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ABSTRACT

In the past few decades, the use of Bayes’ theorem in geotechnical engineering has in-
creased significantly. A good amount of work is done on implementing this theorem
for improving the knowledge on soil properties, identification of soil strata, and quan-
tifying different uncertainties involved in predicting soil properties. However, the re-
sults of using this approach on a geotechnical structure have not been mentioned in the
past literature. Hence, in the current work, Bayes’ approach is used to predict the soil
property parameters and further these parameters are used in slope stability analysis
of a basic slope. It is aimed to investigate if the uncertainties in such analysis can be
quantified. For this, a simple Bayes’ model is developed to predict the input parame-
ters of the soil properties. This model is developed using the PyMC3 package in python
which is specially developed to solve Bayes’ problems. Along with Bayes’ statistics, nor-
mal/frequentist statistics is also used to derive the soil properties from two different
data sets (3000 data points and 24 data points). To conduct the reliability studies of a
slope, a Finite element model developed at TU Delft is used. The results of slope stabil-
ity analysis obtained using both approaches are further compared. Results clearly show
that when uncertainty is involved Bayes’ approach encapsulates its effect on calculated
FOS whereas the frequentist approach doesn’t. This difference in both approaches is
observed due to consideration of all the possible values of input parameters by Bayes’
approach. With the frequentist approach, a single input parameter is predicted neglect-
ing all the other possible inputs. Hence, it is concluded that using the Bayes’ approach
better and more reliable results over the frequentist approach by providing more insight
about the uncertainties involved in the analysis.
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2 1. INTRODUCTION

S OIL is complex material. Plenty of variabilities is involved in its properties. Such
variability comes from various sources of uncertainties. The primary sources are in-

herent variability, measurement error, and transformation error [3]. Inherent variability
is nothing but the actual variability of the soil which is present in the soil structure way
before any project or construction is planned and is affected by various geological pro-
cesses [4]. Measurement errors are generated when the soil properties are measured by
some physical means. These measured values of soil properties from the physical tests
are not directly used in design calculations. For these, transformation models are re-
quired to relate the measurements variables to design variables. Also, transformation
models are formulated to obtain different material properties from the same set of test
results. In such models, some degree of uncertainty is developed since these models are
obtained by empirical data fitting [3].
These complexities or variability in the soil properties make geotechnical problems dif-
ficult to assess. It becomes necessary to carry out assessment studies of a geotechnical
problem in terms of failure probability or the reliability of the structure. But often it is
found that such studies provide overestimated values of soil properties. Due to the use
of such overestimated values in the reliability studies, structure rarely fails than what
the reliability studies assume. Zang and Cao [4] have shown that this overestimation oc-
curs due to consideration of the total variability in the reliability studies. Total variability
comprises of inherent (actual) variability of soil and knowledge uncertainties (measure-
ment errors, statistical uncertainties, and transformation uncertainties). The inherent
variability part of the total variability observed in the site characterization is relatively
small compared to the total variability [4]. This makes it important to explicitly define
the actual/inherent variability to increase the accuracy in reliability studies. One of the
methods to do this is by implementing the Bayes’ method of characterizing the soil prop-
erties.
The Bayesian technique is a method in statistics used to update the probability of a prob-
lem as more evidence/information becomes available. In geotechnical problems, this
approach has been implemented to find out the actual variability of soil properties and
increase the precision in the values (Zang and Cao, [4] [5] [6] [7]). A general Bayesian
framework for optimizing property values consists of 3 major components: Prior knowl-
edge, Likelihood function and Posterior knowledge [4]. The prior knowledge is obtained
from desk study and site reconnaissance and the likelihood function represents the site
investigation data. Using the Bayes’ method, prior knowledge and likelihood function
are combined to give a posterior distribution which provides the updated knowledge of
the soil properties.

In this work, an attempt is made to use Bayesian statistics in reliability studies of a
slope. There are different software’s available which carry out reliability study of slope
using limit equilibrium method (LEM) and finite element method (FEM). Herein, FEM
software developed at TU Delft is used to solve the slope stability problem. To this
software, a strength profile of soil is provided as input using different input parameters
(trend, coefficient of variation, the scale of fluctuation, etc). Using the strength reduc-
tion method, the Factor of Safety (FOS) for a particular slope is obtained. Further, using
the Random Finite Element Method (RFEM), multiple realizations of the slopes can be
generated to stochastically analyze the slope. To derive these input parameters of soil
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properties, general statistics (frequentist approach) is used. Hence in this report, the in-
put parameters of soil properties for a slope stability problem are derived using Bayes’
statistics. The major objective is to study the effects of using the input parameters us-
ing Bayes’ theorem in reliability studies of a slope and further compare those with gen-
eral/frequentist statistics.

1.1. PROBLEM STATEMENT AND RESEARCH QUESTIONS

G ENERALLY, to conduct reliability studies of a slope, a basic slope model is developed
to which the point statistics of material property is provided as an input and the

output is obtained in the form of reliability curves (pdf/CDF graphs) providing the factor
of safety for the slope to fail. The main objective of this thesis is to ‘study the effect of
various approaches (frequentist and Bayes’ approach) to derive the input statistics of
soil properties on the Factor of Safety of the slope’. For this, the following questions are
studied.

1. How can the total uncertainty in the slope stability analysis be quantified?

2. What is the effect of considering different data sets (in terms of data points)?

1.2. APPROACH
To tackle the above-mentioned questions, a Bayesian model for predicting the input pa-
rameters of soil properties is to be developed. This model is developed using the PyMC3
package in python. This package is specially developed to conduct Bayesian studies. The
model developed is then further used to derive the input statistics for a slope stability
problem.

To conduct the reliability studies on a slope, FEM software developed at TU Delft is
used. Input parameters of soil properties are derived using the frequentist approach as
we as using the Bayes’ approach. These input parameters derived using both approaches
are then used to solve the slope stability problem. The output is obtained in terms of
FOS. Cumulative distribution function (cdf) and probability distribution functions (pdf)
are plotted for the obtained FOS values to compare the results of both approaches. Also,
different size data sets of soil properties are used to see the difference in predicting the
input parameters using both approaches, ultimately showing its effect on FOS calcula-
tion.

1.3. DOCUMENT STRUCTURE
In this thesis, there is a total of 6 Chapters aiming towards answering the research ques-
tions.

• Chapter 2 is a Literature survey that discusses the use of Bayes’ theorem in geotech-
nical uncertainties, geotechnical studies, current reliability study of slope stabil-
ity problems. Further major interpretations are derived using which the problem
statement of this work is derived.

• Chapter 3 discusses the basics of Bayes’ theorem. An attempt is made to explain
the Bayes’ theorem through 2 basic examples.
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• Chapter 4 the Bayes’ model to be used for deriving the input parameters for slope
stability problem is developed.

• Chapter 5 covers the Slope stability analysis of a basic slope model. Both ap-
proaches, frequentist and Bayes’ approach are used to derive the input parameters
and further the results are discussed and compared.

• Chapter 6 contains the overall conclusion of the work and covers recommended
future scope.
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6 2. LITERATURE REVIEW

2.1. GEOTECHNICAL UNCERTAINTY

T HE complexity of geotechnical variability is a result of many disparate sources of un-
certainties. The three primary sources are inherent variability, measurement error

and transformation error. The inherent variability is a formed due to natural geological
processes that continually modifies the soil mass in situ. Measurement error is caused
by equipment, procedural-operator and random testing effects. Transformation uncer-
tainty is introduced when the field or laboratory test results are transformed into design
soil properties using empirical or other correlation models. Following figure 1 illustrates
the above mentioned sources of variability in soil properties.

Figure 1: Uncertainty in soil property estimates.[8]

Phoon and Kulhawy conducted an extensive literature review in which the COV (co-
efficient of variation) and scale of fluctuation of inherent variability, measurement error
[8] and transformation error [3] are evaluated in detail along with the general soil type
and approximate range of mean value for which the COV is applicable. Tables with sum-
marised data of soil type, number of tests and mean and COV of soil properties are pre-
sented. The data summaries inherent variability of strength properties (undrained shear
strength, effective friction angle), index parameters (liquid limit, plastic limit, liquidity
and plasticity index, relative density, etc.) and field measurements (CPT tip resistance,
number of SPT blow count, etc.). Horizontal and vertical scale of fluctuation of some
common geotechnical properties such as CPT tip resistance, unit weight, undrained
shear strength for different soil types is summarised. Following figure 2 shows a table
which summarises the COV of inherent variability for various test measurements. It also
includes general soil type and the approximate range of mean value for which the COV
is applicable.
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Figure 2: Approximate guidelines for inherent soil variability.[8]

In geotechnical design, the direct measurements of soil properties from tests per-
formed is converted into an appropriate design property value using a transformation
model. This introduces some degree of uncertainty since most of the transformation
models are obtained by empirical data fitting. This uncertainty also exists for theoretical
relationships due to idealizations and simplification in the theory. The transformation
uncertainty can be quantified using probabilistic methods as shown in the figure 3 be-
low.
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Figure 3: Probabilistic characterisation of transformation model. [3]

The transformation model typically is evaluated using regression analyses and the
spread of the data around the regression curve is modelled as zero-mean random vari-
able. The standard deviation of this zero-mean random variable is an indicator of the
magnitude of transformation uncertainty. To determine the typical range of variabil-
ity for some common design soil properties, a simple second-moment probabilistic ap-
proach which consistently combines the inherent variability, measurement error and
transformation uncertainty is discussed. Using the statistical data on inherent variability
and measurement error form the companion paper as realistic inputs, the transforma-
tion uncertainty can be evaluated. Design properties such as undrained shear strength,
effective stress friction angle, in-situ horizontal stress coefficient and Young’s modulus
are considered in this paper. Different correlations for every design property are exam-
ined. For example, in case of undrained shear strength, the correlations with vane shear
test, SPT N value, corrected cone tip resistance, plasticity index and DMT horizontal
stress index is examined. Following figure 4 shows the table with summary of variability
of the design properties as a function of test, correlation equation and soil type.
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Figure 4: Summarised approximate guidelines for design soil properties.[3]

This extensive literature review conducted by Phoon and Kulhway [3],[8] to estimate
the statistics of inherent variability, measurement error and Transformation error con-
cluded that, the COV of inherent variability for sand is higher than that for clay when the
soil type is considered. The highest COV of inherent variability is associated with mea-
surements in horizontal direction and measurements of soil modulus. Scale of fluctua-
tion is an important parameter in identifying the inherent variability but the information
on this is limited. The studies show that the vertical and horizontal scales of fluctuation
are highest for index parameters. Statistical information on measurement error is also
limited. In case of transformation error, the method of calculating values of parameters
(direct/indirect) can affect the range of COV.

