In this research, the dose parameters can be described as real-valued stochastic responses R(θ) : Ω→
R. These responses are assumed to be square-integrable functions, so belonging to the L2-space, which is
defined as:

L2(Ω,P ) = {R(θ) : [R(θ) :Ω→R]∧ [〈R,R〉 <∞]}. (4.2)

In the L2-space the inner product is defined as:

〈Q,R〉 =
∫
Ω

Q(θ)R(θ)dP (θ) =
∫
D

Q(ξ(θ))R(ξ(θ))pξ(ξ)dξ, (4.3)

for arbitrary stochastic responses Q and R, and D being the domain of the uncertainty vector. In the rest of
this research the dependence of ξ on θ is omitted, because this relation is not needed throughout the rest of
the theory.

4.2. STATISTICS
The different uncertain parameters are assumed to be Gaussian distributed with zero mean (µξi = 0) and a
certain positive varianceσ2

ξi
, as mentioned in Chapter 2.3. Therefore, the PDF of a single uncertain parameter

ξi ∼N
(
0,σ2

ξi

)
is known as:

pξi (ξi ) = 1

σi
p

2π
e
− ξ2

i
2σ2

i . (4.4)
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Furthermore, we assume the uncertain parameters to be mutually independent, which means that the joint
PDF of the uncertainty vector ξ can be written as:

pξ(ξ) =
N∏

i=1
pξi (ξi ), (4.5)

with N the number of uncertain parameters. Another important feature of these mutually independent
uncertain parameters is the additivity of their Gaussian distributions. If we assume X ∼ N

(
µX ,σ2

X

)
and

Y ∼N
(
µY ,σ2

Y

)
to be two independent Gaussian random variables, and we define Z = X +Y to be a new ran-

dom variable, then for the random variable Z we find that Z ∼N
(
µX +µY ,σ2

X +σ2
Y

)
with mean µZ =µX +µY

and variance σ2
Z =σ2

X +σ2
Y .

For the stochastic response R two important characteristics are its expected value and variance. The
expected value, or mean, of the stochastic response R is defined as:

µR = E[R] =
∫
RN

R(ξ)pξ(ξ)dξ, (4.6)

and the variance is defined as:

σ2
R = Var(R) = E

[
(R −E(R))2]= ∫

RN
(R(ξ)−µR )2pξ(ξ)dξ. (4.7)

The standard deviation of the stochastic response, σR , is defined as the square root of its variance. Here, the
shorthand notation of a single multidimensional integral overRN is used instead of N nested one-dimensional
integrals over R.

In practice, not all error scenarios in the full sample space can occur. The assumption of a continuous
non-truncated Gaussian PDF is still accurate, because with the right choice of the variance, these extreme
scenarios have almost no effect on the accuracy of statistical measures of stochastic dose parameters that are
calculated with PCEs based on the full sample space.

4.3. MATHEMATICS OF PCE
Polynomial Chaos Expansion is a method which is used to describe the functional dependence of an arbitrary
stochastic response R(ξ) on the uncertainty vector ξ when an explicit analytical expression is unknown. In
radiotherapy, the stochastic response can represent any stochastic dose parameter. The advantage is that
typically the PCE can be evaluated faster than the stochastic response itself, calculated from the dose engine.
The PCE is a polynomial expansion of the stochastic response and consists of the sum of basis vectorsΨk (ξ)
with each basis vector having an expansion coefficient rk , as defined in Equation 4.8. The PC basis vectors
are not actual vectors, but multivariate functions.

R(ξ) =
∞∑

k=0
rkΨk (ξ). (4.8)

For the PCE to be useful in practice, the expansion is truncated to contain only a finite number of basis
vectors, namely P +1, yielding the following approximation of the stochastic response:

R(ξ) ≈
P∑

k=0
rkΨk (ξ). (4.9)

The basis vector Ψk (ξ) is the product of basis functions φ j ,γk j (ξ j ), one for each uncertain parameter, with
each basis function being a univariate polynomial. This can be represented as:

Ψk (ξ) =
N∏

j=1
φ j ,γk j (ξ j ), (4.10)

with the multi-index γk j being the order of the j -th polynomial basis function for the k-th basis vector. One
needs to define which PC basis set and type of polynomial basis functions are used to construct the PCE. This
changes the accuracy of the constructed PCE for a given basis set and its rate of convergence to the stochastic
response.
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4.3.1. ORTHOGONALITY OF BASIS FUNCTIONS AND BASIS VECTORS

For convergence of our polynomial expansion to the stochastic response R(ξ), orthogonality of the univariate
polynomials φ j ,γk j (ξ j ) is recommended [32]. A property of orthogonal polynomials is that the inner product
of two polynomials is only non-zero if their order is the same. With h j ,n representing the norm of the n-th
order polynomial basis function of the j -th uncertain parameter, δk,l the Kronecker delta, and pξ j (ξ j ) the
PDF weight function in the inner product, this can be formulated as:

〈
φ j ,m(ξ j ),φ j ,n(ξ j )

〉= ∫ ∞

∞
φ j ,m(ξ j )φ j ,n(ξ j )pξ j (ξ j )dξ j = h2

j ,nδm,n , ∀ j ∈ {1, . . . , N }. (4.11)

Equation 4.12 shows that the orthogonality of the basis vectors Ψk (ξ) can be derived from the orthogonality
of the basis functions φ j ,γk j (ξ j ) with hk the norm of the k-th basis vector.

〈Ψk (ξ),Ψl (ξ)〉 =
∫
RN
Ψk (ξ)Ψl (ξ)pξ(ξ)dξ=

∫
RN

N∏
j=1

φ j ,γk j (ξ j )
N∏

j ′=1

φ j ′,γl j ′ (ξ j ′ )pξ(ξ)dξ

=
N∏

j=1

∫ ∞

∞
φ j ,γk j (ξ j )φ j ,γl j (ξ j )pξ j (ξ j )dξ j

=
N∏

j=1
h2

j ,γk j
δγk j ,γl j = δk,l

N∏
j=1

h2
j ,γk j

= δk,l h2
k

(4.12)

In the derivation of Equation 4.12, Equations 4.10, 4.5 and 4.11 are substituted at the second, third and fourth
equal-sign respectively. Next, we need to define the basis functions such that Equations 4.11 and 4.12 hold.
Because of the assumption of Gaussian distributed uncertain parameters, the probabilists’ Hermite polyno-
mials will be chosen as basis functions, due to the fact that they are orthogonal with respect to the Gaussian
distribution on R [39]. The relations between the type of distribution and its corresponding type of orthogo-
nal polynomials are in literature provided by the Wiener-Askey scheme. The part of the Wiener-Askey scheme
for continuous distributions is shown in Table 4.1.

Table 4.1: Part of the Wiener-Askey scheme for continuous distributions and corresponding type of polynomials with
their domain of support for a,b ∈ R. This scheme provides the best choice of the PC basis functions, when considering a
certain continuous distribution for the stochastic input of the PCE, for convergence to the response. Source: [39].

Distribution: Polynomial: Domain of support:

Beta Jacobi [a,b]
Gamma Laguerre [0,∞)
Gaussian Probabilists’ Hermite (−∞,∞)
Uniform Legendre [a,b]

4.3.2. PROBABILISTS’ HERMITE POLYNOMIALS

The probabilists’ Hermite polynomials are defined as:

Hek (ξ) = (−1)k e
ξ2

2
d k

dξk

(
e−

ξ2

2

)
, ∀k ∈N∪ {0}, (4.13)

with k the polynomial order [40]. According to Equation 4.13, the first two probabilists’ Hermite polynomials
are given by He0(ξ) = 1, He1(ξ) = ξ. The second and higher order probabilists’ Hermite polynomials can,
besides Equation 4.13, also be determined via the following recurrence relation:

Hek+1(ξ) = ξHek (ξ)−kHek−1(ξ), ∀k ∈N, (4.14)

with He0(ξ) = 1, He1(ξ) = ξ given. The first six probabilists’ Hermite polynomials are shown in Figure 4.1.
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Figure 4.1: The first six probabilists’ Hermite polynomials.

The inner product of the k-th order probabilists’ Hermite polynomial with itself is related to the polynomial
order k when assuming a Gaussian PDF for the variable ξ. This relation is shown in Equation 4.15.

〈Hek (ξ), Hek (ξ)〉 = k ! (4.15)

4.3.3. PCE COEFFICIENTS

The derivation of the formula for the PCE coefficients rk can be performed by multiplying both sides of Equa-
tion 4.8 byΨk (ξ)pξ(ξ) and integrating both sides of the expression over RN , yielding the following result:

〈R(ξ),Ψk (ξ)〉 =
∫
RN

R(ξ)Ψk (ξ)pξ(ξ)dξ=
∫
RN

( ∞∑
l=0

rlΨl (ξ)

)
Ψk (ξ)pξ(ξ)dξ

=
∫
RN

(
P∑

l=0
rlΨl (ξ)

)
Ψk (ξ)pξ(ξ)dξ

=
P∑

l=0
rl

∫
RN
Ψl (ξ)Ψk (ξ)pξ(ξ)dξ

=
P∑

l=0
rl 〈Ψl (ξ),Ψk (ξ)〉

= rk 〈Ψk (ξ),Ψk (ξ)〉 .

(4.16)

It is allowed to interchange summation and integration, since it concerns a finite summation. Orthogonality
of the basis vectors is also used. Equation 4.17 shows the resulting expression for the PCE coefficients rk .

rk = 〈R(ξ),Ψk (ξ)〉
〈Ψk (ξ),Ψk (ξ)〉 =

1

h2
k

〈R(ξ),Ψk (ξ)〉 = 1

h2
k

∫
RN

R(ξ)Ψk (ξ)pξ(ξ)dξ (4.17)

Notice that in Equation 4.17 the expression for the stochastic response R is still needed to calculate the expan-
sion coefficients, which are contained in the response. Therefore, numerical integration methods are needed,
which will be introduced in Chapter 4.4.

4.3.4. EXPECTED VALUE AND VARIANCE OF PCE
As stated in Chapter 4.2, two important characteristics of the stochastic response are its expected value and
variance. It would be convenient to have an expression for the expected value and variance of the PCE in
terms of characteristics of the PCE. For the expected value of the stochastic response, µR , the following can
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be derived:

µR =
∫
RN

R(ξ)pξ(ξ)dξ=
∫
RN

( ∞∑
k=0

rkΨk (ξ)

)
pξ(ξ)dξ=

∫
RN

(
P∑

k=0
rkΨk (ξ)

)
pξ(ξ)dξ

=
P∑

k=0
rk

∫
RN
Ψk (ξ)pξ(ξ)dξ

=
P∑

k=0
rk

∫
RN
Ψ0(ξ)Ψk (ξ)pξ(ξ)dξ

=
P∑

k=0
rk 〈Ψ0(ξ),Ψk (ξ)〉 =

P∑
k=0

rkδ0,k h2
k = r0h2

0 = r0.

(4.18)

In Equation 4.18, Equation 4.8 is substituted at the second equal-sign, summation and integration can be
interchanged since it concerns a finite summation, the fact thatΨ0 = 1 and thus h2

0 = 1 is used after the fourth
and eighth equal-sign respectively, and Equation 4.12 is substituted at the sixth equal-sign. This derivation
shows that the expected value of R(ξ) is represented by the zeroth order PCE coefficient. For the variance of
the stochastic response, σ2

R , the following can be derived:

σ2
R =

∫
RN

(
R(ξ)−µR

)2 pξ(ξ)dξ

=
∫
RN

R2(ξ)pξ(ξ)dξ−2
∫
RN

R(ξ)µR pξ(ξ)dξ+
∫
RN
µ2

R pξ(ξ)dξ

≈
∫
RN

(
P∑

k=0
rkΨk (ξ)

)(
P∑

k ′=0

rk ′Ψk ′ (ξ)

)
pξ(ξ)dξ−2µR

∫
RN

(
P∑

k=0
rkΨk (ξ)

)
pξ(ξ)dξ+µ2

R

∫
RN

pξ(ξ)dξ

=
P∑

k=0

P∑
k ′=0

rk rk ′
∫
RN
Ψk (ξ)Ψk ′ (ξ)pξ(ξ)dξ−2µR

P∑
k=0

rk

∫
RN
Ψk (ξ)pξ(ξ)dξ+µ2

R

=
P∑

k=0

P∑
k ′=0

rk rk ′
∫
RN
Ψk (ξ)Ψk ′ (ξ)pξ(ξ)dξ−2µR

P∑
k=0

rk

∫
RN
Ψ0(ξ)Ψk (ξ)pξ(ξ)dξ+µ2

R

=
P∑

k=0

P∑
k ′=0

rk rk ′〈Ψk (ξ),Ψk ′ (ξ)〉−2µR

P∑
k=0

rk〈Ψ0(ξ),Ψk (ξ)〉+µ2
R

=
P∑

k=0

P∑
k ′=0

rk rk ′δk,k ′h2
k −2µR

P∑
k=0

rkδ0,k h2
k +µ2

R

=
P∑

k=0
r 2

k h2
k −2µR r0 +µ2

R

=
P∑

k=0
r 2

k h2
k −2µ2

R +µ2
R =

P∑
k=0

r 2
k h2

k −µ2
R =

P∑
k=0

r 2
k h2

k − r 2
0 =

P∑
k=0

r 2
k h2

k − r 2
0 h2

0 =
P∑

k=1
r 2

k h2
k .

(4.19)

In Equation 4.19, Equation 4.9 is substituted at the third equal-sign, summation and integration can be inter-
changed since it concerns a finite summation, the fact that

∫
RN pξ(ξ)dξ= 1 is used after the third equal-sign,

the fact that Ψ0 = 1 and thus h2
0 = 1 is used after the fifth and twelfth equal-sign respectively, and Equations

4.12 and 4.18 are substituted at the seventh and eighth equal-sign respectively. This derivation shows that
the approximation of the variance of the stochastic response can be expressed as a function of the expansion
coefficients and the norms of the PC basis vectors.

4.3.5. POLYNOMIAL CHAOS BASIS SET

Besides the choice for the type of polynomial basis functions to use in the construction of a PCE, a choice has
to be made about which orders of polynomials to use for the different uncertain parameters. In Equation 4.9
the full PCE is truncated to contain only a finite number of basis vectors and Equation 4.10 shows that the
different basis vectors are built from basis functions. However, the different orders of the basis functions are
still to be defined, resulting in the orders of the basis vectors. The following two definitions are introduced
to construct the set of PC basis vectors [32]. The first definition is the set of basis vectors Γo for a combined
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polynomial order o.

Γo =
{

N∏
j=1

φ j ,γk j :
N∑

j=1
γk j = o

}
(4.20)

If O is the maximum allowed combined polynomial order, then the second definition, the full set of O-th
order PC basis vectors, is defined as:

Γ(O) = ⋃
o∈{0,1,...,O}

Γo =
{

N∏
j=1

φ j ,γk j :
N∑

j=1
γk j ≤O

}
. (4.21)

By setting a value to the maximum allowed polynomial order, restrictions are made on the multi-indices γk j

of the basis functions. Altogether, the expression in Equation 4.22 can be retrieved to relate the number of
basis vectors, P +1, to the number of uncertain parameters, N , and the maximum polynomial order, O [32].

P +1 = (N +O)!

N !O!
(4.22)

Figure 4.2 illustrates an example of a constructed PC basis set when considering two uncertain parameters,
so N = 2, and the maximum combined polynomial order defined as O = 6. Each blue dot represents a basis
vector Ψ(ξ) = Hei (ξ1) ·He j (ξ2) with i and j the polynomial order for ξ1 and ξ2 respectively. In total 28 basis
vectors are shown, which is in correspondence with Equation 4.22.

Figure 4.2: Example of a constructed PC basis set when considering two uncertain parameters, so N = 2, and the maxi-
mum combined polynomial order defined as O = 6. Each blue dot represents a basis vectorΨ(ξ) = Hei (ξ1) ·He j (ξ2) with
i and j the polynomial order for ξ1 and ξ2 respectively. In total 28 basis vectors are shown, which is in correspondence
with Equation 4.22. Figure from [12].

4.4. NUMERICAL INTEGRATION
Equation 4.17 shows that in the formula for the PCE coefficients an expression of the stochastic response R(ξ)
is required, which, however, is still unknown. Therefore, to be able to calculate the inner product 〈R(ξ),Ψk (ξ)〉
a numerical integration method is required. This section covers the relevant aspects of numerical integration
methods for this research.

4.4.1. GAUSSIAN QUADRATURE RULE
For a one-dimensional problem, in which the uncertainty vector has only N = 1 component, a numerical
integration method is called a quadrature rule. Examples are the trapezoidal rule, the Clenshaw-Curtis rule
and the Gaussian quadrature rule. There are different versions of Gaussian quadrature rules, for example,
the Gauss-Hermite and Gauss-Legendre quadrature rule. A beneficial characteristic of Gaussian quadrature
rules is the following: if for an n-point quadrature rule the nodes {x1, . . . , xn} are chosen as the n roots of
polynomial pn(x), with pn(x) being orthogonal to the corresponding weight function ω(x), then there exist
weights {w1, . . . , wn} that yield an exact result for polynomials of degree 2n–1, or less [37]. Equation 4.23 shows
this result with ω(x) the PDF of a single uncertain parameter on the interval [a,b].∫ b

a
pn(x)ω(x)d x =

n∑
i=1

wi pn(xi ) (4.23)
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Due to the assumption of Gaussian distributed uncertain parameters and the results in Table 4.1 and Equa-
tion 4.23, the Gauss-Hermite quadrature rule is chosen to be used in the PCE construction. However, the
calculation will not be exact as the stochastic response is a general function, and not necessarily a polyno-
mial. Equation 4.24 shows the numerical approximation of the function f (ξ) = R(ξ) ·Ψk (ξ) in the case of a
Gauss-Hermite quadrature rule.

