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Propositions 

accompanying the dissertation 

Value of information in closed-loop reservoir management 

by 

Eduardo Barros 

1. Very little research is done on the optimization of reservoir surveillance strategies. The design 

of smart surveillance strategies can contribute to the success of reservoir management as much 

as the optimization of production strategies. 

2. A (flexible) strategy only becomes a fixed plan to be put in action. The execution step is the one 

that allows us to use the closed-loop framework as a decision making environment. 

3. Common approaches to assess the usefulness of additional observations are based on the 

determination of their informativeness defined as either their ability to reduce uncertainty on 

the model predictions or the extent to which the model predictions are affected by them. 

However, the most informative observations are not always the most valuable ones. 

4. Value of information workflows rely on simulated data to evaluate the contribution of future 

measurements, i.e. before they are actually gathered. Yet, such a-priori evaluation represents an 

opportunity to gain insight also into the operations after the new measurements are available. 

5. An investment in additional information is one of the alternatives to mitigate the effects of 

uncertainty. Value of information assessment only has meaning with proper uncertainty 

quantification. 

6. Sometimes the main obstacle to seeing the truth is the choice to ignore the possibility of the 

wrong. Falsehood as the absence of truth and error as a deviation from the truth are not equal: 

an error does not necessarily lead to a mistake. 

7. A lot of effort is spent on deriving good quality approximations to accelerate computational 

workflows. However, the usefulness of an approximation depends more on our ability to assess 

its quality than on its quality itself. 

8. Even the most imaginative people are not always able to be creative. Creativity is inversely 

proportional to the abundance of resources, upper-bounded by hope and propagated through 

openness. 

9. Collaboration goes beyond the execution of tasks in a coordinated effort. It is not possible to 

have true collaboration without trust or involvement. 

10. Not even the most righteous contracts can produce virtue where there is not. The excessive 

proliferation of professional agreements and codes of conduct in combination with an extreme 

individualism is a threat to the future of work ethic in our societies. 

These propositions are regarded as opposable and defendable, and have been approved by the 

promotors, Prof. dr. ir. J.D. Jansen and Prof. dr. ir. P.M.J. Van den Hof. 
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“Wherever you go, go with all your heart.” 
― Confucius 
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Summary 

Efficiency is one of the keys to solve the current and future energy issues in our societies. 

Improvements in the use of the subsurface will become increasingly necessary to meet the 

predicted energy demand for the coming decades. According to projections, oil and gas 

will continue to occupy a large share in our energy mix. In this context, the efficiency with 

which we exploit our hydrocarbon reserves plays a very important role. 

Over the past decades, many technological advances have unlocked new opportunities to 

boost efficiency in the oil and gas industry (e.g., complex well drilling, injection of 

advanced chemicals, sophisticated instrumentation). The real engineering challenge is to 

apply these technologies in the best possible way for each particular case. This leads to 

very difficult decisions to be made, mainly because every oil and gas field is one of its kind 

and our knowledge of the subsurface is very limited. Many efforts have been made to 

develop tools to support these decisions by applying a more systematic approach to 

determine smart exploitation strategies, like, for example, in reservoir management 

practices. The focus of these developments has been mostly on production optimization, 

seeking to determine well settings that result in improved reservoir performance. Yet, very 

little has been done on the optimization of the reservoir surveillance plans to establish the 

best observations to monitor the field response to the exploitation strategies, which, in 

turn, can also contribute to a better exploitation of the reservoir. In this thesis we establish 

a methodology to assess the value of future measurements as a first step towards the 

development of a framework to optimize the design of reservoir surveillance plans. We 

also investigate alternatives to improve current reservoir management approaches by 

recommending strategies which anticipate the availability of future information and 

account for the impact of immediate actions on the decisions to be made in the future. 

This thesis focusses on applications to oil and gas reservoirs, but the topics addressed here 

are also of relevance to the management of sustainable resources (e.g., geothermal energy) 

and other uses of the subsurface (e.g., CO2 and energy storage). 

In this thesis, we use state-of-the-art research tools to create an environment for value of 

information (VOI) assessment for reservoir management applications. The main goal is to 
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develop a methodology to assess the value of future measurements during the field 

development planning (FDP) phase of a reservoir, before any actual measurement has 

been gathered. We propose a workflow to quantify the VOI in closed-loop reservoir 

management (CLRM), under the assumption that frequent life-cycle optimization will be 

performed using frequently updated reservoir models (Chapters 2 and 3). The procedure 

requires extreme amounts of simulations, which makes its application to real-field cases 

intractable. As a first step to make VOI assessment more practical, we investigate 

opportunities to apply clustering techniques to select a small subset of representative 

models and reduce the computational load of the workflow (Chapter 4). The reasoning 

behind the a-priori VOI analysis unveils an opportunity to improve our approach to 

reservoir engineering optimization problems by anticipating the fact that additional 

information will become available in the future. Therefore, we also investigate possible 

ways to integrate a VOI assessment tool in the optimization framework, with applications 

to production optimization (Chapter 5) and field development optimization (Chapter 6). 

As a result, this thesis covers various aspects to be considered when accounting for the 

value of future information in reservoir management workflows. Throughout the chapters, 

we discuss how to combine a variety of topics (e.g., model-based optimization, data 

assimilation, uncertainty quantification) with more unusual ingredients (e.g., plausible 

truths, clairvoyance, flexible plans) to develop a methodology which can be applied in 

many problems involving decision making and learning. Despite being motivated by a real 

application, this research addresses abstract concepts such as value and information, but 

always from a practical engineering perspective. This combination contributes to a new 

way of reasoning that can be useful to support decisions in reservoir management, which, 

we hope, will inspire innovative solutions in the future. 
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Introduction 

Energy plays a fundamental role in our modern societies. Our capacity of changing the 

world around us to make it a better place depends on its availability. In the pursue of a 

sustainable development, many efforts have been made to reduce our dependency on 

traditional energy resources and come up with technologies that allow us to do more with 

less energy. However, these advances can still not entirely solve all our energy issues: it is 

estimated that the global energy demand will continue to increase in the near future and 

the supply of renewable energy will not be able to keep up with it, at least not in the next 

few decades. In this context, the most sustainable approach is to introduce these emerging 

technologies while relying on a necessary transition period in which fossil fuels such as 

hydrocarbons will remain an important part of the energy mix (IEA, 2016). 

New technologies can also make the exploitation of hydrocarbon reserves more efficient 

and increase the recovery of oil and gas. For example, improvements in drilling create 

opportunities to design more complex wells with better contact to the reservoir 

formations and the injection of advanced chemicals reduces the residual volumes of 

hydrocarbons that would otherwise stay trapped in the reservoir. Other efforts are related 

to the so-called smart fields technologies, with the installation of control devices to 

regulate the flow of fluids in the wells, and instruments to obtain more information from 

the reservoir. Next to these and many other technical advances, numerical techniques for 

reservoir simulation and model-based optimization have developed rapidly over the past 

decades, providing support to design and operational decisions in order to benefit the 

most from all the technologies and maximize the recovery of hydrocarbons. 

Reservoir management is the set of practices adopted by oil and gas companies to 

optimize the performance of their reservoir assets. As reservoir engineers and 

geoscientists, we recognize our inability to fully characterize the reservoir due to our 
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limited knowledge of the subsurface. Despite the presence of uncertainties, important 

decisions on how to exploit the reservoir have to be made, such as the elaboration of a 

field development plan (i.e., where, when, which type and how many wells to drill) and a 

production strategy (i.e., how to operate the wells). The success of the exploitation of the 

reservoir is directly related to the quality of such decisions, which involve significant 

investments. This high-risk decision making process is supported by performance 

predictions (e.g., simulation forecasts) based on all the knowledge available. Other 

important decisions concern the design of a reservoir surveillance plan (i.e., where, when, 

what, with which frequency and precision to measure) to guide the deployment of sensors, 

which is also costly. As the development of the field starts, the deployed sensors gather 

measurements that are used to monitor the response of the reservoir and to determine 

whether the implemented actions (i.e., field development plan and production strategy) 

have the expected effect in the reservoir performance. When there is a discrepancy 

between the actual response of the reservoir and the predictions, there is an opportunity 

for learning and improving the knowledge of the reservoir to make better decisions in the 

future. 

Many efforts have been made to automate the reservoir management process as much as 

possible so that a more systematic approach can be used to continuously optimize all the 

decisions throughout the reservoir life-cycle (i.e., closed-loop reservoir management, real-

time reservoir management, integrated operations, etc.); see references in section 1.1. 

However, the focus of these developments has been mostly on production optimization, 

seeking to determine production strategies that result in improved performance. Very little 

has been done on the optimization of reservoir surveillance to establish the best 

observations to monitor the performance of the production strategies, which in turn also 

contribute to a better reservoir management. Such an optimization requires the ability to 

quantify the contribution of surveillance plans to the success of the reservoir management 

before any measurements are gathered. The challenge is on how to estimate the 

incremental performance that the future measurements (i.e., yet to be gathered) will 

enable, or, in other words, to assess their value. This thesis addresses this challenge. 
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1.1. Closed-loop reservoir management 

Closed-loop reservoir management (CLRM) is a combination of frequent life-cycle 

production optimization and data assimilation (also known as computer-assisted history 

matching). Life-cycle optimization aims at maximizing a financial measure, typically net 

present value (NPV), over the producing life of the reservoir by optimizing the production 

strategy. This may involve well location optimization, or, in a more restricted setting, 

optimization of well rates and pressures for a given configuration of wells, on the basis of 

one or more numerical reservoir models. Data assimilation involves modifying the 

parameters of one or more reservoir models, or the underlying geological models, with the 

aim to improve their predictive capacity, using measured data from a potentially wide 

variety of sources such as production data or time-lapse seismic. For further information 

on CLRM see, e.g., Jansen et al. (2005, 2008, 2009), Naevdal et al. (2006), Sarma et al. 

(2008); Chen et al. (2009); Wang et al. (2009), Foss and Jensen (2011) and Hou et al. 

(2015). 

 

Figure 1.1: Closed-loop reservoir management as a combination of life-cycle optimization and data 
assimilation. 

Figure 1.1 depicts the CLRM framework in a block-diagram representation often used in 

systems and control theory. We recognize two distinct loops connecting the system 

predictive models to the real system: the optimization loop shown in blue and the data 

assimilation loop in red. The idea behind the CLRM framework is to use computer-
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assisted workflows to increase the frequency of reservoir management cycles and change it 

from a batch-type to a near-continuous process. Thus, in other words, the goal of CLRM 

is to maximize the performance of the “ground truth” reservoir by frequently adjusting 

the production strategy to be implemented in reality based on predictions from 

continuoustly updated reservoir models that incorporate all the knowledge and 

information available. Note that, besides the two loops, we have also the execution step in 

which the optimized strategy is applied to the real system. This is the step through which 

the CLRM framework can increase the performance of the real asset and therefore create 

value. This point will be important for the understanding of the methodology developed 

in this thesis. 

1.2. Optimization 

1.2.1. Robust optimization 

An efficient model-based optimization algorithm is one of the required elements for 

CLRM. Because of the inherent uncertainty in the geological characterization of the 

subsurface and the deterministic character of conventional reservoir simulation, a multi-

scenario approach is necessary. Robust life-cycle optimization uses one or more ensembles 

of geological realizations (reservoir models) to account for uncertainties and to determine 

the production strategy that maximizes a given objective function over the ensemble; see, 

e.g., Yeten et al. (2003) or Van Essen et al. (2009). Figure 1.2 schematically represents 

robust optimization over an ensemble of N realizations 1 2, , , NM m m m , where m 

is a vector of uncertain model parameters (e.g., grid block permeabilities or fault 

multipliers). Typically, the objective function to be optimized is the average net present 

value (NPV): 

 
1

1 N

NPV NPV i
i

J J
N

, (1.1) 

where μNPV is the ensemble mean of the objective function values Ji of the individual 

realizations. The objective function Ji for a single realization i is defined as 

 
0

, , ,

1

T
o i o wp i wp wi i wi

i t
t

q t r q t r q t r
dt

b
J

m m m
, (1.2) 
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where t is time, T is the producing life of the reservoir, qo is the oil production rate, qwp is 

the water production rate, qwi is the water injection rate, ro is the price of oil produced, rwp 

is the cost of water produced, rwi is the cost of water injected, b is the discount factor 

expressed as a fraction per year, and τ is the reference time for discounting (typically one 

year). The outcome of the optimization procedure is a vector u containing the settings of 

the control variables over the producing life of the reservoir. Typical elements of u are 

monthly or quarterly settings of well head pressures, water injection rates, valve openings 

etc. Note that, although the optimization is based on N models, only a single strategy u is 

obtained, under the rationale that only one strategy can be implemented in reality. Note 

also that, despite being very disseminated among CLRM practitioners, the robust 

optimization approach presented by Van Essen et al. (2009) is only one way of dealing 

with uncertainty in production optimization. An alternative approach is to balance risk and 

return within the optimization by including well-defined risk measures or other utility 

functions in the objective function; see, e.g., Capolei et al. (2015) and Siraj et al. (2016). 

 

Figure 1.2: Robust optimization: optimizing the objective function of an ensemble of N realizations 
resulting in a single control vector u. 

1.2.2. Data assimilation 

Efficient data assimilation algorithms are also an essential element of CLRM. Many 

methods for reservoir-focused data assimilation have been developed over the past years, 

and we refer to Oliver et al. (2008), Evensen (2009), Aanonsen et al. (2009) and Oliver and 

Chen (2011) for overviews. An essential component of data assimilation is accounting for 

uncertainties, and it is generally accepted that this is best done in a Bayesian framework, 

which updates the probability for a hypothesis on the basis of the availability of additional 

evidence. This can be formulated in mathematical terms through the Bayes’ rule: 

 
|

|
p p

p
p

d m m
m d

d
, (1.3) 
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where p indicates the probability density, and d is a vector of measured data (e.g., oil and 

water flow rates or saturation estimates from time-lapse seismic). In equation (1.3) the 

terms p(m) and p(m|d) represent the prior and posterior probability densities of the 

model parameters m, which are, in our setting, represented by the prior and posterior 

ensembles respectively. The underlying assumption in data assimilation is that the 

assimilation of measured (historical) data leads to an improved (future) predictive capacity 

of the models, which, in turn, leads to improved decisions. In our CLRM setting, decisions 

take the form of control vectors u, aimed at maximizing the objective function J. 

1.3. Previous work 

In order to situate the objectives of this research, we review very briefly in this section 

some of the previous work related to the topic addressed in this thesis. A more extensive 

literature review will be presented in Chapter 2. 

Previous work on information valuation in reservoir engineering focused on analyzing 

how additional information impacts the model predictions. Krymskaya et al. (2010) use 

the concept of observation impact, which provides a measure of the information content 

in the observations. Le and Reynolds (2014a, 2014b) quantify the usefulness of 

information as how much the assimilation of an observation contributes to reducing the 

uncertainty of a variable of interest (e.g., NPV). Both approaches are based on data 

assimilation, and Figure 1.3 schematically represents how measured data are used to 

update a prior ensemble of reservoir models, resulting in a posterior ensemble which 

forms the basis to compute various measures of information valuation. Note that these 

two studies only measure the effect of additional information on model predictions and do 

not explicitly take into account how the improved model predictions are used to make 

better decisions. 
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Figure 1.3: Data assimilation and information valuation. 

Another way to quantify the value of future information originates from the field of 

decision theory. Howard (1966) was one of the first to formalize the idea that information 

could be economically valued within a context of decision making under uncertainties. 

Bratvold et al. (2009) produce an extensive literature review on VOI analysis in the oil 

industry, but none of the applications reported by them seems to address reservoir 

management problems. Their main point is that “one cannot value information outside of 

a particular decision context”. In this context, VOI is defined as the difference between 

the value achieved by the decision made with the additional information and the value 

achieved by the decision made without it. 

1.4. Research objectives 

The main goal of this PhD work is to answer two key questions: 

Q1. How to quantify the contribution of future measurements to the success of CLRM? 

Finding an answer to this first question has been the object of recent research studies in 

the reservoir engineering community; see section 1.3. However, these studies were 

restricted to the use of the data assimilation scheme to quantify the effect of 

measurements on the model predictions, which was then assumed to be a measure of their 

usefulness in the view of the inherent geological uncertainties. On the other hand, 

previous work in decision theory (section 1.3) showed that the value (or usefulness) of 

additional information depends on the decision context. Inspired by the VOI concepts of 

decision theory, in this thesis, we investigate opportunities to use the CLRM environment 
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as a tool to quantify how much future measurements will contribute to better decision 

making. The improvement in decision making results in incremental performance (or 

additional value, expressed in terms of the selected performance metric), allowing us to 

assess the VOI in CLRM. Thus, the VOI should be ultimately understood as a function of 

the assessed future measurements, the decisions of interest (and the corresponding 

performance metric) and the (initial) state of uncertainty. 

VOI assessment is the first step towards the development of a framework to optimize the 

design of reservoir surveillance plans. The ability of assessing the value of future 

measurements is relevant to determine the economic feasibility and support investment 

decisions on reservoir surveillance. It can be used to establish whether the expected 

additional value of specific observations is worth the cost to obtain them or to determine 

how much one should be willing to pay for them. Besides that, improved designs of 

monitoring strategies represent an opportunity to reduce project expenses on costly 

observations by allowing us to invest only on the deployment of the measurements that 

are expected to add the most value. Some of these measurements may be gathered only 

once or a couple of times (e.g., a repeat seismic survey or a production test) whereas 

others may be gathered multiple times or even continuously once the sensors are installed 

(e.g., production data from permanent downhole gauges). In this thesis, we seek a 

methodology that can be applied in both situations, for single and multiple observation 

times. 

An additional complexity arises when it is attempted to quantify the VOI for CLRM, i.e., 

under the assumption that frequent life-cycle optimization will be performed using 

frequently updated reservoir models. Therefore, the objective of the first part of this 

research is to: 

Obj.1: Develop a methodology to assess the VOI in such a CLRM context. 

The optimal reservoir surveillance plan is the one that delivers the most valuable 

measurements throughout the reservoir life-cycle, providing the most useful information 

for reservoir management purposes. However, it is important to realize that these 

measurements are observations of the response of the reservoir to the implemented 

production and development strategies, which therefore have also an impact on the 
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outcome and value of the measurements. This brings us to the second question that 

motivates this PhD research: 

Q2. How to determine production strategies that, besides optimizing production, can 

also deliver the most useful information? 

The ability of assessing the value of future measurements constitutes an opportunity to 

reformulate the production optimization problem, allowing us to account for the 

contribution of future information to optimize production. The current approach for life-

cycle optimization under uncertainty (section 1.2.1) assumes that the (geological) 

uncertainties are static. However, we know that additional measurements will become 

available throughout the reservoir life-cycle. When we consider only the initial state of 

uncertainty to optimize the production strategy for the entire reservoir life-cycle, we do 

not take advantage of the fact that we control when to gather and assimilate the future 

information. To circumvent this limitation, in the second part of this work we investigate 

possible approaches to: 

Obj.2: Integrate a VOI assessment tool in the CLRM optimization framework. 

1.5. Thesis outline 

This thesis has two parts corresponding to the two main research objectives described in 

section 1.4. In the first part (Chapters 2, 3 and 4) we focus on the development of the 

methodology for VOI assessment in CLRM. In the second part (Chapters 5 and 6), we 

discuss the use of VOI considerations in the optimization of exploitation strategies. 

Chapter 2 presents the base of the methodology by introducing our workflow to 

determine the VOI given a single observation time in the future. In this chapter, we start 

by reviewing more extensively the previous work on information valuation with 

applications in reservoir engineering. We then describe our methodology that uses the 

entire CLRM framework to include the decision making in the VOI assessment instead of 

relying only on the data assimilation step to quantify the value of future measurements. 

Chapter 3 discusses the extension of the methodology to cases with multiple observation 

times. In this chapter, we describe how a slight modification can enable the original 

workflow from Chapter 2 to assess the value of a series of measurements without a 
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prohibitive increase in computational costs. Next, with the help of a simple illustrative 

example we show that the results obtained are consistent with our previous findings. 

Chapter 4 is dedicated to making our proposed methodology more practical. For that, we 

use clustering techniques to select subsets of representative models and significantly 

reduce the computational costs of the original workflow. We repeat the numerical 

experiments from the previous chapters and we obtain similar results with a reduction of 

the number of reservoir simulations by approximately two orders of magnitude. After 

that, we apply the same measures to make the VOI assessment possible in a larger 

example as a first step towards large-scale applications. 