2.2. USE OF BAYES THEOREM IN CURRENT GEOTECHNICAL STUD-
IES

I N today’s geotechnical analysis, probability of failure is predicted using the total vari-
ability of soil (actual variability + measurement errors and statistical uncertainties)

arising two important questions ‘why are failure less frequent than our reliability stud-
ies?’ and ‘what is the actual variability of soil?’. To figure out the answers for these ques-
tions Yu Wang, et. al. [4] developed a Bayesian inverse analysis framework for direct
quantification of inherent variability of soil and rock properties. This robust framework
is developed such that it streamlines the formulation of likelihood functions for vari-
ous soil and rock properties when measured using different in-situ and laboratory tests.
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The Bayesian framework consists of 3 key components: prior distribution, likelihood
function and solving Bayesian equation to get posterior information. Prior knowledge is
obtained by doing desk study and site reconnaissance whereas the likelihood function
is formulated using the site observation data obtained from in-situ/laboratory testing.
Following figure 5 shows the Bayesian framework for geotechnical characterization of a
project site. XM represents the observation data from site, XD represent the design prop-
erty value which is calculated using a transformation model which is function of XM and
εt which is a random variable representing error in transformation model MT . MP is a
probabilistic model (random variables or fields) for inherent variability of XD . Both MT

and MP together form a likelihood model ML .

Figure 5: Bayesian framework for geotechnical characterization of a project site.[4]

The most critical components in this framework are formulating the prior distribu-
tion and likelihood function. As shown in the figure, the likelihood model needed to
derive the likelihood function depends on the probabilistic model and transformation
model. Probabilistic models like random fields or random variables can be adopted. Im-
plementation procedure of this approach and two ways of solving the Bayesian equation
is further discussed in brief. One of the method is Bayesian equivalent sample method
in which the actual variability of design property in a soil layer is modelled by a random
variable and its model parameters. In this method MCMCS process is used to overcome
the difficulty in expressing the complicated pdf of design propert because of sophisti-
cated likelihood function and prior knowledge. MCMCS (Markov Chain Monte Carlo
Simulation) is a numerical process which simulates a sequence of samples of random
variable. It is a feasible way to generate samples from an arbitrary pdf[9]. A large number
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of samples are generated by using MCMCS and are used to plot pdf, cdf of design prop-
erty to estimate its statistics. This method solves the problem of estimating the statistics
of soil and rock properties from limited amount of site-specific observation data.

The second method is Bayesian system identification and model class selection method.
In this method, for a soil profile with multiple layers, mutually independent random
fields are used to characterize the inherent spatial variability of design property of each
layer. The obtained model parameters of the posterior distribution are then maximized
to get the most probable value (MPVs) of model parameters using Laplace asymptotic
approximation. Along with the MPV’s, the Bayesian system identification method gives
the posterior standard deviations of random field model parameters.

Following are few examples in which Bayes’ technique is applied with brief discus-
sion on it’s implementation procedure:

• Probabilistic characterization of Young’s modulus of soil (Yu Wang, Zijun Cao [9]):
A MCMCS based approach is developed to probabilistically characterize the undrained
Young’s modulus (Eu) of clay using SPT tests. This approach uses the site informa-
tion available prior to the project i.e. ‘prior knowledge’ and project specific in-
formation from the laboratory and in-situ tests performed. First in the Bayesian
framework, the probabilistic modelling of the inherent variability of Eu and the
transformation uncertainty associated with regression between Eu and SPT (N)
values is done. Further a PDF of Eu based on prior knowledge and project specific
SPT data is derived. Then, using MCMCS and derived PDF, 30,000 equivalent sam-
ples of Eu are generated and with the help of conventional statistical analysis of
these samples, the statistics of Eu and its characteristic value both are determined.
MCMCS is integrated with the Bayesian approach to effectively tackle the difficulty
in generating samples form realistic prior distributions which are generally com-
plex posterior pdf’s. To explicitly model the inherent variability, Eu is represented
by a lognormal random variable with a mean and standard deviation. The Eu value
of the soil is obtained by the regression between the Eu and the N values measured
during the SPT test using the eq. provided by Kullaway and Phoon. Metropolis-
Hastings (MH) algorithm is used in MCMCS to generate equivalent samples of Eu.
These samples are equivalent to those measured physically in laboratory or in-situ
tests from statistical point of view. The MCMCS samples are generated form the
pdf of Eu, hence contain the integrated information of both site-specific obser-
vation data and prior knowledge. The implementation procedure of the MCMCS
based Bayesian approach is applied on the sample obtained from the clay site of
the NGES at Texas A&M University. It was found that the proposed approach pro-
vides quite similar results when compared to the results obtained from large labo-
ratory and in-situ test data (42 pressuremeter tests in this case). Following figure 6
shows the comparison of cdf’s of E¬u estimated using 30,000 equivalent samples
and 42 pressuremeter tests.
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Figure 6: Validation of the probability distribution for the undrained Young’s modulus estimated from
equivalent samples.[9]

It can be clearly seen that data provided by 30,000 equivalent samples is consistent
with the data obtained from 42 pressuremeter tests performed. Sensitivity stud-
ies (to study the effect of quantity of project specific test data) were conducted
using 10 SPT data sets with different no. of SPT (N) values in every set. Results
showed that in case of estimating the mean value, the equivalent samples are bet-
ter estimations than those directly estimated from the regression model without
prior knowledge. By incorporating relatively limited available prior knowledge,
the equivalent sample approach improves the mean value estimation significantly.
Similar results are achieved in case of standard deviation estimations. Following
figure 7 shows the estimates of the mean and standard deviation.

(a) (b)

Figure 7: Effects of project specific test data: Estimates of the mean of ln(Eu) (a) and Estimates of the standard
deviation of ln(Eu) (b).[9]
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Sensitivity study on prior knowledge is also carried out using 4 different sets of
prior knowledge. Each set have different range of mean and standard deviation
values. 2 sets of prior knowledge follow a uniform distribution, 1st set is used
as baseline case and in 2nd the range of mean and standard deviation is much
smaller than 1st set. Sets 3 and 4 follow an arbitrary histogram type of distribu-
tion. 3rd set has similar range of mean and standard deviation but with relatively
high PDF values allocated close to true values of mean and standard deviation. 4th
set is the truncated Gaussian best fit of set 3. In case of sets following uniform dis-
tribution, both the mean and the standard deviation values were improved with
consistent and informative set of the prior knowledge which is obvious result. Sets
following an arbitrary histogram type of distribution are slightly more informative
than those following a uniform distribution. The proposed approach effectively
tackles the difficulty in generating meaningful statistics from very limited soil data
obtained from the site investigation. Also, the sensitivity analysis shows that the
approach is general and applicable to different type of project specific test data
and prior knowledge.

• Probabilistic characterization of sand friction angles (Yu Wang, et. al. [5]): A
Bayesian framework is developed in conjunction with limited number of cone
penetration tests for estimating the effective friction angle of sand and model the
inherent spatial variability with random fields. First the random field modelling
of the effective friction angle of sand and regression between the cone tip resis-
tance and effective friction angle is carried out followed by the development of the
Bayesian framework. To model the inherent spatial variability of the effective fric-
tion angle, random field theory by Vanmarcke [10] is applied. A semi-log regres-
sion equation between the cone tip resistance and sand friction angle provided
by Kulhaway and Mayne [11] is used. In the Bayesian framework, the updated
knowledge (mean, standard deviation and correlation length) about the model pa-
rameters is reflected through their joint posterior distribution given the observa-
tion data and prior information. The proposed Bayesian framework was applied
to get probabilistic characterisation of the effective friction angle at the sand site
of NGES at Texas A&M University. It has been shown analytically that uncertainty
about effective friction angle stems the inherent spatial variability, and uncertainty
regarding the estimates of spatial variability and the mean effective friction angle.
The spatial variability can only be improved in accuracy, but cannot be eliminated,
by collecting more data. On the other hand, uncertainty regarding the estimates
of spatial variability and the mean effective friction angle can be reduced as the
amount of independent data increases, providing a way to determine whether
the amount of project-specific information (e.g., in-situ and/or laboratory tests)
is sufficient in site characterization. It also concluded that if uncertainty regard-
ing estimates of spatial variability and the mean effective friction angle is relatively
small compared to inherent spatial variability, more tests (laboratory/in-situ) will
provide very less reduction in overall uncertainty whereas if the difference is large,
additional tests will effectively reduce the overall uncertainty. To study the effect of
different sources of information in Bayesian technique, analytical solutions on two
asymptotic cases of posterior mean is derived which can be used to check the re-
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sults of using Bayesian technique. The application example with real data showed
that the Bayesian approach properly accounts for the effects of prior information
and data in the updating process.