I (1) f (ξ) =
∫ ∞

−∞
f (ξ)pξ(ξ)dξ≈Q(1)

lev =
nlev∑
i=1

w (i )
lev f

(
ξ(i )

lev

)
(4.24)

The single dimensional integral approximation Q(1)
lev is called a quadrature. In Equation 4.24, the superscript

(1) denotes the dimensionality of the integral, the superscripts (i ) denote the different quadrature points,
lev indicates the quadrature level and nlev denotes the number of quadrature points in the integration rule
according to quadrature level lev . A higher quadrature level results in a higher accuracy of the approxima-
tion, however, the function has to be evaluated on more quadrature points which makes the approximation
computationally more expensive. For Gaussian quadrature rules in one dimension, the number of function
evaluations is related to the quadrature level by the expression nlev = 2 · lev −1. For higher dimensions, the
number of function evaluations will grow exponentially. Due to the characteristic of Gaussian quadrature
rules exact results are found for polynomial orders upto 2 ·nlev −1 = 4 · lev −3.

A disadvantage of the Gauss-Hermite quadrature rule is that it has low nestedness, meaning that not all
quadrature points of lower quadrature levels are also used in higher quadrature levels. In fact, only the origin
is a repeating quadrature point for higher quadrature levels. As a counterexample, the Clenshaw-Curtis rule
has full nestedness, meaning that each quadrature point in a certain quadrature level is part of the set of
quadrature points of a higher quadrature level. Figure 4.3 shows the difference in quadrature grids for the
first four quadrature levels of the Gauss-Hermite and Clenshaw-Curtis quadrature rules in one dimension.

Figure 4.3: Quadrature grids for the first four quadrature levels of the Gauss-Hermite and Clenshaw-Curtis quadrature
rules in one dimension. The quadrature points of the Clenshaw-Curtis rule are constructed on the interval [-3,3] and the
quadrature points of the Gauss-Hermite rule are based on a standard Gaussian distribution as weight function. Figure
from [12].

The full nestedness characteristic of the Clenshaw-Curtis rule could save computation time due to the possi-
bility of re-using function evaluations for different quadrature levels, however, this rule is less accurate than
the Gauss-Hermite rule [33]. Therefore, the Gauss-Hermite rule is chosen to be used in this research.

4.4.2. CUBATURE

For higher-dimensional problems, when an uncertainty vector with N > 1 parameters is considered, the in-
tegral that needs to be approximated is N -dimensional. Cubatures are the extension of quadratures for mul-
tidimensional integrals. The multidimensional integral can be approximated by tensorization of the corre-
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sponding single dimensional quadratures, as Equation 4.25 shows the extension of Equation 4.24.

I (N ) f =
∫
RN

f (ξ)pξ(ξ)dξ≈Q(N )
l ev =Q(1)

lev1
⊗ . . .⊗Q(1)

l evN

=
nl ev1∑
i1=1

. . .
nl evN∑
iN=1

w (i1)
lev1

· . . . ·w (iN )
levN

· f
(
ξ

(i1)
1,lev1

, . . . ,ξ(iN )
N ,levN

)
=

ntot al∑
i=1

w (i ) f
(
ξ(i )

)
(4.25)

By extending to a multidimensional problem, a maximum quadrature level can be specified for each dimen-
sion. This is denoted by l ev = (lev1, . . . , l evN )T and results in a different number of function evaluations per
dimension. In Equation 4.25, the total number of cubature points is defined as ntot al =

∏N
j=1 nlev j , the cuba-

ture points in the grid are denoted by ξ(i ) with index i and the weight corresponding to the cubature point
ξ(i ) is defined as w (i ) =∏N

j=1 w (i )
j .

4.4.3. SMOLYAK SPARSE GRID
The cubature grid is defined by the chosen quadrature rule and the maximum quadrature level per dimen-
sion. Not all cubature points are equally important, and therefore, the number of cubature points can be
decreased by omitting higher order quadrature levels in multiple dimensions. In this way, a sparse grid is
created. This idea is based on the sparsity-of-effects principle, which states that for the responses in most
models lower order terms are more important than higher order terms [36]. Such sparse grids can be used
to alleviate computational cost, while keeping the numerical integration method accurate. Multiple types of
sparse grids exist, for example, the (extended) Smolyak sparse grid [35].

Grids are created with the use of difference formulas, which are based on the difference between two
quadratures. The difference formula is defined as:

∆(1)
l ev =Q(1)

lev −Q(1)
lev−1, (4.26)

with Q(1)
0 = 0. With the recurrence relation in Equation 4.26, the following expression for Q(1)

lev can be derived:

Q(1)
lev =

lev∑
l=1
∆(1)

l . (4.27)

Equation 4.28 yields the result of substituting Equation 4.27 into Equation 4.25.

Q(N )
l ev =Q(1)

l ev1
⊗ . . .⊗Q(1)

levN

=
(

l ev1∑
l1=1

∆(1)
l1

)
⊗ . . .⊗

(
levN∑
lN=1

∆(1)
lN

)
= ∑

l∈G
∆(N )

l

(4.28)

In Equation 4.28 G denotes the cubature grid and l = (l1, . . . , lN )T is a multi-index with elements l j denot-
ing the quadrature level of the difference term in the j -th dimension. Equation 4.29 is used to define a full
cubature grid, depending on the maximum quadrature level per dimension defined in l ev .

GFull(l ev ) = {
l : l j ≤ lev j , ∀ j ∈ {1, . . . , N }

}
(4.29)

For a Smolyak sparse grid, a maximum overall quadrature level is defined by the grid level L and a rule is
applied which defines the permutations of quadrature levels to use. The Smolyak sparse grid is defined as:

GSm(L) =
{

l :
N∑

j=1
l j ≤ L+N −1

}
. (4.30)

Figure 4.4 shows an example of a full cubature grid and a Smolyak sparse grid in three dimensions.
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Figure 4.4: Two types of cubature grids in three dimensions. On the left a full grid with l ev = (4,4,4)T and on the right a
Smolyak sparse grid with L = 4 is shown. Figure from [11].

4.4.4. EXTENDED SMOLYAK SPARSE GRID
Extended Smolyak sparse grids can be used to achieve a more accurate approximation of the single dimen-
sional integrals. As an increase in the grid level is computationally expensive, with extended Smolyak sparse
grids it is possible to increase the quadrature level in the single dimensional directions, while keeping the
number of extra cubature points limited. The single dimensional grids Perm(L,1, . . . ,1) for grid level L are re-
placed by grids Perm(L+∆lev ,1, . . . ,1), yielding only 2·N ·∆lev extra cubature points, with∆lev the increase in
quadrature level of the single dimensional grids. Equation 4.31 shows the definition of an extended Smolyak
sparse grid.

GExtSm(L,∆l ev ) = (GSm(L)∪Perm(L+∆l ev ,1, . . . ,1)) \ Perm(L,1, . . . ,1) (4.31)

4.5. HYPERBOLIC TRIMMING
In Chapters 4.4.3 and 4.4.4, the creation of sparse grids is shown by omitting a part of the full cubature grid
for high order quadrature levels. Similarly, the sparsity-of-effects principle can be used in the permutations
of the polynomial orders of the PC basis functions, which are used to build the PC basis vectors. This concept
is called hyperbolic trimming [38]. With hyperbolic trimming of the basis vectors only certain polynomial
orders of the basis functions are used in the construction of the basis vectors that meet the following require-
ment:

||γk ||q ≤O, (4.32)

in which O is the maximum combined polynomial order and ||γk ||q is the q-quasi-norm of the multi-indices
of the basis functions, γk j , defined as:

||γk ||q =
(

N∑
j=1

γ
q
k j

) 1
q

, (4.33)

with q ∈ (0,1]. In the case of q = 1, the full O-th order basis set is retrieved, as is shown in Figure 4.2. Figure
4.5 shows an example of hyperbolic trimming on the polynomial orders for a two-dimensional case.

Figure 4.5: Illustration of hyperbolic trimming of a PC basis set with maximum combined polynomial order O = 6 in two
dimensions for different values of the trim factor q . The blue dots are used to illustrate which polynomial orders are in
the PC basis set for the different basis vectors. Figure from [12].
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4.6. CONSTRUCTION OF PCE
The construction and evaluation of PCEs will be performed with the OpenGPC package in Matlab, coded by
Z. Perkó et al. [25]. This package makes use of all the theory described in Chapter 4.

4.6.1. OPENGPC
The OpenGPC package consists of several scripts that together perform the PCE construction. Figure 4.6
illustrates the different steps in this process. First, input settings have to be supplied. These settings are
the characteristics of the uncertain parameters, the type and order of the polynomial basis functions, the
grid level and possible extra quadrature levels in the single dimensional directions, the trim factor and the
plan file, containing information on the object of which a PCE is constructed and how the response values
of this object are calculated on the cubature points. A cut-off value can be introduced to save memory and
computation time in the PCE construction by omitting response values that are below the cut-off value.

Then, a check is performed on the PCE settings and the cubature grid is generated. Next, the PCE object
is initialized by construction of the PC basis set and the dose mask is calculated, which is a logical vector that
shows which response values are greater than or equal to the cut-off value. For these calculations the dose
engine is needed. From the dose mask the response values on the cubature grid are retrieved and the PCE
coefficients are approximated with a Gaussian quadrature rule. Altogether, this concludes the PCE construc-
tion.

In the end, the constructed polynomial expansion can be evaluated on or sampled over the sample space
of the uncertain parameters, the mean and variance of the stochastic response can be retrieved and sensitivity
analysis can be performed. Also, the derivative of the response with respect to the uncertain parameters is
available.

Figure 4.6: Flowchart illustration of the construction of a PCE with the OpenGPC package. Modified figure from [9].

4.6.2. NOTATION
The notation LxE yOz, introduced in [12], is used to summarize the main characteristics of a constructed PCE.
This notation describes a Smolyak sparse grid with grid level L = x, increased single dimensional quadrature
level ∆lev = y and full O = z-th order PC basis set. Note that with a full PC basis set no hyperbolic trimming is
introduced.
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PROBABILISTIC FUNCTIONS WITH

POLYNOMIAL CHAOS EXPANSION

In probabilistic treatment planning, statistical measures of stochastic dose parameters are used in objec-
tive functions and constraints. Any function of a dose parameter, which in turn is dependent on the un-
certain parameters, can be used for probabilistic planning. As discussed in Chapter 3.4.3, such a function
can be denoted by g (x ,ξ) and choices have to be made about which statistical measure to optimize for and
whether the function has to be minimized or maximized. In the end, this boils down to optimizing the func-
tion f

(
Mξ[g (x ,ξ)]

)
, as shown in Equation 3.9.

Polynomial Chaos Expansion is used to describe the functional dependence of such probabilistic func-
tions on the uncertain parameters. Obtaining many samples of the dose deposition matrix in different error
scenarios from the dose engine and calculating statistical measures with these samples is computationally
very expensive. PCE is used to alleviate the computational cost in order to facilitate a faster evaluation of the
statistical measures. However, a choice has to be made whether a PCE is constructed for the function g (x ,ξ)
as a whole or for a part of this function. Constructing a PCE for the function g (x ,ξ) means that the beam
intensity vector is contained in the PCE and thus a PCE has to be constructed in every iteration of the treat-
ment plan optimization, which is not desired. On the other hand, evaluation of statistical measures could be
performed relatively fast. Thus, it depends on the probabilistic function which object is most convenient to
build a PCE for.

This chapter describes how PCE can be used to approximate several probabilistic functions, and its gradi-
ent and Hessian, which are used in this research. In [12], more examples of probabilistic functions described
with PCE can be found, as well as an explanation of the use of PCE within probabilistic functions for multiple
treatment fractions. However, in the rest of this research the concept of fractionation is not covered.

5.1. EXPECTED QUADRATIC DOSE DIFFERENCE
The expected quadratic dose difference, which is used as an abbreviation for the expected value of the sum
of the quadratic differences between the delivered dose and the prescribed dose in a domain, is found to
be a suitable objective function for probabilistic treatment planning with PCE for proton therapy [12]. Op-
timization is performed by minimizing this probabilistic function to find the suitable beam intensity vec-
tor x for the treatment plan. The objective function can be denoted as f (x). The beamspot indices are
j ∈ B = {1, . . . , Nb} with Nb the number of beamspots. The domain is discretized to contain Nv voxels with
voxel indices i ∈V= {1, . . . , Nv }. Each voxel has a corresponding prescribed dose, contained in the vector d P ,
and also each voxel is assigned a weight, contained in the vector w , such that certain voxels are considered
more important in the optimization to satisfy the prescribed dose. Therefore, the voxels in the GTV and OARs
are given a relatively high weight, whereas the tissue voxels are given a relatively low weight. The expected
quadratic dose difference can, with substitution of Equation 3.4 at the second equal-sign, be described as
follows:
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f (x) =
∫
RN
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i∈V

wi
(
di (x ,ξ)−d P

i
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pξ(ξ)dξ
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]
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i
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pξ(ξ)dξ.

(5.1)

Next, PCEs can be constructed of both expressions in between the square brackets in Equation 5.1. These are
formulated as in Equation 5.2 and 5.3 with P +1 the number of PC basis vectors.

∑
i∈V

wi Di j (ξ)Di j ′ (ξ) =
∞∑

k=0
R(k)

j j ′Ψk (ξ) ≈
P∑

k=0
R(k)

j j ′Ψk (ξ) (5.2)

∑
i∈V

wi d P
i Di j (ξ) =

∞∑
k=0

r (k)
j Ψk (ξ) ≈

P∑
k=0

r (k)
j Ψk (ξ) (5.3)

The first PCE consists of the matrix R(k) ∈ RNb×Nb , which contains the k-th order PCE coefficients corre-
sponding to the expression at the left-hand side of Equation 5.2. The indices j and j ′ are interchangeable,
from which we can conclude that the matrix R(k) is symmetric. Therefore, we only have to compute the up-
per, or lower, triangular part of the matrix, containing 1

2

(
Nb +N 2

b

)
elements. The second PCE consists of the

vector r (k) ∈RNb , containing the k-th order PCE coefficients corresponding to the expression at the left-hand
side of Equation 5.3. Substituting these two PCEs into Equation 5.1, yields:
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(5.4)

In the derivation of Equation 5.4 similar steps as in Equation 4.19 are used withΨ0(ξ) = 1 the zeroth order PC
basis vector with norm h2

0 = 1. The derivative of this probabilistic function f (x) with respect to an element
xn of the beam intensity vector x results in:

∂ f (x)

∂xn
= ∑

j∈B
R(0)

j n x j +
∑

j ′∈B
R(0)

n j ′x j ′ −2r (0)
n = 2

( ∑
j∈B

R(0)
j n x j − r (0)

n

)
, ∀n ∈ {1, . . . , Nb}, (5.5)

using the symmetry of the matrix R(0) at the second equal-sign. The elements of the Hessian matrix can be
derived as:

∂2 f (x)

∂xm∂xn
= 2R(0)

mn , ∀m,n ∈ {1, . . . , Nb}. (5.6)

Altogether, Equations 5.4-5.6 show that in the expression of this probabilistic function, and its gradient and
Hessian with respect to the beam intensity vector, only the zeroth order PCE coefficients are required.
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5.2. EXPECTED MEAN DOSE
The expected mean dose, equivalent to the mean expected dose through linearity, in a discretized structure
with Vstr ⊆V the set of voxel indices and Nv,str ≤ Nv the number of voxels is another example of a probabilis-
tic function to be used in treatment planning. In this case, the function f (x) is written as:

f (x) =
∫
RN

(
1

Nv,str

∑
i∈Vstr

di (x ,ξ)

)
pξ(ξ)dξ

=
∫
RN

1
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∑
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( ∑
j∈B

Di j (ξ)x j

)
pξ(ξ)dξ

= 1

Nv,str

∑
j∈B

x j

∫
RN

∑
i∈Vstr

Di j (ξ)pξ(ξ)dξ,

(5.7)

with substitution of Equation 3.4 at the second equal-sign. A PCE can be constructed of the row sums of the
dose deposition matrix as follows:

∑
i∈Vstr

Di j (ξ) =
∞∑

k=0
r (k)

j Ψk (ξ) ≈
P∑

k=0
r (k)

j Ψk (ξ). (5.8)

The vector r (k) ∈ RNb contains the k-th order PCE coefficients. Note that these are not the same PCE coeffi-
cients as in Equation 5.3. Now, Equation 5.8 can be substituted into Equation 5.7, yielding:
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j x j

= 1

Nv,str

∑
j∈B

r (0)
j x j ,

(5.9)

in which similar derivation steps as in Equation 4.18 are used withΨ0(ξ) = 1 the zeroth order PC basis vector
with norm h2

0 = 1. The derivative of this probabilistic function with respect to an element xn of the beam
intensity vector can easily be derived as:

∂ f (x)

∂xn
= 1

Nv,str
r (0)

n , ∀n ∈ {1, . . . , Nb}. (5.10)

This directly shows that the Hessian matrix for this probabilistic function is equal to the zero matrix.

