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We step out of our solar system into the universe seeking only peace and friendship.
To teach, if called upon.
To be taught, if fortunate.

Kurt Wandheim,
as recorded on the Voyager golden record
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Summary

Recent engineering developments have surrounded us with intelligent devices, which
are required to autonomously take rational decisions while interacting with the physi-
cal world. These systems are increasingly widespread, interacting and interconnected,
thus resulting in decision problems that involve multiple rational agents, generally
with conflicting objectives and interrelated operating constraints. Currently relevant
examples include autonomous driving, traffic routing, clearance of autonomous bid-
ding markets, power consumption and production scheduling on the electricity grid,
control of robotic swarms, and autonomous racing. The mathematical framework for
formulating these problems is known as a game. Over the past decade, there has been
significant progress in the development of algorithms that determine an action which
is simultaneously rational (i.e. optimal) for each agent, namely, a generalized Nash
equilibrium (GNE). This solution is particularly favorable as it is self-enforcing, in
the sense that no decision maker can improve its payoff by unilaterally deviating from
it. However, currently available algorithms for the computation of a GNE present
numerous shortcomings, which limit their applicability to real-world non-cooperative
decision processes and that we address in this thesis.

First of all, GNE problems typically admit multiple solutions, but currently
available algorithms only compute an arbitrary, initialization-dependent GNE. In
applications where a predictable and well-defined solution is necessary, it becomes
important to select a specific GNE (among potentially infinitely many) that optimizes
an arbitrary metric or a secondary, cooperative objective. We develop the first optimal
GNE selection algorithms. We compare two different algorithm design methods,
both developed under the framework of operator theory: the first, i.e. the hybrid
steepest-descent method (HSDM), entails a gradient descent of the selection function
with vanishing step size combined with a GNE seeking algorithm, while the second
requires the solution of a sequence of Variational Inequalities (VIs) with a vanishing
regularizing term. Both design methods lead to algorithms that are suitable to
distributing the computation between a central node and the agents, and we include
ad-hoc algorithms for the particular cases of aggregative and cocoercive games.

Secondly, we consider time-varying games, motivated by the need for algorithms
that continuously monitor and control physical multiagent systems. In such games,
the agents must track an evolving solution with limited computation time between
the problem’s updates. This scenario is particularly relevant when the agents are
affected by disturbances whose time-scale is comparable to the algorithm convergence
rate. The challenge lies in finding algorithms that exhibit fast convergence and
a robustness property to external disturbances, both typically associated with a
linear convergence rate. We derive and study the asymptotic tracking error of a
fully-distributed algorithm (i.e., without a central coordinator) for GNE problems
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with linear equality constraints. For a time-varying GNE selection problem, we
find the HSDM with constant stepsize to be linearly convergent to an approximate
solution. We find that the approximation error can be controller by an appropriate
choice of the stepsize and number of iterations per time step, and we derive a bound
to the asymptotic tracking error.

Finally, again driven by the need of applying GNE seeking algorithms to the
control of physical systems, we consider dynamic games, where the decision each
agent has to take is a time sequence of inputs to a dynamical system. In this
case, the coupling between the agents emerges not only through the objectives and
constraints, but also through the system dynamics. Ideally, one should compute the
GNE solution by predicting the dynamics over an indefinitely long horizon. This is
typically computationally intractable, especially when constraints are present. We
then approximate the infinite-horizon control sequence by recomputing at each time
instant the solutions to a finite-time equilibrium problem, a method typically known
as receding-horizon control (or model predictive control, in the single-agent case).
We derive a novel characterization of the infinite horizon objective achieved by the
Nash equilibrium trajectory, and we show that one can recover the infinite-horizon
performance by including this expression in the agents’ objectives as an additive
terminal cost. With this result, we conclude asymptotic stability of the steady state
under a receding-horizon game-theoretic control action. Compared to the literature,
we do not assume stability of the uncontrolled plant, nor we introduce auxiliary
constraints. Furthermore, we find that the asymptotic stability of the steady state
can be obtained with a more generic terminal cost if the game is potential, as we
demonstrate on a practical traffic routing application.
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Samenvatting

Recente technologische ontwikkelingen hebben ons omringd met intelligente appa-
raten die zelfstandig rationele beslissingen moeten nemen tijdens interactie met de
fysieke wereld. Deze systemen worden steeds wijdverspreider, reageren op elkaar
en zijn onderling verbonden. Dit leidt tot besluitvormingsproblemen met meerdere
rationele agenten die doorgaans conflicterende doelen en onderling afhankelijke ope-
rationele beperkingen hebben. Momenteel relevante voorbeelden omvatten autonoom
rijden, verkeersroutering, afhandeling van autonome biedmarkten, planning van ener-
gieverbruik en energieproductie op het elektriciteitsnet, besturing van robotswarms
en autonoom racen. Het wiskundige kader voor het formuleren van deze problemen
staat bekend als een spel. In het afgelopen decennium is er aanzienlijke vooruitgang
geboekt in de ontwikkeling van algoritmen die een actie kiezen die tegelijkertijd
rationeel (d.w.z. optimaal) is voor elke agent, namelijk een generalized Nash equili-
brium (GNE). Deze oplossing is bijzonder gunstig omdat deze zelfhandhavend is, in
de zin dat geen enkele besluitvormer zijn opbrengst kan verbeteren door eenzijdig
af te wijken. De momenteel beschikbare algoritmen voor het berekenen van een
GNE hebben echter talrijke tekortkomingen, die hun toepasbaarheid op realistische
niet-cooperatieve besluitvormingsprocessen beperken. Dit proefschrift gaat deze
gebreken aanpakken.

Ten eerste hebben GNE-problemen doorgaans meerdere oplossingen, maar hui-
dige algoritmen berekenen slechts een willekeurige GNE dat is afthankelijk van de
initialisatie. In toepassingen waar een voorspelbare en goed gedefinieerde oplossing
noodzakelijk is, wordt het belangrijk om een specificke GNE te selecteren (uit mo-
gelijk oneindig veel) die een willekeurige metriek of een secundair, coéperatief doel
optimaliseert. Wij ontwikkelen de eerste algoritmen voor optimale GNE-selectie. We
vergelijken twee verschillende methoden voor algoritmeontwerp, beide ontwikkeld
binnen het kader van de operatortheorie: de eerste, de hybrid steepest-descent
method (HSDM), omvat een gradient descent van de selectie-functie met een af-
nemende stapgrootte, gecombineerd met een GNE-zoekend algoritme, terwijl de
tweede de oplossing van een reeks Variational Inequalities (VIs) met een afnemende
regularisatieterm vereist. Beide ontwerpmethoden leiden tot algoritmen die geschikt
zijn om de berekening te verdelen tussen een centraal knooppunt en de agenten, en
we voegen ad-hoc algoritmen toe voor de bijzondere gevallen van aggregatieve en
cocoercieve spellen.

Ten tweede beschouwen we tijdsafhankelijke spellen, gemotiveerd door de behoefte
aan algoritmen die fysieke multi-agent systemen continu monitoren en besturen. In
dergelijke spellen moeten de agenten een evoluerende oplossing volgen met beperkte
rekentijd tussen de updates van het probleem. Dit scenario is met name relevant
wanneer de agenten worden beinvloed door verstoringen waarvan de tijdschaal verge-
lijkbaar is met de convergentiesnelheid van het algoritme. De uitdaging ligt in het
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vinden van algoritmen die zowel snelle convergentie als robuustheid tegen externe
verstoringen vertonen, beide doorgaans geassocieerd met een lineaire convergentie-
snelheid. We leiden en bestuderen de asymptotische volgfout af van een volledig
gedistribueerd algoritme (d.w.z. zonder centrale codrdinator) voor GNE-problemen
met lineaire gelijkheidsbeperkingen. Voor een tijdsathankelijke GNE-selectieprobleem
vinden we dat de HSDM met constante stapgrootte lineair convergeert naar een
benaderde oplossing. We vinden dat de benaderingsfout kan worden beheerst door
een geschikte keuze van de stapgrootte en het aantal iteraties per tijdstap, en we
leiden een grens af voor de asymptotische volgfout.

Ten slotte richten we ons opnieuw op de toepassing van GNE-zoekende algoritmen
voor de besturing van fysieke systemen. We bekijken dynamische spellen, waarin
elke agent een tijdsreeks van inputs naar een dynamisch systeem moet bepalen
als beslissingen. In dit geval ontstaat de koppeling tussen de agenten niet alleen
door de doelen en beperkingen, maar ook door de systeemdynamica. Idealiter
zou men de GNE-oplossing moeten berekenen door de dynamica over een oneindig
lange horizon te voorspellen. Dit is doorgaans computationeel onhaalbaar, vooral
wanneer er beperkingen zijn. We benaderen daarom de controlevolgorde voor een
oneindige horizon door op elk tijdstip opnieuw de oplossingen te berekenen voor een
evenwichtsprobleem over een eindige tijdshorizon, een methode die meestal bekend
staat als receding-horizon control (of model predictive control, in het geval van een
enkele agent). We leiden een nieuwe karakterisering af van het oneindige-horizon-doel
behaald door de NE-traject, en tonen aan dat men de prestaties voor de oneindige
horizon kan herstellen door deze uitdrukking op te nemen in de doelen van de agenten
als een additieve terminalkost. Met dit resultaat concluderen we de asymptotische
stabiliteit van de evenwichtstoestand onder een spel-theoretische regelactie voor
receding-horizon controle. In vergelijking met de literatuur veronderstellen we noch de
stabiliteit van de ongestuurde plant, noch introduceren we aanvullende beperkingen.
Bovendien vinden we dat de asymptotische stabiliteit van de evenwichtstoestand
kan worden verkregen met een meer algemene terminalkost als het spel potentieel is,
zoals we aantonen in een praktische toepassing voor verkeersroutering.
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equal to by definition
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Operations on vectors and matrices, norms

I, identity matrix of dimensions n. The dimension is sup-
pressed when clear from context.
0, zero vector of dimension n. The dimension is suppressed
when clear from context.
1, vector of dimension n with all elements 1. The dimension
is suppressed when clear from context.
()" transpose.
col(My,... My) = [MlT,...,M;]]T, where M;,..., My are real vectors or
matrices.
col(M;);er = col(M;,,Mi,,...,M;, ), where T = {i1,...,in}.
diag(M;,... My) Block diagonal matrix with diagonal elements M7, ..., M.
diag(Mi>7;€I = dia%V(Mil""’MiN)’ where 7 = {il, ,ZN}
avg(vi,...UN) = % >~ v;, where v1,...,un are real vectors.
i=1
avg(vi)ier = ﬁ > v, where v; is a real vector for each ¢ € Z.
i€l
M1 inverse of the non-singular matrix M
M >0 the matrix M = M T is positive definite
M =0 the matrix M = M T is positive semidefinite
(v, u) Euclidean inner product, i.e. v'u
(v,u) g Weighted inner product, i.e. v Wu, with U =0T =0
[lv]] Euclidean norm, i.e. Vo Tv
lv]|w Euclidean weighted norm, i.e. VoT ¥v, with U =0T =0
distg (z,C) distance of z to the set C' with respect to || - ||w, i.e.

disty (z,C) =infco ||z — 2||w
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Preliminaries on convex functions

Consider a scalar, convex function f:R™ — R and a convex set C. We denote:

af subdifferential of f, i.e.
Of(x) ={ueR"|Vy e R" (y—z,u) + f(z) < f(y)}
Vi(x) gradient of f
Ve f(x) partial gradient of f with respect to xz;, where x =
COl(ij)jeI and i €Z.
Dy(z) Jacobian matrix of ¢
proxy s proximal operator of 9f, that is,

proxj;(z) := argflginf(y) +3lly—=lly
yeR™

N¢ normal cone of the closed convex set C C R™, that is,
Ne(z) = {u € R"|sup, ¢ (y —z,u) < 0}
projg projection of  to the set C for the norm |||y, that is,

proj¢ (z) := argmin ||y — z||g
yeC

Le indicator function of the set C, that is,

) +oo ifz g,
LC(x)_{o itrec.

A continuously differentiable function f: R™ — R is o-strongly convex with respect
to a W-weighted norm, with ¢ > 0 and ¥ = 0, if, for all z,2’ € dom f,

F@) 2 f@)+(Vf(x),a' —z)+ §lla" —2F
Additionally, f is convex if the previous inequality holds for o = 0.

Operator theory notation and nomenclature

Consider the set-valued operator F': X = ). We denote:

Id identity operator, i.e. Id(z) ==
dom(F) ={x e X | F(z) # o}
zer(F) ={zeX|0e€F(x)}
fix(F) ={xeX | z=F(2)}
gph(F) ={reX,ycy|yeF(z)}
F1 inverse operator, i.e.
gph(F~1) = {(y,2)|(z,y) € gph(F)}
RF = (Id+F)~1, i.e., the resolvent operator of F'

Furthermore, we classify F' as:
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B-strongly monotone
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nonexpansive
attracting nonexpansive

quasi-nonexpansive

(0% avemged nonewpansz’ve

(- cocoercive

Firmly nonezrpansive

if (y—y',2—2")>0, ¥(z,y),(2',y’) € gph(F)
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if there exists a constant L > 0 such that
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if 1-Lipschitz continuous

if it is nonexpansive with fix(F') # @ and
|F(z)—z|| < ||z =z, Vz€fix(F) and Va ¢ fix(T)
if fix(F) # @ and

|1F(z)—z| < ||lx—z]|, Vz € fix(F') and Vz € R™

for a € (0,1), if there exists R nonexpansive such
that

F=(1-a)ld+aR

if (v —y,2'—2) = Blly —yll, V(z,y),@"y) €
gph(F)

if for all (z,y),(2',y’) € gph(F),

ly =912+ (z —y) = (@' = ¢)|I* < o — 2|



Introduction

“We have found nothing you can sell. We have found nothing you can put to practical
use. [...] We have satisfied nothing but curiosity, gained nothing but knowledge.
To me, these are the noblest goals.”

Becky Chambers, in “To be taught, if fortunate”

In the first chapter of this thesis, we introduce the generalized Nash equilibrium
problem as a model for rational decision-making in a non-cooperative, multiagent
setting with operational constraints. We illustrate the limitations of the models and
solution algorithms typically found in the literature through relevant application
eramples. We emphasize the importance of selecting a specific Nash equilibrium
when multiple are available, as well as the necessity of incorporating time dependency
and the physical dynamics of the system in conjunction with the decision-making
process. Finally, we outline the research questions arising from these considerations
that motivate this thesis, and we present the structure of the thesis at the end of the
chapter.




2 1 INTRODUCTION

1.1 Game theory

The widespread diffusion of low-cost computing devices and the improvement in sens-
ing and communication technologies have surrounded us with “intelligent” systems,
which are able of complex calculations, of interacting with both the physical world
and humans, as well as acquiring and broadcasting data in real time. Inevitably,
given their pervasive presence, such cyberphysical systems often need to interact
with one another, and are thus required to compute a complex, collective decision
[1].

An illustrative example is that of personal vehicles, which are nowadays typically
equipped with significant computing and sensing capabilities, as well as access to
the internet. Consider multiple vehicles driving on the same road: each driver
(whether human or artificial) has to continuously determine the control input of their
vehicle. This does not only require each driver to take into account the physics of
their own car, safety speed and distance limits, and the preferences of the eventual
humans on board: it also requires them to monitor and react to the actions of the
remaining vehicles. The available sensing and information processing technologies
(radars, LIDARS, cameras, computer vision) enable a vehicle to determine the current
position, velocity, and nature of the surrounding obstacles. However, a capable driver
must also predict the intentions of the other drivers that populate the road, which in
turn requires a model of their behavior. A sensible assumption on this behavior is
that the remaining drivers are rational, meaning that they will also pursue the best
possible course of action according to their own preferences and operating limits of
the vehicle [2].

We typically refer to rational entities as agents. The problem of computing an
optimal course of action while being influenced by other, equally rational, agents, is
called a game. If the operating limits that must be respected are also influenced by
the actions of the remaining agents, then the game is generalized, and we refer to
such interdependent operating limits as coupling constraints (in opposition to local
constraints). In the context of the multi-vehicle driving example above, the legal
speed limit is a local constraint, as it does not depend on the speed or position of
the other vehicles. Conversely, the safety distance is a coupling constraint, as the
allowed position on the road of each vehicle depends on the location of the remaining
vehicles.

Mathematically, a game can be formalized as an optimization problem in the
decision variable z; associated to the agent ¢, which is parametrized in the decision
variables of the remaining agents, denoted as x_;, see e.g. [3]:

Vi : x?g&}" Ji(zi,x_;) (1.1a)
s.t. x; € Qi(a:_i). (1.1b)

In (1.1), J; is a local objective function, which encodes the control goals of agent 4,
and €2; is a mapping from the actions of the remaining agents to the set of feasible
actions for agent i, and it encodes the operating constraints of the system. Typically,
the problem in (1.1) is solved by finding a GNE. A GNE is a collective action, such
that no agent ¢ can improve its objective J; without being able to change the action



1.2 GNE SEEKING IN A DYNAMIC ENVIRONMENT 3

of the remaining agents. This model respects the multiagent setting (a driver cannot
select the speed of the surrounding vehicles) and it characterizes a non-cooperative
regime, as no agent will rationally hinder its own objective to advantage another
agent. Returning to the example concerning driving, consider the instantaneous
position p; and velocity v; of the vehicle as decision variables. Then, a possible
choice for J; which aims at maintaining the same speed of the vehicle in front v; is

Ji(aci,:c_i) = (vi—vj)Q, (1.2)

while a possible choice for 2; which requires the vehicle i to respect the speed
limit v™> (local constraint) and the safety distance Ap™* from the vehicle in front
(coupling constraint) is

Qi rx_; = {v; € [0,0™]} x {p; —pi € [Ap™*,+00)}. (1.3)

1.2 GNE seeking in a dynamic environment

In recent years, the GNE seeking problem has attracted significant attention, and
numerous, efficient algorithms for its solutions have been devised [4]. However,
when it comes to deploying the decision process captured by the model in (1.1),
the interface between the decision-making process and the physical world poses
additional, relevant challenges, as it can already be acknowledged when taking into
consideration the problem in (1.1) with the example objective and constraints in
(1.2) and (1.3) as a model of an actual driving scenario.

First of all, the game in (1.1) ignores the physics of the vehicles. A more suitable
model for each vehicle is, in fact, a dynamical system, which restricts the set of
positions and velocities that the vehicle can reach in a given time to the solutions of
an initial-value problem. An optimization problem constrained to the solutions of an
initial-value problem is typically referred to as an optimal control problem (OCP),
and the engineering interest in its multiagent extension has recently surged [2, 5-8],
drawing a renovated interest to the dynamic games field [9-11]. It is well-known
that a crucial design parameter, when modelling a control system as an OCP, is
the horizon of the problem, that is, how far ahead in time is the solution to the
initial-value problem simulated and optimized. Clearly, one would ideally predict
the system evolution over an indefinitely long time, that is, over an infinite horizon.
However, this results in an infinite number of optimization variables, thus rendering
the dynamic game unsolvable, except in a handful of restrictive, particular cases.
In the OCP case, an effective alternative is the celebrated model predictive control
(MPC) method, which entails truncating the horizon and continuously re-solving
the resulting finite horizon problem [12]. It is well known that, by an appropriate
design of the objective and constraints, the MPC control coincides with the solutions
to an infinite-horizon OCP [12, Exercise 2.7]: no such result is, however, currently
available in the dynamic game case.

Secondly, the decision problem should be dependent on time: in fact, a driver must
constantly react to external stimuli that modify the driving pattern, for instance,
obstacles appearing on the road, a change in wind speed or an immediate safety
concern. When the conditions change, then the problem in (1.1) is updated and a
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reaction to the situation variation must be swiftly recomputed. The available GNE
seeking algorithms are typically iterative and their convergence to the solution is only
asymptotic. This implies that the exact computation of a GNE in a dynamic setting
cannot be guaranteed, as the problem definition will need to be updated before the
algorithm reaches convergence. Thus, a dynamic setting requires algorithms with
guaranteed finite-time error bounds and which are able to follow the time evolution
of a GNE.

Finally, the solution of the problem in (1.1) is in general non-unique. When
multiple GNEs are available, the existing GNE seeking algorithms behave non-
deterministically, in the sense that they compute an initialization-dependent, un-
specified GNE. This can occur if agents’ objectives are indifferent to certain decision
variables, or if a variable has a range of values that doesn’t affect the objective.
By shifting perspectives, this ambiguity can be viewed as flexibility: among all
possible GNEs (which are rational in a non-cooperative setting), the agents can
resolve the ambiguity by employing the GNE that is optimal according to a sec-
ondary, cooperative goal. We can think of this setting as “conditioned cooperative
decision-making”, where the condition for cooperation is competitive efficiency. Let
us consider again the usual driving example: the objective in (1.2) does not specify
a preferred position for the vehicle on the road, as long as the safety constraints in
(1.3) are met. Leveraging this flexibility, the drivers can agree to maintain specific
positions that optimize road usage, in order to reduce the road occupancy. That is,
provided that this does not compromise their competitive speed goals encoded in
(1.2).

Given the aforementioned limitations, we identify the following research questions,
which drive the development of this thesis

Q1 How to deterministically compute a specific GNE, optimally selected according
to a design criterion?

Q2 How to track the (possibly selected) time-varying GNE of a game, by means
of an algorithm which only employs a finite number of iterations?

Q3 Is a dynamical system controlled by the receding-horizon solution of a general-
ized Nash equilibrium problem (GNEP) asymptotically stable?

Q4 Can the solution to a finite-horizon GNEP problem involving a multiagent linear
time-invariant (LTT) dynamical system match the one of an infinite-horizon
dynamic game?

Besides the aforementioned example, similar game theoretic models and challenges
emerge in other practical applications of contemporary interest:

o Energy markets: A contemporary challenge in the power industry, fueled by the
recent liberalization process and the availability of small-scale renewable power
generators and energy storage units, is the inclusion of retail-level consumers
and producers of energy (prosumers) in the energy market operation. In this
scenario, the prosumers bid on their energy consumption and production, while
the system operator aims at clearing the market, that is, scheduling the energy
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prices and the generation at the available plants. The solution needs to be
recomputed at regular intervals in order to balance unexpected variations
in demand and/or power availability, while the inertia of the mechanical
generators, as well as the storage charging state and degradation process,
introduce a dynamics to the decision process. In this scenario, the flexibility of
the prosumers can be exploited to select a GNE which provides some ancillary
services to the grid. [13]

e Autonomous racing: Game theoretic models have been recently employed for
improving the performance in both aerial and terrestrial drone racing [8, 14].
The drones need to take into account both the physics of the driven vehicle
and the adversarial behavior and dynamics of the other agents. The intrinsic
fast pace and aggressiveness of the maneuvers highlights the need for fast
decision-making.

1.3 Thesis organization

The thesis is composed of two parts. We present the focus of each part and a summary
of each chapter next, while a schematic representation of the thesis structure is
depicted in Figure 1.1.

1.3.1 Part 1: Optimal Nash equilibrium selection and tracking

In the first part of this thesis, we focus on the problem of computing a (possibly
optimal) GNE, while ignoring the dynamics of the plant. The algorithms here pro-
posed determine a set-point for the multiagent system, with the implicit assumption
that the underlying system is asymptotically stable (or stabilized) to the given
set-point, as depicted in Figure 1.2. The time-varying component of the games,
when considered, is addressed as an exogenous process which defines a novel GNEP
at each time step, and the role of the algorithms here designed is to compute an
approximation of the (actual) sequence of GNEs, as for Figure 1.3.

With the purpose of obtaining reliable and deterministic computation methods
for games which allow for multiple GNEs, we design algorithms that guarantee the
optimality of the computed equilibrium according to an arbitrary performance metric.
We design solution algorithms that apply to generic monotone games with a convex
selection objective (Chapters 2 and 4), as well as more specific algorithms for the
particular case of aggregative games (Chapter 3), that is, games where the objective
coupling is only determined by the average of the decision variables.

For time-varying problems, we study the tracking performance of the finite-
iteration version of a selection algorithm in Chapter 2. With the aim of developing a
faster solution method, and thus achieving better tracking performance, we find a
novel linear convergence result for strongly monotone, equality constrained games,
which works even without a central coordinator (Chapter 5).

o Chapter 2 (addressing Q1, Q2)
We derive the first optimal GNE selection algorithm for monotone games with
a convex selection function. We proceed by first writing a generic (non-optimal)
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GNEP PLANT |——

Figure 1.2: Model of the interaction between the GNEP problem solution and the multiagent
system (plant) for Part 1 of this thesis. The solution of the GNEP x* is used as set-point for the

plant.

J[K] k]
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z

Figure 1.3: Tracking problem for a time-varying GNEP. At each iteration k, external factors
determine the cost functions J[k] and, consequently, the GNE x*[k] (assumed unique or optimally
selected). The solution to the GNEP in Figure 1.2 is approximated by the output " of the
algorithm block ALG. Asymptotically,  has to lie in a neighborhood of x*.

GNE seeking algorithm as a fixed-point operator. This allows us to cast the
selection problem as an optimization problem constrained to the fixed point
set of an operator, which is in turn typically solved by means of the HSDM
[15] in the case of a non-expansive, quasi-shrinking operator. We show that
the latter assumptions on the fixed point operator are satisfied by the forward-
backward-forward (FBF) algorithm [16] and, for cocoercive operators, by the
preconditioned forward-backward (pFB) algorithm [17]. Thus, we pair the
HSDM to either of these well-known algorithms to derive two optimal GNE
selection algorithms. We finally study the finite-horizon performance of the
HSDM paired with the FBF algorithm, and we find an upper bound for the
tracking error with respect to a time-varying optimal GNE, which improves
with the number of allowed iterations-per-problem update. This chapter is
partly based on the following publication:

[18] Benenati, E., Ananduta, W. and Grammatico, S. “Optimal Selection and
Tracking Of Generalized Nash Equilibria in Monotone Games”. In: IEEE
Transactions on Automatic Control, 68(12):7644-7659, (Dec. 2023)

Chapter 3 (addressing Q1)

Building on the findings of Chapter 2, we design an optimal selection algorithm
for linearly coupled games (which generalize aggregative games). By taking
advantage of the particular structure of the problem, we pair the HSDM
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with the preconditioned proximal-point (PPP) algorithm, which exhibits a fast
convergence rate [19]. This chapter is partly based on the following publication:

[20] Benenati, E., Ananduta, W. and Grammatico, S. “On the optimal selection
of generalized Nash equilibria in linearly coupled aggregative games”. In:
2022 IEEE 61st Conference on Decision and Control (CDC), pages 6389—
6394, Cancun, Mexico, (Dec. 2022). IEEE

o Chapter 4 (addressing Q1)

In this chapter, we explore an alternative design method for optimal GNE-
selection algorithms to the HSDM-based one presented in Chapters 2, 3. In
particular, we cast the optimal selection problem as a variational inequality (VI)
constrained to the set of solutions of a second VI, which coincides with the set
of GNEs. We then employ the Tikhonov regularization method in [21] to derive
a two-level solution algorithm, which requires the approximate solution of a
VI at each iteration. Despite the bi-level structure of the algorithm, we show
numerically that the convergence rate is comparable to the HSDM method
paired with the FBF algorithm presented in Chapter 2. Theoretically, we show
that the two methods are related, as a particular instance of the HSDM method
and the Tikhonov regularization are, respectively, a forward-backward (FB)
splitting and the resolvent operator for the same monotone inclusion. This
chapter is partly based on the following publication:

[22] Benenati, E., Ananduta, W. and Grammatico, S. “A Semi-Decentralized
Tikhonov-Based Algorithm for Optimal Generalized Nash Equilibrium
Selection”. In: 2028 62nd IEEE Conference on Decision and Control
(CDC), pages 4243-4248, Singapore, Singapore, (Dec. 2023). IEEE

o Chapter 5 (addressing Q2)
In this chapter, we derive a fully distributed algorithm for the tracking of a
time-varying GNE subject to only linear equality constraints. For this specific
case, the proposed algorithm exhibits a linear convergence rate, resulting in
a particularly straightforward and interpretable bound on the tracking error.
This chapter is partly based on the following publication:

[23] Bianchi, M., Benenati, E. and Grammatico, S. “Linear Convergence in
Time-Varying Generalized Nash Equilibrium Problems”. In: 2023 62nd
IEEE Conference on Decision and Control (CDC), pages T220-7226,
Singapore, Singapore, (Dec. 2023). IEEE

1.3.2 Part 2: Receding horizon control of dynamic games

In the second part of this thesis, we consider the problem of stabilizing a steady-state
for a multiagent linear dynamical system with quadratic, competitive, general-sum
objectives by computing the input to the system as a solution to a GNEP, as depicted
in Figure 1.4. In particular, we focus on the design of the objective and constraints
for the finite-horizon GNEP, such that its receding-horizon solution presents some
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GNEP

Figure 1.4: Model of the interaction between the GNEP problem solution and the multiagent
system (plant) for Part 2 of this thesis. The solution to the GNEP is used as feedback input to
stabilize the plant.

—— 3B,
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Figure 1.5: Optimal control problem solved by agent ¢ when the GNEP in Figure 1.4 is an open-loop
Nash equilibrium problem with linear dynamics. Given the input sequence of the remaining agents
u_;, agent i chooses u; to minimize some norm of the sequence y;.




10 1 INTRODUCTION

B—’i K_j |«

Ri

Figure 1.6: Optimal control problem solved by agent ¢ when the GNEP in Figure 1.4 is a closed-loop
Nash equilibrium problem setting with linear dynamics. Given the feedback control law of the
remaining agents k_;, agent ¢ chooses k; so to minimize some norm of the sequence y;.

stability guarantees (Chapter 6). We then explore an application to a vehicle traffic
routing scenario (Chapter 7).

o Chapter 6 (addressing Q3, Q4):

In this chapter, we derive a novel method for computing the infinite-horizon
Nash equilibrium (NE), and we establish a design criterion for the finite-
horizon problem such that its solution matches the one of the infinite-horizon
NE control. Building on these results, we derive a stability condition for the
receding-horizon control action based on the continuous recomputation of the
finite-horizon solution. We compare two different GNEP formulations, which
emerge depending on the model that each agent has of their adversaries: the
open-loop Nash equilibrium (0l-NE), depicted in Figure 1.5, where each agent
treats the actions of others as an exogenous, unavoidable disturbance; and
the closed-loop Nash equilibrium (cl-NE), depicted in Figure 1.6, where each
agent considers the actions of others as part of the plant dynamics that can be
influenced. This chapter is partly based on the following publication:

[24] Benenati, E. and Grammatico, S. “Linear-Quadratic Dynamic Games as
Receding-Horizon Variational Inequalities”. In: arXiv preprint 2408.15703,
(2024)

o Chapter 7 (addressing Q3):
In this chapter, we consider a routing problem for a population of vehicles.
The routing systems have control authority on the probability distribution
over which the vehicles draw their path. Through a nonlinear transformation
of variables, we reformulate the problem as a GNEP, which we show to be
monotone under less stringent conditions than those established in [25]. This
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allows us to solve the problem by the well-known inertial forward-reflected
backward (I-FoRB) algorithm. We alternatively cast the routing problem as
a dynamic game and design a finite-horizon ol-NE-seeking problem, ensuring
that the control action obtained from its receding-horizon solution renders the
desired steady state asymptotically stable. This chapter is partly based on the
following publication:

[26] Benenati, E. and Grammatico, S. “Probabilistic Game-Theoretic Traffic
Routing”. In: IEEFE Transactions on Intelligent Transportation Systems,
25(10):13080-13090, (Oct. 2024)

Finally, in Chapter 8, we provide a summary of the main conclusions of this thesis,
and we outline potential future research directions.
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Nash equilibrium selection

In a climate of suspicion, Isperia gathered the guilds to propose a radical idea:
cooperation

Guild summit, Magic: the gathering

A fundamental open problem in monotone game theory is the computation of a
generalized Nash equilibrium (GNE) among all the available ones, e.g. the optimal
equilibrium with respect to a system-level objective. The existing GNE seeking algo-
rithms have in fact convergence guarantees toward an arbitrary, possibly inefficient,
equilibrium. In this chapter, we solve this open problem by leveraging results from
fized-point selection theory and in turn derive distributed algorithms for the computa-
tion of an optimal GNE in monotone games. We then extend the technical results to
the time-varying setting and propose an algorithm that tracks the sequence of optimal
equilibria up to an asymptotic error, whose bound depends on the local computational
capabilities of the agents.

This chapter is partly based on Benenati, E., Ananduta, W. and Grammatico, S. “Optimal
Selection and Tracking Of Generalized Nash Equilibria in Monotone Games”. In: IEEE Transactions
on Automatic Control, 68(12):7644-7659, (Dec. 2023).
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2.1 Introduction

Numerous engineering systems of recent interest, such as smart electrical grids
[27, 28], traffic control systems [25], and wireless communication systems [29-31]
can be modelled as a generalized game, that is, a system of multiple agents aiming
at optimizing their individual, inter-dependent objectives, while satisfying some
common constraints. A typical operating point for these systems is the Generalized
Nash Equilibrium (GNE), where no agent can unilaterally improve their objective
function [3].

The recent literature has witnessed the development of theory and algorithms for
computing a variational GNE (v-GNE) [32, 33], which exhibits desirable properties
of fairness and stability. Semi-decentralized GNE seeking algorithms, where a reliable
central coordinator gathers and broadcasts aggregate information, have been proposed
for strongly monotone [34, 35] and merely monotone games [17, 36]. A breakthrough
idea in [37], later generalized for non-strongly monotone games [16, 38, 39], enables
a distributed computation of GNEs by exploiting a suitable consensus protocol [40],
thus requiring a peer-to-peer information exchange.

Existing results present, however, two fundamental shortcomings that might
limit their practical application. First, unless strong assumptions are considered
(namely, strong monotonicity of the pseudogradient), a game may have infinitely
many v-GNEs and virtually all the existing algorithms provide no characterization
of the equilibrium computed. For instance, a Nash equilibrium can be arbitrarily
inefficient with respect to system-level efficiency metrics (e.g., overall social cost)
[41]. Such uncertainty on the obtained equilibrium is often unacceptable. A notable
exception is the class of double-layer Tikhonov regularization algorithms, [42—44].
While the method in [42] works for generalized games, it only guarantees convergence
to the minimum-norm solution. On the other hand, the equilibrium selection
algorithms in [43, 44] solve at each (outer) iteration a regularized sub-problem where
the objectives of the agents are augmented with a convex selection function to be
optimized, weighted by a small parameter. However, the latter are only applicable
to non-generalized games. In addition, the double-layer method in [45, 46] seeks
the GNE closest to a desired strategy. It is important to note that double-layer
algorithms require the exact solution of a sub-problem at each (outer) iteration, and
thus they would require a virtually infinite amount of communications per outer
iteration in a distributed setting. Recently, a single-layer algorithm based on a
regularized projected-pseudogradient dynamics was proposed in [47], which however
is only suitable for non-generalized games and requires nested vanishing stepsizes
both on the pseudogradient and on the regularization. Second, decision-making
agents often operate in a time-dependent environment and, due to the limited
computation capabilities and to the time required to exchange information, it can
be impossible to ensure a time-scale separation between the environment and the
algorithm dynamics. This results in non-constant objectives and constraints between
the discrete-time algorithmic iterations, as discussed in [48], and the references
therein, for the particular case of optimization problems. Only few works, e.g.,
[49, 50], consider this setting in the case of game equilibrium problems and only with
a strong monotonicity assumption on the game pseudogradient mapping.
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Optimal equilibrium selection and tracking

We can formulate the first issue, identified in the seminal work [3, Sect. 6], as
an optimal GNE selection problem, that is, the problem of computing a GNE of
a game (among the potentially infinitely many) that satisfies a selection criterion.
This criterion characterizes the desired equilibrium and can be formalized as a
system-level selection function to be optimized over the set of GNEs. For example,
the system-level objective of an electricity market can be to minimize the deviation
from an efficient operating set-point [48]; for multiple autonomous vehicles, it can
be to minimize the overall travel time of the network. Meanwhile, the second issue
can be cast as an optimal GNE tracking problem, i.e., the problem of tracking the
sequence of optimal GNEs of a time-varying game, with finite computation time and
limited information on the future instances of the game available. As the GNE set is
in general not a singleton, the tracking objective should be again chosen by means
of a (time-varying) selection function. These problems, although of high practical
interest, have never been addressed in the literature.

Under mild assumptions on the selection function, the optimal GNE selection
problem in a monotone game is a special case of a variational inequality (VI) [32]
defined over the set of v-GNEs. On the other hand, as shown in [16, 17, 36, 39],
operator splitting techniques [51] can be leveraged to characterize v-GNEs as the
zeros of a monotone operator and, in turn, as the fixed-point set of a suitable
operator. Therefore, here we can cast the problem as that of fixed-point selection
[15]. In the literature, e.g., [15, 52, 53], the latter can be solved by the hybrid steepest-
descent method (HSDM), whose iterations depend on the fixed-point operator (whose
definition depends on the primitives of the game) and the monotone operator that
defines the VI, namely the gradient of the selection function in our setting.

Contributions

In the first part of this chapter (Sections 2.3 — 2.5), we propose the first single-layer
distributed algorithms for solving the optimal GNE selection problem. Our method
employs the Forward-Backward-Forward (FBF) operator [16] combined with the
HSDM. We show that the proposed algorithm guarantees convergence to the optimal
variational GNE (v-GNE) set in monotone games. Moreover, for a special class of
monotone games, namely cocoercive games with affine coupling constraints, we also
show that the preconditioned Forward-Backward (pFB) [36] can be paired with the
HSDM to derive optimal GNE selection algorithms. Technically, our contribution is
to show that these operators fulfill special properties that guarantee the convergence
of the HSDM toward the solution set of the corresponding fixed-point selection VI.
Compared to [42, 45, 46], our proposed algorithms significantly generalize the class
of selection functions; additionally, our method works for generalized games and
does not require solving an equilibrium problem at each iteration nor a vanishing
stepsize on the pseudogradient dynamics.

In the second part of the chapter (Section 2.6), we formalize the optimal GNE
tracking problem as a time-varying fixed-point selection problem. Thus, as a solution
framework, we propose the restarted HSDM, which adapts its operators when
the problem changes. In line with the results in the time-varying optimization
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literature [54, 55], we show convergence up to a tracking error which depends on the
problem data and can be controlled by a suitable tuning of the algorithm parameters.
Similarly to the equilibrium selection problem, the restarted HSDM works with the
aforementioned fixed-point operators to solve the optimal GNE tracking problem for
the corresponding classes of monotone games.

2.2 Mathematical preliminaries

In this section, we introduce the definition of quasi-shrinking operators, which were
first considered in [15], and some relevant properties of this class of operators which
are useful throughout this chapter.

Let C be a non-empty, closed, and convex subset of R, 7: R™ — R" be quasi-
nonexpansive under the ¥-induced norm ||-|¢ for some positive definite matrix
U, ie., [|[T(z)—z|le < ||z — 2||w, for all z € fix(T) # @ and x € R”. We define the
distance of a point x € R™ to C by

disty (z,C) := 1é1(fj||xfz|\q, (2.1)
z

For r > 0, we define the sets

C\ZI’T ={z e R" |distg(z,C) >}, (2.2)
A= {reRs [ fix(T)¥,NC #2}. (2.3)
Furthermore, we denote the indicator function of the set A as t4. Let us define

the shrinkage function for the operator 7 under the norm || - ||y, which slightly
generalizes [28, Def. 1], as follows:

Dy(r) :==1a(r)+ inf disty (2, fix(7)) — dist g (7 (x), ix(T)). (2.4)
xeﬁx(’r)grmc

For ¥ = I, we suppress the subscript of D. The function Dy has the properties
stated next in Proposition 2.1 (see [56, Prop. 2.6] for the case ¥ =1).