• Underground soil stratification using CPT’s (Yu Wang, et. al.[7]): The uncertainty
in CPT-based soil classification using Robertson chart is explicitly modelled us-
ing Bayesian technique. Maximum entropy principle is used to figure out that to
which soil type in Robertson chart does the sample belong. Previous approaches
of soil classification both deterministic and probabilistic focus mainly on the soil
type from a particular data point leading to a question of how to stratify the under-
ground soil profile and identify different soil layers from a large number of contin-
uous CPT data. The main issue of this problem is the uncertainty in the CPT based
soil classification and the spatial distribution of the CPT data. Identification of the
underground soil layers based on CPT data is to determine the layer thickness in
a soil profile with N soil layers. This number of layers is considered deterministic
but unknown and are further determined using a Bayesian model class selection
approach presented in the paper. In this study for the probabilistic soil classifica-
tion based on the Robertson chart, the pdf (probability density function) is taken
as the commonly used Gaussian distribution which is consistent with the results
obtained by using the principle of maximum entropy, a theoretical basis of the
Bayesian School to quantify uncertainty and assign a pdf for a given set of infor-
mation. Maximum entropy principle states that the proper pdf for a given set of
information is the one with the maximum entropy while satisfying all the con-
straints given by the information. In the context of CPT-based probabilistic soil
classification, the information available from the CPT test is the measured values
of [ln(FR i ), ln(Qt i )]. Such values can be reasoned as the centre or expected values
of the pdf that spreads over the Robertson chart. FR i is the normalised friction
ratio and Qt i is normalised cone resistance.

Figure 8: Illustration of the probability density contour and two dimensional joint pdf for soil classification
based on a given CPT data point. [7]
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The parameters of interest are thickness of the soil layers. The Bayesian frame-
work used in this study contain two major components: Bayesian model class se-
lection approach to identify the most probable number of underground soil layers
and Bayesian system identification approach to simultaneously estimate the most
probable layer thickness and classify the soil type. Following figure 9 shows the
implementation procedure provided.

Figure 9: Flowchart for the proposed Bayesian process to identify the soil layers.[7]
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Figure 10: Comparison among the result of the boundaries determined by different approaches in the
illustrative example.[7]

The proposed approach is applied on a case study involving sample CPT test per-
formed at the NGES site of Texas A&M University. Figure 10 compares the results
of proposed Bayesian approach with other approaches. It has been shown that
the proposed approaches properly identify the underground soil stratification and
classify the soil type of each layer. In addition, as the number of model classes in-
creases, the Bayesian model class selection approach identifies the soil layers pro-
gressively, starting from the statistically most significant boundary and gradually
zooming into less significant ones with improved resolution. It is also found that,
although the most probable model class (the most probable number of soil layers)
and its corresponding most probable layer thicknesses are of primary interest in
the identification of the underground soil stratification, the evolution of the iden-
tified soil strata as the model class increases also provides valuable information for
assisting in the interpretation of CPT data in a rational and transparent manner.

• Identification of soil strata using water content data (Yu Wang, et.al. [6]): LCF
(London Clay Formation) is generally determined based on their lithological char-
acters and fossil contents with which geotechnical engineers are less familiar. In
identification of the soil strata in LCF, attempts have been made to correlate results
of conventional geotechnical tests like SPT’s and index tests such as water content
and liquid limit. However, it is found out that the water content in the soil profile is
inevitably scattered and contains various uncertainties. Following figure 11 shows
an example of water content profile at St James’s Park, London.
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Figure 11: Water content profile and soil strata identified in London clay at St James’s Park, London.[6]

The division of a water content profile into multiple layers is, therefore, somehow
obscured, subjective and may be inconsistent among different engineers. To as-
sist in division of a water content profile into multiple layers in an objective man-
ner and to facilitate identification of soil strata in LCF using water content data, a
Bayesian approach is developed. The approach contains a Bayesian system iden-
tification method that is used to identify the thickness of soil layer and Bayesian
model class selection to select the most probable number of soil strata. Based on
likelihood function and the prior distribution, Bayesian analysis is carried out to
provide the posterior distribution (pdf) for the model parameters and the most
probable thickness of soil layer. The number of soil layers in Bayesian system
identification is considered deterministic but unknown. Using Bayesian model
class selection approach, the most probable value of number of layers among a
pool of candidate model class (family of stratification models that share the same
number of soil layers in LCF but have different model parameters) can be selected.
LFC water content profile at St James’s Park, London is used to illustrate the pro-
posed approach. Following figure 12 shows the results of the proposed approach
for identifying the soil strata.
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Figure 12: The most probable soil strata identified from the proposed approach.[6]

Further, sensitivity analysis is performed to study the effect of data quantity (mea-
surement interval and the number of measurements at same depth in water con-
tent profile). It concluded that relatively small measurement intervals or repeated
measurements at same depth are needed to properly identify LCF soil strata. Also
using the information form other sources such as Atterberg limits and lithologi-
cal characters reduces the quantity of water content data required in the proposed
Bayesian approach.

In this section, few application of Bayes’ theorem in geotechnical engineering are
discussed. It is intended to use this theorem in slope stability analysis to answer the
research questions mentioned in section 1.1. For this it is important to understand cur-
rent practice on slope stability analysis. Hence, in next section, a background study on
probabilistic approach in slope stability analysis is provided.

2.3. PROBABILISTIC APPROACH IN THE SLOPE STABILITY ANAL-
YSIS

A Case study on assessment and re-design of an existing dyke (section of dyke ring
at the Starnmeer polder situated in province of North Holland) founded on a lay-

ered soil is presented by Michael A. Hicks, et. al. [12]. A stability assessment carried
out by Hoogheermraadschap Hollands Noorderkwartier (HHNK) using the limit equilib-
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rium software D-Geo stability showed that the sections do not comply to current safety
requirements and return the factor of safety (FOS) values as low as 0.5 even though the
dyke has stayed stable for hundreds of years.[12]

Re-analysis of a dyke section, which showed FOS of 0.59 using D-Geo stability soft-
ware [13], is carried out by the authors using an in-house finite element software devel-
oped at TU Delft. Similar to the assessment carried out by HHNK, the strength parame-
ters used in this analysis were cohesion and tangent of friction angle. Both deterministic
and stochastic analysis were performed and the FOS values for using mean, 5-percentile
and design property values were obtained. The following figure 13 shows the table that
summarises the results.[12]

Figure 13: Results of re-analysis carried out using in-house finite element software.[12]

In stochastic analysis, to account for the spatial variability, random finite element
method (RFEM) involving 500 realisations is used. This process uses same point statis-
tics as used for deterministic analysis but additional vertical and horizontal scales of
fluctuation are specified to quantify the distance over which the property values are
corelated. Since insufficient data are available for the cross-section, the vertical scale
of fluctuation is assumed as 0.5 (conservative estimate) and for horizontal scale of fluc-
tuation, initially 3 values are assumed: 0.5, 6 and 12. Following figure 14 shows the cdf of
FOS computed using deterministic as well as the stochastic analysis.[12]

FOS of 0.98 is obtained for reliability of 95% when value of horizontal scale of fluc-
tuation is used as 6 in stochastic approach. The value FOS for corresponding design
property values, determined by scaling down the property distribution of cohesion and
tangent of friction angle is obtained as 0.85 for reliability of 95%. This value is less than
safety requirement FOS of 0.95 but there is a significant increase of 57% in FOS when the
spatial variability is accounted.[12]

Redesigning of the dyke led to increase in FOS from 0.59 to 1.33 for deterministic
approach using D-Geo stability software and 1.21 using inhouse software. Using RFEM
approach gave FOS of 1.531 showing an increase of 27% with respect to deterministic
approach. Characteristic soil property values consistent with the Eurocode 7 were back-
calculated and found to be 34% for all material zones. This shows increase in strength
capacity when compared to the point-statistics based interpretations of Eurocode 7.[12]

2.4. SUMMARY
• The complexity in geotechnical variability is due to the uncertainties of inherent

variability, measurement errors and transformation uncertainties. A thorough re-
view was carried out to estimate the statistics on inherent variability, measure-
ment errors [8] and transformation uncertainties [3]. This work provided guide-
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Figure 14: Comparison of deterministic and stochastic solutions for factor of safety.[12]

lines on the probable range of COV of soil properties which can prove to be useful
first order approximations. These ranges are derived from the reported statistics
on soil properties in geotechnical literature. Due to this data being limited, it is
not suitable for statistical analysis. To overcome this problem and to have better
insight on variability, the site-specific data and the prior knowledge from gener-
alised guidelines can be combined using Bayesian updating techniques.

• Y. Wang, et. al [4] have combined recent studies of using Bayesian technique in soil
characterisation and have developed a Bayesian inverse analysis to directly quan-
tify the actual (inherent) variability of soil and rock properties. The study provides
two different ways for solving the Bayesian problem. First method is Bayesian
equivalent sample method which uses MCMCS to create multiple samples from
limited samples for analysing the statistics of soil properties. Second method is
Bayesian system and model class selection method in which, for multi layered soil
profile, mutually independent random fields are used to characterise design prop-
erty for each layer and further using Laplace asymptotic approximation, MPV is
obtained.