5.3. PROBABILISTIC DOSE VOLUME PARAMETER
In radiotherapy it is desired to have information about how much dose is received by a certain volume frac-
tion of a structure. A dose volume parameter can be used to describe such information. The dose volume
parameter dα%(x ,ξ) is defined as the maximum dose that is received by at least α% of the considered struc-
ture, and is denoted as shown in Equation 3.6. In the optimization of a probabilistic treatment plan objective
goals and constraints could be set on percentiles of dose volume parameters for the tumor and organs-at-risk.
This is desirable in order to obtain knowledge about the behavior of the dose volume parameter in different
error scenarios. Such information is captured in probabilistic dose volume parameters. An example of this
parameter is the β%-probabilistic dα%(x), being defined as the (100−β)-th percentile of dα%(x ,ξ), and is in

equations in short denoted as dβ%
α%(x) for a certain structure. Mathematically, this is written as:

dβ%
α%(x) = P s

(100−β)%

{
P i

(100−α)%

{
di

(
ξs) : i ∈Vstr

}
: s ∈ S

}
. (5.11)

Two important probabilistic dose volume parameters are the 95%-probabilistic d98%(x), which is called the
probabilistic near-minimum dose, and the 5%-probabilistic d2%(x), also known as the probabilistic near-
maximum dose.
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The uncertain parameters are assumed to be Gaussian distributed, which means that the number of pos-
sible error scenarios is infinite as the Gaussian distribution is a continuous distribution. Theβ%-probabilistic
dα%(x) cannot be expressed analytically, and therefore, many error scenarios need to be sampled to accu-
rately calculate this parameter. This means that the gradient and Hessian of such a probabilistic function
cannot be derived analytically and the use of a finite difference scheme is needed. In [12] it was concluded
that the use of a forward difference scheme for these derivatives is preferred. The approximation of an ele-
ment of the gradient with a forward finite difference scheme with step size h and ên the unit vector along the
n-th dimension of the beam intensity vector is performed as:

∂ f (x)

∂xn
≈ f (x +hên)− f (x)

h
, ∀n ∈ {1, . . . , Nb}. (5.12)

The elements of the Hessian matrix are approximated similarly, using the definition of the gradient in Equa-
tion 5.12.

∂2 f (x)

∂xm∂xn
≈ f (x +hêm +hên)− f (x +hêm)− f (x +hên)+ f (x)

h2 , ∀m,n ∈ {1, . . . , Nb}. (5.13)

A choice has to be made on how the probabilistic function f (x) = dβ%
α%(x) is computed with the use of PCE.

In Chapters 5.3.1 and 5.3.2, two different approaches are discussed, namely through a PCE of the dose de-
position matrix D(ξ) and through a PCE of the dose volume parameter dα%(x ,ξ) respectively. Chapter 5.3.3
explains which approach is used in the rest of this research.

5.3.1. PCE OF DOSE DEPOSITION MATRIX
The first approach is to construct PCEs of the elements of the dose deposition matrix as follows:

Di j (ξ) =
∞∑

k=0
R(k)

i j Ψk (ξ) ≈
P∑

k=0
R(k)

i j Ψk (ξ), (5.14)

with the matrix R(k) ∈ RNb×Nb containing the k-th order PCE coefficients of the elements of the dose deposi-
tion matrix. Next, these PCEs need to be sampled Ns times following the underlying Gaussian sample space.
From this the set

{
D

(
ξ1

)
, . . . ,D

(
ξNs

)}
of sample dose deposition matrices is obtained. Subsequently, the set

of corresponding dα% (x ,ξs ) values,
{
dα%

(
x ,ξ1

)
, . . . ,dα%

(
x ,ξNs

)}
, is computed as:

dα%
(
x ,ξs)= P i

(100−α)%

{ ∑
j∈B

Di j
(
ξs)x j : i ∈Vstr

}
. (5.15)

The probabilistic function f (x) = dβ%
α%(x) is then computed as:

f (x) = P s
(100−β)%

{
dα%

(
x ,ξs) : s ∈ S}

. (5.16)

The forward finite difference scheme can be evaluated with Equation 5.16, in which the beam intensity vector
could straightforwardly be increased in the single-dimensional beam intensity directions as these intensities
are not contained in the PCEs. Therefore, for the whole optimization all Nv ×Nb PCEs only need to be con-
structed once. The disadvantage is that sampling is less practical as it requires sampling the PCEs Ns times
and calculating the percentile of dα%(x ,ξ) from all these samples. This requires storage of Ns matrices of size
Nv ×Nb for all samples of the dose deposition matrix. This quickly becomes too much to handle computa-
tionally.

5.3.2. PCE OF DOSE VOLUME PARAMETER
The second approach is to construct a PCE of the dose volume parameter dα%(x ,ξ) itself. As the beam in-
tensities are needed to calculate the dose, a PCE has to be constructed for a certain configuration of beam
intensities. This means that the following process has to be repeated for each iteration of the treatment plan
optimization. A PCE is constructed of the dose volume parameter dα%(x ,ξ), yielding:

dα%(x ,ξ) =
∞∑

k=0
r (k)(x)Ψk (ξ) ≈

P∑
k=0

r (k)(x)Ψk (ξ), (5.17)
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with the scalar r (k)(x) ∈ R the k-th order PCE coefficient. This PCE can be used to sample the dose volume
parameter over many error scenarios, following the underlying Gaussian sample space, obtaining the set{
dα%

(
x ,ξ1

)
, . . . ,dα%

(
x ,ξNs

)}
. The probabilistic function f (x) = dβ%

α%(x) is then calculated as:

f (x) = P s
(100−β)%

{
dα%

(
x ,ξs) : s ∈ S}

. (5.18)

Next, Equations 5.12 and 5.13 are used to compute the gradient and Hessian of the β%-probabilistic dα%(x)
with respect to the beam intensities. However, as the dependence of this probabilistic function on the beam
intensities is unknown, PCEs also need to be constructed for the beam intensity vector plus all the different
single and double step size increases of the elements of the beam intensity vector in the finite difference
scheme.

The preference of a forward finite difference scheme is due to a minimal number of extra PCEs that is
needed, and also because previous research showed a close to linear behavior of the probabilistic near-
minimum dose on the beam intensities when a relatively large step size is used [12]. Equation 5.12 shows
that for the gradient Nb extra PCEs need to be constructed. For the Hessian matrix this would amount to N 2

b
extra PCEs, but due to the symmetry of the Hessian matrix this can be reduced to 1

2

(
Nb +N 2

b

)
extra PCEs. In

total one would need 1+Nb + 1
2

(
Nb +N 2

b

)
PCEs per iteration in the treatment plan optimization. An advan-

tage of this approach is that the PCEs can be evaluated relatively fast for many samples of error scenarios
without significant problems with computer memory.

5.3.3. CHOICE OF APPROACH
In theory, both approaches can be used to calculate the value, gradient and Hessian of the β%-probabilistic
dα%(x) as probabilistic function if there is enough storage memory to save and process all the Ns samples
of either the Nv ·Nb or the 1+Nb + 1

2

(
Nb +N 2

b

)
, which is approximately equal to 1

2 N 2
b for large enough Nb ,

PCEs for the first and second approach respectively. The number of voxels is in treatment plan optimization
usually larger than the number of beamspots (Nv > Nb), so the approach in Chapter 5.3.1 with PCEs of the
elements of the dose deposition matrix Di j (ξ) does become problematic faster. Therefore, the approach with
PCEs of the dose volume parameter dα%(x ,ξ) is used in this research, as has also been used in [12].





6
IMPLEMENTATIONS

In the preceding chapters, relevant theory and probabilistic functions with PCE related to this research have
been discussed. This chapter focuses on three implementations that are specific to this research. In Chapter
6.1, the methodology of treatment plan optimization on a simplified three-dimensional geometry with a tu-
mor and an OAR is explained. Chapter 6.2 treats the implementation of the algorithm that is used to calculate
the value, gradient and Hessian of the β%-probabilistic dα%(x). Chapter 6.3 elaborates on a constraint on the
PCE coefficients that is required for monotonicity of the β%-probabilistic dα%(x) with respect to the beam
intensity vector.

6.1. SIMPLIFIED 3D GEOMETRY

In order to test new ideas for proton therapy and to avoid the complications of treatment planning for a real
patient in iCycle, a set of matlab scripts has been created by Z. Perkó. These scripts construct a simplified
three-dimensional geometry of a patient with a tumor and an OAR. The dose calculations for this geometry
are performed according to a pencil beam algorithm, based on [42]. This section describes how this geometry
is used in this research and is divided in five parts. In Chapters 6.1.1-6.1.5, the geometry itself, the dose
calculations, the considered uncertain parameters, treatment planning in Matlab and the purpose of the
different optimizations are discussed respectively.

6.1.1. GEOMETRY

The geometry is a representation of a patient with a tumor at the abdominal side of the spine. The spine
is considered an OAR as too much dose to it could result in serious health problems for the patient. The
domain is defined in the three dimensions of Euclidean space as x ∈ [−40,40], y ∈ [0,10] and z ∈ [85,125], all
units being in millimeters. The spine is a circularly shaped cylinder and the tumor is shaped as a half ring
around the spine. A cross-section of this geometry with the location of the spine (OAR) and the tumor is
shown in Figure 6.1.
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Figure 6.1: Axial cross-section of the simplified three-dimensional geometry, in which the tumor (edge shown in red) is
located at the abdominal side of the spine (edge shown in green). The rest of the geometry is healthy tissue. This cross-
section holds for y ∈ [2,8] in millimeters. For values of y ∈ [0,2) and y ∈ (8,10] only the spine is present, and not the
tumor.

The domain is discretized to create a voxel grid of cubes with equal length sides of 2 mm. This results in
Nv,x = 40, Nv,y = 5 and Nv,z = 20 voxels along the x-, y- and z-direction respectively, resulting in a total of
Nv = Nv,x ·Nv,y ·Nv,z = 4000 voxels in the domain.

6.1.2. DOSE CALCULATIONS
Proton beams are set up such that they enter the body at z = 0 and move in the positive z-direction. The
configuration of proton beams is used to form an equidistant beamspot grid, consisting of multiple different
energy levels within each proton beam. For a certain energy level, all beams have their Bragg peak at the
same depth in the z-direction and the beams are placed in an equidistant grid in the (x, y)-plane with lateral
spacings of 3 mm. This same grid is repeated for the different energy levels, the energy levels being chosen
such that the Bragg peak spacings in the z-direction are also 3 mm. The center of the beamspot grid is called
the isocenter. For this geometry the isocenter is located at (x, y, z) = (0,5,105) in millimeters. The number
of beamspots along each direction is Nb,x = 26, Nb,y = 3 and Nb,z = 12, yielding a total of Nb = Nb,x · Nb,y ·
Nb,z = 936 beamspots in the domain. Concluding, the beamspot grid with beamspot coordinates (xi , y j , zk )
is defined as: 

xi =−40.5+3 · i , ∀i ∈ {1, . . . ,26},

y j =−1+3 · j , ∀ j ∈ {1, . . . ,3},

zk = 85.5+3 ·k, ∀k ∈ {1, . . . ,12}.

(6.1)

The dose delivered by the protons of a single energy level in a certain proton beam is, as stated in Chapter
2.1.1, not a deterministic, but a stochastic process. The individual protons undergo different interactions with
matter, resulting in different energy deposition profiles along the trajectory through the body. Therefore, the
dose of a certain beamspot is not a single dose peak at location (xi , y j , zk ), but the dose spread in the (x, y)-
plane is assumed to be Gaussian distributed with mean (xi , y j , zk ) and the variance still to be defined. The
spatial energy deposition profile in the z-direction is following the Bragg peak characteristic, as described
in Chapter 1.2.1. In the pencil beam algorithm the range straggling, the standard deviation of this Gaussian
lateral dose spread at entrance of the body, is set to 3 mm, as used in previous research [12]. The variance
increases over depth as there are more possible interactions between protons and matter when considering
a longer path length. The pencil beam algorithm takes this into account in the dose calculations.

In contrast to a real patient, in this geometry the spine, the tumor and the surrounding tissue are assumed
to have the same homogeneous density. Furthermore, the use of a discretized voxel grid requires conservation
of dose to be imposed in each voxel. This is achieved by calculating the mean dose in a voxel with a three-
dimensional Gauss-Legendre quadrature rule, based on 8 points, and assigning this mean dose to the center
of the voxel.
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The optimized beam intensity vectors are used to evaluate both the nominal and the expected dose dis-
tribution in the geometry. The nominal dose distribution is obtained by the matrix-vector multiplication of
the dose deposition matrix in the nominal scenario and the beam intensity vector. The expected dose distri-
bution, on the other hand, is obtained by the matrix-vector multiplication of the expected value of the dose
deposition matrix and the beam intensity vector. This requires the construction of PCEs of the elements of
the dose deposition matrix, of which only the zeroth order PCE coefficients are needed as we are interested
in the expected value of the dose deposition matrix.

6.1.3. UNCERTAIN PARAMETERS
Uncertainties in the setup of the geometry or the range of the proton beams are yet to be introduced. Set-
up errors can be realized by shifting the location of the isocenter. Range errors are usually implemented
as a scaling of the values of the CT images. However, as the densities in this simplified 3D geometry are
considered to be homogeneous and constant, this is not possible. Range errors can be realized in the pencil
beam algorithm by introducing a relative or absolute error on the range of the pencil beams, the realizations
being the same for each pencil beam.

In the implementation of this geometry only a systematic set-up uncertainty in the x-direction is con-
sidered. This set-up uncertainty is assumed to be Gaussian distributed with a zero mean and a standard
deviation of 3 mm.

6.1.4. TREATMENT PLAN OPTIMIZATION
The optimizations on the 3D spine geometry are divided into two parts. The first part of the optimizations is
based on the probabilistic functions in Chapters 5.1 and 5.2. Here, two optimizations are considered. In both
optimizations the expected value of the sum of the quadratic differences between the prescribed dose and
the delivered dose in the full discretized geometry is minimized, and in the one of the two optimizations also
a constraint is set on the expected mean dose in the tumor to be greater than or equal to the prescribed dose
in the tumor. These two optimizations coincide with cases 1 and 2 in Table 6.1.

The second part of the optimizations is based on the probabilistic functions in Chapters 5.1 and 5.3.
Several different optimizations are performed, containing the same objective function as the two optimiza-
tions in the first part, but this time a constraint is set on the probabilistic near-minimum dose, the 95%-
probabilistic d98%(x), in the tumor to be greater than or equal to a still to be defined value. This optimization
problem coincides with case 3 in Table 6.1.

Table 6.1: The three different cases of optimization problems that are considered in this research. For all cases also a
constraint is set on the elements of the beam intensity vector to be non-negative, xi ≥ 0 for i ∈ {1, . . . , Nb }.

Case: Objective function: Constraint:

1 Min.
∫
RN

∑
i∈V wi

(
di (x ,ξ)−d P

i

)2
pξ(ξ)dξ -

2 Min.
∫
RN

∑
i∈V wi

(
di (x ,ξ)−d P

i

)2
pξ(ξ)dξ

∫
RN

(
1

Nv,tumor

∑
i∈Vtumor di (x ,ξ)

)
pξ(ξ)dξ≥ d P

tumor

3 Min.
∫
RN

∑
i∈V wi

(
di (x ,ξ)−d P

i

)2
pξ(ξ)dξ d 95%

98% (x) ≥ . . .

The difference between the different optimizations of case 3 is that for the calculation of the value, gradient
and Hessian of the 95%-probabilistic d98%(x) different methodologies are used. These methodologies are
divided into an exact calculation and a proposed approximation method for the gradient and Hessian, to
alleviate the computation time of the optimization. The exact calculation is explained in detail in Chapter
6.2, and several improvements on this algorithm and the proposed approximation method are discussed in
Chapter 7.

The optimizations of the beam intensity vector for these treatment plans are performed with the fmincon
solver in Matlab. This solver is able to find the minimum of a constrained nonlinear multivariate function.
Besides the above mentioned objective functions and constraints, a constraint is set on the elements of the
beam intensity vector as they are physically constrained to be non-negative. The interior-point algorithm is
chosen within the fmincon solver, as it is the default optimization algorithm, and is treated as a black box.
The working of this optimization algorithm will not be discussed here, but detailed information can be found
in [43, 44].

The solver is able to approximate the gradient and Hessian matrix of objective functions and constraints
through a finite difference scheme, however, as for cases 1 and 2 the gradient and Hessian matrix are analyti-
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cally available through the use of PCEs, both will be supplied to the solver. This will improve the convergence
speed and accuracy of the optimization, and it will decrease computational cost. For case 3 the accuracy and
computation time of the gradient and Hessian of the 95%-probabilistic d98%(x) is investigated, so these will
also be computed and supplied to the solver.

6.1.5. PURPOSE OF DIFFERENT OPTIMIZATIONS

The two optimization problems in cases 1 and 2, without the use of the β%-probabilistic dα%(x), are used
for two purposes. The first purpose is to visualize the outcome of probabilistic treatment plans with the use
of PCE, of which case 1 is also treated in [12]. The second purpose is to use the optimized beam intensity
vectors to test the approximation method that is proposed for the alleviation of computational cost in the
calculation of the gradient and Hessian of the β%-probabilistic dα%(x). The different optimizations for case 3
are intended to compare the performance and computation time of the exact method and the approximation
method.