Proposition 2.1. Let ¥ be positive definite. For the function Dy defined in (2.4), it
holds that:

1. Dy is positive semidefinite and non-decreasing;

2. Dy(dist(z,ix(T))) < ||z =T (x)||w for all z € C.

Definition 2.1 (Quasi-shrinking). A quasi-nonezpansive operator T : R™ — R"™ is
quasi-shrinking on a non-empty, closed, and conver set C CR"™ if fix(T)NC # &
and D(r) =0<r =0, where D(r) is defined as in (2.4).

Remark 2.1. Suppose that a quasi-nonexpansive operator T is quasi-shrinking on C,
i.e., D(r)=0<r=0. Then, it also holds that Dy (r) =0« r =0, for any ¥ > 0.
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Example 2.1. The Fuclidean projection onto C, is quasi-shrinking and its shrinkage

function (defined in (2.4)) is

D(r) dist(u,C) —dist(proj(u),C) =r.

=0

= inf
{u|dist(u,C)>r}

Finally, we identify a class of quasi-shrinking operators, as formally stated in
Lemma 2.1, which generalizes the result in [56, Prop. 2.11] and is useful for our
analysis.

Definition 2.2 (Demiclosed operator [51, Def. 4.26]). Let C CR™ be a closed set.
An operator T: C' — R"™ is demiclosed at u € R™ if T(w™) =u, for any sequence
(wk)ken € C such that limg—y oo wp = w™ and limg—yo T (wy) = u.

Lemma 2.1. Let T be an operator with fix(T) # &. Let Ta be an operator such
that Id — T3 is demiclosed at 0 and such that fix(T2) C fix(T). Assume that for any
w* € fix(T),

1T (w) [ < llw - w*[[§ —7llw—T(w)F, (2.5)

for some v >0 and W = 0. Then, T is quasi-shrinking on any compact convex set C
such that Cix(T) # @.

2.3 Problem formulation

2.3.1 Generalized Nash equilibrium problem
Let us consider N agents, denoted by the set Z:={1,2,..., N}, with inter-dependent
optimization problems:

OCIZHEIE'Z Ji(x) == C;(xi)+fi(z) (2.6a)
Viel: s. t. Zgj(Ij) <0, (2.6b)

JjET

where z; € R™ is the decision variable of agent ¢ whereas x := col(z;);ez € R", with
n =) ;c7Ni, is a concatenated vector of the decision variables of all agents. Let us
use T_; = col(;)jez\ (i} to denote the concatenated decision variables of all agents
except agent i. Let X; C R™ denote the local feasible set of z; and J;: R® —» R
denote the cost function of agent i. Moreover, (2.6b) represents a separable coupling
constraint where g;: R/ — R™ is associated with agent j. We denote the collective
feasible set of the game in (2.6) by

n;:HXm{m| zgj(xj)go}. (2.7)

i€T JET

Here, we look for equilibrium solutions to (2.6) where no agent has the incentive to
unilaterally deviate, namely, generalized Nash equilibrium (GNE):
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Definition 2.3. A set of strategies &* := col(x});cz is a GNE of the game in (2.6) if
x* € Q and, for eachi €T,

Jz(w*) < Ji(l‘i,wii), (2.8)

for any
i € Xm{y lgily) <= >0 9]‘(1‘;)}-
JET\{i}
O

Furthermore, we focus on the class of jointly convex GNE problems and hence,
consider the following assumptions on Problem (2.6) [36, Assms 1-2]. We note that
[16, 17, 37-39] consider the case of affine constraint functions.

Assumption 2.1. In (2.6), for each i € Z, the functions f;(-,x—_;), for any x_;, and
gi(+) are component-wise convex and continuously differentiable; ¢; is conver and
lower semicontinuous. For each v € L, the set X; is nonempty, compact, and convez.
The global feasible set Q defined in (2.7) is non-empty and satisfies Slater’s constraint
qualification [51, Eq. (27.50)].

Assumption 2.2. The mapping
F(x) := col ((infi(w))ieI)’ (2.9)
with (f;)iez as in (2.6a), is monotone.

As in [16, 17, 36-39], we can formulate the problem of finding a GNE of the
game in (2.6) as that of a monotone inclusion. To this end, we introduce the dual
variable \; € R™, for each i € Z, to be associated with the coupling constraint (2.6b).
Furthermore, we focus on a subset of GNEs, namely variational GNE (v-GNE)s,
indicated by equal optimal dual variables, A} = \*, for all i € Z. As discussed in
[3, 33], a v-GNE enjoys several desirable properties, such as fairness and larger social
stability than non-variational ones. Under Assumptions 2.1-2.2, the set of v-GNE of
the game in (2.6) is non-empty [57, Prop. 12.11]. The Karush-Kuhn-Tucker (KKT)
optimality conditions of a v-GNE of the game in (2.6), denoted by x*, are:

0 € N, (27) +0u, Ji(x") + (Vgi(7), A"), (2.10a)
Viel: e Nem (M) = 2 g;(5). (2.10b)
= JET

To obtain a v-GNE via a fully distributed algorithm, we incorporate a consensus
scheme on the dual variables. In the full information case, one typically assumes that
there exists a communication network over which the agents exchange information
to update their dual variables. Let us represent this communication network as
an undirected graph G* = (Z,£*) and assume that G* is connected. Furthermore,
we denote the Laplacian of G* by £ and the neighbors of agent i in G* by J\/Z)‘,
ie., N :={j€T|(ij) €&} Additionally, let N} denote the set of agents whose
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decision variable z; influences the cost function J;. For simplicity, we assume that
NY SN

Now, let us denote by r; € R™ the consensus variable of agent i, and w =
(xz, A\, v) € R™ where A = col(\;);ez, v = col(v;)iez, and n, =n+2Nm. Then, we
can define the operators A, B,C as follows:

A(w) = [T (Nag +98) ) Naa (A) x {0 (.11
i€ =
B(w) :=col (F(z),(L® In)X,0nm), (2.12)
col ((Vgi(xi); Mi)) ;1
C(w) := | —col (gi(xi))iez_ (LRI . (2.13)
(L& Iym)A

In turn, we can translate the generalized Nash equilibrium problem (GNEP) in (2.6)
as a monotone inclusion problem, i.e.,

find w such that w € zer(A+B+C). (2.14)

Similarly to [37, Thm. 2], we can show that for any w such that (2.14) holds, we
obtain the pair (z,)) that satisfies the KKT conditions in (2.10) if Assumptions
2.1-2.2 hold (see Appendix 2.B for details). The zero set of A+ B+C is convex
following its maximal monotonicity (Lemma 2.4 in Appendix 2.B) and [51, Prop.
23.39]. This result generalizes the known convexity of the solution set to a convex
optimization problem [51, Prop. 11.6], which in our case is recovered by setting
fi =0 for all 7. Additionally, since the set of v-GNE of the game is bounded as it is
a subset of X, the set of solutions of the inclusion in (2.10) and the set zer(A+B+C)
are bounded [58, Prop. 3.3].

2.3.2 Optimal equilibrium selection problem
The inclusion problem in (2.14) may have multiple solutions. In this section, we
consider the problem of finding an equilibrium solution that minimizes a selection
function, denoted by ¢: R™ — R, i.e.,
argmin  ¢(w)
wERM (2.15)
s.t. wezer(A+B+C).

Some examples of selection functions are given as follows:

1. Minimum norm solution. Considering ¢(w) = ||w||? defines the problem of
finding a GNE and its corresponding dual variable where both have minimum
norm.

2. Agents’ favorite operating points. Suppose that each agent has a desired
operating point, denoted by w{ef, e.g. as discussed in [45, 46]. Then, we may
impose a criterion function such that we obtain a GNE that is the closest to
that operating point, i.e.,

$(w) =Y llwi —wif|I?.

i€
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3. System level objectives. In some engineering applications, such as in electrical
networks, agents’ operations heavily influence the reliability of the network,
which is the responsibility of a network operator [59]. Thus, when the agents
decide their operating points by solving a generalized Nash equilibrium problem,
a system operator might enforce some objectives, associated with system
reliability, such that the decisions of the agents are not only a GNE but also
meet these objectives (see Section 2.7). An example of this objective can be of
the form:

$(w) = [|Qw —w™ %,

for some @ = 0.

In the remainder of the chapter, we consider the following technical assumption
on the selection function, which, together with the convexity of zer(A+ B+C),
guarantees that the optimization problem in (2.15) is convex.

Assumption 2.3. The function ¢ in (2.15) is continuously differentiable, convex, and
has Lg-Lipschitz continuous gradient.

As a first step towards computing an optimal v-GNE, we leverage existing results
to derive operators 7 with the property that

w € zer(A+B+C) & w e fix(T), (2.16)

and such that the Banach-Picard iteration of 7 [51, Sect. 5.2] guarantees convergence
to a solution of the inclusion in (2.14). For instance, for cocoercive generalized
games, a preconditioned forward-backward (pFB) operator presents the desired
characteristics[37], whereas the forward-reflected-backward (FRB) operator [60] or
the forward-backward-forward (FBF) operator [61] meets these requirements even
for general monotone games. Furthermore, we require that the operator 7 in (2.16)
can be evaluated in a distributed manner. By (2.16) and Assumption 2.3, the
optimal equilibrium selection problem in (2.15) can be cast as a fixed-point selection
variational inequality (VI):

find w* s.t.  inf —w*, Vo(w*)) > 0. 2.17
nd w* s wgﬁgmw w*, Vo(w*)) > (2.17)

2.4 Equilibrium selection algorithms

With the aim of solving the VI in (2.17), we consider the hybrid steepest-descent
method (HSDM) fixed-point selection algorithm [15], which is defined by the following
discrete-time dynamical system or iteration:

WD) = T(w®) = BT (T (w®))). (2.18)

The HSDM can solve Problem (2.17) when 7 is quasi-nonexpansive and quasi-
shrinking with bounded fix(7), as formally stated next.

Assumption 2.4. The step size of the HSDM B*) satisfies:
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(Z) limy, o0 ﬁ(k) =0, Zkzl B(k) =005

(i1) Zk21(5(k))2 < 0. o
Remark 2.2. The sequence 3(F) = Bo/kP, for any o >0 and p € (1/2,1], satisfies
Assumption 2.4. O
Assumption 2.5. T is quasi-shrinking on a nonempty compact convez set C'. O

Lemma 2.2 (From [15, Thm. 5]). Let Assumption 2.3 hold and Q* be the set of
solutions of the VI in (2.17), with non-empty and bounded fix(T). Suppose that T
satisfies Assumption 2.5 with compact convex set C' such that (w(k))kzo Cc C. If the
step size BF) satisfies Assumption 2.4.(i), then the HSDM in (2.18) generates a
sequence (w*))pen such that

lim dist(w(k),Q*) =0.

k—o0

Therefore, our main technical task is to find a suitable operator 7 that can be
evaluated in a distributed manner and that satisfies both (2.16) and Assumption
2.5, required for the convergence of the HSDM sequence.

Under mere monotonicity of the pseudogradient mapping (Assumption 2.2),
perhaps the most obvious choice is the forward-reflected backward (FoRB) splitting,
which, however, is not quasi-nonexpansive! (and, thus, it is not quasi-shrinking).
Another viable option is the forward-backward-forward (FBF) splitting method [61],
which works for v-GNE seeking in monotone games satisfying Assumptions 2.1-2.2,
as shown in [16, 36]. As our first technical result, we show that the FBF algorithm
satisfies both the desired property in (2.16) and Assumptions 2.5. To that end, firstly,
we compactly state the FBF operator for (2.14), as follows:

Tesr = (Id =T H(B+C))oRg-140(Id= T HB+C))) +T 1 (B+C), (2.19)

where ¥ > 0 is a diagonal positive definite matrix and Rg-1 4 := (1 +¥~1A)7!
denotes the resolvent operator [51, Def. 23.1]. The FBF requires the forward
operator, which is (B+C), to be Lipschitz continuous. A sufficient condition for this
requirement is given in Assumption 2.6 (see Lemma 2.5 in Appendix 2.B).

Assumption 2.6. The mapping F(x) in (2.9) is Lp-Lipschitz continuous. Further-
more, for each i € I, the function g; in (2.6b) has a bounded and Lv4-Lipschitz
continuous gradient.

Under maximal monotonicity and Lipschitz continuity, it holds that zer(A+ B+
C) = fix(Trsr) (see Lemma 2.7 in Appendix 2.C). In addition, we define the step-size
matrix

U :=diag(p~ ', 77107 h) (2.20)

where p = diag((piln,)iez), T =diag((7ilm)iez), and o = diag((csIm)icz) need to be
small enough with respect to the Lipschitz constant of B+C. A sufficient condition

!The FoRB iteration does not generate a Fejér monotone sequence [60, Prop. 2.3], implying that
it is not quasi-nonxepansive and violates Definition 2.1.
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on V¥ for the fixed-point iteration with Tpr to converge is given in the following
Assumption 2.7, also considered in [16, Assumption 2].

Assumption 2.7. It holds that |¥~Y| <1/Lp, where L > 0 is the Lipschitz constant
of B4+C and ¥ reads as in (2.20).

We are now ready to present the distributed FBF for seeking an optimal v-GNE
based on the selection function ¢(w) via the HSDM, as shown in Algorithm 1. To
have a convergence guarantee as stated in Lemma 2.2, the FBF operator must satisfy
Assumption 2.5. Let us show that this is the case in the following lemma.

Lemma 2.3. Let Assumptions 2.1, 2.2, 2.6 and 2.7 hold. The operator Tpgr in
(2.19), where A, B, and C are defined in (2.11)—(2.13) and U is defined in (2.20), is
quasi-shrinking on any compact convex set C' such that C Nfix(Tepr) # D.

Thus, we can show that Algorithm 1 generates a sequence that converges toward
the solution set of the optimal GNE selection problem in (2.17), as stated next.

Theorem 2.1. Let Assumptions 2.1-2.4 and 2.6-2.7 hold. Let Q* be the set of
solutions to Problem (2.17) with T = Tepr defined in (2.19), where A, B, and C are
defined in (2.11)~(2.13). Furthermore, let (w®)pen, where w®) = (2®) AF) L (#))
be the sequence generated by Algorithm 1. Then, limy_ dist(w(k),Q*) =0, and
(xF))ren converges to an optimal v-GNE of the game in (2.6).

Remark 2.3. A central coordinator and step 5 of Algorithm 1 are not needed if ¢ is a
separable function, i.e., p(w) =) ;e di(wi). In this case, step 6 can be immediately
executed by using local information (§§k)7i§k)73§k)
knows the gradient V¢;.

) only, as long as each agent i
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Algorithm 1 Optimal v-GNE selection via FBF and HSDM

Initialization: «{”) € A;, A\{” € R, and v*) € R™, Vi € T.
Iteration of each agent i € 7.

1. Receives x( ) from agent j € N7/ and )\(k) (k) from agent j € N

2. Updates:

7 = proxgty, o (a8 = pi(Va, fil@ ™) + Vg @) TAM) ),
)\( )—prOJ R20 )\( )+Tz(gz( (k))+ ) ( (k)_yj(k)_)\gk)+)\§k))) ,
]ENA
~(k) Vz‘ o 3 ( (k)_A§k)).
jEN)‘
3. Receives ék) from agent j E/\fi‘] and ng) 75 from agent j € N A
4. Updates:
89 =37 i (Va i@ ) = Vo fia®) + 9i G TR~ Vgi(af) TAP),
()J\l(k) )\(k)+T( (3 ()) gi(x (k))

~ (k) _ (k) (k) _ (k) (k) | (k) (k)
+‘€§_/\://\ (I/i —u =y = N AT N = )),
J M

B9 o gy 52 (30 A% 5 4\,
]G./\/A

5. Sends (z, 7(k) )\(k) O(k)) to a coordinator and receives back V,, ¢(2*), )\(k) vk,
where w; = (ml,)\l,ul)

6. Updates:

(2D ABFD 4Dy _ (800 S0 50y _ gy, g5 309 50)),
(2.21)
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2.5 Optimal equilibrium selection in cocoercive games

In this section, we discuss a special class of monotone games, namely cocoercive
games with affine coupling constraints. These games arise as a generalization of
the widely studied class of strongly monotone games [37],[35]. Differently from the
strong monotonicity assumption, however, cocoercivity alone does not guarantee
uniqueness of the v-GNE. The class of cocoercive games is characterized by the
following Assumptions 2.8 and 2.9.

Assumption 2.8 ([17, Assm. 5]). The mapping F in (2.9) is n-cocoercive.

Assumption 2.9 ([17, Eq. 3]). For each i € Z, the function g; in (2.6b) is affine, i.e.,
gi(x;) := Asz; — b, for some matriz A; € R™*™ and vector b; € R™.

For this particular class of games, the preconditioned forward-backward (pFB)
splitting [37] can efficiently compute a v-GNE. We note that, although [37] considers
games with strongly monotone pseudogradient, the pFB splitting only requires
cocoercivity of the forward operator [51, Thm. 26.14]. Compared with the FBF, the
pFB has the advantages of only having one communication round per iteration (as
opposed to two) and larger step size bounds. A numerical performance comparison is
provided in [16]. Given the particular structure of the coupling constraint as stated
in Assumption 2.9, we can rewrite the operators in (2.14) as follows:

Alw) = [[ (N, +06;) () x Neam (A) % {0}, (2.22)
€T -

B(w) :=col(F(x),(L& Ln)A+b,0Nm), (2.23)

C(w) :=col(AT A\ —Azx — (L& I,,)v, (LD L)), (2.24)

where A = diag((A;);ez) and b = col((b;);cz). Thus, the pFB operator for the
monotone inclusion in (2.14) based on the operators A, B, and C in (2.22)-(2.24) is
given by [37, Eq. (24)]:

Torn :=Ra-1(44c)0 (Id—27'B), (2.25)
where ® > 0 is a symmetric positive definite preconditioning matrix, defined as
0o -A" 0

¢:=V+|[-A 0 LRI |,
0 —L®Ily 0

where WU is as in (2.20). Then, we can have an extension of the pFB for the v-GNE
optimal selection of cocoercive games, as stated in Algorithm 2. The step sizes
in ¥ need to be small enough with respect to  and to the matrices defining the
constraints, as highlighted in Assumption 2.10, which states the sufficient conditions
for the convergence of the pFB (see [37, Eq. (27) and Thm. 3]).

Assumption 2.10. For alli € Z:

(i) pi < (maxj=1,.. n, Yooy [[A] ]kl +0) 7
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(i) 75 < (max;j=1,..n, Yy [Ailjk] + 2N +6) !
(iii) o; < (2N +6)7L, where 6 > 1/(min(n, (2max;cz |N)~1)).

Theorem 2.2. Let Assumptions 2.1-2.4, 2.6, and 2.8-2.10 hold. Let Q* be the set of
solutions to Problem (2.17) with T = T,pp defined in (2.25), where A, B, and C are
defined in (2.22)~(2.24). Furthermore, let (w®)pen, where w® = (z®) AF) L (#))
be the sequence generated by Algorithm 2. Then, limy_ . dist(w(k),Q*) =0, and
() en converges to an optimal v-GNE of the game in (2.6).

Algorithm 2 Optimal v-GNE selection via pFB and HSDM for linearly coupled
cocoercive games

Initialization: zgo) € X, )\E ) e RY, and VZ»(O) eR™ Viel.

Iteration of each agent 7 € 7.

1. Receives xg-k) from agent j € N/ and )\g-k) from agent j € NP

2. Updates:

fgi’“) = ooty (19 i (Ve fia®) + A7)

B o 3 ()
JENA

7

o (k)

3. Receives v from agent j € N7\ A

4. Updates:
f\gk) =DProjg. ¢ ()\gk) + 73 (4; (20(k) (k)) —b;
X @B 280\ 0
JEND
5. Sends (z; 2.(k) /\(k) O(k)) to a coordinator and receives back V., ¢(x (k),j\(k)ﬂo/(k))v
where w; = (JJ,L,)\'L,I/Z)
6. Updates:

(x§k+1),)\§k+l)’yi(k:+1)):(§§k)’§\§k),§§k)) B(k)v ¢( (k) /\(k:) O(k))
(2.26)
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2.6 Online tracking of optimal GINEs

2.6.1 Online optimal equilibrium tracking problem
In the second part of this chapter, we consider the online GNE selection problem.
Specifically, let us introduce the time-varying game:

; , 2.2
2, Sl e
VieN,Viel: ot Zgj,t(l"j) <0, (2.27Db)
JEL

where t denotes the time index. The problem is time-varying in the sense that the
objective functions of the agents, as well as the constraints, may vary over time. We
assume that each instance of the games in (2.27) satisfies Assumptions 2.1 and 2.2.
The time-varying GNE selection problem thus concerns the tracking of the sequence
(w)ien:
argmin ¢ (w) (2.28a)
VteN: wy:= w
s.t. w Ezer(At—i—Bt —|—Ct) (2.28b)

The problems in (2.27) and (2.28) are a sequence in time of instances of (2.6) and
(2.15), respectively. The operators A, By, and C; are defined in (2.11)—(2.13), for
the game in (2.27) at time step t. The agents need to compute the action w41,
having only access to the game formulation up to time t. This setup describes the
case in which the agents act in a variable environment with limited computation
capabilities, so that they cannot compute the exact optimal selection before changes
in the problem (either in the selection function or in the game) occur. The problem
in (2.28) reduces to an online optimization problem for |Z| =1, see for example
[54] and the references therein. Inspired by the online optimization literature, we
propose to track the solution sequence (w}):en by computing at each time step ¢
an approximate solution of the problem at time ¢ —1. Such a solution principle is
based on the assumption that w}_; contains information on w}, which is a standard
assumption in online optimization, see e.g. [48, Assm. 1], [55, Assm. 3.1], and [62,
Assm. 3] and it is introduced next.

Assumption 2.11. There exists § > 0 such that

sup [|wj, —wi| < 4.
teN

For every te€ N, and under a suitable choice of the operator Ty, such that
w € zer(Ai+ B+ () & w € fix(Ty),

wy in (2.28) can be equivalently found as the solution of the time-varying fixed-point
selection problem

inf —wi,V ) > 0. 2.29
weg)l((%)@d wi, Vor(wy)) > ( )
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The sequence (w7 );en is well-defined when, for each ¢, the solution of (2.28) is unique.
Let us then introduce the following assumption, which guarantees uniqueness if fix(7;)
is closed and convex for all ¢ [63, Thm. 2.3.3]. This is the case, for example, when
T: is quasi-nonexpansive [15, Prop. la]:

Assumption 2.12. The selection function ¢¢: R™ — R in (2.29) is continuously
differentiable, o-strongly convex, and has Lg-Lipschitz continuous gradient for all
teN.

Remark 2.4. Under Assumption 2.12, if Ty =T, for all t € N, and the selection
function at time t is the sampling of a function that varies continuously over time,
then an estimate for § in Assumption 2.11 can be found. In fact, let p(w,t) be
continuously differentiable, where we made the dependency on the (continuous)
time index explicit. Then, we find by [64, Thm. 2F.7] that the mapping from
t to the solution of (2.29) is locally Lipschitz continuous with Lipschitz constant
oY Vp(wi,t)|. Thus, if the time variation between two consecutive time steps
t1 and ty is small enough, § can be estimated as o~ Vip(w}  t1)|(t2 —t1). The
solution mapping is in general discontinuous when T; is time-varying; thus, a similar
estimate cannot be found in the general case.

In the remainder of this section, we build upon the results of Section 2.4 to derive
an HSDM-inspired algorithm for tracking (w})ien.

2.6.2 The restarted hybrid steepest descent method
The existing results on the HSDM algorithm study the asymptotic behavior with
vanishing step size (6(%)),en (see Assumption 2.4). However, in online scenarios,
decision makers may not have the computational capability to exactly compute the
fixed point of the algorithm, since that would require an infinite amount of iterations
in a limited time span before a new instance of the problem becomes available. Thus,
we propose and study the (approximate) convergence properties of an algorithm
that only performs a finite number of HSDM iterations per time step. Consequently,
the sequence of step sizes becomes truncated and a sequence of vanishing step sizes,
which is required for the convergence of the HSDM, cannot be defined. We therefore
simplify the analysis by considering a constant sequence of step sizes.

Let us introduce the restarted HSDM algorithm. Given an initial state wi, for
each t € N, we propose the following:

(k+1) ._ ) %t for k=1,
VT R - BV (T ™)), for k=2,...K,
wepr =y Y. (2.30)

In words, at each time step ¢ the auxiliary variable y(’“)7 with £k =1,...K, is updated
with K iterations of the HSDM. Then, the decision variable at time step t+1 is
obtained as w;y 1 = yE+Y). The algorithm is then restarted when the information
on the selection function and game for the next time step becomes available. Next,
let us postulate the following technical assumptions:
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Assumption 2.13. There exists a compact set Y such that wy € Y for all t € N.

Assumption 2.14. There exists U > 0 such that SUPe| ) Im(T7),t€N IV (w)] <U.
TEN T

The set Y introduced in Assumption 2.13 is only used in the analysis and its
existence is practically reasonable, since we can assume that we do not aim at
tracking a divergent sequence. Assumption 2.14 specifies an upper bound for the
gradient of the selection function and is in line with the online optimization literature
(see [65, Assm. 5], [62, Assm. 5], among others). As shown in Section 2.4, the HSDM
method converges to the solution of a selection problem over the fixed point set of
a quasi-shrinking operator. In the online scenario, assuming the operator 7; to be
quasi-shrinking for all ¢ is not enough, as the quasi-shrinking property might not
hold asymptotically. Thus, we also postulate the technical Assumption 2.15.

Assumption 2.15. (Uniformly quasi-shrinking operator) For any closed convex set
C such that CNfix(T;) # @, there exists D : R>q — R positive semidefinite such that
Dy(r) > D(r) for all te N and for all r > 0, where Dy(-) is the shrinkage function of
T: defined as in (2.4).

Remark 2.5. Assumptions 2.13, 2.14, and 2.15 are satisfied for example when at
every time step t, the feasible set of Problem (2.28) is selected among the GNE sets of
finitely many monotone games with a compact decision space. In fact, let (T ),
be the set of FBF operators such that, for all t € N, there exists h € {1,...,H} such
that zer(As + By +Cy) = fix(T,). The operators (T )EL | are quasi-shrinking. Let
us denote by D"(-) the shrinkage function of T,... As the minimum among a finite
number of positive semi-definite functions is also finite, Assumption 2.15 is then
satisfied with D(r) = minpeqy, . my D"(r). Furthermore, Assumption 2.13 holds
with Y = Uthllm(ﬂ}gF), which is compact, and Assumption 2.1/ holds as V; is
Ly— Lipschitz continuous for all t on a compact set.

We find that the restarted HSDM (2.30) asymptotically tracks the solution
trajectory of the online fixed point selection problem in (2.29), with an asymptotic
error that can be controlled up to the variability of the problem, §, via an appropriate
choice of § and K, as shown in Theorem 2.3.

Theorem 2.3. Let Assumptions 2.11-2.15 hold. Let the sequence (w¢)ten be generated
by the restarted HSDM in (2.30). For any v > 0, there exist 8 € (0, i—g) and K, such
¢

that, for all K > K, the sequence (w¢)ien is bounded and

+62)
limsup ||w; — w} 2<—(7 , 2.31
imsp o —of | < ) (231)

where a = (1—7(8))K <% and 7(8) :=1—, /1fﬂ(2afﬁL<2b) €(0,1).

Remark 2.6. As it follows from the proof of Theorem 2.3 (see Remark 2.10 in the
Appendiz), to control the approximation error in (2.31), B must be chosen small so
to obtain small values of v. However, the value T(3) tends to 0 for small values of
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B. This leads the denominator in (2.81) to be small for a small step size, unless
the number of iterations K is increased. Therefore, a smaller step size leads to a
better approzimation error only if it is shouldered by an increase in the number of
iterations of the algorithm per time step.

In the next section, we use the restarted HSDM to solve the online GNE tracking
problem in (2.28).

2.6.3 Optimal equilibrium tracking algorithm

We recall from Section 2.4 that the set of v-GNEs for a monotone game can be
characterized as the set of fixed points of the operator Trgr defined in (2.19). Thus,
for the time-varying game in (2.27) at time ¢, let Tepe ¢+ be the FBF operator defined
as:

Teoet = (Id = U (B +Cp)) oRyg-14, 0 (Id— T (Be +C)) + U1 (By +Cy),
(2.32)

where Ay, B, and C; are those in Problem (2.28) and associated with the game
in (2.27) at time ¢. The solutions of the time-varying GNE selection problem in
(2.28) are equivalent to the solutions of (2.29), with 7; = Tegr,¢ for all ¢. By Lemma
2.3, Tepr ¢, for each ¢, is a quasi-nonexpansive, quasi-shrinking operator. Therefore,
the restarted HSDM algorithm in (2.30) can be employed for tracking the solution
trajectory, with an asymptotic tracking error given by Theorem 2.3. We can then
bound the asymptotic optimal GNE tracking error of Algorithm 3 by using Theorem
2.3, as formally stated next.

Corollary 2.1. Let us consider the online GNE tracking problem in (2.28) for the

time-varying game in (2.27) that satisfies Assumptions 2.1, 2.2, 2.6, for each t € N.

Suppose that Assumptions 2.11 —2.14 hold and let Ty = Tepr,t satisfy Assumption

2.15. Then, for any v > 0 there exist 8 € (0, i—g) and K such that, for any K > K,
¢

the asymptotic tracking error of Algorithm 3 is given by (2.31).

Remark 2.7. The solution sequence computed by Algorithm 3, (wi)ien, can violate
the constraints of the game in (2.27). Such violation can be estimated using the
Lipschitz continuity of gi+ for all i € T (which follows from Assumption 1) and
Theorem 2.83. Let us denote by Ly the mazximum Lipschitz constant of g; ¢, for all
i€ and t €N, and by (x;+)icz the primal variables associated to we. Then,

. [ y+62
lim su (i) < Lgy | ——.
t%wpggz,t( z,t) > Ly 1/2—0[

Remark 2.8. The result of this section holds similarly if we substitute the FBF
operator with the pFB operator in (2.25), which is quasi-shrinking (see the proof of
Theorem 2.2), for cocoercive games with affine coupling constraints.
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Algorithm 3 Optimal v-GNE tracking via FBF and HSDM
Initialization: x; o € &;, A\j o € R, and v; 0 € R™, Vi € .
Iteration at time ¢ € Ny of each agent i € Z:

1. Receives J; +(-), gi+(-), and X 4.

2. Assigns @(1) — T, 5\51) < Ait, and 191(1)

Vit
3. For k=1,...K:
(i) Receives x( ) from agent j € N/ and /\(k) A(k) from agent j € N

(ii) Updates:

E(k) = prox €1t+LX p (-fgk) Pz( Ji(@ +v91t( (k)) A )))7
X(.k) —prOJ> ()\E )+Tl(gzt Ek) + Z k ﬁj(k)f;\gk)Jrj\g.k)))),
JEND

(iii) Receives %;k) from agent j € N7 and Xyc),ﬁ](-k) from agent j € N
(iv) Updates:

O(k) ( ) Pz(vz i @) =V, fi(2 )

+ Vi @) A =g, @) TAP),
35’“) :ng) +7 (gi,t(@(-k)) —gz‘,t(iz(-k))
S (»Vvi(k)iﬁi(k)igj(_k)+ﬁ]('k) (k)+)\(k)+/\(k) 5\5_’6)))7
JEND
59 500 g, 3 (33509 4 5).
JEND

(v) Sends (%Ek),igk),ﬁi(k)) to a coordinator and receives Vwiqbt(a%gk),igk),ﬁi(k)),
where w; = (4, A\, V).
(vi) Updates:
(@§k+1)a§\£k+1)7ﬁ§k+l)) _ (%gk)’igk)’lc}i(k)) _ﬁvwi¢t(-%§k)73\§k)7§i(k))-

End For

~(K+1 J(K+1 ~(K+1
4) Sets (Ei’t+1<—.’£§ ), i t+1<_>\z(' ), Vi,t—i-l(_Vi( )

)
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2.7 Illustrative example

We consider a peer-to-peer electricity market clearing problem with operational
constraints of the electrical network, adapted from [28]. We assume that each bus
of a distribution network consists of one agent that has access to either a storage
unit or a dispatchable generation unit. Each agent i € 7 has decision authority on
the power generated p B the power bought from the main grid p , the power
drawn from the storage unit p%h, the power traded with the tradmg partners
pg’j)’h, j € N; and the phase at the bus 6; j, over the horizon h=1,...,H. Let us
denote x; , = col(pih,pzr’l}%,pﬁfh, (pg’j)ﬁ)j@\fi,@i,h), foralli€Z and h=1,...,H, and
denote x; := col((x; p)r=1,... 1), ®:=col((x;)icz). Each agent aims at minimizing
its local cost function [28, Eq. (17)]:

Ji(m):EhH:1fig,h(ng,h)+ it,rh((pg,j),h)jef\/i)—"f in PP ), (2.33)

where f{, encodes the cost or revenue of the trading with other agents and f;'}?
encodes the cost of purchasing energy from the main grid as in [28, Eq. (11)],
while f h is a linear function which encodes the cost of power generation. The
local feasible sets X;, i=1,...,N include the satisfaction of the power demand at
the bus, as well as the operatlng constraints of the generators and storage units.
The shared constraints are of the form g(x) < 0y, with g affine. They include
the operating limits of the grid, the trading reciprocity {pg,j)ﬁ = fp&i)’h, Vie
N,V j E N; } and the linearized power flow equations with DC approximation
{pz n D, 4 EjeNp;{l,%—i-EjeBi Bi;(0;,, —0;,,) =0}, where ¢;"® € {0,1} is 1 if
and only 1f 1 is connected to the main grid, B; is the set of buses that are connected
to bus ¢ on the electric grid and B is the susceptance matrix. We note that the
game satisfies Assumptions 2.1 and 2.2. In addition, we consider the IEEE 13-bus
distribution feeder for our numerical simulations, performed in MATLAB.

We first simulate the day-ahead market clearing (with 24 hourly time steps) via the
standard FBF-based algorithm, which can obtain a v-GNE, and Algorithm 1, which
solves the optimal selection problem of this game. Specifically, we consider the GNE
selection function:

o(@) = 3 {11pf —PElD, + PR 2112, + 116 —BlI3,

(2.34)
+ HGOh||pr+ 1PI 15, + 12315} + XIS, + V12, .

where we denoted in bold the column stack of the respective variables for each agent
and the matrices @), are diagonal positive definite. We choose p® to be the column
vector of the maximum generation production for each agent, in order to maximize
the renewable energy production, and 6 to be a vector which elements are all equal
to the phase of the node connected to the main grid, in order to reduce the grid
imbalances. The cost factors related to p™&, pst, p* aim at reducing the burden on
the transmission grid, increasing the lifespan of the storage units and reducing the
load of the trading platform, respectively. The terms in A and v act as regularization
of the dual variables. Finally, G is a matrix that maps the phase of the nodes to
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Figure 2.1: Total power flow achieved by the proposed algorithm compared to standard FBF in the
day-ahead market scenario.

the power flowing through the lines. In this test, we aim at maximizing the lifespan
of the grid lines by setting the non-zero elements of Qpr to be large. We observe
that, as expected, the solution obtained by Algorithm 1 achieves a 10.8% lower value
of the selection function defined in (2.34) compared with the one achieved by the
standard FBF, since the v-GNE computed by Algorithm 1 minimizes (2.34). In
Figure 2.1, we observe that Algorithm 1 generates solutions with less congestion
(power flow) than that of the standard FBF, as intended by the term of the selection
function in (2.34) weighted by Qp¢.

Secondly, we test Algorithm 3 on a real-time market scenario, formulated as a time-
varying game. Because of the variability along the day of the power demand, the local
power balance constraint defined in [28, Eq. (6)] depends on ¢. The constraints of the
game are therefore time-varying. We aim at computing a v-GNE that minimizes the
power flowing on the line connecting buses 632 and 671 during peak hours. Thus, we
consider (2.34) as the selection function at each ¢ where the element of Q¢ related
to this line is time-varying, i.e., it is set high between the peak hours, i.e., 8AM and
4PM. We note that this setup falls into the case considered in Remark 2.5, as only a
finite umber of game instances are considered, whilst (¢;); satisfies Assumption 2.12.
The problem is solved every 15 minutes using the power balance constraints and
selection function formulated at time-step ¢. After the computation is performed, the
system implements the computed v-GNE at time ¢+ 1. The simulation is run over a
24 hour span, thus resulting in 96 consecutive instances of GNE selection problems.
Due to the relatively short sampling time, the demand is not expected to vary a lot
between two consecutive game instances. We can then consider Assumption 2.11 to
be satisfied. We run the simulation for different values of the parameters K and /3,
and we compare the results with the baseline solution (wfB¥) obtained by running
at each time-step the standard FBF algorithm for a limited (9-10%, that is, the
largest K on which we tested the restarted HSDM) number of iterations. Figure 2.2a
illustrates the relative average residual obtained by restarted HSDM with respect to
the baseline solution, where the residual is computed as

Rit1(wi) = || TeBF 141 (W) —wil|.

The residual provides a measure of the constraint satisfaction for the problem in
(2.28), and we observe a comparable performance. However, our algorithm achieves
a significant improvement on the selection function values, as shown in Figure 2.2b.
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Figure 2.2: Algorithm performance for several restarted HSDM parameters.

Furthermore, increasing K might lead to a reduction in cost advantage, as outlined by
Figure 2.2b, because for low values of K the solution approaches the unconstrained
minimizer of ¢¢, while for high values of K it approaches the minimizer within the
v-GNE set. We also observe that a diminishing g implies a slower reduction of
the cost function, which results in a higher cost as shown in Figure 2.2b. Each
iteration of the algorithm is computed in approximately 15ms, thus in the considered
15 minutes time step an agent is able to compute circa 6-10* iterations. In the
presented simulations, we consider larger values of K to better show the benefit of
the increased number of iterations towards the tracking precision.

2.8 Conclusion

The optimal generalized Nash equilibrium selection problem in monotone games can
be solved distributively by combining the hybrid steepest descent method with an
appropriate fixed-point operator. The key requirement to guarantee convergence
to the set of optimal generalized Nash equilibria is the quasi-shrinking property,
which holds true for certain fixed-point operators. The hybrid steepest descent
method can also be modified to track a time-varying optimal generalized Nash
equilibria. The resulting approach is suitable for real-time decision-making in
multiagent dynamic environments. Future works include i) improving the convergence
rate of the proposed method via second-order information of the selection function
and/or inertial terms, and ii) developing distributed Tikhonov-based methods for
generalized Nash equilibrium selection problems as benchmarks for the proposed
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method.
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Appendix
2.A Proof of Lemma 2.1

We prove by contradiction. We assume that there exists r > 0 such that Dy(r) =
0. Thus, by the definition of Dy in (2.4), there exists a sequence (wy)ren €
(fix(7)¥, )N C such that

lim disty (wg,fix(T)) — distg (7 (wg), fix(T)) = 0.
k— o0
By the definition of projection, we have

dist (T (wi), fx(T)) = | T (wk) = proji ) (T (wi)) | w

- (2.35)
< |7 (wr) = PIoJgix (1) (wi) |-

By the quasi-nonexpansiveness of 7 (implied by (2.5)) and the latter inequality,

0 < [lwg *PTOJ'%IIX(T) (W)l =T (wr) = proj%’x(ﬂ (wi)llw

=disty (wg,fix(7T))

< dist (wp, fix(T)) — disty (T (wp), fix(T)) 222

0.