• This Bayesian framework has been applied to characterise different soil properties
such as Young’s Modulus (Wang and Cao [9]), sand friction angles (Wang and Cao
[5]), identification of soil strata in London clay using water content data (Wang
and Cao [6]), soil strata identification using CPT (Wang and Cao [7]). These stud-
ies show that actual variability is the major component which affects the actual
response of geotechnical system. The measurement errors and transformation
uncertainties do not affect the actual response but they do affect the reliability
analysis since we use the total variability in reliability studies. This overestimates
the reliability estimates (overestimation of FOS of structures).

• This Bayesian approach provides promising results for quantifying the inherent
variability by reducing the measurement errors and transformation errors in the
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characteristic values.

• Current Dutch stability assessments of rural dykes using statistical methods are
based the guidelines provided in clause (11) of Eurocode 7. Hicks, et. al [12] in-
vestigated a case study involving reliability-based assessment and redesign of an
existing dyke. Both, deterministic and random finite element methods (RFEM)
were used and when compared showed significant increase in FOS when spatial
variability is considered. The characteristic property values used in the approach
were consistent with requirements of Eurocode 7. In this study, no correlation was
assumed between the design soil properties (cohesion and tangent of friction). In
RFEM for each soil property, due to limited data available, values of both the ver-
tical as well as horizontal scale of fluctuations are assumed based on past knowl-
edge.

As discussed in above section, previous studies have reported the use of Bayes’ statistics
in geotechnical engineering mainly to calculate the property values of soil (eg. Young’s
Modulus, Shear strength, Water content, etc.), soil stratification, etc. The attempt of such
approach was made to quantify the transformation, inherent and measurement uncer-
tainties. However, little attention has been paid to implementing Bayes’ statistics in the
reliability studies of slope. As the problem statement suggests, the present work focuses on
implementing this method and quantifying the uncertainty involved in the current relia-
bility studies of slope.
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BAYES THEOREM:
Bayes theorem in statistics and probability theory describes the probability of an event
based on prior knowledge of conditions that might be related to the event (Joyce and
James [14]). It is a tool that can be used to quantify the uncertainty of the variable value.
Bayes’ Theorem is formulated as,

f (y |x) = f (x|y) f (y)

f (x)
(3.1)

Due to the generality of Bayes’ Theorem, it has a wide range of applications in ev-
eryday life. To understand how the above equation 3.1, a classic probability example
of disease-test is considered. Assume that ’y’ is the hypothesis that a person has a dis-
ease and ’x’ is the event that the test carried out to confirm the disease is positive. Every
parameter in equation 3.1 for this example is defined as follows.

f(y): It is the probability that a person has a disease without conducting any test to
confirm the disease. It is also known as prior distribution as it shows knowledge on dis-
ease prior to performing the test.

f(x): It is the total probability of testing positive for the disease. It is also treated as
the normalizing constant as there is no dependency of f(x) on f(y). It is the summation
of the probability of having disease and correctly testing positive and probability of not
having disease and falsely being identified. Mathematically, it can be written as,

f (x) = f (y) · f (x|y)+ f (−y) · f (x|− y) (3.2)

f (x) =∑
f (x|y) · f (y) (3.3)

f (x) =∑∫
f (x|y) · f (y)d y (3.4)

Equation 3.3 is used in case of discrete parameter values and equation 3.4 is used when
the parameter values are continuous.

f(x|y): It shows the probability of the test being positive given that the person has the
disease. This function is also known as the likelihood function.

f(y|x): This function represents the probability of having the disease given the prob-
ability of the test being positive. It is called posterior distribution.

One of the critical and difficult parts of this equation is to figure out the prior data.
Sometimes it is no better than a guess. To understand how the above equation 3.1 equa-
tion works, assume a sample size of 1000 people. It is assumed that the frequency of
the disease in the population, f(x)=0.001. Also, it is assumed that 1% of the total popula-
tion would be falsely identified as having the disease (f(x|-y) = 0.1). Using these values,
equation 3.1 can be solved as;

f (y |x) = (0.99) · (0.001)

(0.001) · (0.99)+ (0.999) · (0.01)
(3.5)
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f (y |x) = 0.09 (3.6)

This solution shows that the probability that a person has the disease after testing
positive for it, in reality, is very low. Statistically, this solution is more logical. The person
who actually has the disease belongs to a group of 11 people who tested positive. One
person in this group actually has the disease. So chance that a person has the disease
after testing positive for it is 1 in 11 i.e. 9%

In this example, the assumptions made allow computing the normalizing constant
quite easily. But most of the time the parameters (y and x) have discrete or continuous
values. For these type of parameters, equations 3.3 and 3.4 are used to compute fx. When
a parameter is continuous, it gets very difficult to solve equation 3.4 analytically as well
as numerically. To bypass this issue, Markov Chain Monte Carlo (MCMC) can be used.
The starting point for MCMC is the parameter space. Each parameter in the defined
Bayes’ model has a possible range of values. Parameter space is the space/area that cov-
ers all possible combinations for all possible values of the model parameters. For each
parameter value in that space, the likelihood function can be computed. Also, the Prior
probability for any possible value is known (assumed Prior probabilities in the model).
Knowing the likelihood and the respective prior, the numerator in Bayes’ eq. is calculated
for any given point in the parameter space. MCMC algorithm starts with a random point
in this parameter space, computes the multiplication of likelihood and prior for that
particular point, and then moves to a new point to carry out a similar operation. Thou-
sands of such samples which are also correlated are drawn, forming a distribution that is
nothing but a posterior distribution. This way by using MCMC, the difficulty in comput-
ing the normalizing constant is bypassed. The most common MCMC algorithms used
are Metropolis-Hastings, Hamiltonian Monte Carlo, Gibbs, No-U-Turn Sampler (NUTS),
etc. In this work to carry out the Bayes’ statistics, the PyMC3 package in python [15] is
used.

Following is an example of implementing Bayes’ statistics for estimating the values
of undrained shear strength (su). For this, 20 random samples of su for clay soil are
assumed to be obtained by laboratory/Field tests. A normal distribution is fitted over
these 20 samples and the mean and standard deviation of this distribution are derived
as shown in the figure 15. Hence, this observed data of su is represented by a normal
random variable with a mean µ and standard deviation σ and is defined as:

su =µ+σ · z (3.7)

in which z is a standard Gaussian random variable. Since these parameters (mean
and standard deviation of Su) are derived from a relatively small sample set, their values
may not be perfectly correct and might have a lot of uncertainties involved. In order to
predict better values and see the uncertainties involved in the observed values, Bayes’
statistics are used. For this, a simple model is created in the PyMC3 environment in
python [15].

Predicting/improving the values in this case essentially means getting better insight
on the mean (µ) and standard deviation (σ) of su . To do so, following Bayes’ equation is
to be solved.
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f (µ,σ|x) = k · f (x|µ,σ) · f (µ,σ) (3.8)

Where k is normalising constant given as,

k =
[∫

µ,σ
f (x|µ,σ) · f (µ,σ)dµdσ

]−1

(3.9)

To solve this equation, from the normal distribution of the observed data given by
equation 3.7, ns independent values of su are considered. the likelihood function given
by f (x|µ,σ) in equation 3.8 is expressed as:

f (x|µ,σ) =
ns∏

i=1
f (µ,σ|x) (3.10)

f (x|µ,σ) =
ns∏

i=1

1p
2πσ

exp

{
−1

2

[
x −µp

σ

]2}
(3.11)

Since there are two model parameters (µ and σ) assumed, as prior data ( f (µ,σ)) a
joint distribution betweenµ andσ. For this joint distribution, the following distributions
are assumed.

µ ∼ N (µa ,σa)
σ ∼ N (µb ,σb)

It is known that for the clay sample, the mean and Coefficient of variation of Su values
lie in the range of 10-400 kPa and 0.2% to 0.55%. Hence, as prior data on the mean and
standard deviation of Su, these values summarised by Phoon and Kulhawy [8] are used.
Now, to get the posterior distribution ( f (µ,σ|x)) 1000 samples are drawn using No-U-
Turn sampler. NUTS is an extension to Hamiltonian Monte Carlo (HMC). This sampler
uses dual averaging, making it possible to get similar or sometimes more efficiency is ob-
tained compared to HMC without wasting time and effort in hand-tuning HMC. Using
NUTS the Bayesian inference can be performed efficiently (more information on NUTS
can be found here [16]). Following figure 16 shows the posterior distribution of the mean
and standard deviation obtained by 1000 samples along with their prior distributions.
The figure shows a smooth posterior distribution as a normal distribution is fitted over
the samples just to compare the values. The actual posterior distribution is not smooth.
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Figure 15: Observation distribution

(a) Mean of su (b) Mean of su

Figure 16: Prior and posterior distributions

Following are the details of prior and posterior distributions.

Prior Distributions :
mean of su ∼ N (205,60)

standard deviation of su ∼ N (80.5,10)

Posterior distribution in terms of (µ,σ)
mean of su = (243.336,15.593)

standard deviation of su = (70.706,8.707)

It can be clearly seen that the posterior distributions are narrower than the prior dis-
tributions. This is expected because when new/more information is available, the confi-
dence level in the data increases. By using the Bayes’ method, two major interpretations
are obtained;

• Rather than getting a single value of the parameters, it provides the distribution of
the values.