6.2. ALGORITHM FOR VALUE, GRADIENT AND HESSIAN OF PROBABILISTIC DOSE

VOLUME PARAMETER
The algorithm for the calculation of the value, gradient and Hessian of the β%-probabilistic dα%(x), as used
in optimizations with patient data in iCycle in [12], works as follows. For the optimization a certain starting
vector x0 ∈RNb×1 must be chosen for the beam intensity vector. This beam intensity vector is then expanded
by a vertical concatenation with perturbed versions of the beam intensity vector. The concatenated columns
are the beam intensity vector plus all the single, for the gradient, and the single and double, for the Hessian,
step size increases of the individual beam intensities as are present in the forward finite difference schemes
in Equations 5.12 and 5.13. When the gradient is calculated, this expanded matrix Xg r ad looks like:

Xg r ad = [
x0 x0 +hê1 . . . x0 +hêNb

] ∈R(Nb )×(1+Nb ), (6.2)

and when both the gradient and Hessian are calculated, the expanded matrix XHess looks like:

XHess =
[

x0 x0 +hê1 . . . x0 +hêNb x0 +2hê1 x0 +hê1 +hê2 . . . x0 +2hêNb

]
, (6.3)

with XHess ∈ R(Nb )×
(
1+Nb+ 1

2

(
Nb+N 2

b

))
. This shows that the submatrix containing the first 1+ Nb columns of

XHess is equal to the matrix Xg r ad . As an example, for the case Nb = 3 the matrix XHess is defined as:

XHess =
x1 x1 +h x1 x1 x1 +2h x1 +h x1 +h x1 x1 x1

x2 x2 x2 +h x2 x2 x2 +h x2 x2 +2h x2 +h x2

x3 x3 x3 x3 +h x3 x3 x3 +h x3 x3 +h x3 +2h

 , (6.4)

with the Nb = 3 single and 1
2

(
Nb +N 2

b

) = 6 double perturbations, and x0 = [x1, x2, x3]T . Next, for the ‘base’
beam intensity vector (the first column) and all the perturbed versions (all other columns) separate PCEs of
the dose volume parameter dα%(x ,ξ) are constructed, following the methodology as in Chapter 4.6.1. Next, all
PCEs are sampled Ns times from the underlying Gaussian sample space, and from these samples the (100−β)-
th percentile values are calculated for each PCE. The value of the β%-probabilistic dα%(x) is determined via
the percentile outcome of the PCE for the base beam intensity vector. The elements of the gradient and
Hessian matrix are calculated according to Equations 5.12 and 5.13, using the determined percentile values
of all 1+Nb + 1

2

(
Nb +N 2

b

)
PCEs. This process is repeated at each iteration step of the optimization. Algorithm

1 shows the pseudo-code of this algorithm. The notation A[i , j ] is used to denote the (i , j )-th element of a
matrix A and Dim(A,n) denotes the size of matrix A in the n-th dimension.
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Algorithm 1 Calculate value, gradient and Hessian matrix of the β%-probabilistic dα%(x)

1: x = x0

2: if Gradient then
3: Expand vector x to obtain matrix Xg r ad

4: else if Gradient & Hessian then
5: Expand vector x to obtain matrix XHess

6: end if
7: function openGPC:
8: Generate cubature grid with set of cubature points {ξk }
9: function computeResponses:

10: for all ξ ∈ {ξk }, i ∈Vstr and l ∈ {1, . . . ,Dim(Xg r ad/Hess ,2)} do

11: Compute (100−α)-th percentile of
∑Nb

j=1 D[i , j ](ξ) ·Xg r ad/Hess [ j , l ] over index i

12: Calculate coefficients of each PCE
13: Sample all PCEs Ns times with sample set {ξs }
14: function prctile (Matlab):
15: Compute (100−β)-th percentile for each set of PCE samples
16: if Gradient then
17: Calculate gradient elements with Equation 5.12
18: else if Gradient & Hessian then
19: Calculate gradient elements with Equation 5.12
20: Calculate Hessian matrix elements with Equation 5.13
21: end if

6.3. MONOTONICITY CONSTRAINT ON PCE COEFFICIENTS
In the ideal case, when calculating the β%-probabilistic dα%(x), a PCE is constructed of either the dose vol-
ume parameter dα%(x ,ξ) itself or the elements of the dose deposition matrix Di j (ξ) with an infinite amount
of basis functions. The functions of interest in treatment plan optimization are real-valued and continuous
stochastic responses in the L2-space, meaning that the second moment of the response function is finite.
Then, from the generalized Polynomial Chaos (gPC) framework it follows that the PCE converges to the func-
tion R(ξ) for P →∞ in Equation 4.9 [39]. Approximating f (ξ) with a finite number of basis functions gives,
therefore, rise to errors.

In treatment plan optimization the β%-probabilistic dα%(x) is calculated for the beam intensity vector x
and its perturbed versions x +hên and x +hêm +hên with an arbitrary step size h > 0 and n,m ∈ {1, . . . , Nb}.
Equation 3.4 shows that the dose in each voxel is a linear combination of the contributions of the different
beamspots to the dose in that voxel and the intensities of those beamspots. Physically, the elements of the
dose deposition matrix and the beam intensity vector are constrained to be non-negative, and therefore, the
dose in an arbitrary voxel in a perturbed case x +hên or x +hêm +hên is always greater than or equal to the
dose in the base case x , yielding:

di (x +hên ,ξ) ≥ di (x ,ξ), ∀i ∈ {1, . . . , Nv }, ∀h ≥ 0, ∀ξ ∈RN , ∀n ∈ {1, . . . , Nb}. (6.5)

Equation 6.5 holds for every realization of the uncertainty vector ξ. This, in turn, means that for a function
f (x ,ξ), representing any dose parameter, the function value in a perturbed case is always greater than or
equal to the function value in the base case:

f (x +hêm +hên ,ξ) ≥ f (x +hên ,ξ) ≥ f (x ,ξ), ∀h ≥ 0, ∀ξ ∈RN , ∀m,n ∈ {1, . . . , Nb}. (6.6)

Because a PCE with an infinite amount of basis functions represents the function f (x ,ξ) exactly, this mono-
tonicity in Equation 6.6 should therefore also hold for the PCE. If this function is approximated with a finite
Polynomial Chaos Expansion, this expansion is written as:

R(x ,ξ) ≈
P∑

k=0
rk (x)Ψk (ξ). (6.7)

Monotonicity with respect to the beam intensity vector x then yields

P∑
k=0

rk (x +hên)Ψk (ξ) ≥
P∑

k=0
rk (x)Ψk (ξ), ∀h ≥ 0, ∀ξ ∈RN , (6.8)
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where the Polynomial Chaos basis vectors Ψk are the same on the left- and right-hand side of Equation 6.8.
By spectral projection the following inequality for the PCE coefficients is obtained:

rk (x +hên) ≥ rk (x), ∀h ≥ 0, ∀k ∈ {0, . . . ,P }. (6.9)

A similar derivation can be performed for any configuration of positive perturbations of the elements of the
beam intensity vector. In the independent construction of the separate PCEs for the base case and all per-
turbed cases this constraint has not been taken into account before, but is used in this research.
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RESULTS

In this chapter, the results of research on improving probabilistic treatment planning with PCE for proton
therapy are displayed. Chapter 7.1 focuses on the optimizations of cases 1 and 2 for the 3D spine geometry
without the use of probabilistic dose volume parameters. In Chapter 7.2, three different improvements on
Algorithm 1 are introduced that speed up the algorithm. Chapter 7.3 treats the results of the monotonicity
constraint on the PCE coefficients. In chapter 7.4, an approximation method for the gradient and Hessian
of probabilistic dose volume parameters is proposed to alleviate the computational cost of Algorithm 1 even
further. In Chapter 7.5, the performance and computation times of the improved exact method and the ap-
proximation method are compared through optimizations of case 3 with the use of probabilistic dose volume
parameters.

7.1. PROBABILISTIC PLANNING WITHOUT PROBABILISTIC DOSE VOLUME PA-
RAMETERS

As discussed in Chapter 6.1.4, two optimizations with probabilistic functions, which are evaluated with PCEs,
are first performed on the 3D spine geometry without the use of the β%-probabilistic dα%(x). In the first
optimization, the expected value of the sum of quadratic differences between the delivered dose and the
prescribed dose is minimized in the full discretized domain. In the second optimization, the same objective
function is minimized, but also a constraint is set on the expected mean dose in the tumor to be greater than
or equal to 60 Gy, which is chosen to be the prescribed dose in the tumor. These two optimization problems
coincide with cases 1 and 2 in Table 6.1 respectively. Furthermore, settings for the prescribed dose and voxel
weight in each structure, the considered uncertain parameter and PCE characteristics need to be defined.
These settings are shown in Table 7.1.

Table 7.1: Parameter settings for the two optimizations of cases 1 and 2.

Prescribed dose: Structure: Value:

Tumor 60 Gy
Spine 0 Gy
Tissue 0 Gy

Voxel weight: Structure: Value:

Tumor 500
Spine 500
Tissue 1

Uncertain parameter: Type: Distribution:

Set-up uncertainty in x-direction N
(
0,0.32

)
[cm, cm2]

PCE: Object: Characteristic: Cut-off value:

All PCEs for cases 1 and 2 L5E0O1 10−3

41
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For all PCEs that need to be constructed, the PCE characteristic L5E0O1 is used, as has also been used in [12].
A first order polynomial is reasonable as only the zeroth order PCE coefficients are required. Furthermore,
the grid level L = 5 is assumed to be accurate enough for this purpose.

The probabilistic functions in the objective function and constraint are meant to irradiate the tumor with
the prescribed dose in a larger range of error scenarios, than in robust and conventional treatment planning.
It is therefore expected that the nominal and expected dose distributions not only show high dose levels inside
of the tumor, but also outside of the tumor in the direction in which the uncertain parameter is introduced.
This provides a more conformal dose coverage of the tumor in a large range of error scenarios. This ‘auto-
matic’ expansion of the irradiated volume is similar to the idea of a PTV margin. However, the calculation of
what this margin should be is completely different. Here, this margin is carefully calculated with probabilistic
optimization, and not chosen from clinical experience.

The PCEs are constructed with the OpenGPC package and the two optimizations are performed with
the fmincon optimizer in Matlab, using the interior-point algorithm. The starting beam intensity vector is
chosen as the zero vector in both optimizations. The optimizations are performed in the high performance
computing (HPC) cluster of Delft University of Technology with 6 processors and 50 GB of memory reserved
for each on one computer.

In case 1, the construction of the 1
2

(
Nb +N 2

b

)
and Nb PCEs for different objects in the objective function

and the Nv ·Nb PCEs for the elements of the dose deposition matrix, in total 3
2 Nb+ 1

2 N 2
b +Nb ·Nv = 13,735,800

PCEs, took 214.6 seconds. On the other hand, the optimization itself took only 11.8 seconds with 19 iterations.
In case 2, there are Nb extra PCEs to be constructed of an object in the constraint. The construction of the
5
2 Nb + 1

2 N 2
b +Nb ·Nv = 13,737,672 PCEs took 220.1 seconds and the optimization took 13.9 seconds with 20

iterations. The differences in computation time between the two optimizations are displayed in Table 7.2.

Table 7.2: Computation times of the construction of PCEs and the optimizations of the two probabilistic plans in cases 1
and 2.

Case: PCE: Optimization:

1 214.6 s 11.8 s
2 220.1 s 13.9 s

In Figure 7.1 axial cross-sections at the plane corresponding to y = 5 mm are shown with the optimized nom-
inal and expected dose distributions of case 1. Figures 7.1a and 7.1b are colored according to a 0-70 Gy dose
scale, whilst Figures 7.1c and 7.1d are colored according to a 55-65 Gy dose scale to have a better view of the
dose fall-off around the edges of the tumor. All voxels with a dose less than 55 Gy are given the same color as
the 55 Gy boundary for the 55-65 Gy scale.
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(a) Nominal dose distribution on a 0-70 Gy dose scale. (b) Expected dose distribution on a 0-70 Gy dose scale.

(c) Nominal dose distribution on a 55-65 Gy dose scale. (d) Expected dose distribution on a 55-65 Gy dose scale.

Figure 7.1: Axial cross-sections of the 3D spine geometry at the plane corresponding to y = 5 mm with the nominal and
expected dose distributions on a 0-70 Gy dose scale, (a) and (b) respectively, and on a 55-65 Gy dose scale, (c) and (d)
respectively, for the optimized treatment plan of case 1. All voxels with a dose less than 55 Gy are given the same color as
the 55 Gy boundary for the 55-65 Gy scale.

The dose distributions in Figure 7.1 show good results in terms of dose coverage in the tumor in the nom-
inal scenario and also for the expected dose with an automatic expansion of the PTV in the x-direction as
expected. The high weights that are assigned to the voxels in the spine and the tumor give rise to a larger
expansion of the high dose levels near the outer-edge of the tumor, and less near the inner-edge of the tu-
mor, where the spine is located. There is also a difference visible between the nominal dose and the expected
dose. The expected dose distribution is more smooth than the nominal dose distribution, because the ex-
pected dose is the weighted average of the dose distributions in all possible error scenarios, following the
underlying Gaussian probability space.

The results in Figure 7.1 only show axial cross-sections of the dose distributions. However, to fully com-
pare the results of the nominal and expected dose distributions dose volume histograms are needed. There-
fore, in Figure 7.2a the differences between the nominal and expected dose in the tumor, the spine and the
healthy tissue are summarized in a dose volume histogram. In Figure 7.2b, the differences in nominal and
expected dose in the tumor are highlighted.
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(a) (b)

Figure 7.2: Dose volume histograms of the nominal and expected dose in the tumor, spine and healthy tissue (a) and only
the tumor (b) for the optimized treatment plan of case 1.

The dose volume histograms in Figure 7.2 show that the expected dose distribution in the tumor reaches
lower dose levels for each volume fraction than the nominal dose distribution. In the spine it is the other way
around with the nominal dose reaching lower dose levels for each volume fraction than the expected dose.
This is the result of optimizing probabilistically with the objective function of cases 1 and 2. Figures 7.3 and
7.4 show similar results as Figures 7.1 and 7.2, but then for the optimized treatment plan of case 2.

(a) Nominal dose distribution on a 0-70 Gy dose scale. (b) Expected dose distribution on a 0-70 Gy dose scale.

(c) Nominal dose distribution on a 55-65 Gy dose scale. (d) Expected dose distribution on a 55-65 Gy dose scale.

Figure 7.3: Axial cross-sections of the 3D spine geometry at the plane corresponding to y = 5 mm with the nominal and
expected dose distributions on a 0-70 Gy dose scale, (a) and (b) respectively, and on a 55-65 Gy dose scale, (c) and (d)
respectively, for the optimized treatment plan of case 2. All voxels with a dose less than 55 Gy are given the same color as
the 55 Gy boundary for the 55-65 Gy scale.
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(a) (b)

Figure 7.4: Dose volume histograms of the nominal and expected dose in the tumor, spine and healthy tissue (a) and only
the tumor (b) for the optimized treatment plan of case 2.

The optimized treatment plan of case 2 is in the nominal and expected dose distributions similar to that of
case 1, but the dose levels in the tumor are slightly higher due to the constraint on the expected mean dose
in the tumor. To compare the results of cases 1 and 2, in Figure 7.5a the differences in the expected dose
in the tumor, spine and healthy tissue between the two treatment plans are summarized in a dose volume
histogram and in Figure 7.5b the differences in expected dose in the tumor are highlighted.

(a) (b)

Figure 7.5: Dose volume histograms of the expected dose to the tumor, spine and healthy tissue (a) and only the tumor
(b) for the optimized treatment plans of cases 1 and 2.

The dose volume histograms in Figure 7.5 show that the expected dose in the tumor is consistently higher for
all volume fractions in the treatment plan of case 2, resulting in almost equal parts of the tumor to be over-
and underdosed. On the other hand, the expected dose in the tissue is slightly lower in the treatment plan of
case 1 for the 0-40% volume fraction range. The expected dose in the spine seems to be the same for the two
treatment plans. Through the assigned weights to the different voxels in the domain and possible constraints
on the dose in the tumor or the spine, one could find a treatment plan that spares the spine more or irradiates
the tumor more, depending on the desired outcome. In the end, the expected mean dose in the tumor is 59.6
Gy and 60.0 Gy in the treatment plans of cases 1 and 2 respectively. The solution of case 2 is found at the
boundary of the constraint of 60 Gy for the expected mean dose in the tumor. A possible reason for this is that
the optimization in case 2 with the constraint on the beam intensities to be non-negative and the constraint
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on the expected mean dose in the tumor results in an optimization over a convex set, and that the objective
function is convex, as claimed in [12].

The result of the optimized treatment plan of case 1 is in accordance with the work of [12]. The compu-
tation times for the construction of the PCEs are longer in this research, probably because of the difference
in hardware that is used for the computations and a different number of jobs that was present in the cluster.
The computation times of the optimization itself are also different, being faster in this research. A possible
reason for this difference is that in [12] no Hessian matrix is supplied to the optimizer, and therefore resulting
in longer calculations through the approximations of the Hessian matrix.

7.2. EXACT IMPROVEMENTS ON ALGORITHM
In this section, improvements on Algorithm 1 are discussed. In total three improvements are treated, which
speed up the computation time, whilst yielding the exact same result. In Chapter 7.2.1, a method for parallel
dose calculations in the PCE construction is discussed, and Chapters 7.2.2 and 7.2.3 focus on speeding up
the gradient and Hessian matrix computation respectively. In Chapter 7.2.4, the overall improvement on the
computation time of Algorithm 1 is summarized.

7.2.1. PARALLEL DOSE CALCULATIONS FOR PERTURBED BEAM INTENSITIES
The first improvement on Algorithm 1 is found in the construction of the matrices Xg r ad and XHess in Equa-
tions 6.2 and 6.3 in Chapter 6.2. In [12] the matrices Xg r ad and XHess are constructed through addition of the
beam intensity vector to every column of a step matrix, Sg r ad and SHess respectively, containing the single
(and double) step size increases h for all constructed PCEs. In Matlab this can be performed as:{

Xg r ad = x +Sg r ad ,

XHess = x +SHess ,
(7.1)

with Sg r ad ∈ R(Nb )×(1+Nb ) and SHess ∈ R(Nb )×
(
1+Nb+ 1

2

(
Nb+N 2

b

))
. The matrices Sg r ad and SHess are constructed

with one and two for-loops respectively to fill in the step matrix, which is quite costly. Afterwards, the matrix
with the base and perturbed dose vectors is calculated through multiplication of the dose deposition matrix
with the Xg r ad or XHess matrix. For the 3D spine geometry with the voxel and beamspot grid defined as in
Chapter 6.1, the construction of 1+Nb + 1

2

(
Nb +N 2

b

)= 439,453 PCEs of dα%(x ,ξ) for the base beam intensity
vector and all single and double perturbed versions with PCE characteristic L7E1O8 in the HPC cluster with
one processor and 50 GB of storage memory available takes approximately 1,300 seconds.