It follows that
. v W —
Jmlwr = projgy 7 (W) llw = 17 (wk) = projgy (W) lw = 0.
By (2.5), we then have that

i — Ta(wr) I3 < 2 (lwr — projir @i I3 — [T (@) - projtr (@i)l3)

le—‘

< 2 (|lary — proj ) (wi) o — [T (wi) = proj e (@i) v,

where the latter inequality follows from a2 —b% = (a —b)(a+b) for a,b € R and where
we substituted d := sup,,¢¢ ||wi — w||w, which is finite since the set C' is compact.
We conclude that

Jim ey, =T (wp) [ =0. (236)

By the Bolzano-Weierstrass theorem and the boundedness of wy,, there exists a conver-

gent subsequence (wy, );eny With accumulation point w™. By (2.36), lim;— o T2(w,) =

w®. By the demiclosedness of Id — T3 and by fix(72) C fix(7), w*>® —Ta(w™>) =0=
w™ € fix(T2) = w™ € fix(T). However, since (fix( )‘I’ )N C is a closed set, then

w™ e ﬁX(T)>T, which is in contradiction with w® € fix(T). ]

2.B Properties of operators A, B, and C in (2.11)—(2.13)

Lemma 2.4. Let Assumption 2.1 hold. Then, the operators A, B, and C in (2.11)-
(2.13) and the operator A+B+C are mazimally monotone. m|
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Proof. By Assumption 2.1, Ny, and 0¢; are maximally monotone [51, Thm. 20.25 &
Example 20.26]. The operator A is thus maximally monotone by [51, Prop. 20.23
& Cor. 25.5]. The operator F' is maximally monotone by Assumption 2.2 and by
continuity in Assumption 2.6. Meanwhile, £ is a linear positive semidefinite operator
and, therefore, it is maximally monotone; thus, the operator B is maximally monotone.
We can write C = C; +Ca, where C1 = col(((Va,;9i(zi), Ai))icz, —(9i(x:))icT,Onm)
and Cy = col(0p, — (L& I )V, (L& I,)A). The operator C; is maximally monotone
by continuity and by noting that, for any w,w’ € R? x RYI x RN™,

(Clw)=Cr(w)w=w") = 3 (gi(@h) = i) = Vi, gs(w) T (@h =), M)
€T
+ 3 (9i() = 94(2h) = Vi, ga(ah) T (i =), N7 )
€T
>0,
where the inequality follows by the convexity of g;. As Cs is a linear skew-symmetric
operator, it is maximally monotone [51, Ex. 20.35]. By invoking [51, Cor. 25.5], the
result follows. |

Lemma 2.5. Let Assumptions 2.1 and 2.6 hold. Then the operators B, C,and B+C,
defined in (2.12)—(2.13), are Lipschitz continuous.

Proof. Due to Assumption 2.6, the operator B is L p-Lipschitz continuous. Lipschitz
continuity of C can be evaluated as follows. Similarly to the proof of Lemma 2.4,
let us split C = Cj +Cs. The operator Cy is Lipschitz continuous by linearity, while
Lipschitz continuity of C; is shown as follows. Let us denote the bound of V., g;(x;)
by byg,, i-e., ||V, 9i(x:)| < byg, (c.f. Assumption 2.6) and the bound of A; by by,
for all i € 7, which exists due to [58, Prop. 3.3]. For any w,w’ € R*T2Nm

{1}
T T ol T R P O PAE Rl
1€

+20|(Varigi(ai) = Vg (@) T X1?)

(2} T2 2 2 2
< % (21909500 TIPIA = NP + s, s — ]
i€l

2N V,9: (@) — Vi, gs(ah) 1)

{3}
< 5 (26,1 = NP (203, L+ b, i — 417
i€l
< 3 max(2b3y,, 263, Lg + 0%, lwi — i,
i€ ’
where {1} follows by adding and subtracting the term V. g;(x;) " \; and by the
bound [|a+b||? < 2||a||? +2[/b]|?; {2} is obtained by the Cauchy-Schwartz inequality
and by the fact that g; is Lipschitz since it has a bounded gradient; {3} is obtained
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by the Lipschitz continuity of V,g;. Hence, C1 is L¢,-Lipschitz continuous, where
Le¢, =max;c7(max(2byg,, /2b§\iL2vg + b%gi)). Since the sum of Lipschitz continuous

operators is Lipschitz continuous, the result follows. |

Lemma 2.6. Let (x*,\*) be a solution to the monotone inclusion in (2.14). Then,
(x*,X\*) is also a solution to the monotone inclusion in (2.10). O

Proof. The proof follows that of [37, Thm. 2(i)].

2.C Results and proofs of Section 2.3
The following lemma shows the equivalence between zer(A+ B+C) and fix(Trpr)-

Lemma 2.7. Let Assumptions 2.1, 2.2, 2.6, and 2.7 hold. Furthermore, let Togy be
defined by (2.19) while A, B, and C be defined in (2.11)—(2.13). Then, fix(Tppr) =
zer(A+B+C). O

Proof. The proof is analogous to that of [16, Prop. 1]. |

The following lemma is used to prove the quasi-shrinking property of the FBF
operator (2.19).

Lemma 2.8. Let A and B mazimally monotone and B continuous. Let
T =Ry-140(0d—V"'B).
Then 1d —T s demiclosed at 0. O

Proof. Let us consider a sequence (vg)ren such that

lim vy =, lim (Id—7)(vg)=0.

k—roc0 k—roco

We want to prove that v — T (v) =0 or, equivalently, v € fix(T). Let us define
ug = (Id—T)(vg). Then,

vp —up = Ry-14(Id — U1 B)(vy)
& (Id=U1B)(vg) € Id+ UL A) (vy, —uy,)
S v — U B(vg) +up — v € WL A(vy, — up)
< —B(vk) + Yuy € A(vg —ug).
By the continuity of B and [51, Fact 1.19], we conclude that limg—s oo —B(vg) + Puy, =
—B(v). By [51, Prop. 20.37] and the monotonicity of A, gph(A) is closed. Therefore,

since limy—y o v — u, = v, we conclude that —B(v) € A(v). By [51, Prop. 26.1(iv)],
we obtain v € fix(T). [ ]
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2.C.1 Proof of Lemma 2.3

By Lemmas 2.4 and 2.5, the operator A is maximally monotone whereas the operator
B+ C is maximally monotone and Lipschitz continuous with Lipschitz constant
denoted by Lp. Then, [16, Cor. 1] shows that Trgr is quasi-nonexpansive under
Assumption 2.7. Specifically, it holds that [16, Prop. 2]:

L? ~
| Tene (@) — "1} < llw = w*I} — B |@ — w3, (2.37)

where w* € fix(Tepr), tmin(¥) is the smallest eigenvalue of ¥ and
O=Id+¥ 1A 1d-v 1 (B+0))(w).

Finally, we prove that 7pgp is quasi-shrinking by invoking Lemma 2.1. Specifically,
we choose

To=(Id4+ 1A~ 1 1d- v~ (B+0)).

By [51, Prop. 26.1(iv)] and Lemma 2.7, fix(72) = zer(A+ B +C) = fix(Trpr). More-
over, Lemma 2.8 shows that Id — 73 is demiclosed at 0 and (2.37) is indeed the
inequality in (2.5) for Trge. [ ]

Remark 2.9. Although [16, Cor. 1] shows quasi-nonexpansiveness of Trsr and [16,
Prop. 2] shows the inequality in (2.37) for Problem (2.6) with a linear coupling
constraint, these results also holds for nonlinear functions g;(x;), for all i €I, as
long as Assumption 2.6 holds, since the operator C in (2.13) remains Lipschitz
continuous.

2.C.2 Proof of Theorem 2.1

Let us introduce the following preliminary lemma:

Lemma 2.9. Let Assumptions 2.1-2.4 and 2.6-2.7 hold. Then, the sequence (w(k))keN
generated by the HSDM method in (2.18) with T = Tepr in (2.19), where A, B, and
C are defined in (2.11)—(2.13) and ¥ is defined in (2.20), is bounded, i.e., for any
arbitrary w* € fix(Toge), it holds that ||w™®) —w*|| < R(w*), for some positive finite
R(w™).

Proof. Firstly, we show that, for an arbitrary w* € fix(Tpgr),
[T (w) —w*[[§ < flw —w* [ (2.38)

for all w ¢ fix(Tppr). To this end, let us recall the inequality (2.37) in the proof of
Lemma 2.3, which holds under the considered assumptions:

[ Tee(w) = w*|[§ < lw = w*[[§ = (Lp/pmin(¥))* & — w][F,
where @ = (Id+ ¥t A) "1 (Id - ¥~ 1(B+C))(w) =: T2(w). By [51, Prop. 26.1(iv)]

and Lemma 2.7, fix(72) = zer(A+ B+C) = fix(Tesr). Hence, @ # w if w ¢ fix(Tegp)-
We observe from the preceding inequality that when w # w, (2.38) holds.
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We now show that for any arbitrary fixed point w* € fix(7rgr), there exists R > 0
such that
inf ([l — @]~ [ Tope(w) ") > 0. (2.39)
lw—w*|>R
We proceed to prove (2.39) by contradiction, and thus we assume (2.39) to be false.
By the nonexpansiveness of Trgr, the left-hand side of (2.39) cannot be negative and
it must be, for all R >0,
inf  (Jlw—w|| = || Tesr(w) — w*[]) =0. (2.40)
lw—w*| >R
Therefore, there exists a sequence (wg)gen converging to @ such that ||wg —w*|| > R
and

i [lwg =@ | = [ Top (wr) —w” || =0. (2.41)

In particular, (2.41) must hold for R > Supycpy(7rpe) |¥ —w™[| +¢, which implies
@ ¢ fix(Tepr). Then, by (2.37), limg—s oo | T2(wg) —wy || = 0. As Id — T3 is demiclosed
at zero by Lemma 2.8, this implies the contradiction @ € fix(72) = @ € fix(Trpr)-
The inequality in (2.39) is used in[66, Thm. 2] to prove the boundedness of the
HSDM sequence with a nonexpansive operator 7 that satisfies (2.38). As (2.39)
holds also for Tegr, the same proof holds under the remaining assumptions: (i) V¢
is monotone and (Lipschitz continuous (Assumption 2.3), and (i) the step size 3(¥)
is non-summable but square summable (Assumption 2.4). ]

We are now ready to proceed with the proof of Theorem 2.1:

Proof. Let @™ = (E(k),x(k),ﬂ(k)) and &F) = (:%(k),jx(k),ﬁ(k)), where ) =col(T;)ier

and the other variables are defined similarly. The updates of &® in Step 2 of Algo-
rithm 1 can be compactly written as

&) = 1+ 0t A) (M- 01 (B+C)) (™),

whereas the updates of @) in Step 4 of Algorithm 1 can be compactly written
as k) =gk \Il_l(B+C)(c::(k) —w®)) implying that &*) = Topp(w®)) and the
updates in (2.21) is compactly written as

w(k—"—l) = 7_I;BF (w(k)) - /B(k) VQS(’E“BF (w(k)))’ (2'42)

which is the HSDM applied to Tzgr. We can then invoke Lemma 2.2 to claim
the hypothesis. By Lemma 2.7, fix(Trpr) = zer(A+ B +C); therefore fix(Trpr) is
non-empty and bounded. Moreover, by Assumption 2.4, the step size B*) meets the
conditions in Lemma 2.2. Lemma 2.3 shows that 7y iS quasi-nonexpansive and
quasi-shrinking on any bounded closed convex set, C' such that CNfix(Tesr) # &.
On the other hand, Lemma 2.9 shows that the FBF-HSDM sequence (w®));cn
obtained by the iterations in (2.42) is bounded, i.e., for any w* € fix(Tggr), there
exists a positive finite R(w*) such that [|w®) —w*|| < R(w*). Therefore, for an
arbitrarily chosen w* € fix(7Tppr), we can construct the following bounded closed
set B(w*) == {x € dom(Trpe) | |2 — w*|| < R(w*)}, on which the sequence (w*))cn
lies. Moreover, we can observe that indeed B Nfix(Trpr) # &, since w* € B is a fixed
point of Trpr. Hence, Trpr is quasi-shrinking on B, which completes the proof. W
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2.D Proofs of Section 2.5

2.D.1 Proof of Theorem 2.2

First, we observe that in Algorithm 2, &®*) = (s%(k),i(k),lc}(k)) is updated by using
TorB in (2.25), ie., @F) = Topp(w®)) [37, Section 4, Algorithm 1]. Hence, we can
see that w(® is updated via the HSDM method, i.e.,

WD) = T pp(w®)) — BV (Topp (w k). (2.43)

Similarly to the proof of Theorem 2.1, due to the boundedness of fix(7,rp) = zer(A+
B+C) # @ and the step size rule of 8%) in Assumption 2.4, we can invoke Lemma 2.2.
Specifically, the operator T ,rp is averaged nonexpansive when Assumptions 2.1, 2.2,
2.6, and 2.8-2.10 hold [37, Thm. 3]. Therefore, T,rp is also quasi-nonexpansive [51,
Sect. 4.1]. By [51, Prop. 4.35 (iii)], the condition in (2.5) holds with 7 = T2 = T,rB.
By [51, Thm. 4.27], Id — T,rp is demiclosed at 0. Therefore, by Lemma 2.1, Tppp is
quasi-shrinking on any closed bounded convex set whose intersection with fix(7,rB)
is nonempty. Furthermore, since T,rp is averaged nonexpansive, T rp is attracting.
Therefore, by [66, Thm. 2] and due to the choice of the step size (%) in Assumption
2.4, the sequence generated by (2.43) is bounded. Following the steps in the proof
of Theorem 2.1, we can find a bounded set B such that w*) € B and ToFB is
quasi-shrinking on ‘B. |

2.E Proofs of Section 2.6

2.E.1 Preliminary results

First, we show a series of preliminary results in Lemmas 2.10-2.13 that lead to
the proof of Theorem 2.3. The proofs of this section are provided in the standard
Euclidean norm for ease of notation. However, the case for any W-induced norm, with
U > 0, follows verbatim. First, Lemma 2.10 shows the convergence of a particular
sequence and can be regarded as a finite-iteration version of [15, Lem. 1].

Lemma 2.10. Let ¢ : R>o — R>q be non-decreasing and non-negative. Let a sequence
(b)) en be non-increasing, non-negative. Let (o)) ey C [0,00) satisfy

aF D < q®) —yp(a®)) 4 pk+D), (2.44)
Let K € N. If there exists € > 0 such that 1(€) > max{2b(1), %a(l)}, then

a® <eb® VE>K. (2.45)

Proof. Let us first show that there exists an M € N, M < K such that a(™) < ¢. We
proceed by contradiction, assuming that a(*) > ¢ Vk =1, ..., K. Then, by noting that
() is non-decreasing and that (&) > 2b(%) for all k € N, we have

a* D) < g8 _yp(q(R)) 4 p+D)
<a® — (&) + y(€)
=a™ — 19(9).
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By iterating the latter relation and recalling that ¢ (§) > 2 a® we find that

alt ) <o) — ky(¢)
<o) kg,

For k = K, we then obtain the contradiction a(**1) < 0. Thus, there exists M < K
such that a(M) < &. We then proceed by induction to prove (2.45). Let us prove
that, if a(k) < §+b(k) then q(k+1) < £—|—b(k+1) for all k > M. We distinguish two
cases:

1) Case alF) < ¢. Then, by (2.44) and by the non-negativity of ¥(-), a¥*1) <
a(k)+b(k+1) < f—l—b(k+1)

2) Case &£ < a®) < £4+b(,) Then, by the non-decreasing property of v, alk) > &=
Y(a®) > 4(€). By the assumptions, 1(¢) > 2b™) and by the non-incresing property
of (b¥)pen, 2601 > b(F) L p(k+1)  We thus obtain 1(a®)) > b(*) 4 p(-+1) - Substituting
into (2.44) leads to

B D) < o) (g (8)) 4 plh+1)
< o) ) _p(et1) | p(eD)

—a®) _pk)

<¢.
We conclude by induction that a®) < S—i—b(k) for all k> M and, since M < K, the
claim in (2.45) immediately follows. |

Lemma 2.11. Let T be quasi-nonexpansive and F be strongly monotone, such that
|F ()| <U, for all w € im(T). Let (w™)pen be generated from (2.18) with %) =
B >0 for all k. Let K € N and let w* be the solution of VI(F,fix(T)). If there
exists £ such that the shrinkage function D(-) of T, defined in (2.4), satisfies D(§) >

i (1)
maX{QﬂU,ZM}, then the following inequalities hold:

sup dist (w® fix(7)) < €+ U, (2.46)
k>K
sup || 7 (w®)) —w®™| < 2(¢+ BU), (2.47)
k>K

sup (T (w®)) —w*, —F(w*)) < 3(¢+ BU) | F(w*)]. (2.48)

k>K

Proof. (i.) For all k, it holds by the definition of distance and by the algorithm
definition in (2.18) that:

dist(w* ), fix (7)) < w**D —prOJﬁxm (T(w™))]
= | T (w™) = BF(T(w™)) = proje 7 (T(w™)]|
< [T (w™) = proja (T (™)) | +B8] F(T(w™)))|
=dist(T(w®),fix(T))
< dist(T (w™), fix(T)) 4 SU. (2.49)
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Let us define a®) := dist(w™®,fix(7)). Then, from (2.49) we find immediately
a1 — U < dist(T (w®), fix(T)). By the definition of shrinkage function in (2.4)
and the latter inequality, we can write
D(a™) <a™ —dist(T (w®), fix(T))
<a®) — g+ 4 g
=  a* V<™ 45U - D(®),

which defines a sequence of the kind in (2.44) with ¢(-) = D(-) and b(®) = BU for all
k. By Lemma 2.10, then dist(w®, fix(7T)) < &+ BU for all k> K.

(ii.) By the triangle inequality, we can write || 7 (w®)) —w®)|| < || T (w®)) — PIOjgi (7)) (W ||+
| projg (7 (w*)) —w®)||. By quasi-nonexpansiveness of 7', we obtain, for all k > K,
17 (™) = projgy ) (W) <[lw® — projy (7 (™)
=dist(w™®, fix(T))
= | T(w®) - w®| <2dist(w™, fix(T)).

Finally, combining the last inequality and (2.46) yields (2.47).
(iii) By the Cauchy-Schwarz inequality, we can write

(T (@) — e, ~F (@) =(T (@) =), ~F(*) + @) ", ~F(w")
<IT (@) = w® | Fw) ]+ @® - ¥, ~ Flw?).
(2.50)

Based on (2.47), for all k> K, we can bound the first term on the right-hand side
of (2.50) by || T (w®)) —w® ||| F(w*)|| < 2(&+ BU) || F(w*)|| and rewrite the second
term as

Nyt

(W) —w* —F(w*)) =(w™ — projg 1) (w®), - F(w*))
+(Projgy 7 (@) —w*, —F(w*)).

We observe that the second addend is non-positive by the definition of VI solution.
By applying the Cauchy-Schwarz inequality, the definition of projection, and (2.46),
we obtain

(T(w™) —w*, ~F(w*)) <2E+BU) | F ()] + llw® = projgy ) (« ™) | F (w*)]]
=2(&+ M) ||F ()| + dist(w ™, fix (7)) | F (w*)]
<3(E+AU)[|F ()|

|

Lemma 2.12. Let Assumptions 2.12-2.14 hold. For any t € N, let w¢y1 be generated
from the step at time t of the restarted HSDM algorithm in (2.30). Let Dy(-) be the
shrinkage function of Ty as defined in (2.4). If there exists £ > 0 such that

Dy (€) = max { 28U, 2 82T | (2.51)
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then, K
[werr —w*e> < (A =7(8))" [lwe —w*e||* +7, (2.52)
with

v = 55 U(66+ 118U). (2.53)

Proof. Let us define the operator 7;6 (w) :==Ti(w) — BVP(Te(w)). By Te(w*s) = w™y
and by the definition of the algorithm in (2.30), ||w¢t1 —w*¢|? = IIT’B(y(K))
Ti(w*¢)||?. We sum and subtract V¢ (w*;) and substitute 7;5 to obtain

[witt —w*e)2 = [T,7 (55)) = To(w*s) + BV (w*s) — BV (w* )|
=177 () = T (w*e) — BV (w* 1) |2

Expanding the square {1}, expanding ’Eﬁ {2}, and regrouping {3} leads to

lwesr — w2 272 @EO0) = T2 (w* )2 + B2 V(w2

—&-2(7'5( (K))—ﬁB(W*t%—ﬁV@(W*t»

78 () = T (@ )12 + B2 Ve (w2
—28(T; t(y(K))—{?ngt(?;(y(K))) (2.54)
—Te(w*e) + BV (Te(w*y)), Vi (w*y))

B2 () — TP (@ )2 + B2 Ve (w12
+28(Te(yF)) — w*y, — Vi (w*e))
+28%(Vi(Te(y ) — Vor(w*s), Vo (w*y)).

We note that, by applying the Cauchy-Schwarz, the triangle inequalities and As-
sumption 2.14, we have (Vy(Ti(y"))) = Vor(w*s), Vor(w*e)) < |V (Te(y5))) -
Vi (w*)[[[[Vor (w*i) | < (U +[[Vor(w* )V (w*s)|l. By (2.51) and Lemma 2.11,
we can substitute in (2.54) the latter relation and the bound in (2.48) to obtain
s =@l <77 (650) = T (@)
+68(&+BU)[[Vor(w*o)l| + 522U +3[[ Vo (w* o) DIV e (w*o) -

Applying Assumption 2.14 and rearranging the terms leads to

lawerr —w*el? <77 (y5)) = T (w*0) |2
+6B(E+ BU) ||V (w*y)|| + B25U || Ve (w*s) |
<78 ) — T (w*o)|I? + B(6 +118U)U
<177 5) =T (@* )12+ 7(8)- (2.55)

By quasi-nonexpansiveness of 7; as well as strong monotonicity and Lipschitz
continuity of V¢;, we can apply [15, Lem. 4a] to obtain ||7;’6(w) —7;'6(5)” <
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(1-7(8))||jw -, for all w € dom(ﬁ5)7w € fix(7T;), which we substitute in (2.55) to
obtain

lwrer =™l < (1=7(5)" g™ —w™i|* +7(8)y
< (1=7(8) Iy —w* [P +7(B)r.

By iterating, we obtain

lwr1 —w*e]* < (1=7(8) |yF D —w*i >+ (1 =7(8)) T(B)y +7(8)y
K—-1
< <=7y —wriP+ Y (1=7(8)) T(B)y

Jj=0

< (=78  ly® —w*e |2+ 3" (1 —7(8)) 7(B).
j=0

Applying the geometric series convergence and recalling from (2.30) that y =w,
leads to (2.52). [ |

The next lemma outlines a contraction property of the restarted HSDM to the
solution sequence of Problem (2.29) up to an additive error, which can be controlled
by an appropriate choice of the step size 8 and the number of iterations K.

Lemma 2.13. Let Assumptions 2.12-2.15 hold. For any t € N, let w41 be generated
by the restarted HSDM algorithm in (2.30). For any -y > 0, there exist K,3 >0, such
that (2.52) holds.

Proof. Let us consider & := 157 Since T; is quasi-shrinking, the shrinkage function
Dy of T; satisfies Dy(€) > 0. Thus, there exist 3 € (0, 27‘7) and K such that, for any
¢

B e (0,3], (2.51) holds.

It can be verified that limﬁ%OJr % = % Then,
. U
Jim, 5 (66+1180)U = B = 1y, (2.56)

We thus find 3 € (0, ] small enough, such that

5 (66 +118U)U <. (2.57)
Hence, the hypothesis holds by invoking Lemma 2.12. |

Remark 2.10. From the proof of Lemma 2.13, as & (and thus D¢(€)) decreases with
7, it can be seen from (2.51) that for smaller values of v a smaller step size 5 and a
larger K are necessary.
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2.E.2 Proof of Theorem 2.3

We begin the proof by constructing a suitable step size B and number of iterations
K. We then proceed with proving that the statement holds for the chosen variables.

Let us first define the auxiliary variable £ = 1720U Following the steps in the proof of

Lemma 2.13, we can choose a small enough 3 € (0, mln{T, DQ(é) 1), where D(+) is

defined in Assumption 2.15, such that

T(B) 5_(6¢+11BU)U < 7. (2.58)

We now define a(K) := (1—7(B))¥. Since 7(B) € (0,1),  is decreasing with K. We
can then choose K7, such that a(K;) < % Then, we define the mapping a: N> g, =R

a(K)§?
a(k) = max{nwln + s ||w||,\/%}, (2.59)

We can verify that a(-) is non-increasing. Consequently, the sequence (%) Ko
. >Ky
is decreasing. We can then choose any sufficiently large K > K, such that
2(a+6)
D) = 5= (2.60)

where @ := a(K). We also define @ := a(K). We now prove by induction that
lwe—wi_q]l <@ forallt>1. (2.61)
To that end, we first show that
o —wi_y | <@ = Jwi —wi] <a. (2.62)

Let us then write

{1}
dist(ws, fix(Tt)) < [|wr = projgx (75) (wWi—1)l

2
< lwt —wi g 1+ [|wi 1 = projgx ¢7;) (wi—1) |

{3}
< flwr —wi_4 ||+ (2.63)
d<a+s, (2.64)

where {1} follows from the definition of distance, {2} from the triangle inequality
and {3} from Assumption 2.11 and w} € fix(7¢). Then, by Assumption 2.15, by the

choice B < DZLIE) and (2.60), it holds that
= 2(a+d)
Dy(§) = max{ZBU, ﬁ}

2.64)
( > max {QBU 2dlst(c;(t,ﬁlX(7’t)) }

(2.65)
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By Lemma 2.12 and (2.58), we then have
w1 —wi|? < @wr —wil* +7. (2.66)

Applying on (2.66) the triangle inequality, the fact (a+b)? < 2a? +2b% and Assump-
tion 2.11 leads to

lwit1 —w*e||? < 28([Jws —w* o1 ||* + lwi_g —w}l*) +7
<2a(||ws —w*i_1 |2 +0%) +
<2a(@+6%) +1. (2.67)
Finally, by (2.59), it holds @2 > 22°12 which implies
oa(a® +02) +v <a’. (2.68)

Thus, we obtain ||w;y1 —w*¢||? <@2. We now continue the induction argument by
proving
|wa —w*1||? < @2 (2.69)

From the triangle inequality and from (2.59), ||w1 —w*1|| < |jw1]]+ ||w*1|| <@. From
the definition of distance, we obtain

dist(wy, fix(T7)) < w1 —w*1]| <T <a+d. (2.70)

Then, by (2.60) and the choice 5 < %, we have

> max {QﬂU, —2di5t(%1;ﬁlx(ﬁ)) } )
By Lemma 2.12 and (2.58), we find
lwz —wi? < @lwr —w||* +7.
We then upper bound the right-hand side of the last inequality:

o 270 o ) (2.68)
lwe —wi||* < @a”+y<a(2a“+20°)+~ < a°.

Therefore, combining (2.62) and (2.69) leads to sup;~ ||wi —w*¢—1|| < @. Recalling
that, from Assumption 2.13, w} € Y for all ¢, this immediately implies dist(w;,Y) <
a for all t > 1, which proves that the sequence is bounded.

We now proceed with proving (2.31). We note that the relation in (2.66) holds
for all t. We then observe that, by the triangle inequality, by (a+b)? < 2a+2b, and
by Assumption 2.11,

werr —wiy I < 2llwir — wi|? +2llwiy —wi?
< 2Hwt+1 —w§||2 +2(52.
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By using (2.66) to upper bound ||w11 —w}||? and iterating, we find:

|wt+1 _w:.g_lHQ < 2wy —w?”z +2(7+52)
< (20)*|wi—1 —wi_q |2 +2(y +6%) +20(27+26%)

t—1 .
<L < (20) wr — w2+ Y (2a) (27 4 262).
j=0

By taking the limit for ¢ — oo and by applying the convergence of the geometric
sequence, we obtain (2.31). |

2.E.3 Proof of Corollary 2.1
Steps i—vi of Algorithm 3 are analogous to Steps 1-6 of Algorithm 1. Analogously to

the proof of Theorem 2.1, we see that the variable y(¥) := (:fcz(»k),j\gk),ﬁi(k)) is updated
at each time step by K iterations of the HSDM:

y(k+1) = ﬁ‘BF,t(y(k)) - ﬂvﬁbt(EBF,t(y(’c)))’ k=1, K.

Then, the variable w41 is updated as wi41 = yE+D | Thus, we see that Algorithm
3 is a particular instance of the restarted HSDM algorithm (2.30). By Theorem 2.3,
the tracking error is given by (2.31). |
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Nash equilibrium selection in
aggregative games

)

-“I think we have different value systems.”
-“Well, mine’s better”

Douglas Adams, in “Mostly harmless”

Monotone aggregative games may admit multiple (variational) generalized Nash equi-
libria, yet currently there is no algorithm able to provide an apriori characterization
of the equilibrium solution actually computed. In this chapter, we formulate for the
first time the problem of selecting a specific variational equilibrium that is optimal
with respect to a given objective function. We then propose a semi-decentralized
algorithm for optimal equilibrium selection in linearly coupled aggregative games and
prove its convergence.

This chapter is partly based on Benenati, E., Ananduta, W. and Grammatico, S. “On the
optimal selection of generalized Nash equilibria in linearly coupled aggregative games”. In: 2022
IEEE 61st Conference on Decision and Control (CDC), pages 6389-6394, Cancun, Mexico, (Dec.
2022). IEEE.
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3.1 Introduction

Multiple decision makers (agents) are engaged in an aggregative game when each
agent aims at solving an optimization problem that is coupled with the strategies
of the remaining agents through some aggregate effect, e.g. a congestion effect [4,
pp. 90-92]. Interestingly, aggregative games effectively model various engineering
problems, such as bandwidth allocation [67], power distribution [28], and vehicle
traffic control [68]. In this context, a generalized Nash equilibrium (GNE) is a
particularly favorable and stable set of strategies from which no agent has interest
in unilaterally deviating.

GNEs are commonly studied under the monotone operator theory framework,
see [4] for a general overview. When the game in consideratison is monotone, i.e.,
it has a jointly convex feasible set [3, Def. 3.6] and a monotone pseudogradient
mapping, the GNE seeking problem can be solved via operator splitting techniques
[51] in order to compute a variational GNE (v-GNE) [3, Def. 3.10]. For instance,
[17] proposes multiple semi-decentralized methods, where decision makers do not
communicate among each other but with a coordinator, for monotone aggregative
games. Meanwhile, some works consider a particular class, namely strongly monotone
aggregative games, which admit a unique v-GNE, and propose algorithms with a semi-
decentralized [35] or distributed structure [69-71], where agents exchange information
with each other. Recently, fully distributed algorithms have also been introduced for
the class of monotone aggregative games [19, 39].

Merely monotone games are of particular interest, as they are more general
than their strongly monotone counterpart and monotonicity is one of the weakest
conditions under which globally convergent algorithmic solutions can be obtained
[3, Sec. 5]. Nonetheless, they present additional hurdles to their solution. Among
these complications, we focus on the non-uniqueness of v-GNE solutions. To the
best of our knowledge, the existing GNE-seeking algorithms for monotone games, e.g.
[16, 17, 19, 39], solely guarantee convergence to an arbitrary point in the v-GNE set,
with no characterization of the computed equilibrium. A noteworthy exception is
the Tikhonov method [42, 72] that is not based on operator splitting techniques and
finds a minimum norm v-GNE. Therefore, an open challenge in the monotone game
literature concerns finding an equilibrium, among infinitely many, with a desirable
property, which is not necessarily the minimum norm as in [42, 72]. This problem is
crucial from a practical standpoint as unpredictability of the computed equilibrium
might lead to arbitrarily inefficient performance relatively to some system-level
metric, e.g. social welfare.

In order to address this deficiency for the class of linearly coupled aggregative
games, we pose the GNE selection problem, that is, the problem of computing a
specific v-GNE such that it is optimal with respect to a convex selection function.
The selection function encodes a preference criterion for the GNEs and it can be
defined on the basis of a system-level performance metrics. For instance, in power
distribution systems, a preference criterion can be the deviation from an operating
set point desired by the system operator [73]. We cast the GNE selection problem
as a variational inequality (VI) defined by the gradient of the selection function and
the v-GNE set of the game.
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Next, we propose an algorithmic solution to solve the GNE selection problem
for the class of linearly coupled aggregative games. Our algorithm has a semi-
decentralized structure in order to exploit the aggregative feature of the games. It
is based on combining the preconditioned proximal point (PPP) method [17, 19],
which provides fast convergence under the (non-strict) monotonicity assumption,
with the hybrid steepest-descent method (HSDM) [15], which can solve fixed-point
selection problems. We guarantee convergence to an optimal equilibrium by showing
the equivalence of the GNE selection problem to that of fixed-point selection of
the preconditioned proximal-point (PPP) operator. We then prove that the PPP
operator satisfies the conditions under which the HSDM converges to a solution of the
corresponding fixed-point selection problem, which, in turn, is also a solution of the
GNE selection problem. Finally, we show the advantages of the proposed algorithm
by comparing the performance of an optimal v-GNE computed by our proposed
method with that of a non-characterized v-GNE obtained using the standard PPP
algorithm in randomly generated numerical examples.

3.2 Optimal generalized Nash equilibrium selection prob-

lem in linearly coupled games

In this section, we specify the definitions of generalized Nash equilibrium (GNE)
and optimal GNE selection to games where the agents’ coupling in the objectives
and constraints emerges through linear functions. These concepts were already
introduced in Sections 2.3.1 and 2.3.2, respectively. We consider N agents, indexed
by the set Z :={1,2,...,N}, which are engaged in a generalized game, i.e., each
agent aims at solving an optimization problem which is coupled, both in the cost
and in the constraints, with the decision variables of the remaining agents. Let us
denote by x; € R™ the decision variable of agent i and by x_; = col(z;) ez 4} the
concatenated decision variables of all agents except agent i. Let us further denote the
local feasible set of each agent i by X; C R™ and the cost function by J;: R™ — R,
where n:= 3,7 n;. We focus on the class of linearly coupled games, where the cost
function of each agent i € Z takes the form [17, Eq. (1)]:

Jilws,@—i) o= b () + <§;jg\{i} cijg;j7xi>, (3.1)

where ¢; denotes the local cost function of agent 7. Furthermore, the matrix C;; €
R™*"; encodes the weight of the influence of the decision variable of agent j with
respect to the cost function of agent ¢ and is assumed to be local information known
only by agent 7. Additionally, we let the matrices A; € R™*™ and the vectors b; € R™,
for all i € Z, encode a linear coupling constraint of the form ), (A;x; —b;) <0.
Therefore, the interdependent optimization problems are given by:

e zI,nel?Q Ji(zi,x_;) (3.2a)
PEETY st S (Ayzj—by) <0, (3.2b)

JET
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The collective feasible set of the game in (3.2) is defined as

Q::Xﬁ{w| Z(Ajg;j—bj)go}, (3.3)
JjET
where X :=[];c7 ;. Let us consider the following:

Assumption 3.1. For each i € Z, the function {;(z;) in (3.1) is conver and lower
semicontinuous. For each i € I, the set X; in (3.2a) is nonempty, compact, and
convez. The set 2 in (3.3) satisfies Slater’s constraint qualification condition.

Assumption 3.2. [19, Assm. 2] The matrices Ci; € R™*"™ in (3.1), for all i,j €T,
satisfy Cij = C']TZ

Assumption 3.1 is standard (see e.g., [16, 17, 19]), while Assumption 3.2 is a
technical assumption that implies that the game is potential [19, Lem. 1]. This
assumption is necessary since our method relies on preconditioning [38]. This tech-
nique requires convergence to be proven on the norm induced by the preconditioning
matrix, whose structure [19, Sec. IVB] makes Assumption 3.2 a necessary condition
for such norm to be well-defined. The class of games described in (3.2) along with
Assumptions 3.1-3.2 includes linearly-coupled aggregative games [17 Sec. 1IVB],
obtained with Cj; = £C, for all 4,5 € Z, and {;(z;) = ;(z;) + &z Cz;, implying
that (3.1) can be ertten as

J; (Il, z) l; ( ) <Can(ij)jeI,Z'7;>, Viel. (34)

The solution to the game in (3.2) that we consider is a GNE, i.e., a set of decisions
from which no agent finds an advantage in unilaterally deviating, as formally defined
next.

Definition 3.1. A set of strategies «* := col(z});cz is a GNE of the game in (3.2) if
x* € Q and, for each i €L,

JZ(CL'*) < Ji(xi;mii)a (3.5)

for any x; € X0 {y [ Aiy —bi < =3 e (i3 (Aj(25) — b))}

Asin [16, 17, 19, 39, 71] we focus on the computation of a subset of the GNEs of the
problem in (3.2), namely, variational GNE (v-GNE)s, where, roughly speaking, each
agent is penalized equally in meeting the coupling constraints. Under Assumption
3.1, a sufficient condition for the existence of a v-GNE is the monotonicity of the
pseudodifferential /game mapping [57, Prop. 12.11], which is a standard assumption
in the GNE seeking literature (see [17, Assm. 2], [37, Assm. 2], [19, Assm. 3] among
others), and we postulate next:

Assumption 3.3. The game mapping F : R = R"
Op, J1(x1,2-1)
F(x) = : = diag(9zi)ier + C, (3.6)

al’NJN(wNawa)
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where C € R™™ is a block matriz with Oy, xn; on the i-th block element of the
diagonal, and Cy; as defined in (3.1) on the (i,7)-th block, is a mazimally monotone
operator.

A v-GNE of the game in (3.2) can be characterized as the solution to a generalized
variational inequality [57, Prop. 12.4] which, in turn, is solved by the pair (z,\) =:w €
R™ x R™, where A denotes the dual variable associated with the coupling constraint
(3.2b), that satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions [58,
Thm. 3.1J:

w € zer(Te), (3.7a)
x x) +col(A] \);
o [ ] am

Assumptions 3.1 and 3.3 are not enough to guarantee the uniqueness of the solution
to the inclusion in (3.7a). Furthermore, we may want to select, among the potentially
infinite equilibria of the game in (3.2), a v-GNE with some desirable features. Here,
we propose to seek a v-GNE that optimizes a common objective function, denoted
by ¢. As pointed out in [45, 46], this objective function can be the distance from
some desired strategies, or a norm as in the Tikhonov method [42]. In engineering
applications, such functions can represent system-level objectives that the agents
are willing to achieve, provided that these objectives do not strongly interfere with
those of all agents. Thus, we formalize the GNE selection problem as follows:

argmin  ¢(w)
wERN XR™ (3.8)
s.t. wezer(Te),

with 7 as in (3.7a) and the following assumption on the objective function:

Assumption 3.4. The function ¢ in (3.8) is convex and differentiable. Its gradient
V¢ is Lg-Lipschitz continuous.

We note that, by [17, Lemma 2], the operator T, in (3.8) is maximally monotone,
which implies that the set zer(7s) is closed and convex [51, Prop. 23.39]. We conclude
that under Assumption 3.4 the optimization problem in (3.8) is convex.

3.3 Optimal equilibrium selection algorithm

In this section, we present a semi-decentralized algorithm for selecting an optimal
v-GNE of the game in (3.2). The algorithm is semi-decentralized in the sense that
the agents locally compute the updates to their strategies and communicate them to
an aggregator, which updates the dual and the aggregative variables and broadcasts
them to the agents.

3.3.1 Semi-decentralized optimal equilibrium selection
We propose Algorithm 4, whose derivation is deferred to Section 3.3.2, for solving
(3.8). The iterated steps of the algorithm are summarized as follows:
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Algorithm 4 Optimal v-GNE selection for linearly coupled games

Initialization. Set :L'( s X; and )\(O) €RYy, for all i € 7.
Iteration at stage k € N:

1. Each agent i € T receives J;;k), for all j € Z, and A(*) from the aggregator.

2. Each agent ¢ € 7 updates in parallel:

£ —argmin J,(y.2") + (\®, Ay ) + Zlly - 2|2 (3.9)
YEX;

3. Each agent ¢ € 7 sends i’gk) to the aggregator.

4. The aggregator updates:

3 = projag, (A9 +7 5 (43 ~br)). (3.10)
= 1€
AR = X(R) _ g(B) 7, (5 (R) X)), (3.11)

5. Each agent receives Vmiqﬁ(:%(k),i(k)) from the aggregator.

6. Each agent updates:
2 FD = 20 ghg, g(@®) A0, (3.12)

(k

and sends x; 1 to the aggregator.