Chapter 5 presents a new approach for production optimization in the context of CLRM 

by considering the impact of future measurements within the optimization framework. We 

integrate the reasoning behind the a priori VOI analysis to modify the optimization 

problem so that it anticipates the fact that additional information (e.g., production 

measurements) will become available in the future. We illustrate the concept with the 

simple example from the previous chapters and the results obtained confirm that this new 

approach can lead to better decisions and increased VOI. 

Chapter 6 expands the ideas introduced in Chapter 5 to the field development 

optimization problem. We combine VOI assessment and well-location optimization in a 

nested approach which delivers flexible development plans that consider the effect of 

time-dependent uncertainties. This allows the optimization to benefit of the sequential 

nature of the drilling activities and to be informed of the impact of current decisions (i.e., 

the drilling of the first next wells) and future information on subsequent decisions (i.e., the 

drilling locations of future wells), resulting in better development strategies. 

Finally, this thesis is concluded in Chapter 7. This chapter provides an overview of the 

conclusions of this research, highlighting the main findings of each chapter, followed by a 

list of recommendations for future research on topics related to VOI assessment in 

CLRM. 

 



 

 
1 This chapter is based on Barros, E.G.D., Van den Hof, P.M.J. and Jansen, J.D. (2016). Value of 

information in closed-loop reservoir management. Computational Geosciences, 20 (3), 737-749. 
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Value of information for a single 
observation time 

This chapter 1 presents our methodology to perform value of information (VOI) analysis within a closed-

loop reservoir management (CLRM) framework. The workflow combines tools such as robust 

optimization and history matching in an environment of uncertainty characterization. The approach is 

illustrated with two simple examples: an analytical reservoir toy model based on decline curves and a water 

flooding problem in a two-dimensional five-spot reservoir. The results are compared with previous work on 

other measures of information valuation, and we show that our method is a more complete, although also 

more computationally intensive, approach to VOI analysis in a CLRM framework. 

2.1. Introduction 

Over the past decades, numerical techniques for reservoir model-based optimization and 

history matching have developed rapidly, while it also has become possible to obtain 

increasingly detailed reservoir information by deploying different types of well-based 

sensors and field-wide sensing methods. Many of these technologies come at significant 

costs, and an assessment of the associated value of information (VOI) becomes therefore 

increasingly important (Kikani, 2013). In particular assessing the value of future 

measurements during the field development planning (FDP) phase of an oil field requires 

techniques to quantify the VOI under geological uncertainty. An additional complexity 

arises when it is attempted to quantify the VOI for closed-loop reservoir management 

(CLRM), i.e., under the assumption that frequent life-cycle optimization will be performed 
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using frequently updated reservoir models. This chapter describes a methodology to assess 

the VOI in such a CLRM context. 

In the Background section (2.2) we review some previous work on information measures. 

Next, in the Methodology section (2.3), we present the proposed workflow for VOI 

analysis in CLRM and thereafter, in the Examples section (2.4), we illustrate it with some 

case studies in which the results of the VOI calculations are analyzed and compared with 

other information measures. In the Discussion section (2.5), we address some other topics 

and issues related to the methodology and its use in practice. Finally, in the Conclusions 

section (2.6), we comment on the computational aspects of applying this workflow to real 

field cases, and we suggest a direction for further research. 

2.2. Background 

2.2.1. Information valuation 

Previous work on information valuation in reservoir engineering focused on analyzing 

how additional information impacts the model predictions. One way of valuing 

information is proposed by Krymskaya et al. (2010). They use the concept of observation 

impact, which was first introduced in atmospheric modeling. Starting from a EnKF 

scheme, they derive an observation sensitivity matrix 

 
111 1ˆ T

d m d
yS HK C HC H C
y

, (2.1) 

where y is the vector of observations, ŷ  is the vector of predicted observations of the 

updated model, H is the observation operator, K is the Kalman gain matrix, Cm is the 

covariance matrix of the prior model errors and Cd the covariance matrix of the 

measurement errors. The observation sensitivity matrix S is a symmetric matrix that 

contains self and cross-sensitivities (diagonal and off-diagonal elements of the matrix, 

respectively). The self-sensitivities, which quantify how much the observation of measured 

data impacts the prediction of these same data by a history-matched model, provide a 

measure of the information content in the data. Their joint influence can be expressed 

with a global average influence index defined as  
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where Nobs is the number of observations (i.e., the number of diagonal elements in S). 

Another approach is taken by Le and Reynolds (2014a, 2014b) who address the usefulness 

of information in terms of the reduction in uncertainty of a variable of interest (e.g., 

NPV). They introduce a method to estimate, in a computationally feasible way, how much 

the assimilation of an observation contributes to reducing the spread in the predictions of 

the variable of interest, expressed as the difference between P10 and P90 percentiles, i.e. 

between the 10 % and 90 % cumulative probability density levels. 

Both approaches are based on data assimilation, and Figure 1.3 schematically represents 

how measured data are used to update a prior ensemble of reservoir models, resulting in a 

posterior ensemble which forms the basis to compute various measures of information 

valuation. In Figure 1.3 the measurements are obtained in the form of synthetic data 

generated by a synthetic truth. This preempts our proposed method of information 

valuation in which we will use an ensemble of models in the FDP stage, of which each 

realization will be selected as a synthetic truth in a consecutive set of twin experiments. 

2.2.2. VOI and decision making 

The two studies that we referred to above (Krymskaya et al., 2010 and Le and Reynolds, 

2014a and 2014b) only measure the effect of additional information on model predictions 

and do not explicitly take into account how the additional information is used to make 

better decisions. In these studies it has simply been assumed that history-matched models 

automatically lead to better decisions. However, there seems to be a need for a more 

complete framework to assess the VOI, including decision making, in the context of 

reservoir management. VOI analysis originates from the field of decision theory. It is an 

abstract concept, which makes it a powerful tool with many potential applications, 

although implementation can be complicated. 

An early reference to VOI originates from Howard (1966) who considered a bidding 

problem and was one of the first to formalize the idea that information could be 

economically valued within a context of decision making under uncertainties. Since then, 

several applications have appeared in many different fields, including the petroleum 
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industry. Bratvold et al. (2009) produce an extensive literature review on VOI in the oil 

industry. Their main message is that “one cannot value information outside of a particular 

decision context”. Thus, reducing uncertainty in a model prediction has no value by itself, 

and VOI is decision-dependent. 

Over the last years, the number of publications on VOI in reservoir engineering 

applications has been growing, along with new approaches which tend to include decision 

making in the analysis. Bhattacharjya et al. (2010), Trainor-Guitton et al. (2013) and 

Nakayasu et al. (2016) have proposed methodologies to quantify the value of spatial 

information to assist in the exploration and development of reservoirs. Sato (2011) has 

discussed the use of VOI analysis for the design of monitoring strategies in geological 

CO2 storage. Bailey et al. (2011) have addressed the problem of valuing future 

measurements in the context of the optimization of well completions to maximize 

production. More recently, He et al. (2016) and Chen et al. (2016) have studied the a-priori 

evaluation of pilot and surveillance programs. For a more complete review of the recent 

developments on VOI in Earth science related topics, we refer to Eidsvik et al. (2015). 

2.3. Methodology 

In our setting, the decision is the use of an optimized production strategy as obtained in 

the CLRM framework (section 1.1). We intend to not only quantify how information 

changes knowledge (through data assimilation), but also how it influences the results of 

decision making (through optimization). We express the optimized production strategy in 

the form of a control vector u which typically has tens to hundreds of elements (e.g. 

bottom-hole pressures, injection rates or valve settings at different moments in time) and 

which needs to be updated when new information becomes available. The proposed 

workflow is depicted in Figure 2.1. The procedure consists of a sort of twin experiment on 

a large scale, because the analysis is performed in the design phase – when no real data are 

yet available. Note that classical CLRM is performed during the operation of the field 

whereas we are considering here an a-priori evaluation of the value of CLRM (i.e. in the 

design phase). The workflow starts with an ensemble Mtruth of Ntruth realizations which 

characterizes the initial uncertainty associated with the model parameters. From this 

ensemble, one realization is selected to be the synthetic truth mtruth . Thereafter, a new 
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ensemble of N equiprobable members is generated, by sampling from the same 

distribution as used to create the initial ensemble Mtruth , to form the prior ensemble Mprior 

for the robust optimization procedure: 

 
1

1(0 : ) arg max ( , ) arg max ( , )
N

i
prior NPV prior NPV i

i

T J
Nu u

u u M u m . (2.3) 

Next, synthetic data ( )obs td  are generated by running a reservoir simulation for the 

synthetic truth mtruth while applying the robust strategy (0 : )prior Tu . The synthetic data 

( )obs td  are perturbed by adding zero-mean Gaussian noise with a predefined standard 

deviation ԑobs . With these, data assimilation is performed, the model realizations of Mprior 

are updated and a posterior ensemble Mpost obtained. As a next step robust optimization is 

carried out on this posterior to find a new optimal production strategy ( : )post t Tu  (from 

the time the data became available to the end of the reservoir life-cycle): 

 

1
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1arg max (0 : ), ( : ), .

post NPV prior post

N
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NPV prior i

i

t T t t T

J t t T
N

u

u

u u u M

u u m
 (2.4) 

The concept of a twin experiment in data assimilation is in this way extended to include 

the effects of the model updates on the reservoir management actions. 

The strategies obtained for the prior and the posterior ensembles are then tested on the 

synthetic truth, and their economic outcomes (NPV values ,NPV priorJ  and ,NPV postJ ) are 

evaluated. The difference between these outcomes is a measure of the VOI incorporated 

through the CLRM procedure for this particular choice of the synthetic truth: 

 , ( , )NPV prior NPV prior truthJ J u m . (2.5) 

 , (0 : ), ( : ),NPV post NPV prior post truthJ J t t Tu u m . (2.6) 

The choice of one of the realizations to be the synthetic truth in the procedure is 

completely random. In fact, because the analysis is conducted during the FDP phase, any 

of the Ntruth models in the initial ensemble Mtruth could be selected to be the ‘truth’. Note 

that this also implies that the VOI is a random variable. One of the underlying 

assumptions of our proposed workflow is that the truth is a realization from the same 

probability distribution function as used to create the realizations of the ensemble. Hence, 
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the methodology only allows to quantify the VOI under uncertainty in the form of known 

unknowns. Obviously, specifying uncertainty in the form of unknown unknowns is 

impossible, which therefore is a fundamental shortcoming in any VOI analysis. (I.e., we 

may think that we know the complete reservoir description (as captured in the prior 

ensemble), but we may have missed “unmodeled” features such as an unexpected aquifer 

or a sub-seismic fault.) 

 

Figure 2.1: Proposed workflow to compute the value of information. (t indicates the observation time and 
T indicates the end time). 

Because any of the Ntruth models in Mtruth could be the truth, the procedure has to be 

repeated Ntruth times, consecutively letting each one of those initial models act as the 

synthetic truth. This allows us to quantify the expected VOI over the entire ensemble: 

 , ,
1

1VOI
truthN

i i
NPV post NPV prior

itruth

J J
N

. (2.7) 

We note that this repetition is similar to the use of multiple plausible truth cases in Le and 

Reynolds (2014a, 2014b). We also note that in the literature on VOI, most of the times the 

term VOI is used to refer to the expected VOI. The flowchart in Figure 2.2 shows the 

complete procedure. Finally we note that, to be absolutely rigorous, we would have to 

repeat the whole workflow several times with different realizations of the noise in the 

observation vectors. However, we argue that by far the largest contribution to uncertainty 

originates from the geology, as captured in the various ensembles of geological 

realizations. In comparison, the effect of measurement noise is small and sufficiently 

captured by using a new noise realization for each synthetic measurement. 
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Figure 2.2: Complete workflow to compute the expected VOI. 

The workflow can be adapted to compute the expected value of clairvoyance (VOC), 

which simply means that at some time in the reservoir life we suddenly know the truth so 

we can perform life-cycle production optimization on the true reservoir model instead of 

considering the robust optimization over the posterior ensemble (as in equation (2.4)):  

 ( : ) arg max (0 : ), ( : ),post NPV prior trutht T J t t T
u

u u u m  (2.8) 

The estimated expectation of VOC is then computed from equation (2.7) where each 

posterior NPV is obtained while applying the optimal controls determined for the 

associated synthetic true model. Such a clairvoyance implies the availability of completely 

informative data without observation errors, and the expected VOC therefore forms a 

theoretical upper bound (i.e., a “technical limit”) to the expected VOI. Moreover, because 
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this modified workflow does not require data assimilation, and, after the truth has been 

revealed, only requires optimization of a single (true) model, it is computationally 

significantly less demanding. 

2.4. Examples 

2.4.1. Toy model 

As a first step to test the proposed methodology we used a very simple model with only a 

few parameters, based on reservoir decline curves. It describes oil and water flow rates qo 

and qw as a function of time t and a scalar control variable u according to the following 

expressions: 

 , 1

2

( , ) exp 1o o ini
tq u t q c u

a u
c

, (2.9) 

 3
,

3
4

5

11
1( , ) 1 1 exp 1

bt

w bt w

t t u
c

q u t H t u q u
c c a u

c

, (2.10) 

where qo,ini is the initial production rate, tbt is the water breakthrough time, and qw,∞ is the 

asymptotic water production rate, all for a situation without control, i.e., for u = 0. The oil 

production follows an exponential decline and the water production builds up 

exponentially from a breakthrough time modelled by a Heaviside step function H. The 

variables have dimensions as listed in Table 2.1, where L, M and t indicate length, 

monetary value and time respectively. Some of the parameters are constants, while four 

uncertain parameters are normally distributed with values indicated in Table 2.1. The 

scalar control variable u somehow mimics a water injection rate to the reservoir; higher 

values of u slow down the decline of oil production but accelerate water breakthrough and 

increase water production, as shown in Figure 2.3. Given the prices and costs associated 

with oil and water production, there is room for optimization to determine the value of u 

that maximizes the economics of the reservoir over a fixed producing life-time. To allow 

for regular updating of the control strategy over the producing life of the reservoir, the 
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scalar u can be replaced by a vector 1 2 ,[ ]TMu u uu  where M is the number of 

control intervals. 

 

Figure 2.3: Toy model behavior: oil and water production for two fixed values of the control variable u 
(top); representation of uncertainty in the form of P10 and P90 percentiles (bottom). 

The question to be answered here was: given an initial ensemble of models describing the 

geological uncertainties and an initial optimized control vector u, what is the value of a 

production test in the form of a measurements ( ) ( )[ ]To data w dataq t q td  of oil and water 

Table 2.1: Parameter values for the toy model. 
Variables Constant parameters Uncertain parameters 

qo [L3 t-1] c1 = 0.1 [–] qo,ini  N(100, 8) [L3 t-1] 
qw [L3 t-1] c2 = 4 [L3 t-2] a  N(30.5, 3.67) [t] 
t [0, 80] [t] c3 = 150 [L3 t-1] qw,∞  N(132, 6) [L3 t-1] 
u [0, 50] [L3 t-1] c4 = 2 [–] tbt  N(32, 6) [t] 
  c5 = 1.33 [L3 t-2]   
  ro = 70 M L-3   
  rw = 10 M L-3   
  b = 0.10 [–]   
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production rates at a given time tdata , for different measurement errors and observation 

times? The VOI assessment procedure described in the previous section was applied, and 

repeated for different observation times, tdata = {1, 2, … , 80}. We used a random 

measurement error with a standard deviation ԑdata = 5 % of the measured value, 

Ntruth = 100 plausible truths, prior ensembles of N = 99 model realizations and M = 8 

control time-steps. Ensemble optimization (EnOpt) and ensemble Kalman filtering 

(EnKF) were used to perform the robust optimization and the data assimilation 

respectively. (We used the robust StoSAG implementation of Fonseca et al. (2016) which 

is a modified form of the original EnOpt formulation proposed by Chen et al. (2009). For 

general information on EnKF, see, e.g., Evensen (2009) or Aanonsen et al. (2009); we 

used a straightforward implementation without localization or inflation.) The VOI, the 

VOC, the observation impact IGAI and the uncertainty reduction ∆σNPV = σNPV,prior –

 σNPV,post (i.e., the difference of standard deviations of the prior and posterior NPV 

distributions) were computed for each of the 80 observation times. The average NPV for 

the initial ensemble is $ 108,900 when using base line control (i.e. the average of the upper 

(50) and lower bounds (10), uini = {30, 30, …, 30}) and $ 114,300 when using robust 

optimization over the prior (i.e. without additional information). The initial uncertainty is 

σNPV,ini = $ 11,960, computed as the average of the standard deviations in the NPV of the 

different prior ensembles. We repeated the optimization by starting from a more 

aggressive initial strategy where the values of uini were at their bounds, which gave near-

identical results. 

The expected VOC as a function of the time of clairvoyance is depicted in Figure 2.4 (top 

left), where we expressed the monetary value, arbitrarily, in $. The dashed line represents 

the expected VOC, i.e. the mean of the ensemble of Ntruth = 100 plausible truths. The dark 

solid line and the two lighter solid lines represent the P50 and P10/P90 percentiles 

respectively. Here, Px is defined as the probability that x % of the outcomes exceeds this 

value. The expected VOC is the value one could obtain if the truth could be revealed and 

all the uncertainty could be eliminated at no costs at time tdata . Of course, these results 

depend on the operation schedule (i.e., the number of control time-steps) and on the 

initial ensemble of realizations that characterize the uncertainty. As can be seen, the VOC 

exhibits a stepwise decrease over time, with the steps coinciding with the eight control 
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time steps. This stepwise behavior occurs because knowing the truth only affects the way 

one operates the reservoir from the moment of clairvoyance and because the production 

strategy can only be updated at the defined control time steps. The sooner clairvoyance is 

available, the more control time steps can be tuned to re-optimize the production strategy 

based on the truth, and, therefore, the more value is obtained. Thus, this plot 

demonstrates the importance of timing when collecting additional information to make 

decisions. Even clairvoyance can be completely useless (VOC = 0) when it is obtained too 

late (in this case after tdata = 40). 

 

Figure 2.4: Results for the VOI analysis in the toy model: VOC (top left); VOI (top right); uncertainty 
reduction (bottom left); observation impact (bottom right). 

The percentiles of the VOC distribution in Figure 2.4 (top left) illustrate that the VOC is 

itself a random variable, because, despite knowing that the truth has been revealed, it is 

not possible to know which of the model realizations is this truth; all members of the 

initial ensemble are potentially true in the design phase. Hence, the VOC for a particular 

case may be higher or lower than the expected VOC. 
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In a similar fashion, Figure 2.4 (top right), Figure 2.4 (bottom left) and Figure 2.4 (bottom 

right) display the VOI, the uncertainty reduction in NPV and the observation impact as a 

function of observation time tdata . In Figure 2.4 (bottom right), the peak in the observation 

impact indicates that production data is most informative around tdata = 30; in Figure 2.4 

(bottom left), the uncertainty reduction follows the same trend; and, in Figure 2.4 (top 

right), the VOI also increases at the same time. This suggests that, in this example, 

measurements with a higher observation impact also result in a larger uncertainty 

reduction in NPV and a higher VOI. However, whereas the observation impact and the 

uncertainty reduction both peak around tdata = 30 and gently decrease afterwards, the VOI 

exhibits a more abrupt decrease, similar to what is observed for the VOC. This indicates 

that the VOI depends not only on the information content of the observations but also on 

their timing, just as was discussed for the VOC. Moreover, these results illustrate that the 

proposed workflow allows to take both information content and timing into account and, 

therefore, results in a VOI assessment more complete than the analyses proposed in 

previous works related to reservoir management applications. 

Figure 2.5 (left) shows the same results, but focusing on the expected (or mean) values of 

VOC (black) and VOI (blue). This plot clearly illustrates that the expected VOC is always 

an upper bound to the expected VOI, which is an anticipated result provided that the 

same set of plausible truths is considered in both VOI and VOC analyses. Indeed, 

production data, no matter how accurate, can never reveal all uncertainties. After water 

breakthrough, production data is more informative and it is more likely that the 

uncertainties influencing the optimization of the production strategy be revealed; thus, 

information more closely approaches clairvoyance. Figure 2.5 (right) illustrates this in a 

different way by displaying the chance of knowing (COK), defined as the ratio VOI/VOC 

(Bhattacharjya et al., 2010). 