• By combining the prior knowledge and the observed knowledge, the uncertainties
in the parameter values can be seen.

When general statistics (frequentist approach) is applied to the 20 data points, a sin-
gle value of mean and standard deviation is obtained, neglecting all the other possible
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values. With Bayes’ approach, all the possible values are obtained given the data set and
assumed prior data showing the uncertainty involved.

The above examples explain how exactly the Bayes’ approach works in improving the
understanding of particular parameters using the past knowledge and the observations
made. As discussed in section 1.1 the major aim of this study is to implement Bayes’
statistical approach to derive the input statistics of soil properties and compare the re-
sults with the frequentist approach. In the next chapter, a very basic Bayes’ model is
developed to predict these input parameters.
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In this chapter, the Bayes’ model is introduced step by step over some basic examples
below. In every example, bits and pieces are added to scale up the model to reach the
actual target problem of slope stability. As discussed earlier, in this work a finite element
model which is developed at TU Delft is used to analyze a basic slope problem. This
model uses a strength profile to calculate the FOS of the slope. To the finite element
model, this profile is provided as input in terms of Intercept (c) and Slope (m) of the
linear trend as shown in the figure, Coefficient of Variation (CoV) of the data around the
trend, and vertical scale of fluctuation (θv ) (It is assumed that there is no horizontal scale
of fluctuation in this work). In the examples below, a model to predict the linear trend (m
and c) and CoV is developed. To start with, a basic linear data set is generated in example
4.1 and a simple Bayes’ model is tried to fit over it.

4.1. EXAMPLE 1.
In this example, a data set is generated around a linear line using the following linear
equation (eq. 4.1). It is assumed that the value slope (m) is 0.5 and that of intercept (c) is
1 and is represented by β1 and β0 respectively in vector form. The parameter ε used for
generating the data around this line is assumed to be normally distributed with a mean
of 0 and standard deviation of 2. 15 data points are generated around the assumed linear
line

Yi =β1 ·Xi +β0 +εi (4.1)

Figure 17a shows the linear line and the data generated around it. Now it is assumed
that the values of β1, β0 and εi are unknown. Using the Bayes’ approach these values are
to be predicted. A major part in modeling the Bayes’ equation is assuming the type of
prior data (prior knowledge on β1, β0 and εi ) and likelihood function. For this example
following assumptions are made for prior data.

β1 ∼ N (0,100)
β0 ∼ N (0,100)
εi ∼N (0,10)

The likelihood function is also assumed to be normally distributed with a mean as
(β1 ·Xi +β0) and standard deviation as εi . It can be written as:

Yi ∼ N [β1 ·Xi +β0,εi ]

To plot the posterior, 1000 samples are drawn using MCMC (as discussed in chapter
3 ). Following figure 17b shows the results of this example.
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Figure 17: Different data sets with respective prediction of possible regression lines
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Figure 18: Posterior distribution of model parameters (left) with samples of Markov chain (right) for data set
with 500 points
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Figure 19: Joint Distribution between slope (m) and intercept (c)

As seen in figure 17b, the Bayes’ approach provides a wide range of possible linear
lines that can fit over the provided set of data. These are 1000 different lines since 1000
different samples were drawn to get the posterior distribution. The widespread of lines
indicate the uncertainty involved in predicting the linear line. To see the effect of dif-
ferent data sizes, sample data sets with 50 and 500 data points were generated using the
same linear line and error as used for generating data set with 15 points. Figures 17d and
17f shows the predicted lines for data set with 50 points and 500 points respectively. It
can be seen that as the number of data points increases, the uncertainty decreases in the



4.2. EXAMPLE 2.

4

33

prediction of linear lines.

Figure 18 shows the sampling results for the data set with 500 data points. The left
part of the figure shows the posterior distributions of the 3 model parameters (m (β1),
c (β0) and εi ) and the right side of the figure shows the samples of the Markov chain
plotted in sequential order. The two posterior distributions (dotted and solid) represent
a sampling from 2 chains. Using multiple chains helps to check the convergence of the
distribution. PyMC3 uses Gelman-Rubin diagnostics to check the convergence of the
posterior distribution. The maximum Gelman–Rubin diagnostic across all model pa-
rameters is labeled as Max Gelman–Rubin Rc (or R̂). If the diagnostic R̂ values are less
than 1.1 for all the model parameters, the convergence can be declared. For all the 3
data sets, the value of R̂ is 1 suggesting convergence of the posterior distribution. Also,
the model parameters of the samples drawn are correlated to each other. Figure 19 shows
the joint distribution between slope (m) and intercept (c). The following table 1 shows
the summary of the posterior distributions of the model parameters.

Table 1: Summary of posteriors for example 1

Observation Points Intercept (c)(β0) Slope (m)(β1) εi

Mean S.D. Mean S.D. Mean S.D.
15 0.723 1.778 0.892 0.552 2.536 0.562
50 1.362 0.764 0.423 0.233 1.905 0.196
500 1.056 0.263 0.487 0.081 2.041 0.066

The results in the above table show that, as the number of samples increases, the un-
certainty in the prediction decreases. With the increase in the number of samples, the
standard deviation of the model parameter decreases, and the mean value moves more
close to the true values. It is expected to get such results since more information is avail-
able, more confidence/certainty is present. Hence, it is safe to say that the assumptions
made in this model on prior data and likelihood function provide reliable results. In this
example, the data points are not correlated to each other and are randomly generated.

The sample set generated in the above example does not represent the trend of the
general soil strength profile. Usually, as the depth increases, the values of Su scatters far-
ther away from the mean. To capture such behavior, a heteroskedastic type of data set is
tried in the next example.

4.2. EXAMPLE 2.
In Heteroskedatic data, the deviation in the values of y from the trend line increases with
an increase in values of x. To create such a data set following equation is used.

Yi =β1 ·Xi +β0 +εi ·Xi (4.2)

Now, similar to example 1 the values of β1, β0 are assumed as 0.5, 1 and εi ∼N (0,1)
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respectively. Figure 20a shows data set generated using the above formula 4.2. For Bayes’
model, a model used in example 1 is also used here with a change in the likelihood func-
tion. Change is made in the standard deviation of the likelihood function where the εi is
multiplied with the depth Xi . The likelihood function is given as:

Yi ∼ N [(β1 ·Xi +β0), (εi ·Xi )]

Following set of prior data is assumed:

β1 ∼ N (0,100)
β0 ∼ N (0,100)
εi ∼N (0,10)

Following figure 20 shows the results of implementing this model.
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Figure 20: Results for Heteroskedastic data

For this example, data set with 100 data points was generated. Similar to example 1,
this heteroskedastic model also provide promising results. The mean values of m (β1), c
(β0) and εi are 0.468, 0.812 and 1.045 respectively which are very close to the true values
(m (β1) = 0.5, c (β0) = 1 and εi ∼ N (0,1)). Also, the model parameters (m (β1), c (β0) and
εi ) exhibit correlation with each other. Figure 20b shows the joint graph of m and c. It
can be seen that with increasing value of c, the value of m decreases; showing negative
correlation.
But does the heteroskedastic data correctly represents the CPT data? Consider figure 21
below. In this figure, actual CPT data is plotted along with sample heteroskedastic data.
This heteroskedastic data is generated using values of m, c and ε as 3, 15, ε∼N (0,1)) re-
spectively. Looking at the heteroskedastic data set, the data points keep on moving away



4

36 4. BASIC BAYES’ MODEL

from the mean trend. This suggests that in the case of CPT’s, at larger depths the devia-
tion of the data point from the mean trend is very large. In most of the conditions, this
is not true. The increase of deviation of the data point is more gradual in actual CPT’s
compared to the heteroskedastic data. Also, at a shallower depth, the values of CPT rela-
tively show larger deviations compared to the heteroskedastic data. Hence, it can be said
that the heteroskedastic model is not the perfect fit for working with CPT data sets. In
the next example, a different equation is used in order to create a more suitable data set
for CPT data sets.

Figure 21: Comparison between heteroskedastic and CPT data

4.3. EXAMPLE 3.
In this example, the following equation is used to generate the data set. This equation
is taken from the coursework documents of the Risk and Variability course (CIE4395) at
TU Delft [17].

Yi = (β1 ·Xi +β0) · (1+β2 ·ζi ) (4.3)

In the above equation, the mean trend (β1 · Xi +β0) is multiplied by term (1+β2 ·
ζi ). β2 is CoV (coefficient of variation) and ζi is random number generating parameter
following a normal distribution with mean as 0 and standard deviation as 1. Figure 22a
shows the data generated using equation 4.3. The assumed value of m (β1), c (β0) and
CoV (β2) to generate this data set is 0.5, 1 and 0.25 respectively.

