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A single photon interacting with a single atom is the most fundamental form of light inter-
acting with matter and has been extensively studied in the field of Cavity Quantum Elec-
trodynamics (cavity QED). Here, a non-linearity like an atom is coupled to a single mode of
the electromagnetic field in a cavity. Another field which explores the quantum mechanical
nature of photons is Circuit Quantum Electrodynamics (cQED) where photons are the quan-
tized excitations of a superconducting microwave resonator and non-linearity is introduced
by the Josephson junction. Like this, setups analog to that of in cavity QED can be copied to
cQED, with a number of differences. For example, the photons propagating in a transmission
line are more confined and the circuits are made with conventional lithography techniques,
allowing for more freedom in engineering the system parameters.

In the first part of the thesis, we build a numerical model in order to examine the feasibil-
ity of quenching the ground state of a coplanar waveguide (CPW) interrupted by a tunable
coupling element. Next, by means of experiments and simulations we considered the feasi-
bility of observing experimentally a synchronization effect in a driven CPW with its central
conductor interrupted by equally spaced capacitively shunted Josephson junctions (Joseph-
son crystal) based on a recent proposal. Finally, we made a first step in understanding the
synchronization from a classical perspective by modelling a Josephson crystal of two junctions
as two degenerate non-linearly coupled Duffing oscillators.

Concerning the quenching experiment, we found that the plasma frequency must be tuned
faster than 1/f with f the resonance frequency of the CPW, which is in the sub-nanosecond
regime and therefore unfeasible with current state the art electronics. We also found that, in
contrast to what was claimed in the proposal, the synchronization effect cannot be observed
for the parameters common in cQED. One way would be to push the limits of the capacitances
to several picofarads. Finally, we found that the non-linear coupling causes the two degenerate
non-linearly coupled Duffing oscillator to synchronize, which is a first step in understanding
the proposed synchronization effect in a fully classical way.
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Chapter 1

Introduction

1.1 Light-matter interaction

One of the most fundamental interactions in nature is the light-matter interaction. Reflection
of light on a metallic surface, transmission of light through glass and scattering of light from
this piece of paper are all manifestations of this same principle. Its most fundamental form is
a single photon interacting with a single atom. Such a system has been extensively studied in
the field of Cavity Quantum Electrodynamics (cavity QED) [1]. Here, a non-linearity like an
atom is coupled to a single mode of the electromagnetic field in the cavity, which can be, for
example, a pair of mirrors. As the spacing between different energy levels is different, such a
system allows for stimulating transitions where exactly one photon is released or absorbed.

The rate at which the cavity and atom exchange photons, described by the coupling
factor g, depends both on the dipole moment of the atom and the electric field strength in
the cavity. Therefore, besides placing a strong dipole in the cavity, one can increase the
coupling by making high quality factor cavities such that the released photon will bounce
back and forward one million times before leaving the cavity [2]. The regime where the rate
κ at which a photon leaves the cavity is much smaller than the coupling rate g, is called
the strong coupling regime (SCR). This is illustrated in fig. 1.1. Besides being an elegant
way of studying the quantum nature of light at the single photon level, strong coupling has
applications in the realm of quantum computation too, as it allows for exchanging information
between the atom and the photon many times before it is lost [3]. The strong coupling limit
has been realized in many different setups, for example with alkali atoms in optical cavities
[4] and Rydberg atoms in three-dimensional microwave cavities [5].

1.2 Ultrastrong coupling in cQED

Another field which explores the quantum mechanical nature of photons is Circuit Quantum
Electrodynamics (cQED). Here photons are the quantized excitations of a superconducting

Figure 1.1: Two level system inside a cavity. On resonance, the cavity and
two-level-system exchange photons at rate g. Photons are leaked to the en-
vironment by leaving the cavity at rate κ or by spontaneous decay to other

modes at rate γ. Picture adapted from [3].
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microwave resonator, like for example a transmission line or a LC circuit [6]. Non-linearity is
introduced by the Josephson junction, which behaves as a non-linear inductor. By shunting
such an inductor with a capacitor a non-linear spectrum can be made, as with an atom.
Like this, setups analog to that of in cavity QED can be copied to cQED, with a number of
differences. The photons propagating in a transmission line can only travel in one direction,
such that they are well confined but still can travel from place to place [3]. Furthermore,
the circuits are made with conventional lithography techniques, allowing for more freedom
in engineering the system parameters [7]. The maximum coupling strength in cavity QED
experiments is limited by the atoms dipole moments provided naturally, in cQED however
the coupling strength can be engineered to be much higher, to the order of the resonator
frequencies themselves. Finally, by shunting two Josephson junctions one can make a Super-
conducting Quantum Interference Device (SQUID) which behaves as a single inductor with
its inductance dependent on the magnetic flux through it, allowing for changing the system
parameters in situ [8].

In this thesis we will first study quenching the ground state of coplanar waveguide (CPW)
with its central conductor interrupted a tunable coupling element consisting of a SQUID
shunted with a capacitor. By means of a theoretical model we want to answer the question
how fast we need to tune the flux to excite the ground state.

Second, we consider the case where the central conductor of a CPW is interrupted by
equally spaced capacitively shunted SQUIDs. It has been theoretically shown that the strong
coupling to the non-linearity causes the modes to switch synchronously as function of power
when driven by a red-detuned drive [9]. In this thesis we investigate the feasibility of such
an experiment by designing, fabricating and measuring a first generation of devices and by
simulations. Furthermore, we make a first step in understanding the synchronization effect
from a purely classical perspective, modelling a Josephson crystal with two junctions as two
degenerate non-linearly coupled Duffing oscillators.

1.3 Thesis outline

This thesis is structured as follows. In chapter 2 we introduce the basic concepts of trans-
mission lines and CPW microwave resonators. Next we introduce the Josephson junction as
a non-linear inductor. Then we consider both harmonic and anharmonic oscillators (Duffing
oscillator) from a classical perspective. Finally, we use second quantization to quantize the
coupled oscillator and the Duffing oscillator.

In chapter 3 we consider a CPW intersected by capacitively shunted Josephson junction,
whose frequency can be tuned by an external magnetic field. We quantize this system and
simulate the dynamics of the ground-state after a fast change of the resonance frequency.
Then, we consider the relevant timescale to excite the ground state to test the experimental
feasibility of such an experiment.

In chapter 4, 5, 6 and 7 we consider a CPW intersected by equally spaced multiple
capacitively shunted junctions, based on a proposal of Leib and Hartmann [9]. In chapter 4 we
describe the design considerations, fabrication and experimental setup for a Josephson crystal
consisting of five flux tunable junctions. Based on the same considerations, we fabricate a
second device too, with two Josephson crystals consisting of three junctions and one junction
respectively.

In chapter 5 we discuss and analyze the results obtained from a first round measurements
where we cooled down the CPW intersected with one junction. To explain our data we make
both a classical linear and non-linear model (Duffing oscillator) of our device.

In chapter 6 we use the mean-field code provided by Leib to solve the master-equation
modelling the dissipative dynamics of the five junction crystal, tuned at the degeneracy point



1.3. Thesis outline 3

and driven by a red-detuned drive. We explore the relevant parameters determining the
occurrence of the synchronization effect.

To get a better understanding, in chapter 7 we make a first step in approaching the
synchronization effect from a classical perspective. We expand our non-linear model from
chapter 5 to two degenerate non-linearly coupled Duffing oscillators.

In chapter 8 we summarize our conclusions.
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Chapter 2

Theory

2.1 Transmission lines

2.1.1 Telegrapher’s equations

In the limit where the size of circuit elements are smaller than the spatial variation of voltage
and current, any distributed circuit element can be viewed as a lumped element. The current
and voltage can be considered constant across the wires and the system can be solved using
conventional circuit analysis. However, when this it not the case, a more general approach
is needed in the form of transmission line theory. In this section this is applied to Coplanar
Waveguides (CPW) based on the work of Pozar [10].

Figure 2.1: A CPW is a special case of a transmissionline. It consists of a
conducting centrepin with width w seperated from the groundplane by a gap

g. Picture adapted from [11].

A coplanar waveguide (CPW) is a special type of transmission line, consisting of a metal
strip with width w separated on both sides from the ground by a gap of size g, shown in
fig. 2.1.

We model this transmission line as an array of lumped element circuits, as shown in
fig. 2.2. The internal loss is modelled as a series resistance per unit length r, the geomet-
rical inductance as an inductance per length l, the capacitance per unit length between the
centre pin and the ground as a capacitance per unit length c and the dielectric loss with a
conductance per unit length g. By applying Kirchhoff’s voltage and current laws and taking
lim ∆z →∞ we find the so-called telegraphers equations:

∂v(z, t)

∂z
= ri(z, t)− l ∂i(z, t)

∂t
(2.1)

∂i(z, t)

∂z
= −Gv(z, t)− c∂v(z, t)

∂t
(2.2)
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Figure 2.2: a) We represent a transmission line by two conducting strips
with a voltage difference v(t, z) supporting a current i(t, z). b) To solve for the
voltage v(t, z) and i(t, z) the transmission line is modeled as an infinite array of
lumped elements taking into account the loss due to resistance, the geometrical
inductance, capacitance to ground and leakage current. Picture adapted from

[10].

Plugging in the phasors v(z, t) = V eiωt and i(z, t) = Ieiωt we find wave equations for V
and I with general solutions:

V (z) = V +
0 e−γz + V −0 eγz (2.3)

I(z) =
I+

0

Z0
e−γz − I−0

Z0
eγz (2.4)

With Z0 =
V +
0

I0+
= −V −

0

I0−
=
√

r+jωl
G+jωc and γ =

√
(r + jωl)(G+ jωc) = α + jβ. Here the

real part α is called the attenuation constant as it represents the decay of the fields due to
losses. In the special case when there is no loss, i.e. r = G = 0 the attenuation constant α is
zero and β = ω

√
lc.

We will briefly look at the reflection coefficient for the case a transmission line with
impedance Z0 is ended with an impedance ZL, shown in fig. 2.3. At the load the we have:

ZL =
V (0)

I(0)
=
V +

0 + V −0
V +

0 − V
−

0

Z0 (2.5)
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If we define the reflection coefficient Γ as the ratio of the outgoing amplitude and the
ingoing amplitude, we get the following expression:

Γ =
V −0
V +

0

=
ZL − Z0

ZL + Z0
(2.6)

In case ZL = 0 we get a reflection of Γ = −1. So the signal is completely reflected and
undergoes a π phase shift. In case of an infinite impedance we get Γ = 1. Finally, when
the load is matched we have Γ = 0 and the signal is completely transmitted. This is called
impedance matching.

Figure 2.3: Transmission line with impedance Z0 ended with an impedance
ZL. Picture adapted from [10]

2.1.2 Inductance and capacitance per length for a Coplanar Waveguide

For a CPW an analytical expression for the capacitance per unitl length c is given by [12]:

c = 4ε0εeff
K(k)

K(k′)
(2.7)

Here εeff ≈ 1+εsubstr
2 [13], K is the elliptic integral of the first kind, k = W

W+2G and

k2 + k‘2 = 1. The inductance per unit length is the sum of the geometrical inductance and
kinetic inductance l = lg + lk. The geometrical inductance is given by [12]:

lg =
µ0

4

K(k)

K(k′)
(2.8)

The kinetic inductance per unit length depends both on the surface impedance of the
substrate ls and the geometry lk = g(d,W,G)ls. Here g(d,W,G) is geometrical factor with
contributions both from the central conductor and the groundplane [14]:

g = gctr + ggnd (2.9)

gctr =
1

4W (1− k2)K(k)2

[
π + ln

(
4πW

d

)
− k ln

(
1 + k

1− k

)]
(2.10)

ggnd =
1

4W (1− k2)K(k)2

[
π + ln

(
4π(W + 2G)

d

)
− 1

k
ln

(
1 + k

1− k

)]
(2.11)

With d the thickness of the substrate. This is accurate within 10% for d < 0.05W and
k < 0.8 [13]. The substrate we use has k = 0.6 and d

W ≈ 0.02.



8 Chapter 2. Theory

2.1.3 Lumped element equivalent

Now we look more carefully to an open-ended transmission line. From eq. (2.4) and using
that V −0 = V +

0 (Γ = 1 because of the open ends) we get for the current and voltage :

V (z) =V +
0 e−γz + V +

0 eγz = 2V +
0 cosh γz (2.12)

I(z) =
1

Z0

(
V +

0 e−γz − V +
0 eγz

)
= −2V +

0

Z0
sin(γz) (2.13)

For a lossless line we set α = 0. We see that the equation above reduces to:

V (z) =2V +
0 cosβz (2.14)

I(z) =− 2jV +
0

Z0
sin(βz) (2.15)

From this we can define a wavelength and derive a dispersion relation λ ≡ 2π
β = 2π vω . We

see that at the end I = 0 as expected for an open circuit. Now if we require I = 0 at the
beginning too we see that this resonator can host waves with:

λ =
2`

n+ 1
(2.16)

with n ∈ N. This is called a λ
2 resonator. Around a resonance this can be modelled as a

parallel RLC circuit. Here we will follow the analysis of Pozar and extend it to any mode n.
The impedance is given by:

Z =
V (z)

I(z)
= −Z0 coth (α+ jβ)` = − tanβ` tanhα`

tanhα`+ j tanβ`
(2.17)

Now for a general mode n, we expand β around ωn.

β ≈ ωn
v

+
∆ω

v
=

2π

λn
+

2π∆ω

λnωn

Using that 1
v = 2π

λnωn
. Now assumig a λ

2 resonator, ωn = (n+ 1)ω0 and λn = 2`
n+1 . Then:

β ≈ (n+ 1)π

`
+
π∆ω

ω0`

Now tanβ` ≈ π∆ω
ω0

and assuming a low loss, tanhα` ≈ α` we get:

Z ≈ Z0

1
α`

1 + j π∆ω
ω0α`

(2.18)

We compare these results with parallel RLC circuit, shown in fig. 2.4a. This circuit has
an impedance:

Z =

(
1

R
+

1

jωL
+ jωC

)−1

=

(
1

R
− 1 + jωC

ω2LC

)−1

(2.19)
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(a) (b)

Figure 2.4: (A) A parallel RLC resonator. (B) Resonance of a parallel RLC
resonator. Picture adapted from [10]

We see that this has a resonance at ω0 = 1√
LC

, shown in fig. 2.4b. Expanding around this
resonance we get, using a geometric series:

Z ≈ R

1 + 2j∆ωRC
(2.20)

Note that in case R → ∞ we would have had Z = 1
2jC(ω−ω0) . So we also could have

calculated the lossless case first and then substituted ω0 → ω0 + j
2RC .

The bandwidth BW is defined such that BW =
ωl,1/2−ωr,1/2

ω0
with ωl,1/2 and ωr,1/2 the

frequencies where |Z|2 = R2

2 , meaning that the power delivered to circuit is half that of the
power at resonance. We see that this yields:

BW =
1

ω0RC
(2.21)

Now we define the quality factor as the ratio between the average energy stored and
dissipated:

Q = ω0
Wm +We

Ploss
= ω0

21
4 |V |

2C
1

2R |V |2
= ω0RC (2.22)

Were we used that on resonance the energy stored in the inductor and capacitor is the
same. If we define κ as the absolute bandwidth, i.e. κ = ω0BW we see that this is related to
the quality factor as follows:

κ =
ω0

Q
(2.23)

If we compare the results of the open-ended λ
2 resonator and the parallel RLC circuit, we

get the following relations:

R =
Z0

α`
(2.24)

C =
π

2ω0Z0
(2.25)

L =
1

(n+ 1)2ω2
0C

(2.26)

Qn = ωnRC = (n+ 1)
π

2α`
(2.27)
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2.1.4 Coupling to external circuit

Now we look at the effect of coupling a λ
2 resonator to the outside world with two coupling

capacitors. We model our circuit as a parallel RLC circuit, coupled to the outside world (in
most cases another transmission line) with impedance Z0 and with a coupling capacitance
Cc. This is shown in fig. 2.5. For its external impedance seen from the resonator we can
write:

1

Ze
=

2

Z0 + 1
jωCc

= 2

(
ω2C2

cZ0

1 + ω2C2
cZ

2
0

+
jωCc

1 + ω2C2
cZ

2
0

)
(2.28)

We transform this circuit in another one, shown at the right in fig. 2.5. This circuit has
external impedance:

1

Ze
= 2

(
1

R∗
+ jωC∗

)
(2.29)

So we can view the coupling to the environment as shunting our circuit twice with a
resistance R∗ and a capacitance C∗ with:

R∗ =
1 + ω2C2

cZ
2
0

ω2C2
cZ0

≈ 1

ω2C2
cZ

2
0

C∗ =
Cc

1 + ω2C2
cZ

2
0

≈ Cc (2.30)

Where for the approximations we assume small coupling capacitances such that ω2C2
cZ

2
0 �

1.
We can use exact the same equations as in our previous section, but now with an effective

capacitance C̃ = C + 2Cc and an effective resistance R̃ = RR∗

2R+R∗ . From this we already
see that our resonance becomes a lower (as expected, because the capacitors increase the
electrical length), according to ω0 = 1

L(C+2Cc)
. Now for the line width we find:

κtot =
1

R∗C∗
≈ 1

R(C + 2Cc)
+

2

R∗(C + 2Cc)
= κint + κext (2.31)

Here the first term only involves the internal resistance R while the other term only
involves the external resistance R∗. So we can interpret these terms as the energy internal
dissipated and the energy delivered to the outside world. From this we can define a coupling

Figure 2.5: We couple a λ
2 transmission line to another impedance Z0 with

coupling capacitance Cc. This is modelled as a parallel RLC circuit coupled
to a capacitance Cc and impedance Z0 in series. To make our calculations
easier, we place the impedance Z0 and coupling capacitance Cc in parallel and

introduce an new resistance R∗ and capacitance C∗.
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factor g = κext
κint

= Qint
Qext

. Expressed as a quality factor:

Qint = ω0R(C + 2Cc) (2.32)

Qext =
C + 2Cc
2ω0C2

cZ0
(2.33)

When we drive the system with g < 1 more energy is dissipated internally than is returned
to the drive. In this case the drive hardly distorts the system, but we have low signal, which
is called undercoupling. In the opposite case, more energy is returned to the drive than is
dissipated internally. In this case, called overcoupling, the drive significantly decreases the
quality factor the system, but at the same time gets a high signal. When g = 1 we are
critically coupled.