The different information measures suggest in this case that the most valuable 

measurements are the ones around tdata = 30. We conclude that a decision maker analyzing 

when to obtain a production test to optimally operate this reservoir should take a 

measurement around this time and should be willing to pay at most approximately $ 80 – 

and not $ 4,000 as the uncertainty reduction analysis would suggest (Figure 2.4 (bottom 

left)). Note that the model we used in this example is very simple. The optimal strategies 



2. Value of information for a single observation time 
 

23 

2 

for the different realizations are quite similar, which means that the robust strategy (the 

one that maximizes the mean NPV of the ensemble) is already quite good for all the 

realizations. For that reason, in this case, the additional information does not lead to a 

significant improvement in the production strategy. 

 

Figure 2.5: Results for the toy model: the expected VOI is upper-bounded by expected VOC (left); the 
ratio of VOI and VOC results in the COK (right). 

2.4.2. 2D five-spot model 

As a next step, we applied the proposed VOI workflow to a simple reservoir simulation 

model representing a two-dimensional (2D) inverted five-spot water flooding 

configuration; see Figure 2.6. In a 21 × 21 grid (700 × 700 m), with heterogeneous 

permeability and porosity fields, the model simulates the displacement of oil to the 

producers in the corners by the water injected in the center. Table 2.2 lists the values of 

the physical parameters of the reservoir model. We used Ntruth = 50 plausible truths and 

Ntruth = 50 ensembles of N = 49 realizations of the porosity and permeability fields, 

conditioned to hard data in the wells, to model the geological uncertainties. The 

simulations were used to determine the set of well controls (bottom-hole pressures) that 

maximizes the NPV. The economic parameters considered in this example are also 

indicated in Table 2.2. The optimization was run for a 1,500-day time horizon with well 

controls updated every 150 days, i.e. M = 10, and, with five wells, u has 50 elements. We 

applied bound constraints to the optimization variables (200 bar ≤ pprod ≤ 300 bar and 300 

bar ≤ pinj ≤ 500 bar). The initial control values were chosen as the average of the upper 

and lower bounds. The whole exercise was performed in the open-source reservoir 

simulator MRST (Lie et al., 2012), by modifying the adjoint-based optimization module to 

allow for robust optimization and combining it with the EnKF module to create a CLRM 
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environment for VOI analysis. The average NPV for the initial ensemble is $ 53.5 million 

when using base line control (i.e. the average of the upper and lower bounds on the 

bottom hole pressures: 400 bar in the injector and 250 bar in the producers) and $ 55.7 

million when using robust optimization over the prior (i.e., without additional 

information). Just like for the toy model example, the workflow was repeated for different 

observation times, tdata = {150, 300, … , 1,350} days. For this 2D model we assessed the 

VOI of the production data (total flow rates and water-cuts) with absolute measurement 

errors (ԑflux = 5 m³/day and ԑwct = 0.1). The VOI, the VOC, the observation impact IGAI, 

and the uncertainty reduction ∆σNPV were computed for each of the nine observation 

times. 

 

Figure 2.6: 2D five-spot model (left); 15 randomly chosen realizations of the uncertain permeability field 
(right). 

Figure 2.7 depicts the results of the analysis for production data. Again, dashed lines 

correspond to expected values and solid lines to percentiles quantifying the uncertainty of 

the information measures. The markers correspond to the observation times at which the 

analysis was carried out. In Figure 2.7 (top left) we note that, like for the toy model 

example, clairvoyance loses value with observation time, following the previously 

described stepwise behavior. In addition, by observing the percentiles, we realize that, in 

this case, the VOC has a non-symmetric probability distribution. The high values of P10 

indicate that, for some realizations of the truth, knowing the truth can be considerably 

more valuable than indicated by the expected VOC; however, the P50 values, which are 

always below those of the expected VOC, indicate what is more likely to occur. The same 

holds for the VOI, as can be observed in Figure 2.7 (top right). The observation that 
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provides the best VOI is the one at tdata = 150 days. Note that in our example the earliest 

observation seems to be the most valuable one, but that this may be case-specific. 

 

Figure 2.7: Results for the VOI analysis of production data in the 2D five-spot model: VOC (top left); 
VOI (top right); uncertainty reduction (bottom left); observation impact (bottom right). 
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Table 2.2: Parameter values for the 2D five-spot model. 
Rock-fluid parameters Initial conditions 
ρo = 800 kg/m3 p0 = 300 bar 
ρw = 1,000 kg/m3 Soi = 0.8 [–] 
μo = 0.5 cP Swi = 0.2 [–] 
μw = 1 cP   
no = 2 [–] Economic parameters 
Sor = 0.2 [–] ro = 80 $/bbl 
kro,or = 0.9 [–] rwp = 5 $/bbl 
nw = 2 [–] rwi = 5 $/bbl 
Swc = 0.2 [–] b = 0.15 [–] 
krw,wc = 0.6 [–]   
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Figure 2.7 (bottom right) shows that the information content of the production data 

increases when water breaks through in the producers but gently decreases thereafter. The 

observation impact achieves its maximum at tdata = 600 days; this is the time when, on 

average, most of the realizations have already experienced first water breakthrough. Figure 

2.7 (bottom left) displays the uncertainty reduction in NPV where the initial uncertainty is 

σNPV,ini = $ 4.1 million. We observe that, on average, the uncertainty reduction is 

approximately the same for all the observation times considered in the analysis, which 

suggest that the measurements gathered at different times are equally useful to reduce the 

uncertainty in NPV. 

 

Figure 2.8: Results for the 2D five-spot model: the expected VOI is upper-bounded by expected VOC 
(left); the COK (right) is less informative than for the toy model (c.f. Figure 2.5). 

Figure 2.8 (left) depicts the expected values of VOI (blue dots) and VOC (black line). The 

plot confirms that clairvoyance can be considered the technical limit for any information 

gathering strategy and that the expected VOC forms an upper bound to the expected 

VOI. We also note that the expected VOI comes closer to the expected VOC with time. 

Indeed, as water breakthrough is observed in more producers, the production data of this 

five-spot pattern become more effective in revealing the main features of the true 

permeability and porosity fields. Figure 2.8 (right) displays the COK with time. Although 

the VOI clearly approaches the VOC, their ratio does not change substantially with time, 

unlike what was observed for the toy model example. 

In contrast to the toy model case, for this example the different information measures 

indicate different times for the most useful measurements. This shows that taking into 

account the update of the optimal production strategy can influence the conclusions 

drawn by this kind of analysis. Using the proposed workflow as the reference for VOI 
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assessment, for this case, we recommend the production data to be collected at tdata = 150 

days and we estimate this additional information to be worth $ 2.9 million. 

2.5. Discussion 

2.5.1. Accelerated procedure 

We observe an opportunity to reduce the number of simulations required in the proposed 

workflow by using the complete initial ensemble to perform a single prior robust 

optimization (rather than performing the robust optimization Ntruth times for Ntruth priors). 

For instance, in our 2D example, we could reduce the number of prior robust 

optimizations from 50 to 1, which represents a significant reduction of the computational 

costs of the VOI assessment procedure: approximately 420,000 simulations for the 

original formulation and 215,000 for the modified formulation to compute the VOI for 

one observation time; and approximately 1.7 million simulations for the original 

formulation and 1.5 million simulations for the modified formulation to compute all the 

VOI values depicted in Figure 2.7 and Figure 2.8 (9 observation times). 

Figure 2.9 displays the results for the VOI analysis of production data in the 2D model 

using the accelerated procedure. They are nearly identical to those of Figure 2.7, which 

were obtained using the rigorous procedure, although the uncertainty in the various 

measures is somewhat under-estimated as can be seen from the difference between P10 

and P90 values, especially at later times. This reduction in uncertainty results from the use 

of a single control strategy (based on a single prior robust optimization) instead of a set of 

different control strategies as obtained in the rigorous procedure; see Figure 2.10. 

The flowchart in Figure 2.11 describes the accelerated procedure. Note that the use of a 

single ensemble in the accelerated procedure only concerns the computation of the prior 

control strategy. The remainder of the procedure (columns 2 and 3 in Figure 2.11) is still 

performed using Ntruth different ensembles. 
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Figure 2.9: Results for the VOI analysis of production data in the 2D five-spot model using an 
accelerated procedure; VOC (top left); VOI (top right); observation impact (bottom left); uncertainty 
reduction (bottom right). The results are nearly identical to those of Figure 2.7 although the uncertainty 
in the various measures is somewhat under-estimated. 

 

Figure 2.10: Optimal well controls (BHP) for the 50 different prior ensembles in the 2D model example: 
the black lines indicate the controls for each one of the ensembles (rigorous procedure) and the red line 
corresponds to the single set of well controls considered in the accelerated procedure. 
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Figure 2.11: Accelerated procedure to compute the expected VOI. 

2.5.2. Use of VOI assessment 

Our proposed methodology is a first step towards the development of a framework to 

support the design of reservoir surveillance plans. In the previous sections, we showed 
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if we have the opportunity to make a single observation in the future. For that, we have 

repeated the VOI analysis for different observation times. The design of reservoir 

surveillance plans also involves other decisions concerning the specification of sensors to 

be deployed, such as the measurement precision, location, etc. Our methodology 

presented in section 2.3 can also be used to determine the best option for these choices. 

When choosing the precision and accuracy of the measurements, it seems obvious that the 
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precise measurements will likely be more costly, because they may require the use of more 

expensive technologies to deliver better precision. Thus, there may be cases in which it is 

more advantageous to compromise the precision for the sake of costs. In this context, a 

cost-benefit analysis for measurements with different precision can be useful, and VOI 

assessment can be used of quantify the benefit. To illustrate such an application, we 

repeated the exercise from section 2.4.2 for production measurements (i.e., total rates and 

water-cuts) with three different measurement errors: ԑflux = {5, 10, 15} m³/day and 

ԑwct = {0.1, 0.15, 0.2}. The results, in terms of expected VOI, are displayed in Figure 2.12. 

We note that, for observations until tdata = 600 days, the measurements with different 

measurement errors have approximately the same VOI. The value of these earlier 

observations is related to the ability of detecting water breakthrough in the producers, and 

this seems to be equally possible for all the three measurement errors that we considered. 

This suggests that there is no advantage in collecting highly precise measurements at this 

early stage. After that (i.e., tdata ≥ 750 days), since water breakthrough has already occurred 

in most of the wells, the added value of measurements is more related to the ability of 

determining how much water the wells are producing, and poorer measurement precision 

results in lower VOI. This means that, depending on the difference in costs, it may be 

more interesting to invest in higher precision for late measurements. 

 

Figure 2.12: Expected VOI of production observations with different measurement precisions (2D five-
spot model). 
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case where a single observation for only a single well is available in the future, and then 

repeating the analysis for each one of the five wells of the model. 

Figure 2.13 shows the results in terms of expected VOI. First, we observe that the 

expected VOI of measurements at the injector are always negative (Figure 2.13 (right)), 

which suggests that the information obtained from these observations is misleading and 

the additional knowledge results in worse decisions. In practice the added value of these 

measurements would be zero, because a decision maker facing the results of this VOI 

assessment would choose to implement the production strategies determined under prior 

uncertainty instead of investing in additional information that is expected to result in 

worse updated strategies. 

 

Figure 2.13: VOI of production measurements at different locations (2D five-spot model): total 
production rates and water-cuts measured at the producers (left) and water injection rates measured at the 
injector (right). 
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principle, we can assess, with our methodology, the VOI of any measurement that can be 

modeled with the reservoir simulator and incorporated in a history matching exercise. By 

repeating the VOI assessment for different measurement types, we can determine which 

sensing technology is likely to be more useful to improve the reservoir management. Here, 

we considered a new case where only oil production rate measurements are available at the 

producers. As before, we used the same 2D five-spot model as an example. Figure 2.15 

depicts the results obtained in comparison with the results of the original example. The 

VOI of oil rate measurements can be considerably lower than the VOI of the production 

measurements considered previously. The low values, especially for the measurements at 

tdata = 300 days, are related to the inability of the oil rate measurements alone to accurately 

inform about the water breakthrough time at the producers, whose prediction is 

paramount to achieve an optimal reservoir management in this example. 

 

Figure 2.14: VOI is not additive: the sum of the VOI of production measurements at different locations 
is not equal to the VOI of the measurements at all the different locations combined (2D five-spot 
model). 

 

Figure 2.15: VOI of different types of production measurements (2D five-spot model): total production 
rates and water-cuts (blue) or only oil production rates (red). 
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2.5.3. Other practical issues 

The successful application of our methodology requires attention to some practical issues. 

One point concerns the use of reactive control to shut-in wells that reach uneconomical 

production (e.g., high water-cuts causing production costs to exceed the production 

revenues). In our workflow, the production strategies are determined by optimization over 

an ensemble of model realizations for a fixed life-cycle T and then applied to the 

respective plausible truth. These strategies are likely not the optimal ones for the plausible 

truths and their direct application without any additional consideration (i.e., stopping 

production before T if necessary) may result in uneconomical production. 

The second issue related to the uneconomical production refers to the plausibility of 

future measurements. In practice, if a given plausible truth reaches uneconomical 

production before the time tdata considered in the VOI assessment, we should consider 

that the future measurement would never be collected and that the VOI (and VOC) 

associated with that plausible truth is equal to zero. 

 

Figure 2.16: Effect of disregarding uneconomic production when assessing the VOI of future 
measurements (2D five-spot model): including uneconomical production (left) and disregarding it (right). 
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In Chapter 3 we will address the two points discussed above in more details. For now, we 

apply these considerations to the example of section 2.4.2 to show their impact on the 

VOI assessment. Figure 2.16 shows the previous results for VOC and VOI which include 

the uneconomical production (left) and the new ones which disregard it (right). We note 

that the new values are lower. This happens because the uneconomical production 

explained above occurs more often when applying the optimal strategies based on prior 

knowledge, which correspond to the baseline for the VOI assessment. From the moment 

we disregard the uneconomical production, the baseline values increase and the VOI 

decreases. In addition to that, because of the second issue described above, the VOI 

associated with some plausible truths are set to zero, which also contributes to reduce the 

VOI and VOC. 

2.6. Conclusions 

We proposed a new workflow for VOI assessment in CLRM. The method uses elements 

available in the CLRM framework, such as history matching and robust optimization. 

First, we identified the opportunity to combine these elements with concepts of 

information value theory to create a VOI analysis instrument. We then designed a generic 

procedure that can, in theory, be simply implemented in a variety of applications, 

including our optimal reservoir management problem. Next, the workflow was illustrated 

with two examples and the results were compared with previous measures for information 

valuation. Because we take into account that the production strategy is updated after new 

information has been assimilated in the models, our proposed method is more complete 

than previous work to estimate the VOI in a reservoir engineering context. In the end, we 

also discussed how this approach could be used to support the design of reservoir 

surveillance plans and we commented on some aspects to be taken into account when 

applying this methodology in practice. 

The main drawback of our proposed VOI workflow is its computational costs; it involves 

the repeated application of robust optimization and data assimilation, which requires a 

very large number of reservoir simulations. Depending on the types of optimization and 

assimilation methods used (e.g., adjoint-based, ensemble-based, or gradient-free) there 

may be large differences in the computational requirements, but even in case of using the 
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most efficient (i.e., adjoint-based) algorithms, the computational load of the workflow will 

be huge. For instance, for the toy model example with ensembles of 100 realizations, we 

ran more than 50 million forward simulations (8,100 robust optimizations with EnOpt) in 

order to obtain the 80 values of VOI displayed in Figure 2.4 (top right). Hence, if the 

method is to be applied to real-field cases, some serious improvements regarding the 

number of simulations required are necessary. In this chapter, we showed a first step in 

this direction by suggesting a way to reduce the number of robust optimizations necessary. 

However, more has to be done. One potential method could be to use clustering 

techniques to select a few representative realizations rather than a full ensemble, as it will 

be discussed in Chapter 4. Furthermore, reduced-order modelling techniques to generate 

surrogate models could facilitate the application of our workflow to larger reservoir 

models by reducing the number of full reservoir simulations. Despite its computational 

cost, we conclude that our approach constitutes a rigorous VOI assessment for CLRM. 

For this reason, we recommend that it be used as the reference for the development of 

more practical and less computationally demanding tools to be applied in real-field cases. 

 





 

 
1 This chapter is based on Barros, E.G.D., Leeuwenburgh, O., Van den Hof, P.M.J. and Jansen, J.D. 

(2015). Value of multiple production measurements and water front tracking in closed-loop reservoir 
management. Paper SPE-175608-MS presented at SPE Reservoir Characterization and Simulation 
Conference and Exhibition, Abu Dhabi, UAE, 14-16 September. 
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Value of information for multiple 
observation times 

This chapter 1 extends our methodology for VOI assessment in CLRM to estimate the added value of 

performing multiple measurements along the producing life of the reservoir. The new procedure is based on 

the workflow presented in Chapter 2 which allows to quantify the VOI of a single observation under 

geological uncertainty. Here we show that, by modifying that workflow slightly, it is possible to assess the 

value of a series of measurements without a prohibitive increase in computational costs. The approach is 

illustrated with two cases based on a simple water flooding problem in a two-dimensional five-spot reservoir: 

the first one, in which we assess the value of a series of production measurements, and the second one, in 

which we estimate the additional value of water front positions tracked by an interpreted time-lapse seismic 

survey. 

3.1. Introduction 

Through the last few decades, new sensing technologies have been boosting the flow of 

detailed reservoir information from oil and gas fields. Different types of well-based 

sensors and field-wide data have become available, which, in combination with the 

development of numerical techniques for reservoir model-based optimization and history 

matching, increase the possibilities to monitor and improve reservoir management 

operations. Because many of these sensing technologies come at significant costs, the 

design of reservoir surveillance strategies has been receiving more attention. The solution 

of this design problem requires the ability of assessing the value of future measurements 
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during the field development planning (FDP) phase of an oil field. In this context, 

techniques to quantify the value of information (VOI) under geological uncertainty 

become increasingly important. 

An additional complexity arises when it is attempted to quantify the VOI associated with 

the deployment of a sensor that is expected to provide multiple measurements in its 

lifespan. In Chapter 2 we introduced a methodology to make use of the closed-loop 

reservoir management (CLRM) framework (i.e., under the assumption that frequent life-

cycle optimization will be performed using frequently updated reservoir models) to assess 

the VOI of a single measurement. The first contribution presented in this present chapter 

is to show how that methodology can be extended to also assess the value of a series of 

measurements at the same location. 

Another challenge consists of quantifying the value of field-wide sensing methods, such as 

time-lapse seismic surveys. In Chapter 2 we illustrated the VOI assessment methodology 

with an example considering only production data from the wells. Here we propose to 

repeat the workflow in combination with the work of Leeuwenburgh and Arts (2014) so 

that we are also able to analyze the value of water front tracking measurements, which can 

be an alternative to assess the VOI of a time-lapse seismic survey. 

For a recap of what has been done in terms of VOI assessment of a single measurement, 

we refer to Chapter 2. In the Background section (3.2), we summarize previous work on 

the assimilation of water front tracking “measurements” that will be addressed later in this 

chapter. Next, in the Methodology section (3.3), we explain how to extend our workflow 

for a series of measurements and thereafter, in the Examples section (3.4), we illustrate it 

with some case studies and we analyze the results. Finally, in the Discussion (3.5) and 

Conclusions (3.6) sections, we comment on the main practical issues regarding the 

application of our methodology, and we suggest directions for future work. 

3.2. Background 

3.2.1. Water front tracking measurements 

Water front tracking “measurements” represent a good alternative to incorporate 

information from interpreted 4D (or time-lapse) seismics. Time-lapse seismic surveys fall 
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under the category of field-wide sensing methods and have been showing great potential 

for reservoir surveillance. With a much higher volume of data, they provide a different 

type of information than the well-based measurements. A typical 4D seismic dataset gives 

good insight into the evolution of pressures and saturations in the whole extension of the 

reservoir. It may be a challenge to assimilate all these data to the reservoir models using 

classical history matching techniques such as the ensemble Kalman filter (EnKF). 