Communication 1: Each player ¢ € T receives the updated dual variable A®) and the
(k )

decision variables of the remaining agents ", to compute the current estimate of

the local Lagrangian function
A(xi7w(fi),)\(k)) = Ji(xi,w(f,-)) + (A Az,

Regularized optimal response: Each agent computes a strategy %Ek) by finding the

optimizer of A(a:i,sc(f?,/\(k)), with a quadratic penalization term on the deviation
from the current strategy weighted by the parameter p;, as in (3.9).
(k)

Communication 2 and dual ascent: The proposed strategies fv)i are gathered

by an aggregator, which computes the gradient Vmigb(:%(k)?;\(k)) and updates the
dual variable via a dual ascent step as in (3.10) with step size 7. The results are
communicated back to the agents.

Step towards the optimal selection: The agents and the aggregator update the primal
and the dual variables by performing a gradient descent step of ¢ with vanishing
step size B(¥) as in (3.11) and (3.12), respectively.
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Remark 3.1. If the matrices C;; are all equal, then the local cost functions read as
in (3.4), thus they depend on the remaining agents only through the aggregate value
avg({z;}jez). In such case, the agents only suffice to receive avg({x;};ez) and the

gradient directions Vmi(b(%(k),;\(k)).

Remark 3.2. If the selection function is separable, that is, ¢(x) = ;7 di(xi, i),
then the second round of communications is not needed, as the step in (3.12) can be
immediately computed using local information only.

Under a choice of step sizes that satisfies Assumptions 3.5 and 3.6, let us now
present the main result of this chapter in Theorem 3.1, which states that the sequence
(W) en converges to the set of the optimal solutions to Problem (3.8), implying
that (*)),cy converges to the optimal v-GNE set.

Assumption 3.5. The step sizes p; and T satisfy:

i) pi> > NGyl +IAfll,  forallieT,
JjeI\{i}

.. -1
i) T < (z;IHAiH) .

Assumption 3.6. The sequence (8F)) ey € R>q satisfies:

i) 3 %) = oo,
k>1

i) 3 (BF))? < 0.
k>1

Remark 3.3. The sequence %) = Bo/k7, for any Bo >0 and v € (1/2,1], satisfies
Assumption 3.6.

Theorem 3.1. Let Assumptions 3.1-3.6 hold. Let Q* be the set of solutions to Problem
(3.8). Furthermore, let (w™)en, where w® = () AX*)) be the sequence generated
by Algorithm 4. Then, we have

lim dist(w®, Q%) =0.

k—oco

3.3.2 Algorithm derivation

As the first step towards obtaining Algorithm 4, let us consider the preconditioned
proximal point (PPP) method, which was proposed in [17, 19] to solve the GNE seek-
ing problem for the class of linearly coupled aggregative games. The preconditioned
proximal-point (PPP) method can be compactly written as the iteration

Wk = Topp (W), (3.13)
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where the operator Tppp is defined as
Topp(w) = (10+T717) " (), (3.14)

with preconditioning matrix

_[p-Cc -AT
= [ —A 7'1[:|’

p = diag({piln, }icz) and Al = col({AiT}iGI). The operator Tppp enjoys the
following property, which we leverage for proving Theorem 3.1:

Lemma 3.1. If Assumptions 3.1, 3.2, 8.3, and 3.5 hold, then Tppp is attracting
nonezxpansive in the I'-induced norm || - ||r.

We note that T =TT is a necessary condition for the I'-induced norm to be well-
defined, which explains the need for Assumption 3.2. Next, we transform Problem
(3.8) into a fixed-point selection problem:

Lemma 3.2. Let Assumptions 3.1-3.5 hold. Problem (3.8) is equivalent to

find w* s.t. inf (w—w*,Vo(w™)) > 0. (3.15)
wefix(Tppp)

By finding a connection between Problem (3.8) and a class of fixed-point selection
problems that has been studied in the literature, e.g., [56, 74, 75], we can then
resort to the algorithmic solutions available for the latter. Specifically, we consider
the hybrid steepest-descent method (HSDM) [15]. As formally stated next, indeed
Algorithm 4 is a particular instance of the HSDM.

Lemma 3.3. Let Assumptions 8.1-3.6 hold. Then, Algorithm 4 and the HSDM
iterations, for all k € N,

Wkt = Tppp (wh)) — BRIV (Tppp (wk))), (3.16)

with Tppp as defined in (3.14), are equivalent.

3.4 Illustrative example

We illustrate the advantages of the proposed methodology on a numerical example.
Let IV =6 agents compete over the usage of 3 utilities, where the cost of each utility
grows linearly with its aggregate usage. This setting is modelled by the game in (3.2)
with local cost function given by (3.4) and C' diagonal, whose non-zero elements
are randomly sampled from the uniform distribution with support set [0,1]. Let
li(x;) = q " x; represent the cost of agent i incurred by employing the contended
utilities, where ¢ is randomly sampled from the uniform distribution with support set
[—10,0]. Let &; = H?Zl[am, 100], where a; ; is drawn from the uniform distribution
with support set [—1,1]. The shared constraints in (3.2b) are given by A; = I3 and
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b; =513 for all 4 € Z, that is, the sum of each utility is less than 5. Finally, the
selection function ¢ is given by

o(x) =Y |zl +3 @i (3.17)
1ER

where R C 7 is randomly generated with |R| =2, Q; is a diagonal matrix whose
nonzero elements are randomly drawn from the uniform distribution with support
set [1,2] and the elements of g; are randomly drawn from the uniform distribution
with support set [—1,1]. This choice for ¢ includes the case where the equilibrium
point is selected in order to minimize a weighted distance from a reference point for
the decision variables of 2 randomly selected agents. We sample 20 GNE selection
problems. For each of the problem, we compare the result obtained by Algorithm 4
with the outcome of the standard PPP method [17, Alg. 6], which is obtained from
Algorithm 4 by fixing 3*) = 0in (3.11) and (3.12). On the other hand, for Algorithm
4, we set S(F) = Bo/k7, with Sy = 0.1 and + selected from the set {0.6,0.8,1} (see
Remark 3.3). For each problem and each value of v, both algorithms are run 20
times from a randomly generated initial condition. The results in Figure 3.4.1a show
that the GNEs computed by the standard PPP are most of the time suboptimal
with respect to ¢ in (3.17) as the values of the selection function are higher from
those of the GNEs computed by Algorithm 4. As can also be seen from Figure 3.4.1a,
the advantage gained by Algorithm 4 depends on the primitives of the problem
and the performance of the standard PPP algorithm with respect to the selection
function are strongly dependent on the initial condition. Figure 3.4.1b shows that
the distance between the equilibrium points is not correlated with the reduction in
the value of ¢. Figure 3.4.2 compares the convergence rates to the set of GNEs by
means of the residual r of the KKT conditions in (3.7a) defined as

projx (w(k) — F(x®) - col(A;'—)\)jeI)

Projpm (/\(k) + Z:I(Aixgk) - bz)>
= 1€

r(w®) = |lw® —

Figure 3.4.2 shows that Algorithm 4 presents slower convergence to the set of GNEs
compared to PPP. This is expected since, although the updates in (3.9) and (3.10)
lead the decision variables to the set of GNEs, the gradient step in (3.11) and (3.12)
may lead the decision variables away from it until the step size 3 (%) is small enough;
thus slowing down the convergence. Such an observation hints, as possible future
research directions, the exploration of higher-order or accelerated methods inspired
by the HSDM to achieve a faster convergence to the optimal GNE. Moreover, we
observe from Figure 3.4.2 that a smaller value of «y results in a slower convergence to
the GNE set (the residual) (see the top plot of Figure 3.4.2). This is due to the fact
that a smaller value of v implies a slower convergence of the diminishing step size
B) to 0. This increases the weight of the gradient descent steps in (3.11)—(3.12)
during the transient, which further slows the convergence down. On the other hand,
it is observed that a high value of ~, despite having a fast residual convergence,
might result in a slow convergence of the objective function gZ)(w(k)) to the optimal
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value (see the bottom plot of Figure 3.4.2). This trade-off suggests that a careful
choice of the step size () is crucial for the performance of the algorithm.
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GNE problem instance

0 2% 50 75 100 125 150 175 200
¢(xppp) —P(x*) (%)

¢(xppp)

(a) Reduction in the selection function value.

GNE problem instance

0 25 50 75 100 125 150 175 200
[[xppp—x*||eo /0
R

(b) Distance between the computed solutions.

Figure 3.4.1: Simulation results for the GNEs computed by Algorithm 4 (*) using v = 0.6 compared
to the standard PPP algorithm (zppp).
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Figure 3.4.2: Comparison of Algorithm 1 for various values of v with the standard PPP algorithm
in terms of the convergence of the residual r (top plot) and the objective function ¢ (bottom plot).
Here, ¢* is the optimal ¢ computed by Algorithm 4 for v = 0.6 (which obtains the minimum cost).
Each line represents the average of simulation results from all the 20 GNE selection problems with
20 randomly sampled initial conditions.



3.5 CONCLUSION 63

3.5 Conclusion

For linearly coupled aggregative games with multiple equilibria, it is possible to select

a particular solution that optimizes a convex preference function. The equilibrium

selection can be achieved via a semi-decentralized computation by combining an

instance of the preconditioned proximal point algorithm with the hybrid steepest

descent method. This framework can be exploited to enforce a system-level objective

among the set of equilibrium strategies. We identify as future work the extension of

the results to more general monotone games, the characterization of the convergence

rate, and the dependency of the latter on the design parameters.
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Appendix
3.A Proof of Lemma 3.1

The matrix T' is positive definite under Assumptions 3.2 and 3.5, following the
generalized Gerschgorin disc theorem [76, Thm. 2] as in [17, Lemma 8|. It can
be proven that this, together with the maximal monotonicity of 7., implies that
I'~17; is maximally monotone in the I'-induced norm || - ||, and the proof follows
verbatim the one of [37, Lemma 7(4)]. By noting that Tppp is the resolvent of the
operator I'"17; as defined in [51, Def. 23.1], it follows from [51, Prop. 23.8] that
Tppp is firmly nonexpansive. From the existence of a v-GNE [57, Prop. 12.11],
fix(Tppp) # @ and, therefore, the claim follows immediately by applying [51, Remark
4.36]. [

3.B Proof of Lemma 3.2
By Assumption 3.5, I is positive definite and I'~7; is maximally monotone (see
Appendix 3.A). Therefore, it holds that [51, Prop. 23.38]:

w € zer(Te) & w € fix(Tppp). (3.18)

Since ¢ is differentiable by Assumption 3.4, the claim follows immediately as (3.15)
is the stationary point problem associated to (3.8) [63, Sec. 1.3.1] . |

3.C Proof of Lemma 3.3
Let v :=[p,d]" = Tppp(w®)). From (3.14), we obtain
Te(y) 3 T(w® —y).

Substituting the definition of 7T, we obtain, for p,

(HNXﬁF) )3 (p—C) (=™ —p)— ATAP). (3.19)
€L

By the definition of J; in (3.1) and rearranging (3.19), we obtain

VieT: pi+(NXi+p;18£,»)(pi)9x§’“)—p;1( S Cijmg.’“)jLAh(’“)).
JET\{i}

Following Ny, = Ovx, and [51, Prop. 16.44], then the update in (3.13), for each agent
1 €T, reads as

k —1( 4T (k k
Pi :prOXin"rﬂ;lfi (ZES )7pi (Ai Al )Jr . Z ) Czjx; )))’
JET\{i}
which is equivalent to the update in (3.9) by the definition of proximal operator;

thus, p = &(¥). We similarly prove that the expression for d = AR g equivalent to
the update in (3.10). We can then finally observe that (3.11) and (3.12), for all i € Z,
are an expanded form of (3.16). |
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3.D Proof of Theorem 3.1

We note that €2 is bounded by Assumption 3.1. Thus, the set of v-GNEs is bounded
as it is a subset of € and it is nonempty under Assumption 3.3 [57, Prop. 12.11].
Under Assumption 3.1, the set of dual variables that solve (3.7a) is bounded [58,

Prop. 3.3], thus zer(7e) (as well as fix(Tppp), from (3.18)) is nonempty and bounded.

From Lemma 3.1, Tppp is attracting nonexpansive. Therefore, the iteration in (3.16),
which is equivalent to Algorithm 4 by Lemma 3.3, satisfies all the assumptions of
[66, Thm. 3] and the result follows. [ |
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Nash equilibrium selection via
Tikhonov regularization

-“There’s some sort of danger centering at the selenium pool. It increases as [the
robot] approaches, and at a certain distance from it the third law of robotics
[self-preservation] exactly balances the second law [obedience].”

- “So he follows a circle around the selenium pool, staying on the locus of all points
of potential equilibrium.”/...]

- “How about working the other way? If we increase the danger, we increase the
third law’s potential and drive him backward.”

Isaac Asimov, in “Runaround”

To optimally select a generalized Nash equilibrium, in this chapter, we consider a semi-
decentralized algorithm based on a double-layer Tikhonov regularization algorithm.
Technically, we extend the Tikhonov method for equilibrium selection to generalized
games. Next, we couple such an algorithm with the preconditioned forward-backward
splitting, which guarantees linear convergence to a solution of the inner layer problem
and allows for a semi-decentralized tmplementation. We then establish a concep-
tual connection and draw a comparison between the considered algorithm and the
hybrid steepest descent method, the other known distributed approach for solving the
equilibrium selection problem.

This chapter is partly based on Benenati, E., Ananduta, W. and Grammatico, S. “A Semi-
Decentralized Tikhonov-Based Algorithm for Optimal Generalized Nash Equilibrium Selection”.
In: 2023 62nd IEEE Conference on Decision and Control (CDC), pages 4243-4248, Singapore,
Singapore, (Dec. 2023). IEEE.
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4.1 Introduction

Several multiagent decision processes can be modelled as a game, that is, a set
of inter-dependent optimization problems. In particular, if the agents are coupled
not only through their respective objective functions, but also through a shared
constraint set, then we label the setting as a generalized game. Application examples
for generalized games include traffic routing [25], peer-to-peer energy markets [13]
and cognitive radio networks [31]. A typical solution paradigm is the generalized
Nash equilibrium (GNE), that is, an optimal situation for each agent given the
decisions of the remaining agents, and especially the sub-class of variational GNEs
(v-GNEs), which has recently received widespread attention due to its stability
properties [3].

Various efficient variational GNE (v-GNE) seeking algorithms, e.g. [16, 37, 39, 42, 77],
have been developed for games that satisfy a monotonicity condition. Crucially,
monotone games admit in general an infinite number of v-GNEs (unless a much
more restrictive strong monotonicity condition is imposed). An appealing method to
deal with the non-uniqueness of the solution is to select a GNE that optimizes some
desirable system-level objective, as proposed in [21, 43]. The selection algorithms
in [21, 43] use Tikhonov’s regularization method and build on the literature of
Variational Inequalities (VIs) to cast the selection problem as a variational inequality
(VI)-constrained VI, which is solved by finding a sequence of approximate solutions
to regularized games. The algorithms presented in §2 and §3, instead, rely on fixed
point selection theory and use the hybrid steepest descent method (HSDM) [15],
which pairs an appropriate nonexpansive operator with a gradient descent. While the
latter is recently proposed as distributed algorithms for GNE selection, the former
works for non-generalized games only. Our main contribution consists in devising a
Tikhonov-based algorithm for equilibrium selection in generalized, monotone games.
The proposed algorithm is semi-decentralized, in the sense that communication
with a central coordinator is required, but its only duty is to broadcast signals
aimed at optimizing the system-level objective function. Technically, we cast the
GNE selection problem as a VI-constrained VI, which can be solved via a sequence
of regularized sub-problems. Compared to [21], we propose to solve the resulting
regularized sub-problems via the preconditioned forward-backward or preconditioned
forward-backward (pFB) [37], which has linear convergence rate and allows one to
distribute the computation burden among the agents. Compared with the Tikhonov-
based GNE seeking algorithms in [42, 77] that compute the minimum-norm v-GNE,
our proposed algorithm works for general convex selection functions. Secondly, we
find a theoretical connection between the proposed Tikhonov method and the hybrid
steepest-descent method (HSDM). Although neither method generalizes the other,
the HSDM can be cast as a forward-backward step towards the solution of the
Tikhonov regularized problem. Finally, in Section 4.5, we compare the two methods
numerically.
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4.2 Equilibrium selection as a variational inequality

In this section, we provide an interpretation of the generalized Nash equilibrium
(GNE) selection problem introduced in Section 2.3.2 as a variational inequality
(VI) constrained to the solution set of another VI. We consider the multi-agent
decision process in which each of IV agents aims at solving an optimization problem
over the decision variables x; € X; C R™ where i € {1,..., N} =: Z. Let us denote
ni=3 crNi, Li:=T\{i}, T_;:=col(zj)jer_, and = := col(x;)jcz. Crucially,
the decision problem associated with agent ¢ is coupled to the decision variables of
the remaining agents both through the objective function J; : R™ — R, and some
constraints. We consider m € N constraints of the form

%Azxz <b, (4.1)
1€

where A; € R™*™i_for each ¢ € Z, and b € R™. This problem is commonly referred
to as a generalized game and we formalize it as follows:

i Ji(zs, x4 4.2
. wrlnelgl(z i(wi, @) (4.2a)
viel: s.t. Aixi S b— Z Ajl’j. (42b)
JET_;

By defining X :=II;cz X}, the collective feasible set of (4.2) is
I:=xXn{x | (4.1) holds true}.

We address the problem in (4.2) by examining generalized Nash equilibria, which
are points from which no agent has an incentive to deviate unilaterally:

Definition 4.1. A set of decision variables ** € X is a GNE for the game in (4.2) if,
for each i €T,

for any x; € X;N{y e R™ | Ay < *Zjel_i ij;f}.

Existence of a GNE is guaranteed [57, prop. 12.11] under the following, standard
assumptions [16, 39]:

Assumption 4.1. For each i, J;(-,x_;) is convex and continuously differentiable for
any x_;.

Assumption 4.2. For all i € T, X; is compact and convex; I' # & and it satisfies
Slater’s constraint qualification.

Assumption 4.3. The pseudogradient of the game in (4.2)

F(x) := col (vxiJi(xivx—i))ieI

is monotone and L g-Lipschitz continuous.
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For solving the problem in (4.2), we assume that the agents can exchange
information over an undirected, connected communication network. We denote the
set of neighbours of agent 4 in this network by A;. For simplicity, we consider the
case where, for all i € Z, J; depends on x; and the decision variables of (a subset
of) N, so that each agent is able to evaluate its cost function by communicating
with their neighbours. Additionally, each agent maintains a local estimate of the
dual variable \; for the shared constraints in (4.1) and an auxiliary variable v; to
achieve consensus on dual variable estimates. We then define the following extended
Karush-Kuhn-Tucker (Karush-Kuhn-Tucker (KKT)) operator [37], which includes
both the optimality conditions for the problem in (4.2) and the consensus condition:

T (w) ==A(w) + B(w) +C(w),
A(w) :==Nx(z) x NREO""()‘) x{0\z)m }»

F(x)
B:=|-CLA|, (4.3)
| O
[ AT
Clw):=|b—Azx—Lv|,
L

where w = col(x,\,v), L =L®I,, and L is the Laplacian matrix of the communica-
tion graph. A subset of the GNEs of the game in (4.2) is characterized by the zero
set of T*¥T [37, Thm. 2]. These are called variational GNEs (v-GNEs) [3, Def. 3.10]
and have been extensively studied with multiple efficient computation algorithms
available. However, Assumptions 4.1-4.3 alone do not guarantee that zer(7%%") is a
singleton. Most of the algorithms in the literature compute an unspecified variational
GNE (v-GNE) among the possibly infinitely many. In contrast, our approach focuses
on finding an optimally selected v-GNE according to the selection function ¢, in the
sense that we aim at solving

ngn P(w) (4.4a)
s.t. w € zer(TH5T). (4.4b)

Assumption 4.4. The selection function ¢ is convex, continuously differentiable, and
coercive. Furthermore, its gradient is L y-Lipschitz continuous.

By [51, Prop. 23.39], (4.4a) is a convex optimization problem under Assumptions
4.1, 4.3 and 4.4. However, zer(7T**T) can seldom be written in a closed form and,
thus, (4.4a) cannot be solved by standard optimization algorithms. To derive an
algorithmic solution, we note that, by defining € := X x ]RJ;’{)” x RN™ and by [63,
Eq. (1.1.3)], -

w”* € zer(T"*") & w* € SOL(Q,B+C). (4.5)
Following the equivalence between convex optimization problems and VIs [63, Sec.
1.3.1], we then recast (4.4a) as:

VI(SOL(2,B+C), V). (4.6)
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As discussed in [21], we can solve (4.6) by finding the eg-approximate solutions to a
sequence of regularized sub-problems, indexed by k € N:

VI(Q,B+C+7,Vo+a(ld—w)), we. (4.7)

The regularization weights «, (7;)ren and tolerances (e )ren are chosen according
to the following criteria:

Assumption 4.5. The parameter « is positive; (vk)ken and (€x)ren are positive
and non-negative sequences of real numbers, respectively, such that ), vk = 00,
limg—oove =0 and e =0 for all k> K, where K € N.

By denoting 7 := sup <y Yk, we observe the following properties of the operators
that define (4.7):

Lemma 4.1. Let Assumptions 4.3—4.5 hold true. For any k € N, a >0, and w € €2
1. B+C+vy Vo +a(ld—w) is a-strongly monotone,

9 B—&—’YkV(b‘f'a(Id_w) is Lg- Lipschitz continuous, where
L :=max(Lp,2[N;licz) +7Lve + .

By applying [63, Cor. 2.2.5] and [63, Thm. 2.3.3a], we conclude that the
regularized problem in (4.7) admits a unique solution. Proposition 4.1, which follows
directly from [21, Thm. 2], formalizes a prototypical algorithmic solution to the
problem in (4.6):

Proposition 4.1. Let Assumptions 4.1-4.5 hold. Let (w™))cn € Q and, for every k,
WFHD) pe the e, -approzimate solution of the VI in (7) with w =w¥).  Then, the
sequence (wF)) ey is bounded and each of its limit points is a solution of (4.6).

4.3 Semi-decentralized equilibrium selection

In view of Proposition 4.1, next we derive an algorithm for generating a sequence
(w(k))keN such that, for all k, w**1) is a e,-approximate solution to (4.7) with
w =w®) . The exact solution, denoted by wj;, satisfies the monotone inclusion

0€ (A+B+C+7Vo+a(ld—w™))(wh). (4.8)

We then apply the preconditioned forward-backward (pFB) method, proposed in
[37] in the context of decentralized GNE seeking, for solving (4.8). Let us define the
following matrix:

U =diag(p~ !, 7 07, (4.9)

where p :=diag(piln,)icz, T = diag(riln,)icz, o = diag(o;Iy,)icz collect the step
sizes associated with the primal, dual and auxiliary variables, respectively, chosen
according to the following design criterion:
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Assumption 4.6. Let
m
= maxj=1n; 2 |[Ailjl,
k=1

r = maxj—1 o, kg:l\[Ai]ij?lMl,
" = 2.
Furthermore, let r = max;ez(r¥,r, %) and & > max(%,%), with Lg defined as in
Lemma 4.1. For alli €Z:
L(20—r) "t <p <(0+rF) Y
2. (20— < < (6+rM)7Y
8. (26—rY) <o, <(0+rY)7L.

Let us also define the preconditioning matrix

o -A" o
P=V¥+|(-A 0 L. (4.10)
0 -£L 0

Lemma 4.2. Under Assumption 4.6, ® = 61 and \%H > %

The preconditioned forward-backward (pFB) operator for the inclusion in (4.8)
reads as

TP =(Id+ 01 (A+C)) o (Id—<I>_1(B+7kv¢>+a(ld—w(k)))>- (4.11)

The following result formalizes the convergence of the fixed-point iteration generated
by T to the solution of (4.7).

Lemma 4.3. Let Assumptions 4.1-4.6 hold and y° € Q. Then, for all k €N, the
sequence (y(t))teN generated by the fixed-point iteration

Yy =7 (D) v eN, (4.12)

where TP is defined in (4.11), converges linearly in the ®-induced norm to wj in
(4.8) and

ly® —wille < lly™+ —yWlla /(1= 5), (4.13)

~

2
with f:= (1+ 5% — 7)< L.

Remark 4.1. Differently from the pF'B operator in [37], the one in (4.11) has addi-
tional reqularization terms and thus achieves the desired linear rate.
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The linear convergence of 7P"®k guarantees that, for 5 > 0, the iteration w(k+1)
in Proposition 4.1 is found within a finite number of inner iterations, whose termina-
tion can be based on a simple stopping criterion derived from (4.13). The proposed
method, which results from the expansion of the pFB operator, is illustrated in
Algorithm 5, where we use t as the inner iteration index.

Proposition 4.2. Let (w(k))keN be generated by Algorithm 5. Under Assumptions
4.1-4.6, for each k, w1 s an eg-approximate solution of (4.7) with w = w(k)
and, if e, > 0, the condition in (4.17) is verified in a finite number of steps.

Remark 4.2. For Assumption 4.5 in Proposition 4.1 to be satisfied, the termination
condition for the inner iterations needs to eventually ensure e, =0. This is a stringent
requirement, as the pFB algorithm only achieves an exact solution asymptotically. The
authors of [21], alternatively, consider the less restrictive condition limg—y o =% =0
in the case where the definition set of the VI-constrained VI is compact. Although €2
does mot satisfy this condition as the dual variables belong to an unbounded set, in
practice the dual variables are bounded in view of [58, Prop. 3.3].
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Algorithm 5 Tikhonov-pFB for optimal GNE selection

Initialization. Let «, (ex)ren and (vx)ren satisfy Assumption 4.5. Let w® e
;e (X;) X Rzolz‘m xRIZI™  Let p,o, T satisfy Assumption 4.6.

Outer iteration: for k£ € Ny

1. Each agent i € 7 sets:
,0) (k,0) (k0 k,0 k
(@F0 A0 B0y g (R0) (k) (4.14)

2. Inner iteration: for ¢ € Ny
-For each agent i € 7:
(k,t)

(a) Receive z;"", )\gk’t),yj(k’t) from agent j € N; and V@, (y*?) from the

coordinator.
(b) Update:

mgk’m) =Projy, [xz(k’t) —pi(Va, Ji(x 1)

(4.15a)
+ AT 4 4V, 0y 50 + (@ — 2 H))]
Vi(k,ﬁ-l) :Vi(k,t) —Ui( Z (}\Ek,t) _ )\§k,t))
JEN; (4.15b)
o) =) V) ).
(c) Receive V](-k’H_l) from agent j € N;.

(d) Update:

)‘EMH) =Pprojrm, {)‘Ek’t) +7 ( ~ Vo) + a()‘z('k’t) - )\Ekﬂ))
+Ai(2m§k,t+1) _xl(_k,t)) _

s (ZVZ_(k,tJrl) _21/](_k,t+1) _Vi(k,t) +V(k,t) B /\l(_k,t) +)\§k,t)))]

JEN; 7
(4.16)
-Coordinator:
(a) Set y(k,t-i-l) « (x(lat-l—l)’)\(k,t-i—l)jy(ki—s—l)).
(b) Communicate V,,,¢(y#**+1)) to each agent i € Z.
(c) If the following is satisfied,
Iy —y® Vg < (1= e, (4.17)
terminate inner iteration. Each agent then sets
wl(k-irl) _ yz(k,t—b—l). (4.18)
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4.4 Comparison with the hybrid steepest descent method
In §2 and §3, we take a different algorithm design path, where we reformulate
Problem (4.4a) as a fixed point selection problem. This allows one to use the hybrid
steepest descent method (HSDM) [15] to solve (4.4a). Specifically, one has to find a
quasi-shrinking mapping 7 (Def. 2.1) such that fix(7") = zer(7*¥"). Then, the limit
point of the sequence (z(*)),.cn, defined by

25D = 720y — 4, (T2 H), (4.19)

converges to the solution of (4.4a) if (v )ren is square-summable but non-summable
[15, Thm. 5]. The vanishing weight on V¢ is reminiscent of the Tikhonov regulariza-
tion introduced in Section 4.3. Indeed, the two methods are related, as shown next.
Let us consider the exact solution to the VI in (4.7) with w = w). Then, from (63,
Prop. 12.3.6],

k k
wtH) :jé(A+B+C+wV¢)(w( )

4.20
= T (w®). (4:20)

The properties of the hybrid steepest-descent method (HSDM) update in (4.19)
depend on the choice of 7. Let us consider the particular case T = Ja+5+c¢, which
can be shown to be quasi-shrinking via Lemma 2.1. We rewrite (4.19) with this
particular choice of T as:

v = Tuysre(z™)
Z(k‘+1) — v(k—l—l) _,yk:v(b(,u(k:—‘,-l))7

b

(4.21)

where we introduced the auxiliary sequence (v*)),cy. By rearranging (4.21), we
note that this sequence evolves as

o) = T4y gic o (Id— V) (M) = T (v (). (4.22)

The operator 7" in (4.22) corresponds to the forward-backward (FB) splitting
for the inclusion
0€ A+B+C+vVeo.

From [51, Prop. 26.1iv] and [51, Prop. 23.38],
i (T2 (at84c1myve)) = % (Tarsico(1d=7V9)),

which implies

fixe(TT) = fi (TSP, (4.23)

Thus, we conclude that both the Tikhonov update in (4.20) and the HSDM step in
(4.19) apply at each step k a single update of a fixed point iteration, and the two
operators in (4.23) have the same fixed point set. This analogy is only theoretical,
as in practice the operator J4454¢ cannot be implemented in a distributed fashion.
Nevertheless, it outlines that both the Tikhonov method and the HSDM function by
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. Tikhonov
Tikhonov (bounded set) HSDM
param. >k = 00, DYk = 00, >k =00,
evt. €, =0 limk_moi—i:() Z'YI% <00
-t (#nllner evt. oo £ oo 1
iterations)
¢ coercive yes no no

Table 4.4.1: Theoretical property differences of the Tikhonov method and HSDM for GNE selection.

the same underlying principle of tracking the solutions to a sequence of regularized
problems. Moreover, we note that (4.23) does not hold for a generic choice of T,
thus the HSDM includes algorithms that are not covered by the Tikhonov method.
On the other hand, the operator 7™ cannot be rewritten in terms of an FB
operator. Therefore, we should conclude that neither method is a generalization
of the other. The key differences between the two frameworks are summarized in
Table 4.4.1. In addition, we remark that the Tikhonov framework can be paired
with any (splitting) methods for strongly monotone games to obtain a decentralized
algorithm. Meanwhile, the HSDM requires methods for monotone games that are
quasi-shrinking, such as the forward-backward-forward (FBF) splitting [51, Sec.
26.6]. Thus, Tikhonov-based methods can benefit from a larger pool of available
algorithms.

4.5 Numerical simulations

We test the proposed algorithm on 100 game instances with 10 agents, where the
pseudogradient is in the form

F(xz)=Qrz+cp.

The parameters Qp = 0 and cp are randomly generated. We define the selection
function
T
$(w) = [lz]B, + ez +o(IN|+[v]?),

where (4 = 0 and ¢y are as well randomly generated and 6 = 103, For all i, we
define the local constraint set X; ={R” : ||z;| s < 1}. Furthermore, we let A; = I, for
all i € Z, and b=2-15.We then set (yx)ren and (e)gen in Algorithm 5 to

= 10-3%6: o) = 103k 8¢ %f 1073k > ¢

0 if 107368 < ¢
where ¢ is set to the computer numerical precision. The parameter £ controls the
decay of the regularization weight ~y;, while ¢ controls the decay rate of €5 with
respect to v;. We evaluate Algorithm 5 in terms of the residual computed for each
outer iteration k and inner iteration ¢ as

R(t) = y™? — (1d+A) " o (1d-B-C) (™M),
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Figure 4.5.1: Average performance of Algorithm 5 for ( =2 and av = 1.

and in terms of the reduction of selection function ¢ with respect to the value
obtained by the standard forward-backward-forward (FBF) algorithm (without
optimal selection) [16, Alg. 2] in Figures 4.5.1-4.5.3. We observe that, for decreasing
values of £, the algorithm achieves a lower selection function value and a larger
residual (cf. Figure 4.5.1). This trade-off between convergence to a GNE (measured
by the residual) and convergence to a ¢-optimal point is expected, because a too
slow decay of the regularization weight v leads the algorithm to disregard the GNE
seeking in order to compute the unconstrained optimal value of ¢. Moreover, an
increasing value of v improves the algorithm performance (cf. Figure 4.5.2). Finally,
we observe that for increasing values of (, the algorithm reaches a higher residual
and a lower selection function value (cf. Figure 4.5.3). In our experience, setting ¢
too high might cause convergence failure as €5 might become 0 before v reaches a
negligible value. In Figure 4.5.4 we compare Algorithm 5 with the HSDM paired with
the FBF algorithm [20, Alg. 1]. The parameters for Algorithm 5 are chosen among
the ones that performed reasonably well in both the performance metrics considered
in Figures 4.5.1-4.5.3. We find the two algorithms to have similar convergence speed.
One might find this surprising, as the Tikhonov method is double-layered; thus,
one could expect slower convergence compared to the single-layer HSDM. This can
be explained by noting that the slowdown caused by the double-layer iterations is
compensated by the linear convergence of the pFB. In contrast, the HSDM uses the
FBF, which only achieves sublinear convergence. Nevertheless, as observed in the
first set of simulations, the Tikhonov method requires more careful parameter tuning
than the HSDM.
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4.6 Conclusion

The generalized Nash equilibrium selection problem can be solved with a semi-
decentralized algorithm based on the Tikhonov regularization method combined with
the preconditioned forward backward algorithm, which achieves linear convergence
for the regularized sub-problems. Interestingly, both the Tikhonov regularization
method and a particular instance of the hybrid steepest descent method seek at
each iteration an approximate solution to the same regularized problem, indicating
a conceptual connection. Although theoretically less practical (as shown in Table
4.4.1), the Tikhonov algorithm demonstrates comparable convergence performance
to the state-of-the-art in our simulations.



4.A PROOF OF LEMMA 4.1 81

Appendix

4.A Proof of Lemma 4.1

Lemma 4.1.1 is immediate from the monotonicity of B [37, Lem. 5], C [51, Ex. 20.35]
and V¢ (Assumption 4.4). From Gerschgorin’s theorem, ||| < 2max(|N|iez).
Thus, B is max(Lp,2|N;|;ez)-Lipschitz continuous from Assumption 4.3. Lemma
4.1.2 then follows immediately. |

4.B Proof of Proposition 4.1

Let us denote the solution set of (4.6) by S. The proposition follows from [21, Thm.
2] if Q is closed and convex; B+C is continuous and monotone; V¢ is continuous
and monotone plus; S is bounded and not empty; and the set

£ ={wr€QJwi €8s t. Vo(wa) ' (w1 —wsy) >0}

is bounded. The conditions on € and the continuity of B,C,V¢ follow from the
assumptions. The monotonicity of B+ C is proven in Lemma 4.1. V¢ is monotone-
plus from the convexity of ¢ and [51, Ex. 22.4i]. From [37, Thm. 2], zer(TXKT) £ &.
Let wi € zer(TXKET) and consider

£ = {wy € QVh(wz) | (w1 —ws) > 0}.
We apply the convexity inequality on ¢ to find
P(wr) — ¢(w2) > V¢(w2)T(w1 —L«Jg)7 Ywo € Q. (4.24)

From the coercivity of ¢, ¢(wi)— ¢(w2) < 0 for sufficiently large |wz||. Thus,
L9 is bounded. Therefore, from [63, Prop. 2.2.3], S is non-empty and compact.
Consequently, as (4.24) holds for any w; € S, we find for all ws € Q,

Si%’é%mﬂ(wl —ws) < ¢ — p(wa),

¢* :=maxy, es #(w1). By the coercivity of ¢, ¢* — p(w2)<0 for sufficiently large
|lw2||. Therefore, £1 is bounded. [ |

4.C Proof of Lemma 4.2

It follows from [37, Lemma 6] and Gerschgorin’s theorem. |

4.D Proof of Lemma 4.3

The operator (Id+®~!(A+C))~? is non-expansive in the ®-induced norm, following
[37, Lem. 7ii]. Denote G = B+, Vo +a(Id—w®). First, we observe

121 = I = o]zl > =13 = o]l =], (4.25a)

I = o7'<57' = |zl3o <62 (4.25b)

%

)
)
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for any z € 2. Furthermore, for any pair z,2’ € Q,

<z -2, <I>71(Gz — Gz’)>q> >(z—2/, ¢7lfyk(V¢(z) —Voé(2'))+ a@fl(z -2NMe
> allz— 2|7

Sl 23 (4:26)

We use the fact that @18 is cocoercive in the ®-induced norm [37, Lem. 7i] (and,
thus, monotone) in the first inequality, the monotonicity of V¢ in Euclidean norm
in the second inequality, and (4.25a) in the third inequality. We then have that

1071 G(2) — 271G ()3 = [IG(2) - G() |3+
(4.25b) 1 N2
< <l6z) -G
2 (4.27)
<TGz 5P
6
(4.25a) 1,2
~lz—2'l3,

where we use the Lipschitz continuity of G (Lemma 4.1). By expanding the square
and from (4.26) and (4.27), we have that

d-—®'Q)(2)—(Id—d1G)(2)|2 < (1 @,2_0‘ _ 2
Il( )(z) —( )2 <1+ 52 H‘PH)HZ EAIFS
=Blz—2'||3.

From Assumption 4.6 and Lemma 4.2,

2 2
Lo Lgo 20
) L¢o ~ |2
thus 8 < 1 and (Id—®~'G) is contractive. From [51, Prop. 26.1.iv] and [63, Eq.

1.1.3], fix(T7"®) = zer(A+C+ G) = SOL(2,C + G) and the claim follows from [51,
Thm. 1.50]. n

4.E Proof of Proposition 4.1

By expanding the operators that define 77€pFB, (4.15a)—(4.16) are equivalent to
y Bt — 7ors (k1) for all k € N. From (4.17), (4.18), and Lemma 4.3,

oD —wifle < [y —y D lg/(1- )
S El-
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Next, by triangle inequality, we have that
ly™ Y —y®D | < ly® D —wifle + [lwf -y e
< 148wt~y
< B8+ 1ot~y O,

where {1} follows from the contractivity of 7" (see the proof of Lemma 4.3) and
{2} from [51, Thm. 1.50iii]. Thus, if e >0, (4.17) holds for

t>1lo ( Ck >
=\ B ) wp—y* e )







85

Linear convergence in
distributed, time-varying games

-“You don’t think we’re networked, do you?”

-“Well, I don’t know. Are you?”

-“Gods around, no! Ugh! Can you imagine?”

The robot’s face was angular in its disgust.

-“Would you want everybody else’s thoughts in your head?”

Becky Chambers, in “A psalm for the wild-built”

We study generalized games with full row rank equality constraints, and we provide a
strikingly simple proof of strong monotonicity of the associated KKT operator. This
allows us to show linear convergence to a variational equilibrium of the resulting
primal-dual pseudo-gradient dynamics. Then, we propose a fully-distributed algo-
rithm with linear convergence guarantee for aggregative games under partial decision
information. Based on these results, we establish stability properties for online GNE
seeking in games with time varying cost functions and constraints. Finally, we
illustrate our findings numerically on an economic dispatch problem for peer-to-peer
energy markets.

This chapter is partly based on Bianchi, M., Benenati, E. and Grammatico, S. “Linear
Convergence in Time-Varying Generalized Nash Equilibrium Problems”. In: 2023 62nd IEEE
Conference on Decision and Control (CDC), pages 7220-7226, Singapore, Singapore, (Dec. 2023).
IEEE.
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5.1 Introduction

Generalized Nash equilibrium (GNE) problems arise in many multiagent applications,
where the agents are coupled not only because of their conflicting objectives, but
also via shared constraints — operational limits of the system, that the agents
should respect. Among others, GNE seeking is used in energy markets [28], radio
communication [3] and formation control [78] problems.