The improvement on this calculation is based on the fact that the dose in each voxel is a linear combi-
nation of the contribution of each beamspot to that voxel and the intensities of the beamspots, as shown in
Equation 3.4. Therefore, for the single perturbed beam intensity cases the dose increases for the Nb cases can
be computed all at once via h ·D(ξ) for step size h > 0 and the resulting matrix with perturbed dose vectors
dg r ad (x ,ξ,h) can in Matlab be computed as:

dg r ad (x ,ξ,h) = D(ξ) · x +h ·D(ξ). (7.2)

A similar, but slightly more complicated procedure can be used to calculate the matrix dHess (x ,ξ,h), contain-
ing all 1+Nb + 1

2

(
Nb +N 2

b

)
perturbed dose vectors. In Matlab this can be coded as follows in Algorithm 2, in

which dHess [∗, i ] denotes the i -th column of matrix dHess and ||nj=1dHess [∗, i ] denotes the vertical concatena-

tion of the i -th column of dHess n times.

Algorithm 2 Compute dHess (x ,ξ,h)

1: dHess [∗,1] = D(ξ) · x
2: dHess [∗,2 : Nb +1] = D(ξ) · x +h ·D(ξ)
3: j = Nb +2
4: k = 2Nb +1
5: for i = 1 : Nb do
6: dHess [∗, j : k] = dHess [∗,1]+dHess [∗,2+ i : Nb +1]+||Nb+1−i

n=1 dHess [∗,1+ i ]
7: j = j +Nb +1− i
8: k = k +Nb − i
9: end for
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With the same geometry and PCE settings in the HPC cluster the construction of PCEs of dα%(x ,ξ) for the
base beam intensity vector and all single and double perturbed intensities takes approximately 200 seconds.
This results in roughly a factor of six decrease in computation time for this part of Algorithm 1.

7.2.2. GRADIENT COMPUTATION

The improvement on the gradient computation of Algorithm 1 involves vectorization of the Nb calculations
as in Equation 5.12. In previous research of [12] the elements of the gradient vector were calculated element-
wise, whereas the computation time could easily be reduced with the use of vectorization. For the specified
beamspot grid as in Chapter 6.1 with Nb = 936 the computation time has been reduced from 1.0 seconds to
5 ·10−4 seconds. This is a small improvement compared to the other two improvements.

7.2.3. HESSIAN MATRIX COMPUTATION

The Hessian matrix computation of Algorithm 1 is based on Equation 5.13. In previous research of [12] the
1
2

(
Nb +N 2

b

)
elements of the upper, or lower, triangular part of the Hessian matrix, as the Hessian matrix is

symmetric, were calculated with a double for-loop, one over the columns and one over the rows. This is a
costly computation and takes approximately 1,500 seconds for the 3D geometry.

The improvement on the Hessian matrix computation involves the use of a sparse matrix and vector mul-
tiplication instead of the double for-loop. The 1+Nb + 1

2

(
Nb +N 2

b

)
percentile values of the base case and all

perturbed cases can be stored in a column vector. Then, the elements of the Hessian matrix can be calculated
at once with a matrix-vector multiplication. Looking at Equation 5.13 each row of this multiplication matrix
will consist of four nonzero elements; twice a factor 1

h2 and twice a factor − 1
h2 on the positions that corre-

spond to the right elements of the vector with percentile values. As each row of this multiplication matrix has
only four nonzero elements, this matrix can be made sparse to save storage memory for an 1

2

(
Nb +N 2

b

)
by

1+Nb + 1
2

(
Nb +N 2

b

)
matrix. This large sparse matrix only uses 32 MB of memory in the case Nb = 936. The

multiplication matrix only has to be constructed once for the full optimization as the multiplication coeffi-
cients are the same for each iteration. Only the column vector with percentile values changes per iteration.
For the 3D geometry the construction of this sparse multiplication matrix takes approximately 29 seconds
and the Hessian matrix calculation takes only 1.0 seconds. This shows a very large decrease in computation
time.

7.2.4. OVERALL IMPROVEMENT ON ALGORITHM’S COMPUTATION TIME

After discussing the three different improvements on Algorithm 1, it is time to summarize the overall improve-
ment on the computation time for a single iteration step in the optimization. These results are summarized
in Table 7.3.

Table 7.3: Computation times of the different parts in Algorithm 1 for the approach in [12] and the three improvements.

Part of algorithm: Old approach New approaches

Construction of 1+Nb + 1
2

(
Nb +N 2

b

)
PCEs of dα%(x ,ξ) 1,300 s 200 s

Computation of gradient of β%-probabilistic dα%(x) 1 s 5 ·10−4 s
Construction of sparse multiplication matrix - 29 s
Computation of Hessian of β%-probabilistic dα%(x) 1,500 s 1 s

Total: 2,801 s 230 s

The first and third improvement show a large decrease in computation time compared to the second improve-
ment. In total, the computation time is roughly decreased by a factor of 12. All three improvements result in
the exact same outcome as the methodology used in [12]. The part of the algorithm that has not been covered
yet is the actual percentile calculations for all PCEs of dα%(x ,ξ). This methodology and a proposition of an
approximation method are discussed in Chapter 7.4.

7.3. MONOTONICITY CONSTRAINT ON PCE COEFFICIENTS
In Chapter 6.3, a constraint on the PCE coefficients is derived to ensure monotonicity of the PCE with re-
spect to the beam intensity vector in the ideal case where the PCE is constructed with an infinite amount of
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basis functions. As in practice always a finite polynomial expansion is constructed, still problems with mono-
tonicity might occur. This section focuses on the differences in monotonicity of the β%-probabilistic dα%(x)
between the cases with and without constraint on the coefficients of the PCE of dα%(x ,ξ).

In Figure 7.6 the values of the 95%-probabilistic d98%(x), the probabilistic near-minimum dose, are shown
for the base beam intensities and all the single perturbed versions without and with constraint on the PCE
coefficients. Figure 7.7 shows similar results as Figure 7.6 for the 5%-probabilistic d2%(x), the probabilistic
near-maximum dose. The results are retrieved from the 3D spine geometry with the base beam intensity
vector obtained from the optimized treatment plan of case 1 in Chapter 7.1. The PCEs are constructed with
the characteristics L7E1O8 and are sampled 500,000 times. The step size is chosen as h = 0.005, whereas the
base beam intensities are in the range of 0-0.4 MU. To compare the cases with and without constraint on the
PCE coefficients, the same set of samples is used for both cases.

(a) Without constraint on PCE coefficients. (b) With constraint on PCE coefficients.

Figure 7.6: Values of the 95%-probabilistic d98%(x) for the base beam intensities and all the single step size increased
versions with the base beam intensity vector from the optimized plan of case 1. The PCEs are constructed without (a) and
with (b) constraint on the PCE coefficients respectively. The horizontal axis is based on an ordering of the Nb beamspots
in the created grid, so n ∈ {

1, . . . , Nb
}
. The Nb percentile values for the perturbed beam intensities are connected for

clarity.

The results in Figure 7.6 show good improvement in terms of monotonicity with respect to the beam intensity
vector. The values of the 95%-probabilistic d98%(x) become fully monotonic when the constraint on the PCE
coefficients is applied. This constraint not only affects the value of non-monotonic perturbed percentiles,
but improves the accuracy of the percentile value for all perturbed PCEs due to a more accurate construction
of the PCEs. This results in quite some differences between Figure 7.6a and Figure 7.6b, when looking at
the ‘peaks’. Even though the non-monotonic behavior is small in Figure 7.6a, it effects the calculation of the
gradient, becoming negative, which is physically incorrect and could drive the optimization in the wrong
direction.
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(a) Without constraint on PCE coefficients.

(b) With constraint on PCE coefficients.

Figure 7.7: Values of the 5%-probabilistic d2%(x) for the base beam intensities and all the single step size increased
versions with the base beam intensity vector from the optimized plan of case 1. The PCEs are constructed without (a) and
with (b) constraint on the PCE coefficients respectively. In the left images the percentile values are shown and in the right
images the differences between the perturbed percentile values and the base percentile value are shown. The horizontal
axis is based on an ordering of the Nb beamspots in the created grid, so n ∈ {

1, . . . , Nb
}
. The Nb percentile values for the

perturbed beam intensities are connected for clarity.

Similarly to Figure 7.6, the results in Figures 7.7 also show improvements in terms of monotonicity with re-
spect to the beam intensity vector. In this case, the effects of non-monotonicity in Figure 7.7a are even smaller
than in Figure 7.6a, but some of the visible ‘peaks’ are different when comparing Figure 7.7a and Figure 7.7b.

Even though the results of the 95%-probabilistic d98%(x) and the 5%-probabilistic d2%(x) are fully mono-
tonic, non-monotonic behavior could in theory still occur in the PCE of d98%(x ,ξ) at certain arguments ξ.
This can occur at arguments for which some PC basis vectors in Equation 6.7 have a negative value, since in
both cases with and without constraint the same set of PC basis vectors is used for the PCE construction. The
PCEs of dα%(x ,ξ) with constraint on the PCE coefficients are still an approximation. However, as derived in
Chapter 6.3, any non-monotonic behavior should completely disappear in the case P →∞ in Equation 6.7.
Nevertheless, the constraint on the PCE coefficients will mitigate the non-monotonic behavior and will thus
improve the accuracy of the ‘perturbed’ probabilistic dose volume parameters.
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To review the converging monotonic behavior of the perturbed PCEs of dα%(x ,ξ) with constraint on the
PCE coefficients, in Figure 7.8 the results of PCEs of d98%(x ,ξ) and d2%(x ,ξ) are shown, comparing Ns =
500,000 sample values for the base PCE and all single step size perturbed PCEs for increasing polynomial
orders and grid levels in the PCE construction. As a measure of non-monotonicity all negative differences
between the perturbed PCE sample values and the base PCE sample values are summed. The step size is
again chosen as h = 0.005 and the base beam intensities are retrieved from the optimized treatment plan of
case 1 in Chapter 7.1.

(a) Results for PCEs of d98%(x ,ξ). (b) Results for PCEs of d2%(x ,ξ).

Figure 7.8: Summed contributions of non-monotonicity of the PCEs of d98%(x ,ξ) (a) and d2%(x ,ξ) (b) for single per-
turbed beam intensities, compared to the PCE for the base beam intensities for increasing polynomial orders and grid
levels. The step size is chosen as h = 0.005 and each PCE is sampled on the same Ns = 500,000 arguments ξ. The data
points visualize the result for different PCE characteristics: LaE1Ob for polynomial orders b ∈ {2, . . . ,20} and grid levels
a = b −1. A power curve of the form f (x) = a1 ∗xa2 is fitted through the data points.

In Figures 7.8a and 7.8b a decrease in non-monotonic behavior of the perturbed PCEs can be seen. In both
figures, a curve of the form f (x) = a1 ∗ xa2 is fitted through the data points with the Curve Fitting toolbox in
Matlab to review the trend of the data points for increasing polynomial orders and grid levels. As expected,
a converging behavior is visible towards full monotonicity of the perturbed PCEs of d98%(x ,ξ) and d2%(x ,ξ).
However, it is difficult to conclude convergence towards monotonicity from these results alone, apart from
the underlying theory.

7.4. CALCULATION OF PROBABILISTIC DOSE VOLUME PARAMETERS
In previous research of [12], the 1 + Nb + 1

2

(
Nb +N 2

b

)
values of the β%-probabilistic dα%(x) for the base

beam intensity vector x and all the single and double perturbed versions x +hên and x +hêm +hên with
n,m ∈ {1, . . . , Nb} were calculated through separate constructions of PCEs of dα%(x ,ξ) for each configuration
of beam intensities, sampling each individual PCE Ns times and using the Prctile function in Matlab to obtain
the percentile values. For every PCE this function sorts the PCE samples in increasing order, the index that
corresponds to the desired (100−β)-th percentile is calculated via the following equation:

Index = 100−β
100

·Ns + 1

2
, (7.3)

and the right value out of the sorted list of PCE samples is obtained [45]. In the case that the percentile index
is an integer, the percentile value is directly found from the sorted list, but otherwise, linear interpolation
is used between the two surrounding values in the sorted list. This is a costly computation, and therefore,
the choice of the sample size is a trade-off between the accuracy and the computation time of the percentile
calculation.

In order to have an idea about the accuracy of the percentile calculation for different sample sizes, Figure
7.9 shows approximations of the 95%-probabilistic d98%(x) and the 5%-probabilistic d2%(x) for 15 realizations
of different sets of samples per specified sample size. The sample size is varied between Ns = 103 and Ns =
107, increasing in factors of 10. The beam intensity vector is obtained from the optimized treatment plan of
case 1 in Chapter 7.1.
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(a) Results of 95%-probabilistic d98%(x). (b) Results of 5%-probabilistic d2%(x).

Figure 7.9: Approximations of the 95%-probabilistic d98%(x) (a) and the 5%-probabilistic d2%(x) (a) with varying sample
sizes Ns = 10i for i ∈ {3,4,5,6,7}. For each value of Ns the results from 15 different realizations of sets of samples are
shown.

The results in Figure 7.9 show a large difference in variance in the percentile value between the 95%-prob-
abilistic d98%(x) and the 5%-probabilistic d2%(x). The absolute differences between realizations are much
larger in the d98% case than in the d2% case, which is expected as we are looking at the maximum dose in a
much larger volume fraction in the first case, while considering a large set of error scenarios, and the dose
distributions in the tumor are not completely homogeneous. Also, for this considered beam intensity vec-
tor from a probabilistic plan Figure 7.1 shows quite an expansion of the PTV in the direction of the set-up
uncertainty. This makes the percentile values less sensitive to a difference in sample argument in the 95-th
percentile case, the 5%-probabilistic d2%(x), where the less extreme error scenarios are more important com-
pared to the 5-th percentile case, the 95%-probabilistic d98%(x), where the more extreme error scenarios are
considered. In the extreme scenarios there is a steeper dose fall-off outside of the tumor, which makes the
percentile value more sensitive to a difference in sample argument.

The computation times are exactly the same for the calculation of the β%-probabilistic dα%(x) for dif-
ferent values of α and β. The computation times for the calculation of the β%-probabilistic dα%(x) for the
base beam intensities and all of the single and double perturbed beam intensity configurations are sum-
marized in Table 7.4 for the same sample sizes as in Figure 7.9, and are performed in the HPC cluster with
one processor and 50 GB of storage memory available. Since there is not enough storage capacity for all the
Ns ×

(
1+Nb + 1

2

(
Nb +N 2

b

))
PCE samples to calculate all percentile values at once, this calculation has to be

performed in batches with a specified memory size. This does lead to the same computation times as com-
puting the percentile values at once.

Table 7.4: Computation times for the calculation of the β%-probabilistic dα%(x) for the base beam intensities and all
single and double perturbed versions for the 3D spine geometry for different sample sizes.

Number of samples: Computation time:

1,000 7.4 s
10,000 76.2 s
100,000 1,100 s ≈ 18 min
1,000,000 13,200 s ≈ 220 min ≈ 3.67 h
10,000,000 159,300 s ≈ 44.25 h

The computation times in Table 7.4 do not show a linear dependence on the sample size. This could be ex-
plained in two ways: the computation times are slowed down due to a larger memory usage, and the compu-
tation time of sorting the Ns PCE samples is not linearly dependent on the sample size. When combining the
results in Figure 7.9 and Table 7.4, it seems the case that for smaller values ofα andβ the trade-off between the
accuracy of the percentiles values and the computation time is less present. At least in the 5%-probabilistic
d2%(x) case, a small number of samples, around Ns = 1,000−10,000, already leads to a maximum difference
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of 0.05 Gy between the different realizations. For larger values of α and β this trade-off needs to be taken into
account. In the 95%-probabilistic d98%(x) case at a large sample size of around Ns = 100,000 there is still a
maximum difference of 0.3 Gy between the different realizations. Inaccuracies in the percentile values that
are too large might drive the optimization of a treatment plan in the wrong direction through the values of
the gradient and Hessian or might lead to oscillations when considering a small dose scale. However, the
inaccuracies could partly be mitigated through the use of the same sample set for all PCEs in one iteration.
On the other hand, a too large computation time is problematic for the application in medical clinics.

In [12] for all probabilistic dose volume parameters a sample size of Ns = 500,000 and the PCE charac-
teristic L5E1O6 are used. Then, the percentile calculation takes approximately 5,600 seconds and the PCE
construction 1,200 seconds in the HPC cluster with one processor and 50 GB of storage memory available.
This computation time of the PCE construction corresponds to the old approach. With the new approach the
computation time would be decreased to approximately 170 seconds. The results in Table 7.3 then show that
in Chapter 7.2 the computation time of Algorithm 1 is decreased by

(
1− 200s+5600s

2700s+5600s

) · 100% ≈ 30% through
the three improvements. This will also yield a similar speed-up for the full optimization of a treatment plan,
depending on the dose parameters in the objectives and constraints, and their computation times. Unfor-
tunately, the percentile calculations still consume 5600s

2700s+5600s · 100% ≈ 67% of the complete computation
time of Algorithm 1 in the old approach. Therefore, other methods are needed to reduce the computation
time of Algorithm 1 even further. For this purpose, an approximation method for the calculation of the β%-
probabilistic dα%(x) for perturbed beam intensity vectors is devised.