Recognizing that one of the main advantages of having 4D seismic data available lies on 

the possibility of interpreting saturation maps to track the water front in water flooding 

problems, Leeuwenburgh and Arts (2014) have proposed a distance parametrization to 

facilitate the history matching of seismic data (i.e., interpreted saturation fields). They use 

the fact that the water front can be detected in the seismic data, as a jump in the saturation 

values. Then they apply “a fast marching method (…) to calculate distances between 

observed and simulated fronts, which are used as innovations in the EnKF”. Figure 3.1 

depicts the general idea behind their work. This new parametrization allows 

Leeuwenburgh and Arts (2014) to simplify the assimilation of the time-lapse seismic 

dataset, without having to use any localization or inflation schemes to ensure the good 

behavior of the history matching ensemble techniques. For a detailed description of the 

fast marching method used to track the evolution of interfaces (water fronts in our 

setting), see Sethian (1996). 

 

Figure 3.1: General idea behind the work of Leeuwenburgh and Arts (2014): detecting water fronts and 
comparing them in terms of a certain distance/metric to perform history matching. 

3.3. Methodology 

The new procedure is based on the workflow from Chapter 2 which allows to quantify the 

VOI of a single observation under geological uncertainty. Throughout the description of 
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the method and the illustrative examples presented there, we proposed to “close the loop” 

once, considering new information to become available at one observation time. Then, in 

section 2.4, we repeated the procedure for several observation times to show how the 

VOI changes in time and to determine which moment in time would be best to collect 

data (if it were to be collected only once). We also showed there the importance of 

repeating the workflow for different plausible realizations of the truth, which made our 

procedure very expensive in terms of computational costs. 

In order to assess the VOI of a series of future measurements, we propose here to “close 

the loop” multiple times, repeating the original procedure from Chapter 2 while gradually 

progressing over the producing life of the reservoir in time steps equal to the specified 

control time intervals. Every time new data become available, the models are history 

matched and the production strategy for the remaining control intervals are updated. 

Figure 3.2 depicts the new workflow for VOI assessment of a series of measurements, 

showing a simple case with 3 control time intervals only. Note that the repetition of the 

procedure for an ensemble of plausible truths also holds here. 

 

Figure 3.2: VOI assessment workflow extended for multiple observation times. (ti indicates the 
observation times and T indicates the end time) 

To make it more clear, we describe the steps of the extended workflow using 

mathematical notation. We consider the same case as described above with 3 control time 

intervals and two observation times at {t1, t2} (Figure 3.2). Just like in Chapter 2, the first 

step is to determine the optimal production strategy uprior(0:T) for the entire reservoir life-

cycle given the prior uncertainty (equation (2.3)). Next, we generate the synthetic 
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measurements at t1 by applying uprior(0:t1) to the plausible truth mtruth . This allows us to 

perform history matching of the prior ensemble Mprior and obtain the posterior ensemble 

Mpost,1. We can then re-optimize the production strategy over Mpost,1: 

 
,1 1 1 1 ,1

1 1
1

( : ) arg max (0 : ), ( : ),

1arg max (0 : ), ( : ), .

post NPV prior post

N
i
NPV prior i

i

t T t t T

J t t T
N

u

u

u u u M

u u m
 (3.1) 

In this way the “loop is closed” once, and we can restart the cycle for the second 

observation time t2. Again, we generate the synthetic measurements at t2 by applying 

1 ,1 1 2(0 : ) ( : )[ ]T T T
prior postt t tu u  to the same plausible truth mtruth . These new measurements 

are then assimilated and the ensemble Mpost,1 is updated to derive the new posterior 

ensemble Mpost,2. And we re-optimize the production strategy over Mpost,2 for the remaining 

of control intervals: 
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 (3.2) 

The strategies obtained for the prior and the posterior ensembles are then tested on the 

synthetic truth, and their economic outcomes (NPV values ,NPV priorJ  and ,NPV postJ ) are 

evaluated: 

 , ( , )NPV prior NPV prior truthJ J u m , (3.3) 

 , 1 1 ,1 1( ) (0 : ), ( : ),NPV post NPV prior post truthJ t J t t Tu u m , (3.4) 

 , 1 2 1 ,1 1 2 ,2 2( , ) (0 : ), ( : ), ( : ),NPV post NPV prior post post truthJ t t J t t t t Tu u u m . (3.5) 

By repeating the procedure for all the plausible truths considered the difference between 

,NPV postJ  and ,NPV priorJ  are used, in the end, to determine the cumulative VOI through the 

multiple observation times: 

 1 , 1 ,
1

1VOI( ) ( )
truthN

i i
NPV post NPV prior

itruth

t J t J
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. (3.6) 

 1 2 , 1 2 ,
1

1VOI( , ) ( , )
truthN

i i
NPV post NPV prior

itruth

t t J t t J
N

. (3.7) 

Initially, one might think that this new workflow would be much more computationally 

demanding than the previous one (for a single observation), but, in practice, it is not. 
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Indeed, the assessment of the value of a series of future measurements implies repeating 

all the steps of the methodology through more observation times. However, we consider 

only one series of measurements. Thus, the repetition of history matching and 

optimization procedures while progressing over the producing life of the reservoir requires 

just as many reservoir simulations as repeating the workflow for a single observation for 

the different observation times, like we did in Chapter 2. Regarding the repetition of the 

procedure for different realizations of the truth, the computational cost does not increase 

either: once a realization i
truthm  is selected to be the synthetic truth, it will play the role of 

truth throughout the whole producing life of the reservoir in our setting. There is no need 

to consider new plausible truths as we progress over the control time intervals; therefore, 

the complexity of the procedure does not grow. Note that here we considered, for 

simplicity, the case where the control, model update and measurement intervals coincide. 

In practice, the measurements can be more frequent than the control updates; in this case 

all the measurements gathered over a control period can be assimilated at once or 

sequentially as they become available, but only re-optimizing the production strategy at the 

end of the period. 

Referring again to Chapter 2, we also showed there that we can adapt the VOI workflow 

to compute the value of clairvoyance (VOC), which means that at some time of the 

reservoir life-cycle the true reservoir is suddenly revealed so we can perform optimization 

with perfect knowledge of the truth. Because clairvoyance implies perfect revelation of the 

truth, its value represents a “technical limit” to the VOI. The same holds when dealing 

with a series of measurements, with a small difference: in order to make a fair comparison 

with the cumulative VOI, the VOC workflow has to assume that we obtain imperfect 

information while clairvoyance is not yet available. In practice, this means that we must 

adopt, for the control periods before the time of clairvoyance, the same production 

strategies as the ones derived within the VOI assessment of imperfect measurement. By 

considering this, the VOC workflow for a series of measurements requires data 

assimilation and robust optimization, which makes it somewhat more complex than the 

original VOC workflow from Chapter 2. 

Using again the simple case with 3 control intervals to explain the procedure, in this 

situation we consider 2 possible moments to obtain clairvoyance {t1, t2}. Note that, unlike 
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what happens for imperfect information, clairvoyance cannot be cumulated because, once 

the perfect revelation of the truth takes place, there is nothing else to be revealed. The 

procedure to compute the VOC at t1 is exactly the same as the one described in Chapter 2. 

Because the truth is revealed, we can re-optimize the production strategy using the true 

reservoir model (equation (2.8)) and no longer a posterior ensemble: 

 ,1 1 1 1( : ) arg max (0 : ), ( : ),post NPV prior trutht T J t t T
u

u u u m . (3.8) 

However, if clairvoyance only becomes available at t2, we must assume that we have been 

cumulating imperfect information until that moment. In this case, we consider the 

assimilation of imperfect synthetic measurements available at t1, and we derive upost,1(t1:T) 

by re-optimizing the production strategy over the updated ensemble Mpost,1 (equation 

(3.1)). Next, the truth is perfectly revealed at t2, and we can re-optimize the remaining of 

the production strategy using the true reservoir model: 

 ,2 2 1 ,1 1 2 2( : ) arg max (0 : ), ( : ), ( : ),post NPV prior post trutht T J t t t t T
u

u u u u m . (3.9) 

The other steps of the procedure (i.e., the application of the strategies to the truth and the 

repetition for all the plausible truths) remains the same (equations (3.3)-(3.5)) and the 

VOC for multiple observation times can be computed using equations (3.6)-(3.7). 

3.4. Examples 

3.4.1. Multiple production data 

To illustrate the new procedure, we used the same 2D five-spot example described in 

section 2.4.2. The workflow was applied for a series of observation times, tdata = {150, 300, 

… , 1,350} days. As before, for this 2D model we assessed the VOI of the production 

data (total flow rates and water-cuts) with absolute measurement errors (ԑflux = 5 m³/day 

and ԑwct = 0.1). The cumulative VOI, the VOC, and the spread of the ensembles (standard 

deviation of NPV predictions, σNPV) were computed for each of the nine observation 

times. 

Figure 3.3 depicts the results of the analysis for production data. The dashed lines 

represent the expected values, i.e. the mean for the Ntruth = 50 plausible truths. The dark 
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solid lines and the lighter solid lines correspond to the P50 and P10/P90 percentiles 

respectively. Here, Px is defined as the probability that x % of the outcomes exceeds this 

value. The markers correspond to the observation times at which the analysis was carried 

out. In Figure 3.3 (top left) we can observe that clairvoyance loses value with time, 

following the stepwise behavior that we also found in Chapter 2. In addition, by observing 

the percentiles, we realize that, in this example, the VOC has a non-symmetric probability 

distribution. The high values of P10 indicate that, for some realizations of the truth, 

knowing the truth can be considerably more valuable than indicated by the expected 

VOC; however, the P50 values, which are always below those of the expected VOC, 

indicate what is more likely to occur. The same holds for the cumulative VOI, as can be 

observed in Figure 3.3 (top right). The first observation (at tdata = 150 days) shows already 

a significant VOI, but, as expected, this value builds up in time as more observations are 

incorporated in the models. Note that in our example the earliest observation seems to be 

the most valuable one and that the incremental values for the following observations are 

relatively small, but that this may be case-specific. 

Figure 3.3 (bottom) shows how the spread of the ensembles of realizations changes as we 

progress “closing the loop” over time. We express this spread as the standard deviation of 

the predicted NPV of the ensemble. Note that, because of the repetition of the procedure 

for different plausible truths, this spread is also a random variable. The initial uncertainty 

is σNPV,ini = $ 4.1 million, computed as the average of the standard deviations in the NPV 

of the different prior ensembles. We observe that this spread reduces significantly as the 

first observations are assimilated, but that later on it reaches a point from which it does 

not change any more. 

Figure 3.4 (left) depicts the expected values of cumulative VOI (blue dots) and VOC 

(black line), and Figure 3.4 (right) shows the same results using a different scale of the 

vertical axis. The plots confirm that clairvoyance can be considered the technical limit for 

any information gathering strategy and that the expected VOC forms an upper bound to 

the expected cumulative VOI. Here, we can see more clearly that the VOC indeed 

decreases and that the cumulative VOI increases in time. However, the decrease of VOC 

over time is less significant than what we observed in the previous chapter, because here 

we history match the models with production data while clairvoyance is not yet available. 
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We also note that the expected VOC and expected cumulative VOI converge to the same 

value at the last observation time (tdata = 1,350 days), because after this point there are no 

controls left to be re-optimized, which means it is too late to benefit from clairvoyance or 

any additional information. Figure 3.4 also illustrates that collecting production data over 

the producing life of this reservoir is worth (on average) approximately $ 3.16 million, 

which represents a gain of 5.7 % compared to relying on prior knowledge to operate the 

field. 

 

Figure 3.3: Results for the VOI analysis of production data (2D five-spot model): VOC (top left); 
cumulative VOI (top right); ensemble spread in terms of NPV (bottom). 

 

Figure 3.4: Results for the 2D five-spot model: the expected cumulative VOI is upper-bounded by 
expected VOC (left); same results plotted using a different scale of the vertical axis (right). 
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3.4.2. Multiple oil rate measurements 

Next, we repeat the VOI analysis for the same case, but with more limited production data 

by considering oil rate measurements only (for the same 2D five-spot model and with an 

absolute measurement error ԑoil = 5 m³/day). By comparing the results with the previous 

example (total flow rate + water-cut measurements), we can estimate the additional value 

of also collecting accurate water production data. 

Figure 3.5 (left) depicts the expected values of the cumulative VOI for the measurements 

from the previous example (blue dots) and for oil rate measurements only (red dots), and 

Figure 3.5 (right) shows the same results using a different scale of the vertical axis. We 

observe that measuring oil rates only is less valuable than collecting information of total 

rates and water-cuts, which is an expected result. We also note a difference compared to 

the previous example: when assimilating multiple oil rate measurements at different times, 

the value does not increase monotonically; see Figure 3.5 (right). The decrease around 

tdata = 300 days can be attributed to the fact that, at low water-cuts (immediately after 

water breakthrough time in the producers), oil rate measurements are not capable of 

detecting the presence of water and, therefore, they are not as effective as the water-cut 

observations in revealing the uncertainties considered here. As a matter of fact, around 

tdata = 300 days, most of the realizations have just observed first water breakthrough. 

Finally, by comparing the values of the last points (tdata = 1,350 days), we estimate that the 

additional value of collecting reasonably accurate water-cut measurements (ԑwct = 0.1) 

rather than just oil rates is (on average), for this case, approximately $ 440,000, which 

represents an increase of 1.6 % in terms of NPV. 

 

Figure 3.5: Results for the 2D five-spot model: the expected cumulative VOI of total flow rate and water-
cut measurements (blue) and oil rate measurements only (red) (left); same results plotted using a different 
scale of the vertical axis (right). 
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3.4.3. Value of water front tracking “measurements” 

We have taken two approaches to assess the value of an interpreted time-lapse seismic 

survey. In the first one, we simply repeated the procedure from Chapter 2 but using the 

water front tracking “measurements” from Leeuwenburgh and Arts (2014) described in 

section 3.2.1. The methodology for the distance reparametrization of detected water fronts 

is available in a modified version of the EnKF module for MRST. Once again, we used 

the same 2D reservoir model from the previous examples, and we adopted an absolute 

measurement error ԑdst = 1 [–], which refers to an error of 1 gridblock when detecting the 

position of the water fronts. Following the workflow from Chapter 2, we were able to 

estimate the VOI of these new “measurements” at different observation times (if they 

were to be collected only once). Figure 3.6 (top left) and Figure 3.6 (bottom left) depict 

the results for this analysis, showing that these “measurements” are valuable if available at 

early times, but not so much at later times. This is an expected result. However, by doing 

the analysis this way, we are actually assessing the VOI of the time-lapse seismic survey by 

comparing the value of acquiring a new seismic survey with the value of relying on prior 

knowledge only (not collecting any additional data throughout the producing life of the 

reservoir), which does not seem to be a realistic practice. Given the economic costs, an oil 

company will only consider paying to shoot a new seismic survey to monitor a reservoir if 

it has already decided to invest in sensor deployment to collect production data, which is a 

much cheaper option. 

In order to make a more realistic analysis, in our second approach to assess the VOI of 

such “measurements”, we propose to assume that the time-lapse seismic survey is 

acquired in addition to the series of production data measurements considered in our first 

example. Thus, we applied the proposed workflow to analyze the VOI of assimilating 

production data at multiple observation times tprod = {150, 300, … , 1,350} days together 

with a single water front tracking ‘measurement’ at time tseismic . Then, we considered the 

cumulative VOI obtained after all the observations have been assimilated (at tdata = 1,350 

days) and compared it to the same value (at tdata = 1,350 days) obtained in our first 

example (in which the models were history matched with the production data only). 

Finally, we repeated the analysis for different moments in time to shoot the seismic: 

tseismic = 150 days, tseismic = 300 days, … , tseismic = 1,350 days. The results obtained with this 
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second approach are depicted in Figure 3.6 (top right) and Figure 3.6 (bottom right). For 

this example acquiring a single seismic survey, in addition to performing multiple 

production measurements, results in an incremental VOI of, at maximum, $ 40,000 (for a 

survey shot at tseismic = 450 days). (Note that, as in all examples, this is the VOI without 

accounting for the costs of acquiring the data.) This value is much lower than the VOI 

observed in the absence of production data, which suggests that the additional seismic 

survey is not leading to significantly better decisions. Apparently the production data 

already provide sufficient information in this case. 

 

Figure 3.6: Results for the 2D five-spot model: VOI of interpreted 4D seismic data (at a single moment 
in time) without performing production measurements (top left: mean and percentiles; bottom left: mean 
only). Incremental VOI of interpreted 4D seismic data (at a single moment in time) in combination with 
performing production measurements (at multiple observation times) (top right: mean and percentiles; 
bottom right: mean only). 

3.5. Discussion 

3.5.1. Additional insights from VOI assessment 

Besides assessing the VOI of future measurements, our approach of “closing the loop” in 

the design phase produces a great amount of data which could be used to gain additional 
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insight into the (closed-loop) reservoir management problem. Because we consider an 

ensemble of plausible truths, multiple CLRM sequences are obtained, including optimal 

production strategies (Figure 3.7), history matched ensembles and their predictions (Figure 

3.8 and Figure 3.9). An in-depth analysis of these data may lead to a better understanding 

on how to manage the reservoir. 

Figure 3.7 displays the optimal schedules of well controls (i.e., BHP over the control time 

intervals) for the five wells of the 2D model example. Figure 3.7 (top left) shows the 

strategies optimized under prior uncertainty. There are multiple strategies because we 

generate a different prior ensemble for each one of the plausible truths considered. Figure 

3.7 (bottom) shows the production strategies optimized specifically for each one of the 

plausible truths, under the assumption that clairvoyance is available at t = 0. And Figure 

3.7 (top right) exhibits the strategies obtained for each plausible truth through CLRM with 

additional production measurements. We observe that the strategies which benefit from 

additional knowledge are much more spread over the allowed range of controls compared 

to the ones derived with prior knowledge only. We also highlight that the strategies 

obtained with prior knowledge and with multiple production measurements are the same 

for the first control time interval because additional information only becomes available at 

the end of this interval. 

The production strategies from Figure 3.7 can be applied to the plausible truths to 

simulate their production response and analyze their economic performance. For the VOI 

assessment, we were mainly interested in the final NPV values, but, in practice, an analysis 

of the production response in a broader sense can reveal patterns and mechanisms to 

explain the improved performance of strategies obtained with additional knowledge. 

Figure 3.8 displays the entire curves of cumulative NPV obtained for the different 

production strategies from Figure 3.7. It is clear that those strategies that are more spread 

over the range of controls produce a different NPV profile which results in higher final 

NPV values, indicating a more efficient use of the operational flexibility of the reservoir 

management problem. Figure 3.9 has already been discussed before: it shows the same 

results but disregarding any uneconomical production. 

The workflow for VOI assessment generates even more information than what we show 

here. We believe that these data can be used in a smart way to support operational 
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decisions, serving as a sort of pre-computed operation manual. A second purpose for our 

proposed methodology could help us to promote its practice and justify its high 

computational costs. 

   

 

Figure 3.7: Optimal production strategies for the plausible truths considered 2D five-spot model: 
optimized under prior uncertainty (red – top left); obtained through CLRM with additional production 
measurements (blue – top right); optimized under the assumption of clairvoyance available at t = 0 (black 
– bottom). Five plots for each case, corresponding to the BHP schedules for each one of the 5 wells of 
the five-spot pattern. 
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Figure 3.8: Cumulative NPV curves for the 50 plausible truths considered including uneconomical 
production (2D five-spot model) for the production strategies from Figure 3.7. 

 

Figure 3.9: Cumulative NPV curves for the 50 plausible truths considered disregarding uneconomical 
production (2D five-spot model) for the production strategies from Figure 3.7. 

3.5.2. Disregarding uneconomical production 

In section 2.5.3, we discussed the impact of the uneconomical production of the plausible 

truths on the VOI assessment. Here, we make again the same considerations, but this time 

for the VOI assessment with multiple observations. The results are shown in Figure 3.10 

and Figure 3.11 for comparison with those in Figure 3.3. Although the values are 

different, the same conclusions still hold: VOI and VOC are random variables and VOC 

constitutes an upper bound for VOI. Like we saw in section 2.5.3, we note that the values 

obtained with these considerations are lower, indicating that the production strategies 

determined with prior knowledge lead to uneconomical production. This can be 

confirmed in Figure 3.8 (left): some of the curves of cumulative NPV reach a maximum 

and start to go down. Figure 3.9 shows the cumulative NPV curves when we disregard the 

uneconomical production of the plausible truths. We observe that the main changes 

compared to Figure 3.8 are in the curves obtained with the production strategies 
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optimized under prior uncertainty. Those curves that before would go down now reach 

their maximum and stay flat because we force the production to be interrupted at that 

time. This results in an increase on the final NPV values that form the baseline in the VOI 

assessment and explains the decrease in VOI observed in Figure 3.10 and Figure 3.11. The 

cumulative NPV curves with additional measurements or clairvoyance remain the same, 

suggesting that we are able to determine better production strategies when applied to the 

plausible truths (i.e., which prevent uneconomical production to occur) once more 

knowledge becomes available. 