The networked structure of these applications naturally calls for distributed
solution methods. In fact, part of the recent literature focuses on semi-decentralized
GNE seeking algorithms [17, 34], where the agents update their decisions locally, with
the help of a coordinator that gathers and broadcasts information over the systems
(a setup also named full-information scenario). Other works [40, 71, 79, 80] deal
with applications where the agents can only rely on fully-distributed peer-to-peer
communication and local data. In this so-called partial-decision information scenario,
the agents compensate for the lack of global knowledge by estimating the unknown
quantities and by embedding consensus dynamics in their local decision processes.

In both scenarios, to cope with the presence of coupling constraints and to
distribute the computation among the agents, one should resort to Lagrangian
reformulations. In fact, all the references above leverage primal-dual pseudo-gradient
algorithms, aimed at solving the Karush-Kuhn-Tucker (KKT) optimality conditions
of the GNE problem.

In general, primal-dual algorithms fail to achieve linear convergence, even for
the class of strongly-monotone generalized games [17]. Importantly, together with
linear convergence, some crucial input-to-state stability (ISS) properties of pseudo-
gradient iterations are also not guaranteed. This lack of robustness is a critical
issue for methods in the partial-decision information scenario, where convergence
should be ensured despite the estimation error. To overcome this complication,
vanishing step sizes can be used to drive the error to zero [39], at the price of
slow convergence. Alternatively, several fixed-step algorithms for GNE seeking were
derived based on operator-theoretic methods and on the use of preconditioning
[40, 71, 79]. Unfortunately, this approach comes with important limitations, such as
extending the analysis to time-varying setups.

For instance, there is no available fixed-step fully-distributed method to solve
GNE problems when the agents can only exchange information over switching
communication networks (while methods are available for games without coupling
constraints [81]). Furthermore, in many decision processes with real-world applica-
tions, the cost functions of the agents and the system constraints can vary over time
[82], for instance in cognitive radio networks and demand response in smart grids
[83]. In such domains, linearly convergent algorithms become particularly desirable,
as the solver needs to quickly update its solution in response to changes in the
environment. Despite its practical relevance, there are very few works that study
the online GNE problem. The chapter [84] proposes a regularized algorithm, which
only achieves inexact convergence, and which is not fully-distributed. Instead, the
authors of [49] develop an algorithm for the partial-decision information scenario,
but that achieves sublinear regret only when the solution is asymptotically constant
and for diminishing step sizes.
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Contribution: In this chapter we study generalized games with full row rank cou-
pling equality constraints —as those arising in resource allocation and transportation
problems [85], where demand-matching [80] and flow [28] constraints are ubiquitous.
For the first time, we show that, in this setup, linear convergence to a GNE can be
achieved via primal-dual dynamics, both for the full- and partial-decision information
scenario. Thanks to this result, we can also adapt the dynamics to online equilibrium
seeking in time-varying games. Here we focus on the prominent class of aggregative
games [17], for its desirable scalability properties, but the analysis carries over to
generally-coupled costs. We summarize the novelties of our work as follows:

1. We provide a simple, constructive proof of the strong monotonicity of the
KKT operator in games with full-row rank equality coupling constraints. As
a consequence, we show linear convergence to a GNE of the pseudo-gradient
ascent-descent method (Section 5.3);

2. We design a linearly convergent algorithm for GNE seeking in partial-decision
information, via a tracking technique [39] that avoids the need for slack variables.
Our proof is based on a change of coordinates and a small gain argument:
due to its generality, the argument also applies to the case of (Q-connected)
time-varying communication graphs (Section 5.4);

3. We exploit our linear convergence results to study the tracking properties of
the proposed methods with respect to the solution of a game with time-varying
costs and constraints. In particular, for the fully-distributed algorithm, we
show that the extra error induced in the dynamic tracking procedure does not
jeopardize stability (Section 5.5)

5.2 Mathematical setup

For clearness of exposition, we reintroduce the definition of generalized Nash equilib-
rium (GNE) presented in section 2.3.1. We consider a set of agents, Z :={1,...,N},
where each agent ¢ € Z shall choose its decision variable (i.e., strategy) z; € R™. Let
x = col(z;)iez € R™, with n = Zfil n;. The goal of each agent 7 € 7 is to minimize
its objective function J;(x;,x_;), which depends on both the local variable z; and
on the decision variables of the other agents @ _; := col(x;) jez\ {;}- Furthermore, the
feasible decisions of each agent depends on the action of the other agents via affine
equality coupling constraints. Specifically, the feasible set is X' = {z € R™ | Ax = b},
where A:=[A1,...,Ay]and b= vazl bi, A; € R™*" and b; € R™ being locally avail-
able information. The game is then represented by the inter-dependent optimization
problems:

(VieZ) min Ji(y;,x—;) (5.1a)
Y €ER™
s.t. (yi,x—;) € X. (5.1b)

The technical problem we consider here is the computation of a GNE, namely a set
of decisions that simultaneously solve all the optimization problems in (5.1a).
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Definition 5.1. A collective strategy &* = col (sc;)iez 1s a generalized Nash equilibrium
if, for alli € I, J; (z},x*;) <inf{J; (yi,®*,) | (yi,x*;) € X} O

Next, we postulate some standard regularity and convexity assumptions for the
constraint sets and cost functions.

Assumption 5.1 (Convexity). In (5.1a), X is non-empty. For each i € T, J; is
continuous and J; (+,x_;) is convex and continuously differentiable for every x_;. O

As common in the literature [86], [17], among all the GNEs, we focus on the
subclass of variational GNEs (v-GNEs) [3, Def. 3.11], which are more economically
justifiable, as well as computationally tractable [33]. Under Assumption 5.1 and
defining the pseudo-gradient mapping of the game

F(x) = col (Vy, Ji(zi,x_;)) (5.2)

i€’
x* is a v-GNE of the game in (5.1a) if and only if there exists a dual variable A* € R™
such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied [3,
Th. 4.8):

0,cF(x*)+AT X, 0, ¢€—(Az*—b). (5.3)
Let us restrict our attention to strongly monotone games.

Assumption 5.2 (Strong monotonicity). The game mapping F in (5.2) is pp-strongly
monotone and {p-Lipschitz continuous, for some pup, g > 0. O

The strong monotonicity of F' is sufficient to ensure existence and uniqueness of
a v-GNE [63, Th. 2.3.3]. Strong monotonicity is a standard condition for algorithms
with linear convergence. In addition, we make the following assumption.

Assumption 5.3 (Full rank constraints). A is full row rank. AAT > uul, ||A|| < fla
for some scalars pa,la > 0. (]

Assumption 5.3 postulates that there are no redundant constraints (or equivalently

that redundant constraints are removed). This condition is well known in duality
theory and optimization, as it ensures the uniqueness of dual solutions (as it can be
inferred by (5.3)).
For ease of presentation, we will specialize our results to the prominent class of
aggregative games, which arises in a variety of engineering applications, e.g., network
congestion control and demand-side management [87]. In particular, we assume that
the cost function J; of each agent ¢ depends only on the local decision z; and on an
aggregation value

d@=%é@mh (5.4)

where ¢; : R™ — R is a local function of agent ¢. In short, overloading the function
J; with some abuse of notation, we also write

Ji(zi,x—i) = Ji(z5,0(z)). (5.5)
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5.3 Linear convergence in generalized games
We start by showing that the KKT operator is strongly monotone, in a suitable
norm, under Assumptions 5.2 and 5.3.

Lemma 5.1. Let w :=col(x,\). The operator

[Fx)+ATA
w— Alw) = { S Awtb (5.6)
is pa-strongly monotone in R%, for some P =0 and pgq > 0. |
Proof. For some 0 <y < {4, let
[ro4AT
P= [714 It } = 0. (5.7)

For any x,z* € R™ and A\, \* € R™, we have
(A(w) — A(w"),w —w*)p =(F(x) — F(z*),z —x*)
+(F(x) = F(z*), AT (A=X")
+(AT T —x")
FA(AT( =), AT (= A))
—v(A(z—z"), A(z —x"))
— (Al =2y x=X")
>(up =70 llz —z*|?
—vplalz—x*|[|A— A"
+ypallx =12

which is positive definite for 0 < v < —3LELA . The conclusion follows by equiva-
CALEwV:A

lence of norms. [ |

Based on Lemma 5.1 we can prove linear convergence of classic primal-dual
iterations.

Theorem 5.1 (GNE seeking in full-decision information). Let Assumptions 5.1-5.3
hold and £ = (Lr+1L4) );‘“L((g)). Forany0<a< QT%A and any initial condition
min .A
(x°,\9), the iteration
=2k o (F(a:k) +AT)\k) (5.8a)
AL\ (Aazk - b) (5.8D)

converges linearly to the unique solution w* = (x*,A\*) of the KKT conditions in
(5.3): for all k€N

lo™ !t —w*||B < pllw® — W[, (5.9)

where p=1—2aps+ 0?0} <1 and w® = (zF,\F). O
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Algorithm 6 Semi-decentralized GNE seeking
Iterate to convergence: for all k € N,

« Each i € T: receive \¥, ¢% from coordinator; update

k+1 (szt]( k)+AiT)\k>

o Coordinator: receive {¢;(z;**1), A;z¥ —b;}icz; update

ANFL =P LY (Axh —by),

k+1 k+1
ot :%Ziezﬁbi(%’—i_ )

Proof. By Lemma 5.1, ||w— aA(w) — (w* — w))% = [|w —w*||% — 2a(A(w) —
A(w*),w —w*)p —Q—QQHA( ) — Alw ) 1% < p||w *H%:, and the conclusion follows
because (5.8) can be rewritten as wkt! = wk — @ A(w"). [ |

5.4 Partial decision information

In this section, we consider aggregative games in the so-called partial-decision
information scenario, where there is no central coordinator, and the agents can only
exchange information via peer-to-peer communication over a communication graph
G = (Z,€), with weight matrix W € RV*Y "and w; j = [W]; ; > 0 if and only if (j,7)
belongs to the set of edges £ C 7 x 7.

Assumption 5.4 (Communication). The graph G is strongly connected. The weight
matriz W satisfies:

« Double stochasticity: 1TW =17 W1 =W1;
e Self-loops: w;; >0 for alli € 1.
We denote 6 := |W — %117 ||. Note that § <1 following [88, Lemma 10.5] O
To remedy the lack of global knowledge, we let each agent ¢ € Z keep:
o &; € R%: estimate of the aggregation o(x);
e \; € R™: estimate of the dual variable A;
e 7; € R™: estimate of the residual Az —b;
e z; € R™: additional dual variable.

We make the following standard assumption.
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Algorithm 7 Fully-distributed GNE seeking

Initialization: choose o > 0 as in Theorem 5.2; for all i € Z, set 1’? e R™, 6? = ¢i(x?),
z? eR™, 5\9 = z?, f? = Aix? —b;.

Iterate to convergence: for all k € N, for all : € Z,

e Local variables update:

x?"'l :xf—a(ﬁ‘z(‘rz,6f)+‘4:5\f) (5113)
2P =2k L aNE (5.11b)

« Tracking: Agent i exchanges the variables (&, A;,7;) with its neighbors, and

does
677 = jen, wig0F +0i(a ) = gilaf) (5.12a)
Pt =3 e wi g + At — Agaf (5.12b)
TSN 5120

Assumption 5.5. For each i € Z, the function ¢; in (5.4) is continuously differentiable
and £,-Lipschitz continuous; furthermore, the mapping

1
Fi(xi,ﬁi) = V%Jz(x“&l) =+ N[qui(xi)]TV&i Ji(xi,&i) (510)

is Za -Lipschitz continuous with respect to J;. O

Our proposed dynamics are illustrated in AlgoArithm 7.

Let us define & = col(6;)iez, # = col(7;)iez, A = col(Ai)iezr and the extended
game mapping

F(x,6) = col (Fi(z;,6;)) (5.13)

€L’
Note that
F(x,1®0(x)) = F(x). (5.14)

The following lemma shows an invariance property for the tracking dynamics in
Algorithm 7.

Lemma 5.2. For all k € N, it holds that

—k N

A= avg()\f)iel = an(sz)iGI

T = avg (P} )icz = ave (A} —bi)icz
7F = an(O'z]'C)ieI = U(ifk)-

Proof. Via induction, by the initialization and double stochasticity of W. ]
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To study the convergence of Algorithm 7, we first need the following crucial
reformulation.

Lemma 5.3. The iteration in Algorithm 7 is equivalent to

i [ =0 —aAwh)+ o(Fa) - Flat.z F1eo(e) -4 )
—
n Z:Bl(wk)

o 5.15
5'k+1' Wa:k: ﬁCOl (¢l(xf+1)*¢z(xf))lez ( . )
U WA | £ | Ticol (Ai(xfﬂ — b)) -
~k —k i
A +1_ WA aN7"

\W_/
=Bs(x*) =By (vk)

_ ~k ~
where, for all k € N, vF = (wF,x*), wF = (a:k,)\k), x" = (Ek,Fk,/\ ), and 11 :=
I— (%11T)®IN, W =WagI, A=diag(A;)icz, in the sense that the sequence

(wk7&ka7%k7xk)k€N
generated by Algorithm 7 and the sequence
~ ~ ~k —k
(", 6" +100("), 7 +10 (Az" —b), X +1®X )ren

generated by (5.15) from the initial state

0 «
)‘0 (?)Wg()\?)iezo
o’ | ' —1x0(x")
1= P - 10420 —b) (5.16)
3’ A —1@avg(\)ier
coincide. O
Proof. We proceed by induction, noting that the initial step of the induction holds by
the choice of initial state in (5.16). We first prove that 6" = 6*+1 — 1@ o(z* +1)

holds, assuming that the equality holds for k € N:

(5.12a) -1 ®U(wk+1)

W&k +col (¢4 (x; ) — i)
— W'+ W(1eo(ah))
+col (¢i(af ) = ¢i(ah) ;o p — 1@ (@)
= W& +col (¢i(2F 1) — i (ah)) .,
—1@ (o(@!) — o(a"))
Wk (- U5 @ 1) col (i(a ) — 6i(ah) g

5.15)
( -1 )0k+1

a,k:—i—l -1 ®0’($k+1) et
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where we noted that W (1®y) =1®y for any y, following the row-stochastic property
- ~k
of W. With the same steps, one can show for the 7 and X updates:

75,k+1 ~1® (A:Ek+1 _ b) — ;;k?-‘rl

. - ~k — _
A 1o —wa —|—col(z§ch1 —2Mier—10 (/\]H_1 - /\k)

Lem. 5.2 Ws\k + col(z;€+1 — Zf)iez -1® ?Wg(zz]‘€+1 - sz)iEI
CLD w3 4 aN (7 - 1@ avg(#F)ier)

Lemi 5.2 W;\k +OLN(7AJ€ 1 (Aa:k o b))
(5.18) SFH1

Furthermore, we see that

~k+1 Lem. 5.2
= a

A P

vg( i )ieT
5.11b
( = )avg(zf)iez—i—aNFk

Lem:. 52 Xk +a Z (Azxf — bi),
i€l

which is exactly the update rule for N in (5.15), and

ot CU gk a(F(zF,6F)+ATA)
—zF — a(F(zF) + ATX") + a(F(z*) — F(z®,6%) + ATA — ATA)

— 2 —a(F(x*)+ ATA) +a(F(zk) - F(z*,6%) - AT (AF —123")),
(5.17)

p— J— A —_ A_,k;
where the latter follows from ATX" = AT1® )\k). Note that A¥ =103 + X" from
the induction assumption, thus (5.17) reads as the update rule for ¥ in (5.15). W

Theorem 5.2 (GNE seeking in partial-decision information). Let Assumptions 5.1-5.4
hold. Then, there is amax > 0 such that, for all 0 < o < amax, the iteration in (5.15)
converges linearly to v* = (w*,0), with w* = (x*,\*): for all k €N

V) <V k),

where V (v) = ||lw —w*||% +||x]||?, for some n < 1. O

Proof. Following the initialization of Algorithm 7, (5.16) and the column-stochasticity
of W in Assumption 5.4, it can be shown that avg(xf)ieI =0 for all k € N. The
operator Bz in (5.15) is thus a contraction with factor 6 by applying [88, Lemma
10.3]. Instead, B; is a contraction for a small enough with factor (1 —2au.4 +a2€?4),
as in Theorem 5.1. The mappings By and By are Lipschitz continuous with constant
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proportional to «, by Assumption 5.5: this is clear for By, while it is concluded for
B4 by noting from the update of ¥ in (5.15) that £*+! —2* is given by a Lipschitz
continuous mapping multiplied by «, which can then be substituted in the definition
of By. Furthermore, note that

Bz (w*)=0 (5.18)
and that
w* =B (w*) (5.19)
as it follows from the KKT conditions in (5.3). It is then immediate that
By(w™) =0. (5.20)

Therefore, the proof can be carried out via standard small-gain arguments, and is
hence only sketched here. By the Cauchy—Schwarz inequality, we can bound

1B1(w") +Ba(v*) = w*||B <[1B1(w") — w7
+2|[By (@) —w*|[p[|B2(v") | p + B2 (v*) | B
<(1=2apa+ 0w —w*|p
+alyf|w® —w*|[pIx"(l+a?lallx"|?

where the latter follows from the aforementioned Lipschitz and contraction properties.
Note that ||Bz(v*)| is bounded independently of z* (hence, of w*) following the
definition of Bs. We further bound:

1B (") + Ba ()7 <[1B5(x*) 1> + 21183 (x*) || Ba (@) || + || Ba (") ||
<[1Bs(x")II?
+2[ B3 (X"l Ba(w") = Ba(w*)|| + | Ba(w") = Ba(w*)|?
<OIX"|? + alal|w” = w* || p[Ix"[| + alal X"
+a?ls]|w — w*[p + a1 1%,
where we noted from the equivalence of norms that

=

I* = || =< ypl|lw® —w* | p + X"

for some vp >0, and £1,42,¢3,04,05,0¢ > 0 are parameters independent of «. Follow-
ing the definition of V and the aforementioned bounds, we derive

-
V) < [Ilwk —w*llp} M [Ilwk —w*llp}

- x|l x|l
< Amax (M)V (UF),
where
1—20p4+a?(La+15) a(l1+103)
M =
a%(h +£3) 9+a€4+a2(€2+€5)

and Amax (M) = ||M]| < 1 for small enough « > 0. |
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Note that, for the special case A=1", a linearly convergent continuous-time
method for GNE seeking in partial-decision information was studied in [80]. Yet, to
our knowledge, Theorem 5.2 is the first result to ensure linear convergence in the
case of more general full-rank constraints.

Remark 5.1. The proof of Theorem 5.1 directly applies to the case of a time-varying
graph with weight matrizc W*, provided that Assumption 5.4 holds for each k €
N. With some modification, the argument can be extended also to the case of
doubly stochastic graphs that are not strongly connected at each step, but such that
[WHQWHQFL | W h+1Q — L11T(| <6 <1, for a @ >0 and all k € N.

5.5 Equilibrium tracking in time-varying games

We now consider the case where the game in (5.1a) varies over time at a rate such
that we can not assume a timescale separation between the game evolution and the
GNE seeking iterations. For each time index ¢ € N, the agents acquire a new instance
of the game:

(Viel) nell%“ Jit(yi, x—;) st (yi,x—;) € X (5.21)
y; €ER™i

We consider the case when the constraints of the game vary only in their affine
part, that is, X; := {x € R"|Ax = b}, and Assumptions 5.1-5.3 hold for each ¢. The
games in (5.21) define a primal-dual GNE pair sequence (w})¢en, corresponding to
the zero set of the KKT operators (A;)ien defined for all ¢ as in (5.3), with F,b
replaced respectively by F' := col(inJf)iez and b'. The GNE sequence is unique
for each ¢ following the strong monotonicity of A and [51, Ex. 22.12]. As the rate
at which the problem varies is comparable to the agents’ computation time, the
agents can only compute an approximation of the GNE at time t before they are
presented with a new instance of the problem. The goal of the agents is then to find
a sequence (w');en which asymptotically tracks relatively well the GNE sequence.
We formulate the following assumption, which is standard in the literature of online
optimization [48, Assm. 1], [82, Eq. 9] and is verified, for example, for games affected
by a bounded process noise in the linear constraints [84, Lemma 5].

Assumption 5.6. For some 6 >0, it holds that the solution w} of the game in (5.21)
satisfies

sup||wi,q —wi] <.

teN

Assumption 5.6 implies that the solution at time t is an approximate solution
for the problem at time ¢+ 1. Given an estimate w;_1 of the solution at time for
some time step ¢, we then propose to compute w; by performing K iterations of the
iteration in (5.8), warm-started at w¢_1, that is:

Y0 = Wi—1 (5.22a)
Y1 = Yer — @AYy 1) for k=0,. . K -1 (5.22b)
Wt =YK, (5.22¢)
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where (Y 1) ke {1,..,K} are auxiliary variables. The following lemma shows that, for
an appropriately chosen step size, the proposed algorithm tracks the GNE trajectory
up to an asymptotic error which depends on § and K.

Theorem 5.3. For any 0 < a < %%A, wo, K € Ny, the sequence (w¢)ien generated
by the iteration in (5.22) satisfies

K/2

limsup ||w; — w?|p < p—m(s\//xmax(P), (5.23)
t—o0 1—p
where p is as in Theorem 5.1. 0
Proof. Following Theorem 5.1, for a < Q%A,
)
K/2

|wi —willp < p™/ 2 |lwi—1 —wi] p-

From the latter, the triangle inequality and the fact ||z[|% < Amax(P)||z[|? for all z:

K/2 K/2

lwe —willp < p™/flwi—1 —wi_llp+p™ Fllwf —wi_ilp
< pK/2||wt*1 7""2(71”13 +PK/25\/ )Lmax(P)'

Iterating the latter ¢ times, we obtain

t
lwe —willp < P52 wo —wilp+ 32 p 726y Amax(P).
T=1

K/2

Since p < 1, the claim follows by the convergence of the geometric sequence. W

Let us now turn our attention to the time-varying counterpart of the partial-
decision information setup described in Section 5.4. Again, we consider aggregative
games in the form

Jit(xi,x—i) = Jit(2i,00(x))
1

where o¢(7) := 5 >_;c7 ®i,t(7i), and we postulate that ¢;; satisfies Assumption 5.5
for all I € Z,t € N. As in Section 5.4, we augment the state of each agent with an
estimate of the aggregative variable oy(x), of the dual variable and of the residual
Ax —b;. For every t, denote v} = (w},0), where w} = (x},\}) is a primal-dual
solution of the game at time ¢ and the vector of zeros represents the target estimation
error. We then define the reference trajectory as (wj)ien. At each time-step, we
propose to appropriately re-initialize the dynamic tracking of the estimated variables
and, in the spirit of the iteration in (5.22), to apply a finite number of iterations of
Algorithm 7. The resulting method is illustrated in Algorithm 8. We obtain the
following counterpart of Lemma 5.2 for the re-initialized dynamic tracking.

Lemma 5.4. For the sequence (act,zt,é't,f“t,j\t) generated by Algorithm 8, for all
t e N, it holds that

avg(Nit)ez = ave(zi1)ier,
avg(Pit)ier = avg(Aizit —bit)ieT,
)

i€ — Ut(wt)~
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Proof. Let us assume for some t:
avg(ﬂyt)iez = an(Aixi,t — bi,t)iEI- (525)

From the update step 4) and the re-initialization step 2), we obtain z; + = %i =T
and

avg(Fy 1 11)ier = avg(Pie)iez — avg(bi 41 — bit)ier
2% avg(Aily 441 —bit1)ieT-
Then, one can show with the same reasoning as in Lemma 5.2, that avg(ﬁfﬁerl)ieI =
avg(AﬁfiH_l —b; t+1)iez. From the latter and the update step 4),
avg(fit+1)ier = an(ﬁi[i‘,-i-l)iEI = an(Aigf,{tH —bit+1)iez-
The result follows by induction and similarly for a't,j\t- |

The re-inizialization of the dynamic tracking introduces an additional error
term, which requires the following technical assumption on the time variation of the
functions (¢; ¢)ren:

Assumption 5.7. For some d4 >0, it holds that

sup || col(¢i,¢ (i) — die11(2:))iez]| < g

x,t

Consistently with the notation used in Lemma 5.3, we denote = avg(Ait)ieT,
Gr=61—1@0(x), Tt =P — 1@ (Azs —b), A = A — 1@ Ny

Theorem 5.4. Let w! = (xt,Xt,&t,’th,Xt). There exists Qmae such that, for every
0 < & < Qpag, the sequence (wy)ien generated by Algorithm 8 satisfies

K/2

timsupllw: —wf o < T v/ A @) ((L+NE)+65)
—00

where Q = diag(P/2,1), for some n € (0,1). |

Proof. Following the same steps as in Lemma 5.3, the inner iteration (Step 3) of
Algorithm 8 can be shown to be equivalent to the iteration in (5.15), where F' and
¢; are substituted by their time-varying counterpart. Now denote

¥ =col (0,0,col (¢; ¢ (i) — Qsi,tfl(afi,t))iezacoubi,t —bit—1)ic1,0).

From Assumptions 5.6, 5.7 and from Ax} = by,
[l < 66+ D 11bi,e — i1l
€L

§5¢+N||bt—bt_1H §(5¢+N€A5

(5.26)
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From Theorem 5.2 and accounting for the re-initialization step, we find for every ¢:

leos —will < 0™ /Z w1+ —wilq (5.27)

for some 7 € (0,1). By the triangle inequality, Assumption 5.6 and (5.26), and from
the fact HzHQQ < Amax(Q)||2]|?, we have

lwi—1 4+ —willg < [lwi—1 —willo+lvellq
<lwi1 —wiille +[lwi —wisille + vl

<lwi-1 =wis1llg + vV Amax(Q)((1+ NLa)d+0p).

By substituting the latter in (5.27) and by iterating the resulting inequality, we
obtain

lwe =il < 1" wo ~ whllg + o 1\ Aaman @) (14 NLA)G +65).

As nK/ 2 <1, the result follows by convergence of the geometric series. |
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Algorithm 8 Time-varying fully-distributed GNE seeking

Initialization: choose a> 0 as in Theorem 5.2; for all i € Z, set ¢y € R™, 690 =0
zo € R™, Ao = 20, 74,0 = Aizi0, bio=0, ¢;0(-) =0.

Iteration: at time t € Nsq, for each agent i € T,

1. Acquire J; ¢, @i ¢, big

2. Initialize the auxiliary variables

o0
xiﬂf =Tit—1,

(5.24a)
%= Zig—1, (5.24b)
831&:& — i i—1(xip—1)+ Pi(zii—1), (5.24c)
ﬁ?,t =Pit-1+bit—biy1, (5.24d)
A0 =Kia (5.24e)

3. For all k€ {0,....,K—1},forallieZ:
e Local variables update:

P = 88, — (B3, 85+ ATSE)
=2 +aNy,
o]
o Estimation update: Agent i exchanges the variables (o ftv)‘fta T ) with

its neighbors, and updates

0k+1

Ok 1
Ot Z wh]%t‘*‘qszt( + ) — ¢zt( )
JEN,
0k:+1 ok+
zt sz,g ]t+A szt
JEN,
Sht+1 _ 0k+1 ok
A + Z wu)\]tJr —Ziy
JEN,

o)
. _SK ., _SK A _9K 4 _ 09K . _Z\K
4. Set ;¢ =Ty, Zigt = 254, Oit = 044y Tigt =T 4 Ait = /\i,t
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5.6 Numerical example

We demonstrate the proposed algorithms on a market clearing problem for
peer-to-peer energy market inspired by [89]. We consider N = 6 prosumers that
aim at determining their energy portfolio. At each time-step ¢, the agents can
either purchase power from a main energy operator, produce it from a dispatchable
energy source or trade it with their respective neighbors over a randomly generated
undirected graph G¥. Furthermore, the agents can exchange information over an
undirected connected communication graph G. We denote for each agent 7 and each
time-step t the power purchased from the main operator as letg, the produced power

as mi% and the power that agent i purchases from agent j as xﬁfj’t, jE ME, with
ME the set of neighbors of agent i over GE. The energy price posed by the main
operator increases linearly with the aggregate power requested. Thus, by defining
the aggregative value o™8(2™8) =", _,x"%, the cost incurred by each agent for
purchasing energy from the operator is J™&(z}'p,0™8(x,"%)) = c™8a™8(2,"8)x} ¢,
cmg > 0. We consider a quadratic cost on the powér generation incurred by the agents

(89, Eq. 2], with the form Jgf(xi%) = cdg(x?’% f:vi%’ *H2 Where xi%’ rf is the time-
varying scheduled set point of the dispatchable generators and ¢98 > 0. The price
(or revenue) of trading energy between peers is linear [89, Eq. 10], and the agents
incur a quadratic cost on the transactions for utilizing the market; thus the total
objective function related to the peer-to-peer trading is given by J“((m‘;fj’ t)j c NiE) =
1,7, ©,7,t

and, due to physical limitations, the power generated by the dispatchable units must
be non-negative. As the formulation in (5.1a) does not consider inequality constraints,
this is enforced by a Lipschitz continuous approximation of the logarithmic barrier
function JP27 (28 298) = T (218) + T (29%), where T (y) := min(—log(y), —vy +
1—1log(1/7)) for 4> 0. The total cost incurred by each agent is thus

ZjeNiE (¢t , + k(287 ,)?). The agents cannot sell power to the main operator

TH @iy _i0) =8 (28,05 (a)®)) + I (%)

(0 ee) I (0 )

Moreover, given a power demand pfm the agents need to satisfy the power balance
equation [89, Eq. 1]
d d
> (ﬁj,t)*‘letg"'xi,% =D (5.28)
JENE

As the power balance constraints are local, we do not apply the dynamic tracking
method to the associated dual variables (i.e., dual variables are managed locally, see
[90, Rem. 2]). Instead, coupling constraints between the agents decisions arises via
trading reciprocity constraints [89, Eq. 8]:

i+ e =0, (5.29)

We first consider a time-invariant scenario and compute the day-ahead market

The code is available at https://github.com/bemilio/Simple_peer_to_peer



5.7 CONCLUSION 101

clearing solution over an entire day, with time-steps of 15 minutes: namely, the cost
of agent i is given by Zthl J!, and the constraints in (5.28)-(5.29) are imposed for all
t=1,2,....,T, with T'=96. Figure 5.7.1 shows that, as expected, Algorithm 7 exhibits
a linear convergence rate with respect to the Lyapunov function in theorem 5.2.

Then, we consider a real-time scenario. In particular, the agents only have access
to a prediction on their load demand and generation set point over the coming
quarter of an hour; hence the cost of agent 7 at each time t =1,2,...,T is given by
J!. Note that the agents are in fact faced with a time-varying generalized game as
discussed in Section 5.5, which we address via Algorithm 8. The results are shown
in Figure 5.7.2. Because of the slow convergence (i.e., 1 is close to 1), K =1 results
in a significant tracking error; however, good performance is observed already for
K =100. Finally, in Figure 5.7.3, we show the constraint violation obtained by
the proposed method over the simulation horizon. As constraints are only satisfied
asymptotically, performing only a finite number of iterations per time-step leads to
a constraint violation, which as expected decreases with K.

5.7 Conclusion

Strongly monotone GNE problems with full row rank equality coupling constraints
can be solved with linear convergence rate, both in semi-decentralized and fully-
distributed settings, via primal-dual algorithms. The contractivity properties of the
iterates also allow the tracking of the solution sequence in time-varying games; in
this online setting, the asymptotic tracking accuracy can be increased by increasing
the update frequency.

As our results exploit the strong monotonicity of the KKT operator in a (non-
diagonally) weighted space, it is not clear how to embed projections in the proposed
methods, which is the main drawback of our approach. Future work should hence
focus on linear convergence in generalized games with local constraints (and with
inequality coupling constraints).
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Figure 5.7.1: Convergence of Algorithm 7 for the day-ahead market clearing problem.
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Figure 5.7.2: Tracking error of Algorithm 8 for the real-time market clearing problem with respect
to the day-ahead solution computed by 10° iterations of Algorithm 7.
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Figure 5.7.3: Constraint violation incurred by Algorithm 8 for real-time market clearing. The
inequality constraints enforced via the barrier function JP2" are always satisfied.
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Receding horizon control of
dynamic games
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Dynamic games as
receding-horizon variational
inequalities

One often gets the impression that [the Algebraic Riccati Equation] constitutes the
bottleneck of all of linear system theory

Jan C. Willems, in [91]

Anything that happens, happens.

Anything that, in happening, causes something else to happen,

causes something else to happen.

Anything that, in happening, causes itself to happen again, happens again.
It doesn’t necessarily do it in chronological order, though.

)

Douglas Adams, in “Mostly harmless’

We consider dynamic games with linear dynamics and quadratic objective functions.
We observe that the unconstrained open-loop Nash equilibrium (ol-NE) coincides
with the linear quadratic requlator in an augmented space, thus deriving an explicit
expression for the objective value achieved by the ol-NE. With such function as a
terminal cost, we show asymptotic stability for the system controlled via a receding-
horizon solution of the finite-horizon, constrained game. Furthermore, we show
that the problem is equivalent to a non-symmetric variational inequality, which
interestingly does not correspond to any Nash equilibrium problem. For unconstrained
closed-loop Nash equilibria, we derive a receding-horizon controller that is equivalent
to the infinite-horizon one and ensures asymptotic stability.

This chapter is partly based on Benenati, E. and Grammatico, S. “Linear-Quadratic Dynamic
Games as Receding-Horizon Variational Inequalities”. In: arXiv preprint 2408.15703, (2024)
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6.1 Introduction

We consider a regulation problem for a constrained, discrete-time linear dynamics-
quadratic objective (LQ) dynamic game, which emerges when the agents have
interest in reaching and maintaining a known attractor while optimizing an individual
objective. Dynamic games (and their continuous-time counterpart, that is, differential
games) model a dynamical system governed by multiple inputs, each controlled by
a decision maker (or agent) with a self-interested objective. Applications include
robotics [2, 8, 14], robust control [92], logistics planning [93] and energy markets [5],
to cite a few. An input strategy which no agent can improve via unilateral changes is
called a Nash equilibrium (NE). Interestingly, depending on the information structure
of the problem, dynamic games may admit different types of NE. In particular, if
the agents only observe the initial state and commit to a sequence of inputs which is
an optimal response to the input sequences of the remaining agents, then we have an
open-loop Nash equilibrium (ol-NE); instead, if the agents are allowed to continuously
observe the state, then a closed-loop Nash equilibrium (cl-NE) is an optimal feedback
policy given the current state and the control policies of the other agents. It is well-
known that a linear infinite-horizon cl-NE policy is linked to the solution of coupled
AREs under a stabilizability and detectability condition, see e.g. [9, Proposition
6.3]. Recently, the authors of [94] develop novel sufficient conditions for a similar
ol-NE characterization. In [95], the infinite-horizon continuous-time cl-NE problem
was related to the problem of finding invariant linear subspaces: this observation
has led to a significant development of the field [10] and solution algorithms based
on a geometric approach [96]. Other algorithms, based on the iterative solution of
Lyapunov or Riccati equations have been presented in [6, 97, 98]. Remarkably, some
preliminary steps have been made to compute all linear cI-NE strategies [99] when
multiple exist. The recent works [100, 101] study approximate solutions to differential
games, with [102] providing a distributed computation approach. Crucially, none
of these works consider the inclusion of constraints, and no established algorithmic
method to compute infinite-horizon NE trajectories exists, with only [6] providing
local, aposteriori convergence guarantees for the discrete-time, cl-NE case.

Computational methods for the constrained, finite-horizon case are instead
available both in the ol-NE case [2] and cl-NE case [7]. This has sparked the interest
for receding-horizon controllers, which compute the NE for a finite-horizon game
at each time step and apply the first input of the horizon as a control action. Such
approach carries multiple advantages, as the recomputation process allow the agents
to react to unexpected disturbances, and operating constraints can be taken into
account when solving for a finite-horizon problem [7]. Indeed, receding-horizon
solutions of dynamic games were successfully employed in drone racing [14], car
racing [8], logistics planning [93] and electricity market clearance [5] applications.
Generally, the stability properties of the closed-loop system are not analyzed, with
the exception of [5] and [103], under the restrictions of considering a potential game
and a stable plant, respectively.

The receding-horizon setup is related to distributed, non-cooperative model pre-
dictive control (MPC). Crucially, traditional distributed MPC approaches postulate
that all agents cooperate towards minimizing a common objective function, e.g.
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[104-106] consider the local objective to be a decomposition of a shared objective
function. Early attempts at fully non-cooperating MPC formulations result in the
system being in general unstable, see [107, Sec. 4]. In [108-110], cooperation between
agents is enforced by the introduction of additional constraints, which results in
stability of the closed-loop system. In our view, the introduction of these constraints
do not fully capture the non-cooperative nature of the problem.

In this chapter we take a different approach, which does not require the inclusion
of additional constraints. We begin by showing that the infinite-horizon uncon-
strained ol-NE characterized as the solution to the asymmetric algebraic Riccati
equation (ARE) in [94] can be interpreted as the input sequence resulting from a
linear quadratic regulator (LQR) in an augmented state space. By leveraging this
observation, we derive a novel closed-form expression for the value of the objective
achieved by the ol-NE. We include this expression as terminal cost for the receding
horizon controller. With this terminal cost, we show that the nominal trajectory of
the receding-horizon controller coincides with the constrained infinite-horizon ol-NE
- a result which generalizes the infinite-horizon optimality property of single-agent
MPC [111]. The asymptotic stability to the origin of the controlled system follows
then from the asymptotic convergence of the unconstrained, infinite-horizon trajec-
tories from each initial condition. A sufficient condition for the latter to hold was
derived in [94]. From a computational perspective, we show that the finite-horizon
problem to be solved in receding-horizon can be cast as a variational inequality (VI)
[32]. The extensive literature on VIs allows one to design efficient, decentralized
algorithms with convergence guarantees under loose assumptions and even in pres-
ence of coupling constraints. Interestingly, we find that the additive terminal cost
jeopardizes the structure of the problem, as the resulting VI is not associated to the
Karush-Kuhn—Tucker (KKT) conditions of any static generalized Nash equilibrium
problem (GNEP). In the cl-NE case, the expression of the unconstrained, infinite-
horizon cost-to-go is well-known in the literature. We analyze a receding-horizon
control architecture with such cost-to-go as terminal cost. Differently from the ol-NE
case, we let each agent include the cl-NE feedback policy of the opponents in the
prediction model. We show that the receding-horizon solution coincides with the
infinite-horizon cl-NE one in the unconstrained case. Our technical contributions
are summarized as follows:

e For the infinite-horizon, unconstrained ol-NE case, we propose a solution
algorithm inspired by [6] based on the iterative solution of Stein equations
(Section 6.3.1). We show that the ol-NE derived by the solution to the
aforementioned Stein equations is also the input trajectory of a set of LQRs
in an augmented space. We derive a novel expression for the objective value
achieved by such ol-NE (Section 6.3.2).

¢ By leveraging the findings in Section 6.3.1, 6.3.2, we derive a finite-horizon
constrained problem whose solution is an infinite-horizon constrained ol-NE,
thus generalizing the single-agent MPC infinite-horizon optimality property
[111]. We show that the system in closed loop with the receding-horizon
solution of the considered finite-horizon problem is asymptotically stable and
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it can cast as a VI (Section 6.3.3).

e By an appropriate choice of the terminal cost and prediction model, we derive
a receding-horizon controller whose trajectories are equivalent to the ones of
the infinite-horizon cl-NE (Section 6.4).

In Section 6.5, we illustrate two application examples via numerical simulations on
distributed automatic generation control and vehicle platooning.