7.4.1. APPROXIMATION METHOD FOR ‘PERTURBED’ PROBABILISTIC DOSE VOLUME PARAM-
ETERS

The approximation method is based on the question whether in general there exists a realization of the un-
certainty vector in the multidimensional sample space that corresponds to the percentile of dα%(x ,ξ) for a
certain beam intensity vector x and all its step size perturbed versions. If so, one could approximate the
argument of the β%-probabilistic dα%(x) through sampling for a relatively large sample size and use this ar-
gument to evaluate all PCEs for the perturbed beam intensity cases. This would reduce the computation
time in the percentile calculation for the 1+Nb + 1

2

(
Nb +N 2

b

)
PCEs significantly to the order of only 1 second.

Also, there would not be a trade-off between the sample size and the computation time anymore as only the
PCE for the base beam intensities is sampled and the percentile calculation is performed once. With this
method, the computation time of Algorithm 1 would be reduced from roughly 5,600+2,700 = 8,300 seconds
to only 170+30+1 = 201 seconds for the 3D spine geometry with the calculations on the HPC cluster with
one processor and 50 GB of memory available when using a sample size of 500,000 and the PCE characteristic
L5E1O6.

In the ideal case, the PCEs are constructed with an infinite amount of basis functions. Then, monotonicity
of dα%(x ,ξ) over the beam intensity vector is definitely satisfied. With this approach the PCE for the base
beam intensity vector is sampled Ns times, with the samples chosen randomly from the Gaussian distribution
of the uncertainty vector, to obtain the PCE sample set

{
dα%

(
x ,ξ1

)
, . . . ,dα%

(
x ,ξNs

)}
with the corresponding

Gaussian sample set
{
ξ1, . . . ,ξNs

}
. This set of dα%(x ,ξ) values is then sorted in increasing order to obtain the

set
{

d (1)
α%(x), . . . ,d (Ns )

α% (x)
}

. For a certain percentile index γ, following from Equation 7.3, the β%-probabilistic

dα%(x) is found as d (γ)
α%(x), for which linear interpolation is used between the values d (bγc)

α% (x) and d (dγe)
α% (x) in

the case that γ is not an integer. Here, b·c and d·e denote the floor and ceiling function respectively. Also, when
γ is not an integer, as percentile argument either ξ(bγc) or ξ(dγe) should be chosen to evaluate the PCEs for the
perturbed beam intensity vectors on. Linear interpolation between ξ(bγc) and ξ(dγe) will not work in general as
there could be multiple arguments that yield the same percentile value.

When considering the same sample set from the uncertainty vector for all PCEs, the set of dα%(x ,ξ) values
are not the same for each PCE with perturbed beam intensities. For an arbitrary percentile index γ the same

argument corresponds to the β%-probabilistic dα%(x) for each PCE if the ordering
{

d (1)
α%(x), . . . ,d (Ns )

α% (x)
}

is

unchanged. Otherwise, this will not hold. In general, this only holds if the value of dα%
(
x +h ·∑M

i=1 êki ,ξ
)

for
an arbitrary, positively perturbed version of the beam intensity vector x with M ∈N, h > 0 and ki ∈ {1, . . . , Nb}
is the value of dα%(x ,ξ) plus a certain shift H , which is dependent on the perturbation h ·∑M

i=1 êki . Mathe-
matically, this is written as:

dα%

(
x +h ·

M∑
i=1

êki ,ξ

)
= dα%(x ,ξ)+H

(
h ·

M∑
i=1

êki

)
, ∀h > 0, ∀ξ ∈RN , ∀M ∈N, ∀ki ∈ {1, . . . , Nb}. (7.4)
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From Equation 3.4 it is clear that the dose vector is a linear function of the beam intensity vector, but it is not
the case in general that a perturbation of beam intensities yields the same increase in the dose vector for each
realization of the uncertainty vector. Therefore, the percentile argument ξ(γ) becomes an approximation for
the PCEs of perturbed beam intensity vectors in the case h > 0. For h = 0 this relation obviously holds with
H(0) = 0, so the method should improve in accuracy for h → 0. At the same time, in practice the PCEs are
constructed with a finite number of basis functions, in which certain inaccuracies arise. The accuracy of this
approximation method should therefore also improve for increasing number of basis functions in the PCE
construction.

In the implementation of this approximation method on the 3D spine geometry, with the beam intensity
vector from the optimized treatment plan of case 1 in Chapter 7.1, some inconsistency in results has been
found in the approximation of the β%-probabilistic dα%(x) for the perturbed beam intensities as needed in
the forward finite difference scheme. Figure 7.10 shows the approximation of the 95%-probabilistic d98%(x +
hên) for n ∈ {1, . . . , Nb} for a set of 500,000 Gaussian samples for this approximation method and the exact
method with step size h = 0.005. As for Ns = 500,000 and β = 95 the percentile index γ is not an integer, a
choice has to be made about which percentile argument to evaluate the PCEs for perturbed beam intensities
on. In Figures 7.10a and 7.10b the results are shown when the percentile arguments ξ(bγc) and ξ(dγe) are used
respectively.

(a) Evaluation of ‘perturbed’ PCEs with ξ(bγc).

(b) Evaluation of ‘perturbed’ PCEs with ξ(dγe).

Figure 7.10: Values of the 95%-probabilistic d98%(x) for the base beam intensities (dotted line) and for the single step size
perturbed beam intensities (solid lines) with step size h = 0.005. In blue the exact percentile values are shown, and in red
the percentile values from the approximation method are shown for the two percentile arguments ξ(bγc) in (a) and ξ(dγe)

in (b). The perturbed percentile values are connected for clarity.

The differences in the approximation of the percentile values in Figure 7.10 originates from the fact that the
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PCE of d98%(x ,ξ) with this specific beam intensity vector yields two distinct arguments in the sample space
that correspond to the 5-th percentile and that for the used Gaussian sample set the results in Figures 7.10a
and 7.10b follow from these two distinct arguments. The perturbed percentile values in Figure 7.10 are con-
nected for clarity. The peaks that are visible seem to be the result from intensity increases at beamspots that
are inside the tumor or near the tumor in the direction in which the set-up uncertainty is defined. The in-
creased beam intensities have different influences on the d98%(x +h · ên ,ξ) for different arguments ξ due to
the location of the beamspots. In the results of Figure 7.10a the percentile values at the peaks seem to be
overestimated. Similarly, in Figure 7.10b the percentile values at the peaks seem to be underestimated. Fig-
ure 7.11 shows that using linear interpolation between ξ(bγc) and ξ(dγe) to evaluate the PCEs for perturbed
beam intensities on will not work in general, and therefore, another method is needed for more accurate ap-
proximations. In Figure 7.12 the results are shown similarly to Figure 7.10, but now the percentile value of
each ‘perturbed’ PCE is averaged over the outcomes at arguments ξ(bγc) and ξ(dγe). In Figures 7.10 and 7.12
the same set of Gaussian samples is used.

Figure 7.11: PCE of d98%(x ,ξ) with characteristic L7E1O8 and the beam intensity vector obtained from the optimized
treatment plan of case 1. Also, a horizontal line at the 95%-probabilistic d98%(x), calculated from 500,000 samples, and
two vertical lines at the two distinct percentile arguments are drawn.

Figure 7.12: Values of the 95%-probabilistic d98%(x) for the base beam intensities (dotted line) and for the single step size
perturbed beam intensities (solid lines) with step size h = 0.005. In blue the exact percentile values are shown, and in red
the percentile values from the approximation method are shown with the outcome of the ‘perturbed’ PCEs averaged over
the two distinct percentile arguments. The perturbed percentile values are connected for clarity.

In Figure 7.12 the results with the approximation method are much better than in Figure 7.10. The problem
is, however, that in general for an arbitrary patient geometry, beam intensity vector and set of uncertain
parameters the number of distinct percentile arguments is unknown and that the arguments themselves are
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difficult to find in a robust manner. Therefore, instead of the two distinct percentile argument averaging an
approximation method is tested in which the outcome of each PCE with a perturbed beam intensity vector

is averaged over a number of arguments that yield values closest to d (γ)
α%(x ,ξ) for the PCE that is constructed

with the base beam intensity vector. The idea is that then the inaccuracies are mitigated when averaging over
multiple arguments. Figures 7.13, 7.14 and 7.15 show the results of this approximation method on the 95%-
probabilistic d98%(x) and the 5%-probabilistic d2%(x) for the 4, 6 and 8 nearest argument averaging methods
respectively. Here, a different set of Gaussian samples is used compared to Figures 7.10 and 7.12.

(a) Results of 95%-probabilistic d98%(x). (b) Results of 5%-probabilistic d2%(x).

Figure 7.13: Results of the 4 arguments averaging approximation method on the 95%-probabilistic d98%(x) (a) and the
5%-probabilistic d2%(x) (b). In the top images, the base percentile value is shown as the black dotted line and the exact
and approximated perturbed percentile values are drawn as blue and red solid lines respectively. The middle images show
the exact and approximated values of the gradient and the bottom images show the absolute errors in the gradient. The
step size is chosen as h = 0.005 and the sample size as Ns = 500,000

(a) Results of 95%-probabilistic d98%(x). (b) Results of 5%-probabilistic d2%(x).

Figure 7.14: Results of the 6 arguments averaging approximation method on the 95%-probabilistic d98%(x) (a) and the
5%-probabilistic d2%(x) (b), similarly to Figure 7.13.
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(a) Results of 95%-probabilistic d98%(x). (b) Results of 5%-probabilistic d2%(x).

Figure 7.15: Results of the 8 arguments averaging approximation method on the 95%-probabilistic d98%(x) (a) and the
5%-probabilistic d2%(x) (b), similarly to Figures 7.13 and 7.14.

In Figures 7.13, 7.14 and 7.15 the approximated percentile values are for most of the ‘perturbed’ PCEs close to
the exact percentile values for both the 95%-probabilistic d98%(x) and the 5%-probabilistic d2%(x), meaning
that the absolute errors in the gradient are small compared to the actual gradient values. Also, from these
three figures it is difficult to conclude for which number of arguments the averaging method leads to more
accurate approximations. The accuracy will also differ for different sets of samples, and cannot be predicted.
An important result in the accuracy of the approximated gradient is that the peaks are still present at the
same locations as for the exact gradient, only having a slightly different height in some of the peaks. Figure
7.16 shows this result as a zoomed-in version of Figure 7.13 for a subset of 100 beamspots.

(a) Results of 95%-probabilistic d98%(x). (b) Results of 5%-probabilistic d2%(x).

Figure 7.16: Results of Figure 7.13, zoomed-in at a subset of 100 beamspots.

Unfortunately, this approximation method is quite heuristic. It is not possible to predict the accuracy of the
approximation of the perturbed percentile values, because the accuracy depends largely on the geometry,
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the beamspot grid, the defined uncertain parameters, the beam intensities, the step size and the considered
values ofα and β in the β%-probabilistic dα%(x). However, the results in Chapter 7.4.1 show quite a potential
in the approximation method in terms of accuracy, and definitely in terms of computation time. Therefore,
in Chapter 7.5 the approximation method is put into practice in optimizations on the 3D spine geometry. The
purpose of the optimizations is to investigate whether a decrease in treatment plan optimization time can be
achieved, and to investigate possible issues that might occur due to inaccuracies in the gradient and Hessian.

7.5. PROBABILISTIC PLANNING WITH PROBABILISTIC DOSE VOLUME PARAM-
ETERS

In this last section of Chapter 7, optimizations on the 3D spine geometry are performed in which the β%-
probabilistic dα%(x) is used. As this has not been done before in Matlab, optimizations are first performed
with the exact percentile calculations in Chapter 7.5.1. Here, the differences in performance and computation
time for different sample sizes are investigated. Similarly, in Chapter 7.5.2 the results are shown for the same
optimization problem, but with the approximation method used for the percentile calculations with different
cases for the number of arguments for averaging.

One type of optimization problem is treated, namely case 3 of Table 6.1. In this optimization problem,
just as in cases 1 and 2, the expected value of the quadratic differences between the prescribed dose and
the delivered dose in the full discretized domain is minimized as objective function, and a constraint is set
on the 95%-probabilistic d98%(x) in the tumor to be greater than or equal to 50 Gy. As a comparison, in the
optimized treatment plans of cases 1 and 2 the 95%-probabilistic d98%(x) in the tumor is 48.2 Gy and 48.3
Gy respectively. The goal of this constraint is to provide a better dose coverage in the tumor in the extreme
error scenarios, resulting in a larger automatic PTV expansion in the direction of the setup uncertainty, than
in cases 1 and 2.

The optimizations are again performed on the HPC cluster with 6 processors and 50 GB of storage mem-
ory available on one computer. The fmincon solver in Matlab is used with the optimization algorithm cho-
sen as the interior-point algorithm. The settings for the prescribed dose and voxel weight in each structure,
the considered uncertain parameter, the PCE characteristics, the step size for the calculation of the 95%-
probabilistic d98%(x) for perturbed beam intensities and the starting beam intensity vector are shown in Table
7.5.

Table 7.5: Parameter settings for the optimizations of case 3.

Prescribed dose: Structure: Value:

Tumor 60 Gy
Spine 0 Gy
Tissue 0 Gy

Voxel weight: Structure: Value:

Tumor 500
Spine 500
Tissue 1

Uncertain parameter: Type: Distribution:

Set-up uncertainty in x-direction N
(
0,0.32

)
[cm, cm2]

PCE: Object: Characteristic: Cut-off value:

All PCEs for objective function L5E0O1 10−3

All PCEs for constraint L7E1O8 10−3

Step size: Value:

0.005

Starting vector: Type:

Random values in range 0 - 0.4 MU

Almost all parameters that coincide with cases 1 and 2 are kept the same in case 3. Only the starting vec-
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tor is here chosen as a vector with random values between 0 and 0.4 MU, for which the value of the 95%-
probabilistic d98%(x) is in the feasible region of the constraint. Choosing the starting vector as the zero vector
or the optimized beam intensity vector from either case 1 or 2 unfortunately results in starting at the infeasi-
ble region of the constraint. The range 0-0.4 MU is chosen, because this is the range of the beam intensities
in cases 1 and 2. The same realization of this random vector is used for all optimizations of case 3, the starting
value of the 95%-probabilistic d98%(x) being 303 Gy.

In order to investigate the accuracy of the PCE of d98%(x ,ξ) for different PCE characteristics, Figure 7.17
compares the exact values and the PCE approximations for various grid levels and polynomials orders. The
beam intensity vector is obtained from the optimized treatment plan of case 1. The interval of setup error
scenarios in Figure 7.17 is chosen as [−1.2,1.2] in centimeters, covering 99.9% of the underlying Gaussian
sample space.

Figure 7.17: Exact values and PCE approximations of d98%(x ,ξ) for increasing grid levels and polynomial orders. The PCE
characteristics are LaE1Ob for polynomial orders b ∈ {4,5,6,7,8,9} and grid levels a = b −1.

From the results in Figure 7.17, the PCE characteristic L7E1O8 is chosen for all PCEs that need to be con-
structed for the 95%-probabilistic d98%(x). This PCE approximation is accurate up to almost 3 times the
standard deviation of the setup uncertainty, covering 99.7 % of the underlying Gaussian sample space and
thus also the 5-th percentile of d98%(x ,ξ), which we are interested in.

Furthermore, a step size needs to be chosen for the construction of PCEs of the 95%-probabilistic d98%(x)
for the perturbed beam intensities. In order to compare the accuracy of the gradient calculation for differ-
ent step sizes, Figure 7.18 shows for a subset of 100 beamspots the gradient values of the 95%-probabilistic
d98%(x) for 10 different realizations of sets of 500,000 samples for various step sizes. The beam intensity vector
is again obtained from the optimized treatment plan of case 1.
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Figure 7.18: Values of the gradient of the 95%-probabilistic d98%(x) for a subset of 100 beamspots for various step sizes.
Per step size the results of 10 different realizations of sets of 500,000 samples are shown. The values of the gradient are
connected for clarity.

The results in Figure 7.18 show decreasing accuracy in the gradient calculation for smaller step sizes. Also, the
differences in the gradient between different realizations is larger for smaller step sizes. This inconsistency
originates from the fact that the 95%-probabilistic d98%(x) is a stochastic variable. The consistency deteri-
orates for smaller step sizes, because of two reasons. The first reason is that errors in the PCE construction
are more prevalent when comparing the differences between the PCE for the base intensities and a PCE for
perturbed intensities for smaller step sizes. The second reason is that through the finite difference scheme
in Equation 5.12 the errors in the gradient blow up for smaller step sizes. From these results, the step size
h = 0.005 is chosen for the optimizations, because the gradient values are relatively consistent across the
realizations and because a better accuracy of the approximation method is expected for smaller step sizes.

7.5.1. EXACT METHOD
The exact method is used in three different optimizations, subcases 3.1, 3.2 and 3.3 of case 3. In these three
subcases the number of samples for the calculation of the 95%-probabilistic d98%(x) for the base and per-
turbed beam intensity vectors is varied, as shown in Table 7.6.

Table 7.6: The three different subcases for optimizations of case 3 with the exact method.

Case: Number of samples:

3.1 50,000
3.2 250,000
3.3 500,000

The optimizations of cases 3.1, 3.2 and 3.3 took 49.3, 111.2 and 125.3 hours with 197, 139 and 73 iterations
respectively. With the defined settings, one iteration of the optimization takes approximately 15, 48 and 103
minutes for cases 3.1, 3.2 and 3.3 respectively. The differences in computation time between the three sub-
cases and the optimized constraint values are displayed in Table 7.7.
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Table 7.7: Computation times of one iteration and the full optimization, and the number of iterations for the three prob-
abilistic plans of the subcases of case 3 with the exact method.