 

Figure 3.10: Results for the 2D five-spot model disregarding uneconomical production of the plausible 
truths (for comparison with Figure 3.3). 

 

Figure 3.11: Expected VOC and cumulative VOI with multiple production measurements disregarding 
uneconomical production (2D five-spot model) (for comparison with Figure 3.4). VOI still increases as 
more observations are gathered and VOC is still an upper bound for VOI. 

In Chapter 2, we also discussed a second point related to the interruption of the 

production when it becomes uneconomical, which could mean that for some plausible 

truths the future measurements would not be possible. Since, in the current example with 

multiple observations, the first additional measurements are incorporated at tdata = 150 

0 150 300 450 600 750 900 1050 1200 1350 1500
$ 0.00

$ 2.00

$ 4.00

$ 6.00

$ 8.00

× 106

Time of clairvoyance (days)

V
al

ue
 o

f c
la

irv
oy

an
ce

, V
O

C

 

 

mean
P10
P50
P90

0 150 300 450 600 750 900 1050 1200 1350 1500
$ 0.00

$ 2.00

$ 4.00

$ 6.00

$ 8.00

× 106

Time of information (days)

V
al

ue
 o

f i
nf

or
m

at
io

n,
 V

O
I

 

 
mean
P10
P50
P90

0 150 300 450 600 750 900 1050 1200 1350 1500
$ 0.00

$ 1.00

$ 2.00

$ 3.00

$ 4.00
× 106

Time of information (days)

V
al

ue
 o

f i
nf

or
m

at
io

n,
 V

O
I

 

 

VOC
VOI

0 150 300 450 600 750 900 1050 1200 1350 1500
$ 1.30

$ 1.40

$ 1.50

$ 1.60

$ 1.70

$ 1.80
× 106

Time of information (days)

V
al

ue
 o

f i
nf

or
m

at
io

n,
 V

O
I

 

 

VOC
VOI



3. Value of information for multiple observation times 
 

53 

3 

days, this point is not an issue because none of the model realizations have reached 

uneconomical production so early (Figure 3.8 (left)). 

3.6. Conclusions 

We extended the work from Chapter 2 to create a new workflow that allows the VOI 

assessment of a series of future measurements. The method uses elements available in the 

CLRM framework, such as history matching and robust optimization. First, we identified 

the opportunity to combine these elements with concepts of information value theory to 

create a VOI analysis instrument. We then designed a generic procedure that can, in 

theory, be simply implemented in a variety of applications, including our optimal reservoir 

management problem. Next, the workflow was illustrated with three examples and the 

results were analyzed. In the third example, we assessed the additional value of a time-

lapse seismic survey, which, however, in our example was limited because apparently the 

production data were already substantially informative. We believe that our proposed 

workflow is a complete methodology to estimate the VOI in a CLRM context because we 

take into account that the production strategy is updated periodically after new 

information has been assimilated in the models. However, the computational complexity 

of the method is, at present, prohibitively large. Future work is required to reduce the 

computational load, e.g. through the use of representative model selection (addressed in 

Chapter 4), proxy models or reduced-order modeling, to allow for the application to real-

field cases. 

 





 

 
1 This chapter is based on Barros, E.G.D., Van den Hof, P.M.J. and Jansen, J.D. (2018). Clustering 

techniques for value-of-information assessment in closed-loop reservoir management. Submitted for 
publication. 
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Clustering techniques for value of 
information assessment 

The application of CLRM to real-field cases can be computationally demanding. An even higher 

computational load results from procedures to assess the VOI in CLRM. Such procedures, which are 

performed prior to field operation, i.e. during the FDP phase, require extreme amounts of simulations. 

Therefore, we look for alternatives to reduce this computational burden. In particular we study various 

clustering techniques to select a limited number of representative members from an ensemble of reservoir 

models 1. Using k-means clustering, multidimensional scaling and tensor decomposition techniques, we test 

the effectiveness of different dissimilarity measures such as distance in parameter space, distance in terms of 

flow patterns and distance in optimal sets of controls. We apply several of these measures to a VOI-

CLRM exercise using a simple 2D reservoir model which results in a reduction of the necessary number of 

forward reservoir simulations from millions to thousands. Finally, as a first step towards large-scale 

application, we assess the VOI in a larger benchmark case study. 

4.1. Introduction 

Modern reservoir management workflows include uncertainty quantification (UQ) based 

on reservoir simulation models. An increasingly popular UQ practice in the reservoir 

engineering community uses ensembles of reservoir model realizations to account for the 

geological uncertainties, which, however, contributes to increasing the computational costs 

of these workflows. Closed-loop reservoir management (CLRM) is a combination of life-

cycle optimization and computer-assisted history matching, both accounting for 

uncertainties and demanding a significant amount of simulations. For this reason, the 
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application of the CLRM framework in combination with UQ can be extremely 

computationally expensive. Workflows to assess the value of information (VOI) in CLRM 

during the field development planning (FDP) phase require even more simulations, which, 

at the current level of hardware development, makes real-field applications unfeasible 

(Chapter 2). Therefore, we look for alternatives to reduce this computational cost. 

The development of more practical ways of a-priori assessing the value of future 

measurements has been a topic of several studies recently. Some of these have focused on 

the use of proxy models to reduce the number of high-fidelity reservoir simulations 

required for the VOI analysis (He et al., 2016, and Chen et al., 2016). Cardoso and 

Durlofsky (2010), He et al. (2013), Hewson (2015), and Jansen and Durlofsky (2016) 

investigated the use of reduced-order modeling to speed-up production optimization and 

history matching procedures. Others have proposed a more approximate definition of 

VOI which simplifies their procedure (Le and Reynolds, 2014a and 2014b). Eidsvik et al. 

(2015) have envisaged more sophisticated designs of experiments to be a promising 

alternative to alleviate the computational costs of VOI assessment workflows. Recently, 

Shirangi and Durlofsky (2016) presented a general framework that uses clustering 

techniques to determine representative models to accelerate computations for 

optimization under uncertainty. Insuasty et al. (2017) also showed how clustering methods 

based on flow-relevant dissimilarity measures can be used to form reduced ensembles. 

This paper explores the use of clustering techniques to select subsets of representative 

model realizations to speed-up production optimization and other computational 

procedures present in the workflow for VOI assessment introduced in Chapter 2. 

In the Background section (4.2) we briefly recap our previously proposed methodology 

for VOI assessment in CLRM and review some previous work on cluster analysis. Next, in 

the Methodology section (4.3), we identify opportunities to apply clustering within the 

original procedure and we describe our approach to reduce the computational costs in 

different steps of the VOI assessment to come up with a more practical workflow. 

Thereafter, in the Examples section (4.4), we illustrate the application of the proposed 

measures to accelerate VOI calculations and we compare the results with those obtained 

with the original procedure. 
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4.2. Background 

4.2.1. VOI assessment in CLRM 

In Chapter 2, we presented our methodology to assess the VOI of future measurements 

within the CLRM framework. Our approach consists of “closing the loop” in the design 

phase to simulate how future information, to be obtained during the producing life-time 

of the reservoir, comes into play in the context of optimal reservoir management. By 

considering both data assimilation and optimization in the procedure, we are able “to not 

only quantify how information changes knowledge, but also how it influences the results 

of decision making” (Chapter 2). This is possible because a new production strategy is 

obtained every time the models are updated with new information, and the strategies with 

and without additional information can be compared in terms of the value of the 

optimization objective function (typically NPV) obtained when applying these strategies to 

a virtual asset (a synthetic truth). 

One of the key aspects of this methodology is the idea of using an ensemble of Ntruth 

“plausible truths” to account for the fact that in reality we do not know the true reservoir 

nor the outcome of the future measurements whose value we would like to assess. This 

requires extensive use of robust optimization and history matching procedures: for Ntruth 

plausible truths we have Ntruth robust optimizations under prior uncertainty, Ntruth history 

matches to assimilate the future measurements and Ntruth robust optimization given the 

posterior uncertainty. Note that in section 2.5.1 we proposed also an accelerated 

procedure where the number of prior robust optimizations is reduced from Ntruth to 1. We 

consider this accelerated form of the workflow in the next sections of this chapter. 

4.2.2. Model selection 

We use multiple ensembles of realizations to account for geological uncertainties. Typical 

ensembles are formed by tens or hundreds of realizations, making the procedures involved 

computationally intensive. The cost, in terms of the amount of simulations required, of 

robust optimization and history matching algorithms tends to scale linearly with the size of 

the ensemble (i.e., O(N)), while the VOI assessment workflow described above scales with 

the square of the ensemble size (i.e., O(N·Ntruth) ≈ O(N²)). Thus, a decrease in the number 

of realizations considered in the analysis may lead to significant reduction in the 
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computational cost and make the VOI assessment problem more tractable. The challenge 

is how to cleverly select a subset of realizations which can represent the full ensemble to 

quantify the uncertainty. Others have worked on this problem; e.g., Armstrong et al. 

(2013) use stochastic programming with recourse to reduce the number of scenarios to be 

considered and Sarma et al. (2013) recommend the use of a minimax approach to 

efficiently select representative models from a large ensemble by matching target 

percentiles. This work focusses on the use of clustering techniques to automate the 

selection of representative model realizations, along the lines of the work of Shirangi and 

Durlofsky (2016). 

4.2.2.1. Clustering 

Cluster analysis aims to group a set of N objects 

 

11 12 1

21 22 2
1 2

1 2

N

N
N

M M MN

Θ θ θ θ , (4.1) 

into Nrepr clusters according to the similarity between the objects; see, e.g., Baker (2015). 

Note that here the objects have been chosen as vectors i , i = 1, 2 , … N, in an M-

dimensional space (e.g., N realizations of M grid block permeability values) but they could 

also be scalars, matrices or higher-order objects (tensors). Clustering has been widely used 

in pattern recognition, machine learning and statistics (Arabie and Hubert, 1996) and is 

broadly classified into partitional and hierarchical categories. As the name suggests, 

partitional clustering separates the objects into exclusive clusters such that the objects 

within a cluster are more similar to each other than to the objects in another cluster. On 

the other hand, hierarchical clustering, also known as connectivity-based clustering, 

connects objects to form clusters based on their distance. The connected objects in 

clusters can then be represented using a dendrogram (i.e., a diagram with a tree structure). 

K-means clustering is one of the most used partitional clustering methods due to its 

simplicity (Caers, 2011). The user predefines a number Nrepr of sets Cj , j = 1 , 2 , … Nrepr , 

that each contain a total of Nj indices corresponding to the objects belonging to each 

cluster, where the clusters are not necessarily of equal size. The algorithm then attempts to 
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iteratively improve the partitioning to achieve the lowest intra-cluster distance. This 

minimization problem can be formulated as follows: 

 
2

1

arg min ,
repr

j

N

opt jk k jC j k C

C d θ θ , (4.2) 

where 1 2, , , reprNC C C C  is the set of Nrepr clusters, i.e. a set of sets of indices, and 

( , )jk k jd θ θ  is the distance between one of the Nj data points within each cluster and the 

cluster centroid jθ  computed as 

 1

j

j k
k CjN

θ θ . (4.3) 

The first step to use cluster analysis consists of choosing a feature operator F to compare 

the model realizations mi . The feature operator could just select a number of parameters 

(e.g., grid block permeability values) of the vectors of model parameters m, or it could 

represent a more complex operation like a full simulation to compute the NPV or a 

sequence of saturation snapshots. Using this operator, the set of features 

1 2, , ,[ ]Nθ θ θ  is formed, where θi = F(mi). The clustering algorithm can then generate 

the distances required to determine Copt . It has been shown that the choice of the 

appropriate feature operator is extremely case-dependent; thus, there is no one-method-

fits-all solution. 

Note that the sets θi are elements of an M-dimensional space, where M can be very large. 

Unfortunately, most clustering algorithms do not work efficiently in higher dimensional 

spaces because of the inherent sparsity of the data, and as M grows, distance measures 

become increasingly meaningless (Keim et al., 1997; Parsons et al., 2004). A solution to 

this problem is to eliminate some of the dimensions of the feature space. However, if 

done wrongly, this may cause information loss and introduce wrong correlations between 

the model realizations. Aggarwal et al. (1999) have shown that the projection of high-

dimensional data spaces on reduced-order subspaces can lead to improved clustering 

results. 
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4.2.2.2. Projection methods 

There is more than one method to project datasets onto a reduced-order space. (Note that 

this is sometimes referred to as reducing the dimensionality of the “feature space”.) One 

of them involves the use of tensor decomposition techniques. Tensor decomposition is 

strongly related to principal component analysis (PCA) or singular value decomposition 

(SVD). It enables the transformation of data into a compact representation while honoring 

their structure (e.g., spatio-temporal correlations) which is usually degraded with the 

vectorization step in SVD approaches. These techniques can be used to compress large 

datasets stored as tensors by constructing low-rank approximations with minimal 

approximation or reconstruction error. For instance we may form a dataset  in the form 

of a tensor representation of the data,  = F(m1, m2, … , mN), which better preserves 

their structure than using a vector representation. E.g., we could construct a 3D tensor  

by stacking up the two-dimensional permeability fields (matrices) of an ensemble of 2D 

model realizations. We then perform the following minimization (Insuasty et al., 2017): 

 1: 1:J 1:, , 1 1 1

' '' ' '' ' '' 'j'' ' '' 'k''

min

subject to , , ,

I K

JI K

ijk i j k
i j k

T T T
i i i i j j j k k k

Θ φ ψ χ

φ φ ψ ψ χ χ

 (4.4) 

where σijk is the core tensor (i.e., an all-orthogonal and ordered tensor which is analogous 

to the coefficients matrix in classical SVD), φi , ψj , χk are orthonormal basis functions, 

|| . || represents the Frobenius norm, and the symbol denotes the tensor (outer) 

product over a vector space. This can be extended to tensors with more dimensions. For 

more information on tensor-based model-order reduction, we refer to Insuasty et al. 

(2017) and Afra and Gildin (2016), who also show that the solution to the minimization 

problem in (4.4) can be approximated by performing a higher-order SVD (HOSVD). In 

this case, the tensor is flattened (or unfolded) in a planar matrix structure where we can 

operate similarly to classical SVD. This allows us to determine the basis functions and the 

coefficients associated with them. Like in classical SVD, a truncation can then be applied 

to retain only those basis functions that explain the most dominant patterns in the data, 

thus resulting in the lower-dimensional representation we were aiming for. One of the 

modes of  in our applications (here we assume mode k) typically refers to the model 

uncertainty, characterized by the N model realizations. We can apply a truncated SVD to 



4. Clustering techniques for value of information assessment 
 

61 

4 

the covariance of the unfolded form of  in this mode ( ) ( )( )T T
k k k k kΘ Θ U Σ V  and use 

the obtained coefficients (Uk) to derive the dissimilarity measure to cluster the realizations. 

Insuasty et al. (2017) showed that this approach allows us to compare model realizations 

based on very rich datasets, such as the temporal evolution of the spatial distribution of 

pressures and saturations inside the reservoir. They were able to select a subset of 

realizations representative in terms of dynamic flow patterns and form reduced ensembles 

to perform robust production optimization more efficiently (Insuasty et al., 2015). 

Another tool to represent model realizations mi in a lower dimension is multidimensional 

scaling (MDS). It refers to techniques that use distance measures to produce a iθ  

representation of data points iθ  in a reduced MMDS-dimensional space with MMDS M. 

MDS was first introduced for the analysis of proximities in Shepard (1962). In recent 

years, the machine learning community has applied MDS for nonlinear dimension 

reduction. Kruskal (1976) argues that MDS can be complementary to clustering 

techniques. Scheidt and Caers (2009) introduced MDS in the reservoir simulation 

community, and since then many reservoir applications have been documented; see, e.g., 

Caers (2011). 

When applying MDS, a measure of fit, referred to as “stress” in the MDS literature, can be 

calculated to quantify the conformance of the representation Θ to the original data Θ, 

which can be a criterion to define the number MMDS of dimensions of the reduced space; 

see Kruskal (1964). Low values of stress (i.e., below 5 %) indicate an excellent fit between 

dissimilarities and distances, and thus a good representation of the original samples in the 

reduced-dimensional space. We can then use this stress to determine the appropriate 

number of dimensions MMDS to proceed with: we start with a small number of dimensions 

and increase this number until the stress value drops below an acceptable level. For 

further information on dimensionality reduction, including MDS and PCA approaches, we 

refer to Cunningham and Ghahramani (2015). Once we obtain the representation Θ , we 

perform clustering (e.g., also with the k-means method) based on the coordinates of the 

data points in the reduced-dimensional space. 
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4.3. Methodology 

As discussed in the previous section, the VOI assessment workflow described in Chapter 

2 and depicted in Figure 2.11 requires an excessive amount of simulations to be applied in 

practice. This is mainly due to the extensive use of robust optimization and history 

matching and to the fact that multiple plausible truths are considered. The most 

demanding steps constitute opportunities for considerable acceleration of the workflow. 

The focus of this work is on the use of model selection to achieve this goal. Thus, it is 

about looking for approximated results by compromising the rigor in UQ for the sake of 

computational speed-up. 

In this section, we describe first how to select representative models to speed-up robust 

optimization and history matching, and then how to assess the quality of the results with 

the accelerated procedures. Afterwards, we explain how we can accelerate the VOI 

analysis by picking representative plausible truths. We also discuss the choice of the most 

appropriate feature to distinguish model realizations in the different parts of the workflow. 

Finally, we combine all these measures to come up with a new and faster VOI assessment 

workflow. 

4.3.1. Speeding-up robust optimization 

The whole idea behind accelerating robust optimization is to reduce the number of 

reservoir simulations required. This is done by reducing the number of model realizations 

in the ensemble used in the optimization. 

We start with a full ensemble Mfull of N model realizations. The first step is deciding on 

the number Nrepr of representative realizations to form the reduced ensemble Mrepr . This 

number should reflect the speed-up factor we would like to achieve or the maximum 

ensemble size we can afford to use with the available computational resources. 

The second step is choosing a feature F relevant to the problem to be optimized and 

building our dataset to apply the clustering algorithms. In our case, we are using reservoir 

simulation to evaluate the objective function in the water flooding optimization process. 

Therefore, it seems to be important to distinguish the model realizations on the basis of 

their simulated dynamical behavior. One option is to rely on the fact that model 
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parameters (e.g., permeabilities and porosities) tend to correlate with the reservoir flow 

characteristics and use them as the feature to distinguish the realizations mi . An 

alternative is to perform reservoir simulations and work with features associated with the 

dynamics of the system, in which case we may consider relying on model states or flow 

patterns (e.g., pressure/saturation snapshots and streamlines), or the model outputs (e.g., 

well production data and NPV evolution over time), as it has been studied by Shirangi and 

Durlofsky (2016) and Insuasty et al. (2017). 

The next step is preparing the feature data set for clustering, by applying projection 

methods to reduce the dimensionality of the feature space if necessary. Thereafter, k-

means clustering is performed. Once the Nrepr clusters are formed, one realization is 

selected as the representative of each cluster, forming the reduced ensemble Mrepr of Nrepr 

representative realizations. A common choice is to pick the closest realization of the 

cluster centroid as the representative of that cluster. Note that the derived clusters may 

have different sizes, as the clustering algorithms are not constrained to form groups 

containing the same number of realizations. Based on this observation, different weights 

proportional to the cluster sizes can be assigned to the representative realizations to reflect 

the number of realizations in their respective clusters. In this case, averages and other 

statistics of the reduced ensemble Mrepr are computed with weights, unlike what is done 

for the full ensemble Mfull where all the N realizations are usually assumed to be 

equiprobable and therefore equal weights. Finally, robust optimization is performed over 

Mrepr resulting in an optimized strategy opt
repru . 

In order to assess the ability of reduced ensembles to reproduce the results obtained by 

performing the optimization over the full ensemble Mfull , we compare the performance of 

the derived production strategies over Mfull (Figure 4.1). Note that this is done only for 

validation purposes; once we start using the approach to accelerate the optimization, we 

proceed only with the steps in Figure 4.1 (b) and rely on optimization over the reduced 

ensemble Mrepr . 
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Figure 4.1: Workflow to evaluate the use of representative realizations for efficient robust optimization. 
(a) Computation of objective function values for unoptimized production, (b) robust optimization using 
representative realizations and (c) robust optimization using the full ensemble (reference). 