We calculate the input impedance by viewing the second port as part of the resonator
and consider the case RR∗

R+R∗ →∞:

Zin =

(
1

jωL
+ jω(C + Cc)

)−1

(2.34)

= i

ω2

ω2
0
− 1

ωCc (1− ω2L(C + Cc))
(2.35)

Next we Taylor expand and introduce loss by replacing ω0 → ω0 + j(R+R∗)
C+2CC

:

Zin = 2jL
(C + Cc)

2

C2
c

∆ω = jL
(C + Cc)

2

C2
c

(
κint +

κext

2
+ 2j∆Ω

)
(2.36)

Now we can calculate the reflection parameter, which can be expressed in terms of κint

and κext:

Γ =
Zin − Z0

Zin + Z0
(2.37)

=
κint + κext

2 + 2j∆ω − jL (C+Cc)
2

C2
c

κint + κext
2 + 2j∆ω + jL (C+Cc)

2

C2
c

(2.38)

=
κint + 2i∆ω

κint + κext + 2i∆ω
(2.39)

2.2 Josephson junctions

In section 2.2 a superconductor is shown, interrupted by a barrier, for example an insulator
(S-I-S), a normal conductor (S-N-S) or a geometrical constriction (S-s-S). When there is a
finite phase difference between the two wave functions, some cooper pairs will tunnel through
the barrier giving rise to a current depending on the phase difference δ = φl − φr [15]:

I = Ic sin(δ) (2.40)

Here Ic is the maximum current that will flow, which depends on the type of barrier, the
cross-sectional area and the width of the barrier.
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Figure 2.6: A Josephson junction consists of a superconductor interrupted
by some barrier (red). When there is a finite phase difference between both
superconductors, cooper pairs will tunnel through the barrier. Picture adapted

from [7]

When the phase difference δ depends on time, there will also be a voltage across the
junction:

V =
~
2e

∂δ

∂t
(2.41)

These equations are known as the Jospehson equations, named after Brian Josephson who
discovered them in 1962. If we combine these two equations, we find the following voltage-
current relation:

V =
~

2eIc cos(δ)

∂I

∂t
(2.42)

Which has the same form as the voltage-current relation of an inductor V = L∂I∂t with
inductance:

L =
~

2eIc cos(δ)
(2.43)

Therefore, as the inductance of the Josephson junction depends on the phase difference
across it, it can be viewed as a non-linear inductor.

The energy stored in a junction is given by the work needed to bring the phase from 0 to
δ:

U =

∫ δ

0
IV dt =

~
2e
Ic

∫ δ

0
sin
(
δ̃
)
dδ̃ = φ0Ic (1− cos(δ)) (2.44)

So the typical energy scale for Josephson junctions is given by:

EJ = φ0Ic (2.45)

With φ0 the reduced flux quantum ~
2e . By shunting two junctions we create a so-called

SQUID (Super Conducting QUantum Interference Device) which behaves as a single junction
but with its inductance dependent on the magnetic flux through the loop [16]. When the
Josephson energies of the single junctions are different, the Josephson energy of the SQUID
becomes [17]:

Ej (φ) = Ej,0

√
α2 + (1− α2) cos2

(
π
φ

φ0

)
(2.46)



2.3. Hamiltonian description of electromagnetic circuits 13

Here, Ej,0 is the sum of the Josephson energies of the individual junctions Ej,1 and Ej,2,
and α describes the asymmetry between the junctions:

α =

∣∣∣∣Ej,1 − Ej,2Ej,1 + Ej2

∣∣∣∣ (2.47)

2.3 Hamiltonian description of electromagnetic circuits

In order to quantize our circuits, we need to find the Hamiltonian of the circuit. For this
we will follow the procedure as described by Vool and Devoret [18]. For each node of the
circuit a generalized flux is defined according to φ(t) =

∫ t
−∞ V (t′)dt′. Like this we can treat

the phase difference across a junction and magnetic flux in the same way, since δ =
φj+1−φj

φ0
[18]. Then by Kirchoff’s laws, the number of coordinates can be reduced and the degrees of
freedom are found. We can find the Lagrangian by defining the kinetic energy as the energy
stored in the capacitances and the potential energy as the energy stored in the inductors.

Ekin =
C

2

(
φ̇j+1 − φ̇j

)2
Epot, lin =

1

2L
(φj+1 − φj)2 Epot, jos =

φ2
0

Lj

(
1− cos

(
φ

φ0

))
(2.48)

Then we write down the Lagrangian L = T − V and introduce the canonical momenta
πj = ∂L

∂φ̇j
. Next we apply a Legendre transform to find the Hamiltonian:

H =

∑
j

πjφ̇j

− L (2.49)

From this we can postulate commutator relations between π and φ, promote them to
operators and follow the standard procedure for quantization.

2.4 Oscillators

2.4.1 Harmonic oscillator

A harmonically driven harmonic oscillator has the following equation of motion:

mẍ+ cẋ+ kx = F0 cos(ωdt) (2.50)

And potential:

V =
1

2
mω2

0x
2 (2.51)

With ω0 =
√

k
m . Then, by trying x = ρe−jωt+jθ we get the following solutions [19]:

ρ = F0

√
1

m2
(
ω2
d − ω2

0

)2
+ c2ω2

d

tan(θ) = − cω

m
(
ω2

0 − ω2
d

) (2.52)

This is shown in fig. 2.7.
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Figure 2.7: Response of a harmonically driven harmonic oscillator. The
width of the resonance is determined by the damping, here denoted by γ = c

m .
Picture adapted from [19].

2.4.2 Coupled harmonic oscillators

Now consider the linear coupling of two harmonic oscillators. As an example we look at two
springs, with spring constant kA and kB, coupled by another spring with spring constant κ.
This is shown in fig. 2.8

Figure 2.8: Two springs coupled by a second spring. This spring leads to
frequency splitting. Picture adapted from [20].

This system is described by the following two equations:

mẍA + kAxA + κ (xA − xB) =0 (2.53)

mẍB + kBxB − κ (xA − xB) =0 (2.54)

Again, we substitute e−jωt as trial solution, and we get the following eigenfrequencies:

ω± =
1

2

(
ω2
A + ω2

B ±
√(

ω2
A − ω2

B

)2
+ 16gωAωB

)
(2.55)

With g = κ
2m
√
ωAωB

and ωA =
√

kA+κ
m and ωB =

√
kB+κ
m . No we look what happens when

we sweep kA and keep kB constant. When there is no coupling eq. (2.55) reduces to ωA and
ωB and we get two straight lines, this is shown in fig. 2.9 to the left.

When we turn on the coupling we see that when the modes are far detuned (ω2
A−ω2

B)� κ
m

we have the same as in the uncoupled case. However, in the opposite case, we get a mode
with a lower frequency and a mode with higher frequency. The first does not involve the
coupling spring and belongs to the symmetric mode, where both masses move in phase. The
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Figure 2.9: Spectrum of coupled and uncoupled oscillators. The left picture
shows the eigenfrequencies when there is no coupling and the frequencies are
brought to resonance by changing ωA and keeping ωB constant. When they

get close, the frequencies split and a lower and higher mode emerge.

higher mode belongs to the antisymmetric mode where the masses move in anti-phase and
does involve the coupling spring. When ωA = ωB we get:

ω2
± = ω2 (1± 4gω) (2.56)

And we see that 8gω = ω2
+ − ω2

−. So the width of the split is given by ω+ − ω− ≈ 4g.
Now, we briefly look at a quantum description of the two linear coupled oscillators. We

write for the Lagrangian:

L = T − V =
1

2
mẋ2

A +
1

2
mẋ2

B −
1

2
kAx

2
A −

1

2
kBx

2
B −

1

2
κ (xA − xB)2 (2.57)

=
1

2
mẋ2

A +
1

2
mẋB2 − 1

2
(kA + κ)x2

A −
1

2
(kB + κ)x2

B − κxAxB (2.58)

Now pA = ∂L
∂ẋA

and pB = ∂L
∂ẋB

. Then,

H =

∑
A,B

ẋipi

− L (2.59)

=
p2
A

2m
+
p2
B

2m
+

1

2
(k + κ)x2

A + (k + κ)x2
B + κxAxB (2.60)

Now we quantize according to x̂A =
√

~
2mωA

(â+ + â) and p̂A = j
√

~mωA
2 (â+ − â) and

similar for B, with [â, â+] = [b̂, b̂+] = 1. We get:

Ĥ =~ωA
(
â+â+

1

2

)
+ ~ωB

(
b̂+b̂+

1

2

)
+

~κ
2m
√
ωAωB

(
â+ + â

) (
b̂+ + b̂

)
(2.61)

=~ωA
(
â+â+

1

2

)
+ ~ωB

(
b̂+b̂+

1

2

)
+ ~g

(
â+ + â

) (
b̂+ + b̂

)
(2.62)

And we see that the frequency splitting now appears as four times the rate at which
photons are exchanged between the oscillators.
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2.4.3 Duffing oscillator

We consider a mass spring system with a linear restoring force F = kx and no dissipation.
This system has the well-known equation of motion:

m
d2x

dt2
+ kx = 0 (2.63)

And potential energy:

V = m
ω2

0

2
x2 (2.64)

We know that this system has a harmonic solution with ω0 =
√

k
m . Now, we make the

spring non-linear by adding:

F = kx+ βmx3 (2.65)

We can distinct two cases: β > 0 and β < 0. The first is generally called ’spring-hardening’
and the second ’spring-softening’. This can be understood by writing:

F = kx+mβx3 = (k +mβx2)x (2.66)

So the non-linearity can be interpreted as an amplitude dependent spring constant, such
that the spring becomes stiffer when β > 0 and softer when β < 0. The equation of motion
becomes:

m
d2x

dt2
+ kx+mβx3 = 0 (2.67)

And the potential energy:

V = m
ω2

0

2
x2 +m

β

4
x4 (2.68)

When we normalize eq. (2.67) and add a dissipative term mr dxdt we get the Duffing equa-
tion:

d2x

dt2
+ r

dx

dt
+ ω2

0x+ βx3 = 0 (2.69)

Figure 2.10: Anharmonic potentials of mass-spring system with spring-
softening non-linearity (β < 0) and spring-hardening (β > 0) non-linearity.

The blue line shows the unperturbed harmonic potential.
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This type of equation differs from the harmonic oscillator in a number of ways: it has
no analytic solution anymore, the superposition principle is not valid anymore and new
phenomena emerge like the appearance of strange attractors, subharmonics and bifurcation
[21][22].

The bifurcation phenomenon will be important later on in this thesis. Here we will focus
on a qualitative understanding, in section 5.2.3 we will numerically solve the equation. An
example of bifurcation is shown in fig. 2.11. To understand this, we rewrite the potential:

V = m(
ω2

0

2
+
β

4
x2)x2 (2.70)

We see that the non-linearity now appears as an amplitude dependent frequency shift. The
potentials for spring-hardening and spring-softening case are plotted in fig. 2.10. When we
drive a spring-hardening system above its resonance frequency two states are possible: either
the particle takes a low amplitude and behaves the same as a harmonic oscillator driven
above its eigenfrequency, or it takes a high amplitude such taht the ’effective’ eigenfrequency
is shifted up bringing it on resonance with the drive. Increasing the drive frequency, the
particle will stay on resonance by increasing its amplitude up to some point where it jumps
down to the lower mode. This ’jump-down’ frequency depends on the dissipation r, the spring
constant k, β and the driving strength F [23]:

ω+ =

√
1

2
+

1

2

√
1 +

3βF 2

k2r2
(2.71)

A important example of a Duffing oscillator in cQED is the transmon qubit, which is
basically a Josephson junction shunted with a big capacitor. In the weakly anharmonic limit
and with now offset charge, its Hamiltonian reads [24][25]:

Ĥ = 4Ecn̂
2 + Ej

δ̂2

2
− Ej

δ̂4

24
(2.72)

Here n̂ = −i ddδ is the number of electrons passed through the junctions and δ̂ = δ the
phase across the junction. When we compare this with our Duffing Hamiltonian, where we
have the operators p̂ = −i~ d

dx and x̂ = x:

Ĥ =
p̂2

2m
+m

ω2
0x̂

2

2
+m

βx̂4

4
(2.73)

Figure 2.11: Bifurcation in a Duffing oscillator with β > 0. The system has
two stable branches for ω > ω0. Picture adapted from [21].
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We see that ~2
2m → 4Ec and mω2

0 → EJ . Now, when we quantize this, using the same

definitions as with the coupled oscillators x̂ =
√

~
2mω (â+ + â) and p̂ = j

√
~mω

2 (â+ − â),

keeping only the lowest order terms, we find:

Ĥ = ~ω
(
â+â+

1

2

)
+

3mβ~2

8

(
â+â+ââ

)
(2.74)
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Chapter 3

Ground state quenching of a CPW

3.1 Quench physics

The adiabatic theorem gives a qualitative prediction of the dynamics of a quantum system
prepared in an eigenstate undergoing a transition in its potential landscape over time [26].
According to the theorem we can identify two cases here: adiabatic and diabatic. In the first
case, we change the Hamiltonian from Hinitial to Hfinal slowly compared to some timescale τ .
The adiabatic theorem tells us that, when the system was in the nth eigenstate of Hinitial, it
will end up in the nth eigenstate of Hfinal. In the latter case, we change the Hamiltonian faster
than τ such that the system is still in the eigenstate of Hinitial. However, the eigenstates of the
system are now those of Hfinal , so the system is now in a superposition. This is schematically
illustrated for the case of a particle in a box in fig. 3.1.

Figure 3.1: In (a) the particle is in its ground state. When the potential
is slowly varied, the particle ends up in the ground state of the new system,
shown in (b). If the potential is changed very fast, the particle still is in the
eigenstate of the initial potential and in a superposition of eigenstates of the

new potential, shown in (c) [27].

In the diabatic case, it is not evident how the system will evolve and will typically depend
on the system in consideration [28]. A number of theoretical studies on cases in the realm of
solid state physics has been conducted on for example the XY model [29] and the Ising model
[30]. Typical questions concern the mechanisms involved, typical timescales, what happens
close to critical points and the kind of correlations expected [31]. Experimental realization
with ultracold atoms of the transition from superfluid to a Mott insulating state [32] renewed
interest in the topic, as now some questions possibly could be answered experimentally [33]
[34]. From then, numerous experiments have been performed involving ultracold atom gasses
[35] [14] [36] .

Circuit Quantum Electrodynamics (cQED) has been shown to provide a useful platform
for simulating many-body physics [37]. As explainend in section 1.2, quantum circuits are
flexible in their design and fabrication of the system parameters, offering the possibility for
exploring strong and ultrastrong coupled regimes [38] . By considering the interruption of
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the central conductor of a CPW with a tunable coupler we will explore in this chapter a
possibility of applying the cQED toolbox to quenching problems. In such an experiment we
would have a very simple system. Moreover, in contrast to ultracold atoms, this is an open
system which allows for exploring the effect of coupling to an external heat bath [39]. In the
following we will first explain how this device can be used for a quenching experiment, and
then discuss its experimental feasibility.

3.2 Intersection of CPW with tunable coupler

A schematic of a CPW intersected with a tunable coupler is shown in fig. 3.2.

Figure 3.2: Schematic of a CPW interrupted by a LC circuit with a tunable
inductance. By tuning the inductance we can change the coupling between the
two resonators. In this chapter we explore how fast this should be to excite

the groundstate.

The coupler is basically a parallel LC circuit with a tunable inductance. Such a tunable
inductance can be easily realized by flux biasing a SQUID (see section 2.2). To explain how
this device can be used for a ground state quenching experiment we simulated the spectrum
of such a system using the circuit simulator QUCS [40]. The parameters we used can be found
in table 3.1.

Figure 3.3: Reflection coefficients (S11) of a CPW interrupted by a capacitively shunted inductor. Its
resonance frequency fp is changed by varying Lj . The lines independent of fp are the odd harmonics
of the CPW. The lines which do depend on fp are the mixed modes between the even harmonics
of the bare CPW and the inductors. At multiples of fp = 6 GHz they cross each other and become

degenerate. This spectrum was obtained with QUCS using the parameters of table 3.1
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Table 3.1: QUCS parameters for simulating spectrum of CPW intersected with
tunable LC circuit.

Parameter Value Parameter Value

`(mm) 9 Cc (fF) 25

v (108 m s−1) 1.08 Qint 280

f0 (GHz) 3 Qext 730

Z0 (Ω) 50 Cj (fF) 100

In fig. 3.3 the S11 reflection coefficients are shown. The junction is modelled as a linear
inductor with inductance Lj , varying between ∞ and 1 nH. The inductor together with the
capacitance behave like a LC-circuit with plasma frequency fp = 1√

LjCj
.

The straight lines at multiples of f̄ = 6 GHz are odd harmonics (first, third, sixth etc,) of
the bare CPW. These modes have a flux node in the middle at the junction, and therefore a
current anti node, as shown in fig. 3.4. Therefore they do not couple to the junction and are
independent of fp. The even harmonics of the CPW do have a finite current at the middle
and therefore are modified by the junctions giving them a finite flux drop. They do depend
on fp and cross the straight lines exactly at f̄p = 6 GHz.

Figure 3.4: The first harmonic of
the bare CPW has a current node at
the capacatively shunted inductor and

is therefore decoupled from it.

Figure 3.5: At fp = f̄p the ca-
pacatively shunted inductor has an
impedance approaching infinity such
that the CPW is split into two λ/2

resonators.

It it is insightful to consider three points, Lj →∞, Lj =
1

Cj f̄2
and Lj �

1

Cf̄2
. In

the first case the inductor behaves as an open, therefore here the coupling between both
resonators is purely capacitive. In the latter case, ZL � ZC such that the coupling is purely
inductive. When Lj → 0 the inductor becomes a short and we are left with the unmodified
even harmonics of the bare CPW.

The most interesting point is the crossing point in between where Lj =
1

Cf̄2
. Here

the capacitively shunted junction functions as a bandstop filter, having an impedance Z =
RJ at frequencies f = fp = f̄ , which is virtually infinite. So the frequency where the



22 Chapter 3. Ground state quenching of a CPW

impedance becomes infinite matches exactly the eigenfrequency of one piece of CPW with two
open ends (λ/2 resonator). As the coupling capacitances act as mirrors at GHz frequencies
(Ccoupling ∼ fF), each half of the CPW behaves as an independent λ/2 resonator, see fig. 3.5.

A typical quench experiment will start at fp = 0 such that the two resonators are capac-
itively coupled. Then by suddenly bringing fp to f̄ the two are decoupled. The question we
want to answer now is: how fast do we need to quench to excite the ground state?