6.1.1 Remarks on notation

We denote the set of T-long sequences of vectors in R™ as Stt. For v € SF, we denote
the t-th element of the sequence as v[t]. We denote a sequence v € S} parametrized
in y as v(y). We then denote the ¢-th element of v(y) as v[t|y]. For an invertible
matrix, A7 = (A7)

6.2 Problem setting
Problem setting We consider the problem of regulating the state of the dynamical
system

z[t+1] = Ax[t] + > Biu;[t] (6.1)
i€
to the origin, subject to state and coupling input constraints
z[t] e XCR", VteT; (6.2a)
ul[t] € Uz(u,z[t]) CR™ vteT, iel. (62b)

Each input is determined by a self-interested agent. Without loss of generality, we
consider inputs with equal dimension m for each agent. We denote the state sequence
of the system resulting by (6.1) with initial state x¢ and collective input sequence
u = (u;);ez as ¢(xp,u). According to the notation, we denote the state evolution at
time ¢ as @[t|xg,u]. We consider control problems over a horizon T, possibly infinite,
with quadratic stage costs

Vi€ L: bi(x,u) = 3|23, + 5 lluall%, - (6.3)
Define for each i the feasible input sequences
Ui r(zo,u—;) = {u; € S}'|
u;[t] € Us(u_s[t]) VEET; (6.4)
B[t|wo,u] €X Vt € TT}
and the collective input sequences
Ur(zo) = {u € SN™u; €U (o, u_;) Vi € T}. (6.5)

Finally, we assume that the origin is strictly feasible and that the state and input
weights are positive semi-definite and definite, respectively.

Assumption 6.1.
(1) 0 €int(X); Vi € Z,0 € int(U;(0)).
(i) Qi=C/C; =0, Ri=R] =0 VieT.
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6.3 Open-loop Nash trajectories

Depending on the information structure of the problem assumed for the agents,
dynamic games can have different solutions concepts [11, Ch. 6]. In this section, we
consider the infinite-horizon ol-NE trajectories, where each agent assumes that the
opponents only observe the initial state and subsequently commit to the sequence of
inputs computed using such observations. Define the objective

Vi I (uilzo,u;) i= tgﬂi(aﬁ[ﬂxo,u],ui[t]). (6.6)

The ol-NE trajectory is defined as follows:

Definition 6.1. [11, Def. 6.2]: Let zo € X. The sequences u € U (o) are an
open-loop Nash trajectory at xq if, for all i € T,

Jfo(ui|xo,u_i)§ inf Jfo(vi\xo,u_i). (6.7)

v €EU; oo (To,u_y)

6.3.1 The unconstrained infinite-horizon case

Let us first consider the unconstrained ol-NE problem, which is related to the solution
of [112, Eq. 9]

Viel Pt =Q;+ AT PVA™" (6.8a)
(3 :
K& = —R7'B pPrA™, (6.8b)
where
A% = A+ S BiKS". (6.9)
i€

By leveraging [94, Theorem 4.10], one can construct an ol-NE trajectory via a
solution to (6.8), as we report next:

Assumption 6.2. [94, Assumptions 4.6, 4.7]
(i) The matriz A is invertible.

(ii) For alli €, the pairs (A, B;) and (A,C;) introduced in (6.1) and Assumption
6.1 are respectively stabilizable and detectable.

Assumption 6.3. [94, Assumption 4.9] Denote S; = BinlBiT for all i. The matrix

Ho— {A"‘ZjeI(SjA_TQj) row(—S;A™ ") jer

col(“A~TQj)jex IvoA~T (6.10)

possesses exactly n eigenvalues with modulus smaller than 1. Moreover, an n-
dimensional stable invariant subspace of H is complementary to

m([*])
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Proposition 6.1. Let Assumptions 6.1, 6.2, 6.8 hold true and let (K", PP")iez
satisfy (6.8). Let A% be defined as in (6.9). For any xo € R™, let u®*(zo) € SY™,
%% (zo) € S be defined as

OL

Yt € No : 2°%[t|zg] := (A~ )t (6.11a)
VieZ,t € Ng: u"[t|zo] := K"z [t]|z0]- (6.11b)

Then, u®=(xo) is an ol-NE trajectory at the initial state xo and A" s Schur.
Proof. See Appendix 6.A. |

We recall that, according to the notation table and as highlighted in Section
6.1.1, the notation z°"[t|xo] in (6.11) denotes the ¢t-th element of x°"(x), where
" R™ — So]\o[, that is, °" is an infinite sequence parametric in xg. A similar
consideration holds for the notation u°"[¢|xg].

If we disregard the dependence of A”" on (PP™)jez, (6.8a) is a set of N Stein
equations, for which off-the-shelf solvers exist [7113]. One can then iteratively find
(PP*)iez that solves Equation (6.8a) with A°" fixed, and then update A”" according
to

A% = (I+Y,e7 8PP LA (6.12)
The equality in (6.12) is proven in Fact 6.1 (Appendix 6.A) when A is not singular.
This approach, inspired by the iteration in [6, Eq. 16] for symmetric coupled AREs,

is formalized in Algorithm 9. We recall that, in Algorithm 9, S; = B; R; 1BiT for all
i.

Algorithm 9 ol-NE solution via Stein recursion

1: Initialization: (Ki(o))iez such that A" = A+ ier BiKi(O) is Schur;
2: for k € N do:

3: for ¢ € 7 do:

Solve Pi(kJrl) =Q —|—ATPi(k+1)Z(k);

4:

v ol "

6 A e (T4 8P TY)1A
7 for i € 7 do:

s KD _poipT pErDZ Y,
9: end for

10: end for

6.3.2 The ol-NE as a linear quadratic regulator

In this section, we show that the matrices (K");cz in (6.11b) that characterize the
unconstrained ol-NE are related to N LQR controllers for N dynamic systems defined
in a higher-dimensional space. This result allows one to derive a novel expression
for the objective value achieved by the ol-NE, which is fundamental for our main
results in Section 6.3.3. For each i € Z, let us denote by P; %", K" the solution to
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the ARE that solves the standard LQR problem for the linear time-invariant (LTT)
system (A, B;), namely:

LQR

PIO" = Q; + AT PFOVA; (6.13a)
KM% = —R- 1BTPLQRALQR (6.13b)
A= A4 BiKFOR, (6.13¢)

In [94] the authors note that, for each agent 4, the ol-NE is the optimal input
sequence for the LTI system (A, B;) perturbed by the actions of the other agents,
which are thus treated as an affine, known disturbance signal. We observe that,
along the trajectory defined by the control laws (K");cz, such perturbation is fully
determined by the initial state and by the dynamics of the autonomous system
A%, Remarkably, the problem can then be cast as an augmented regulator problem
by considering a system with 2n states that incorporates the dynamics of the
perturbation. The value of the objective achieved from each initial state by the
augmented regulator can be written in closed form.

Lemma 6.1 (Nash Equilibrium as augmented LQR solution). Let (PP", K?")icr

solve (6.8) and let A°" as in (6.9). Let Assumptions 6.1(ii), 6.2, 6.3 hold true. For
alli € Z, define

~ A KOL ~ B,
. J#z st
fim [} SBAT) o B) 010
~ 0 ~
Qi = |:C(2)Z 0:| 5 Rz = ]%Z (614b)
Then, the ARE
P = Qi+ A] P;(A; + B;K;) (6.15a)
K;=—(R;+ B PB;)"'B]' P, A, (6.15b)
admits a unique positive semidefinite solution
~ |pwr p, ~ ~
i = ]%T *l N Kz ES [K;”QR Kz} (616)
T

where P; = PP — PFO% and K; = Kt — K" Furthermore, for alli €T, A;+BiK;
is Schur.

Proof. See Appendix 6.B. [ ]

O

Let us consider the lifted system (gi,éi) for some ¢ € 7 with initial state
col(zo,y0). Denote by col(z*,y*) and u} respectively the state and input sequences

of the lifted system in (6.14a) controlled with K; in (6.16), that is,
wilt] = KX [t) + Kiy* [t]; (6.17a)
e [t+1] = Az™[t] + Biug [t|+ >4, B K y*[t]; (6.17b)
yrt+1] = A7y 1. (6.17¢)
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Note that (6.17¢) implies y*[t] = (A”")tyo. Furthermore, from (6.11), ug* [tyo] =
KJ‘?L(ZOL)tyO, for all j € Z. Thus, substituting the latter in (6.17b),

o*[t+ 1] =Az™[t] 4+ Biu; [t] + %; Bjug*[tlyo]- (6.18)
e

In other words, z* is the sequence of states of the (non-lifted) dynamics in (6.1)
resulting by the input sequences v} and u°%(yo). We write this compactly as

z*[t] = ¢lt[zo, ui, u5(yo)]. (6.19)
Consider the function
2
1|0
Vi(zo,y0) == 3 6.20
i(70,90) 2‘ L/o} 5 (6.20)
where 13z solves (6.15). By applying a known result in the LQR literature [114, Thm.
21.1],
2 2
1 1’0:| 1 |::Ij*[t]:| % 2
5 =z % +||u; [t]||5 -
5l 525 Lt g, 1R,

By substituting (6.14b) in the latter to eliminate Qi, R, we find:
oo
Vi(20,90) = 3 E = ()1, + lui (111,

(6.19),(6. 3) 1 Z Li(Plt|xo, i, w5 (yo)], ui [t]) (6.21)

(6.6)
I (u |wo, w25 (yo))

< I (wilwo, ui(yo))  Vu; € ST
where the latter inequality follows from the optimality of u}. In particular, for
ro = Yo, we have

Vi(xo, o) < Jfo(uz|x0,u(}1(mo)) Yu; € Sg (6.22)
Note that, from Definition 6.1, for all u; € ST and u°" defined as in (6.11),
I (g™ (wo)|wo, ui(xo)) < Ji° (uslwo, ui(x0)). (6.23)

Thus, comparing the latter with (6.22), we conclude that V;(xg,2¢) is the infinite-
horizon value of the objective achieved by the ol-NE trajectory w°" from state
Zo:
Vi(wo,z0) = J* (ui”™ (x0)|zo, w5 (x0))- (6.24)
Finally, we observe from the Bellman optimality principle applied to the system
(Al,B ) that
Vi(zo,y0) = min g (|lzollg, + [luil%,)
i€k e (6.25)
+Vi(Azo + Biui + ;4 Bi K7 y0, A yo)

and the latter optimization problem has solution K;"zq+ Kiyo.
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Figure 6.3.1: Block diagram of the augmented system in (6.14a) for agent i: the red dashed line
highlights an uncontrollable mode which generates u(_”; Following (6.22), u?L is the optimal
control for this system if both the subsystems highlighted in red and in blue have the same initial
state.
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6.3.3 Receding horizon Open-Loop Nash equilibria

In this section we construct a finite-horizon problem whose solution is a truncation of
the constrained infinite-horizon ol-NE. This result, shown in Theorem 6.1, generalizes
the infinite-horizon optimality property of single-agent MPC, which is known to
require a careful tuning of the terminal cost function [111]. Intuitively, the finite-
horizon problem in (6.26a) is defined by including V; in (6.20) as a terminal cost:
As discussed in Section 6.3.1, this function of the state captures the infinite-horizon
value of the objective achieved by the ol-NE in (6.20). However, as V; is defined in
an augmented space, special care is needed. We show in Theorem 6.2 that, with this
design choice, the receding-horizon control law obtained by applying the first input
of the solution to the finite-horizon problem makes the origin asymptotically stable.
Finally, in Proposition 6.2, we cast the finite-horizon problem as a VI. Consider the
problem, parametrized in xg € X, of finding the finite horizon solution u*™(zg) such
that

VieZ: uj™(zg) €  argmin  J;j(u;|zo,u’™), (6.26a)

u; €Ur 5 (zo,u)

Ji(ui|xo,u™) := Zte?’ (éi(qé[ﬂxo,ui,uﬁ],ui [tD)
+ Vi (@[T o, us, wlt], §[T |0, u™™)), (6.26D)

where V; is as in (6.20). Note that, for each agent i, the optimization problem in
(6.26a) is parametric in the decision variables of all agents u™™. Interestingly, this
structure differs from the one of a static NE problem, where the parametrization is
on the decision variables of the remaining agents, see e.g. [3, Eq. 1]. Let X‘;L be

a constraints-admissible forward invariant set for the dynamics z[t+1] = A° z[t].
Techniques for computing X" can be found in [115] and references therein. Define
the set

X :={xo € X | Ju™ that solves (6.26a);

6.27
¢[T|x07uFH] c X?L}. ( )
We show next that the infinite-horizon constrained ol-NE trajectory can be recovered
by the solutions to (6.26a).

Theorem 6.1. Let Assumptions 6.1, 6.2, 6.3 hold true. Let (PP" K")icz solve
(6.8) and let u(x) € SN™ be the unconstrained ol-NE sequence for any x € X, as
defined in (6.11). Let u™ € SN™ solve (6.26a) for some x¢ € X, with associated
state sequence ™ := ¢ (xg,u™), and define the extended input sequence u®* € So]gm
as

[t] ift<T

[t—T|x™[T]] ift>T. (6.28)

FH
Vi ubX[t] = {Z:’L
K3

Then, u®* is an infinite-horizon ol-NE trajectory for the system in (6.1) with state
and input constraint sets X, (U;);ez, respectively, and initial state xq.

Proof. See Appendix 6.C. |
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In light of Proposition 6.1, by solving (6.26a) at subsequent time instants, one
expects the agents not to deviate from the previously found solution. This is because
they will recover shifted truncations of the same infinite-horizon ol-NE trajectory.
Indeed, in Lemma 6.2 we show that a trajectory solving the problem in (6.26a) when
shifted by one time step still solves the problem in (6.26a) for the subsequent state.
This is crucial, because the control action remains the same between subsequent
computations of the solution, keeping the evaluated objective constant—except for the
first stage cost, which does not appear in the summation. The cumulative objective
of the agents decreases then at each time step and it can be used as a Lyapunov
function to show the stability of the origin (modulo some technicalities, due to the
fact that Q; is only positive semidefinite for all ¢). Let us formalize this next.

Lemma 6.2. Let Assumptions 6.1, 6.2, 6.8 hold. Let xo € X, with X defined in
(6.27). Define the shifted input sequence us* € SN™ as follows:

1] ift<T—1

6.29
KO'a™ [T ift=T-1 (6.29)

VieZ: ui"[t] :{

where u"" solves (6.26a) with initial state xg, " := ¢ (xo,u™) and (PP", KP")icr
solve (6.8). Then, u" is a solution for the problem in (6.26a) with initial state
x™M[1].

Proof. See Appendix 6.C. |

In view of Lemma 6.2 and given that the problem in (6.26a) might admit multiple
solutions, we assume that the shifted solution in (6.29) is actually employed when
the agents solve subsequent instances of the problem in (6.26a). Assumption 6.4 is
practically reasonable as, when implementing a solution algorithm for (6.26a), one
can warm-start the algorithm to the shifted sequence 4" defined in (6.29).

Assumption 6.4. For any xg € X, if the problem in (6.26a) at the initial state xg
admits a solution u™ and if the shifted sequence u? defined in (6.29) is a solution
of (6.26a) with initial state ¢[l|zo,u™], then u" is selected by all agents when
solving (6.26a) with initial state ¢[1|zo,u"™].

We are now ready to conclude on asymptotic stability of the system controlled in
receding horizon:

Theorem 6.2. Let Assumptions 6.1-6.2, 6.3—6.4 hold true. Consider the system in
(6.1) with feedback control x — u"™[0|z], where u™™ (x) solves (6.26a) for the initial

state x. The origin is asymptotically stable for the closed-loop system with region of
attraction X, defined in (6.27).

Proof. See Appendix 6.C. |
6.3.4 The open-loop Nash equilibrium as a Variational Inequality

Theorem 6.1 bridges the infinite-horizon constrained ol-NE trajectory with the
solution to a finite-horizon equilibrium problem, whose solutions can be computed
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w0 Az + > Bju; | %
i€T

1™ that solves

VI(F(:|z),Ur(x))

Figure 6.3.2: Block scheme of the proposed receding-horizon controller

algorithmically. In fact, we recast the problem in (6.26a) as a VI, for which a plethora
of efficient solution algorithms exist under some standard monotonicity and convexity
assumptions [63].

Proposition 6.2. Assume Ur(xg) non-empty, closed and convex for all xo € X. For
some T € N, define for all i € L:

B; 0 0
AB; B; 0
Fi = . )
AT_lBi AT_2Bi ... B;
6.30
0 := col(AF), 74 (6.30)
Ri =IT®R;
— [Ir190Q; 0
Q= [ o T Pz.OL]
and define F(:|zg) : RTN™ — RTN™ " parametric in xo € R™, as
F('u,|x0) ::blkdiag(ﬁi)iezu
r'Q rfQ
1@ 1@ (6.31)
+| ¢ |[f1 ... InJu+t| : |Owz.
IyQn INQy
Then, any solution of VI(F(-|zo),Ur(z0)) is a solution to (6.26a).
Proof. See Appendix 6.C. [ ]

It can be shown via the the generalized Gerschgorin disk theorem [76] that the
VI in Proposition 6.2 is strongly monotone [63, Def. 2.3.1] if, for all 4, R; = r;I, with
r; > 0 large enough. A strongly monotone VI admits a unique solution [63, 2.3.3],
thus this design choice makes Assumption 6.4 redundant.

Remark 6.1. It is well-known that a static conver game can be cast as a VI defined
via the stacked partial gradients of the agents’ cost functions [32]. We note, however,
that the matriz multiplying w in (6.31) has non-symmetric diagonal blocks, since
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(PP")iez are in general non-symmetric matrices. This implies that there do not
exist N cost functions (one for each block) such that F corresponds to their stacked
gradients. Therefore, there is no static game whose NE corresponds to the solution
of (6.26a). This confirms the observation made in Section 6.3.3 that the structure

of (6.26a) differs from the one of a static NE problem.

6.4 Closed-loop Nash equilibria

We now turn our attention to the cl-NE solution concept, where each agent assumes
that the opponents can observe the state at each time step and recompute their input
sequence accordingly. The game is defined over the feedback control functions o; :
N xR™ — R™. Denote o = (0;);ez. We overload the notation for the state sequence
of the system in (6.1) controlled by the feedback law o as ¢(z¢,o). Furthermore,
we denote as u;(xg,0) the sequence of inputs for agent ¢ € Z resulting from o that
is, for all t € T,

u[t|zo, 0] = 04(t, ¢[t|wo,0]), VieT;
¢[t+ 1|£L’0,0’] = A¢[t|l’0,0’] + Ziel‘ Bju; [t|$0, 0']

We also overload the notation for the objective in (6.6) as
Viel: Jf°(0i|m0,0'_i) = Z &(qﬁ[t\xo,a],ui[t|w0,0']). (6.32)
t=0

We consider the unconstrained case with X =R", U; =R™, for all : € 7.

Definition 6.2. [11, Def. 6.3]: The feedback strategies o* : R™ — RN™ are a cI-NE
if for all xg € R™, for alli €1,

G A R (Y ) (6.33)

The unconstrained cl-NE problem admits a solution among linear feedback control
laws, and a sufficient characterization of the cl-NE in terms of couple AREs is well-
known in the literature [9, Prop. 6.3]. Let us report a recent result which relaxes
the assumptions:

Assumption 6.5. (A,row(B;)iez) is stabilizable and (A, ;.7 Qi) is detectable.

Lemma 6.3. [94, Cor. 3.3] Let Assumption 6.1(it), 6.5 hold true. Let (PP", K")iez
solve

vier.d B =@t (AZ5) T povA™ (6.34a)
K& = _lelBiTPiCLZCL (6.34b)
with PE* = (PF)T =0,

—CL
A" = A+ Yo BKSY

- (6.35)
CL
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'll,_z[k] K CL
(Bj)ji f* —i [+

W[ ] o1

cL |
K"

Figure 6.4.1: Block diagram of the cl-NE control problem for agent i. The linear feedback K" is
optimal for the depicted system.

Then, the linear feedback control o = (K{")ict is a cl-NE, the resulting closed-loop
dynamics is asymptotically stable and J;(o;|zo,0—;) = %HxOH?)_CL forallieT and

xg € R™.
Proof. Tt follows directly via algebraic calculations from [94, Cor. 3.3]. |

If one ignores the dependence of A”; on K o (which emerges via (6.34b)), (6.34a)
is a standard Riccati equation that solves the LQR problem with state evolution
matrix Zi and thus one can expect its solution to be symmetric. For this reason,
(6.34) is sometimes referred to in the literature as a symmetric coupled ARE, as
opposed to (6.8), whose solutions are in general not symmetric. As proposed in
[6], the cl-NE can either be computed by iteratively fixing (KjCL)j#Z- for each 7 and
solving (6.34a) with a Riccati equation solver, or by rewriting (6.34a) as

PiCL =Q,+ (ZCL)TPI'CLZCL . (KfL)TBiTPiCLZCL

(6.ilb) Qi+ (PiCLZCL)TSiP,L'CLZCL +(ZCL)TP19LZcL

~

Q;

and by solving the latter via a Lyapunov equation solver, considering éi fixed at
each iteration.

6.4.1 Receding horizon closed-loop Nash equilibria
In this section, we study the stability of the origin for the system (6.1) in closed-loop
with the receding-horizon solution of a finite-horizon cl-NE problem. As a cl-NE
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is a feedback law valid on the whole state space, one needs not recomputing it at
each iteration and thus the concept of a receding-horizon cl-NE is counterintuitive.
However, one must consider that the state-of-the-art solution algorithm for finite-
horizon cl-NE problems [7], which handles state and input constraints, only computes
a single trajectory resulting from a cl-NE given an initial state. By receding-horizon
cl-NE, we then mean computing at each time step a trajectory resulting from a
finite-horizon cl-NE policy, and applying the first input of the sequence. For stability

purposes, a natural choice for the terminal cost is %|| . ||?3_CL, where (K%, P"%)icr

solve (6.34). The finite-horizon clI-NE problem can be written as a NE problem with
nested equilibrium constraints parametrized in the initial state [7, Theorem 2.2]:

T—1
Vis o (al0]) € argy, o min, HalTBe + 3 ot il (6.361)
7 T v =
st. a[t +1] = Az[t] + Byug[t]+ > Bjop_y ;(ot]), VteT.
JE€ET_;
(6.36b)

In the latter, the notation arg,, (0] minuiesgf denotes that the minimum is taken
over u;, while only the first element u;[0] is returned. The equilibrium constraints
emerge implicitly in (6.36b), as o7%._, is defined by an instance of the problem in
(6.36) over the shortened horizon T'—t¢. The analysis of (6.36) is challenging, as
the equilibrium constraints make (6.36) a set of optimal control problems over an
implicitly defined, nonlinear dynamics. We then consider a surrogate problem to the
one defined in (6.36), obtained by substituting 07._; ; with the linear feedback K™
forall t € T,j #1.

T—
Vi: up(z[0]) € argugrelisr%n%||x[T]||i,iCL + ;_:01 0;(z[t], ui[t]) (6.37a)
s.t. z[1] = Az[0] + Bjw; [0] + 3, Bju;[0]; (6.37b)
alt+1) = A% a[t] + Byui[t], Vt#0. (6.37¢)

We remark that, given z[0], (6.37) is a static NE problem (without equilibrium
constraints) and it thus admits a VI reformulation via standard results [3]. Intuitively,
this substitution modifies the prediction model of each agent: instead of expecting
the remaining agents to apply a finite-horizon cl-NE with shrinking horizon, it is
predicted that they will apply the infinite-horizon cl-NE. Next, we show that the
choice of prediction model and terminal cost ensures that (K{"zg);ez is a solution
to (6.37) from any initial state zg.

Theorem 6.3. Let Assumptions 6.1(ii), 6.5 hold. For all T € N, g € R™, u°" is a
solution to (6.37) for the initial state xq, defined as

L= (A VEET;

xC
6.38
W] = K] Wi eT, VieT, (6.38)

where (K%)iez solve (6.34) and A" is in (6.35).

1




122 6 DYNAMIC GAMES AS RECEDING-HORIZON VARIATIONAL INEQUALITIES

Proof. See Appendix 6.D. |

The stability of the origin under the receding-horizon controller follows then
from the one of (K{");cz. Note that the results of Theorem 6.3 trivially hold also
when input and state constraints are included, if the initial state is in a constraints-
admissible forward invariant set for the autonomous system z[t+1] = A° z[t], thus
still ensuring local asymptotic stability of the origin. This is because, from Theorem
6.3, the input u} defined in (6.38) is the minimizer for the i-th unconstrained problem
in (6.37) when the other agents apply the input «* ;. Since u; is constraint-admissible,
it is also a minimizer of the constrained problem: note that the introduction of the
constraints does not modify the model of the dynamics assumed by agent i. The same
considerations do not hold for the case in (6.36), because the equilibrium constraints
in (6.36b) are affected by the introduction of state and input constraints, thus u*
might not satisfy the equation in (6.36b) even when it is constraint-admissible for
the state and input constraints. Intuitively speaking, the feedback (K;);cz might
not be a cl-NE even when state-and-input constraint admissible, as one agent could
“take advantage” of the opponents’ constraints by driving the state outside the
constraint-admissible region.

6.5 Application examples

6.5.1 Vehicle platooning

We consider the vehicle platooning scenario in [116]. The leading vehicle, indexed by
1, aims at reaching a reference speed v*¢f, while the remaining agents i € {2,...,N}
aim at matching the speed of the preceding vehicle, while maintaining a desired
distance d;, plus an additional speed-dependent term h;v;, where v; is the speed of
agent ¢ and h; is a design parameter. For all ¢ # 1, the local state is

r— Pi—1 —Di — di — hiv; (6.39)
! Vi—1 = ;i ’ '

where p; denotes the position of agent ¢ with respect to the one of agent 1. As the

position of agent 1 with respect to itself is 0, we define 21 = [O,furef fvl]—r. The
dynamics is that of a single integrator and N —1 double integrators sampled with

Code available at github.com/bemilio/Receding-Horizon-GNE
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rate 75 = 0.1s. With algebraic calculations, we obtain

A = blkdiag ([8 (1)] N ® [(1) ZD :

2/9
31:5§V®[TST/ } -V Lﬂ;

S

)
s

iTs+12/2 A4
BN:—(S%@[hT:Tb/]' (6.40)

Vie{2,..,N—1}:

2 . 2
B =6, [Eﬂ -iN® {}“TS”S /2} :

7 Ts

where 07" € R™ is a vector with only non-zero element 1 at index ¢. We impose the
following safety distance, speed and input constraints:

pi—1 > dM +py;
vzmin <y <ot (6.41)

min . max
u;p o <ug <ug .

As the system in (6.40) does not satisfy the stabilizability assumption 2(4), we apply
to each agent i a pre-stabilizing local controller

K30 = (6) T @ [-1,~1].

We then apply the ol-NE receding horizon control with state and input weights
Q; =1, R; =1 and horizon T' = 10. The VI defined in Proposition 6.2 is solved via
the forward-backward splitting method [63, §12.4.2], see also [4, Algorithm 1] for an
implementation in the context of NE problems. This method employs dualization
of the constraints which couple the decision variables of each agent (i.e. state
constraints and coupling input constraints), while the local input constraints are
handled via a projection step. A sample trajectory is shown in Figure 6.5.1, where we
observe that the vehicles achieve the desired equilibrium state while satisfying all the
constraints. We compute a suitable set X?L by inscribing a level set of a quadratic

Lyapunov function of the autonomous system with dynamics A°" in the polyhedron
defined by (6.41). As shown in Figure 6.5.1(c), the state enters the set X defined
in (6.27) after t = 11.7s. We verify numerically that, for each subsequent time step
7, the input sequences u5" computed at time 7 as in (6.29) are a solution for the
game at time step 7+ 1, which is to be expected due to Lemma 6.2. Additionally,
we test the robustness of the method to errors in the terminal cost function. We
perturb the matrices (P°");cz with an additive error matrix, generated by sampling
a normal distribution. We perform 100 state realizations for each tested value of
the variance. In Figure 6.5.2 we plot the difference between the resulting state
trajectory and the nominal state trajectory . We observe that the problem is robust
to small perturbations of the terminal cost function, as the state sequence deviates

by approximately 2% when the variance is 1% of the maximum element of (P");cz.
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Figure 6.5.1: Vehicle platooning test case. (a) Position with respect to the leading agent. The
shaded areas in the first plot represent the distance constraints for each agent. The dotted lines
represent the desired values at steady state. (b) Velocity. The dotted lines represent the desired
values at steady state. The dashed red lines represent the constraints. (c) Distance of the terminal
state to X?L.

The error increases significantly for increasing error values. We observe that the
system remains asymptotically stable in all the tests.

6.5.2 Distributed control of interconnected generators

We test the inclusion of the proposed terminal costs on the automatic generation
control problem for the power system application considered in [107]. The power
system under consideration is composed of 4 generators interconnected via tie-lines
arranged in a line graph. The models for the dynamics of the generators and of the
tie lines linearized around a steady-state reference are the ones in [107, Eq. 17], with
the model parameters specified in [117, §A.1]. This application example is chosen
as it is observed in [107] that the distributed MPC control architecture (equivalent
to the receding-horizon ol-NE without terminal cost in this chapter) leads to the
system being unstable, and thus it is a challenging distributed control problem. The
model considered has 3 states for each generator (namely, the angular velocity of
the rotating element, the mechanical power applied to the rotating element and the
position of the steam valve) and one for each tie line (namely, the power flow). Each
agent has control authority over the reference point of their respective governor.
The control objective for each agent is to regulate the deviation from the reference
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Figure 6.5.2: Deviation between the nominal state sequence & and the state sequence z resulting
from the receding horizon solution of (26) when the matrices (P°");cz are perturbed by an additive
error sampled from a normal distribution.

angular speed of the generator rotating part and power flow at the tie-line they are
connected to, with the exception of agent 1 that does not control the tie line. In
numbers, we have

Ri=1 Vie{1,2,3,4);
Q1 = blkdiag(5,014x14);
Vi€ {2,3,4) : (6.42)

Qi = 5}(0}) T @ diag(5,0,0) 0123
‘ 03x12 55?+1(5?+1)T

We observe that the system does not satisfy Assumption 6.3, thus we could not
test the performance of the ol-NE receding horizon controller. Conversely and as
expected from Lemma 6.3, we find a stabilizing infinite-horizon cl-NE using the
iterations in [6, Eq. 16]. We test the receding-horizon cl-NE controller which solves
the problem in (6.37) from a randomly generated initial state, and we compare its
stabilizing property with respect to the controller which implements (6.37) without a
terminal cost in Figure 6.5.3. We estimate a constrained admissible forward invariant
set of the form

7 ={zeX||z|% <7} (6.43)

where P defines a quadratic Lyapunov function for the autonomous system At
defined as in (6.35) and r is determined numerically such that the controller (K");ez
is feasible. We observe that the system is asymptotically stable when the initial
state is in X?L. In general, the inclusion of the terminal cost is beneficial for the
asymptotic convergence of the closed-loop system.
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Figure 6.5.3: Percentage of asymptotically stable trajectories for the 4-zone power systems in
[107] controlled by the receding-horizon cl-NE for different initial states zg. P and r define a
constraint-admissible forward invariant set as in (6.43).

Appendix

6.A Additional results and proofs to Section 6.3.1

Proof of Proposition 6.1 The proof is based on showing that (6.8) implies [94, Eq.
4.32] and then applying [94, Thm. 4.10]. We left-multiply (6.8a) by S;A~" and sum
over 7 to obtain:

Y SAT(Q - PPy = 3 —S; PyrAT

JEL JET (6 44)
©E) 5 B, '
JjeET
Thus,
—or (6.9),(6.44 B
7oL (6:9),( )A+ZjeISjA T(Qj_PjOL)' (6.45)
By substituting (6.45) in (6.8a) we find
ATT(Qi = PEY) == PEH(A+ Y1 SiA7 T (Q; — PPY)) (6.46a)
K{* =—R;'BI PP (A+ Y07 SiA~T(Q — PY)). (6.46b)

The latter reads as [94, Eq. 4.32]. From [94, Thm. 4.10], u°" defined in (6.11) is an
ol-NE and lim;_, o z[t|20,u°"(20)] = 0 for all z¢, thus A°" is Schur. |

Fact 6.1. Let P°", K" solve (6.8). Let A be invertible. Then, (6.12) holds true.
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Proof.
2D Ay s BiKY (6.47a)
O g5 8P A” (6.47b)
& (I4+Y,e7 5P ) A A =4 (6.47¢)
& (I+X,er SiPPY) A A =1, (6.47d)
thus (I+),c7 SiPP") is invertible. Left-multiplying (6.47c) by (I+3,c7 SiPP") ™
shows (6.12). ]

6.B Additional results and proofs of Section 6.3.2

Let us present a preliminary result to the proof of Lemma 6.1:

Lemma 6.4. Let (PP, KP");ez solve (6 8) and let Assumptions 6.1(ii), 6.2 hold true.
Then, for each i€, PPY = P;" JrPZ where PZ satisfies

Py = (A" TPA + (&%) T PE™ (Y, 4 BiKSY) (6.48)
and KP¥ = K" +IN(Z-, where
K= —(Ri+ BiPF"By) 7' B] (PA™ + PO (3, BiKS™)). (6.49)
Proof. PF?" is symmetric [114, Thm. 22.2], thus (6.13a) can be written as
PRt — @, 4 (AL T pran g, (6.50)
Now note:

—LQR\ T (6.8b)
(A7) PIB K" =

(6.13b)

(ALQR)TPLQRB RS 1BTP0LA 651
(BT PevA””
Substituting PP = P;°" + P in (6.8a):
Pr 4 Py = Qi+ AT (PF 4 P) A
(6.13¢) Qi+ (A LQR) (PiLQR+]3i)ZOL B (BiKiLQR)TPiOLZOL
(6.51) Qi+ (AL T (pron L ByA (AT prom g Kor,

Subtract (6.50) from the latter to obtain (6.48). Let us rewrite (6.8b) and (6.13b)
respectively as:

(Ri+ B PP"Bi)K{* = =B PP (A+Y,; BiKS"); (6.52)
(R; + B PF"B,) K" = — B, PF* A. (6.53)
Substitute PP = P[" + P in (6.52):
(Ri+ B Py B) K = =B (PP (A+ Y4 BiK§™) + BiBiKEY),
which reads as (6.49) after subtracting (6.53). |
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Proof of Lemma 6.1 By the Schur property of A , it follows that any control
action that stabilizes (A, B;) is stabilizing for (A;,B;) for all i, thus the system in
(6.14a) is stabilizable. Let

Gi=[c; 0],

where C; is as in Assumption 6.2. Clearly, @i = @T@ Let fAllz = Az for some
A>1 and @-z = 0, that is, let 2z be an unstable unobservable mode of EZ From the
stability of A", it has to be z = [z7,0T]T for some 2 € R™. Then, A;z = Az and it
has to be 2 =0 by the detectability of (A,C;). Consequently, (ﬁz,@) is detectable.
Following [118, Cor. 13.8], (6.15a) admits a unique positive semidefinite solution
and the corresponding controller is stabilizing. Consider the partition

51,1 p1,2
P, P

i L K. =[K! K2).
Pi2,1 Pi272 ? [ i z]

i=

By expanding (6.15) for the blocks Pil’l, Pf’l and K 1, one obtains via straightforward
calculations:

P = Q;+ ATPM (A+ B;K}) (6.54a)
K} =—(Ri+ B/ P"'B;)~'B/ P A (6.54b)
PP = (Y, BiKSY) T PP A+ BiK}) + (A™)T PP (A+ BiK}).  (6.54c)

1

We note that (6. 54&) and (6 54b) have the same expressions as (6.13a) and (6.13b),
respectively. From P 0, P Lo Thus, P Uis the unique positive semidefinite
solution of (6.13a) and P1 ! = Pe%, Kl KiLQR. Thus, by substituting P/*" and
K;°" in (6. 540) one obtains that (P2 1) must satisfy (6.48). As (6. 48) is a Stein

equation in Pl, its solution is unique followmg the Schur property of A " and A7"
[119, Lemma 2.1]. Thus, (P*1)T = ;. [ |

6.C Proofs of Section 6.3.3 and 6.3.4

Proof of Theorem 6.1 By the invariance of X})L u®x

ol-NE trajectory, we proceed by contradiction. Assume there exists v; € Uso (20,
such that

is feasible. To prove it is an
EX)
I (vilzo, u5) < J7°(ui™ |wo, uy) (6.55)

where J° is defined in (6.6). Let us substitute the definition (6.28) of ™ into
(6.6):

T2 (P g, u™S) = J° (uf (2 T[T, u% (27 [T])) + 7 s (@™ [e], s [1])
C20 v, (@7 1), 29 1)) + Tt b (a7 8], ur 1))
(6-2:6"0)

Ji (uixo, u™).
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Denote the state sequence x, = ¢(xo,v;, u"%): from the definition of (6.6),

U2 (w0, uS) = J° (il [T, w® (e (7)) + 23231 bl vile)
e Vi 1) T+ S5 (1] i)

(6.§b) JZ’ (1}1‘ |$0, 'u,FH).

Thus, (6.55) contradicts the definition of w™ in (6.26a). It follows that u** is an
ol-NE for all zg € X. [ |

Proof of Lemma 6.2 We first note that, for any zg, by evaluating (6.25) at the
optimal input u; = (K;*" + K;)zq for a generic ¢ € Z and substituting K; "+ K; =
K?P" (Lemma 6.4), we obtain

Vi(zo,20) = li(wo, K" x0) + Vi(Azo + 3 e 7 BjK]‘?LxO,ZOLxO)

_ _ (6.56)
= li(zo, K2 x0) + Vi (A" 20, A" 20).
We proceed by contradiction and thus assume for some v; € U; ("™ [1],u")
Jiwila (1], u) < (1], u), (6.57)

where J; is defined in (6.26b). Denote z, = ¢(z""[1],v;,u’"). Define the auxiliary

sequence
FHE ift=0
AT LU (6.58)
vilt—1] ifte{l,.,T—1}.
One can easily verify that

Gt +1|xo, 05, u] = ay[t], VEET. (6.59)

As v; € Uy p (2™ [1],u’%), clearly 9; is also feasible, that is, 0; € U; 7 (zo,u"™). By
expanding (6.26b),

Ji(vila™ 1,4 = Vi (2 [T), [T |27 [1],0%]) + 30 (o [t], vilt])
2 Vi (1), A 2T + T olf (wo[t], vilt])
(6.25)
> Vil [T = 1],2™[T) + S i H vilt])
C29 v (o[ o, 05, u™™], 2" [T ])+Z H i (0[tlwo, 0, uy], 0i[1])
(6.26b)

Ji(0;|zo, u™) — ;(zo,ut"[0]).
(6.60)
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From (6.26b) and the definition of u*" in (6.29),

T o 1], = T ] )
L [T, K T))
V(A T A 2 ) (6.61)
(6.56)

Vi(@ [T], 2" [T]) + 32 5 (@™ 1] uf ™ [1])
O gl o, w) — £ o, s 0))
By substituting (6.60) and (6.61) in (6.57), one obtains
Ji(ﬁi\xo,uFH) < Ji(UfH|IE0,uFH)

which contradicts u*™ being a solution of (6.26a). |
Proof of Theorem 6.2 Let C :=col(C})iez, where C; is defined in Assumption 6.2.
Clearly, (A,C) is detectable by the Hautus lemma and Assumption 2(#). (A,C)
is then uniformly input/output-to-state-stable [12, Def. 2.22], [120, Prop. 3.3].