4.3.2. Speeding-up history matching 

History matching procedures (section 1.2.2) can also be accelerated by considering a 
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selection to make the history matching procedure more efficient, only the workflow in 

Figure 4.2 (right) is carried out. 

 

Figure 4.2: Workflow to evaluate the use of representative realizations for efficient history matching: 
procedure over the full ensemble (reference for validation) (left) and over the reduced ensemble (right). 
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only as a principle to make history matching computationally more efficient. This is a 

mechanism that will later fit in the VOI workflow (section 4.3.4), where important choices 

not specified in Figure 4.2 will be determined according to the application considered (e.g., 

whether to assimilate data measured at a single time or during a time interval, which 

production strategy u is used to generate the data). 

4.3.3. Representative plausible truths 

The selection of fewer plausible truths for the VOI analysis can help reducing the 
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pick to play the role of truth in the CLRM framework. Thus, the goal remains the same: to 

select representative model realizations. 

The challenge is to find relevant features to distinguish these realizations considering their 

role in the workflow. Although we are still interested in the reservoir management 

problem (i.e., the water flooding process in our case), the plausible truths are not directly 

involved in the optimization procedure; we perform the optimizations on the realizations 

of the prior and posterior ensembles. Due to this difference in roles, the features which 

are relevant to select representative realizations for the robust optimization and history 

matching may be not the most appropriate to distinguish plausible truths. As we 

mentioned before, literature suggests there is no one-method-fits-all solution for choosing 

the selection features and, therefore, we look for fit-for-purpose solutions. 

The methodology for VOI assessment presented in the previous chapters accounts for the 

decision making process, which in CLRM takes the form of optimized production 

strategies. When we perform the VOI assessment following the workflow presented in 

Chapter 2 (considering Ntruth plausible truths), we obtain the solution schematically 

depicted in Figure 4.3. There is a different production strategy i
postu  corresponding to 

each plausible truth i
truthm . Also, each plausible truth has its own pair , ,,{ }i i

NPV prior NPV postJ J  

that is directly related to the VOI calculation (equation (2.7)). These (possibly unique) 

associations unveil a mechanism to distinguish plausible truths according to the decisions 

made (or their consequences) in each scenario. This suggests that we should look for 

features that carry a similar structure, attributing a different production strategy (or model 

input) to each plausible truth. We refer to these features as decision-based features. 

 

Figure 4.3: Typical solution obtained with the VOI workflow presented in Chapter 2: a different decision 
for each plausible truth (left) resulting in improved performance. The NPV plots show prior (red) and 
posterior (blue) distributions sampled by the plausible truths (right). 
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In sections 4.3.1 and 4.3.2, we discussed possible features to distinguish model realizations 

for robust optimization and history matching purposes. It is important to highlight that in 

both applications all the model realizations are submitted to the same production strategy. 

In this context, the features used to select representative realizations rely on the fact that 

we can compare them through their inherent characteristics (i.e., model parameters) or 

response to a given strategy (i.e., model states and model outputs). From here on, we refer 

to these features as model-based features. Figure 4.4 summarizes the main characteristics 

of both model-based and decision-based features. Model-based features do not account 

for the fact that the different scenarios imply different decisions, while the decision-based 

ones do, connecting them to the VOI assessment setting introduced in Chapter 2. 

 

Figure 4.4: Schematic comparison between model-based and decision-based features. Model-based 
features rely exclusively on the characteristics of the models and their response to a fixed input, while 
decision-based features rely on the distinction of models through the decisions associated with each 
scenario. 
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to perform Ntruth optimizations. (Note that the computational cost associated with these 

Ntruth optimizations is significantly lower than the cost of the full VOI workflow, which 

makes this approach suitable for accelerating the VOI assessment.) As a result, we obtain 

a set of Ntruth optimal production strategies i
optu  and Ntruth optimal objective function 

values ( )i i
NPV optJ u . 

Typically, the optimal production strategies i
optu  tend to be very different from each other 

because the plausible truths are different model realizations. Following this reasoning, the 

optimal production strategies seem to be an appropriate feature to support the clustering 

of plausible truths. The main potential problem of this approach is the risk of non-

uniqueness of optimal solutions for the production optimization problem, due to the 

possible presence of redundant degrees of freedom in the high-dimensional space of 

control variables (Van Essen et al., 2009). This may result in multiple production strategies 

that are equally optimal for a given plausible truth, which could put the validity of this 

approach at stake. A possible way to avoid the redundancy is to perform an a-priori 

tensor- or SVD-based decomposition of a large set of possible controls and perform the 

optimization in a reduced control space. Alternatively, one could impose temporal and/or 

spatial correlations on the controls which also reduces the degrees of freedom in the 

control space. A downside of such a-priori measures is that they may lead to lower NPV 

values. As an alternative, we therefore apply an a-posteriori tensor decomposition of the 

set of optimal production strategies and retain a fraction of the basis functions by 

truncation based on their energy. By doing so, we intend to capture only the main trends 

of the data and reduce the effects of the non-uniqueness of the optimal production 

strategies, although we note that this a-posteriori decomposition of the controls does not 

guarantee an improvement of the situation. As a final remark on this issue, we note that 

for these Ntruth nominal optimizations would in principle be performed with the same 

optimization methods that will be used for the VOI and CLRM exercises and that the risk 

of non-uniqueness of optimal production strategies will also be present there. Ultimately, 

the selection of representative plausible truths based on these strategies would still be 

consistent with the VOI workflow, even in its limitations. 

On the other hand, the optimal objective function values ( )i i
NPV optJ u  typically tend to be 

close to each other because the different optimal production strategies compensate for the 
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differences in the model realizations (i.e., given the same well locations, the optimal sweep 

of the reservoir tends to be similar for all the realizations); see, e.g., the final NPV values 

in Figure 3.8 or more schematically the distributions in Figure 4.3. Thus, the dissimilarities 

between the realizations in terms of NPV are less pronounced for their optimal 

configurations, and, because of that, they are less suitable to help in the selection of 

representative plausible truths. However, in combination with the objective function 

values ( )i
NPV priorJ u  obtained with a robust strategy uprior (i.e., optimized to maximize the 

mean objective function given the initial uncertainty), these data reveal how much we may 

benefit if we learn or observe the truth for each one of the plausible truths. We can then 

distinguish plausible truths according to the gains associated with their optimal 

configurations, which are directly related to the VOI, and this can be useful for our 

purposes. One of the advantages of using these ( ), ( ){ }i i i
NPV prior NPV optJ Ju u  data features is 

avoiding the problem of non-unique optimal solutions discussed in the previous 

paragraph. 

We introduce the selection of representative plausible truths to the original VOI 

assessment workflow (Chapter 2) and we obtain the procedure depicted in Figure 4.5 for 

cases with a single observation time. The main difference compared to the original 

workflow is that, before entering the loop where each one of the Ntruth realizations of the 

initial ensemble Mtruth is picked to be the truth i
truthm , we have a few more pre-processing 

steps. First, a step where we optimize each one of the realizations and then a step where 

we perform the clustering to select repr
truthN  representative plausible truths based on the 

decision-based features as explained above. Another minor change in the workflow refers 

to the computation of the statistics of VOI: before, the plausible truths were considered 

(for simplicity) to be equiprobable, but, now, the selected plausible truths in repr
truthM  may 

have different weights wi assigned by our selection procedure (i.e., weights proportional to 

the number of realizations in each cluster). Note that there is a computational cost 

associated with the additional Ntruth nominal optimizations required, but that this extra cost 

is minor when compared to the cost of the full workflow. Another point to realize is that 

these Ntruth nominal optimizations would be performed anyway if we carry out a value of 

clairvoyance analysis (VOC; see Chapter 2) to determine the upper bound for the VOI 

assessment. 
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Figure 4.5: Workflow to compute the expected VOI for a single observation time using representative 
plausible truths and full ensembles for robust optimization and history matching. The main modifications 
in the workflow with respect to the original procedure (Chapter 2) are highlighted in grey bold boxes. 

4.3.4. Accelerated VOI assessment 

We combine the ideas of the three previous sections to the original VOI workflow of 

Figure 2.11. The result is a new workflow for accelerated VOI assessment, shown in 

Figure 4.6. 

We note that, like in Chapter 2, in this flowchart we consider the sizes of the ensemble of 
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number of representative realizations for robust optimization (and history matching) and 

the number of representative plausible truths, which here are chosen as Nrepr and repr
truthN  

respectively. 

Given these considerations, we can expect a speed-up factor of the order of 

O(( / ) ( / ))repr
truth reprtruthN N N N  by using this accelerated procedure. This means that, if we 

are able to select reduced ensembles with 10 times fewer realizations, we can reduce the 

number of required reservoir simulations by a factor of 100. 

 

Figure 4.6: Workflow to compute the expected VOI for a single observation time using representative 
plausible truths and reduced ensembles of representative model realizations for robust optimization and 
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history matching. The main modifications in the workflow with respect to the original procedure 
(Chapter 2) are highlighted in grey bold boxes. 

4.4. Examples 

4.4.1. Robust optimization with reduced ensembles 

4.4.1.1. 2D five-spot model 

As a first step to illustrate our approach, we used the same small 2D five-spot example 

(441 grid blocks) from the previous chapters; see section 2.4.2 for the complete 

description of the example. Originally, we had ensembles of N = 50 model realizations to 

characterize the geological uncertainties. To accelerate the robust optimizations, we 

considered a reduced number of representative realizations, Nrepr = {3, 5, 10}, 

representing approximately 5 %, 10 % and 20 % of the number of realizations in the full 

ensembles. We evaluated the performance of different features for clustering: permeability 

field, oil saturation snapshots at every control time interval (every 150 days) and NPV 

time-series. We also studied the effect of different projection methods by using both MDS 

and tensor decomposition to perform the projection of the feature space before clustering. 

For MDS we used the standard implementation available in Matlab with the previously 

mentioned stress criterion (here 5 %) to determine the dimension of the reduced space. 

For the tensor decomposition we used the implementation of the HOSVD described by 

Insuasty et al. (2017) with a cut-off of 95 % in terms of the energy of the eigenvalues to 

determine the number of basis functions to be retained for the uncertainty dimension. The 

production strategy used to generate the features for clustering was fixed as the initial 

production strategy chosen as the starting point of the optimization (here mid in-between 

bounds: pprod = 250 bar for the producers and pinj = 400 bar for the injector). 

By applying the steps as in Figure 4.1 to compare the performance of the robust 

optimization with reduced and full ensembles, we obtained results in terms of NPV. 

Figure 4.7 depicts the results for this 2D five-spot example expressed as probability 

distribution function (pdf) plots. The NPV values for the unoptimized production (Figure 

4.1 (a)) are shown in grey and the reference results (Figure 4.1 (c)) in black. The results 

obtained using the reduced ensembles (Figure 4.1 (b)) are represented by the colored lines 
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according to the number of representative realizations. We repeated the procedure with 

several ensembles Mfull and we obtained results similar to the ones shown here. 

 

Figure 4.7: Results of robust optimization over an ensemble of the 2D five-spot model expressed in 
terms of NPV pdf plots. (a) Permeability as feature and MDS as projection method, (b) oil saturation 
snapshots as feature and MDS as projection method, (c) NPV time-series as feature and MDS as 
projection method, (d) permeability as feature and tensor decomposition as projection method, (e) oil 
saturation snapshots as feature and tensor decomposition as projection method, and (f) NPV time-series 
as feature and tensor decomposition as projection method. 

Generally, all the production strategies opt
repru  optimized with the representative ensemble 

performed very well when compared to the strategy opt
fullu  for the full ensemble. We notice 

that the selection with three representative realizations (5 %) from the ensemble performs 

poorer in most cases, and fails badly in the case depicted in Figure 4.7 (e). This shows that, 

for this example, taking an amount of representative realizations corresponding to only 

5 % of the original ensemble size is insufficient whereas taking 10 % and 20 % give good 

results in all cases. Also, we notice that, for this example, the MDS transformation helped 

the selection of representative realizations better than the tensor decomposition, especially 

when using the permeability field as feature (Figure 4.7 (a) and (d)) but also when using 

the oil saturation snapshots (Figure 4.7 (b) and (e)). We believe the better performance of 

MDS here to be related to the small size of the model (441 grid blocks) and the (relatively) 

smooth character of the geological realizations (Figure 2.6). For larger models and cases 

with more complex geological features, in which there is more spatial-temporal structure 

to be preserved, it is expected that tensor decomposition should perform the best 
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(Insuasty et al., 2017). Overall, based on the results from the 2D five-spot model, oil 

saturation snapshots and NPV time-series seem to be the most suitable selection features, 

which is in alignment with the conclusions drawn by Shirangi and Durlofsky (2016) after 

comparing several model-based features within their general framework. 

4.4.1.2. Egg model 

The Egg model is a synthetic reservoir model created to serve as a benchmark for water 

flooding optimization, computer-assisted history matching and CLRM applications. The 

model consists of 100 realizations of a channelized reservoir with 60 × 60 × 7 grid cells. 

Its 18,553 active cells give it the shape of an egg (Figure 4.8). The field is produced 

through water flooding, with four producers and eight injectors in defined locations, and 

has been used for several studies; see, e.g., Van Essen et al. (2009). For further 

information on a standardized version of this model, we refer to Jansen et al. (2014). 

For this case study, we considered the optimization of the water injection rates for a 

production period of 3,600 days. The rates can be adjusted every 360 days (i.e., M = 10 

control time intervals) in the range of 0 ≤ qinj ≤ 79.5 m³/day, and the maximum injection 

pressure allowed is pinj,max = 420 bar. The bottom-hole pressure of the producers is kept 

constant at pprod = 395 bar. The robust optimization experiments were carried out with the 

help of the AD-GPRS simulator to obtain the required predictions and gradients (Zhou, 

2012, and Bukshtynov et al., 2015) for each model realization which were used in a simple 

implementation of the steepest ascent algorithm. 

 

Figure 4.8: The Egg model: a channelized reservoir with 8 injectors (blue) and 4 producers (red) (left). Six 
randomly chosen realizations of the permeability distribution (right). (after Van Essen et al., 2009, and 
Jansen et al., 2014) 

In this example, to illustrate the use of representative ensembles, we considered a reduced 

number of representative realizations, Nrepr = {5, 10, 20}, representing again 5 %, 10 % 
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and 20 % of the number of realizations in the full ensemble. We applied clustering based 

on permeability distributions and oil saturation snapshots, with MDS and tensor 

decomposition as projection techniques using the same settings as described for the 2D 

five-spot model (section 4.4.1.1) to determine the dimension of the reduced space and the 

number of basis functions to be retained. 

 

Figure 4.9: NPV pdf plot of an ensemble from the Egg model. (a) Permeability as feature and MDS as 
projection method, (b) permeability as feature and tensor decomposition as projection method, (c) oil 
saturation snapshots as feature and MDS as projection method, and (d) oil saturation snapshots as feature 
and tensor decomposition as projection method. 

Figure 4.9 depicts the results obtained. The color scheme is the same as in Figure 4.7. 

First, we observe that, in this case, robust optimization results in significantly higher NPV 

values compared to those obtained with the unoptimized strategy. We can also see that the 

optimizations over the reduced ensembles were able, in most of the cases, to achieve a 

similar performance compared to the optimization performed over the full ensemble. In 

some cases, the optimization with the representative realizations managed to outperform 

the reference results, which reminds us that the optimization techniques used here are not 

perfect and cannot guarantee globally optimal solutions for the production optimization 
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problem. Moreover, we observe some inconsistent results: in Figure 4.9 (c), the robust 

optimization based on Nrepr = 10 selected models performed significantly worse than the 

one using Nrepr = {5, 20} realizations, and in Figure 4.9 (d) the optimization based on 

Nrepr = 20 realizations was the one that performed the worst. We expected to see an 

increase in the performance of the robust optimization as Nrepr gets closer to N. Although 

these unexpected results could be related to limitations of our implementation (e.g., 

imperfections within the optimization algorithms and simulations), we have not yet been 

able to find a conclusive explanation for it. 

4.4.2. History matching with reduced ensembles 

4.4.2.1. 2D five-spot model 

To illustrate the workflow from Figure 4.2, we first tested it in a history matching twin 

experiment on the 2D five-spot example. For this exercise, we used AD-GPRS to obtain 

the required gradients to update the uncertain parameters. As the version of AD-GPRS 

made available to us only provided the gradients with respect to permeability multipliers, 

this example was slightly modified with respect to the original model used in section 

4.4.1.1 and previous chapters: here we assumed the porosity field to be homogeneous and 

known (ϕ = 0.2), and thus not to be updated throughout the history matching. We 

considered the availability of measurements of water and oil field production rates at a 

single observation time, and measurement errors of ԑprod = 5 m³/day. We repeated the 

history matching for different observation times. The production strategy was fixed at 

pprod = 250 bar for the producers and pinj = 400 bar for the injector. 

First, we performed the history matching over the full ensemble of N = 49 realizations, 

with one additional realization used to generate the synthetic measurements. Next, we 

considered only the representative realizations. Like in section 4.4.1.1, we repeated the 

procedure for several choices, by varying the number of representative models, the 

selection feature and the projection method. Figure 4.10 displays the results obtained with 

Nrepr = 10 representative models selected based on oil saturation snapshots projected by 

tensor decomposition. The results for other clustering settings, which are reported in Yap 

(2016), were comparable to the ones showed here. 
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Figure 4.10 (left) shows the simulated forecasts of field production rates for the prior 

ensemble. The thin dashed lines represent each one of the N = 49 realizations of the full 

prior ensemble while the thicker dashed lines correspond to the Nrepr = 10 representative 

ones. The thick solid lines show the forecast generated with the synthetic truth, and the 

yellow circles indicate the measurements available. We observe that, although the synthetic 

truth seems to be captured by the ensemble, there is a large spread in the predictions. 

Figure 4.10 (right) shows the predictions a posteriori, after the history matching was 

performed over the full and reduced prior ensembles. We note that the assimilation of the 

available measurements contributed to a significant reduction in the spread of the curves, 

but, more importantly, we observe a reasonably good agreement between the uncertainty 

characterized by the full and reduced posterior ensembles. We observe a slight reduction 

in the spread of the curves, which was expected because smaller ensembles tend to 

underestimate uncertainty in the forecasts. There are measures such as ensemble inflation 

that could possibly minimize this undesirable effect, but they were not considered in this 

work. We also emphasize that different weights have been assigned to the representative 

realizations forming the reduced ensemble while the realizations of the full ensemble are 

equiprobable, and that, for this reason, the visual comparison may not be the most 

appropriate way of assessing the quality of the approximation here. Despite these remarks, 

the results suggest that representative realizations can be used to make history matching 

procedures more efficient without compromising the uncertainty quantification to an 

unacceptable level. 

 

Figure 4.10: History matching results for the 2D five-spot model. Solid lines represent the prediction 
from the synthetic truth, the dots correspond to the synthetic data to be matched and the dashed lines 
represent the predictions of the realizations to be updated. Red lines correspond to oil production and 
blue lines to water production. 
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4.4.2.2. Egg model 

Based on the learning from the 2D five-spot example, we repeated the same procedure for 

the Egg model to confirm that it is possible to make the history matching more efficient 

also in larger case studies. Once again, we used AD-GPRS to obtain the required gradients 

to update the uncertain permeability field. The settings are the same as the ones described 

in section 4.4.1.2, but here the injection rates were fixed to qinj = 79.5 m³/day. The 

observations considered were field production rates and bottom-hole pressures measured 

in the injectors, available at tdata = 1,800 days, with measurement errors of ԑprod = 5 m³/day 

and ԑBHP = 10 bar. Here we used the full ensemble with N = 99 realizations, plus one 

synthetic truth. 

Figure 4.11 displays the results obtained with Nrepr = 10 representative models selected 

based on oil saturation snapshots projected by tensor decomposition. Figure 4.11 (left) 

shows the simulated forecasts of field production rates for the prior ensembles, and Figure 

4.11 (right) for the posterior ensembles. The color scheme is the same as in Figure 4.10. 

The differences between the prior and posterior predictions of production rates are minor, 

indicating that the main contribution to the mismatches is probably related to the bottom-

hole pressure measurements in the injectors, displayed in Figure 4.12. The black dashed 

lines represent the realizations of the full prior ensemble while the blue lines correspond 

to the representative ones. The red lines show the forecast generated with the synthetic 

truth, and the yellow circles indicate the measurements available. Like in the 2D five-spot 

example, we observe that the reduced ensemble constitutes a good approximation of the 

full ensemble. As before, we repeated the exercise considering other choices for the 

selection of representative realizations, but we displayed only one set of the results here. 