Case: Iteration: Number of iterations: Optimization:

3.1 15 min 197 49.3 h ≈ 2.1 days
3.2 48 min 139 111.2 h ≈ 4.6 days
3.3 103 min 73 125.3 h ≈ 5.3 days

The results in Table 7.7 show a decrease in the number of iterations for the optimizations when a larger sam-
ple size is used. This is due to a more accurate calculation of the value, gradient and Hessian of the 95%-
probabilistic d98%(x). However, due to the longer computation times for larger sample sizes, the optimization
of case 3.1 results in the shortest computation time for the three subcases with the exact method. Apparently,
with the inaccuracies in the value, gradient and Hessian of the 95%-probabilistic d98%(x) for smaller step sizes
the optimizations are still able to converge with the interior-point algorithm. The nominal and expected dose
distributions of the optimized treatment plan of case 3.1 are shown in Figure 7.19.

(a) Nominal dose distribution on a 0-70 Gy dose scale. (b) Expected dose distribution on a 0-70 Gy dose scale.

(c) Nominal dose distribution on a 55-65 Gy dose scale. (d) Expected dose distribution on a 55-65 Gy dose scale.

Figure 7.19: Axial cross-sections of the 3D spine geometry at the plane corresponding to y = 5 mm with the nominal and
expected dose distributions on a 0-70 Gy dose scale, (a) and (b) respectively, and on a 55-65 Gy dose scale, (c) and (d)
respectively, for the optimized treatment plan of case 3.1. All voxels with a dose less than 55 Gy are given the same color
as the 55 Gy boundary for the 55-65 Gy scale.

The dose distributions in Figure 7.19 show good results in terms of dose coverage in the tumor in the nominal
scenario and also for the expected dose with an automatic expansion of the PTV in the direction of the set-up
uncertainty, as expected. The resulting nominal and expected dose distributions are more uniform than in
the optimizations of cases 1 and 2. Also, the PTV expansion is larger than in cases 1 and 2 due to the defined
constraint on the 95%-probabilistic d98%(x) in the tumor. At the same time, the spine is still nicely spared due
to the defined voxel weights in the objective function, but receives more dose than in cases 1 and 2. In Figure
7.20, dose volume histograms are shown for the nominal and expected dose distributions in the tumor, spine
and tissue for case 3.1 to fully review the optimized treatment plan.
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(a) (b)

Figure 7.20: Dose volume histograms of the nominal and expected dose in the tumor, spine and tissue (a) and only the
tumor (b) for the optimized treatment plan of case 3.1.

The dose volume histograms in Figure 7.20 show similar differences between the nominal and expected dose
distribution as in cases 1 and 2. However, in case 3.1 the dose levels in the tumor are much closer to the
prescribed dose of 60 Gy than in cases 1 and 2. On the other hand, the dose levels in the spine and tissue are
higher in case 3.1 than in cases 1 and 2. This optimization shows nicely the possibility of improving the dose
distribution in the tumor when using probabilistic dose volume parameters in treatment planning. The op-
timized treatment plan has clinically more relevance due to the use of probabilistic dose volume parameters
compared to cases 1 and 2, however, the computation time for case 3.1 is much longer.

Possible ways to reduce the dose in the spine is to set a constraint on a probabilistic dose volume pa-
rameter in the spine or to increase the voxel weights of the spine in the objective function. To compare the
optimized treatment plans of cases 3.1-3.3, Figure 7.21 shows dose volume histograms of the nominal and
expected dose distributions in the tumor, spine and tissue for the three subcases.
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(a) (b)

(c) (d)

Figure 7.21: Dose volume histograms of the nominal and expected dose to the tumor, spine and tissue ((a) and (c)) and
only the tumor ((b) and (d)) for the optimized treatment plans of cases 3.1-3.3.

The dose volume histograms in Figure 7.21 show that the optimized treatment plans in cases 3.1, 3.2 and 3.3
are almost identical. There is only a very small difference of approximately 0.2 Gy in the nominal dose in
the tissue in Figure 7.21a between case 3.1 and the two other cases in the 0-5 Gy dose range. This is not a
significant difference in the outcome of the optimizations and could be due to a less accurate calculation of
the 95%-probabilistic d98%(x) in case 3.1.

As a difference in the number of iterations is found in cases 3.1-3.3, Figure 7.22 provides for these three
cases the value of the 95%-probabilistic d98%(x) in the tumor, the value of the objective function, and the
value of the first-order optimality measure per iteration of the treatment plan optimization. The first-order
optimality measure is a measure for the gradient of a constrained optimization problem and is calculated by
the fmincon solver [46].



7.5. PROBABILISTIC PLANNING WITH PROBABILISTIC DOSE VOLUME PARAMETERS 63

(a) Case 3.1.

(b) Case 3.2.

(c) Case 3.3.

Figure 7.22: Values of the 95%-probabilistic d98%(x) in the tumor (left), the objective function (middle) and the first-order
optimality measure (right) per iteration during the optimization of the probabilistic treatments plans of cases 3.1 (a), 3.2
(b) and 3.3 (c).
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The optimization data per iteration in Figure 7.22 show that for this starting vector with random values
the 95%-probabilistic d98%(x) is approximately 303 Gy. Then, the first 5-10 iterations the 95%-probabilistic
d98%(x) decreases rapidly towards the 50 Gy boundary, but also crosses this value. For the interior-point al-
gorithm in the fmincon solver the constraint boundary is not an active constraint and the optimization is
continued with an internal message that the constraint boundary has been violated. In cases 3.1 and 3.2,
the solver takes many iterations for the value of the 95%-probabilistic d98%(x) to get back to the feasible re-
gion, whereas in case 3.3 the feasible region is quickly found. This difference might be due to inaccuracies
in the gradient and Hessian of the 95%-probabilistic d98%(x) when smaller sample sizes are used. In cases
3.1-3.3, the optimizations stop at a point in the interior of the feasible constraint region, resulting in 95%-
probabilistic d98%(x) values of 52.89, 52.78 and 52.72 Gy respectively. The solutions show a slight difference
in the optimized 95%-probabilistic d98%(x) due to the inaccuracies for smaller sample sizes. At these solu-
tions, the default value of the relative tolerance on the first-order optimality measure of 10−6 is violated. The
value of the first-order optimality measure does not yet reach a value close to zero, as is expected for the gra-
dient at an optimum, but this is due to the relatively large starting value of the first-order optimality measure
for the starting beam intensity vector with random values and the chosen tolerance.

The solutions are not found at the boundary of the constraint of 50 Gy for the 95%-probabilistic d98%(x)
in the tumor, but in the interior of the feasible region. A possible reason for this is that the optimizations
in cases 3.1-3.6 with the constraint on the beam intensities to be non-negative and the constraint on the
95%-probabilistic d98%(x) in the tumor result in an optimization over a non-convex set, even though the
objective function is convex. To verify that the optimizations did converge, case 3.3 has been optimized again
twice. The first optimization is performed with the same tolerance level on the first-order optimality measure,
but starting at the solution of case 3.3. The second optimization is performed with a starting vector that
is a slightly perturbed version of the solution of case 3.3. This perturbation is chosen as a decrease in the
intensities of 0.5%. Both optimizations find the same solution as in case 3.3 within 5 iterations. From this, we
can conclude that the optimizations did converge and that the found solution is a local minimum.

7.5.2. APPROXIMATION METHOD
The approximation method is also used in three different optimizations, namely subcases 3.4, 3.5 and 3.6 of
case 3. In these three subcases, the number of samples for the calculation of the 95%-probabilistic d98%(x)
for the base and perturbed beam intensity vectors is chosen as Ns = 107, but the number of arguments that is
used for averaging is varied. Table 7.6 summarizes these three subcases.

Table 7.8: The three different subcases for optimizations of case 3 with the approximation method.

Case: Number of samples: Number of arguments for averaging:

3.4 107 4
3.5 107 6
3.6 107 8

The optimizations of cases 3.4, 3.5 and 3.6 took 16.5, 16.6 and 16.3 hours with 190, 191 and 187 iterations
respectively. For the defined settings one iteration of the optimization takes approximately 313 seconds. The
differences in computation time between the three subcases are displayed in Table 7.9.

Table 7.9: Computation times of one iteration and the full optimization, and the number of iterations for the three prob-
abilistic plans of the subcases of case 3 with the approximation method.

Case: Iteration: Number of iterations: Optimization:

3.4 313 s 190 16.5 h
3.5 313 s 191 16.6 h
3.6 313 s 187 16.3 h

The results in Table 7.9 show that for the optimizations of cases 3.4-3.6 take almost the same number of
iterations. The computation times per iteration are much shorter than in cases 3.1-3.3, and therefore, the
total optimization time is shorter for the approximation method than for the cases with the exact method.
Apparently, with the inaccuracies in the gradient and Hessian of the 95%-probabilistic d98%(x) due to the
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approximation method the optimizations are still able to converge with the interior-point algorithm. Figure
7.23 shows the nominal and expected dose distributions of the optimized treatment plan of case 3.4.

(a) Nominal dose distribution on a 0-70 Gy dose scale. (b) Expected dose distribution on a 0-70 Gy dose scale.

(c) Nominal dose distribution on a 55-65 Gy dose scale. (d) Expected dose distribution on a 55-65 Gy dose scale.

Figure 7.23: Axial cross-sections of the 3D spine geometry at the plane corresponding to y = 5 mm with the nominal and
expected dose distributions on a 0-70 Gy dose scale, (a) and (b) respectively, and on a 55-65 Gy dose scale, (c) and (d)
respectively, for the optimized treatment plan of case 3.4. All voxels with a dose less than 55 Gy are given the same color
as the 55 Gy boundary for the 55-65 Gy scale.

The dose distributions in Figure 7.23 show good results in terms of dose coverage of the tumor in the nominal
scenario and also for the expected dose with an automatic expansion of the PTV in the x-direction. The dose
distributions are similar to the results in Figure 7.19. In Figure 7.24, dose volume histograms are shown for
the nominal and expected dose distributions in the tumor, spine and tissue for case 3.4.

(a) (b)

Figure 7.24: Dose volume histograms of the nominal and expected dose in the tumor, spine and tissue (a) and only the
tumor (b) for the optimized treatment plan of case 3.4.
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The dose volume histograms in Figure 7.24 show similar nominal and expected dose distributions in the
tumor, spine and tissue as in cases 3.1-3.3. To compare the optimized treatment plans of cases 3.4-3.6, Figure
7.25 shows dose volume histograms of the nominal and expected dose distributions in the tumor, spine and
tissue of the three cases.

(a) (b)

(c) (d)

Figure 7.25: Dose volume histograms of the nominal and expected dose to the tumor, spine and tissue ((a) and (c)) and
and only the tumor ((b) and (d)) for the optimized treatment plan of cases 3.4-3.6.

The dose volume histograms in Figure 7.25 show that the optimized treatment plans in cases 3.4-3.6 are iden-
tical. Looking at the optimization times and the number of iterations of the three cases, it seems that the ap-
proximation method does provide the same results in terms of performance for the 4, 6 and 8 point averaging
cases. Figure 7.26 shows for cases 3.4, 3.5 and 3.6 the objective function value, value of the 95%-probabilistic
d98%(x) and the first-order optimality measure to see what happens during the optimizations.
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(a) Case 3.4.

(b) Case 3.5.

(c) Case 3.6.

Figure 7.26: Values of the 95%-probabilistic d98%(x) in the tumor (left), the objective function (middle) and the first-order
optimality measure (right) per iteration during the optimization of the probabilistic treatments plans of cases 3.4 (a), 3.5
(b) and 3.6 (c).
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The optimization data per iteration in Figure 7.22 show that in cases 3.4-3.6 the solver takes many iterations
for the value of the 95%-probabilistic d98%(x) to get back to the feasible region, just as in cases 3.1 and 3.2. The
difference from case 3.3 is again the inaccuracies in the gradient and Hessian of the 95%-probabilistic d98%(x)
when the approximation method is used. The optimizations of cases 3.4-3.6 all converge to the same local
minimum in the interior of the feasible region of the constraint at a value of 52.73 Gy for the 95%-probabilistic
d98%(x). These optimized constraint values are different than in cases 3.1-3.3 due to the difference in sample
size in the constraint calculations. Figure 7.27 shows dose volume histograms of the nominal and expected
dose in the tumor, spine and tissue for cases 3.3 and 3.4 to compare the optimized treatment plans with the
exact method and the approximation method.

(a) (b)

(c) (d)

Figure 7.27: Dose volume histograms of the nominal and expected dose in the tumor, spine and tissue ((a) and (c)) and
and only the tumor ((b) and (d)) for the optimized treatment plan of cases 3.3 and 3.4.

The dose volume histograms in Figure 7.27 show that case 3.3, with the largest sample size of 500,000 for
the exact method, and cases 3.4-3.6 with the approximation method yield the same solution. The optimized
values of the 95%-probabilistic d98%(x) are most accurate in cases 3.4-3.6 due to the sample size of 107. In
cases 3.4-3.6, the approximations of the gradient and Hessian of the 95%-probabilistic d98%(x) lead to a higher
number of iterations compared to case 3.3, but the computation times are much longer in case 3.3. The
optimizations in cases 3.4-3.6 yield approximately a factor of 7.6 decrease in computation time compared
to case 3.3. As a conclusion, good improvement in computation time is shown for probabilistic treatment
planning on the 3D spine geometry with the use of probabilistic dose volume parameters.
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DISCUSSIONS AND CONCLUSIONS

This chapter focuses on the discussion of the results in this research, the recommendations for future research
and the main conclusions of this research.

8.1. DISCUSSIONS
In Chapter 8.1.1 the results are discussed per topic and in Chapter 8.1.2 recommendations for future research
are mentioned, based on the results.

8.1.1. RESULTS
The results are divided into five parts. The first topic is the exact improvement on Algorithm 1. The sec-
ond topic is the derived monotonicity constraint on the PCE coefficients. The third topic is the approxima-
tion method for probabilistic dose volume parameters. The fourth and fifth topic are probabilistic treatment
planning without and with the use of probabilistic dose volume parameters respectively.

EXACT IMPROVEMENTS
In this research, three improvements on Algorithm 1 in terms of computation time are implemented that
yield the same outcome as the methodology used in [12]. In total, a factor of 12 decrease in computation time
is found for the 3D spine geometry from approximately 2,800 seconds to 230 seconds, when the percentile
calculations are not considered. For a sample size of 500,000 in the percentile calculations and the use of the
PCE characteristic L5E1O6, the total reduction in computation time for Algorithm 1 is found to be from 8,300
to 5,800 seconds. This shows a 30% speed-up in computation time. For case 3.3 in Chapter 7.5 with a sample
size of 500,000, this would also approximately yield a 30% speed-up for the full optimization of the treatment
plan. The actual speed-up in other treatment plan optimizations depends on the dose parameters in the
objectives and constraints, and their computation times. Nevertheless, the goal in this research to reduce
the computation time in probabilistic planning, in which probabilistic dose volume parameters are used, is
definitely satisfied.

MONOTINICITY CONSTRAINT ON PCE COEFFICIENTS
In Chapter 6.3, a constraint on the PCE coefficients has been derived to ensure monotonicity of probabilistic
dose volume parameters with respect to the beam intensity vector in the case that an infinite amount of basis
vectors is used. In practice, a finite number of basis vectors is used, which results in possible errors in the
approximation of the stochastic response. However, this constraint still improves the accuracy of probabilistic
dose volume parameters for perturbed beam intensities in the gradient and Hessian calculations compared
to the methodology used in [12].

The implementation of the constraint on the PCE coefficients shows good improvement in the mono-
tonicity of the 95%-probabilistic d98%(x) and 5%-probabilistic d2%(x) for perturbed beam intensities. The
corresponding gradient values become non-negative, which coincides with the physical constraint. Figure
7.8 shows that the non-monotonic behavior of PCEs of d98%(x ,ξ) and d2%(x ,ξ) for perturbed beam intensi-
ties decreases when the number of basis functions and the polynomial orders of the basis functions in the
PCE construction increase.

69
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APPROXIMATION METHOD
An approximation method is devised for the calculation of probabilistic dose volume parameters for per-
turbed beam intensities. The purpose of this approximation method is to reduce the computation time of
Algorithm 1 further as these calculations, with the prctile function in Matlab, consume around 67% of the
total computation time for the 3D spine geometry and a sample size of 500,000. In this method, the per-
centile calculation only needs to be performed once per iteration instead of calculating percentiles for all the
1+Nb + 1

2

(
Nb +N 2

b

)
PCEs, when constructing PCEs of dα%(x ,ξ) as a whole. For the 3D spine geometry and a

sample size of 500,000, this method reduces the computation time of the percentile calculations from 5,600
seconds to the order of only one second.

The approximation method turns out to be a heuristic method and the actual accuracy cannot be pre-
dicted in general. The accuracy depends on the geometry, the beamspot grid, the considered uncertain pa-
rameters, the beam intensity vector and the values of α and β in the β%-probabilistic dα%(x). An important
detail of the approximation method is that the actual value of the β%-probabilistic dα%(x) is calculated accu-
rately with a large sample size, but the gradient and Hessian are approximated.

Results show relatively accurate approximations of the gradient of the 95%-probabilistic d98%(x) and 5%-
probabilistic d2%(x) with small absolute errors. This method shows quite a potential in terms of accuracy,
and definitely in terms of computation time, to alleviate the computational cost in probabilistic treatment
planning for proton therapy. However, from these results alone it cannot be concluded what the effects of the
gradient and Hessian approximations are on an actual treatment plan optimization.

If the approximation method turns out to be useful in practice, the accuracy of the PCEs could easily be
improved through the chosen PCE characteristics without a significant increase in computation time. Also, a
more accurate finite difference scheme could be used for the gradient and Hessian calculations. In that case,
the number of PCEs that needs to be constructed per iteration does increase, however, the computation time
of the β%-probabilistic dα%(x) for perturbed beam intensities will stay considerably small. In the case that
the approximation method fails to be robust enough for clinical use, still a gain could be obtained through
investigation of the variance of the β%-probabilistic dα%(x) as a stochastic variable for different sample sizes.
Figure 7.9 shows that the variance at a certain sample size differs for different values of α and β. This could
be used in the choice of the sample size for different probabilistic dose volume parameters in the objectives
and constraints to reduce the computation time in the percentile calculations.