3.3 Ground state quenching timescales

To determine how fast we should quench our system we write down our Hamiltonian modelling
the CPW’s as lumped element circuits, quantize and simulate the evolvement of the master
equation in QuTIP. To this end we follow the approach of Devoret as explained in section 2.4.2
and introduce the generalized fluxes φa and φb as our coordinates, as shown in fig. 3.6 [18].

Figure 3.6: We model the CPW intersected by a tunable coupler as two LC
circuits coupled by another LC circuit with a tunable inductor Lj . We chose

φa and φb as our coordinates.

Now our Lagrangian becomes:

L =T − V (3.1)

=
C

2
φ̇2
a +

C

2
φ̇2
b +

Cj
2

(
φ̇a − φ̇b

)2
− φ2

a

2L
−
φ2
b

2L
− 1

2Lj
(φa − φb)2 (3.2)

We expect a symmetric and an antisymmetric solution, so we transform to φ+ = φa+φb√
2

and φ− = φa−φb√
2

. Then we get:

L =
C

2
φ̇2

+ +
C

2
φ̇2
− + Cjφ̇

2
− −

φ2
+

2L
−
φ2
−

2L
− 1

Lj
φ2
− (3.3)

=
C

2
φ̇2

+ −
φ2

+

2L
+
C + 2Cj

2
φ̇2
− −

Lj + 2L

2LLj
φ2
− (3.4)
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Now our generalized momenta are π+ = ∂L
∂φ̇+

= Cφ̇+ and π− = ∂L
∂φ̇−

= (C + 2Cj) φ̇−, and

we find for our Hamiltonian:

H =
(∑

φ̇iπi

)
− L (3.5)

=
π2

+

2C
+
φ2

+

2L
+

π2
−

2 (C + 2Cj)
+
Lj + 2L

2LLj
φ2
− (3.6)

Which is just the sum of two uncoupled harmonic oscillators with f+ = f̄ = 1
2π
√
LC

and

f− = 1
2π

√
Lj+2L

(C+2Cj)(LLj)
. We are interested in the mode which involves the coupling, i.e. φ−.

To verify if our frequency makes sense we rewrite f− as a function of fp.

f2
− =

f̄2C + 2f2
pCj

C + 2Cj
(3.7)

We directly see that at fp = f̄ the antisymmetric mode crosses the symmetric mode, i.e.
f− = f̄ as we expect from our QUCS simulation. Using eq. (2.25) we plot f− in our QUCS

spectrum in fig. 3.7 :

Figure 3.7: Plot of the frequency of the antisymmetric mode as obtained from
our lumped element model (red dashed line) against our QUCS simulation which
takes the distributed nature of the CPW into account. As expected it fits very
well below f̄p. Above f̄p it diverges as the lumped element model breaks down.

.

We see that below f̄ our resonance frequency matches our QUCS spectrum really well.
Above it starts to diverge. This is because in the limit LJ → 0 our lumped element model
behaves as two strongly coupled oscillators, for which the eigenfrequency scales linear with
the coupling. Here the lumped element approximation brakes down, as two strongly coupled
CPW’s behave as one CPW. So in reality, in the limit LJ → 0 the mode becomes one of the
flat harmonics of the CPW (this is better visible in fig. 3.3).
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Figure 3.8: Occupancy of antisymmetric mode of two coupled harmonic oscil-
lators with f̄ = 6 GHz prepared in its groundstate. The system is brought from
f−(0) = 5.4 GHz to 6 GHz, in four different times. To excite the system it must

be quenched faster than 1
f−(0) .

Next we quantize the antisymmetric mode, by introducing π̂− =
√

hCf−
2 (â+ − â−) and

φ̂− =
√

~
4πCf−

(â+ + â−), with [â, â+] = 1:

Ĥ =hf−

(
â+â+

1

2

)
(3.8)

As f− = f−(fp) and fp = fp(t) we have reformulated our problem in quenching an
harmonic oscillator. To simulate this in QuTIP we need to know the evolvement of the
creation and annihilation operators. Following the approach of Ma and Rhodes [41] our time
dependent creation and annihilation operator become:

â+(t) =
f−(t) + f−(0)

4π
√
f−(t)f−(0)

â+(0) +
f−(t)− f−(0)

4π
√
f−(t)f−(0)

â+(0) (3.9)

Then our time dependent Hamiltonian becomes:

Ĥ =
πf−(0)

2

(
â+â+ ââ+ − â+â+ − ââ

)
+
πf−(t)2

2f−(0)

(
â+â+ ââ+ + â+â+ + ââ

)
(3.10)

Next we use the QuTIP function mesolve to solve the Schrödinger equation:

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉 (3.11)

We set |Ψ〉 at t = 0 to the ground state |0〉 and allow for a maximum number of photons
of N = 20. We simulate a quenching experiment by preparing our system in its ground
state and change fp from fp = 0 to fp = f̄ = 6 GHz. We use a capacitance of Cj = 100 fF
which means that the frequency of the antisymmetric mode changes from f−(0) = 5.4 GHz
to f− = f̄ = 6 GHz. This corresponds to an initial coupling g0:
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g0 ∼
f̄2 − f−(0)2

4f̄
= f̄

Cj
2(C + 2Cj)

≈ 300 MHz (3.12)

We plot time traces for four different quenching times shown fig. 3.8. We see that we
need to to quench faster than 1

f−(0) to get a significant excitation. Still, we would get an
occupation number of only 0.001.

In fig. 3.9 we plot the steady state occupation number as function of g0 for four different
quenching times compared to f−(0).

Figure 3.9: Steady state occupation number after the quench for different initial
couplings g0, plotted for four different quenching times compared to f−(0). The
higher the coupling, the higher the excitations. At lower couplings quenching has

no effect and the occupation number is zero.

As expected, increasing the coupling g0 will increase the occupation number. Further-
more, we observe that the effect of faster quenching is stronger at higher couplings. The
rising time of an Arbitrary Waveform Generator (AWG) depends on its bandwidth, and is
typically in the order of nanoseconds. We conclude that a ground state quenching experiment
with the proposed device will be experimentally challenging because we find that we need to
quench faster than 1/f(0) which requires sub-nanosecond timescales. Second, to achieve a
high coupling we need capacitors in the order of ∼ pF which adds extra complexity to the
fabrication process.

Finally, we consider the more general case of quenching two linear coupled harmonic
oscillators and simulate again the dynamics using QuTIP:

Ĥ =~ω
(
â+â+

1

2

)
+ ~ω

(
b̂+b̂+

1

2

)
+ ~g

(
â+ + â

) (
b̂+ + b̂

)
(3.13)

We again show the time traces with g0 = 300 MHz fig. 3.10. Again the oscillator frequency
determines the quenching timescale. For the ’fast’ quenching times the excitation number in
this model lies in the same order as our previous model, for ’slower’ times it predicts a higher
value. We also observe that now the fast oscillations at 12 GHz are modulated by a slower
oscillation with f = 4g0.

We also calculated the steady-state occupation numbers for different g0 and different
quenching times, plotted in fig. 3.11. The steady state occupation number lies in the same
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Figure 3.10: Decoupling two coupled harmonic oscillators on resonance in the
ground state with f = 6 GHz. The ground state occupancy exhibits fast oscil-
lations at 2f modulated by a slower oscillation at 4g0. The dashed curve shows
the coupling g(t) as a function of time. The quenching must happen much faster

than 1/f to achieve the highest excitations possible.

order of magnitude as our previous model, but differ in two ways. At low couplings the
values for fast quenching times lie much higher, and they show oscillatory behaviour. This
can be explained by the fact that the time traces are modulated by g0 such that the steady
state occupation number depends on the moment we quench. As we keep this constant but
shift g0, we get an oscillation. In summary, the experimental challenges we found from our
previous model hold in general for ground state quenching linear coupled oscillators.

Figure 3.11: Steady state occupation number after quenching the coupling of
two linear coupled oscillators with frequency f = 6 GHz for different initial cou-
plings g0, plotted for four different quenching times compared to f . The higher

the coupling, the higher the excitations.
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Chapter 4

Josephson Crystal: Design,
fabrication and experimental setup

We designed an experimental realization of a Josephson crystal based on a proposal by
Hartmann and Leib [9]. This circuit consists of a coplanar waveguide regularly interrupted
by capacitively shunted Josephson junctions at distances comparable to microwave lengths,
shown in fig. 4.1. This device exhibits ultra strong coupling between the junctions and the
cavity modes, as the junctions are directly placed inside the central conductor.

It is predicted that the band-structure becomes degenerate when the plasma frequency of
the Josephson is equal to the frequency of a single CPW. Furthermore, the system makes a
sharp transition when it is tuned at the degeneracy point and driven by a red-detuned drive.
In that case some modes synchronously switch from low occupancy to a high occupancy, first
responding with a π-delay to the drive ending up in phase with the drive.

In this chapter first we review the main theoretical predictions of the work of Leib, then
we explain the process of designing, fabricating and measuring an cQED realization of the
Josephson crystal.

Figure 4.1: Central conductor of CPW interrupted by N uniformly distributed
Josephson junctions, shunted with a capacitor Lj . Proposal by Leib and Hart-

mann [9].

4.1 Spectrum and off-resonant driving of the Josephson crys-
tal

In fig. 4.2 the analytical solutions of the spectrum of a CPW intersected with three capaci-
tively shunted junctions at equal spacing are shown [9]. The spectrum for N junctions is is
given by:

cos
(
ω
v∆
)
− cos

(
n π
N+1

)
sin
(
ω
v∆
) =

cvπ

2Cj

ω

ω2
p − ω2

(4.1)

Here ωp = 2πfp = 1
LjCj

is the plasma frequency of the junctions. As with the CPW

interrupted by one junction the odd harmonics of the CPW stay unmodified due to their
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Figure 4.2: Classical eigenspectrum of CPW intersected with N = 3 equally
spaced capacitively shunted Josephson junctions as calculated by Leib et al. [9].
Here L = 28 mm, v = 0.98× 108 m s−1, Cj = 1 pF. The system exhibits a

degeneracy point at plasma frequencies fp = k (N+1)ωL
πv .

current nodes at the junctions (see section 3.2). These are left out of the spectrum. Again
we can distinguish a capacitive regime at Lj → ∞, an inductive regime (Lj � 1

Cj f̄2
), and

degeneracy point Lj = 1
Cj f̄2

where the plasma frequency fp equals the frequency of an odd

harmonic f̄ = k (N+1)ωL
πv . Here the device becomes subdivided into five λ/2 resonators.

We can gain some more understanding by viewing the Josephson crystal as two sets of
harmonic oscillators (the bare CPW modes and Nj LC circuits), coupled to each other with
a coupling g. When the two systems would be completely decoupled (g → 0) the spectrum
would consist of flat lines at the bare CPW eigenfrequencies (fCPW = nv

2∆ with ∆ the length
of one piece of CPW), and a straight line f = fp crossing them. By turning on the coupling
the modes of the CPW and the junction with frequencies |fp − fCPW | ∼ g, the crossings
split into a low frequency and high frequency mode. Those branches cross at the degeneracy
point, where the plasma frequency match exactly the resonance frequency of a single piece
of CPW. Those are plotted in fig. 4.3a.

The quantization of these mixed modes gives a set of harmonic oscillators quantized with
the operator ân. Then a transformation is applied to a base where the flux drops over the

(a) (b)

Figure 4.3: A Modes at the degeneracy point in arbitrary units for a device with
NJ = 3 junctions. B Transformed modes at the degeneracy point minimizing the

flux drop across the junctions. Picture adapted from [9].
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junctions is minimized, as shown in fig. 4.3b:

b̂j =
√

2/(N + 1)
N∑
n=1

sin(jpn)ân (4.2)

Then non-linearity is added as a perturbation. This gives the following Hamiltonian at
the degeneracy point:

H =

N∑
j=1

[
hf̄b†jbj −

Ec
2
b†jb
†
jbjbj

]
− Ec

N∑
j,l

gj,l

((
b†jb
†
jbj + b†j

)
bl

)
(4.3)

With EC = e2

2Cj
, gj,l = (2/N + 1)

∑N
n=1 sin(jpn) sin(lpn)

[
λ(fn)
λ0
− 1
]
, pj = πj

N+1 and λ0 =√
~

4πCjfp
which is the ZPF of a single JJ. The flux fluctuations of each mode are given by:

λ =

√√√√ ~

4πCjfp

(
1 + ∆c

4Cj

[
1 + cos

(
n π
N+1

)]) (4.4)

The first term in square brackets in eq. (4.3) represents a set of non-linear oscillators
with a self-Kerr non-linearity of Ec

2 . The second term represents the nonlinear inter mode
couplings. Now, the following Hamiltonian is added to represent the drive:

Hdrive = i~ sin(ωdt)
∑
j

Ωj

(
bj − b†j

)
(4.5)

Here, Ωj is an effective driving strength:

Ωj =
Φ√
N+1
hfpC2

c

N∑
n=1

sin(npj)/(~
√
ηn) (4.6)

Here Φ is the drive amplitude and ηn the effective mode capacitance [42]:

ηn =
Lc

2 sin(pn)2
(

1 + cos(pn) +
4Cj(N+1)

Lc

(
1 + cos(pn)2

)) (4.7)

Then, the following master equation was solved by a mean field simulation for a red
detuned drive with fd = f̄ − 4Ec/h:

i

~
[H, ρ] =

∑
n

κ

2
[2bnρb

+
n − ρb+n bn − b+n bnρ] (4.8)

The result published by Leib in his paper is shown in fig. 4.4. At a certain power Ω∗

most modes become suddenly populated. The explanation given by Leib and Hartmann goes
as follows. Without the coupling we would have a set of nonlinear oscillators with a power
dependent energy shift (because of the negative Kerr non-linearity). Then we would expect
the modes to suddenly become populated at different driving strengths because of the mode
dependent driving amplitudes. The effect of the inter mode coupling g is that modes in the
same phase amplify each other. Therefore when the first mode tries to switch it is weighted
down by the other modes. However, when the majority is switched, they drag the other
modes with them.

Our goal is to experimentally observe the synchronization. Therefore we designed and
fabricated a Josephson crystal. In the next section we describe our design considerations.
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Figure 4.4: Modes occupation when driving a Josephson Crystal off-resonant.
By increasing the driving strength the modes tuned at the degeneracy point
suddenly become populated. Here N = 8 junctions are simulated, with v =

0.98× 108 m s−1, Cj = 1 pF and L = 5.2 mm.

4.2 Designing the Josephson crystal

The final device with five capacitively shunted junctions is shown in fig. 4.5. This section
will go through all the design considerations and fabrication techniques of the different parts
of the device: the transmission lines, the capacitively shunted junctions together with the
flux lines, the coupling capacitors and the ground plane. Before we do this, we first briefly
describe the printed circuit board (PCB), functioning as a bridge between the crystal and
microwave setup, as its dimensions and placement of the launchers constrain the rest of the
design. Finally we describe the microwave setup surrounding the chip which we use for cool
down, driving and read-out.

We also made a chip with a crystal interrupted by three junctions and one with only
one junction. The design considerations are the same as with the five junction device, see
appendix A.

Figure 4.5: Design of our Josephson crystal featuring five capacitively shunted
junctions (black rectangles) connected by 9 mm CPW’s. The triangles are the

launchers connecting the chip to the PCB.
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4.2.1 PCB

The printed circuit board (PCB) connects the chip with the Josephson crystal to the mi-
crowave setup we use to drive and readout our device. The PCB consists of eight lines
leading to the pocket in the middle of 4 mm by 7 mm as shown in fig. 4.6 were we place
the device. These lines connect the chip via wire bonds to the microwave setup using SMP
connectors. One of them will be connected to the drive and one will be used for readout.
We use the six lines left to flux bias our junctions, which we shunt with a second junction to
make the inductance flux dependent (see section 4.2.3).

Figure 4.6: The chip is placed in the central pocket of the PCB. The eight lines
connect the chip via wire bonds to the microwave setup using SMP connectors.
Two of these lines are used for driving and read-out, the other six can be used for

flux biasing the junctions.

4.2.2 Transmission lines

The shape of the transmission lines is not only constrained by the shape of the PCB but
also by the frequency range we can operate in, according to eq. (2.16). The requirement that
the modes are not populated by thermal excitations imposes a lower bound of one gigahertz
(1 mK ∼ 20 MHz). The upper bound comes from the superconducting energy gap, which
for aluminum is about fifty gigahertz. In our setup, this range is further reduced by the
electronics being optimized to operate between 4 GHz and 8 GHz.

For the central pin and the ground plane we use 0.2 µm thick NbTiN with a critical
temperature of Tc = 14.5 K and a resistivity ρ =1.23× 10−6 Ω m, etched on a 500 µm Silicon
wafer with εr = 11.45 at low temperature. To make the CPW have a standard impedance of
50 Ω, we set the width of the central pin to w =12 µm and vary the gap until we have the right
impedance, according to eq. (2.7) and eq. (2.8). The gap also determines the capacitance per
unit length, inductance per unit length and phase velocity, as explained in section 2.1.2. The
values we found are shown in table 4.1.

We wrote a python script drawing the CPW’s in a GDS file using the GDSCad [43] package.
Like this, we fully parameterized our design, allowing us to vary positions and dimensions
until everything satisfied the constraints. This is further explained in section 4.2.5. We
were able to fit five junctions on the chip with the CPW having a length of L = 9 mm,
corresponding to f̄ = 6 GHz.
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Table 4.1: Parameters of CPW’s we use for our experimental realization of the
Josephson crystal

Total length L 54 mm

width W 12 µm

gap G 4 µm

capacitance per unit length c 0.18 nF m−1

inductance per unit length l 0.46 µH m−1

phase velocity v 1.08× 108 m s−1

resonance frequency f̄p 6 GHz

4.2.3 Capacitively shunted junctions

Capacitors

The capacitance CJ is chosen to optimize the non-linear inter mode couplings, encoded in
the off-diagonal elements of the g-matrix given by eq. (4.3). From fig. 4.7 we see that these
have an optimum around Cj = 200 fF.

Figure 4.7: The non-linear intermode couplings encoded in the off-diagonal
elements of gij , depend on the capacitance Cj and have a maximum around
200 fF. Each graph shows a different row of gij . A value of 1 means that the

non-linear interaction is comparable to the self-Kerr interaction.