The results for other clustering settings can be found in Yap (2016). Those results showed 

that Nrepr = 10 seems to be close to the limit as the minimum number of representative 

realizations to approximate the uncertainty characterized by the full ensemble. We also 

noticed that MDS and tensor decomposition lead to similar performance, but that the 

latter technique resulted in reduced ensembles which provided slightly larger spreads in 

the production forecasts. 
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Figure 4.11: History matching results for the Egg model in terms of the predictions of field production 
rates: prior (left) and posterior (right). Red lines correspond to oil production and blue lines to water 
production. Solid lines represent the prediction from the synthetic truth, the yellow dots correspond to 
the synthetic data to be matched and the dashed lines represent the predictions of the realizations to be 
updated (full and reduced ensembles; see legend). 

 

Figure 4.12: History matching results for the Egg model in terms of the predictions of BHP at the 8 
injectors: prior (left) and posterior (right). Solid red lines represent the prediction from the synthetic 
truth, the yellow dots correspond to the synthetic data to be matched and the dashed lines represent the 
predictions of the realizations to be updated (full ensemble in black and reduced ensemble in blue; see 
legend). 
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observation times, tdata = {150, 300, … , 1,350} days. The history matching step was 

performed with the EnKF module of MRST (Lie et al., 2012). We assessed the VOI of the 

production data (total flow rates and water-cuts) with absolute measurement errors 

(ԑflux = 5 m³/day and ԑwct = 0.1). The VOC and the VOI were computed for each of the 

nine observation times, and we compared the results against those obtained using the 

original workflow (Figure 2.11) with the full ensemble Mtruth of plausible truths 

(Ntruth = 50), which serves as a reference. 

First, we checked our hypothesis that the model-based features are not suitable for 

selecting plausible truths. For that, we selected repr
truthN  = 5 plausible truths through 

clustering based on: permeability fields, NPV evolution profiles and flow patterns (i.e., 

pressure and saturation snapshots). No projection methods (e.g., MDS) were used. We 

also tested a random selection. The results are shown in Figure 4.13, including the 

reference results. The different lines represent percentiles and mean of the VOC and VOI 

distributions as a function of the time when the additional information (or clairvoyance) 

becomes available. We do not interpret or explain the VOI and VOC results here; we refer 

to Chapter 2 for this purpose. Here we assess the ability to obtain similar results with 

fewer plausible truths. 

 

Figure 4.13: Results of the VOI (and VOC) assessment for the 2D five-spot model using a selection of 5 
plausible truths based on model-based features. (a) Reference obtained using the original workflow, (b) 
random selection, (c) selection based on permeability field, (d) selection based on NPV time series and (e) 
selection based on flow patterns.  
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Overall, none of the selections in Figure 4.13 is able to satisfactorily reproduce the 

reference results, shown in Figure 4.13 (a). Although a selection based on some feature 

(Figure 4.13 (c), (d) and (e)) is clearly better than a random selection (Figure 4.13 (b)), 

these results seem to support our hypothesis that the model-based features are not the 

most appropriate means to select representative plausible truths. 

Next, we repeated the same procedure with our proposed decision-based features. This 

required a nominal optimization on each of the Ntruth = 50 plausible truths initially 

considered. Figure 4.14 shows the data we obtain from these optimizations, which can be 

used for clustering and model selection. It becomes clear that these features create a space 

in which we can distinguish the samples and select those instances of repr
truthM  that can 

better represent the entire population Mtruth . Figure 4.14 (left) displays each of the 

plausible truths plotted in a two-dimensional space: the first dimension corresponds to the 

objective function values (i.e., NPV) before the nominal optimizations and the second to 

the objective function values after the optimizations. The clusters are shown in different 

colors and the selected plausible truths are marked as squares. Figure 4.14 (right) exhibits 

the optimal production strategy for each plausible truth: the plots show the BHP controls 

at each of the five wells of the 2D five-spot model. 

 

Figure 4.14: Proposed decision-based features for the selection of representative plausible truths. 
Objective function values, before and after nominal optimizations (left). Optimal production strategies 
(bottom-hole pressures at all the wells for every control interval) (right). 
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Figure 4.15 depicts the results obtained by picking repr
truthN  = 5 representative plausible 

truths according to these new features. This time we observe better selections, which are 

able to repeat the reference results (Figure 4.15 (a)) almost perfectly. We note that the 

selection based on the objective function values (Figure 4.15 (b)) succeeds in reproducing 

the reference results for VOC, but less for VOI. In contrast, the selection based on 

optimal production strategies (Figure 4.15 (c)) performs fairly well for both VOC and 

VOI. Therefore, the optimal production strategy is the feature we chose for selecting 

representative plausible truths. 

After that, we investigated the impact of the non-uniqueness of optimal production 

strategies in the model selection. For that, we carried out nominal optimizations on each 

of the plausible truths starting from three different initial solutions. Figure 4.16 shows the 

results: Figure 4.16 (b), (c) and (d) correspond to the selection obtained with the three 

different starting points and Figure 4.16 (e) to the selection based on the data of the three 

optimizations altogether. We observe that the results are not identical, which confirms that 

the optimal production strategies may be nonunique and, thus, not suitable for model 

selection purposes. 

 

Figure 4.15: Results of the VOI (and VOC) assessment for the 2D five-spot model using selection of 5 
plausible truths based on decision-based features. (a) Reference obtained using the original workflow, (b) 
selection based on objective function values and (c) selection based on optimal production strategies.
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Figure 4.16: Results of the VOI (and VOC) assessment for the 2D five-spot model selecting 
representative plausible truths based on optimal production strategies obtained with different starting 
solutions. (a) Reference results, (b) starting from robust optimal solution, (c) starting from greedy 
controls (maximum injection and maximum drawdown in the producers), (d) starting from mid in-
between bounds and (e) selection based on data from all the three optimizations. 

 

Figure 4.17: Results of the VOI (and VOC) assessment for the 2D five-spot model selecting 
representative plausible truths based on optimal production strategies projected by tensor decomposition. 
(a) Reference results, (b) starting from robust optimal solution, (c) starting from greedy controls 
(maximum injection and maximum drawdown in the producers), (d) starting from mid in-between 
bounds and (e) selection based on data from all the three optimizations. 
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As a measure to remediate this problem, we applied a projection based on a truncated 

tensor decomposition to the optimal production strategies dataset. By retaining the 

fraction of the basis functions that preserves 90 % of the energy of the singular values, we 

hope to capture only the main trends and reduce the effect of non-uniqueness of the 

optimal solutions. Figure 4.17 shows the results obtained with such a projection for the 

same optimal production strategies. The difference between the results for the three 

different optimization starting points is smaller than in Figure 4.17. 

Finally, we applied all the measures we discussed so far (i.e., selection of representative 

ensembles for robust optimization, history matching and plausible truths) following the 

accelerated procedure for VOI assessment depicted in Figure 4.6. Note that here the 

history matching was performed on the full ensembles because our implementation with 

MRST used the EnKF method, which is not reliable for very small ensembles. After the 

history matching steps, we selected representative realizations to accelerate the robust 

optimization over the posterior ensembles. Figure 4.18 presents the results. Again, Figure 

4.18 (a) exhibits the reference results with Ntruth = 50 plausible truths and robust 

optimization over ensembles of N = 49 realizations. Figure 4.18 (b) corresponds to the 

results obtained by using repr
truthN  = 5 representative plausible truths and full ensembles with 

N = 49 for the robust optimizations. Figure 4.18 (c) shows the results when considering 

all the Ntruth = 50 plausible truths and reduced ensembles for robust optimizations. And 

Figure 4.18 (d) displays the results obtained with repr
truthN  = 5 plausible truths and ensembles 

of Nrepr = 5 realizations for the optimizations. 

We see that the acceleration measures allow us to obtain similar results by considering 

only 10 % of the original number of realizations. We also observe that even the 

combination of the two acceleration measures described is still able to correctly 

approximate the main trend of the reference results. Note that the lines plotted in Figure 

4.18 (b) and (d) represent percentiles and mean values of VOI based on repr
truthN  = 5 

samples, while in Figure 4.18 (a) and (c) these values are computed with Ntruth = 50 

samples, and this should be taken into account when interpreting the quality of the results. 

In terms of computational cost, the results in Figure 4.18 (a) require approximately 1.5 

million simulations. This number includes forward and backward simulations. The results 

shown in Figure 4.18 (b) and (c) require 150,000 and 170,000 simulations, respectively. 
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And the results in Figure 4.18 (d) need 17,000 simulations to be computed. Thus, by 

applying all measures to reduce the number of model realizations considered in the 

assessment, we were able to alleviate the computational cost of the workflow by a factor 

of 88, which is quite significant. 

 

Figure 4.18: Results of the new accelerated VOI (and VOC) assessment for the 2D five-spot model. (a) 
Reference results, (b) only selecting representative plausible truths, (c) only reducing the ensembles for 
robust optimization, and (d) combining both measures.  

4.4.3.2. Egg model 

As a final test, we applied all the model selection measures discussed in this chapter 

(Figure 4.6) to make the VOI assessment possible for the Egg model. We considered 
repr
truthN  = 10 representative plausible truths and ensembles of Nrepr = 10 representative 

realizations for the history matching and robust optimization. The workflow to assess the 

VOI of a single observation time was repeated for different observation times, tdata = {360, 

720, … , 3,240} days. The entire exercise was performed with AD-GPRS to evaluate the 

objective functions and obtain the required gradients for the production optimization and 

history matching steps. We assessed the VOI of the production data (field production 

rates and pressures in the injectors) with absolute measurement errors (ԑprod = 5 m³/day 

and ԑBHP = 10 bar). The VOC and the VOI were computed for each of the nine 

observation times. 
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Figure 4.19: Results for the Egg model with a single observation time: VOC and VOI including (left) and 
disregarding (right) the uneconomical production of the plausible truths. 

 

Figure 4.20: Results for the Egg model with a single observation time disregarding the uneconomical 
production of plausible truths: expected VOC and VOI. 
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parameters. Figure 4.19 (right) shows the results obtained with the considerations 

discussed in sections 2.5.3 and 3.5.2 (i.e., disregarding uneconomical production from the 

plausible truths). 

We also repeated the VOI assessment for the case with multiple observation times 

(Chapter 3). Figure 4.21 and Figure 4.22 display the results obtained, which, once again, 

confirm the conclusions drawn in the previous chapters. However, unlike the results for 

the 2D five-spot model in section 3.4.1, here the increase in VOI after the first 

observation time is more important. Figure 4.21 (right) shows the results obtained when 

disregarding uneconomical production from the plausible truths, and we note that this 

causes the VOI and VOC to decrease. The explanation for that is the same as what was 

discussed in section 3.5.2 and can be understood by comparing Figure 4.24 and Figure 

4.25: when disregarding the uneconomical production, the baseline values for the VOI 

assessment (i.e., the final NPV achieved with the strategies optimized under prior 

uncertainty) increase, while this consideration does not have a major impact on the values 

obtained with additional knowledge. 

 

Figure 4.21: Results for the Egg model with multiple observation times: VOC and VOI including (left) 
and disregarding (right) the uneconomical production of the plausible truths. 

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
$ 0.00

$ 1.00

$ 2.00

$ 3.00

$ 4.00

$ 5.00

$ 6.00
× 106

Time of clairvoyance (days)

V
al

ue
 o

f c
la

irv
oy

an
ce

, V
O

C

 

 
mean
P10
P50
P90

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
$ 0.00

$ 1.00

$ 2.00

$ 3.00

$ 4.00

$ 5.00

$ 6.00
× 106

Time of clairvoyance (days)

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
$ 0.00

$ 1.00

$ 2.00

$ 3.00

$ 4.00

$ 5.00

$ 6.00
× 106

Time of information (days)

V
al

ue
 o

f i
nf

or
m

at
io

n,
 V

O
I

 

 
mean
P10
P50
P90

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
$ 0.00

$ 1.00

$ 2.00

$ 3.00

$ 4.00

$ 5.00

$ 6.00
× 106

Time of information (days)



4. Clustering techniques for value of information assessment 
 

88 

4

 

Figure 4.22: Results for the Egg model with multiple observation times disregarding the uneconomical 
production of plausible truths: expected VOC and VOI. 
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we have a single production strategy optimized with the prior knowledge and one optimal 

strategy for each plausible truth in the other cases. These multiple optimal strategies have 

been tailored to their respective plausible truths, which allows them to achieve higher 

NPV values. This also makes them achieve their maximum at different times, causing the 

curves to cross. 

 

 

Figure 4.23: Optimal production strategies for the plausible truths considered Egg model: optimized 
under prior uncertainty (top left); obtained through CLRM with additional production measurements 
(top right); optimized under the assumption of clairvoyance available at t = 0. 
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Figure 4.24: Cumulative NPV curves for the 10 representative plausible truths including uneconomical 
production (Egg model) for the production strategies from Figure 4.23. 

 

Figure 4.25: Cumulative NPV curves for the 10 representative plausible truths disregarding uneconomical 
production (Egg model) for the production strategies from Figure 4.23. 
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purpose, confirming that the choice of the selection feature is case-dependent even within 

the same workflow. A disadvantage of this approach is the challenge in deriving 

meaningful statistics of the VOI given the reduced number of plausible truths. Finally, we 

combined both aforementioned acceleration measures to design a new procedure for 

faster VOI assessment. For the 2D example, we were able to reduce the amount of 

required reservoir simulations from millions to tens of thousands. This significant 

reduction in computational costs represents an important step for the use of the VOI 

assessment in larger examples. 

Based on the learning from the experiments with the small 2D model, we tested the 

acceleration measures on the medium-sized Egg model (18,553 grid blocks). The results 

confirmed the main conclusions obtained for the small model, reassuring us that clustering 

based on the appropriate features can support the selection of representative models to 

approximate the uncertainty characterized by the full ensembles of realizations and make 

our workflows much more efficient also in larger examples. In the end, by combining all 

the acceleration measures, we were able to apply our methodology for VOI assessment to 

the Egg model, which would otherwise have been computationally intractable. The results 

obtained supported our main conclusions from the previous chapters, which reassures the 

consistency of our approach. 

However, there is still scope for future research to further accelerate these workflows. In 

particular, the combination of the ideas presented in this paper with the use of surrogate 

models (e.g., proxies), reduced-physics models or multiscale methods may be necessary to 

develop practical tools for VOI assessment to be applied in realistic, large-scale 

applications. 

 





 

 
1 This chapter is based on Barros, E.G.D., Van den Hof, P.M.J. and Jansen, J.D. (2018). Informed 

production optimization. Paper in preparation. 
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Informed production optimization 

This chapter 1 introduces a new approach for production optimization in the context of the closed-loop 

reservoir management (CLRM) by considering the impact of future measurements within the optimization 

framework. CLRM enables instrumented oil fields to be operated more efficiently through the systematic 

use of life-cycle production optimization and computer-assisted history matching. In Chapter 2, we 

introduced a methodology to assess the value of information (VOI) of measurements in such a CLRM 

approach a-priori, i.e. during the field development planning phase, to improve the planned history 

matching component of CLRM. The reasoning behind the a-priori VOI analysis unveils an opportunity 

to also improve our approach to the production optimization problem (i.e., optimization of well rates and 

pressures) by anticipating the fact that additional information (e.g., production measurements) will become 

available in the future. Here, we show how the more conventional optimization approach can be combined 

with VOI considerations to come up with a novel workflow, which we refer to as informed production 

optimization (IPO). We illustrate the concept with a simple water flooding problem in a two-dimensional 

five-spot reservoir and the results obtained confirm that this new approach can lead to significantly better 

decisions in some cases. 

5.1. Introduction 

Recent tools developed to support decision making in reservoir operations rely on model-

based optimization and uncertainty quantification to find the best production strategy. 

Closed-loop reservoir management (CLRM) goes a step further and takes advantage of the 

frequent measurements collected throughout the reservoir producing life-time to 

determine the optimal set of controls. This is achieved through the systematic use of life-

cycle optimization in combination with computer-assisted history matching. This 
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combination provides the ability to react to the measurements from the true reservoir (i.e., 

through the designed surveillance plan), offering the opportunity to benefit from the 

remaining flexibility of the production strategy and compensate for possibly wrong 

previous decisions, which are deemed to be suboptimal due to the presence of uncertainty. 

A major challenge in determining the optimal production strategy arises from the nature 

of the main uncertainties inherent to the reservoir management problem. The geological 

uncertainties are endogenous (Jonsbråten, 1998): they only get revealed at the cost of 

decisions. In other words, the production measurements that can help reducing the 

uncertainty can only be gathered when the field is operated, which requires a decision to 

be made (i.e., an operational strategy to be defined). In practice this means that the future 

state of uncertainty depends on current and previous decisions. Therefore, a truly optimal 

production strategy can only be determined by considering its own impact in the future 

measurement outcomes and their consequences to the future decisions to be made under 

the future state of uncertainty. 

Recently, we have proposed a methodology in which the CLRM framework is used to 

assess the value of future measurements (Chapter 2). Such a methodology allows one to 

quantify the expected value achievable with the improved decision making enabled by the 

selected surveillance plan. Thus, it can be used as a tool to assist in the design of the 

optimal surveillance plan (i.e., measurement type, location, frequency, precision, …). 

In order to estimate the VOI for a given surveillance plan, we calculate the additional 

value of the future measurements in terms of the value enabled by the production 

strategies re-optimized in a closed-loop fashion with the new information. Because it 

considers the availability of future information, the VOI assessment framework can 

potentially also help eliminating the shortcoming of the traditional optimization approach 

related to the endogenous nature of the uncertainties. In this chapter, we therefore 

propose to integrate VOI considerations into the production optimization framework to 

come up with a novel workflow, which we refer to as informed production optimization 

(IPO). 

In the Background section (5.2) we recap the key concepts for the development of our 

new method and relate to previous work addressing problems of similar nature. Next, in 

the Two-stage IPO section (5.3), we introduce the proposed workflow for the simplest 
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application of IPO, showing how it builds upon the VOI assessment framework presented 

in Chapter 2. Thereafter, we illustrate it with a simple case study, describing details of our 

implementation and analyzing the improved performance obtained with IPO. After that, 

we discuss in the Multistage IPO section (5.4) how the methodology can be extended to a 

more general case with more decision stages. Finally, in the Discussion and conclusion 

section (5.5), we reflect on the advantages of this new concept to optimize production 

strategies, and we suggest directions for future work. 

5.2. Background 

5.2.1. VOI assessment in CLRM 

Recently, we have proposed a new methodology to assess the VOI of future 

measurements by making use of the CLRM framework (Chapter 2). Our approach 

presented there consists of “closing the loop” in the design phase to simulate how 

information obtained during the producing life-time of the reservoir comes into play in 

the context of optimal reservoir management. By considering both data assimilation and 

optimization in the procedure, we are able “to not only quantify how information changes 

knowledge, but also how it influences the results of decision making” (Chapter 2). This is 

possible because a new production strategy is obtained every time the models are updated 

with new information, and the strategies with and without additional information can be 

compared in terms of the value of the optimization objective function (typically NPV) 

obtained when applying these strategies to a virtual asset (a synthetic truth); see the 

flowchart in Figure 2.11. 

We define the VOI of future measurements as the additional value realized by the asset 

when the future information is utilized for the optimization of the subsequent well 

controls. Since we do not have perfect knowledge of the true asset, we use an ensemble of 

plausible truths. For a problem with M control time intervals and considering the ith 

plausible truth i
truthm , the baseline for VOI calculation is the value i

priorJ  obtained without 

the future information. This involves optimization of all the well controls 

,1 ,2 ,[ ]T T T T
prior prior prior prior Mu u u u  under the initial state of uncertainty (i.e., over the 

prior ensemble of model realizations). Note that here we consider the approximation 
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presented in Chapter 2 to accelerate the procedure: although multiple prior ensembles are 

used to perform the history matching for the different plausible truths, a single ensemble 

is used to determine the strategy prioru  optimal under initial uncertainty. Starting from this 

baseline, the additional value VOIi
j  of the i

jd  measurements gathered during the jth 

control interval is the difference between the value ,
i
post jJ  obtained through the re-

optimization of the well controls in the subsequent control time intervals 

, 1 , 2 ,[ ]i i T i T i T T
post post j post j post Mu u u u  compared to the baseline value i

priorJ . Note that 

the values i
priorJ  and ,

i
post jJ  are not statistics of the ensembles used in the analysis, but the 

value produced by implementing the strategies prioru  and i
postu  to the plausible truth 

i
truthm  . Note also that the well controls prior to the i

jd  measurements, i.e. 