In this example to solve Bayes’s equation, a different, more uninformative prior data
set is assumed. For model parameter m (β1) and c (β0), a uniform distribution with
values ranging from 0 to 100 is assumed. Since CoV (β2) is often expressed in percentage,
it is assumed that its value will lie between 0 and 1. Hence, for CoV (β2) a uniform prior is
assumed with values ranging from 0 to 1. Following are the assumed prior distribution:

β1 ∼ U(0,100)
β0 ∼ U(0,100)
ε2 ∼ U(0,1)

For the likelihood function, the following distribution is assumed.
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Yi ∼ N [(β1 ·Xi +β0),β2 ·ζi (β1 ·Xi +β0)]

Following figure 22 shows the results obtained by sampling 1000 posterior samples.
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Figure 22: Results for data generated using equation 4.3

Again, looking at the figure 22, it can be concluded that the assumed Bayes’ model
provides very good results. The mean value of the model parameters (m (β1) = 0.519 , c
(β0) = 0.916 , CoV (β2) = 0.244) drawn from their respective posteriors are very close to
the true values (m=0.5 , c=1 , CoV=0.25). Also, the standard deviation of these posteriors
is very small. This is because of the high number of available data points. As the number
of data points will decreases, the confidence in the observed data set will decrease. Due
to this, the posterior will move towards the assumed prior value of the model parameter.
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Following figure 23 provides comparison between the data created using actual equa-
tion 4.3 and actual CPT. It can be clearly seen that relative to the heteroskedastic model,
the data created using equation 4.3 provides a better fit over the CPT data. Hence, this
model (example 3) is used to derive the input statistics for the slope stability analysis
presented in the next chapter.

Figure 23: Comparison between data created using equation 4.3 and CPT data

Here in this chapter, 3 different types of data sets were modeled. Comparatively, the data
set in example 3 shows more similarity with the actual CPT data set. In the next chap-
ter, the Bayes model used in example 3 is implemented on a basic slope stability problem
modeled in FEM. Also, the input statistics are derived using the frequentist approach and
further, the FOS results are compared.
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In this chapter, slope stability analysis is performed on a basic slope modeled in FEM.
Along with the basic statistical approach (Frequentist approach), the Bayes’ approach is
also used to derive input statistics and further the results of FOS are compared.

Figure 24: Slope geometry and boundary condition

Figure 24 shows the modeled geometry of the slope being investigated. The height
of the slope is 10m excavated in a spatially variable clay layer of 15m. It is assumed that
there is no horizontal scale of fluctuation. For this spatially variable soil, 4 undrained
shear strength profiles were generated (using CIE4395_CW1.exe [18]) as shown in fig-
ure 25 (Note: This is Example 1). Each profile has 750 data points equally distributed
throughout the depth. These profiles are used to derive the input statistics of undrained
shear strength (Intercept, slope, coefficient of variation (CoV), vertical scale of fluctua-
tion (θv )). These statistics are ultimately provided to the FEM model as input to analyze
the stability of the slope. Different methods such as the graphical method, regression
method are used to derive these parameters. In this chapter, in the first section, the
statistics of strength profile are derived and in the second section, the analysis of slope
using the derived statistics is presented.

Figure 25: Undrained shear strength (su ) profiles

As mentioned in section 1.1 one of the research questions in this thesis is to look at
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the effect of using different data sets. In sections 5.1.1 - 5.1.3 below, a sample set of CPT’s
shown in figure 25 is used to calculate the input statistics (using frequentist approach)
for slope stability analysis. In these sections, the analysis is performed for data set with
3000 data points (750 data points from 4 CPT’s each). In section 5.1.4 results of similar
analysis on smaller data set with 24 data points is presented. To create this small data
set, from each CPT 6 data points are selected spread equally throughout the depth ( 6x4
= 24 data points).

5.1. ESTIMATION OF INPUT STATISTICS (FREQUENTIST APPROACH):
In this work, it is considered that the undrained shear strength follows a log-normal dis-
tribution with a linear trend mz +c over the depth z with a constant coefficient of varia-
tion (CoV). Following equation 5.1 represents the undrained shear strength profile.

su(z) = (c +mz)ε(z) (5.1)

where,
ε(z) = (1+CoV · z)

Here, ε(z) is the error around the linear trend. It is assumed that this error follows a
log-normal distribution with mean as 1 and coefficient of variation CoV. This log-normal
trend of su profile can be transformed to a standard normal distribution using the fol-
lowing equation.

U (z) = X (z)−µx

σx
(5.2)

where,

X (z) = l n(ε(z))

µx = ln

(
mp

1+CoV 2

)
σx =

√
ln(1+CoV 2)

For describing the correlation between two points at a relative distance of ∆z, the
Markov correlation function ρM (∆z) is used since it is one of the common correlation
functions considered for the soil variability.

ρM (∆z) = exp

(
−2

|∆z|
θ

)
(5.3)

In the above equation, θ is nothing but scale of fluctuation. This scale of fluctuation
is defined as the area under the correlation function as,

θ = 2
∫ ∞

0
ρ(∆z)d∆z (5.4)

For this way of estimating the scale of fluctuation, the correlation function has to be
estimated from the available data and should be non-trivial. There are several methods
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to estimate θ which are further discussed below in section 5.1.3

5.1.1. ESTIMATING THE TREND (INTERCEPT, SLOPE) AND COV USING GRAPH-
ICAL METHOD:

In this method, a median trend line (P50) is drawn through 4 combined strength profiles
such that at each depth, 50% data falls below the trend line. Two additional trend lines P5

and P95 are drawn such that 5% and 95% strength data fall below these lines respectively.
Following are the equations of these trend lines.

P50(z) = b50 +a50 · z (5.5)

P5(z) =α5 ·P50(z) (5.6)

P95(z) =α95 ·P50(z) (5.7)

To estimate the mean trend given as M(z) = b+a ·z draw a line which is slightly different
from the median trend P50(z). Due to skew in lognormal distribution the mean trend
and median trend are slightly different. To estimate the CoV, following formula 5.8 is
used.

1.645 ·σx = 1

2
· ln

(
α95

α5

)
(5.8)

Figure 26 shows the trend lines and mean line drawn over the combined CPT’s. Using
this method, following values of the trend and CoV were estimated.

Intercept (b) = 13.5 kPa
slope (a) = 2.9 kPa

CoV = 0.25
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Figure 26: Trend line and mean line over combined CPT’s

5.1.2. ESTIMATING THE TREND (INTERCEPT, SLOPE) AND COV USING RE-
GRESSION METHOD:

In this method, the numerical data of the strength profile is used for estimating the trend
and CoV. The trend M(z) = b + a · z is estimated using polyfit function from Python’s
NumPy package. For estimating the CoV the trend in the strength profile is removed
and the variability component ε(z) is obtained. Using the mean and standard devia-
tion of this component, CoV can be calculated. Following figure 27 shows the detrended
strength profile.
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Figure 27: De-trended profile

Following are the estimates made using the regression method.

Intercept (b) = 13.076 kPa
slope (a) = 3.059 kPa

CoV = 0.2556

5.1.3. ESTIMATING VERTICAL SCALE OF FLUCTUATION (θv )
There are different methods using which the scale of fluctuation can be predicted. Fol-
lowing are two methods used here to predict θv .

GRAPHICAL METHOD:
In this method, the P50 line drawn for combined profiles is drawn separately on individ-
ual profiles and the number of times the profile crossing the trend line is calculated (Nc ).
a minimum interval is considered between two crossings (δz). Following formula 5.9 is
used to calculate vertical scale of fluctuation. (For details refer [8]

θ̂ = 1

δz

(
2L

πNc

)2

(5.9)

Where L is the cumulative length of the 4 profiles. The value of θv calculated using this
method is 2.154 meters.
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CORRELATION FUNCTION FIT METHOD:
In this method after estimating the linear trend over all the data, data is detrended to get
the standard normal equivalent data profile. After removing the trend, the experimental
correlation function is derived as,

ρ̂(∆z) = 1

n∆z

n∆z∑
i=1

U (zi )U (zi +∆z) (5.10)

where, U (zi ) and U (zi +∆z) are two data points in detrended random field spaced
at a distance of ∆z. n∆z is the number of such pairs of data points in the whole data set.
This correlation function is plotted as shown in figure 28 and θ̂ is estimated by fitting
a theoretical Markov correlation function (green curve) to the experimental result. The
Markov correlation function is given as,

ρM = exp

(
−2

|∆z|
θ

)
(5.11)

Figure 28: Likelihood Plot

From the above graph the value of θv is approximately estimated to be 0.85 meters.
(For details refer [19])

VARIANCE FUNCTION METHOD:
In this method, variance function given by equation 5.12 below is used. With increasing
∆z the inner integral tends towards scale of fluctuation (θ) since the integral over ρ(∆z)
is θ. Hence, θ is equal to the limit given in equation 5.13

Γ2(∆z) = 1

∆z2

∫ ∆z

0

∫ ∆z

0
ρ(za − zb)d zad zb (5.12)

θ = lim
∆z→∞

Γ2(∆z)∆z (5.13)
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From the variance of moving average profiles of CPT data, the variance function can
be estimated. After plotting Γ2(∆z).∆z against ∆z, the peak of Γ2(∆z).∆z can be consid-
ered as good estimate of θ. (For details refer [20])

Figure 29: Likelihood Plot

From above figure 29, it can be said that the value of θ is approximately 0.58 meters

MOST LIKELIHOOD METHOD:
A log-likelihood is calculated for a series of possible scales of fluctuation. Following
equation 5.14 is used to calculate the log-likelihood. (For details refer [19])

L(θi |su(z)) =−n

2
l og (2π)− 1

2
log |Ri |− 1

2
U T Ri

−1U (5.14)

where, Ri is the correlation matrix between data U (z) for θi and the normalised mea-
surement data U . This likelihood is plotted against θi as shown in figure 30. The peak of
this plot is taken as the best estimate of θ̂ which in this case is 1.15 meters.

From above methods, best estimates of all the parameters is considers for finite ele-
ment analysis. In case of the above example (CPT’s shown in figure 25) following are the
best estimates considered.