To get a capacitor with a capacitance close to this value we design an interdigitated capac-
itor. The EM analysis tool Sonnet [44] is used to parametrize the capacitor by its gap width
and finger length, and to measure the reflection coefficient as a function of frequency. From
the resonance frequency, we need to separate the capacitance and the parasitic inductance.
To this end we add an extra inductor between the top fingers and measure the resonance for
two different inductances, leaving us with two equations and two unknowns.
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Figure 4.8: Design of capacitor shunted with the Josephson junctions. The
measurements are in µm

From this, we find a capacitance of 135 pF and a self inductance of 0.29 nH for the pa-
rameters shown in fig. 4.8. This yields a self resonance at 25 GHz, far away from the 4 GHz
to 8 GHz range we are looking at.

Next, the zero point flux fluctuations of the junctions should be lower than the flux
quantum φ0 = ~

2e in order to reduce charge noise [42]. The fluctuations around the first
degeneracy point are given by eq. (4.4). We find that in our case the fluctuations are 5.5
times smaller than a quantum of flux.

Junctions

The fabrication process inevitably introduces variation in Ej and Ec between different capaci-
tively shunted junctions. To correct for this and to probe the spectrum around the degeneracy
point f̄ = 6 GHz, we make the Josephson energy Ej tunable by adding an extra junction in
parallel, according to eq. (2.46).

Figure 4.9: By shunting our junctions with a second junction we make the total
Ej tunable as a function of the magnetic flux φ. To set a lower bound, we chose to
use two junctions with different Ej ,shown in red. In grey the curve corresponding

to the symmetric case is drawn.
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When two identical junctions are used (α =0), Ej modulates between Ej,1 + Ej,2 and 0.
By making them asymmetric we can set a lower bound Ej,1 − Ej,2, shown in fig. 4.9.

This makes them less susceptible to flux noise, and allow for more precise tuning. Approx-
imating the capacitively shunted junction by a linear LC circuit with frequency f = 1

2π
√
LC

and using that Ej =
(
φ0
2π

)2
/Lj we can translate these extrema into a frequency range around

the degeneracy point. We find that for the junctions to be tunable between 4.5 GHz and 7 GHz
we need E1 = 12 GHz and E2 = 30 GHz.

In fig. 4.10 we show an optical image of the SQUID shunted with the capacitor. On the
left there is a fluxline delivering a constant DC current parallel to the loop. Like this, a
constant magnetic flux threads the loop, allowing for tuning the resonance frequency of the
coupler during the experiment.

Figure 4.10: SQUID loop (shown in the zoom) shunted with a capacitor. On
the left side a fluxline is shown which delivers a DC current parallel to the loop.
This creates a constant magnetic flux through the loop, allowing us to tune the

resonance frequency of the coupler in situ.

4.2.4 Coupling capacitors

Our device is coupled to the outside world by two coupling capacitors with capacitance Cc.
These capacitors enable us to drive and measure the system, but introduce extra loss to the
outside world, quantified by Qext (see also section 2.1.4). We want our device to be to critical
coupled to have both a high SNR and high coherence, so we require Qext = Qint. To be on
the safe side, we approach from below (Qext ≤ Qint) ensuring us to be at least undercoupled.
Based on measurements with reference resonators we estimate Qint to be around Qext = 105.

To estimate Qext as a function of Cc, we made a linear model of our device in the circuit
simulator QUCS [40]. In this model losses in the CPW are modelled by an attenuation constant,
as explained in section 2.1.1. Losses in the couplers can be modelled by shunting them with a
resistance. Then we do a frequency sweep for different capacitances Cc. By fitting eq. (2.39)
we derived the external quality factor shown in fig. 4.11a.

We make our capacitances by simply leaving a gap in the centre conductor. To translate
this gap to the capacitance we need, we again use sonnet with a similar trick. The result is
shown in fig. 4.11b. We find we need a gap of 12 µm to be critically coupled.
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(a) (b)

Figure 4.11: A The external quality factor Qext scales inversely with the cou-
pling capacitance Cc. The red line shows our estimation of the internal quality
factor. The crossing marks the condition for critical coupling. B The capacitance
of a CPW with the central conductor interrupted by a gap as a function of the

gap size. We find we need a gap of 12 µm to be critically coupled.

4.2.5 Designing circuits in Python

We designed our circuit fully in Python using the gdsCAD package [43]. With gdsCAD one can
view and create GDSII layout files, the standard file format for integrated circuit masks. Its
building blocks are Cells containing one or more objects. Objects be grouped as an element,
which allows for transforming them all at once, like translation or rotation. The Cells are
added to a so-called Layout which then can be saved as a GDSII file. The package contains
a number of predefined basic geometries like rectangles, polygons and circles. In addition to
gdsCAD we used the stcad package [45], a collection of Python scripts with more sophisticated
structures like coplanar waveguides build from gdsCAD objects.

As an illustration we show a minimal working example drawing an L-shaped block:

import gdsCAD as cad

from stcad.source_dev.chip import Base_Chip

from stcad.source_dev import objects

## system parameters

path = '/example/minimal_working'

chipsize_x = 2e3

chipsize_y = 2e3

chip = Base_Chip(name, chipsize_x, chipsize_y)

block = cad.core.Boundary( [(-500, -500), (-500,500), (200,500), \

(200, 200), (500, 200), (500, -500)], layer=1)

cell = cad.core.Cell('Example')

cell.add(block)

chip.add(cell, origin=(0,0))

chip.save_to_gds( save=True,loc=path)
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First a chip is created using Base Chip, defined in stcad as follows:

class Base_Chip(cad.core.Cell):

def __init__(self, name, xdim=1000, ydim=1000):

super(Base_Chip, self).__init__(name)

self.name = name

self.xdim = xdim

self.ydim = ydim

self.boxwidth = 100

self.make_layout()

def make_layout(self):

"""

Generate chip with dimensions xdim,ydim

"""

box=cad.shapes.Box((-self.xdim/2, -self.ydim/2), (self.xdim/2, self.ydim/2),

width=self.boxwidth, layer =self.layer_box)

date = time.strftime("%d/%m/%Y")

self.add(box)

def save_to_gds(self, loc = 'examples/', save = True, show = False):

"""

Save and show gds file

"""

layout = cad.core.Layout('MAIN_CHIP')

layout.add(self)

if save:

layout.save(loc + self.name + '.gds')

Base Chip inherits the Cell class and thus is a Cell itself. To define the boundaries of
the chip a box is drawn. After the chip is instantiated we draw a L-shaped block using the
gdsCAD boundary object. This object is added to a Cell, which in turn is added to the chip.
Then, so save to GDSII a Layout is created, the chip is added and saved as GDSII. The result
is shown in fig. 4.12.

Figure 4.12: Example of drawing objects in gdsCAD. The yellow border marks
the edge of the chip.
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During the project, we added an interdigitated capacitor object with the option to include
a SQUID to stcad. New functions for the CPW object (called ’methods’ in object oriented
programming) were written too, to add airbridges and to add a boundary between the CPW
and the ground plane, called ’skirts’. These can be found in appendix B.

To draw the transmission lines we use the CPW object from stcad, which draws a trans-
mission line using the gdsCAD boundary object. For this it needs the coordinates of beginning
point, end point and bends. Because each CPW must have the same length in our case, we
wrote a function called ’CPWcoor’ which takes as input the coordinates of the beginning
and the end, the total length, number of bends and starting length. Furthermore the initial
direction can be given as ’north’ (n), ’south’ (s), together with the direction of the end, which
can be ’horizontal’ (h) and ’vertical’ (v). It returns the coordinates passed to the CPW object
such that we can quickly generate different types of CPW’s with the same length. This is
illustrated in fig. 4.13.

The file which finally generates the chip can be found in appendix B. It is structured as
follows. First a list with the coordinates of the launchers is created. Then we make a second
list were we parameterize the coordinates of the capacitively shunted junctions, defined by
the points where the CPW meets the capacitor. From those two list, the beginning en ending
points of the CPW are determined and saved in a third list. The CPW’s are then instantiated
using our CPWcoor function and the CPW object. Now we can easily shift a capacitor, add
an extra bend or adjust the length of the CPW because our design is parameterized such
that everything stays connected to each other. Finally, because we designed the airbridge
method of the CPW object such that the airbridges are specified by a density, we can easily
add or remove airbridges and add skirts.

Figure 4.13: Two CPW’s with coordinates generated with the python function
’CPWcoor’, indicated with a cross. As input it takes the total length, the starting
length, the begin and end coordinates, the number of bends and the direction of
the first and last segment. Like this we can create very fast different types of

CPW’s with the same length.
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4.3 Fabrication

The fabrication happens in two stages. In the first stage the metallic structures (transmission
lines, capacitors and squid arms) are made by e-beam lithography and reactive ion-etching
on a 500 µm Silicon wafer with 0.2 µm NbTiN on top. In this step also a grid of holes is made
in the ground plane to trap unwanted magnetic vortices.

Then in the second stage, the junctions are made from Al/AlOx/Al by the Dolan bridge
method [46]. To make junctions with the energies we calculated in section 4.2.3 , we fabricated
an array of junctions with a width ranging from 10 µm to 500 µm. Then we measured its nor-
mal state resistance Rn which scales inverse with Ej according to the Ambegaokar-Baratoff

Figure 4.14: A Ej as function of junction width for a gap of 120 nm. The red
dots show extra measurements done with the width we use for our device (160 nm
and 440 nm). B Relative scatter in Ej for different width is around 3%. At small

width the energies show a wider spread.
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formula [47] Ej = h∆al
8e2Rn

= 140 GHz Ω/Rn, with ∆al superconducting energy gap of Alum-
nium. The results are shown in fig. 4.14 together with the relative scatter which for our pa-
rameters amounts to 4%. From this we estimate our lower frequency to fl = (4.8± 0.2) GHz
and our upper frequency fu = (7.1± 0.1) GHz.

4.4 Experimental setup

In a first round of experiments we cooled down the device with the three junction crystal
and one junction crystal in a BlueFors LD dilution refrigerator. The refrigerator consists of
different stages place above each other. The lowest stage has a temperature of T < 10 mK.
This, together with the wiring diagram is shown in fig. 4.15.

Figure 4.15: Wiring diagram of our setup. The input lines have ∼ 60 dBm
attenuation. The output signal is amplified by cryogenic (HEMT) amplifiers and
room temperature amplifiers. Our flux lines have VLFX and copper powder low

pass filters.
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Figure 4.16: A The PCB (fig. 4.6 with the chip, mounted to the backside of
the mixing chamber plate. B The wiring coming from the 10 mK stage going to
the backside of mixing chamber plate. The grey tubes are the VLFX filters with

the copper powder filters. C 3K stage with the cryogenic amplifiers.

The device is mounted to the backside of the mixing chamber plate, shown in fig. 4.16a
and fig. 4.16b. Via the input lines the Vector Network Analyzer (VNA) sends signals to
the device. These lines all have a total of ∼ 60 dBm attenuation. The output goes through
a circulator, which allows for measuring both in reflection and transmission, and then goes
through a cryogenic amplifier (HEMT), shown in fig. 4.16c, and room temperature amplifier
back to the VNA. For the flux lines we use a current source and the DC loom normally
used for biasing magnets. The lines have a total attenuation of ∼ 23 dBm and use VLFX
and copper-powder filters as low-pass filters. The network analyzer and current sources are
controlled by a computer using python wrapper scripts. With this we can set the input power,
the current bias and the IF bandwidth.
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Chapter 5

Josephson crystal: Experimental
results and analysis

We started our experiments first measuring the most simple case of a Josephson crystal, a
CPW interrupted with one coupler, as a benchmark for experiments with more junctions.
However, it turned out that even the most simple case behaved differently from what we
expected. In this chapter we first show in what sense the results diverged from our expecta-
tions. Then we compare the results with our linear circuit model in QUCS and a numerical
integration of the equations of motion which takes into account the non-linearity up to the
first order.

5.1 Experimental results

5.1.1 Full spectra at low powers

As a first experiment we measure the transmission coefficients for three different powers,
shown in fig. 5.1.

Figure 5.1: Full spectrum scan of the transmission coefficients of the 1 junction
device for different input powers. In the upper row the absolute value is shown, in
the rows below we plot the real and imaginary part separately. At P = −50 dBm

we see a peak appearing at f = 5.8 GHz, marked with red circles.
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We are looking for the two normal modes, one which is dark and the other which is bright
to the junction. The dark mode is independent of the flux through the junctions and should
have a frequency around f = 6 GHz. The other mode instead does depend on the amount of
flux through the junction and is expected to lie between f = 5 GHz and 7 GHz. We see only
one peak appearing from P = −50 dBm at f = 5.8 GHz, most clearly in the imaginary part.
In section 5.1.2 we take a closer look at this peak.

Next, we examine the reflection coefficients for the same powers. They are shown in
fig. 5.2. Here we see a dip at f = 6.3 GHz at all powers. We will discuss this peak further in
section 5.1.3. The peak we saw in the S12 parameters is not directly visible here. However,
as we will see in the next section where we zoom in on a smaller frequency range, it is still
present there.

Figure 5.2: Full spectrum scan of the reflection coefficients of the 1 junction
device for different input powers. Again, in the upper row the absolute value is
shown, in the rows below we plot the real and imaginary part. Now a broad dip

emerges around f = 6.2 GHz.

5.1.2 Bare resonator mode

In fig. 5.3 we zoom in on the reflection parameters of the peak at f = 5.865 GHz. At
powers above P = −15 dBm the peak at f = 5.865 GHz vanishes and new peaks arise at
f = 5.866 GHz and the background moves upward. At the right a zoom is shown of the
peaks below P = −15 dBm. The peak becomes narrower and deeper with decreasing power.
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Figure 5.3: Reflection coefficients at f = 5.865 GHz for different input powers.
We see a transition around P = −15 dBm. Above this power the peak vanishes,

and new peak arise at f = 5.866 GHz.

We analyze this peak further at P = −40 dBm. The behaviour as a function of the current
bias is shown in fig. 5.4. The amplitude and phase do not move with current, which suggests
it is the bare resonator mode with a current node at the junction. A slice of the peak is
shown in fig. 5.5.

We fit eq. (2.39) and find an internal quality factor Qint = 2.7× 105 and an external
quality factor Qe = 3.1× 106. Our external coupling differs a factor 10 from what we designed
for, making our system undercoupled by a factor 10, while we designed for critical coupling.

Figure 5.4: A current sweep at input power P = −40 dBm shows a peak at
f = 5.8651 GHz independent of current. This suggests this is the bare CPW

resonance which does not couple to the junctions.
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Figure 5.5: Linecut of the bare resonance at P = −40 dBm including a
lorentzian fit. The phase of the peak only changes a little, indicating that we

are fairly undercoupled.

The cause can be either a mistake in our mapping Qext → Cc or Cc → gap, or both (see
fig. 4.11a and fig. 4.11b). We investigate them separately.

For the mapping Qext → Cc we used a qucs model and used the same relation for both
the five junction device as the one junction device. We plot them in fig. 5.6, now calculating
the relationship for the one junction device separately.

Figure 5.6: We calculate the relation be-
tween Qext and the coupling capacitance Cc

for the one junction device, and compare it
with the curve we actually used, assuming
five junctions (see fig. 4.11a). Since this pre-
dicts a lower Qext than we assumed it cannot
explain why our experiments yields a higher
Qext. We also have plotted the analytical ex-
pression from a lumped element approxima-
tion, which confirms our methods are correct.

Figure 5.7: Relation between coupling ca-
pacitance and gap in the inner conductor of
our CPW, now obtained with sonnet build-
in equations, instead of using ideal compo-
nents. The red line denotes the gap used
in our devices. Now we get a capacitance
10 times lower than the 4 fF we found with

fig. 4.11b.
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To check we did not make a mistake in our qucs model we also plot the relation from our
lumped element model section 2.1.3. First of all, we see that our qucs model and our lumped
element model agree really well, confirming our method itself is correct. Second, we observe
that the one junction device has lower external coupling than our five junction device. From
this, we conclude that our under coupling cannot be explained by a mistake in the mapping
Qext → Cc, and that we must have much lower capacitances than needed. From eq. (2.33)
we derive:

Cc =
1

2Qeω0Z0

(
1 +

√
2Qeω0Z0C + 1

)
= 0.4 fF (5.1)

So indeed, our capacitances are much smaller than we thought.

The next question we want to answer is why our capacitances are so much smaller. Pos-
sibly our sonnet simulation where we added an ideal inductor in series with our capacitance
to create and LC circuit, allowing us to find the capacitance from the resonance frequency, is
wrong. We compare this with a different approach, where we do not make use of extra ideal
components, but derive the capacitance from the Y parameters using the build-in equations
of sonnet. Here, our system is modelled as shown in fig. 5.8.

Figure 5.8: PI-model of a CPW interrupted with a gap. The inductor represents
the parasitic inductance. Using the Y-parameters from the sonnet simulation we

can find the capacitances and parasitic inductance of the capacitor.

The current voltage relations can be written in a matrix form I = Y V :[
i1
i2

]
=

[
Y1 + YRLC −YRLC
YRLC −Y2 − YRLC

] [
v1

v2

]
(5.2)

Here YRLC = jωC
1−ω2LC+jωRC

. Now it follows that:

1

ω Im(1/Y12)
=

C

1− ω2LC
(5.3)

So by plotting 1
ω Im(1/Y12) as a function of ω we find the capacitance from the crossing

with the y-axis and the parasitic inductance from the resonance. In fig. 5.7 we show the new
Cc− gap relation. Indeed, now we find that a gap of 12 µm yields a capacitance of 0.25 fF
which is much more closer to the real value than the 4 fF we found before.

Next, now we have derived some useful information from the internal and external cou-
plings, we focus on the resonance frequency f = 5.8651 GHz which is 135 MHz lower than
the f = 6.02 GHz we designed for. This is mostly due to the kinetic inductance its sen-
sibility to the film thickness, and to a lesser extent due to the coupling capacitances. We
already have our coupling capacitances and the capacitance per unit length of the resonator
is completely determined by the geometry and therefore not expected to change much. Using

f0 =
√

1
L(C+2Cc)

we can calculate the inductance per unit length l and the impedance Z0.

The final fit parameters are summarized in table 5.1.
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Table 5.1: Comparison of CPW parameters between the values we designed for
and the values of our actual realization.