OPTIMIZATIONS WITHOUT PROBABILISTIC DOSE VOLUME PARAMETERS
In this research, eight optimizations have been performed on the 3D spine geometry, of which cases 1 and
2 in Chapter 7.1 are without and cases 3.1-3.6 in Chapter 7.5 are with the use of probabilistic dose volume
parameters. Cases 1 and 2 are based on the use of the expected value as statistical measure in probabilistic
treatment planning. Case 1 coincides with the optimized treatment plan in [12], and in case 2 a constraint is
added on the expected mean dose in the tumor to be greater than or equal to 60 Gy. The expected value as
statistical measure was in [12] found to be clinically less relevant in terms of interpretation, and therefore, as
a comparison cases 3.1-3.6 are introduced.

In cases 1 and 2, the required PCEs only need to be constructed once for each optimization and the two
optimizations converge fast in 11.8 and 13.9 seconds respectively. This is due to the fact that the objective
function and constraint, and their gradient and Hessian, can be described analytically in terms of the zeroth
order PCE coefficients and the defined geometry settings. The two treatment plans show good dose coverage
in the tumor with slightly higher dose levels in case 2, as shown in Figure 7.5. Also, the results show an
automatic PTV expansion in the direction of the 1D set-up uncertainty and show that the spine is nicely
spared. However, there is still quite some over- and underdosage in the tumor present in the nominal and
expected dose distributions. The corresponding values of the expected mean dose in the tumor are 59.6 and
60.0 Gy in cases 1 and 2 respectively. The solution of case 2 is found at the boundary of the constraint on
the expected mean dose in the tumor. A possible reason for this is that the optimization in case 2 with the
constraint on the beam intensities to be non-negative and the constraint on the expected mean dose in the
tumor results in an optimization over a convex set, and that the objective function is convex, as claimed in
[12]. The convexity of the objective function on this set still needs to be proven.

OPTIMIZATIONS WITH PROBABILISTIC DOSE VOLUME PARAMETERS
The optimization problems in cases 3.1-3.6 consist of the same objective function as in cases 1 and 2, but
this time a constraint is set on the 95%-probabilistic d98%(x) in the tumor to be greater than or equal to 50
Gy. The optimization times are much longer than in cases 1 and 2 due to the expensive computations of the
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95%-probabilistic d98%(x) for the perturbed beam intensities. Cases 3.4-3.6 yield the shortest optimization
times of around 16.5 hours with approximately 190 iterations, whereas cases 3.1-3.3 yield longer computation
times of 2.1, 4.6 and 5.3 days with 197, 139 and 73 iterations respectively. The faster percentile calculations
with the approximation method in cases 3.4-3.6 outweigh the lower number of iterations in cases 3.2 and 3.3.
The cases with the exact method also show faster optimization times for a sample size of 50,000 and 250,000
in cases 3.1 and 3.2 than for a sample size of 500,000 in case 3.3. The results of cases 3.1-3.6 are obtained with
the implementation of the three exact improvements on Algorithm 1.

In cases 3.1-3.6, the nominal and expected dose distributions in the tumor are more uniform than in cases
1 and 2. Also, in cases 3.1-3.6 the dose levels in the tumor are closer to the prescribed dose and show a larger
automatic PTV expansion in the direction of the set-up uncertainty than in cases 1 and 2. This shows better
dose coverage in the tumor in the extreme error scenarios. On the other hand, the dose levels in the spine and
tissue are in cases 3.1-3.6 higher than in cases 1 and 2. Possible ways to reduce the dose in the spine would be
to also set a constraint on a probabilistic dose volume parameter for the spine or to increase the voxel weights
of the spine in the objective function.

In cases 3.1-3.3, solutions are found at values of 52.89, 52.78 and 52.72 Gy for the 95%-probabilistic d98%(x)
in the tumor respectively. The solutions show a slight difference in the optimized 95%-probabilistic d98%(x)
due to the inaccuracies for smaller sample sizes. In cases 3.4-3.6, solutions are found at the same value of
52.73 Gy for the 95%-probabilistic d98%(x). The solutions are not found at the boundary of 50 Gy of the
constraint, but in the interior of the feasible region. A possible reason for this is that the optimizations in
cases 3.1-3.6 with the constraint on the beam intensities to be non-negative and the constraint on the 95%-
probabilistic d98%(x) in the tumor result in an optimization over a non-convex set, even though the objective
function is convex.

The optimizations of cases 3.4-3.6 with the approximation method are still able to converge with the
interior-point algorithm in the fmincon solver, despite the inaccuracies in the gradient and Hessian of the
95%-probabilistic d98%(x). Similarly, convergence is observed for cases 3.1-3.3 despite differences in accuracy
in the value of the 95%-probabilistic d98%(x). This also introduces inaccuracies in the gradient and Hessian
of the 95%-probabilistic d98%(x) in the exact method, which are more prevalent for smaller sample sizes. The
optimization data per iteration show that due to a more accurate calculation of the gradient and Hessian of
the 95%-probabilistic d98%(x) in cases 3.2 and 3.3, the number of iterations is lower in cases 3.2 and 3.3 than
in the other four cases.

Case 3.3, with the largest sample size of 500,000 for the exact method, and cases 3.4-3.6 with the approx-
imation method yield an insignificant difference in the optimized treatment plans. The optimized values of
the 95%-probabilistic d98%(x) are most accurate in cases 3.4-3.6 due to the sample size of 107. The optimiza-
tions in cases 3.4-3.6 yield approximately a factor of 7.6 decrease in computation time compared to case 3.3.
This shows good improvement in computation time for probabilistic treatment planning on the 3D spine
geometry with the use of probabilistic dose volume parameters.

Besides the random vector as starting vector for the optimizations of cases 3.1-3.6, also other vectors have
been tested, all of which did not lead to a converged treatment plan. For example, the zero vector and the
optimized beam intensity vectors from cases 1 and 2 lead to problems with convergence. This might be ex-
plained by the fact that the starting value of the 95%-probabilistic d98%(x) is not in the feasible region of the
constraint. However, also problems were found with a starting vector in the feasible region. This starting vec-
tor was obtained from the optimization of case 1, but this time with a prescribed dose of 90 Gy in the tumor.
This leads to an optimized beam intensity vector with a value of 63 Gy for the 95%-probabilistic d98%(x) and
a smooth dose distribution in the geometry. However, this starting vector also lead to problems with conver-
gence. Therefore, the (default) interior-point algorithm in the fmincon solver does not seem robust for this
optimization problem and other algorithms need to be investigated.

8.1.2. RECOMMENDATIONS FOR FUTURE RESEARCH
The discussion points about the results in this research lead to various recommendations for future research.
The first recommendation is to test the exact improvements on Algorithm 1 on probabilistic treatment plan
optimizations with patient data in iCycle, as performed in [12]. The exact improvements are guaranteed to
alleviate the computational cost of probabilistic planning with the use of probabilistic dose volume parame-
ters. The actual speed-up, however, should still be investigated.

The second recommendation is to test the accuracy of the approximation method further on the 3D spine
geometry. Instead of considering one uncertain parameter, in future research a two or three-dimensional
systematic set-up uncertainty and also range uncertainty can be introduced. Similarly, a third recommenda-
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tion is to test the approximation method on a different simplified 3D geometry as well. This geometry could
represent a tumor in an OAR, for example the liver or the prostate. These two recommendations will pro-
vide a better understanding of the accuracy of the approximation method in other, possibly more complex,
situations before this method can be tested on treatment plan optimizations with patient data in iCycle.

A fourth recommendation is to perform the optimizations of case 3 with different optimization algo-
rithms. In this research, only the interior-point algorithm of the fmincon solver in Matlab has been used
and has been treated as a black box. However, it would be interesting to see which type of algorithm works
best for this optimization problem and whether different results are found than in Chapter 7.5. As a fifth
recommendation, in optimization problems of the same form as case 3, a constraint could also be set on a
probabilistic dose volume parameter for the OAR.

Furthermore, in Appendix A the gradient and Hessian of the β%-probabilistic dα%(x) are described math-
ematically to provide possible starting points for new approximation methods that could alleviate compu-
tational cost. A sixth recommendation is to invest time in such new approximation methods. The seventh,
and final, recommendation is to investigate whether other computational programs written in C++, Python
or R have faster percentile calculation algorithms and whether a fast coupling can be made to such programs.
A starting point for different percentile calculation algorithms can be found in [47]. Furthermore, other re-
search on probabilistic optimization with high-dimensional uncertainty sources that could inspire follow-up
research are [48] and [49].

8.2. CONCLUSIONS
The goal of this research was to alleviate the computational cost of probabilistic treatment planning, in which
percentiles of stochastic dose volume parameters are used, with the aim of a proof of principle for clinical use.
As a first result, the three exact improvements on Algorithm 1 show an overall reduction in computation time
of 30% in the calculation of the value, gradient and Hessian of probabilistic dose volume parameters. These
improvements guarantee a similar speed-up in the total optimization time of a probabilistic plan, depending
on the dose parameters in the objectives and constraints, and their computation times. However, the actual
speed-up in probabilistic treatment plan optimizations with patient data in iCycle should still be investigated.
Furthermore, the accuracy of the gradient and Hessian of probabilistic dose volume parameters has been
improved through the introduction of a monotonicity constraint on the PCE coefficients.

To reduce the computation time of Algorithm 1 even further, an approximation method is devised for the
calculation of the gradient and Hessian of probabilistic dose volume parameters. This approximation method
and the exact improvements together have the potential to reduce the computation time of Algorithm 1 from
8,400 seconds to only 220 seconds, when using the 3D spine geometry and a sample size of 500,000. The
problem is that the approximation method is quite heuristic and its accuracy cannot be predicted in gen-
eral. However, relatively accurate percentile approximations were produced with small absolute errors when
tested with the beam intensity vector of the optimized probabilistic treatment plan of case 1.

The exact calculations and the approximation method, both with the improvements on Algorithm 1, have
been tested in treatment plan optimizations, in which a constraint is set on the 95%-probabilistic d98%(x) in
the tumor. These treatment plans clearly outperform the treatment plans of cases 1 and 2 in terms of the dose
distributions in the tumor in the nominal scenario and in the (extreme) error scenarios. Overall, the three
cases with the approximation method with four, six and eight argument averaging all show approximately a
factor of 7.6 decrease in computation time from 5.3 days to 16.5 hours, compared to the case with the exact
method and a sample size of 500,000. This is due to a rapid increase in the computation time of Algorithm
1 in the exact method for increasing sample size, which does not outweigh the increase in the number of
iterations when using approximations of the gradient and Hessian of the 95%-probabilistic d98%(x) in the
approximation method. The cases with the exact method show to be 2.5 and 1.2 times faster for a sample size
of 50,000 and 250,000 than for a sample size of 500,000 respectively.

A decrease in computation time is shown for probabilistic treatment planning, in which probabilistic
dose volume parameters are used, in general, but also in implementations in the 3D spine geometry with and
without the approximation method. Still, the approximation method should be tested on different geometries
and for multiple uncertain parameters in the geometry to investigate whether this method is robust enough
to be tested in optimizations with patient data in iCycle. Furthermore, different optimization algorithms
should be tested to verify the decrease in optimization time. As a conclusion, the methods in this research do
improve probabilistic treatment planning with polynomial chaos expansion for proton therapy by alleviating
computational cost, but a proof of principle for clinical use is not yet achieved.
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A
MATHEMATICS OF PROBABILISTIC DOSE

VOLUME PARAMETERS

The methodology of the percentile approximation method for perturbed beam intensities in Chapter 7.4 is
quite heuristic. It is not possible to describe the accuracy of the method in general, but the methodology
could nevertheless provide approximations of the gradient and Hessian of the β%-probabilistic dα%(x) with
respect to the beam intensity vector in a fast manner. In this section of the Appendix, the gradient and Hes-
sian of the β%-probabilistic dα%(x) are described mathematically to provide possible starting points for new
approximation methods.

The dose volume parameter dα%(x ,ξ) has a certain probability density function PDFdα%(x ,ξ)(dα%, x) and
a corresponding cumulative distribution function C DFdα%(x ,ξ)(dα%, x). This PDF has no explicit dependence
on the uncertainty vector ξ, since this is the stochastic input. Mathematically, the CDF of a dose volume
parameter dα%(x ,ξ) yields:

C DFdα%(x ,ξ)(dα%, x) =P(dα%(x ,ξ) ≤ dα%, x) =
∫

dα%(x ,ξ)≤dα%

pξ(ξ)dξ, (A.1)

with pξ(ξ) the joint probability density of the uncertainty vector ξ. Then, the β%-probabilistic dα%(x), de-

noted as dβ%
α%(x) in the following equations, relates to Equation A.1 as:

C DFdα%(x ,ξ)

(
dβ%
α%(x), x

)
= 100−β

100
. (A.2)

From Equation A.2 it follows immediately that the β%-probabilistic dα%(x) is defined as:

dβ%
α%(x) =C DF−1

dα%(x ,ξ)

(
100−β

100
, x

)
. (A.3)

Taking the derivative of both sides of Equation A.2 with respect to the beam intensity vector x yields:

0 =
d

(
100−β

100

)
d x

= d

d x
C DFdα%(x ,ξ)

(
dβ%
α%(x), x

)
= d

d x

∫ d
β%
α% (x)

−∞
PDFdα%(x ,ξ) (dα%, x)d(dα%)

=
d

(
dβ%
α%(x)

)
d x

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

)
+

∫ d
β%
α% (x)

−∞
dPDFdα%(x ,ξ) (dα%, x)

d x
d(dα%),

(A.4)

in which Leibniz’ rule of differentiation under the integral sign is used at the last equal-sign. By rewriting
Equation A.4, an expression for the gradient of theβ%-probabilistic dα%(x) with respect to the beam intensity
vector is obtained as:
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d
(
dβ%
α%(x)

)
d x

=− 1

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

) ∫ d
β%
α% (x)

−∞
dPDFdα%(x ,ξ)(dα%, x)

d x
d(dα%)

=− 1

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

) ∫ d
β%
α% (x)

−∞
d

d x

d

d(dα%)
C DFdα%(x ,ξ)(dα%, x)d(dα%)

=− 1

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

) ∫ d
β%
α% (x)

−∞
d

d x

d

d(dα%)

∫
dα%(x ,ξ)≤dα%

pξ(ξ)dξd(dα%)

(A.5)

with substitution of Equation A.1 at the third equal-sign. A first note to Equation A.5 is that a dose parameter
in general, and thus also a dose volume parameter, is physically constraint to be non-negative. Therefore, the
lower integration limit can be set to zero, yielding:

d
(
dβ%
α%(x)

)
d x

=− 1

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

) ∫ d
β%
α% (x)

0

dPDFdα%(x ,ξ)(dα%, x)

d x
d(dα%)

=− 1

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

) ∫ d
β%
α% (x)

0

d

d x

d

d(dα%)

∫
dα%(x ,ξ)≤dα%

pξ(ξ)dξd(dα%).

(A.6)

Equation A.6 gives rise to two different ways to express the gradient of the β%-probabilistic dα%(x). Both

expressions contain the value of the PDF of dα%(x ,ξ) at the point dβ%
α%(x). One way to determine this value

is to first construct a PCE of dα%(x ,ξ) with the beam intensity vector from the current iteration step in the
treatment plan optimization. Then, the PCE is sampled Ns times over different realizations of the uncertainty
vector ξ and a normalized histogram is made according to these samples using a certain number of bins, for

which there are multiple choices of rules of thumb to choose the number of bins. The value of dβ%
α%(x) can be

obtained, for example with the Prctile function in Matlab from the set of PCE samples, and finally the value of

PDFdα%(x ,ξ)

(
dβ%
α%(x), x

)
is found by determining the value of the PDF at the bin in the normalized histogram

in which the parameter dβ%
α%(x) is located. Figure A.1 shows an example of such a normalized histogram of

the d98%(x ,ξ) with the beam intensity vector obtained from the optimized treatment plan of case 1 in Chapter
7.1.

Figure A.1: Normalized histogram of 500.000 samples from a PCE of d98%(x ,ξ) with the beam intensity vector obtained
from the optimized treatment plan of case 1 in Chapter 7.1. In the PCE construction, the characteristic L7E1O8 is used.
The vertical black line shows the 5th-percentile of the samples. This histogram coincides with the constructed PCE in
Figure 7.11.
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Another way to determine the value of PDFdα%(x ,ξ)

(
dβ%
α%(x), x

)
is to construct a continuous PDF of dα%(x ,ξ)

instead of a histogram, which is a non-continuous function. The set of PCE samples can be transformed
into a PDF through parameterized or non-parameterized probability density fitting. Two possible types of
distributions for parameterized fitting are the Beta and Kumaraswamy distribution, the latter being similar to
the Beta distribution, but is characterized by closed form expressions of the PDF, CDF and quantile functions.
With a change of variable the distribution could be defined on an interval [0,dmax ] instead of the default
interval [0,1]. Also, Matlab contains a Distribution fitter toolbox, in which there are parametric and non-
parametric distribution options. Besides this toolbox, non-parameterized probability density fitting could
also be performed through kernel density estimation. However, no results with density fitting have been
produced yet.

The integral in Equation A.6 is yet to be evaluated. A starting point here might be the evaluation of the
inner integral over an inequality surface in the sample space of the uncertainty vector ξ. Possibly, a relation
might be found between this integral and the results that are derived in Appendix A of [50]. The Hessian of the
β%-probabilistic dα%(x) is derived by taking the derivative of Equation A.6 with respect to the beam intensity
vector.
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