Intercept (b) = 13.076 kPa

Slope (a) = 3.059 kPa

CoV = 0.2556

Vertical scale of Fluctuation (θv ) = 1.15 meters
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Figure 30: Likelihood Plot

5.1.4. RESULTS OF FREQUENTIST METHOD ON SMALLER DATA SET (24 DATA

POINTS):
All the methods used for bigger data set were used to estimate the input parameters
using a smaller data set. Figure 31a shows the strength profile and figure 31b shows the
detrended profile with 24 data points.



5

48 5. SLOPE STABILITY STUDY

(a) Profile used to calculate parameter using graphical
approach (b) De-trended profile

Figure 31: CPT Profile and de-trended profile with 24 data points

The following table 2 shows the results obtained for trend and CoV.

Table 2: Results of input parameters for small data for first example

Intercept(b)
in kPa

Slope (a)
in kPa

CoV

Graphical Method 13.8 3.5 0.213
Regression Method 15.9 3 0.258

To calculate the vertical scale of fluctuation, the most likelihood method discussed in
section 5.1.3 is used. Following figure 32 show the result for the same. As seen from the
graph, the value of θv is nearly zero. The reason behind such a result might be that the
data points are so far apart that they don’t show any correlation between them. Hence,
for the sake of performing slope stability analysis, it is considered that the value of the
vertical scale of fluctuation is known. A similar value of θv as calculated for bigger data
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set (1.15 meters) is further considered for the slope stable is analysis. However, this as-
sumption does undermine the results for FOS and hence, a furthermore better investi-
gation is needed for the scale of fluctuation.

Hence, based on above results the best estimate of the input parameters derived from
smaller data set is:

Intercept (b) = 15.9 kPa

Slope (a) = 3 kPa

CoV = 0.2556

Vertical scale of Fluctuation (θv ) = 1.15 meters
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Figure 32: Likelihood Plot for θv estimated from 24 data points

5.2. ESTIMATION OF STATISTICS USING THE BAYES’ APPROACH:

In this section, Bayes’ approach is used to predict the statistical parameters (slope(m),
intercept(c), and CoV). Note that the Bayes’ model to predict the scale of fluctuation
(vertical and horizontal scale of fluctuation is not developed in this work. Hence for
further reliability studies performed in 5.3, the value of the vertical scale of fluctua-
tion considered is derived from the frequentist approach. In this section, the Bayes’
model presented in example 4.3 is used. As observed data, a total of 3000 data points
are available from 4 strength profiles(4 × 750 = 3000). The following set of prior data is
considered.

m ∼ U(0,152)
c ∼ U(0,502)

CoV ∼ U(0.1,1)

This set of prior data is randomly assumed. As likelihood Function, following distribu-
tion is considered.

y ∼ N [(m · x + c),CoV ·ζ(m · x + c)]
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To get the posterior distribution on the statistical parameters, 1000 samples (2000 from
2 chains) were drawn. Following figure 33 shows the results of this sampling.
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Figure 33: Results for 4 strength profile data

The details of the posterior distribution in terms of (µ,σ) are,

m = (3.046, 0.036)
c = (13.022, 0.205)

CoV = (0.264, 0.004)

Very small standard deviation in slope and CoV values clearly suggest that there is
very little uncertainty involved. This is because the amount of data points considered
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here is very large. All the points are highly co-related to each other. Now, the same sim-
ulation is performed on a data set with 24 data points. Following results of posterior
distribution were obtained after using the Bayes’ approach.

m = (2.903, 0.470)
c = (16.479, 2.281)

CoV = (0.285, 0.047)

It can be seen that the standard deviation of the parameters is very high. Also com-
pared to results with the 3000 data points, the mean values have also changed signif-
icantly. These wide distributions of the parameters show nothing but the uncertainty
involved in estimating statistics with fewer data points.

Using these parameters derived by Frequentist and Bayesian statistics, in the next
section reliability analysis is performed on the slope using FEM software and further,
the results obtained are compared.

5.3. RELIABILITY ANALYSIS:
To perform the reliability studies on the slope shown in figure 24, a Random Finite Ele-
ment code CIE4395-CW2.exe [21] is used. All the boundary conditions, slope geometry,
spatial discretization, etc. are implemented in the program. Using the statistics derived
in the above section, the analysis is performed using the strength reduction method.

First, the input parameters derived from the frequentist approach are used. Using
such a method, a single value of all the input parameters is obtained. Analysis on both
data sets (3000 and 24 data points) is performed. For each data set, RFEM analysis in-
volving 1000 realizations is conducted. Figure 34 shows the mechanism of input param-
eters and realizations. As seen in the figure for a single input parameter, different realiza-
tions are generated. For each realization, a random field is generated using the derived
input parameters and the FOS is calculated using the strength reduction method. Fur-
ther using these 1000 FOS values cdf is plotted as shown in the figure 36

Figure 34: Input mechanism for frequentist approach
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To use the input parameter values derived using Bayes’ approach a different way of
input is adopted. Using Bayes’ statistics, a total of 2000 posterior samples (1000 samples
from 2 chains each) of each input parameter (except the vertical scale of fluctuation)
is obtained. Also, these parameters are correlated with each other. Hence, rather than
using multiple random fields for 1 sample set of input parameters, multiple correlated
samples are used. Figure 41 shows the mechanism of input parameters and realizations
for Bayes’ approach. For each sample input, RFEM analysis involving 1 realization is per-
formed and a single value of FOS is obtained. This is done for 1000 such sample inputs
and 1000 different FOS’s are obtained. This analysis is performed on both the data sets
and the cdf’s of Factor of safety (FOS) obtained are plotted in the figure 36

Figure 35: Input mechanism for Bayes’ approach

Figure 36: CDF’s of Factor of Safety

In the above figure, in the legend, ’Bayes’ represents ’Method of deriving statistics’
and ’3000 data points’ represents the number of data points in the data set. Following
table 3 summarises the values of FOS for 5%, 50% and 95% slope reliability for all cdf’s
obtained as shown in figure 36
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Table 3: Results of first slope example

Data Points 95% Reliability 50% Reliability 5% Reliability

Frequentist Approach
3000 1.0237 1.2171 1.4167

24 1.1167 1.3012 1.4725

Bayes’ Approach
3000 1.0063 1.1841 1.3777

24 0.9862 1.2562 1.4879

For bigger data set, there is no significant difference seen in FOS values for all three
reliabilities (5%, 50%, and 95%) obtained by both frequentist and Bayes’ approaches.
This is not the case for smaller data set. The FOS value for 5% reliability is nearly similar
for both approaches but the FOS value for 95% reliability obtained using the Bayes ap-
proach is significantly lower than the one obtained using the frequentist approach. The
FOS value for 95% reliability for smaller data set obtained using Bayes’ approach is very
close to one obtained for bigger data set.

Assuming that the slope will fail at FOS of 1, all three cdf’s except the one obtained us-
ing frequentist approach on smaller data set show some failure probability. Cdf obtained
using frequentist approach on smaller data show negligible failure probability, which is
not true. This clearly shows overestimation of FOS values when frequentist approach is
used on limited data.

The FOS values for 5% reliability: When Bayes’ approach is used on smaller data set,
8% increase in FOS value is observed when compared to the bigger data set. For the
frequentist approach, an increment of 3.7% is observed.

The FOS values for 95% reliability: The FOS value computed using Bayes’ approach
for smaller data set is less compared to the FOS calculated for bigger data set, but both
the values are very close to each other. In the case of the frequentist approach similar
trend of increase in FOS is observed for 95% reliability as seen in the FOS for 5% reliabil-
ity.

It can be said that in the frequentist approach there is a shift in the cdf curve from
lower FOS computed for bigger data set to higher FOS computed for smaller data set.
The main reason behind this shift is the change in the input value of the intercept of the
trend. All the input parameters (slope, CoV, scale of fluctuation) are the same for both
smaller and bigger data set except the intercept which is higher in the case of smaller
data set. The Bayesian approach provides the distribution of input parameters rather
than a single value. Also, all the samples used to form these distributions are correlated
with each other. Considering such a wide range of possible input values captures a better
picture of the FOS values compared to the frequentist approach in which single input is
used.
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Figure 37: Pdf’s of Factor of Safety

Above figure 40 shows pdf’s plotted for all 4 results. For smaller data set, a signifi-
cant difference between the pdf’s obtained using both approaches for smaller data set is
observed. The pdf obtained using the Bayes approach shows the wider distribution for
smaller data set indicating the uncertainty in calculating the FOS values. With the fre-
quentist approach, the pdf is relatively narrower and predicts a higher FOS value. Look-
ing at the tails of the pdf, Bayes’ approach provides more information about the FOS
compared to the frequentist approach.

Overall, it can be said that using the frequentist approach (especially on limited data)
overestimates the FOS results. Also, the uncertainty involved can not be well showcased
using this approach whereas the Bayes approach showcases the uncertainty involved
and provides relatively better and more reliable FOS results depending upon data size.

The above interpretations are very specific to this particular slope and strength pro-
file. To see if similar trends are observed in examples with different CPT profiles, a similar
analysis is performed on a different set of data in the next section.
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5.4. SLOPE STABILITY ANALYSIS: EXAMPLE 2

Figure 38: Undrained shear strength (su ) profiles : Example 2

The above figure 38 shows 4 different CPT profiles compared to the previous example.
Similar to the previous example, two data sets are considered; one with 3000 data points
and one with 24 data points. Using Frequentist approach as shown in section 5.1 and
Bayes’ approach shown in section 5.2, input statistics were calculated. Following table 4
shows the results obtained.