Parameter Realized Designed

f (GHz) 5.865 6.022

l (µH m−1) 0.485 0.461

c (nF m−1) 0.184 0.184

v (108 m s−1) 1.06 1.08

Z0 (Ω) 51 50

Cc (fF) 0.42 4.0

α (dB) 0.0052 0.015

Qint 3× 106 1× 105

Qext 3× 105 2× 105

We use these fit parameters for our QUCS model and plot the result together with our
measurements in fig. 5.9. We see that our agrees really well with our experimental data
confirming this is indeed the bare resonator mode and that the fit parameters we found are
correct.

Figure 5.9: Resonance peak with at f = 5.8651 GHz and Pinput = −40 dBm
together with a fit of our QUCS confirming that our fit parameters describe our

system very well.

5.1.3 Broad peak

In fig. 5.10 we show three different power scans for the broad peak we observed in the reflection
parameters around 6.2 GHz, for both low and high powers.

We see that the peak exists from very low powers up to powers of P = 10 dBm, from then
it vanishes. Around P = −15 dBm it gets deeper and narrower, and shifts to the right. At
P = 0 dBm it jumps back to the left.

In fig. 5.11 we show the current dependence of this peak for low power (P = −40 dBm)
and high power (P = 8 dBm). At low power the peak does not move with current and is thus
independent of the flux through the junctions. At high power it moves slightly with current,
which is easiest to notice between 0 mA and −20 mA.
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Figure 5.10: Around f = 6.2 GHz a broad assymetric peak is observed. The
peak gets deformed from Pinput = −15 dBm and higher.

We do not believe this ’mode’ is the junction for several reasons. First of all the peak has a
width of ∼ 200 MHz which we cannot reproduce in our QUCS simulation for any gap resistance
Rj , see also section 5.2.1. Second, the peak hardly moves with current. We expect the peak
to move between 5 GHz and 7 GHz within 0.5φ0. From other experiments with approximately
the same size SQUID, we know that 0.5φ0 ∼ 3 mA. Therefore we would expect the peak to
move much more over 40 mA.

One explanation could be that this mode is a parasitic slotline mode caused by the ground
plane being split. These modes are known to exhibit resonance effects and signal loss and
also can explain why we see it only in the reflection parameters [48] [49].

Figure 5.11: Broad peak around f = 6.2 GHz at Pinput = 8 dBm. Here the
peak sligthly changes with current
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5.2 Why do we see no tuning?

In this section we explore different explanations why we did not see the moving peak. As a
first explanation we test the effect of sub-gap resistance of the junctions on the peak visibility.
Next we explore the effect of flux dephasing. Finally we make a classical model of our device,
taking the non-linearity of the junctions into account and look how this influences the moving
peak.

5.2.1 Josephson sub-gap resistance

Using the values we found from the bare peak, we use our QUCS model to look what happens
to the moving peak. We find that the visibility of the moving peak depends on the Josephson
sub-gap resistance as shown in fig. 5.12.

Figure 5.12: QUCS simulation of the magnitude and phase of the two resonances
for different Josephson gap resistances using the fit parameters derived in the
previous section. The left peak is the peak moving with flux, the right is the bare
peak dark to the junctions. The depth and therefore the visibility of the left peak

depends on the josephson gap resistance.

In fig. 5.13 we show the dependence of the peak depth and maximum phase shift as a
function of the sub-gap resistance, together with our noise floor N ∼ 0.01 dB.

Figure 5.13: Here we plot the depth of the moving peak and the maximum
phase for different Josephson gap resistances Rj . The red line denotes the noise
in our measurments. We see that at resistances below Rj = 1× 105 Ω the peak

becomes invisible, both in phase and magnitude.
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From this we derive that the sub-gap resistance must lie below Rj,max ≈ 0.2 MΩ for the
peak to become invisible. The sub-gap resistance generally depends on the density of quasi
particles generated either by thermal excitation or finite voltage bias [50] and is expected
to be much smaller than the normal state resistance [51]. Using t1 from experiments done
with the same type of junctions but in a fridge shielded against infra-red radiation, we find
a minimal sub-gap resistance of [52]:

Rj =
Q

2πf0C
=

t1
2C

= 90 MΩ (5.4)

This is in the same order of magnitude as other experiments with Al/AlO junctions
[53]. Measurements with phase qubits have shown a reduction in t1 from 450 ns to 120 ns
by removing infra-red shielding [54] while a sub-gap resistance of Rj = 0.2 MΩ implies a t1
around 20 ns. Therefore it is unlikely that the sub-gap resistance of the junction is below
0.2 MΩ, even when the infrared radiation is taken into account.

5.2.2 Flux noise

A second cause of the peak to disappear could be dephasing due to flux noise. The flux noise
in the fridge will change the plasma frequency fp by an amount ∆fp =

dfp
dφ ∆Φ, with ∆Φ a

stochastic variable characterizing the flux noise. This is shown in fig. 5.14.
Now by eq. (4.1) the peak itself will shift by ∆f = df

dfp
∆fp. When the integration time of

the VNA is much longer than the time over which the noise varies, the resulting signal is an
average of all quadratures shifted by ∆f , decreasing the depth of the peak. Mathematically:

Qavg =

∫ ∞
−∞

Q(f − f0)P (f)df (5.5)

Figure 5.14: The flux noise picked up in the SQUID causes the plasma frequency
fp to fluctuate depending on the slope of f-φ relation at that point.
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Here Q is either the real or imaginary part of our signal, and P a Gaussian distribution
characterizing resonance frequency distribution centered around a chosen resonance frequency
with σ∆f = df

dfp

dfp
dφ σ∆Φ. To test whether flux noise indeed can explain the disappearance of our

peak, we need to know the minimal σ∆Φ which will bring our peak below the noise floor. To
this end, we first generate an unshifted signal with our QUCS model at f = 5.74 GHz using the
fit parameters derived above. We chose this frequency because df

dφ = 8 GHz/φ0 is maximum

here, such that we will arrive at a lower limit. We use a gap resistance of Rj = 1× 108 Ω
to make sure the disappearance is only due to dephasing. Next, we numerically evaluate
eq. (5.5) for different σ∆f and look for what value our peak becomes below our noise of

N ∼ 0.01 dB. Now, as we can derive df
dfp

from eq. (4.1) we will have an estimation of the
minimal σ∆Φ needed to let our peak disappear, and thus an under limit of the flux noise.

In fig. 5.15 we plot the numerical evaluation of eq. (5.5) for different σ∆f .

Figure 5.15: Convolution of tunable peak at f = 5.810 GHz made in QUCS with
a gaussian distribution, modelling the effect of flux noise for different σ∆f . In the
right plot the depth versus the spread is plotted together with our signal to noise

ratio. Above σ∆f = 0.9 MHz the peak becomes invisible

We find that above σ∆f = 0.9 MHz and the peak becomes below our signal to noise ratio.

Now we need to know df
dfp

at f = 5.74 GHz. As this is close to f̄ we can find an analytical

expression by expanding eq. (4.1) at f̄ :

f2

(
cv

2Cj

∆

v
+ 1

)
= f2

p +
cv

8πCj
(5.6)

By implicit differentiation we arrive at:

df

dfp

∣∣∣∣
f̄

=
2Cj

2Cj + c∆
= 0.13 (5.7)

So, we find that for our under limit:

σ∆Φ =
0.9 ∗ 10−3

0.13 ∗ 8
= 10−3φ0 (5.8)
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From other experiments done with qubits in the same fridge we can estimate the magnetic
field strength. We plot the frequency-flux scan in fig. 5.16 and fit the theoretical relation
eq. (2.46) with α = 0.

Figure 5.16: Frequency versus flux dependence of a qubit measured in the same
fridge as our device. The red line shows a fit of the theoretical frequency versus

flux curve. We see a maximum flux noise ∼ 50 MHz.

In the experiment the frequency was measured as a function of current. We translated
this to flux by comparison with an earlier experiment where the frequency of the same qubit
was measured against flux [52]. At φ/φ0 = −0.07 we have ∆f ∼ 50 MHz which translates to
∆φ ≈ 0.03φ0. As our SQUID has nearly the same area as in the qubit experiment, we will
have the same flux noise in our experiment. Since it is ∼ 30 higher than the under limit we
conclude that it will indeed make our peak invisible.

To verify if our calculations make sense we calculate the magnetic field strength from the
area of the SQUID and get B ≈ 30 nT. B-field measurements in the room report a maximum
field strength of 117 nT [55], which supports our estimation given that we have no magnetic
shielding inside the fridge.

5.2.3 Non-linearity

Finally we develop a non-linear model to explore the effect of the non-linearity on the visibility
of the peak. We approximate the transmission lines again by a lumped element circuit and
write down the equations of motion at the degeneracy point f̄ . In fig. 5.17 the equivalent
circuit together with the fluxes is shown.
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Figure 5.17: Lumped element model of the 1 junction device. The system is
described by two fluxes, φ1 and φ2. By modelling the junction as a nonlinear

inductor we can explore the effect of the nonlinearity on our results.

From Kirchhoff’s laws we have Ij = I2 and I = I1 + Ij = I1 + I2. This gives us two
equations of motion:

C(φ̈1 + φ̈2) +
1

R
(φ̇1 + φ̇2) +

1

L
(φ1 + φ2) = Cc(φ̈d − φ̈1) (5.9)

Cj(φ̈1 − φ̈2) +
1

R j
(φ̇1 − φ̇2) + I0 sin((φ1 − φ2)/φ0) = Cφ̈2 +

1

R
φ̇2 +

1

L
φ2 (5.10)

Now we introduce φ+ = φ1 +φ2 and φ− = φ1−φ2. Using Cc << C we get two uncoupled
equations:

Cφ̈+ +
1

R
φ̇+

1

L
φ+ = Ccφ̈d (5.11)

(2Cj + C)φ̈− + (
2

R j
+

1

R
)φ̇− +

1

L
φ− + 2I0 sin(φ−/φ0) = Ccφ̈d (5.12)

The first equation does not involve the junction and corresponds to the dark mode. We
now focus on the other mode. We expand the sine up to third order and use that we are
tuned at the degeneracy point, such that 1

LC = I0
φ0Lj

= ω2:

(2Cj + C)φ̈− + (
2

R j
+

1

R
)φ̇− +

1

L
φ− + 2I0

(
φ−/φ0 −

1

6
(φ−/φ0)3

)
= Ccφ̈d (5.13)

(2Cj + C)φ̈− + (
2

R j
+

1

R
)φ̇− + Cω2φ− + 2Cjω

2φ− −
1

3
Cjω

2

(
φ−
φ0)

)2

φ− = Ccφ̈d (5.14)
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We introduce C̃ = 2Cj +C , 1
R̃

= 2
Rj

+ 1
R , Q̃ = R̃C̃ω0 and assume a drive φd = Φ cos(ωdt)

which gives our Duffing equation:

φ̈− +
1

R̃C̃
φ̇− + ω2φ− −

1

3

Cjω
2

C̃

(
φ−
φ0

)2

φ− = −Cc
C̃
ω2
dΦ cos(ωdt) (5.15)

We want to solve this system by numerical integration, and then look at the steady-state
solutions. However, for high Q, the time it takes to arrive at equilibrium is teq = 2

κ = Q
πf0

which is a few microseconds while the oscillations themselves are at 1
f0

which is below a
nanosecond. To reduce the number of time steps needed to arrive at equilibrium, we average
these out using the Krylov–Bogoliubov method [56] [57]. This works as follows. We first
assume a solution in the form of φ− = x(τ)eiωdt + x(τ)∗e−iωdt which is basically a truncated
Fourier expansion with x(τ) a slow moving variable with τ = |ω − ωd|t = δt. Then, when
taking derivatives, we drop the term with the highest order in δ:

φ̇− = iωd[xe
iωdt − x∗e−iωdt] + [

dx

dτ
eiωdt +

dx∗

dτ
e−iωdt]δ ≈ iωd[xeiωdt − x∗e−iωdt] (5.16)

φ̈− = −ω2
d[xe

iωdt + x∗e−iωdt] + iωd[
dx

dτ
eiωdt − dx∗

dτ
e−iωdt]δ (5.17)

+ iωd[
dx

dτ
eiωdt − dx∗

dτ
e−iωdt]δ + [

d2x

dτ2
eiωdt +

d2x∗

dτ2
e−iωdt]δ2 ≈ (5.18)

− ω2
d[xe

iωdt + x∗e−iωdt] + 2iωd[
dx

dτ
eiωdt − dx∗

dτ
e−iωdt]δ (5.19)

We fill this in into our equation and drop the fast moving terms (i.e. the terms with ei2ωdt

or higher). We fill this in into our equation and rescale x and get the following normalized

equation for the slow moving variable v = x

√
Cjω2

2C̃ωdδφ
2
0

:

dv

dτ
= − v

Ω
− iv

(
|v|2 − sgn(ω − ωd)

)
+ i
√
β (5.20)

With the following definitions:

Table 5.2: Parameter definitions of the normalized Duffing equation

Parameter Definition

C̃ 2Cj + C
1
R̃

2
Rj

+ 1
R

Q̃ R̃C̃ω0

v x

√
Cjω2

2C̃ωdδφ
2
0

β
CjC

2
c

C̃3
Φ2

φ20

ω2ωd
32δ3

Ω 2R̃C̃δ

In fig. 5.18 we plot the steady state results of our model for different powers, obtained
by Runge-Kutta integration of eq. (5.20) using the system parameters from table 5.1 and
Rj = 1× 107 Ω. We intergrated over a total time τtotal = 4teqδ = 8

κδ = 4Q
πf0

δ with steps
h = 0.2.

We change the driving frequency up and down (denoted by the arrows) and observe two
branches as expected (see section 2.4.3). When we go up in frequency we see behaviour
similar to a normal harmonic oscillator, which we call the lower branch. Sweeping the other
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Figure 5.18: Steady-state flux across the junctions as a function of the driving
frequency for different powers. For each power there are two branches. When the
frequency is swept up, the branch with the lower amplitude is chosen (dashed),
while when the frequency is swept down, the higher branch is chosen (solid). Time
traces in the phase plane of the points A, B, and C are plotted in the next figure.

We used Rj = 2× 107 Ω, such that Q̃ = 2× 105.

way round, starting at high frequency an slowly lowering the frequency, the amplitude keeps
being high after having passed the resonance frequency f̄ , up to a certain point where it
drops back to the same value as the lower branch. The phase chooses another branch too.
Far above the resonance it is in anti-phase with the drive (π delay), but when we cross the
resonance frequency it slowly increase it phase, and then jumps to zero and becomes back
in phase with the drive. We call this branch the upper branch, and the frequency where it
switches back to the lower state the jump-down freqeuncy. Sometimes a peak appeared in
the phase close to this frequency. This is because the model takes a long time to converge at
this point and does not reach steady-state. We removed these points for plotting purposes,
as explained in appendix C.

We plot time traces in the phase plane for the points marked by A, B and C in fig. 5.19.

(a) (b) (c)

Figure 5.19: Time traces for four different initial conditions plotted in the
phase plane, for the same parameters as in fig. 5.18, at P = −146 dBm. The three
subplots (A), (B) and (C) correspond to the points denoted in fig. 5.18. There are
two steady-state solutions, corresponding to the upper and lower branch. There

is also a unstable saddle point, denoted by S.
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The blue spiral is the steady state solution for the lower branch, the red line the steady-
state solution of the upper branch. The initial conditions leading to either of these two are
marked with an arrow. We see that at small detuning (fig. 5.19a) most points lead to the
upper branch. This is in agreement with the observation that decreasing the frequency will
lead to the upper branch. The other way round, at higher detuning, there are very few points
leading to the upper branch, and nearly all initial conditions will stabilize in the lower branch.
We also have an unstable saddle point, denoted by S.

To explore the different regimes of the system we plot the difference between the steady-
state amplitudes of the two branches for different driving frequencies and powers, which we
use as a measure for the amount of bifurcation. This is plotted in fig. 5.20.

Figure 5.20: Phase diagram of the one junction device with Rj = 2× 107 Ω

and Q̃ = 2× 105. The color denotes the difference in amplitude between the two
branches which is a measure for the amount of bifurcation. The system start to

bifurcate at P = −161 dBm.

We see that the bifurcation point lies at Pb = −161 dBm. Above this power, close to the
resonance frequency two branches emerge between a small frequency range which becomes
increasingly broader with increasing power.

Taking into account the attenuation in our setup of around ∼ 60 dBm, this means that all
our measurements would be above the bifurcation point. Here we assumed an Josephson gap
resistance of Rj = 2× 107 Ω. To draw conclusions, we first have to know how the bifurcation
power depends on Rj . To this end we derive an analytical expression for the coordinates of
the bifurcation point. When we multiply eq. (5.20) in steady-state with its conjugate, we get:

β = |v|2
(

1

Ω2
+
(
|v|2 − sgn(ω − ωd)

)2)
(5.21)

When we write ρ = |v|2 we get the following third order polynomial:

ρ3 − 2sgn(ω − ωd)ρ2 +

(
1 +

1

Ω2

)
ρ = β (5.22)

We get bifurcation when this equation has three solutions for a certain β, which means
that the derivative must have two zeros. We find that:(

ρ− 2

3
sgn(ω − ωd)

)2

=
1

9
− 1

3Ω2
(5.23)
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Figure 5.21: Bifurcation power as a function
of the sub-gap resistance Rj with Cj = 135 fF.
A lower resistance will increase the bifurcation

point.

Figure 5.22: Bifurcation power as a function
of the capacitance shunted with the junction
Cj at Rj = 2× 107 Ω. Increasing it decreases

the bifurcation point.

So the bifurcation starts at Ω = 2R̃C̃δ >
√

3 and β = 16
27 . Using the relations from

table 5.2 we can translate this to the detuning δb and driving amplitude Φb:

(δb,Φb) =

( √
3

2R̃C̃
,

12
√

3

R̃3CjC2
cω

2(ωd)

)
(5.24)

Using P = V 2

2∗50 we find Pb = −162 dBm in agreement with our simulations.
Now we can plot the power coordinate of the bifurcation point as a function of Rj , shown

in fig. 5.21. As we expected, the bifurcation power decreases with Rj as it is shunted with the
inductor and the capacitor. The higher its resistance, the more current will flow through the
inductor and its non-linearity becomes more important. At resistances Rj > 8× 107 Ω the
bifurcation power remains constant at P = −167 dBm. Assuming a resistance of 2× 107 Ω
all our measurements would be above the bifurcation point. If we assume a lower resistance
this would still be the case for most of our measurements as the lowest power we measured
was −145 dBm (including internal attenuation).