Furthermore, there exists L such that A+ LC is Schur. Then, there exists P, that
solves the Lyapunov equation

P, —(A+LC) " PL(A+LO)=1.
For some 7x,7y,yu > 0 and for all z, it holds that
Az + 3,7 Biuillp, — 2B, < —wllzll® + 2y [Cal|? +yullu . (6.62)

The proof of the latter inequality can be found in [120, Sec. 3.2], and it is thus
omitted. From (6.62),

1Az + 3 ez Biuill 3, — lollf, < —wlal® + iz w(l2lly, +ulluill?)  (6.63a)
< =l +7 ez (leldy, + luillg,),  (6.63b)

where (6.63a) follows from ||Cz||?> =", Hx"?@ and (6.63b) follows from the equiva-
lence of norms and by taking 7 as the maximum multiplicative constant. From the
direct application of [12, Theorem B.53], there exists a continuous A, continuous,
increasing, unbounded a7, g, and a positive definite p such that

A(z) < az(|l=]) (6.64a)
—p(lzl) + ez (23, + luillR,)- (6.64b)

Consider the candidate Lyapunov function

V(@) = M)+ 2 ez Jiw (@) |z, u™ (), (6.65)
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where ©u"™(z) solves (6.26a) for the state z. Let ™ = ¢(z,u™). Denote the shifted
sequence u®" as in (6.29), and recall that u®" solves (6.26a) for the state z""[1]
following Lemma 6.2 and Assumption 6.4. Furthermore, note that

Stz 1], u] = 2"t +1] VeeT. (6.66)

V(1)) — A [1]) 2 S s e 1), u)
1€T
(6.26b),(6.29) 3 (%(ZOLxFH[T]’ZOLmFH[T])
1€l

+ 0 (2MT), KO 2 T])
+zfz‘(f&<¢[t|xFH[11,uSHLuFH[t+1]))

IO & (Vi T+ E )
i€l
(6.26b)

20 S e (il u) — £, 0)))

ULV (@)~ M)~ Siex (Lo, u 0] ).
(6.67)
We rearrange (6.67) and substitute (6.3) to obtain
V(@™ 1) = V(2)=A"[1]) - Az) = X ll=]13, + [l (0]
er (6.68)
(6.64b)
< =p(lll)-

From the invariance of X?L, A%z e X)C}L. As A%z is the terminal state for u" with
initial state 2*"[1], we obtain from the definition of X’ that X" is an invariant set for
the closed-loop system. We conclude that the closed-loop system is asymptotically
stable with region of attraction X' [12, Thm. B.13] [ |

Proof of Proposition 6.2 For this proof we treat finite sequences as column vectors,
that is, u; = col(u;[t])ter. Let u* solve VI(F(:-|zo),Ur(xp)). Consider the matrix
I';, defined in (6.30): We can rewrite the state evolution as

|z, ui,u* ] ]
= Ouxg+Tu; + Z Fju;f. (6.69)

O[T |z0, i, u* ] ua

Denote the partitions

T.

=1
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where I'; is the last block row, that is:
L= [AT"1B, AT—2B; .. B;].

Using (6.69) we find the following expression for the terminal states appearing in
(6.26b):
$[T|xo,u*] = ATwo+Ljuf + 3, ;T ul

i (6.70)
O[T |wo,us,u’ ;] = ATwo +Lyui+ 3,4, Lyus.

Substituting (6.69) and (6.70) in (6.26b), one obtains with straightforward calcula-
tions:
Ji(uilzo,u*) =u) T} (L PFO"Tu; + ]Slzzuf)
+ Uz‘TLTPiOL(ATxO + Zj;éiEju;)
—  _T —
+gu (Ri+ Ty (Ir1 @ Qi)Ti)u; (6.71)
—T — —
+u T (Ir—1® Qi) (O + 324, Tjub)
+ f(mOa U*)v

where f contains the terms that do not depend on u;. By deriving the latter with
respect to u;,

VJi(uslzo, w*) =T (P} T;u; + P,L;u})
+£z’TPiOL(ATxO+Zj;Ai£jU;)
+ (R; +fZ(IT—1 ®Qi)Ti)u;
+T; (Ir—1© Qi) (Bwo + 32,4, Tjul).

(6.72)

By evaluating the latter at u} and by substituting P/ + P = PP (Lemma 6.1), it
can be verified that

F(u*|zo) = col (VJi(uj |x0,u*))iez.

Furthermore, J;(:|zo,u*) is convex for every zg, because P/ =0, Q; =0, R; > 0.
Thus, by the definition of VI solution, for any u; € U; r(xo,u*;):

0 < F(u*|zo) " (col(us,u”;) —u*)
= VJi(uflzo,w*) " (u; —u)

S JZ(’LLZ|I'0,’U,*) - JZ‘(U:|1’0,’U/*)7

that is, u* solves the problem in (6.26a). |
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6.D Additional results and proofs of Section 6.4

Before proving Theorem 6.3, let us show that the cl-NE satisfies an optimality
principle:

Lemma 6.5. Let (P°", K{")icr satisfy (6.34). Then, for allieZ,
Mlel2en = min £i(e,u0) + §IA 0 + Bougl3en (6.73)

and the minimum is achieved by K" x.

Proof. Let us rewrite (6.34b) as
K = —(R;+ B, P°“B;) "' Bl P“ A"

By setting the gradient of (6.73) to 0 and comparing the resulting equation with
the latter, one can see that the minimum is achieved by K;™x. By substituting
= K"z in (6.73), the minimum of (6.73) is
213, + (K" 2) T RiK§ e+ (A ) T PPVA™

CE o3, — (Beha) T B PO A w4 (A ) T PPV A

= |23, +aT (A" = Bik*) T PPrA™

(6.34a)
[Edly=
]
Proof of Theorem 6.3 We rewrite the minimization in (6.37a) as
2 2
i ST Ialr i, + sl
+ min (|27 =13, + [lwilT - 1]]%, (6.74)

u; [T—1]€R™
+alT]2ex) }-

By substituting the constraint (6.37c) in (6.74) and by applying Lemma 6.5, the
inner minimization in (6.74) is solved by w}[T —1] = K{"z[T —1]. Substituting (6.73)
in the latter, we obtain

min ([l = 1|[pex + 720 (I, + lluslr]l%,)-

uiEST 1

By repeating the reasoning backwards in time and substituting the constraint (6.37b),
(6.37a) becomes

. 2
i (IO, + w0, + |42(0] + ez By 0[3en)- (675

If u;[0] = K7"z[0] for all j € Z_;, the minimum is obtained by u;[0] = K{*z[0]
following Lemma 6.5. Thus, u* is a NE. |
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Probabilistic game-theoretic
traffic routing

“The worst of the plagues which truly defame Sicily and especially Palermo in the
eyes of the world...well... you already understand what I'm talking about, there’s no
need for me to say it... I'm even ashamed to mention this...

It’s the traffic! Too many cars! It’s a tentacular, swirling traffic that prevents us
from living and turns us all into enemies, family against family! Too many cars!”

From the movie “Johnny Stecchino”

“There’s an infinite number of monkeys outside who want to talk to us about this
Y
SCT Zpt for Hamlet they ve worked out.”

Douglas Adams, in “The hitchhiker’s guide to the galaxy”

We examine the routing problem for self-interested vehicles using stochastic decision
strategies. By approximating the road latency functions and a non-linear variable
transformation, we frame the problem as an aggregative game. We characterize the
approzimation error, and we derive a new monotonicity condition for a broad category
of games that encompasses the problem under consideration. Next, we propose a
semi-decentralized algorithm to calculate the routing as a variational generalized Nash
equilibrium and demonstrate the solution’s benefits with numerical simulations. In
the particular case of potential games, which emerges for linear latency functions, we
explore a receding-horizon formulation of the routing problem, showing asymptotic
convergence to destinations and analyzing closed-loop performance dependence on
horizon length through numerical simulations.

This chapter is partly based on Benenati, E. and Grammatico, S. “Probabilistic Game-Theoretic
Traffic Routing”. In: IEEE Transactions on Intelligent Transportation Systems, 25(10):13080-13090,
(Oct. 2024).
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7.1 Introduction

Traffic jams generate a heavy burden on the society [121] and, as car traffic already
makes up a large share of the EU transport infrastructure costs [122], it is imperative
to mitigate the road congestion without expanding the existing infrastructure. The
increased availability of real-time information on the state of the road network has
the potential for a more efficient traffic-aware route planning.

Related work: Previous studies have considered routing strategies which optimize
a system-wide efficiency metrics [123-125]. A shortcoming of this approach is that
the drivers can find a more advantageous path than the one assigned and thus
they might not adhere to such an externally-imposed solution. A workaround to
this issue is to limit the inconvenience caused to the users [124, 125]. However,
this approach still does not fully address the inherently competitive nature of the
problem, which is more properly modeled as a game, as noted in the seminal work[126].
Crucially, under relatively loose conditions, games admit a set of Nash equilibria
(or Wardrop equilibria, if the impact of each agent on the road latency is assumed
negligible), that is, a set of decision strategies from which no agent has an incentive
in unilaterally deviating and thus need no external imposition. Wardrop equilibium-
based routing methods have been studied first in [126], and in [127] it is shown that
they exhibit bounded system-level inefficiency. The inclusion of capacity constraints
was considered in [128]. The Wardrop equilibrium of the routing problem is typically
found by reformulating the problem as an equivalent optimization problem [129] or
variational inequality [130], and capacity constraints can be handled by Lagrangian
duality [131]. However, these reformulations require a pre-computation of every route
available between each origin-destination pair, which can become cumbersome for
large networks. By contrast, [132, 133] propose a Markov Decision Process (MDP)
model that requires no pre-computation of the paths. This idea is further elaborated
in [25], where the problem is cast as a (monotone, aggregative) generalized Nash
equilibrium problem (GNEP). The latter approach is particularly appealing from a
computational perspective, as recent developments in algorithmic game theory has
made available a plethora of efficient Nash equilibrium-seeking algorithms which
allow for a decentralized computation [17].

Contributions: Inspired by [25], we cast the vehicle routing problem as a GNEP. Our
contribution is threefold:

e In Section 7.2, we demonstrate that commonly used routing objective functions,
e.g. [25, 132, 133] and this work, are an approximation of the expected traversing
time and we characterize the approximation error.

e In Section 7.3, we establish the monotonicity of the game under a less restrictive
condition than the one derived in [25, Lemma 1]. Technically, we achieve this
by carefully characterizing the eigenvalues of a class of matrices whose structure
emerges in the pseudogradient’s Jacobian (Lemma 7.8). We then solve the game
via the inertial forward-reflected backward (I-FoRB) algorithm [17], which does
not require the pseudo-gradient to be cocoercive as does the algorithm adopted
in [25] (namely, the preconditioned forward-backward [35]) and thus it converges
without a quadratic regularization term [25, Equation 5].
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e In Section 7.4, we propose a modified formulation of the problem which allows
one to progressively recompute the agents’ paths in a receding horizon fashion
(instead of solving for the entire path in one computation) in the particular case
of a potential game [134]. This property of the game allows one to cast the
receding horizon game as an model predictive control (MPC) controller, and
thus we show asymptotic convergence by a careful choice of the terminal cost.
This novel approach allows one to reduce the decision horizon, thus reducing the
computational burden as the vehicles move forward.

Finally, in Section 7.5, we support the theoretical results by comparative numerical
simulations.

Remarks on notation We denote the set of T-long sequences of vectors in R” as
S}. For v e S}, we denote the t-th element of the sequence as v[t]. Analogously,
we denote the set of T-long sequences of n x m real matrices as S7*"". Matrices
are denoted with capital letters. We denote the k-th element of a vector v by a
subscript, e.g. vg. Similarly, we denote the (a,b)-th element of a matrix M as M-
For an indexed set of vectors, e.g. (Ui)ie{l,”_7N}7 we denote the k-th element of the
i-th vector by separating the indeces with a comma, that is, v; . Similarly, for the
indexed set of matrices (M;);e(1,....n}, the (a,b)-th element of the i-th matrix is
denoted as M; (4 )

7.2 Traffic routing as a generalized Nash equilibrium prob-

lem
Let R(N,E) a directed graph modelling a road network whose nodes A represent
the junctions and each edge (a,b) € £ represents the road from a to b. We study the
problem of routing N populations of vehicles Z :={1,...,N}. Denote Z_; :=Z\ {i}
for all i € Z. Each population is made up of V' vehicles, where vehicles in the same
population i € Z share the same initial position b; € " and destination d; € N.

Remark 7.1. Each population contains the same number of vehicles without loss of
generality. In fact, let each population contain (V;);cz vehicles and let V € N be such
that V;/V €N for all i. Then, we can split each population i into V;/V populations
of equal size V.

Next, we ensure that each destination node can be reached:
Assumption 7.1. R(N &) is strongly connected and (a,a) € € for each a € N'.

The vehicles aim at reaching their destinations within a time horizon T. For
convenience, let us denote T := {0,...,7—1}. The control action determines the
probability for the controlled vehicle to drive through a certain road and it is the
same for each vehicle in a population. In this setting, each population acts as a single
entity, thus, we refer to each of them as an agent. We stress that the route of each
vehicle is a realization of the probabilistic control action, thus vehicles represented
by the same agent might take different routes. To formalize this, let us denote
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the junction visited by the v-th vehicle of agent i at time ¢ as s; ,[t], which is a
stochastic variable with event space N and probability vector p;[t] € AW |, that
is, pi,alt] :=P{s;[t] = a}, where p;o[t] denotes the a-th element of p; 4[t]. The
control action is the sequence of column-stochastic matrices II; € S¥v lXWI, where
the (a,b)-th element of the matrix at time ¢ € T is defined as

s ol = {g{s¢,v[t+1] = b|s;o[t] = a} i Ezz; Zi (1)

From the law of total probability,
pilt+1] = (I[t]) " ps[t] for all i € Z. (7.2)

The initial state of agent ¢ is p}*, with only non-zero element pii“bi =1. In the
remainder of this section we show that, under an appropriate reformulation of (7.2),
the problem that arises in the proposed setting can be cast as a generalized Nash

equilibrium problem (GNEP).

7.2.1 Affine formulation of the system dynamics

Similarly to the approach in [135], we reformulate the nonlinear dynamics in (7.2) in
terms of the transformed variables

M (0,0 [t] := T (0, [t] i alt] (7.3)

defined for all : € Z,(a,b) € £,t € T. By the definition of conditional probability, we
have

Mi,(a,b) [t] = P{Siﬂ,[t+ 1] =b, Siﬂ)m = a}. (74)

In words, M; (4,5 [t] represents the probability that, at time ¢, agent ¢ traverses the
road from a to b. Denoting 7 := {1,...,T'}, the decision variable of each agent is:

col(M; (a,p)[t]) (a,p)es teT . (7.5)
ol (i)t

Wy -

Without loss of generality, w; in (7.5) does not include any variable corresponding
to I1; (4,5 [t] with (a,b) ¢ £, since the probability of traversing a non-existing road is
zero. We denote in boldface the concatenation over Z and with boldface and indexing
—i the concatenation over Z_;, e.g. w := col(wj)iez, w—; := col(w;)jez_,. We also
define n,, :=T(|€] 4 |NV]), and we note w; € R™ for all i € Z. The following lemma
states that, by imposing appropriate linear constraints on w, the transformation in
(7.3) can be inverted and the resulting matrix sequences (II;);cz are coherent with
the dynamics in (7.2). All proofs are provided in the Appendix.
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Lemma 7.1. For each i € T, let w; in (7.5) satisfy:

> M apltl = piplt+1] forallbe N, teT; (7.6a)
a:(a,b)€E
M; (a.0)[t] = pialt] forallae N, te{l,...T—1}; (7.6b)
b:(a,b)e&
> M (a0l =pi, for all a € N; (7.6¢)
b:(a,b)e€
M; (a,p)[t] >0 for all (a,b) €&, teT. (7.6d)

Then, w; € (AENT x (AWNT and a choice of TI; such that p; follows the dynamics
in (7.2) is:

1 .
™NT if Pi,a[t] =0

Hi,(a,b) [t] = ‘Iwi!(a,b) [t] . (77)
el FPialt] 70

for all (a,b) € E;t € {1,....,T—1}, and

1 p in
T if pia =0
i (a,0)[0] = M, (0[]

in Zf pi'n [t] 7é O

1,a
pz,a ’

(7.8)

Note that, in (7.7) and (7.8), the a-th columns of II;[¢] such that p; 4[t] =0 and
pi’q =0 can be chosen to be anything that sums to 1, as those values do not influence
the evolution of the vehicle distribution.

7.2.2 Control objective and constraints
We enforce the routing of each agent by constraining the destination node d; to be
reached with high probability:

pia, T >1—¢e,  Viel, (7.9)

where ¢ is a free design parameter. Let us introduce for each (a,b) € £ the latency
function £, 3) : R>0 = R>0, which maps the ratio of vehicles on a road to its
traversing time. A common model is the Bureau of Public Transport (BPT) function
[136]:

€(a,b)

- E+1
'(3;3)) (0) = T(ap) <1 +0.15 (M) ) ’ (7.10)

where ¢(q ) and 7, ) are the capacity and the free-flow traversing time of (a,b),
respectively, ((4,p) > 0 is the number of uncontrolled vehicles on the road normalized
by VN and & > 0 is a parameter often set to £ = 3, e.g. [125, 136]. More generally,
we consider functions that satisfy the following:

Assumption 7.2. For each (a,b) € €, the latency function Liap) 18 C?, non-negative,
non-decreasing and convez.
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The number of vehicles traversing road (a,b) at time ¢ is drawn from a Poisson’s
binomial distribution with NV trials, grouped into IV groups of V' trials with identical
success probability M; (, p[t], where i € Z indexes the N groups. Thus, its expected
value is ) ;o 7V M; (4 [t] [137, Eq. 15] and the expected ratio of vehicles on (a,b) is

O (ap [t]:=avg(M; (ap)[t])icz-

Let 607 5 [t] be the (actual) ratio of vehicles on road (a,b) at time t. The expected
traversing time is ]E[ﬂ(a’b)(c%(“;’b) [t])]. This is in general intractable to compute: let
us instead consider the first-order approximation of £(, ;) around the expected value
of the argument.

E{ta) (0% ) } = E{ b (@) [0) + Loy (018, D (@ 1] = s 1) }

{1} M M A~ M M
= L0ab) (0o [t]) + L) (0700 [E]) (E {U(a,b) [t]} ~O(ab) [ﬂ)

{2}
= Lab) (0 p(t])

(7.11)

where in (7.11), {1} follows from the linearity of the expected value and from the
fact that ot [t] is deterministic, while {2} follows from E{&I(‘g’b) [t]} =0lap) [t].
Although nonlinear functions of the congestion were previously used as road traversing
cost [25, 132, 133], the interpretation provided by (7.11) is novel, to the best of our
knowledge. To justify the approximation in (7.11), we leverage known results on the
Taylor series of stochastic functions [138, §6] in order to show that the approximation
error vanishes with the number of vehicles NV

Proposition 7.1. Let each vehicle v in agent i draw the event (s; o [t] = a,s; o[t+1] =b)
with probability M; () [t] independently from the remaining vehicles. Then,
. 2
(g(a,b) (U?Z,b) [t]) — f(a,b) (U(Nfz,b) [ﬂ)) = YNV T 2NV,
where 1
E{ynv} < 157 Yo (o) [1])?
and, for every e >0, there exists K¢ > 0 such that

sup (]P’{|ZNV > L}) <e.
N,VeN T8NV f) T

We now define the cost of traversing (a,b) at time ¢ as

Ta) (M (@) []) =M (a4) () (000 [1]) - (7.12)
The objective pursued by each agent reads then as follows:
Ji(wi,w—s) == fi(wi) +( % SJ(a,b) (M (0 p)[t]), (7.13)
a,b)e

teT
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where f; : R™ — R encodes a local cost for agent i. Quadratic costs are considered
in [25, Eq. 5]. We consider a more general class of functions.

Assumption 7.3. The functions (f;)icz in (7.13) are convex and belong to the class

c2.
Finally, we introduce the maximum capacity constraints

2 Miapll] <Cap) forallteT, (ab) e (7.14)
i€l

which we recast via appropriately defined matrices (A;);ez, Ai € RTIEIxnw p e RTIEN
A:=row(A;)ier:
i€l

7.2.3 Generalized Nash equilibrium problem
We frame the model derived in Sections 7.2.1 and 7.2.2 to the concept of GNEP
introduced in Section 2.3.1. Each agent solves the local optimization problem

i i(wi,w—; 1
| nin. Ji(wi,w_;) (7.16a)
viel: s.t. Ajw; <b— Z Ajwj, (7.16b)

JET_;

where ; := {w € R™|(7.6),(7.9) hold} for all i. The coupling between the N opti-
mizations problems in (7.16) emerges both in the cost functions and in the constraints,
thus defining a generalized game [3]. In particular, the game is aggregative because
the coupling between cost functions depends only on the average of the decision
variables o(7 [t], for all (a,b) and t. A desirable solution is the generalized Nash

equilibrium (GNE) w*, from which no agent has an incentive to unilaterally deviate.
Definition 7.1. A collective strategy
wreQ:= <>< Qi> [{w € RV™ | Aw < b}
i€
is a generalized Nash equilibrium for the game in (7.16) if, for each i € T,
Ji (i, w™ ;) < Ji (wi,w™ )

for any wi € Uiy eR™ Ay <b—3 .7  Ajwi}.

7.3 Generalized Nash equilibrium seeking
We now turn our attention to the derivation of a distributed algorithm to find a
GNE of the problem in (7.16). Let us formulate the following feasibility assumption:

Assumption 7.4. The set €2 is non-empty and it satisfies Slater’s constraint qualifi-
cation [51, Eq. 27.50].
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€ in Definition 7.1 is compact and convex because defined by linear equations.
Furthermore, the local cost functions are convex, as formalized next:

Lemma 7.2. Let Assumptions 7.2, 7.3 hold. For each i €Z, J; (wi,w_;) is convex in
w; €Q; for allw_; € Xjel_i Q;.

Under Assumption 7.4 and Lemma 7.2, we conclude that a GNE exists [57, Prop.
12.11] if the game mapping

F(w):= col(VwiJi(wi,w_i)) (7.17)

i€l
is monotone. Monotonicity of the game mapping is one of the mildest conditions

under which effective GNE seeking algorithms can be derived. The authors of [25]
show that monotonicity of the game defined using £{7) in (7.10) for all (a,b) holds if

enough non-controlled vehicles populate the roads [25, Eq. 18], with the caveat that
this number must increase proportionally with the number of controlled vehicles.
This might not be reasonable if the share of controlled vehicles is large. In the
following, we derive a milder condition.

7.3.1 Monotonicity of the game
To study the monotonicity of the proposed formulation, let us define for each (a,b) € £
the operators Fi, p) RN - RN as

F(a,b) (y) :=col (vyl J(a,b) (y))iEI (718)
where we compute
Vi Jap) (¥) = Capy (aVE(Y)iez) + N Yil{ap (ave(y)ieT)- (7.19)
We now link the monotonicity of F' to that of each F{, ).

Lemma 7.3. The operator F' in (7.17) is monotone if F(q ) in (7.18) is monotone
for each (a,b) € €.

We find a monotonicity condition for the particular class of £(, p) described via
BPT

the following assumption. Note that this includes E(a b) in (7.10) for large enough
C(a,b)> and that Assumption 7.2 is implied by Assumption 7.5.

Assumption 7.5. For all (a,b)€E, £,y in (7.12) is in the form

k a,
Feet) (0+(ap) !

Liap)(0) =T(ap) +

where &, T(a.b)s K(a,b)sCla,p) € R>0 and ((qp) satisfies

2_ —
C(a,b) > max (68]\/8 ) %) . (720)

Lemma 7.4. Let £, 1) : R>o — Rx>q satisfy Assumption 7.5. Then, F(q ) defined in
(7.18) is monotone on [0,1]V.
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Remark 7.2. (7.20) is satisfied for any ((q,4) > 0 whenever § < 2.

Remark 7.3. Let us compare the condition in (7.20) with the previously known

monotonicity condition derived in [25] for the latency function é‘f{ff)) with & = 3.

Following (7.20) the game is monotone if ((q,p) > ﬁ for all (a,b), which is satisfied
if at least % uncontrolled vehicles traverse each road. By contrast, taking into account
that [25] considered V =1, the bound in [25, Eq. 18] requires 35Y uncontrolled
vehicles on each road when translated to our setting. By applying Lemma 7.4, one

can then find more general conditions for the convergence of [25, Alg. 1] than the
ones specified in [25, Thm. 1].

As © C [0,1]¥" by Lemma 7.1, the following result is immediate by Lemmas
7.3 and 7.4:

Lemma 7.5. Under Assumption 7.5, F in (7.17) is monotone on Q.

Lemma 7.5 is fundamental for guaranteeing the convergence of the GNE-seeking
algorithm proposed in Section 7.3.2.

7.3.2 Semi-decentralized equilibrium seeking
To solve the game in (7.16), we focus on the computation of a variational GNE
(v-GNE) [3, Def. 3.10], that is, the subset of GNEs which satisfy the Karush-Kuhn—
Tucker (KKT) conditions

> (7.21)

where A € le(l) is the dual variable associated to the shared constraints in (7.14).
The v-GNEs have desirable characteristics of fairness between agents and there
exist several efficient algorithms for their computation. In particular, we adopt the
Inertial Forward-Reflected-Backward (inertial forward-reflected backward (I-FoRB))
algorithm [17], for its convergence speed and low computational complexity. The
I-FoRB algorithm converges in the general class of (non-strictly) monotone games.
On the contrary, the algorithm proposed in [25] converges only if the game is strongly
monotone, thus an additive quadratic cost is necessary, which is not needed in our
model. The agents perform a reflected projected-gradient descent of the Lagrangian
function with an inertial term (7.22b). Then, the agents communicate the primal
variable and auxiliary variables d to the aggregator. In turn, the aggregator updates
the aggregate variable and the dual variable via a reflected dual ascent with inertia
(7.23b) and communicates them to the agents. We now state the main result of this

w X, ez N, (wi)+F(w)+col (Al N);
[A]Gzer N (A)—Aw—kb

€]
RY)

section, where we denote by Llf the Lipschitz constant of f; for all ¢ € Z (which exist
following Assumption 7.3 and the compactness of €2):
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Algorithm 10 I-FoRB GNE seeking for traffic routing

Initialization. Vi € Z set wEO),wl(l) eRm; A A0 € le(l)-
For k e N: a

1. BEach agent i € 7 receives o) \(¥) and computes:

19 29, 50l ) T e, 5) (7220
Wi =projg, (" —as(r{? + ATA®) 1o —wF V) (7.220)
AT =24, — 4,00 b, (7.22¢)

2. The aggregator receives (w(k+1),d(k+1)) and computes:

ok+1) an(w§k+1))ieZ (7.23a)
A+ — Projple| (A® 4 Bavg(dF ) iez +0(AF —AE=1)y) (7.23b)
>0

Proposition 7.2. Let Assumptions 7.3, 7.4, 7.5 hold and let

ko _
Liap) = ~%2 (14 Cap)® +EQ+Cap)* )

L> L L
> Igleag( ; )+($)§§g( (a,b))

9€[0,3),
§>2L/(1—30).

Then, (w(k),/\(k))keN generated by Algorithm 10 with stepsizes

0<Oéi§(HAi||+5)_1 forallieT

0<B<N(ZN, 1A +6)7"

converges to col(w*, \*) where w* is a v-GNE of (7.16).

7.4 Receding horizon formulation

Due to the constraint in (7.9), the problem in (7.16) admits a solution only if, for all
1, the destination d; is reachable from the starting node b; in T steps. In common
applications, choosing a large enough T that guarantees feasibility might lead to a
heavy computational burden. In this section, we propose an alternative formulation
of the problem in (7.16) without the constraint in (7.9) as N coupled Finite Horizon
Optimal Control Problems (FHOCPs), which we label Finite Horizon Dynamic Game
(FHDG). Inspired by the Model Predictive Control (model predictive control (MPC))
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literature, we propose to repeatedly solve the FHDG in receding horizon and to
iteratively apply the first input of the computed sequence. The agents are directed
to their destinations by means of a terminal cost which penalizes the distance from
their destination. Remarkably, the introduction of a terminal cost is reminiscent of
the classic stability requirements of MPC [12, Sec. 2].

7.4.1 Equivalent finite horizon optimal control problem
Let us formalize the game under consideration, parametrized in the initial distribu-
tions (pi*);ez through (7.6¢):

forallieZ: min Ji(wij,w_;) (7.24)
wi €Vi(p}*)

where V;(p*) := {w; € R™|(7.6)}. We emphasize that we do not include the con-
straint in (7.14): due to the probabilistic control action, an unlucky realization might
lead the constraint (7.14) to be unfeasible at the successive time steps. Instead,
Yi(pi*) is non-empty for any pi". In this section, we show the equivalence of the
problem in (7.24) to a FHOCP. As a first step, we rewrite the equations defining
YV; as the state-space representation of a constrained linear system. We define the
desired distribution p;* as the one where every vehicle is at their destination, that
is, [p5]a = 04, (a), where g4, is a Kronecker delta centered in d;, and the associated
equilibrium input u;* := col(d4, (a)d4; (b)) (a,p)ce, that is, the vector of edge transitions
associated to remaining in the destination node d; with probability 1. Let the state
dimension n :=|N| and the input dimension m := |€|. We define the state and input
sequences z; € S, and u; € S}, respectively, as follows:

i [0] := i — pj", (7.25a)
z;[t] = pilt] — p}°, Vie T, (7.25b)
u; [t] := col(M;, (q.0)[]) (a,p)ce — Ui VteT. (7.25¢)

This definition ensures that the origin coincides with the desired distribution and
equilibrium input. We define the selection vectors S, € R™ for all (a,b) € £ such

(a,b)
that (nggz))T(ui[t] +uit) = M; (q)[t], as well as

B:col( N (S;jf;))T)
«( beN

a:(a,b)eE

P:col( 3 (s;jf;))T> :
aeN

b:(a,b)eE

It can be verified that Bu;" = Pu;* = p;* and thus, by substituting the definitions of
B and P in (7.6a) and (7.6b):

(7.6a) < x;[t+ 1] = Bu,lt] VteT; (7.26a)
(7.6b), (7.6¢) < z;[t] = Pu;[t] vt € {0,....T}. (7.26b)
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The desired state (that is, the origin) is an equilibrium under the input u;[t] =0
which, following (7.25¢) and the definition of u;", corresponds to M; (g, a,)[t] = 1.
We ensure that such action is cost-free for all agents (and thus, trivially, a Nash
equilibrium (NE) strategy) when the initial state is the origin by assuming that
the self-loops have no traversing cost. Another restriction on the cost functions is
supported by the following lemma, which states that £(, ;) must be affine for the
game in (7.16) to be potential [134, Sec. 2]. This property is crucial to rewrite (7.24)
as a single optimization problem.

Lemma 7.6. Let Assumption 7.2 hold. The game in (7.24) is potential if and only if
Ciapy in (7.12) is affine for each (a,b) € €.

In view of these requirements, we formulate the following assumption (which
implies Assumption 7.5):

Assumption 7.6. For each (a,b) € £, the congestion function Liap) is of the form

Cap) (0) = T(ab) T F(a,b) 0
With T(q,q) =0, k(a,q) =0 and T(qp) >0 for alla € N, be N'\ {a}.

Linear(ized) edge traversing costs in traffic routing problems are considered in
[125, 132] and in the numerical analysis of [25]. Naturally, Assumption 7.6 implies
that an optimal policy for each agent is to remain at their initial state. We then
impose that the agents cannot choose to remain still in a node, unless that node is
their destination:

(St VT[] =0 YaeN\{d}, i€, teT. (7.27)

(a,a)

We can compactly rewrite the set V;(pi*) in (7.24) with the additional constraint

i

(7.27) as the dynamics in (7.26a) with constraint set Z; defined as

X o= AT — {pea}, (7.28a)
U o= {u e RE) — {us}| (5025 ) Tu =0 Va € N\ {d;}}, (7.28b)
Z; == {(z,u) € X; x U;|u € null(P) + {PTz}}. (7.28c¢)

As a next step towards the formulation of the multi-stage decision problem, we
rewrite the objective functions (J;);cz in terms of stage cost, that is, as a sum of
terms which only depends on the variables at time step ¢ € 7. In the remainder of
this section, we overload the notation (J;);cz and (f;);ez to accept x[0] and u as
arguments (oppositely to w as in section 7.2). Note that this redefinition only entails
computing the solution of the dynamics in (7.26a) and translating the state and
inputs, as for (7.25b), (7.25¢). We make the following technical assumption, which
is typical of multi-stage decision problems:

Assumption 7.7. The local cost f; is separable in t, that is,

FilwilOlug) = D S (alt] walt]) + f7 (2l T1).

teT
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Furthermore, the stage cost f7 and the terminal cost f are non-negative and
£:(0,0) = fi(0) = 0.
Let us collect the network parameters in
7 := col(T(a,1)) (a,b)e€
and in the matrix C' with (a,b)-th element:
k if (a,b) €&
Clapy = 4 Ha) ] (a,b)
0 if (a,b) ¢ €.

It can then be shown (see Appendix 7.C) that under Assumptions 7.6, 7.7, J; in
(7.24) can be written in terms of stage costs as

Ji(i[0],w) = ([ T]) + t;Tff (wilt], wilt]) +7 "wilt) + avg (ult)) ferCuilt].  (7.29)

We then formulate the FHDG G([0]) for any initial state [0] € X, X;:

min J; (x;[0],w (7.30a)
Vi - u; ES ( [ ] )
st (x[t),uilt]) € Z;  VteT, (7.30b)

which is equivalent to (7.24) with the additional constraint in (7.27). Note that, in
(7.30), the optimization problems are only defined over w as the variables (x[t]),c7+
are eliminated by computing the solution of the dynamical system in (7.26a).

The collective state variable x[t] evolves according to the collective dynamics

z[t+1] = (In ® B)ult].

Define the constraint sets for the collective states and inputs:

Xi= X Xj;
€T

U:= X U;;
i€

7 = {(m,u) € XxU|(z;,u;) € Z; for all z}

In the following Lemma 7.7 we find a common control objective p that the agents
unknowingly, but willingly, aim at minimizing when solving the game G:

Lemma 7.7. For any z[0] € X, the pseudogradient of G(x[0]) in (7.30) is equal to
Vaup, where

Pl ult) = el im0t Sl 7wl (731

pr(@[T]) := 3 fi (wi[T]) (7.31b)
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The potential function p allows us to conclude that, by Lemma 7.7 and [139,
Theorem 2], a NE of G(x[0]) is a solution to the FHOCP O(x[0]), defined as

min  p(x[0],u) (7.32a)
uESJTvm
st (x[tl,ult]) €Z VteT. (7.32Db)

We now derive conditions for the asymptotic stability of the receding horizon solution
of (7.32), and in turn of (7.30), via standard MPC results.

7.4.2 Stability of receding horizon Nash equilibrium control
At every time-step, the agents apply the first input corresponding to a NE of the
game in (7.30). This is formalized via the following control actions:

ki oy — ul[0], where u* € SN™ is a NE of G(y). (7.33)

Intuitively, x; leads the i-th agent to the desired equilibrium if the agents have
a high enough incentive to approach their destinations. For this purpose, let us
assume that each agent knows a path to its destination, formalized by the mappings
(KP;)iez : N — N with the following characteristics:

KPZ(dl) :di;

(a,KP;(a)) € E,Va e N;

3 TF e N such that KP!(a) := KP;o...oKP;(a) =d;, forallaeN, t>TF.
N———

t times

An example is the shortest path computed with edge weights 7. We collect the
traversing time of the next edge along the known path in the vector le P and for the

whole path starting from each node in the vector X?p:
k NIk
T; Pe Rlz()I; 7—1‘75 = T(a,KP;(a))>

kp - INT. kp o
X GRZO, Xiya *= tg:OT(KP’Z?(a),KPE+1(a))’

and the following auxiliary input, designed such that every vehicle takes the next
edge of the known path:

ui-(p :X; — U; for all 7 such that

)Tukp(xi) _ {l’z‘,a —04,(a) if b=KP;(a) (7.34)
' 0 if b # KP;(a).

edge
(S

We then postulate the following technical assumption, which encodes the fact that
each agent evaluates the distance of the final state from the destination by means of
the known path:
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Assumption 7.8. The local costs satisfy Assumption 7.7 with

Fi@) =€ (zTxP)
£ (@ u @) <& (=),

where & is p"-strongly monotone and & is an Lg-Lipschitz continuous function for
all i, with £ (0) =&7(0) =0.

For example, Assumption 7.8 is satisfied by f;"(z) = Wlx—rxi-(p7 with 71 > 0 and
fPz,u) =7 (Tg{p)—'—x, with 2 > 0. In the main result of this section we show that,
if the agents have a high enough incentive to reach the destination (encoded by the
strong monotonicity constant of the terminal cost u"), then the system in (7.26a)
controlled by the receding-horizon NE control action defined in (7.33) asymptotically
reaches the origin (that is, the state at which every vehicle is at its destination with
probability 1). The proof follows from the equivalence between (7.30) and (7.32).
Specifically, we show that p™ is a control Lyapunov function under control action

u*P for the collective system whose map from input to state is Iy ® B (cf. (7.26a)).

We then apply a known result in MPC theory [12, Theorem 2.19] to conclude the
asymptotic stability.

Theorem 7.1. Denote k := max g p)(k(ap)) and 77" = min, p) 425 T(a,p)- Under
Assumptions 7.1,7.8,7.6-7.8 and if

pT > 14 Lo+ S0, (7.35)

then the origin is asymptotically stable for the systems x;[t+ 1] = Bri(x¢) for all
i €T, with k; as in (7.33).

Let us present the resulting approach in Algorithm 11.
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Algorithm 11 Receding horizon NE seeking for traffic routing

Initialization. Set x;[0] as in (7.25a) for each i € 7.
For 7eN:

1. Agents control computation:

(a) A NE u* of G(z[r]) is computed using Algorithm 10, where each (£;);cz
in (7.22b) is substituted with {w; € Y;|(7.27) holds}, A(?) =0 and the dual
update (7.23b) is ignored.

(b) Each agent i computes (M; (q.5)[0])(a,p)ce according to (7.25c) and II7[0] as
in (7.7).

2. Vehicles node update:
For all v € {1,...,V}, i € T draw s; [T +1] € N from the probability distribution
col(IT7 [ (s, , [r],6) Joenr

3. Agents state update:
Each agent updates the empirical distribution and the state:

i =[{ve{l,...,V} st. s [T +1] =n}| for all n e N
pilT+1] = col(mn,i/V)nen
xi[T+1] = pi [T+ 1] — p;*.

7.5 Numerical study

We study the behavior of Algorithm 10 on multiple randomly generated simple
scenarios, in order to better observe the characteristics of the solution. We implement
a randomly generated directed graph with 12 nodes and 27 edges for N = 8 agents.
We consider the case where the agents only take the traversing time into account
when choosing the road, and thus we set f; =0 for all . We set every road to have
the same length and capacity, by considering £(, ) to the BPT latency function
in (7.10) with 7(4 5 = 0.1, C(a,p) = %> C(ap) = 0.1 for all (a,b) € € and { = 3. The
road limit in (7.14) is defined as (4 ) = 0.2. We solve the problem in (7.16) for
100 random initial states and destinations of the agents. The solution to the game
in (7.16) is then compared to the routing obtained by the shortest path with no
traffic information, that is, with edge weight 7(, 3 for all (a,b) € £. We can conclude
from Figure 7.5.1 that the baseline solution tends to overcrowd some roads (cf.
edge 6) and underutilize others (cf. edge 3), while the proposed GNE routing,
which exploits traffic information, obtains a more uniform usage of the network.
In Figure 7.5.2, we show the normalized approximation error for the travel time
computed using (7.11). The approximation error for each link (a,b) € £ and instant ¢
is computed as [£(4 ) (0™ (a,b),t) —£(4.4) (6 (a,b),t)|, where o™ (a,b),t is the expected

Code available at https://github.com/bemilio/MDP_traffic_nonlinear
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1.4 4 = Road limit
—-== Free-flow limit
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Figure 7.5.1: max: Uza b)/E(a’b), compared to the congestion obtained by the shortest path routing.