Table 4: Results of input parameters for second example

Data
Points

Intercept (b)
in kPa

Slope (a)
in kPa

CoV

Vertical
scale of

fluctuation
in meters

Frequentist
Approach

3000 26.78 1.4 0.214 2.9
24 26.15 1.59 0.168 2.9

Bayes’
Approach

3000 (27.145, 0.259) (1.349, 0.034) (0.214, 0.003) 2.9
24 (27.252, 2.618) (1.421, 0.407) (0.246, 0.041) 2.9

Once these input statistics are derived, slope stability analysis is performed. In this
analysis same slope is assumed as in the previous example. The following figure 39 shows
the results for the same.
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Figure 39: CDF’s of Factor of Safety

Table 5: Results of second slope example

Data Points 95% Reliability 50% Reliability 5% Reliability

Frequentist Approach
3000 1.0429 1.2555 1.4794

24 1.0939 1.3009 1.4454

Bayes’ Approach
3000 0.9353 1.1960 1.5333

24 0.9111 1.1996 1.5211

Above table 5 summarises the values of FOS for example 2. Compared to the previous
example (example 1), the trend of cdf’s of FOS obtained in this example is significantly
different. In this example, the cdf’s obtained using Bayes’ approach for both the data sets
are nearly identical, showing little to no difference in the FOS values for all three relia-
bility percentages. With the frequentist approach, the FOS values computed for smaller
data set are higher than those computed for bigger data set showing a shift in the cdf.

Assuming that the structure fails at FOS of 1, about 9% failure probability is obtained
using the Bayes’ approach. With the frequentist approach, about 2.5% failure probability
is obtained. This shows that the frequentist approach predicts higher reliability of slope
compared to the prediction using Bayes’ approach. The following figure shows the pdf’s
curves of the FOS obtained in this example.
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Figure 40: Pdf’s of Factor of Safety

The major difference between the results of these two examples is the different trends
of the cdf’s obtained using Bayes’ approach. The cdf’s obtained using Bayes’ approach
for smaller and bigger data sets is different in example 1 whereas it is the same in the
case of example 2. The primary cause for this might be the value of the vertical scale of
fluctuation considered.

As mentioned previously in the case of the smaller data set (24 data points), the dis-
tance between two consecutive data points in one strength profile is 2.5 meters. The
input value of the vertical scale of prediction used in the analysis of example 1 is 1.15
meters. Since for the smaller data set the distance between two consecutive data points
is larger than the assumed vertical scale of fluctuation, there is no correlation present
between the data points. In the case of the bigger data set, two consecutive data points
lie within the range of the assumed vertical scale of fluctuation suggesting that the data
points are correlated. The absence of correlation in smaller data ultimately adds up more
uncertainty in calculating the FOS. Hence, when compared to the cdf of FOS drawn us-
ing results of the bigger data set, the cdf drawn using results of smaller data set is wider.
This wide cure shows the uncertainty involved in the calculations. For example 2, the
assumed vertical scale of fluctuation is 2.9 meters. Hence, for both the data sets it can
be said that correlation is present. This provides the reason for getting similar cdf curves
for both data sets in example 2.

To summarize the results of both the examples, Bayes’ approach provides wider cdf
curves compared to the frequentist approach. Wide cdf is the indicator of uncertainty
involved in the calculation of FOS. Wider is the cdf more is the uncertainty involved. Also,
with change in vertical scale of fluctuation, with Bayes’ approach, significant change is
observed in cdf’s of FOS obtained by smaller and bigger data sets. With the frequentist
approach, such difference is not observed since for both the examples, a similar trend of
FOS is present.

The fundamental reason behind such difference in results of both approaches: In
Bayes’ approach, using the prior knowledge and available test data; all the possible val-
ues of input parameters are predicted. Every parameter is correlated with each other.
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Each trend line has its specific CoV. An individual set of input parameters will provide
different FOS values. Using all the possible sets of input parameters provides a better
picture of FOS values. In the case of the frequentist approach, different general statisti-
cal approaches are used to predict the input parameters and the best estimate is selected
to run the FEM analysis. It neglects the other possible values of input parameters which
ultimately affect the estimation of FOS values. Hence, it can be said that Bayes’ approach
should be used in calculating the parameter values over the frequentist approach since
it provides better overall insight on the possible FOS values.

However, in this work, the vertical scale of fluctuation is not predicted using the
Bayes’ approach. Hence, the same value of the vertical scale of fluctuation is used in
both approaches. Hence, the uncertainty specifically generated by the vertical scale of
fluctuation is not considered in this work. Considering all the possible values of the scale
of fluctuation will affect the results. The next chapter provides conclusions on the work
presented in this report.
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6.1. CONCLUSIONS
In this thesis ’Effect of various approaches to derive distributions of soil properties in
reliability studies of slope stability, two major research questions were aimed to inves-
tigate: ’How can the total uncertainty in the slope stability analysis be quantified?’ and
’What is the effect of considering different data sets?’

As seen from the literature studies, one of the best methods for such investigation
is Bayes’ Theorem. To conduct the reliability studies in this work, the Finite Element
Method is used (FEM model developed at TU Delft) which also considers spatial vari-
ability using random fields. To this model, as input the shear strength profile of the soil
is to be provided in terms of trend, the scale of fluctuation, coefficient of variation of the
data around mean (input parameters). These parameters are derived using Frequentist
as well as Bayes statistics. Different data sets (3000 data points and 24 data points) were
considered to derive these parameters. These input parameters were further used to an-
alyze the sample slope stability problem and the results were compared to answer the
research questions.

• How can the total uncertainty in the slope stability analysis be quantified?
Yes, Using Bayes’ theorem the total uncertainty in slope stability analysis can be
clearly observed. The cdf curve of Factor of safety observed using the Bayes’ ap-
proach is relatively wider than those obtained using the frequentist approach in-
dicating uncertainty.

• What is the effect of considering different data sets?
It is clearly observed that with smaller data set, there is more uncertainty involved
compared to bigger data set when Bayes’ approach is used. With the frequentist
approach, this uncertainty can’t be seen since the cdf curves are nearly similar for
both data sets with a shift in FOS values.

Looking at the results of both the slope stability problem, the frequentist approach
can provide distinct results of FOS values. It might overestimate or underestimate the
FOS results (as it overestimates the results in example 2). It follows the same trend in cdf
for different data sets for both examples. With smaller data set, it predicts higher FOS
compared to the bigger data set. This shows the overestimation in the value of FOS in
the case of smaller data set.

Bayes’ approach provides completely different results compared to the frequentist
approach. It provides wider cdf curves compared to the frequentist curves showing the
uncertainty in FOS values. Also for both the data sets, the cdf’s might vary. As seen in
example 1, the cdf of smaller data set is wider than bigger data set. This result is rea-
sonable assuming that with limited data, more uncertainty is involved. In example 2,
cdf obtained for both the data sets using Bayes’ approach is similar to each other but
wider when compared to the curves obtained using the frequentist approach showing
uncertainty. The primary cause of this change in cdf for different data sets in the Bayes’
approach might be the consideration of the vertical scale of fluctuation. In example 2 the
data points from both the data sets lie within the assumed scale of fluctuation, providing
the same cdf’s. In example 1 the data points for smaller data set lie beyond the assumed
scale of fluctuation, providing different cdf’s for both data sets.
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In this work, results obtained using Bayes’ approach neglect the uncertainty gener-
ated due to the vertical scale of fluctuation. The vertical scale of fluctuation is not pre-
dicted using Bayes’ approach. The value predicted using the most likelihood method is
considered for all the approaches. Hence, more investigation involving the use of the
vertical scale of fluctuation predicted using Bayes’ approach is needed.

The major reason behind such difference between the two approaches: With the
Bayes’ approach by considering the past knowledge and available test data all the possi-
ble values of input parameters are calculated. With the frequentist approach, using the
available test data, the single best estimate of the input parameter is derived. By using all
the possible input parameters derived by Bayes’ approach, a more complete and better
picture of FOS values is captured. Such a picture of FOS values is not captured by us-
ing the frequentist approach since it just uses one best estimate of input parameters and
totally neglects other possible values. Hence it can be concluded that overall, by using
the input parameters predicted using the Bayes’ approach provides better and reliable
results over the frequentist approach by providing more insight into the uncertainties
involved in the analysis.

6.2. FUTURE WORK
Following are a few recommendations for future work on implementing Bayes’ Statistics
in Reliability studies of a slope.

• Deriving scale of fluctuations using Bayes’ statistics: In current work, the scale
of fluctuation (vertical) used is derived only from the frequentist method. Using
Bayes’ approach in determining this parameter will significantly affect the results
and provide better insight into uncertainty.

• Use of actual variability assumptions: In this work, uninformative priors are as-
sumed to predict the input parameters of soil property. Hence only total variabil-
ity can be quantified. By using the informative priors (actual variability ranges
provided by Phoon n Kulhawy) more detailed information on total and inherent
variability and its effect can be obtained.

• Testing this approach on actual data: In this work, the very basic slope problem
(no horizontal scale of fluctuation, homogeneous soil profile, CPT data without
noise) is investigated. It will be interesting to study how this approach works on a
problem having heterogeneous soil profile, CPT data with noise, etc.
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PyMC3 syntax

Figure 41: Input mechanism for Bayes’ approach
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