Before we look at the effect of being above the bifurcation point on the S11 parameters, we
first shortly discuss the role of Cj . In fig. 5.22 we show Pbiff versus Cj . Again, the bifurcation
point decreases with Cj . This can be understood from a similar argument as with Rj , as for
a capacitor Z = 1

jωC . Increasing the capacitance will decrease the impedance of the circuit
bringing it closer to Z0 = 50 Ω from the input lines and thus requiring less power for the
same current.

Figure 5.23: S11 parameters below the bifurcation point at P = −170 dBm
and Rj = 1× 109 Ω. We also plotted the bare resonance which should match the

moving peak in the linear regime. We see this is indeed the case.
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Finally to see what effect the bifurcation has on the reflection parameters, we plot them
both below and above the bifurcation point. To this end we first calculate the impedance:

Z =
V

I
=
φ̇d
I

=
iωdΦ

Cc

(
φ̈d − φ̈1

) =
iΦ

Ccωd
(

1
2(φ+ + φ−)− Φ

) (5.25)

Here φ̈1 = 1
2

(
φ̈+ + φ̈−

)
. Dropping all terms containing derivatives of x(τ) as we are in

steady state φ̈− = −2ω2
dx(τ)eiωdt, and we φ̈2 = −ω2

dφ2, where we find φ2 from eq. (2.52).
Then we can use eq. (2.6) to calculate S11.

As a benchmark, we plot the S11 parameters at P = −170 dBm and Rj = 1× 109 Ω
together with the bare resonance peak in fig. 5.23. From section 5.2.1 we know they should
be the same in the linear regime when Rj > 1× 109 Ω . We see that this is indeed the case.

Above the bifurcation point at P = −149 dBm, plotted in fig. 5.24, we see the two
branches again. If we scan up in frequency we get similar shape as below the bifurcation
point, if we scan the other way round, we obtain a much broader peak. The same holds for
the phase: scanning up we have similar behaviour as below Pbiff, scanning down we get a
semicircle. Therefore, even if most of our measurements are above the bifurcation point, we
still should see clear signatures of our peak in the reflection parameters. So we conclude that
the non-linearity cannot explain the disappearance of our peak.

We also observe a small second peak arising close to the resonance frequency, which we
do not expect. We trace back its origin in appendix D.

Figure 5.24: Amplitude and phase of peak above the bifurcation point at P =
−149 dBm. We get two branches, both should be visible above the bifurcation

point.
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Chapter 6

Mean field simulations of a
Josephson crystal

Because we did not see the moving peak in the one junction device, we never cooled down the
five junction device. Still, we can learn more about this device by simulations. In this chapter
we use the mean-field code developed by Martin Leib [9] [42] to simulate the synchronization
effect for a Josephson crystal consisting of five junctions and explore different regimes.

6.1 Mean field simulations

Here we present the solutions of the master equation eq. (4.8) obtained by a mean field

approach, using the code developed by Leib. In fig. 6.1 we show the mode occupancy
〈
b̂+b̂
〉

as a function of the driving strength with the design parameters of our device, but varying
Cj . We see that at Cj = 100 fF, there is no synchronization, but all modes become occupied
at a different driving strength. When the capacitance is increased, the transitions become
sharper, but the simulations more unstable too.

Figure 6.1: Mode occupancy as a function of driving strength, driving the crys-
tal with Nj = 5 off-resonant at f − f̄ = −4Ec

h detuning. With increasing capac-
itance the transitions become sharper, but no synchronization is observed. The
following parameters were used: L = 54 mm, l = 460 nH m−1, c = 185 pF m−1,

Ω = 50 Ω and Cc = 4 fF.

In fig. 6.2 we plot again the mode occupancy, but now varying the length, keeping the
capacitance at Cj = 1 pF. Only at small lengths of 10 mm the modes become all suddenly
occupied at one power. This is in contrary with the suggestion in the paper of Leib that the
synchronization can observed experimentally [9], as such a small length requires a frequency
of 30 GHz.

We also observed that lowering the length L by a certain factor or the capacitance per unit
length c, has the same effect as doubling the Josephson capacitance Cj by that factor. This
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Figure 6.2: Mode occupancy at different driving strengths for driving the crystal
with Nj = 5 off-resonant at f − f̄ = −4Ec

h detuning. Now we decrease the length
of the device. Only at lengths ∼ mm we observe the synchronization effect. The
following parameters were used: L = 54 mm, l = 460 nH m−1, c = 185 pF m−1,

Ω = 50 Ω and Cc = 4 fF.

is illustrated in fig. 6.3. In other words, there seems to be a parameter L∗c
Cj

, the ratio between

the resonator capacitance and the Josephson capacitance, which marks different regimes.

Figure 6.3: Mode occupancy as a function of driving strength, driving the
crystal with Nj = 5 off-resonant at −4Ec detuning. We change the length,
Josephson capacitance and capacitance per unit length, but keep the ratio Lc

Cj

constant. Apparently, the shape of the graph is determined by this ratio.

Calculating L∗c
Cj

for fig. 6.1 and fig. 6.2 we can distinguish two regimes:{
synchronization, for Lc

Cj
< 1

no synchronization, for Lc
Cj
> 10

}

6.2 Analytical expressions for flux fluctuations

To gain more understanding what is going on, in fig. 6.4a and fig. 6.4b we plot the analytical
expressions of the flux fluctuations λ eq. (4.4) with respect to the reduced magnetic flux
quantum φ0

2π and to the zero point flux fluctuations of a single junction, respectively.
To be in the phase regime it is required that λ/φ0 < 1. We see that for all modes this

ratio in the upper left, which is the regime where we observe synchronization, is the lowest.
Moving to the lower right by increasing the length and decreasing the capacitance the ratio
increases. Still, the requirement λ/φ0 < 1 is met everywhere.

From eq. (4.3), it follows that for the inter mode coupling g to be pertubative λ
λ0
∼ 1. The

same trend can be observed as with the previous plot, that moving from the regime where
we observe synchronization to the regime where we do not, means we move away from this
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(a) λ/φ0

(b) λ/λ0

Figure 6.4: Flux fluctuations as a function of the total length L and the ca-
pacitance Cj compared to the reduced magnetic flux quantum φ0

2π and the flux
fluctuation of a single junction λ0. To be in the phase regime, λ/φ0 � 1. For the

coupling g to be pertubative, λ/λ0 ∼ 1.

condition. Here the effect is stronger and in the lower right corner the condition is not met
anymore. Looking again at the expression of g:

gj,l = (2/N + 1)
N∑
n=1

sin(jpn) sin(lpn)

[
λ

λ0
− 1

]
(6.1)

With:

λ

λ0
=

√√√√ 1

1 + Lc
4Cj(Nj+1)

[
1 + cos

(
n π
N+1

)] (6.2)

We see that it indeed depends on the parameter Lc
Cj

.
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Chapter 7

Classical model for the Josephson
crystal: simulations of two
degenerate Duffing oscillators with
a purely nonlinear coupling

To get a better understanding of the synchronization effect, we simplify our problem by
considering a Josephson crystal of only two junctions. We take a classical approach in a similar
fashion as with the one junction device (see section 5.2.3). First we derive the equations of
motion for the lumped-element equivalent of a Josephson crystal with two junctions, shown
in fig. 7.1. Then we Taylor expand these equations taking into account the non-linearity of
the junctions up to the first order. Like this get two non-linearly coupled Duffing oscillators.
Then, we parameterize the coupling between the two circuits such that we can turn it off
and on. This is described in section 7.1. Next, as with the one-junction device, we apply the
Krylov–Bogoliubov method to filter out the fast oscillations, such that we can numerically
integrate using bigger time steps. This is explained in section 7.2. In section 7.3 we discuss
the results.

Figure 7.1: Lumped element model of two coupled non-linear oscillators. The
system is described by three generalized node fluxes, φ1, φ2 and φ3.

7.1 Equations of motion

We start the classical description of the circuit shown in fig. 7.1 by introducing the generalized
node fluxes φ1, φ2 and φ3 as explained in section 2.3. From Kirchhoff’s laws we get the
following equations for the RLC circuits:

Cφ̈n +
1

R
φ̇+

1

L
φn = In (7.1)
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With n ∈ {1, 2, 3}. Then we write φ12 = φ1−φ2 and φ23 = φ2−φ3 and arrive at a second
set of equations for the capacitively shunted junctions:

Cjφ̈12 +
1

Rj
φ̇12 + I0 sin

φ12

φ0
= I2 + I3 (7.2)

Cjφ̈23 +
1

Rj
φ̇23 + I0 sin

φ23

φ0
= I3 (7.3)

Now we move to a new basis with:

φk = φ1 + φ2 + φ3 (7.4)

φl =
φ12 + φ23

2
=
φ1 − φ3

2
(7.5)

φm =
φ12 − φ23

2
=
φ1 − 2φ2 + φ3

2
(7.6)

Here, φk is the mode where φ1, φ2 and φ3 move in phase, and therefore does not involve
the junction. φl is the mode where φ1 and φ3 move in anti-phase and φ2 = 0. Finally, φm is
associated with φ1 and φ3 moving in phase and φ2 moving in anti-phase with them. This is
shown in fig. 7.2:

Figure 7.2: Lumped element model of two coupled non-linear oscillators. We
moved to a new basis with generalized node fluxes, φk (black), φl (blue) and φm

(red). φl is zero in the middle.

Using that I ≈ Ccφ̈d we get:

Cφ̈k +
1

R
φ̇k +

1

L
φk = Ccφ̈d (7.7)

So as expected we have one uncoupled harmonic equation, not involving the junction,
with resonance frequency f = f̄ = 1

2π
√
LC

. By adding and subtracting eq. (7.2) and eq. (7.3)

we get our other two equations:

(Cj + C)φ̈l + (
1

Rj
+

1

R
)φ̇l + C

1

LC
φl + Cj

I0

Cj
cos

φm
φ0

sin
φl
φ0

= Cc
φ̈d
2

(7.8)

(Cj +
1

3
C)φ̈m + (

1

Rj
+

1

3R
)φ̇m +

C

3

1

LC
φm + Cj

I0

Cj
cos

φl
φ0

sin
φm
φ0

=
1

6
Ccφ̈d (7.9)
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Here we used sin(φ12) ± sin(φ23) = 2 sin
(
φ12±φ23

2

)
cos
(
φ12∓φ23

2

)
. In case eq. (7.2) and

eq. (7.3) were linear, we would have two uncoupled harmonic equations, again with resonance
frequency f = f̄ = 1

2π
√
LC

. So by diagonalizing the set of node fluxes φ1, φ2 and φ3 we arrived

at the peculiar situation of three normal modes all having the same frequency f = f̄ . There
is no linear coupling, only a non-linear coupling between φl and φm.

Now we focus on eq. (7.8) and approximate the sine and cosine by a Taylor expansion,
keeping only terms up to third order:

I0

Cj
cos

φm
φ0

sin
φl
φ0
≈ I0

Cj
(1− 1

2
(
φm
φ0

)2)(
φl
φ0
− 1

6
(
φl
φ0

)3) ≈ I0

Cj
(
φl
φ0
− 1

2
(
φm
φ0

)2 φl
φ0
− 1

6
(
φl
φ0

)3) (7.10)

Now we replace the factor 1
2 with J

2 to parametrize the coupling between the modes. We
do the same for eq. (7.9). This finally gives the equations we want to solve for:

φ̈k +
1

RC
φ̇k + ω2φk =

Cc
C
φ̈d (7.11)

φ̈l +
1

Cj + C

(
1

Rj
+

1

R

)
φ̇l + ω2φl −

ω2Cj
2φ2

0(Cj + C)

(
Jφ2

mφl +
1

3
φ3
l

)
=

Cc
Cj + C

φ̈d
2

(7.12)

φ̈m +
1

Cj + 1
3C

(
1

Rj
+

1

3R

)
φ̇m + ω2φm −

ω2Cj

2φ2
0(Cj + 1

3C)

(
Jφ2

l φm +
1

3
φ3
m

)
=

Cc

Cj + 1
3C

φ̈d
6

(7.13)

According to eq. (2.33), all three modes have a different coupling to the drive:

Qext,k =
C + Cc

4π2f̄C2
cZ0

Qext,l =
4(C + Cj)

C
Qext,k Qext,m =

12(C + 3Cj)

C
Qext,k (7.14)

In fig. 7.3 we summarize the situation. We have three degenerate normal modes φk, φl
and φm, capacitively coupled to a drive. φk does not involve the junction and is therefore
linear and not coupled to the other modes. φl and φm are non-linear themselves (self-Kerr),
have a lower coupling to the drive, and are non-linearly coupled to each other (cross-Kerr),
parameterized by J .

Figure 7.3: We have three degenerate normal modes labeled ’k’, ’l’ and ’m’
capacitively coupled to a drive. Mode k is linear and not coupled to the other
modes. Mode l and m are non-linear (self Kerr), have a lower coupling to the
drive, and are non-linearly coupled to each other (cross Kerr), parameterized by

J . Here the parameters of table 7.2 are used.
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7.2 Krylov-Bogoliubov method

We apply a harmonic drive φd = Φ cos(ωdt). We are only interested in the envelope function
and therefore filter out the fast oscillations at the drive frequency fd = 2πωd, using again the
Krylov–Bogoliubov method (section 5.2.3). We write:

φl = [x(τ)eiωdt + x(τ)∗e−iωdt] (7.15)

φ̇l ≈ iωd[xeiωdt − x∗e−iωdt] (7.16)

φ̈l ≈ −ω2
d[xe

iωdt + x∗e−iωdt] + 2iωd[
dx

dτ
eiωdt − dx∗

dτ
e−iωdt]δ (7.17)

Where we introduced the slow moving variable τ = |ω − ωd|t = δt. We get the same for
φm but then x→ y. Moving to a rotating frame by multiplying both sides of eq. (7.12) with

e−iωdt, dropping the fast moving terms and writing Ccφ̈de
−iωdt ≈ −Ccω2

dΦ
2 gives us:

(iωdx+ 2iωd
dx

dτ
δ) +

1

R̃lC̃l
iωdx+ ω2

0x(τ)− Cjω
2

2φ2
0C̃l

(
Jφ2

mφl +
1

3
φ3
c

)
= −

Ccω
2
dΦ

4C̃l
(7.18)

Here we introduced C̃l = Cj + C and 1
R̃l

= 1
Rj

+ 1
R . Now we use that

φ3
l e
−iωdt ≈ 3|x|2x (7.19)

φ2
mφle

−iωdt ≈ 2|y|2x+ x∗y2 (7.20)

This gives after rescaling x = v√
Cjω

2
0

4C̃lωdδφ
2
0

, y = w√
Cjω

2
0

4C̃mωdδφ
2
0

the following two equations:

dv

dτ
= − v

Ωb
− i

(
v|v|2 − vsgn(ω − ωd) + 2J

C̃m

C̃l
v|w|2 + J

C̃m

C̃l
v∗w2

)
+ i
√
βl

dw

dτ
= − w

Ωc
− i

(
w|w|2 − wsgn(ω − ωd) + 2J

C̃l

C̃m
w|v|2 + J

C̃l

C̃m
w∗v2

)
+ i
√
βm

(7.21)

With the definitions summarized in table 7.1.

Table 7.1: Normalized parameter definitions of two coupled Duffing oscillators
labeled by ’l’ and ’m’.

Parameter Definition Parameter Definition

C̃l Cj + C C̃m Cj + 1
3C

1
R̃l

1
Rj

+ 1
R

1
R̃m

1
Rj

+ 1
3R

Ωl 2R̃lC̃lδ Ωm 2R̃mC̃mδ

βl
C2
cCj

256C̃l
3

ωdω
2
0

δ3
Φ2

φ20
βm

1
9

(
C̃l
C̃m

)3
βl

v x

√
Cjω2

4C̃ωdδφ
2
0

w y

√
Cjω2

0

4C̃mωdδφ
2
0
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7.3 Results

We solve eq. (7.21) by Runge-Kutta integration using the system parameters from table 7.2.
The typical time to reach equilibrium is given by teq = 2

κ . To be sure we arrive at equilibrium
we let the system evolve over a time 4teq. Because we transformed to the slowly moving

variable τ this translates into τtotal = 4teqδ = 4Q
πf0

δ. We use time steps h = 0.06. Note
that we need a three times smaller time step than with the single Duffing oscillator (see
section 5.2.3).

Table 7.2: System parameters of non-linearly coupled Duffing oscillators

Parameter Value

Cj 1 pF

C 0.8 pF

Cc 4 fF

Rj 1 MΩ

Qint,k 3× 105

Qext,k 1.3× 104

f̄ 6 GHz

In fig. 7.4 we plot φl and φm as a function of frequency, for low power P = −200 dBm,
such that the modes are linear. We turn off the inter-mode coupling too by setting J = 0.
As expected, we get two harmonic peaks, both at f = f̄ . They have a different height as
they have a different coupling to the drive due to their different effective capacitances, as we
know from eq. (7.14). In fig. 7.5 we compare them with the height of the bare peak.

Figure 7.4: Generalized fluxes φl and φm for P = −200 dBm. Because we are
at low power, the modes are linear. We set J = 0 such that the non-linear inter
mode coupling is switched off too. We see that in this case we get two harmonic

peaks both at the same frequency f = f̄ .
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Figure 7.5: Relative driven amplitude for same input driving for the modes ’k’,
’l’ and ’m’. All modes are coupled different to the drive due to their different

effective capacitances.

Next we plot φl and φm above the bifurcation point of φl for two different powers, P =
−165 dBm and P = −159 dBm, in fig. 7.6. The inter-mode coupling is still turned off. Here
we clearly see that these modes are non-linear. At P = −165 dBm φl bifurcates and φm gets
distorted (its peak is shifted to the left). At P = −159 dBm they both bifurcate.

(a) P = −165 dBm (b) P = −159 dBm

Figure 7.6: Generalized fluxes φl and φm for P = −165 dBm and P =
−159 dBm. We set J = 0 such that the non-linear inter mode coupling is switched
off. The dashed line denotes the lower branch (scanning up in frequency), the solid
line the upper branch (scanning down). At P = −165 dBm we are above the bi-
furcation point of φl and below the bifurcation point of φm. At P = −159 dBm

they both bifurcate.