The dotted line denotes ¢(4,5)/C(q,)- The dots show the median values. The shaded area highlights
the 95% confidence interval. We show in red the performance of the shortest path solution (SP).

road occupation defined in §7.2.2 and 6™ (a,b),t is the realized number of vehicles
on (a,b) at time ¢ divided by NV. Evidently, increasing the population size reduces
the approximation error. We then apply Algorithm 11 for 7 € {1,...,10} with the
terminal cost f"(z) = 'y(xi-{p)—r:c and «y as in the right-hand side of (7.35), which
ensures that the assumptions of Theorem 7.1 are satisfied. The results are compared
to the pre-computed open-loop solution of problem (7.16) without the constraint
n (7.14), denoted by the oo horizon, in terms of the relative total traversing time
reduction with respect to the shortest-path solution without traffic information.
Figure 7.5.3 shows that the traversing time experienced is reduced with respect to
the shortest path solution, and this advantage increases with the time horizon. In
a practical sense, the results in Figures 7.5.1, 7.5.3 show that the availability of
real-time traffic information allows to reduce the congestion on heavily utilized links
and the total traversing time experienced by the drivers.
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M
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Figure 7.5.2: Difference between approximated and empirical travel time with respect to V', the
number of vehicles per population.

~  £0% 1
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Figure 7.5.3: Comparison of the total cost incurred by the agents, with respect to the shortest path
without traffic information.
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7.6 Conclusion

Traffic routing of multiple vehicles can be modelled as an aggregative game with
mixed strategies using a first-order approximation of the latency function. The
approximation error decreases as the number of controlled vehicles increases. The
particular structure of the road latency function guarantees the monotonicity of the
game under mild conditions, allowing for solution via existing equilibrium-seeking
algorithms. If the latency function is linear, then the game can be solved in receding
horizon whenever the local objective functions satisfy a set of conditions inherited
from the MPC literature. Numerical simulations show that the proposed solution
reduces the overall network congestion and traversing time, compared to the optimal
routing computed without traffic information.

Appendix

Lemma 7.8. The only nonzero eigenvalues of a matrix
Aly) =200+ )11y + {1k +1ny") (7.36)

where y € RY,), o :=avg(yi)icz, ( >0, are A\_ =& +v_ and Ay :=Eo + 4, where

vt = N(o—+<j)i\/N2(a+g)2+2N§(a+g)a+ Elyl® (7.37)

Proof (sketch): As A(y) is a sum of 3 rank-1 matrices, it is at most rank 3.
We verify that Ay are eigenvalues with eigenvectors £y + 4+ 1n. There is no third
non-zero eigenvalue as trace(A(y)) = A_ + Ay [ |

7.A Proofs of Section 7.2

Proof of Lemma 7.1: We prove that (7.2) and (7.3) hold true for the matrices
computed as in (7.7). First, note p;[0] = pi* for all i € Z. If p; [t] =0 for some a € N
and t € T, then from (7.6b) and (7.6¢) we obtain

> Mi@ylt]=0
b:(a@,b)EE

and, together with (7.6d), the latter implies M; (5 3)[t] =0 for all b € . Substituting
in (7.7) and , we obtain (7.3):

0 if pz}a[t] =0

- =M; (anlt] V(a,b) €& teT.
M; (a,p)lt] if pialt] #0 (a.b)

0 () [t]pi,alt] = {

By expanding the product (I1;[t]) T p;[t] and by substituting the latter and (7.6a),
one obtains (7.2). Finally, we sum both sides of (7.6a) and (7.6b) for all b € N and
a € N, respectively, to obtain:

Yo piplt+1= > M (apltl= > pialt]-
beN (a,b)e€ a€N
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Since pi* € AW we conclude by induction that p;[t] € AW and col(M; (a,1)[t]) (a,p)ce €
Al€l |

Proof of Proposition 7.1: As &E‘fl’b) [t] is drawn from a Poisson binomial distribution
scaled by NV, from [137, Eq. 15] and from M; (4 )[t] € [0,1],

Var(@fl,b)[ﬂ)zm ZEZ% (1= M; (a,p)[t]) M;, (a,1)[t]
'uG{l,..T,V}
1

< —.
T 4NV

By the Chebyschev’s inequality, for any € > 0 and K, = ﬁ,

P{(otin ]~ 6t ) > oo | <e

The result then follows from [138, Theorem 6.2.3] by substituting r,, = s and

a=0gy) [t] (in the reference notation). |

E‘H
<

7.B Proofs of Section 7.3

Proof of Lemma 7.2 (sketch): Compute J(’;’b)(-,M_L(a,b) [t]) for a generic (a,b),t,i

and note that it is non-negative, following Assumption 7.2. The result then follows

from [51, Prop. 8.14, 8,17], and Assumption. 7.3. |
Proof of Lemma 7.3: Let us compute F":

col (vMi,(a,b) 11/ (a,b) (M(a,b) [t]))

F(w) = col <Vfi(wi) +
O n|(7+1)

(a,b)es,teTl ) , (7.38)
€T

where the zero vector appears because the latency functions do not depend on p.
From Assumption 7.3 and [51, Example 20.3], V f; is monotone for each i. Then,
col(V fi)icz is monotone by [51, Prop. 20.23]. Let us denote the second addend in
(7.38) as T'(w). From [51, Prop. 20.10], F' is monotone if T is monotone. Let us
define the permutation matrix P such that

P — |:C01(M(a,b) [t])(a,b)es,teT] .
COl(p[t])teT+

It holds, from the definition of F(, ),

(7.38) | col (Col YV, o i1 (a) (M ap)t]) ) )
PF(w) = ( (a7 )( (a.b) )>Z€I (a,b)eEteT

OnTIN| (7.39)

col(Fla,t) (M (a,0)[1) (4 pyee veT|
OnT N

(7.18)
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As PPT =1, for all w,w':
(T(w)-T(W),w—-w) = (PT(w)— PT(«'), Pw— Puw')

= ( %):es <F(a,b) (M (a,5)[t]) = Fla,p) (M 1) [t])s M (a0 [t] = M, ) [t]>
ieT

which is non-negative if F(, ) is monotone for each (a,b),t. [ |
Proof of Lemma 7.4: For compactness of notation, we suppress the subscript of
C(a,b) and §(q ). Following [140, Prop. 12.3], F{, ;) in (7.18) is monotone if

DF (4 1)(y)+DF ) ()" =0 Vy=col(yi)iez, i €10,1].

Denote 0 = avg(y)icz.
DF(a) () = 5,0y (0)IN +11T) + £ 1) (0) (w1 1), (7.40)
s Lo (0) = k(o +0)*, Ul (o) = k&(o+¢)™ 1, we compute

DF(ap)(y) + DF(E,b) (y) =% (c+() Iy

(7.41)
F L+ 20 +011T + £ (w1 +1y 7).
By Lemma 7.8, DF(4 3)(y) —|—DF(Ta’b)(y) =0 if
2o+ +E (0 4+ o +7-(y)) =0, (7.42)

where y_ is defined in (7.37). Excluding the trivial case y =0,{ =0, we divide by
%(O’ +¢)¢ to obtain

(742) & 2+ 55+ >

L 2, 9Néo | €yl?
& 2+ +N>\/N +20+< N{o+0)?

ito IN 2N |lyl?
N 4+W+<) +NZ+U+C+4N+7«@+C > N7 2 + gl

2 2
s fy) 74(N+1)+W+ji‘g ru; >0, (7.43)

We look for the minimum of the left-hand side of the latter inequality. Notice that
Vyo = %1]\7. Then,

_ 2 25 o+( 2_52 o+C 4,
Viy) —%%ﬁum gﬁfm
522Ny(0+4)2 2(U+C)|lyll21N
N2(o+¢)4

Since V f(y) contain either terms that multiply 15 or y, it must be y = aly for
some « € (0,1] for y to be a stationary point. Therefore, the minimum of f(y) is
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either obtained for y = aly or at an extreme point of [0,1]%V, that is, y = > ico €is
where e; € RN with only non-zero element [e;]; = 1 and Q C {1,...., N}. Let us study
the two cases separately:

Case y = aly: In this case, 0 = a and |ly||? = a®N. We substitute these values in
(7.43) to find that it is always satisfied and, thus, DF, ) (y) + DF (4 p)(y) " = 0:

4 dta | CaPNT )

) = AN +1)+ 5 + Ko Lo

+<)2

Case y =) ;coei: In this case, define ¢ := |Q|, we compute o = % and |y||* =¢
We then substitute in (7.43) to find

4€q £2gN
fly)= 4N—|—4+( +N<)2 T ENe " (¢+N¢)? = 0.

A sufficient condition for the latter is that the first addend is greater than the
negative one, which is true if

9(q) == 4(g+(N)? —¢€* > 0. (7.44)

Let us study the first derivative of g:

d (@) =8(g+(N) -2 =0eqg=5 —(N.

Note that ¢ € {1,..., N}. Therefore, g(¢) has the minimum in ¢ =1 if { > 8N8.

We then note from (7.44) that ¢g(1) >0 if ¢ > §2T Therefore, g(g) > 0 for all
g€ {l,..,N} if (7.20) holds true, which in turn guarantees that (7.42) holds true
for all y € [0,1]V. [ |

Proof of Proposition 7.2:  DF\, ) is computed in (7.40). Denote o = avg(y).
For y €[0,1]V, 0 <1 and |y||*> < N. Thus,

[91% 11 = \ A (W1 5 1vy) = |/ Nllgll2 < N
From subadditivity, [|[1y1x| = N and the latter,

max |[[DFap) 1 (y)]| < maXN%fl(a,b)(U)HFrllTll+#f'(’a,b)(0)||y1T||

ye[0, 1]V €[0,1]
1 g/
< oo Ny @)L+ N) + 5z, 4 ()N
=) k(o) ¢ £-1
< N ((1+<(a,b)) +£(1+C(a,b)) )

= L(a7b) .

Fla,p) is therefore L, )-Lipschitz continuous on [0,1]V following [140, Thm. 9.2,
9.7]. As Q C [0,1]N™ it can be shown that the second addend of (7.38) is Lipschitz
continuous with constant max, y)eg L(q,p) and thus F'is L—Lipschitz continuous.
By applying Lemma 7.5 and [51, Cor. 20.28], F' is maximally monotone. Finally, by
applying Lemma 7.2, all the assumptions of [17, Thm. 1] are satisfied and the claim
follows. |
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7.C Proofs of Section 7.4
Proof of Lemma 7.6: Denote by F the pseudogradient of (7.24). We compute

DF(w) =diag(DV f; (wi))iez

0 0
T [diag( i (ab)lt ]é(a b)( )))teT (a,b)e€ OD .
i€l

: /
+ l(IN +1n1%)® {dlag (E(avb)(U&,b)))ter(a,b)es 0]

+ Lool(1
—F= CO
N2 N 0 0

The arguments of col in the second addend are in general different for each i € Z.
Thus, DF (w) is symmetric only if é’(’a’b) = 0. The thesis then follows from [134,
Theorem 4.5]. ]

Derivation of (7.29): By leveraging Assumption 7.6 and (Sz’zgz)) (wilt] +u;) =
M; (a,p)[t], we write J(4 3 in (7.12) for a generic (a,b) € £ as

J(a,p) (wt]) = (7(a, b)+ & E [(Sgasy) T (ug ] +us)]) (o)) T (wilt] +us®)

By substituting the latter and by leveraging Assumption 7.7, we then rewrite J; in
(7.13) as

Ji(wi[0],w) =f (zi[T]) + X2 {ff (i [t], ualt])

teT

+ 5 [+ 552 5 (870wl (5725 il +]

(a,b)e€

By using the definitions of C' and 7 and rearranging,

Ji(wi0],w) = fi' (wilT]) + 32 f7 (wi[t], ualt])

teT
+ (7" +avg(ult] +teq) T O) (uit] +us?).

From Assumption 7.6 and the definition of C' and 7, Cu;* = 0, ?Tu? =0 for any
i € Z, thus (7.29) follows. [ ]

Proof of Lemma 7.7 In this proof, we treat time sequences as column vectors,
that is, u; = col(u;[t])¢e7; w = col(u;);ez. We can rewrite the agent cost in (7.29) as

Jilwil0)w) =f7 @ lT) + 3 {2 alt) wilt) +7 Tl } + 5 {Fuf (FreCpus}

teT JET

The pseudo-gradient of (7.30) reads then as [17, Eq. 32]

F([0],w) =col (Vo { fF (@ilT]) + Lyer {3 @ilt] wilt) +7 T wilt]} })
+ %(IN +1x1%)® (I7®C)u.

i€l
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Note that the first addend term in the latter only depends on the local variables of
each agent, due to the decoupling of the dynamics, while the second addend is a
coupling term. It can be verified by expanding the quadratic forms that

2 _ 2
t;{' [ult] ||1N1;'\—,®C - ”u”lNl}@(IT@C)

tETIIU[t]II?N@c = llulli;yec
S

By substituting the latter in (7.31), one obtains

p(@low) = 3 {F@lT) + X {5 @ilt]wilt) +7 " wilt]} p+
€T teT
2

1
tan HUH(INJrlNl?\—;)@(IT@C)'

One can then compute V,p to verify that it reads as F. |

Proof of Theorem 7.1: Theorem 7.1 follows by verifying the hypothesis of [12,
Thm. 2.19]. Namely, we prove a lower bound for the stage cost (Lemma 7.10)
and that the terminal cost is a control Lyapunov function for the collective system
z[t+1] = (Iy ® B)u[t] (Lemma 7.11). We first show some technical relations in
Lemma 7.9:

Lemma 7.9. The following hold for all (x,u) € Z,i € L:

> (Sgasy) Tui = = (S{5g,)) Tuis (7.452)
a#b

i, > (S0 ) Tui s (7.45b)

—Tid; = flne%xi,w (7.450)

Proof. (7.45a): From the definition of Z, Pu; = x;. Substituting the definition of
P and summing each row,

> X (SEn)Tui= Y =0 (7.46)

a€N b:(a,b)eE

where we used the definition of X; in (7.28a) and ), p;* = 1. Using the definition
of U, (7.45a) follows by noting

() T (7))~ ()

aZb (a.b)EE
(7.45b): From u; € Rl;(l) —{ui"} in (7.28b) and u;?, =0 for each a-th element not
associated to the edge (d;,d;), it follows (Sa‘feb))—rui >0 for all be N\ {d;}. As
x; = Pu;, from the definition of P:

T = Y (Spy) Tui = (S,) T
b:(d;,b)EE
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(7.45¢): From z; +pi* € AW and the definition of ps%, it follows 3, >0V a # d;
and z; g, <0. Thus,

7.46
_%di(:) Y wip>wia YaeN. [
beN\{d;}

Lemma 7.10. For all (z,u) € Z, the stage cost in (7.31a) satisfies

(e, u) > T2l (7.47)

Proof. From C = 0 and Assumption 7.7, p°(z,u) > 3.7 "u;. Thus,

ps(iL',’u,) > Z Z T(a,b)(Seng)) Uq

1€Z (a,b)€E
Ass. 7.6 in dee (748)
> T Z Z (S(agb)) Ug-
i€T ab
We then note
edge (7 45 ) edge (745b)
(i) T = —(Spga) T 2 ~wig, = |ria,-
a#b
Substituting in (7.48),
p*(x,u) > 7m0 Z |4, d, |- (7.49)

From (7.45¢), |2; 4,| = ||%i]|co. Substituting in (7.49),

P, u) =7 5 || oo
€T

We recall = col;ez(x;), thus

llloo = max [z o = max||zifloo < 3 [l
na i€l icT

We then obtain p®(x,u) > 7™
x € RV™ we obtain (7.47).

Z||co- As for any y € R™, n||y|lcc > |ly|l2 and since

Lemma 7.11. Let p* be as in (7.31b) and let Assumption 7.8 and Equation (7.35)
hold true. For all x € X, (xz,u*(z)) € Z and

P ((In @ B)u*™ () — p"(x) < —p°(z,u*(x)). (7.50)

Proof. For compactness of notation, we drop the dependencies of u** on x, and we
let 27 = (Iy ® B)u*?. Define the mapping from each node to all parent nodes along
the known path KP;:

KP;':N =N, KP;':bw {a:b=KP;(a)}.
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Then, from the definition of B and (7.34),
e e k
rh= (s(dgb))T u,®

a:(a,b)€E

= Z Ti.a _6di (a)

—1
a€KP; " (b)

(7.51)

From the definition of X?p, its element with index KP;(a) satisfies the following for
each a € N

k k k
Xi,FI)(Pi(a) =Xio ~Tin forallaeN, (7.52)
Then,
0GP Tei= 2 Xt
a€N
(7.52)

kp kpy ..
agf(xi»KPi(a) + Tiva)xl’a
k
= (7‘ p) x;+ Z Xz KP. (a)x“l

=(r kp) Tit+ > iql’) > g

beEN T aeKP;1(b)

k k
(1; P)Txi-|- > Xifg(x;fb—s—édi(b)).
beN

(7.51)

We note that KP;(d;) = d;, thus X?%i =0 from Assumption 7.6, therefore X?%Csdi(b) =
0 for all b. Thus,

(0G*) Tas = (1) T+ (%) T (7.53)
From Assumption 7.8, the monotonicity of & implies for each i:

k k k k k kp 2
(67T ) =€ (@ TXER) ) (P = @) TN 2 07 (@] 10 = (@) TXP)
(7 53) k k k k

2 (& @) =€ (@) TN) ) (@ 1) = (2 7))

= (@A) =€ (@HTH)) = " (2] 7I7)
(7.54)

where the latter follows from (ETTkp >0, which in turn follows from x; 4 >0, Tgf 5 >0
for all a # d;, and Tkp =0. Thus,

pr(@) —pT(z >A”stz<ﬂxi‘p> & (@) TxP)
T2 () Tz — (x*®) Tz ™) (7.5)
(7.53)

W) Ta,
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From the definition of 7 and from 74, 4,) =0, Yz € X,

Tl = 5 (i) T
(a,b)e€

(7.34)
= ZNT(a,KPi(a)) (%3, —da,(a))

ac

k
:(Ti p)Tl?i.

By Assumption 7.8 and denoting C = (Ix +11"7)®C,

P (eu) = gy urllo+ X £ i) 4ol 7

o k
< axllu|Z+ X (Ls+ D] 7,
1€L

From (7.55) and (7.56), then (7.50) holds if
(1" =1=Le) () T > 5 ||
Let us find a lower bound for the LHS of (7.57).

( ) :I:_ZT Tig
As. 7.6
ERD S DR o

A a;édi
ZTminZ Z éri’a,
% a;édi

Tmin Z(_xl7dl).

1

(7.46)

We now rewrite the RHS of (7.57):

HukP”%: 3 {( kp)Tcukp+ Z{ kp TCUkP}}

i€L JET

We then note that for all 7,5 € Z, from the definition of C:

()T CuP = % ki (787 (S T

(a;b)

(a,b)e€ l

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

From (7.34), (u* u; )T Ses <1 for all (a,b) and (S72%)) Tu P — 0 if b #£ KP;(a). We

(ab) = (ap)) Y
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continue from (7.60):

< Z kaKP-a Se;ge (a ui‘{p
o (a,KP;(a))* (a,KP;(a))

= > kaxp;(a))(Ti,a —da,(a))
aEN

= 2 k(a,KP;(a))Tisa
a;édi
SE Z Ti,a
a;édi

(7.46) _E%di

where we noted kg4, kp,(d;)) = K(d;,d;) = 0 from Assumption 7.6. Substituting the
latter in (7.59),

[ (1% < (N + 1)k 3 (~2i4,)- (7.61)
i€L
From (7.61) and (7.58), (7.57) holds true under (7.35). |

We are now ready to present the proof of Theorem 7.1:

Proof. By [139, Thm. 2], for any = € X, a solution of G(x) solves O(x). Then,
col(k;(x)); is the first input of a sequence which solves (7.32) with initial state
x. Problem (7.32) satisfies [12, Assm. 2.2, 2.3] under Assumptions 7.3 and 7.6.
[12, Assm. 2.14a] follows from Lemma 7.11. By Assumption 7.3, p* is Lipschitz
continuous. Thus, [12, Assm. 2.14b] is satisfied by Lemma 7.10. X is control invariant
for u*»(-), as verified by computing (I ® B)u*?(x) for a generic « € X. [12, Assm.
2.17] is then satisfied by applying [12, Prop. 2.16]. The claim follows from [12, Thm
2.19]. n
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Concluding remarks

Zen is the “spirit of the valley”, not the mountaintop.
The only Zen you find on the tops of mountains is the Zen you bring up there.

Robert M. Pirsig, in “Zen and the art of motorcycle maintenance”

In this thesis, we have addressed the optimal generalized Nash equilibrium selection
problem, and we have contributed to the field of (optimal) generalized Nash equilibrium
seeking in time-varying and dynamic games. In this chapter, we provide a summary
of the main contributions, we address the research questions formulated in Chapter
1, and we explore possible directions for future developments.
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This thesis provides contributions to the field of game theory and game-theoretic
control of dynamical systems by developing algorithms that are able of computing
an optimal generalized Nash equilibrium (GNE) according to a generic preference
metric, of tracking a (possibly selected) GNE in a dynamic environment and by
providing design guidelines and stability guarantees for receding-horizon game-
theoretic controllers. The main contributions of this thesis are as follows:

e Optimal GNE selection

In the first part of the thesis, we identify a shortcoming of current state-of-the
art GNE-seeking algorithms, which compute an unspecified, initialization-
dependent GNE when multiple solutions are present. We design the first
semi-decentralized algorithms that can then solve the problem of selecting the
variational GNE (v-GNE) that minimizes an arbitrary performance metric.
We compare two design methods, based either on the hybrid steepest-descent
method (HSDM), which relies on a reformulation of the v-GNE selection
problem as a fixed-point selection problem, or on the Tikhonov regularization
method, where the problem is solved as a sequence of variational inequality
(VI)s regularized with the selection objective. We design ad-hoc algorithms
for the particular cases of aggregative and cocoercive games. We remark that
the semi-decentralized algorithms proposed in Chapter 2 can be computed in
a fully decentralized fashion, if the selection objective can be computed with
local information only.

o Tracking of a time-varying (optimal) GNE

In Chapter 2, we examine the performance of a v-GNE selection algorithm
inspired by the HSDM paired with the forward-backward-forward (FBF) split-
ting method. Compared to the standard HSDM, we apply a non-vanishing
step size to the gradient step of the selection function and a finite number
of iterations, accounting for the limited computation time allotted between
subsequent time steps. In Chapter 5, we derive a GNE-seeking algorithm
with a linear convergence rate for a strongly monotone game subject to linear
equality constraints in a partial-information setting. This result represents
the first linear convergence rate result for a GNE-seeking algorithm in the
presence of coupling constraints. This fast convergence rate, which implies a
input-to-state stability (ISS) property, is particularly relevant for the online
GNE tracking problem. We leverage these properties to derive an explicit
tracking error bound.

¢ Receding-horizon game-theoretic control
In the second part of this thesis, we derive a novel game-theoretic control
methodology based on the receding-horizon solution of a finite-horizon equilib-
rium seeking problem. We design two alternative finite-horizon formulations
whose solutions match either the open-loop Nash equilibrium (ol-NE) or the
closed-loop Nash equilibrium (cl-NE) infinite-horizon control input. Compared
to other results in the literature, which introduce additional constraints to
limit the variation of the agents’ input trajectories between time steps [110],
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or assume the stability of the plant [103], we provide the first stability result
for a receding-horizon non-cooperative game-theoretic control without either
of these requirements. In deriving this result, we also establish a novel char-
acterization of the value of the infinite-horizon achieved by the ol-NE for a
linear-quadratic dynamic game, by casting each agents’ optimization problem
as a linear quadratic regulator (LQR) problem in an augmented space. For the
particular case of a potential game, we illustrate a design methodology that
guarantees asymptotic stability to a known steady state by adding a carefully
designed terminal cost to the agents’ objectives. This design is applied on a
practical traffic routing setup.

8.1 Addressing the research questions

Q1

How to deterministically compute a specific GNE, optimally selected according
to a design criterion?

As highlighted in Chapter 2, a generalized Nash equilibrium problem (GNEP)
admits, in general, an infinite number of GNEs. The problem of computing
a generic GNE is an unsolved, challenging problem, even without taking its
optimal selection problem into account. The current state-of-the-art GNE-
seeking algorithms only compute an unspecified element of the set of v-GNEs
of a monotone game, that is, a subset of GNEs such that the dual variables
associated to the shared constraints are equal for each agent. We then restricted
our focus to the problem of selecting the v-GNE that optimizes a generic, convex
metric. In the case of a monotone game, the set of v-GNEs is closed and convex,
thus the v-GNE selection problem is a convex optimization problem, which
can be solved by first-order gradient methods—with the catch that one cannot
derive a projection operator on the set of v-GNEs. One can instead resort
to the HSDM method [15], which pairs a first-order gradient descent of the
selection function with a quasi-shrinking or attracting fixed-point operator
(in place of the projection operator typically found in a projected-gradient
method). We found that the FBF, preconditioned forward-backward (pFB)
and preconditioned proximal-point (PPP) v-GNE seeking algorithms all possess
the characteristics required for the convergence of the HSDM. An alternative
algorithm design is based on the Tikhonov regularization method proposed in
[21] for the solution of a VI-constrained VI. This method involves defining a
sequence of auxiliary, regularized games, where the selection function is included
in the agents’ objectives as an additive term with a vanishing weight and an
inertial term. Omne then obtains a bi-level algorithm, where each iteration
requires the approximate solution of a strongly monotone VI. The HSDM and
the Tikhonov-regularization methods exhibit similar convergence speed and,
although the Tikhonov regularization method requires a more careful tuning
process, it is technically more flexible. In fact, the HSDM only works when
paired with quasi-shrinking algorithms that solve merely monotone games,
while the Tikhonov regularization method can be paired to any GNE-seeking
method for strongly monotone games.




166

8 CONCLUDING REMARKS

Q2

Q3

How to track the (possibly selected) time-varying GNE of a game, by means
of an algorithm which only employs a finite number of iterations?

In Chapter 5, we show that, in the particular case of a strongly monotone
GNEP that only presents linear equality constraints, we are able to derive a
fully distributed algorithm that achieves a linear convergence rate, even in
a partial information scenario. As we show in Section 5.5, this convergence
regime is linked to a degree of robustness of the algorithm to bounded variations
of the equilibrium point, which allows one to derive a tight upper bound on the
tracking error of a time-varying GNE. In the general case of a merely monotone
GNEP, the problem admits multiple solutions and one cannot expect a linear
convergence rate of a solution algorithm. However, in this case, one can
augment the GNEP problem with a strongly monotone selection function,
thus obtaining a GNE selection problem. The optimal GNE selection problem
admits a unique v-GNE solution and, following [15, Lemma 4(a)], the HSDM
method applied to its solution with a constant step size is contractive. However,
we note that the HSDM requires a vanishing step size to converge to the exact
solution, meaning that using a constant step size introduces an additional
tracking error. This error can be controlled by reducing the step size and
increasing the number of algorithm iterations per time step. Determining the
necessary algorithm parameters in advance is challenging, as that would require
prior knowledge of the shrinkage function of the solution algorithm, which is
typically not available.

Is a multiagent dynamical system controlled by the receding-horizon solution
of a GNEP asymptotically stable?

In general, no. In the particular case when the finite-horizon problem defines a
potential game, one can introduce an additive terminal cost and/or constraint
such that the potential function is a Lyapunov function for the closed-loop
system. In practice, the potential function behaves analogously to the objective
function of a (single-agent) model predictive control (MPC), which the agents
unknowingly, but willingly, contribute to minimize. The stability of the origin
can then be established using standard arguments from the MPC literature,
as shown in Chapter 7 with a practical traffic routing application. These
findings, however, are not valid in the general non-potential case, which we
studied in Chapter 6. Specifically, in the non-potential case, the GNE of the
finite-horizon game is only optimal for each agent given a fixed input sequence
from the remaining agents. When the solution of the finite-horizon problem is
recomputed at each time step, the previously found solution may no longer
be optimal for some agents, potentially leading to increases in the agents’
objective functions across subsequent time steps. Consequently, one cannot use
(a combination of) the agents’ objective functions as Lyapunov functions, as is
typically done in single-agent MPC. In cases where an infinite-horizon Nash
equilibrium (NE) control is both computable and stabilizing to the origin, then
an effective design strategy for a non-cooperative receding-horizon controller
with stability guarantees of the origin for the closed-loop system is that of
designing the finite-horizon problem such that its solution coincides with the
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Q4

infinite-horizon control input.

Can the solution to a finite-horizon GNEP problem involving a multiagent
linear time-invariant (LTI) dynamical system match the one of an infinite-
horizon GNEP?

Yes, in a multi-agent LTI system with quadratic objective functions such
that the infinite-horizon solution is asymptotically stable to the origin. In
Chapter 6 we studied two solution concepts, namely the ol-NE and the cl-
NE. The infinite-horizon cl-NE renders the origin asymptotically stable under
easily verifiable detectability and stabilizability assumptions. Conversely, the
asymptotic stability properties of the origin under the ol-NE control action
cannot be established by the problem’s priors at the present stage. In both
cases, one can include a carefully tuned terminal cost to the finite-horizon
equilibrium problem, such that the resulting finite-horizon solution coincides
with the infinite-horizon solution, provided that the initial condition belongs
to a certain region of the space. Computationally, the cl-NE case results in a
finite-horizon GNE with nested equilibrium constraints, which must be solved
by an ad-hoc algorithm (namely, [7]). Instead, the ol-NE translates into a
finite-horizon VI, for which a wider literature of solution algorithms is available.

8.2 Future research directions

The development of this thesis has raised several further research questions. We
present the main ones, highlighting the potential opportunities and challenges each
poses.

Computation and stability guarantees for infinite-horizon NEs

In Chapter 6, we design game-theoretic receding-horizon controllers that inherit
the stabilizing properties of the infinite-horizon, unconstrained GNE. However,
there is still no established algorithm for solving the coupled Riccati equations
that characterize an ol-NE or a cl-NE, nor any stability guarantee for an ol-NE.
The recent work [6] partially addresses this problem by proposing algorithms
for the computation of a cl-NE. However, the convergence of the algorithms is
not directly linked to the characteristics of either the dynamics or the objective
functions (e.g. controllability, observability, dynamic coupling, objective cou-
pling), which in practice limits the possibility of designing a multiagent system
that meets the algorithm’s convergence assumptions. A promising, alternative
direction is to reformulate the dynamic game as an equilibrium problem in the
cone of positive semidefinite matrices, thus generalizing a well-known set of
results in the field of optimal control [141]. We emphasize that this research
direction requires some significant technical development, as the known results
on monotone games (typically derived in the space of real vectors) should be
extended to the cone of positive-semidefinite matrices.

Monotonicity conditions for finite-horizon games
The finite-horizon ol-NE formulation in Section 6.3.3 and the surrogate finite-
horizon cl-NE formulation in Section 6.4 can both be solved via a standard
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VI solution algorithm, provided that the finite-horizon problem is monotone.
It is then valuable to explore the assumptions required on the system priors
that result in a monotone equilibrium-seeking problem. This fundamental
issue in dynamic games, which is trivial in the single-agent MPC case, is
surprisingly challenging in a game-theoretic setting. Previous results in the
field of monotone games [142] suggest that this property is linked to the
objective coupling between the agents which, however, in the dynamic case
depends also on the system dynamics. Moreover, from our numerical experience,
it appears that the monotonicity of the problem is dependent on the horizon
length, thus highlighting another fundamental difference with the single-agent
MPC case. We find this a valuable and insightful research direction which
would extend the practical applicability of the control designs proposed in
this thesis, as well as providing greater insights on the whole field of dynamic
games.

Robust game-theoretic control

The control design method proposed in Chapter 6 requires each agent’s terminal
cost to match the objective value achieved by the infinite-horizon NE exactly.
In practice, however, one cannot hope to have access to the agents’ exact
objectives, and the dynamics is often subject to unknown external disturbances
or model inaccuracies. If the system is nonlinear, the necessary terminal cost
expression is generally not even computable in closed form. Notably, single-
agent MPC enjoys several robustness guarantees, and it can be designed to
be provably stable even when employed on a nonlinear plant [12, 143]. This
suggests that the controllers proposed in Chapter 6 may still be stabilizing in
a non-nominal setting, making it worthwhile to study the sensitivity of the
control action to modelling errors. We also envision possible extensions of the
proposed design: for example, introducing additional robustness constraints or
relaxing the terminal cost requirements.

Zero-order and partial-information Nash equilibrium selection

In Chapters 2, 3 and 4, we proposed semi-decentralized algorithms for solving
the optimal GNE selection problem. The proposed algorithms are also effective
in a decentralized setting if the gradient of the coupling objective function and
the selection function can be computed with only the local information and the
one available at the neighbor nodes. This may be an unpractical assumption
if some agent’s objective depends on agents they cannot communicate with,
or if the closed-form expression of the gradients is not available. We refer to
these settings as partial-information and zero-order GNE optimal selection,
respectively. Some GNE-seeking algorithms were recently proposed, where
the missing information is compensated via peer-to-peer communication in
the partial-information case [81] and some gradient estimation technique in
the zero-order case, e.g. [144]. Either scenario introduces additional technical
challenges, as the partial-information scenario typically leads to a zero-seeking
problem for a non-monotone operator, while the zero-order information case
requires the study of a perturbed dynamical system. Deriving GNE selection
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algorithms in these scenarios entails then exploring how the non-monotonicity
of the operator and gradient perturbations influence the convergence of the
HSDM.

e Applications of game-theoretic control to highly competitive scenarios

We envision that a game-theoretic control system such as the one presented in
Chapter 6 does not necessarily have to be implemented on multiple agents acting
independently, but it could also be internally solved by a single agent performing
in a competitive setting. The game-theoretic model endows the agent with
an adversarial model of the others, thus rendering it able to counteract the
“best move” of the adversaries. This implicitly defined internal model of the
adversaries may provide an advantage in highly competitive scenarios, such as
autonomous drone and car racing, as already partially explored in [8] and [14],
and evasive maneuvering [145]. We believe that this application field needs
further exploration, and that the insights provided in Chapters 6 and 7 is a
solid starting point to the development of more sophisticated receding-horizon
control algorithms.
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Afterword

The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital
computer or the gears of a cycle transmission as he does at the top of the mountain,
or in the petals of a flower. To think otherwise is to demean the Buddha

- which is to demean oneself.

Robert M. Pirsig, in “The Zen and the art of motorcycle maintenance”

There’s the math of music and there’s the emotional part. Anybody can do math.
The emotional part, the «why am I attracted to this as opposed to thaty is the
delineating point of a songwriter.

Billy Corghan

The journey that has led me to write this thesis has been long and complex. The
beauty and the crux of working in research is that it combines the technical and
scientific challenges with the puzzling experience of venturing into the uncharted
territory of the creative process. There has been intense study and work involved, yet
the most fierce challenges I faced came from the fact that I was absolutely unaware
of what the profession of being creative implies. In this section, I humbly share with
you my perspective on the matter.

The creative process in a scientific field is in essence not much different from
the one involved in other, say, artistic ones. I noticed that ideas usually spur from
moments of freedom and playfulness, during which the mind is able to roam freely
and juggle anything that comes at hand. It is in this state that a mathematician
makes a key breakthrough in a proof, that an engineer gets an unconventional design
idea, that a musician performs an improvisation or comes up with a new song idea.
One can find himself in this fluid state of mind at the work desk just as much while
taking a shower: famously, Hamilton was thunderstruck by an idea on quaternions
while strolling with his wife, and he ended up carving their fundamental formula
on a bridge in Dublin. In an interview, Billy Corgan from The Smashing Pumpkins
remembers that, while writing his hit song Today: “one day, out of the blue, I heard
the opening lick note for note in my head”. I believe that anyone who worked in a
creative sector has had a similar experience. The first lesson I had to learn in my
journey is that this state of mind is difficult to reach and delicate to maintain. Its
most ruthless killer is the fear of making a mistake: there is nothing that impedes
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your mind to roam freely like the paralyzing fear of tripping over. On the other
hand, a necessary condition for it is a solid intuition over your subject. Without it,
you will be weighing every step taken, which is not a good premise for a successful
exploration. Intuition is a consequence of mastery: a skillful creator is able to take
sharp decisions without much thought—or, to be more precise, with an interiorized
stream of thoughts. In the words of Robert M. Pirsig:

“The craftsman isn’t ever following a single line of instruction. He’s making decisions
as he goes along. For that reason he’ll be absorbed and attentive to what he’s doing
even though he doesn’t deliberately contrive this. His motions and the machine are
in a kind of harmony. He isn’t following any set of written instructions because
the nature of the material at hand determines his thoughts and motions, which
simultaneously change the nature of the material at hand. The material and his
thoughts are changing together in a progression of changes until his mind’s at rest at
the same time the material’s right.”

A piece of improvised music comes from a musician who does not need to fit every
single note as in a puzzle, but manages to smoothly connect their soul to the hands.
A sculptor must exert a precise amount of pressure on the chisel, without letting
this technical necessity become a friction point in their connection with the artistic
creation. Similarly, a control engineer needs to master the necessary mathematical
tools at an intuitive level, using them as a smooth connection between the concept
in their mind and the technical creation. The need for intuition as a solid ground
on which to build a creative playground is often overlooked in engineering at an
academic level, sacrificed on the altar of pedantry. On this note, I firmly believe that
a fundamental task for a teacher is to help their students develop a strong intuition of
their subject, and that one of the roles of a researcher is to make their research clear
and accessible, in order to make others build an intuition on the research output.

A second lesson comes from the realization that in such an unstructured state of
mind, one cannot expect to conclude anything of scientific value. As John Cleese
said quoting Alan Watts, “you can’t be spontaneous within reason”. Spontaneity
is a building block for creativity but eventually, and especially in the scientific
realm, reason must step in. One needs the discipline of restraining the playfulness
of exploration when necessary, and proceed into a structured, controlled state of
mind, that is fundamental for studying and conducting a scientific analysis. It is
in this restricted state of mind that a scientist writes and reads pieces of scientific
literature, runs experiments, polishes proofs. Just as is in the same state of mind a
musician studies the theory, analyses music sheets, practices the technique, finalizes
a composition. Alternating between these two states of mind is surprisingly hard, as
I have come to realize.

These two states of mind are both necessary and codependent. Without discipline,
one will not have the mastery in the tools needed to step into a playful state without
fear of mistakes and friction between the mind and the act. Without letting the
mind roam free, one will never find a diamond in the rough to polish and shape.
The third lesson that I learned is that, ultimately, the result of this virtuous cycle of
alternations is but a reflection of oneself. The Zen, this experience of fluid flowing
of one’s mind with the surrounding in a continuous shaping of amorphous ideas,
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imprints the object of creation with quality and beauty—if the beauty is in one’s
mind in the first place. As a quality piece of art is a crystallization of the artist’s
soul, so is a quality piece of mathematics or a technical creation. And to imprint a
theorem, or a design, with quality, one must be at peace with themselves. This inner
peace is also the source of the fuel that runs this two-cycle engine of alternating
between playfulness and rigidity. One usually refers to such fuel as “motivation”,
but I prefer the term used by Robert Pirsig: The gumption. This gumption behaves
exactly like the fuel in a tank, that runs low over time—especially when the path
gets rough, and one must periodically refill it by experiencing beauty. Simply put,
connecting with friends, enjoying a sunny afternoon, listening to the right music,
enjoying one’s hobbies. Anything beautiful in life that refills your gumption and gets
your flooded Zen engine running again.

I don’t have the presumption to say that this work is an example of beauty—far
from it, although I experienced that this creative free-flow has led to the bits that
I believe are most valid. The key message I want to convey here is that this work
has really been a collective construction. Without my academic mentors I would
not have found the discipline to study with perseverance and I would not have had
bright examples to follow and to motivate me. Without everyone else in my life that
I hold dear, I would not have had the gumption to fuel me to the end of this journey.
To you all-thank you, from the bottom of my heart. In the next chapter, I included
a list with more specific acknowledgments, which I try to make as exhaustive as
possible. Please forgive me if I missed you.
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