Now we look what happens when we turn on the non-linear coupling by setting J = 1 in
fig. 7.7. At P = −165 dBm φm now bifurcates too. This suggests that the bifurcation point
of φm is lowered by φl. Furthermore, now, at both powers, the two degenerate non-linear
oscillators synchronize their jump-down frequencies. This is an important result, as it shows
that in a fully classical treatment of two non-linearly coupled Duffing oscillators, there is a
similar effect as the synchronization effect in a Josephson crystal predicted from a quantum
mechanical analysis.
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(a) P = −165 dBm (b) P = −159 dBm

Figure 7.7: Generalized fluxes φl and φm for P = −165 dBm and P =
−159 dBm. Now we turn on the non-linear coupling by setting J = 1. The
dashed line indicates the lower branch (scanning up in frequency), the solid line
the upper branch (scanning down). Surprisingly, the jump-down frequencies of
the two modes are synchronized. Note that now at P = −165 dBm both modes

are bifurcated, in contrast to the case J = 0.

In fig. 7.8 we plot the upper branches of φl and φm for different powers. The shape and
power dependence of φl is similar to the upper branch of a Duffing oscillator. The jump-down
frequency of φm keeps being synchronized with φl. Its shape becomes lower and flatter with
increasing power..

Figure 7.8: Generalized fluxes φl and φm for different powers scanning down
in frequency (upper branch). For all powers the jump down frequencies of φl
(dotted) and φm (solid) synchronize. For higher powers φm becomes lower. Note
that we used different scales for φl and φm because φm is much lower than φl.

The mechanism behind the synchronization is not exactly clear, and is an open question
for further research. A hint in the right direction could be in the phase. We observed that
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above f̄ , before the modes bifurcate, they tend to increase the mutual phase difference, shown
in fig. 7.9. Close to the jump-down frequency they synchronize their phases again.

Figure 7.9: Phases of φl and φm at P = −165 dBm, with the non-linear coupling
turned on. The solid line is again the upper branch, and the dashed line the lower
branch. Before they bifurcate, above f̄ the tend to increase the mutual phase
difference. This could be a hint for understanding the mechanism behind the

synchronization.
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Conclusions and outlook

Concerning the ground state quenching of a CPW we found that the coupling must be tuned
faster than 1/f. Second we found that a higher initial coupling results in a higher excitation
number. Tuning the coupling from 1 GHz to 0 faster than 10 ps results in an photon number
of 0.1. This is experimentally unfeasible with current state of the art electronics. Second,
the high coupling demands capacitors at the order of picofarads, which makes the fabrication
challenging too.

During the cool-down of the one junction device we only observed the bare resonance not
involving the junctions which we found was due to the combination of the high flux noise
in the fridge (∆φ ≈ 0.03φ0) and our device being undercoupled (g ≈ 0.1). From our linear
model made in QUCS we excluded the possibility that a low Josephson sub-gap caused the
disappearance. Based on our non-linear Duffing model of this device we also found that
nearly all our measurements were done above the bifurcation point, but this has no effect on
the visibility of the moving peak.

Contrary to what was claimed in the theoretical proposal, the synchronization effect
cannot be observed for the parameters common in cQED. We found that the occurrence of
the synchronization effect depends on the ratio of the total capacitance of the CPW and the
capacitance shunted with a single junction L∗c

Cj
being as low as possible. Achieving this is

challenging with conventional cQED. One way would be to push the limits of the capacitances
to several picofarads.

Finally, we observed a synchronization effect in our simulation of two degenerate non-
linearly coupled Duffing oscillators. This is a first step in understanding the synchronization
effect in a Josephson crystal in a fully classical way. As a next step towards a full under-
standing of this effect, it would be very interesting to explore different parameter regimes,
consider the phases of both oscillators and look at the time dynamics.
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Appendix A

Three plus one junction device

Figure A.1: Optical image of our second device with two Josephson crystals:
one with three junctions and one with one junction.

Table A.1: Parameters of the CPW’s

Single CPW length ∆ 9 mm

width W 12 µm

gap G 4 µm

capacitance per unit length c 0.18 nF m−1

inductance per unit length l 0.46 µH m−1

phase velocity v 1.08× 108 m s−1

resonance frequency f̄ 6 GHz
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Appendix B

Python code

B.1 stcad additions

Below the definition of the CPW object is shown, together with the two functions we added:
’add airbridges’ and ’add mask’.

B.1.1 CPW

class CPW(cad.core.Cell):

def __init__(self,

points,

turn_radius = 5.,

pin = 4.,

gap = 2.,

layer = 1,

name=''):

super(CPW, self).__init__(name)

cad.core.default_layer = layer

points = np.array(points)

self.points = points

self.length = 0.

self.pin = pin

self.gap = gap

self.layer = layer

self.turn_radius = turn_radius

if len(points) == 2:

self.add(double_line_polygon(points[0],points[1],gap,pin))

self.length += norm(points[1]-points[0])

else:

n_last = len(points)-1

sec = [points[0]]

for i in range(1,n_last):

p = np.array(points[i])

p_before = np.array([points[i][0]+turn_radius*sign(points[i-1][0]

-points[i][0]),points[i][1]+turn_radius*sign(points[i-1][1]

-points[i][1])])

p_after = np.array([points[i][0]+turn_radius*sign(points[i+1][0]

-points[i][0]),points[i][1]+turn_radius*sign(points[i+1][1]
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-points[i][1])])

curve_center = p_after + p_before - p

angle_i = angle(p_before - curve_center)

angle_delta = angle(p_after - curve_center)-angle_i

if angle_delta < -180.:

angle_delta+=360.

if angle_delta > 180.:

angle_delta-=360.

sec.append(p_before)

self.add(double_line_polygon(sec[0],sec[1],gap,pin))

angles = np.linspace(angle_i,angle_i+angle_delta, 199).T *np.pi/180.

self.length += norm(sec[1]-sec[0])

self.add(double_arc_polygon(curve_center, turn_radius,gap,pin,\

initial_angle=angle_i, final_angle=angle_i+angle_delta,

number_of_points = 199))

self.length += 2*np.pi*turn_radius*abs(angle_delta)/360.

sec=[p_after]

sec.append([points[n_last][0],points[n_last][1]])

self.add(double_line_polygon(sec[0],sec[1],gap,pin))

self.length += norm(sec[1]-sec[0])

def add_airbridges(self, size_block, size_bridge, width, spacing, layers = [2,3]):

rect_block_1 = cad.shapes.Rectangle( (-width/2 - size_block[0], -size_block[1]/2),

(-width/2, size_block[1]/2), layer = layers[0] )

rect_block_2 = cad.shapes.Rectangle( (width/2, -size_block[1]/2), (width/2 +

size_block[0],

size_block[1]/2), layer = layers[0] )

rect_bridge = cad.shapes.Rectangle( (-size_bridge[0]/2, -size_bridge[1]/2),

(size_bridge[0]/2, size_bridge[1]/2) , layer = layers[1])

cell = cad.core.Cell('bridge')

cell.add(rect_block_1)

cell.add(rect_block_2)

cell.add(rect_bridge)

for i in range(len(self.points)-1):

points = np.array(self.points)

rd = ( points[i+1]-points[i] ) # relative distances between two points

if int(rd[0]) != 0 and int( ( abs(rd[0]) - 2*self.turn_radius)/spacing ) > 0:

for j in range(0, int( ( abs(rd[0]) - 2*self.turn_radius)/spacing )):

x = points[i][0] + np.sign(rd[0])*(spacing/2. + j*spacing)

self.add(cell, origin = ( x, points[i][1]), rotation = 90)

elif int ((abs(rd[1]) - 2*self.turn_radius)/spacing) > 0:

for j in range(0, int( ( abs(rd[1]) - 2*self.turn_radius)/spacing )):

y = points[i][1] + np.sign(rd[1])*(spacing/2. + j*spacing)

def add_mask( self, width , layer=91):

"""

this functions returns a mask following the centreline of the CPW.

This can also be used as a skirt for the holyeground
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"""

cad.core.default_layer = layer

points = self.points

turn_radius = self.turn_radius

if len(points) == 2:

self.add( line_polygon(points[0], points[1], width))

self.length += norm(points[1]-points[0])

else:

n_last = len(points)-1

sec = [points[0]]

for i in range(1,n_last):

p = np.array(points[i])

p_before = np.array([points[i][0]+turn_radius*sign(points[i-1][0]-

points[i][0]),points[i][1]+turn_radius*sign(points[i-1][1]-points[i][1])])

p_after = np.array([points[i][0]+turn_radius*sign(points[i+1][0]-

points[i][0]),points[i][1]+turn_radius*sign(points[i+1][1]-points[i][1])])

curve_center = p_after + p_before - p

angle_i = angle(p_before - curve_center)

angle_delta = angle(p_after - curve_center)-angle_i

if angle_delta < -180.:

angle_delta+=360.

if angle_delta > 180.:

angle_delta-=360.

sec.append(p_before)

self.add(line_polygon(sec[0], sec[1], width))

angles = np.linspace(angle_i,angle_i+angle_delta, 199).T *np.pi/180.

self.length += norm(sec[1]-sec[0])

self.add(arc_polygon(curve_center, turn_radius,width,\

initial_angle=angle_i, final_angle=angle_i+angle_delta,

number_of_points = 199))

sec=[p_after]

sec.append([points[n_last][0],points[n_last][1]])

self.add( line_polygon(sec[0], sec[1], width))

B.1.2 Interdigitated capacitor

To make our capacitively shunted junctions in Python we wrote the interdigitated capacitor
object, which can be instantiated with and without a SQUID.

class interdigitated_cap(cad.core.Cell):

"""

Make a cell with interdigitated cap surrounded by a dielectric with width set

by 'dielectric'. A skirt can be added by setting 'add_skirt' to True.

This class also contains a function which adds a squid inside the dielectric.

"""

def __init__(self,
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fingers = 5,

finger_length = 90,

gap = 5,

radius = 4,

plate_width = 10,

plate_heigth = 315,

dielectric = 30, # thickness of surrounding dielectric layer

pin = 12,

layer = 1,

add_skirt = False,

skirt_distance = 5,

skirt_layer = 91,

name = 'interdigitated_cap'

):

super(interdigitated_cap, self).__init__(name)

cad.core.default_layer = layer

self.width = gap + finger_length + 2*plate_width + 2*dielectric

self.heigth = plate_heigth + 2*dielectric

self.fingers = fingers

self.dielectric = dielectric

self.plate_width = plate_width

self.gap = gap

self.skirt = add_skirt

self.skirt_layer = skirt_layer

self.skirt_distance = skirt_distance

# first make outerdielectric

cell = cad.core.Cell('dielectric')

dielec_h = dielectric + plate_heigth/2. - pin/2.

dielec_w = 2*(dielectric + plate_width) + gap + finger_length

contourpoints = [ (0, dielec_h ), (0,0), (dielec_w, 0),

(dielec_w, dielec_h), (dielec_w-dielectric, dielec_h),\

(dielec_w-dielectric, dielectric),

(dielectric, dielectric), (dielectric, dielec_h) ]

self.contourpoints = contourpoints

self.dielec_w = dielec_w

self.dielec_h = dielec_h

lower_half = cad.core.Boundary( contourpoints )

cell.add(lower_half)

self.add(cell)

self.add( cell, origin = (dielec_w, 2*dielec_h+pin), rotation = 180)

# rotate lowerhalf and place above lowerhalf

# generate intern dielectric

finger_heigth = (plate_heigth - (2.*fingers-1.)*gap )/(2.*fingers)

# heigth of metal fingers

points = [[0,0]]

sign = 1

for i in range(0, 4*fingers-1):
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if i%2 == 0:

if (i == 0 or i == 4*fingers-2):

add = [points[i][0], points[i][1] + finger_heigth + gap/2.]

else:

add = [points[i][0], points[i][1] + finger_heigth + gap]

if i%2 == 1:

add = [points[i][0] + sign*finger_length, points[i][1] ]

sign = -1*sign

points.append(add)

inside = MeanderingLine(points, turn_radius = radius, line_width = gap)

self.add( inside, (dielectric+plate_width+gap/2., dielectric) )

if add_skirt == True:

points = [(-skirt_distance, -skirt_distance), (-skirt_distance, self.heigth

+ skirt_distance), \

(self.width + skirt_distance, self.heigth + skirt_distance),

(self.width + skirt_distance, -skirt_distance)]

skirt = cad.core.Boundary(points ,layer = skirt_layer)

self.add(skirt)

def add_squid(self, thickness=2, width=20, heigth=16):

# remove lower dielectric

if self.skirt == False:

self.remove(self.elements[0])

else:

self.remove(self.elements[1])

# generate squid

squid = cad.core.Cell('squid')

loop = cad.core.Boundary( [(-width/2., -heigth/2.), (-width/2., heigth/2.),

(-1.5, heigth/2),

(-1.5, heigth/2. + thickness/2. - 0.2), (-2.7, heigth/2.

+ thickness/2. -0.2),

(-2.7, heigth/2. + thickness/2. + 0.2), (-1.5, heigth/2.

+ thickness/2 + 0.2),

(-1.5, heigth/2. + thickness), (1.5, heigth/2.

+ thickness),

(1.5, heigth/2. + thickness/2. + 0.2),

(2.7, heigth/2. + thickness/2. + 0.2),

(2.7, heigth/2. + thickness/2. - 0.2),

(1.5, heigth/2. + thickness/2. - 0.2),

(1.5, heigth/2.), (width/2., heigth/2.),

(width/2., -heigth/2.), (1.5, -heigth/2),

(1.5, -heigth/2. - thickness/2. + 0.2), (2.7,

-heigth/2. - thickness/2. + 0.2),

(2.7, -heigth/2. - thickness/2. - 0.2), (1.5, -heigth/2.

- thickness/2 - 0.2),

(1.5, -heigth/2. - thickness), (-1.5, -heigth/2.

- thickness),
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(-1.5, -heigth/2. - thickness/2. - 0.2), (-2.7, -heigth/2.

- thickness/2. - 0.2),

(-2.7, -heigth/2. - thickness/2. + 0.2), (-1.5, -heigth/2.

-thickness/2. + 0.2),

(-1.5, -heigth/2.)] )

squid.add(loop)

# create new dielectric for lower part

lower_half = cad.core.Cell('lower_half')

delta = self.plate_width - (thickness + (width-self.gap)/2.)

self.delta = delta

contourpoints = [ (0, self.dielec_h), (0, 67.5), (self.dielectric + delta-10,

67.5), (self.dielectric + delta -10, 0),\

(self.dielec_w,0), (self.dielec_w, self.dielec_h),

(self.dielec_w - self.dielectric, self.dielec_h),\

(self.dielec_w - self.dielectric, self.dielectric),

(self.dielectric+2*thickness+width + delta, self.dielectric),\

(self.dielectric + 2*thickness+width+delta, self.dielectric

- 2*thickness - heigth), \

(self.dielectric + delta, self.dielectric -

2*thickness - heigth),\

(self.dielectric + delta, self.dielectric), (self.dielectric,

self.dielectric),

(self.dielectric, self.dielec_h)]

contour = cad.core.Boundary(contourpoints)

lower_half.add(contour)

self.add(lower_half)

self.add(squid, (self.dielectric+thickness+width/2. + delta, self.dielectric

- thickness - heigth/2.))

if self.skirt == True:

self.remove(self.elements[0]) # remove old skirt

thickness = self.skirt_distance

points = [ ( self.dielectric + self.delta - 10 - thickness, 0),

( self.dielectric + self.delta - 10 - thickness, 67.5-thickness),\

(-thickness, 67.5-thickness), (-thickness, self.heigth

+ thickness), \

(self.width + thickness, self.heigth + thickness), (self.width

+ thickness, -thickness),\

(self.dielectric + self.delta - 10 - thickness, -thickness) ]

skirt = cad.core.Boundary(points ,layer = self.skirt_layer)

self.add(skirt)

B.2 Chip design

Below the script with the parametrized chip design.

import numpy as np

from stcad.source_dev.chip import Base_Chip
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from stcad.source_dev.utilities import *

from stcad.source_dev import objects

from stcad.source_dev import groundplaneholes

import shapely

import gdsCAD as cad

import matplotlib.pyplot as plt

from shapely import geometry

def cpw_coor(start, coordinates, length, n_bends, turn_radius, direction = 's', ending = 'h'):

""" This functions generates a list with points for the CPW object,

such that we can set the total length.

The starting distance can be set seperately. When of this is set to 0, the beginning of

the line will be a bended open end, such that a tunable josephson junction can be added.

The length specifies the total lenght, n_bends the number of bends and the turn_radius

determines the curvature of a turn. Finally, the direction specifies wheter the CPW

starts in the north direction (n) or south direction (s) and the ending wheter the CPW

should end horizontally (h) or vertically (v)

"""

if direction == 's':

direction = -1

if direction == 'n':

direction = 1

n_bends_eff = n_bends + (start == 0)*0.5 + (ending == 'h')*0.5

# number of bends including half bends at beginning and end

delta_x = (coordinates[1][0] - coordinates[0][0])/(n_bends_eff*1.)

# x-distance between a u-turn

delta = coordinates[0][1] - coordinates[1][1];

# y difference between begin and end point

l_bend = np.pi*turn_radius + (delta_x-2*turn_radius)

# length of one bend

# this block calculates length of pieces of cpw except beginning and end pieces

if direction* (-1)**(n_bends%2) < 0 : # approach final point from above

if start == 0:

length_straigth = ( length - n_bends_eff*l_bend - delta + \

((ending == 'h')+1)*turn_radius)/(n_bends + (1+direction)/2)

else:

length_straigth = ( length -(1+direction)*start - n_bends_eff*l_bend -\

delta + (ending == 'h')*turn_radius)/(n_bends - (1+direction)/2)

if direction* (-1)**(n_bends%2 ) > 0:

if start == 0:

corr = 1 + (1-direction)/2

length_straigth = (length - 2*start - n_bends_eff*l_bend + delta +\

((ending == 'h')+1)*turn_radius)/(n_bends+(1-direction)/2 )

else:

length_straigth = (length - (1-direction)*start - n_bends_eff*l_bend +\

delta +(start ==0)*turn_radius + (ending == 'h')*turn_radius)/(n_bends -\
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(1-direction)/2 )

## generate list with points

# set starting direction

if start == 0:

sign = (-1)*direction

else:

sign = 1*direction

# set first points, based on directions specified in outer distances

if start == 0:

points = [ [0,0], [ delta_x/2, 0 ] ]

remainder = 1; # this makes that in the next step the line goes down

else:

points = [ [0,0], [0,(start + turn_radius)*sign] ]

remainder = 0 # this makes that in the next step the line goes right

# calculate points in between

for i in range(2, 2*n_bends + 1 + 1*(start==0)):

# genereate points for all bends and straight lines

if (i)%2 == remainder: # go in the x direction

x = points[i-1][0] + delta_x

y = points[i-1][1]

if (i)%2 != remainder: # go in the y direction

sign = sign*(-1) # next time go other direction (n --> s or s --> n)

x = points[i-1][0]

y = points[i-1][1] + sign*(2*turn_radius+length_straigth)

points.append( [x,y] )

# add last point, based on distance specified in outer_distances

if ending == 'v':

points.append( [ coordinates[1][0] - coordinates[0][0], coordinates[1][1] -\

coordinates[0][1]])

elif ending == 'h':

points.append( [ coordinates[1][0] - coordinates[0][0] - delta_x/2.,\

coordinates[1][1] - coordinates[0][1]])

points.append( [ coordinates[1][0] - coordinates[0][0], coordinates[1][1] - \

coordinates[0][1]])

return np.around(points, decimals =5)

## system parameters

path = '/home/tim/CloudStation/mep/chip_design/'

name = '7mm_4mm_5jj'

chipsize_x = 7e3

chipsize_y = 4e3

pin = 12

gap = 4

length = 9e3 # distance between junctions

turn_radius = 100
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coup_gap = 12 # size of gap of outercapacitances

## cap properties

dielectric = 30

plate_heigth = 315

plate_width = 10

fingers = 8

finger_length = 90

cap_gap = 1

cap_heigth = plate_heigth + 2*dielectric

cap_width = finger_length + gap+ 2* plate_width + 2*dielectric

## launcher properties

bonding_pad_length = 100

bonding_pad_gap = 101

bonding_pad_width = 150

taper_length = 200

buffer_length = 0

input_length = 100

launcher_length = bonding_pad_length + taper_length

## fluxline properties

total_length = 60

flux_launcher_length =30

final_pad_width = 6

final_pad_gap = 23.5

cap_distance_x = 3.5

cap_distance_y = 6.5

#marker

marker_edge = 62.5

marker_mutual = 200

skirt_distance = 4

dic = {'junction_gap': 0.2, 'junction_finger_width': [0.01, 0.02], \

'junction_finger_heigth': 0.2, 'contact_pad_width': 1.0,\

'contact_pad_height': 2.0, 'contact_pad_overlap': 1.8, 'contact_distance': 3}

# coordinate of end of launchers

launcher_coor = [ (1029.85 - chipsize_x/2, chipsize_y/2 - launcher_length),

(0, chipsize_y/2 - launcher_length),

(5970.15 - chipsize_x/2, chipsize_y/2 - launcher_length),

(5970.15 - chipsize_x/2, -chipsize_y/2 + launcher_length),

(1029.85 - chipsize_x/2, -chipsize_y/2 + launcher_length),

(-chipsize_x/2 + launcher_length + 100, 100),

(chipsize_x/2 - launcher_length - 100, 100)

]

# coordinate of caps

cap_coor = [(-1938, 1405),(-1029, -1416.174), (-120, 1405), (789, -1416.174), (1698, 1400)]

cpw_coor = [ [ (launcher_coor[5][0], launcher_coor[5][1] + coup_gap), cap_coor[0]],
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[ (cap_coor[0][0] + cap_width, cap_coor[0][1]), cap_coor[1]],

[ (cap_coor[1][0] + cap_width, cap_coor[1][1]), cap_coor[2]],

[ (cap_coor[2][0] + cap_width, cap_coor[2][1]), cap_coor[3]],

[ (cap_coor[3][0] + cap_width, cap_coor[3][1]), cap_coor[4]],

[ (cap_coor[4][0] + cap_width, cap_coor[4][1]), (launcher_coor[6][0], \

launcher_coor[6][1] + coup_gap)]

]

y_corr = 67.5-cap_distance_y-final_pad_width/2.-final_pad_gap

x_corr = total_length - dielectric + 10 + cap_distance_x

flux_coor = [ [ (0,0), (0, cap_coor[0][1]- launcher_coor[0][1] + cap_heigth/2. -y_corr),\

(cap_coor[0][0] - launcher_coor[0][0] -x_corr, cap_coor[0][1]-\

launcher_coor[0][1] + cap_heigth/2. -y_corr ) ],

[ (0,0), (0, cap_coor[2][1]- launcher_coor[1][1] + cap_heigth/2. +\

total_length + cap_distance_x)],

[ (0,0), ( 0, cap_coor[4][1]- launcher_coor[2][1] + \

cap_heigth/2. -y_corr),

(cap_coor[4][0] - launcher_coor[2][0] + x_corr + cap_width, cap_coor[4][1]\

- launcher_coor[2][1] + cap_heigth/2. -y_corr )],

[(0,0), (0, cap_coor[3][1]- launcher_coor[3][1] \

-cap_heigth/2. + y_corr),\

( cap_coor[3][0] -launcher_coor[3][0] + x_corr + cap_width,\

cap_coor[3][1]- launcher_coor[3][1] - cap_heigth/2. + y_corr)],

[(0,0), (0, cap_coor[1][1]-\

launcher_coor[4][1] -cap_heigth/2. + y_corr),\

(cap_coor[1][0] - launcher_coor[4][0] -x_corr, cap_coor[1][1]- \

launcher_coor[4][1] - cap_heigth/2. + y_corr)]

]

marker_coor = [ (-chipsize_x/2 + marker_edge, chipsize_y/2 - marker_edge),

(chipsize_x/2 - marker_edge, chipsize_y/2 - marker_edge),

(chipsize_x/2 - marker_edge, -chipsize_y/2 + marker_edge),

(-chipsize_x/2 + marker_edge, -chipsize_y/2 + marker_edge)]

chip = Base_Chip(name, chipsize_x, chipsize_y, label=False)

# create cpw with launchers

cpw_w = objects.CPW( [ [0, 0],[0, -100], [-100, -100] ], pin = pin, gap = gap, \

turn_radius = turn_radius, layer = 1, name ='launcher_w')

cpw_w.add_launcher('e', bonding_pad_length, bonding_pad_gap, bonding_pad_width,\

taper_length ,buffer_length, add_skirt= True, skirt_distance=skirt_distance)

cpw_w.add_open('b', coup_gap, add_skirt=True, skirt_distance = skirt_distance)

cpw_w.add_mask(pin+2*gap+2*skirt_distance, layer=91)

chip.add( cpw_w, launcher_coor[5])

cpw_e = objects.CPW( [ [0,0], [0, -100], [100,-100] ], pin = pin, gap = gap, turn_radius = \

turn_radius, layer = 1, name ='launcher_e')

cpw_e.add_launcher('e', bonding_pad_length, bonding_pad_gap, bonding_pad_width, taper_length ,\

buffer_length, add_skirt=True, skirt_distance=skirt_distance)

cpw_e.add_open('b', coup_gap, add_skirt=True, skirt_distance = skirt_distance)

cpw_e.add_mask(pin+2*gap+2*skirt_distance, layer=91)

chip.add( cpw_e, launcher_coor[6])
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density = [ 0.007, 0.023, 0.006, 0.002, 0.002]

flux_lines = []

for i in range(0,5):

flux_lines.append(objects.CPW( flux_coor[i], pin = pin, gap = gap, \

turn_radius = turn_radius, layer = 1, name ='launcher'))

flux_lines[i].add_launcher('b', bonding_pad_length, bonding_pad_gap,\

bonding_pad_width, taper_length ,buffer_length, add_skirt=True, \

skirt_distance=skirt_distance)

flux_lines[i].add_flux_bias_short(total_length = total_length, launcher_length =\

flux_launcher_length, final_pad_width = \

final_pad_width, final_pad_gap = final_pad_gap, \

add_skirt= True, skirt_distance=skirt_distance)

flux_lines[i].add_mask(pin+2*gap+2*skirt_distance)

flux_lines[i].add_airbridges([40, 90], [66, 30], width = 30, density = density[i],\

layers = [2,3])

chip.add(flux_lines[i], launcher_coor[i])

# create cpw's

cpw = []

points= meander(1.2e3, [ cpw_coor[0][0], cpw_coor[0][1]], length, 4, turn_radius, \

direction = 'n', ending = 'h')

cpw.append(objects.CPW(points, pin = pin, gap = gap, turn_radius = turn_radius, \

layer = 1, name ='first'))

cpw[0].add_mask(pin+2*gap+2*skirt_distance,layer= 91)

cpw[0].add_airbridges([40, 90], [66, 30], width = 30, density = 0.002, layers = [2,3])

chip.add(cpw[0], cpw_coor[0][0])

print(cpw[0].length)

for i in range(len(cpw_coor) -2):

if i%2 == 0:

direction = 's'

else:

direction = 'n'

points = meander(0, [ cpw_coor[i+1][0], cpw_coor[i+1][1]], length, 2, turn_radius,\

direction = direction, ending = 'h')

cpw.append(objects.CPW(points, pin = pin, gap = gap, turn_radius = turn_radius,\

layer = 1))

cpw[i+1].add_mask(pin+2*gap+2*skirt_distance, layer=91)

cpw[i+1].add_airbridges([40, 90], [66, 30], width = 30, density=0.002, layers = [2,3])

chip.add(cpw[i+1], cpw_coor[i+1][0])

print(cpw[i+1].length)

points = meander(0, [ cpw_coor[5][0], cpw_coor[5][1]], length, 4, turn_radius, ending = 'v')

cpw.append( objects.CPW(points, pin = pin, gap = gap, turn_radius = turn_radius,\

layer = 1, name ='sixt') )

cpw[5].add_mask(pin+2*gap+2*skirt_distance, layer=91)

cpw[5].add_airbridges([40, 90], [66, 30], width = 30, density = 0.002, layers = [2,3])

chip.add(cpw[5], cpw_coor[5][0])

print(cpw[5].length)

# create transmons
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angles = [0, 0, 180, 180, 180]

transmons = []

for i in range(0,5):

transmons.append(objects.interdigitated_cap(fingers = fingers, \

finger_length = finger_length, gap = cap_gap, plate_width = plate_width,\

plate_heigth = plate_heigth,\

dielectric = dielectric, layer = 1, name = 'interd', add_skirt= True,\

skirt_distance=skirt_distance ))

transmons[i].add_squid( width = 21, draw_junctions= True, \

junction_dict = dic, angle = angles[i])

chip.add(transmons[0], origin = (cap_coor[0][0], cap_coor[0][1] + cap_heigth/2.),\

x_reflection = True)

chip.add(transmons[1], origin = (cap_coor[1][0], cap_coor[1][1] - cap_heigth/2.))

chip.add(transmons[2], origin = (cap_coor[2][0] + cap_width, cap_coor[2][1]+ cap_heigth/2.), \

rotation = 180)

chip.add(transmons[3], origin = (cap_coor[3][0] + cap_width, cap_coor[3][1]- cap_heigth/2.), \

rotation = 180, x_reflection = True)

chip.add(transmons[4], origin = (cap_coor[4][0] + cap_width, cap_coor[4][1]+ cap_heigth/2.),\

rotation = 180)

# add markers, mask around launchers and dielectric surrounding the chip

markers = cad.core.Cell('marker')

markers.add( cad.shapes.Rectangle((-10, -10), (10, 10), layer = 1 ) )

markers.add( cad.shapes.Rectangle((-10-marker_mutual, -10), (10-marker_mutual, 10),\

layer = 4 ))

for i in range(0,4):

if i == 1 or i == 2:

angle = 180

else:

angle = 0

ref = cad.core.CellReference(markers, marker_coor[i], rotation = angle)

chip.add(ref)

launcher_mask = cad.core.Boundary(((-chipsize_x/2 + bonding_pad_length, 0),

(-chipsize_x/2 + bonding_pad_length, chipsize_y/2 - \

bonding_pad_length),

(chipsize_x/2 - bonding_pad_length, chipsize_y/2 -\

bonding_pad_length),

(chipsize_x/2 - bonding_pad_length, -chipsize_y/2 +\

bonding_pad_length),

(-chipsize_x/2 + bonding_pad_length, -chipsize_y/2 +\

bonding_pad_length),

(-chipsize_x/2 + bonding_pad_length, 0),

(-chipsize_x/2, 0),

(-chipsize_x/2, -chipsize_y/2),

(chipsize_x/2, -chipsize_y/2),

(chipsize_x/2, chipsize_y/2),

(-chipsize_x/2, chipsize_y/2),

(-chipsize_x/2, 0)), layer = 91)
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cad.shapes.Box((-chipsize_x/2 + 0.5*bonding_pad_length, -chipsize_y/2 +\

0.5*bonding_pad_length), (chipsize_x/2 - 0.5*bonding_pad_length, chipsize_y/2 - \

0.5*bonding_pad_length),

width=100, layer =91)

chip.add(launcher_mask)

outer_dielec = cad.core.Boundary(((-chipsize_x/2, 0),

(-chipsize_x/2, chipsize_y/2),\

(chipsize_x/2, chipsize_y/2),\

(chipsize_x/2, -chipsize_y/2),\

(-chipsize_x/2, -chipsize_y/2),\

(-chipsize_x/2, 0),\

(-chipsize_x/2 - marker_mutual + marker_edge - 60, 0),\

(-chipsize_x/2 - marker_mutual + marker_edge - 60, \

-chipsize_y/2 - 25),\

(chipsize_x/2 + marker_mutual - marker_edge + 60, \

-chipsize_y/2 - 25),\

(chipsize_x/2 + marker_mutual - marker_edge + 60, \

chipsize_y/2 + 50),\

(-chipsize_x/2 - marker_mutual + marker_edge - 60, \

chipsize_y/2 + 50),\

(-chipsize_x/2 - marker_mutual + marker_edge - 60, 0)),\

layer=1)

chip.add(outer_dielec)

#holey ground

groundplane = groundplaneholes.GroundPlaneHoles('holes', {'ydim': chipsize_y -150, 'xdim': \

chipsize_x -150, 'smallx': 70, 'smally' : 70, 'holes': [2., 2.], 'streets': [1., 1.]})

holes = groundplane.gen_full()

chip.add(holes)

chip.save_to_gds(show=False, save=True,loc=path)
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Appendix C

Numerical instability

Close to jump-down frequency we sometimes observed a peak appearing in the phase of the
upper branch , depending on the number of frequency steps and time step h. An example is
shown in fig. C.1

Figure C.1: Close to the jump-down frequency, we a peak appears in the steady-
state phase of the upper branch, marked with a red circle. This is not always the

case and depends on the number of frequency steps and time step.

We suspect this is because at the switching point it takes a long time for the model to
converge. When we plot the phase of the peak as a function of time, shown in fig. C.2, we
see that this indeed the case.

Figure C.2: Time trace of the peak marked by the red circle in fig. C.2 in units

of the characteristic time τ = Q̃
πf̄

. The model does not converge, explaining the

appearance of the peak in the steady-state plot.
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For comparison, we plot the time traces in the van der Pol phase plane for the peak, and
for a point just before the peak. Whereas the point just before peak converges, we see that
time trace of the peak converges much slower and does not reach steady-state. Therefore, we
removed the peaks for plotting purposes.

Figure C.3: A Time traces of the peak marked by the red circle in fig. C.2
plotted in the phase plane. The open circle in the middle indicates that it has not
converged to steady-state yet. B Time trace of point point just before the peak.

This point does converge to steady-state.
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Appendix D

Peak in reflection parameters in
classical non-linear model

Plotting the S11 parameters for the non-linear classical model of the one junction device, we
observed the appearance of an extra peak both in the amplitude and the phase of the lower
branch above the bifurcation point. This is shown in fig. D.1. We did not expect this, and
in the following we trace back its origin.

Figure D.1: S11 parameters below and above the bifurcation point (P =
−170 dBm and P = −149 dBm). Above the bifurcation point we observe a small

second peak in the lower branch, marked with a red circle.

The S11 parameters were calculated using eq. (2.6) with Z0 = 50 Ω. The impedance of
the circuit Z is calculated as follows:

Z =
V

I
=
φ̇d
I

=
iωdΦ

Cc

(
φ̈d − φ̈1

) =
iΦ

Ccωd
(

1
2(φ+ + φ−)− Φ

) (D.1)

In fig. D.2 we plot φ1 = φ++φ−
2 above the bifurcation point. We see the same peak

appearing.

Figure D.2: φ1 above the bifurcation point. The same peak is observed as with
the reflection parameters.
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As φ1 is the sum of φ+ and φ−, we plot them separately, below and above the bifurcation
point in fig. D.3 and fig. D.4.

Figure D.3: Amplitude and phase of φ+ and φ− below the bifurcation point
(P = −170 dBm). As expected for low powers, φ− has the same shape as the

harmonic solution.

Below the bifurcation point φ− has the same shape as the harmonic solution φ+. The
only difference is its lower amplitude, as it has a weaker coupling to the drive.

Figure D.4: Amplitude and phase of φ+ and φ−, above the bifurcation point
(P = −149 dBm). Now φ− starts to differ from the harmonic solution as its
amplitude and phase are shifted to the left. This is the origin of the peak in the

reflection parameters.

Above the bifurcation point however, φ− starts to differ from φ+ as both its amplitude
and its phase get shifted to the left. So we can trace back the appearance of the peak in the
S11 parameters to the distortion of φ− at higher powers.

To test if the peak is numerically and converges to a steady-state value we plot the time
trace of point B in the phase plane. This is shown in fig. D.5. We see this is indeed the case.



Appendix D. Peak in reflection parameters in classical non-linear model 93

Figure D.5: Time trace plotted in phase plane of point B in fig. D.1. The trace
converges to a steady-state value

In fig. D.6 we plot time traces of φ− at the frequency of point A for different initial
conditions, and compare it with point B. In red we show the time traces for the actual initial
conditions leading to the steady-state values of points A and B. At A we see that some initial
conditions lead to the low amplitude state L, and other to the high amplitude state U. From
fig. 5.19 we know that the state marked by L belongs to the lower branch and the state
marked by U belongs to the upper branch. At point B we were not able to find an initial
conditions leading the steady-state L.

(a) (b)

Figure D.6: Time traces of point A and B in fig. D.1 (red) together with time
traces with different initial conditions (blue). At point A all traces lead to U, and

we were not able to find any condition leading to L.

This suggest that close to the peak , it is very difficult to stay at the low branch, as nearly
all initial conditions lead to the upper branch.
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Finally, we look at the effect of increasing the power, shown in fig. D.7.

Figure D.7: Lower branch of φ− for different powers above bifurcation point.
The small peak shifts to the left and becomes shallower with increasing power.

We see that both in amplitude and phase the peak shifts to the left with increasing power,
and becomes shallower.
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