,1 ,2 ,(0 : ) [ ]T T T T
prior j prior prior prior jtu u u u , are the ones determined by optimization 

without future information (i.e., under initial uncertainty). 

5.2.2. Future information and optimization 

The concept of accounting for the availability of future information within the 

optimization is not new and has been investigated for several applications in different 

scientific communities. In operations research, such an optimization problem is addressed 

from a more mathematical perspective, being referred to as stochastic programming. Two-

stage or multistage models are used to account for the sequential nature of the decisions, 

which allows the optimization to be expressed in a nested formulation. For more 

information, see Birge and Louveaux (1997), Ruszczyński and Shapiro (2003), and 

Georghiou et al. (2011). In the formalism from decision and game theory, non-myopic 

decision rules are the ones where the decision makers look ahead and consider future 

information, opposed to the myopic approach in which the influence of current decisions 

on the future state of uncertainty (i.e., conditional posterior distributions) is ignored 

(Mirrokni et al., 2012). The artificial intelligence community refers to this class of 

problems as partially observable Markov decision processes (POMDPs), related to 

applications where direct observations of the state of the uncertain processes are not 

available (Smallwood and Sondik, 1973; Hauskrecht, 2000). In these cases, the decisions 

are optimized not only based on their direct contribution to produce value but also to 

maximize the expected pay-off (or reward) of subsequent decisions (Krause and Guestrin, 

2007 and 2009). In systems and control theory, the dual control introduced by Fel’dbaum 
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(1960 and 1961) seeks to determine the optimal trade-off between excitation and control 

to promote a more active learning from the measurements while directing the system to its 

optimal state. This is only possible through the definition of control policies that 

anticipate the availability of future measurements and their learning effect. In this respect, 

Van Hessem (2004) discussed the steps to be taken to turn the traditional open-loop MPC 

(i.e., model predictive control) methods into feedback mechanisms that know how to 

respond to future measurements. More recently, Hanssen (2017) proposed an implicit dual 

MPC controller that explicitly includes the feedback mechanism in the optimization 

problem. In system identification, Forgione et al. (2015) investigated the use of different 

model update strategies to enable batch-to-batch improvement in the control of industrial 

processes. 

The main applications of these ideas are in: logistics and supply chain problems; network 

problems such as traffic control and power grids; medical decision making; planning and 

scheduling. In the oil and gas upstream sector, Jonsbråten (1998) applied stochastic 

programming to drilling sequence optimization in a simplified setting. Goel and 

Grossmann (2004) used stochastic models in the planning of offshore gas fields with 

uncertainties related to the reserves, but without considering reservoir simulation models. 

Foss and Jensen (2011) claimed that a conscious exploitation of the dual effect of controls 

can be significant in a reservoir system given the typical large uncertainties, but highlighted 

the fact that the dual-control problem is unsolvable in practice. Zenith et al. (2015) 

investigated the use of sinusoidal oscillations as a means of exciting the reservoir to obtain 

more informative data during well testing, but without analyzing the influence on the 

subsequent decisions. More recently, Abreu et al. (2015) have proposed a methodology to 

optimize under uncertainty the valve settings of smart wells considering the possibility of 

acquiring additional information in the future. Their approach uses the ideas of 

approximate dynamic programming to make the problem tractable. 

5.3. Two-stage IPO 

In the context of production optimization, the decision in question is the use of an 

optimized production strategy that maximizes the value of the asset. Despite the limited 

potential for learning due to the poor information content of typical production 
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measurements, the knowledge about a reservoir changes along its producing life-time. 

Thus determining a single production strategy by performing robust optimization based 

on the initial state of uncertainty (Van Essen et al., 2009) is equivalent to ignoring the 

endogenous nature of the reservoir management problem. It is a myopic approach which 

will likely lead to suboptimal solutions. The stochastic programming ideas discussed in the 

previous section can be a solution to overcome this limitation. 

In this chapter we present a workflow for non-myopic production optimization within the 

CLRM framework. The proposed procedure is a combination of classical stochastic 

programming and our previously introduced workflow for VOI assessment in CLRM 

(Chapter 2). The idea is to model the decision process related to the reservoir management 

problem with the help of elements of the CLRM framework (i.e., ensemble-based 

uncertainty quantification, model-based optimization and computer-assisted history 

matching), which allows us to represent the sequential character of the decisions 

(corresponding to a Markov decision process) while accounting for future measurement 

data with very limited information content. Because this approach considers future 

information when performing production optimization, we name it informed production 

optimization (IPO). 

The ultimate goal of reservoir management is to maximize the value delivered by the asset 

with the implementation of production and surveillance strategies. Our methodology for 

VOI assessment (Chapter 2) provides a framework to quantify the value ,
i
post jJ  to be 

produced by the asset (here, the ith plausible truth) with the incorporation of future 

information gathered through the designed surveillance strategy (here, measurements 

collected during the jth control time interval). For simplicity, we initially address the case 

with only a single observation time. Later, we discuss how these ideas can be extended to 

cases with multiple observation times. 

In the conventional approach for production optimization, we seek to maximize the 

predicted objective function for the ensemble of models anticipating that in a closed-loop 

setting, once more information becomes available, we will have the opportunity to 

improve our predictive models and adjust our strategies to achieve the best possible ,
i
post jJ . 

By following this reasoning, the optimization is making use of the flexibility of the 

remaining degrees of freedom 1 , 1 , 2 ,( : ) [ ]i i T i T i T T
post j post j post j post Mt Tu u u u , while the 
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part of the strategy prior to the future information 

,1 ,2 ,(0 : ) [ ]T T T T
prior j prior prior prior jtu u u u  is deemed to be suboptimal. We propose here 

to use ,
i
post jJ  as the cost function for our production optimization problem, as a way of 

reflecting the true goal of reservoir management when optimizing (0 : )prior jtu . In fact, 

since we consider an ensemble of Ntruth equiprobable plausible truths, we still perform 

robust optimization and our new objective function is defined as 

 , , 1
1

1(0 : ), (0 : ), ( : ),
truthN

i i
post j j j post j j post j j

itruth

t t J t t T t
N

u u u , (5.1) 

where μpost,j is the ensemble mean of the objective function values ,
i
post jJ for the individual 

plausible truths. The objective function ,
i
post jJ  for a single realization i of the plausible 

truth is calculated according to the VOI assessment workflow for a single observation 

time (Figure 2.11 in Chapter 2) and involves the solution of history matching with the 

future information gathered during control interval j and re-optimization of the 

production strategy for the subsequent control intervals 1( : )i
post jt Tu . We can also see the 

optimization of this new cost function as a two-stage stochastic model or a nested 

optimization problem where the outer optimization concerns the production strategy up 

to control interval j and the inner optimization determines the remaining part of the 

strategy, which will be different for each one of the Ntruth plausible truths. Thus, the IPO 

problem can be formulated as 

 , 1
1

1(0 : ) arg max (0 : ), ( : ),
truthN

i i
IPO j post j j post j j

itruth

t J t t T t
Nu

u u u , (5.2) 

where the outcome of the optimization is a single optimal production strategy (0 : )IPO jtu  

until the observation time tj , and Ntruth optimal strategies 1( : )i
post jt Tu , i = 1, … , Ntruth , 

for the remaining producing time. The proposed workflow to solve this optimization 

problem iteratively is displayed in Figure 5.1. The procedure resembles the workflow of 

Figure 2.11, but contains an outer iterative loop (shown in blue) to keep updating the part 

of the production strategy prior to the observation time. The inner part of the workflow 

(indicated in yellow) remains the same as in the original VOI assessment workflow 

presented in Chapter 2 (Figure 2.11); the only difference being that, for the optimization 

problem, we are only interested in evaluating the new cost function ,
i
post jJ  for each 

plausible truth and not in computing the associated VOI. Note that, for the case with a 
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single observation time, the optimizations required in this part of the workflow reduce to 

the conventional robust optimization problem, because there are no more future 

measurements to be considered after tj . Therefore, the optimal strategies 1( : )i
post jt Tu  

can be determined by following the conventional robust optimization approach proposed 

by Van Essen et al. (2009). Note also that, just like the VOI workflow can be simplified to 

quantify the value of clairvoyance (VOC) (Chapter 2), the IPO procedure can be modified 

to perform optimization under the assumption that perfect revelation of the truth will be 

possible in the future. 

 

Figure 5.1: Workflow for IPO with a single observation time. 

By recommending a single (0 : )IPO jtu  and multiple 1( : )i
post jt Tu  we design a flexible 

production strategy that accounts for the fact that we have the opportunity to update well 
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plausible truths, we recognize that the outcome of the future measurements (or future 

clairvoyance) is unknown, and that the ensemble of 1( : )i
post jt Tu  controls should reflect 

this uncertainty in the production strategy to be implemented after tj . Only when we 

proceed with the reservoir operations (i.e., by truly implementing (0 : )IPO jtu ) and the 

actual measurements take place at tj , the uncertainty model can be updated and the 

optimal strategy to be implemented for the remaining time can be determined. 

From the algorithmic point of view, this nested optimization can be solved just as any 

other optimization problem. The same methods apply but the cost function to be 

evaluated is more complex. Here, we use gradient-based methods for both the inner and 

the outer optimizations. In this setting, the main challenges concern the outer 

optimization, in particular for the definition of the starting point and the computation of 

the gradient for such a complex cost function. We explain the details of our 

implementation when we describe our case study in the section 5.3.1. 

5.3.1. Example 

To test our approach, we used the same 2D five-spot example from the previous chapters. 

See Chapter 2 for a more detailed description. We used Ntruth = 50 plausible truths and 

Ntruth = 50 ensembles of N = 49 realizations of the porosity and permeability fields, 

conditioned to hard data in the wells, to model the geological uncertainties. The 

simulations were used to determine the set of well controls (bottom-hole pressures) that 

maximizes the NPV. The optimizations were run for a T = 1,500-day time horizon with 

well controls updated every 150 days, i.e. M = 10, and, with five wells, u had 50 elements. 

We applied bound constraints to the optimization variables (200 bar ≤ pprod ≤ 300 bar and 

300 bar ≤ pinj ≤ 500 bar). The whole exercise was performed in the open-source reservoir 

simulator MRST (Lie et al., 2012). For the inner part of the IPO workflow (shown in 

yellow in Figure 5.1), we used the same setup as the one used in our previous work: a 

CLRM environment created by combining the adjoint-based optimization and EnKF 

modules available with MRST (see Chapter 2). 

To perform the outer optimization (shown in blue in Figure 5.1), we used an 

implementation of the StoSAG method (Fonseca et al., 2016). The ensemble-based 

gradient computation was very convenient for our IPO problem, allowing us to use a 
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black-box approach to obtain the gradients for the complex and expensive cost function 

while benefiting from the computational advantages for cases with the presence of 

uncertainties. The main difference with the use of StoSAG in a conventional production 

optimization problem is that here the uncertainties are characterized by the ensemble of 

plausible truths. Thus we pair each of the Npert = 50 perturbations of the well controls to 

one of the Ntruth = 50 plausible truths and we estimate the search direction by an 

approximate linear regression of their ,
i
post jJ  values. We used a standard deviation of 

σpert = 0.01 to generate the perturbations of the well controls. The starting point for the 

outer optimization is the solution obtained with the conventional robust optimization 

procedure. 

For this case study, we considered the availability of oil flow rate measurements in the 

producers with absolute measurement errors (ԑoil = 5 m³/day). Just like in Chapter 2, the 

proposed workflow considers a single observation time but was repeated for different 

observation times, tdata = {150, 300, … , 1,350} days. After applying the IPO procedure, 

we computed the VOI for each of the nine observation times to compare with the VOI 

obtained when using conventional robust optimization. In addition to that, we repeated 

the experiments by considering future availability of clairvoyance instead of imperfect 

measurements. 

Figure 5.2 illustrates the motivation for us to select oil rate measurements for this 

example. It compares the VOC with the value of observing total rates and water-cuts and 

the value of measuring only oil rates, all obtained by following the conventional 

optimization approach and displayed in terms of their mean values. We observe that the 

VOI of total rate and water-cut measurements is very close to the VOC, where the latter 

represents an upper bound. On the other hand, the VOI of oil rate measurements is 

considerably lower than the VOC, which suggests that there is room for improvement. 

The low values, especially for the measurements at tdata = 300 days, are related to the 

inability of the oil rate measurements alone to accurately provide information about the 

water breakthrough time in the producers, whose prediction is paramount to achieve 

optimal reservoir management in this example. Since our goal here was to verify the 

potential of our proposed IPO approach to enhance the value produced by the asset, we 

considered the case with oil rate measurements to be a more suitable case study. 
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Figure 5.2: Results for the VOI analysis of production data (2D five-spot model): expected VOC, VOI of 
total rate and water-cut measurements, and VOI of oil rate measurements. 

 

Figure 5.3: Results for the VOI analysis (2D five-spot model) with the conventional robust optimization 
and the IPO approaches (expected VOI). 

 

Figure 5.4: Observation impact (left) and uncertainty reduction (right) obtained for the 2D five-spot 
model with the conventional robust optimization and the IPO approaches (mean values). 

Figure 5.3 (left) shows the results obtained with the IPO approach in comparison to those 

obtained when using the conventional robust optimization approach. First, we notice that 

the IPO does not improve significantly the VOC. This happens because, in the unrealistic 

case of clairvoyance, the revelation of the truth is, by definition, perfect, irrespective of the 

production strategy (0 : )prior jtu  that is implemented prior to it. Thus, the gain of using 
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the IPO approach would be more important in cases where the sub-optimality of 

(0 : )prior jtu  cannot be compensated by the re-optimization of the remaining degrees of 

freedom 1( : )i
post jt Tu  with perfect revelation of the truth, which does not seem to be the 

case for this example. 

On the other hand, for the case with imperfect oil rate measurements, we observe a higher 

VOI for the IPO approach (Figure 5.3). Note that, for the VOI calculation, the values 

without information i
priorJ  are identical for both approaches. This means that the IPO was 

able to determine production strategies that create more value when applied to the 

plausible truths. Besides that, this shows that there is indeed room to achieve improved 

reservoir management by accounting for the availability of future information when 

searching for the optimal well controls. We highlight the significant increase in VOI 

obtained for the measurements at tdata = 300 days, resulting in an improvement of 

approximately $ 0.8 million. 

In order to explain why the strategies determined by the IPO approach are better, we 

looked also at their effect in terms of changing the observation impact IGAI and the 

uncertainty reduction ∆σNPV associated with the measurements (see Chapter 2). Figure 5.4 

displays these results for comparison with the VOI in Figure 5.3. The observation impact 

plot indicates that the production strategies obtained with both optimization approaches 

produce oil rate measurements with similar information content, in terms of predicting its 

own outcome (i.e. observation self-sensitivity). The results in Figure 5.4 (right) also 

suggest that both optimization approaches perform similarly in terms of producing 

measurements to reduce the uncertainty in NPV forecasts. We note, however, an increase 

in the uncertainty reduction obtained with the IPO approach for the measurements at 

tdata = 300 and tdata = 450 days, which is consistent with the improvement observed in 

terms of VOI for those observation times (Figure 5.3). 

Figure 5.5 shows the production strategies obtained with both optimization approaches 

for the case considering measurements at tdata = 300 days, which correspond to the largest 

improvement in terms of VOI. For both approaches we observe a single production 

strategy (0 : 300)prioru  defined until tdata = 300 days and multiple strategies 
(300 : 1500)i

postu  after that. We notice small differences between the (0 : 300)prioru  

strategies for the two optimization approaches but a reasonable difference in the range of 
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the (300 : 1500)i
postu  strategies. Thus, for this example, small changes in prioru  seem to 

have a significant impact on the optimization of the remaining controls i
postu . 

   

Figure 5.5: Production strategies obtained for oil rate measurements at tdata = 300 days (2D five-spot 
model): conventional optimization (left) and IPO (right). 

We conclude that, for this example, the increase in VOI due to the IPO approach can be 

partially attributed to the ability of the improved production strategies to yield 

measurements that result in additional uncertainty reduction in terms of the quantity of 

interest (NPV). Nevertheless, there seem to be other effects that enable the IPO strategies 

to perform better for the plausible truths. This could be related to an enhanced 

controllability of the reservoir states once the measurements reveal some of the initial 

uncertainty. Overall, these results suggest that, when relying on measurements with limited 

information content, wrong reservoir management decisions cannot be entirely 

compensated by re-optimizing the subsequent decisions. In such cases, an approach which 

is merely reactive to measurements is more likely to result in poorer decisions than an 

approach that anticipates the availability of future information. 

5.4. Multistage IPO 

The results of the example above show that the IPO approach can be valuable for cases 

with imperfect measurements. However, the procedure depicted in Figure 5.1 only 

addresses the case considering a single observation time, which is not realistic for well 
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production measurements. Therefore we discuss here what can be done to apply the same 

reasoning in problems with multiple observation times. 

In Chapter 3, we showed how our original methodology for VOI assessment can be 

modified to account for multiple observation times. We demonstrated that, contrary to 

what one would expect, the computational costs of assessing the value of multiple 

measurements do not increase beyond reasonable levels. The reason is that, although one 

might think that we need to consider new additional plausible truths for every observation 

time, this is not necessary. Once a realization of the initial ensemble is picked to be the 

plausible truth, the same realization plays the role of truth and the “loop is closed” as 

many times as the number of observation times, because that is the only way of ensuring 

consistency of the synthetic future measurements that we need to generate in order to 

assess their VOI. Thus, the computational costs of assessing the VOI for multiple 

observation times is the same as those of the VOI assessment for a single observation 

time repeated for different observation times. 

Unfortunately, the extension of IPO to cases with multiple observation times is not that 

simple. In VOI assessment only, the plausible truths are not directly involved in the 

optimization, but they do play a role in the IPO. Thus, sticking to one of the realizations 

as the plausible truth throughout all the observation times would imply that we can 

identify the truth with the measurements obtained at the first observation time, which 

corresponds to the availability of clairvoyance. Since we are dealing with imperfect 

measurements, in order to be realistic, we need to update the uncertainty model given by 

our ensemble of plausible truths. This means that, in principle, the size of the problem 

grows exponentially with the number of observation times considered, if it is to be solved 

rigorously. In other words, the number of branches on the scenario tree associated with 

the problem would be multiplied for every new observation. Figure 5.6 displays a decision 

tree for a problem with four observation times where the uncertainty is represented by 

three new plausible truths each time. We notice the rapid increase in the number of 

scenarios, which would be even more dramatic if we consider tens of plausible truths and 

more observation times. 
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Figure 5.6: Full plausible truth scenario tree for rigorous solution of IPO with four observation times and 
ensembles of three realizations. 

Given the already prohibitive computational costs of VOI assessment, it is safe to say that 

the rigorous solution of this scenario tree is not feasible for problems relying on reservoir 

simulation models. Gupta and Grossmann (2011) and Tarhan et al. (2013) have proposed 

strategies to solve multistage stochastic programming models more efficiently through 

approximate solutions involving decomposition and constraint relaxation methods. 

 

Figure 5.7: Pruned plausible truth scenario tree for approximate solution of IPO with four observation 
times and ensembles of three realizations. 

Here, we propose to use a more intuitive approach to simplify this problem. The first 

branching before t1 is the most important one, as it introduces the different plausible 

truths that will be used to generate the synthetic measurements and to evaluate the 

performance of the production strategies derived. The second branching before t2 is also 

important because it establishes that the respective plausible truth is not perfectly revealed 

by the imperfect observations made at t1. However, the branching events associated with 

the remaining observation times are of smaller importance, because the one at t2 already 

guarantees that there are always multiple branches below each plausible truth, reflecting 

the fact that at any time the uncertainty around the plausible truths is never revealed 

through unrealistic clairvoyance. This allows us to prune the scenario tree and reduce the 

size of the problem to be solved for IPO with multiple observation times. Figure 5.7 

shows the pruned scenario tree. Note that after t2 the number of branches does not 
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increase, which means that, by applying this pruning strategy, we can obtain approximate 

solutions for three-stage and M-stage stochastic problem at similar computational costs. 

To put this idea into practice and extend the two-stage IPO (Figure 5.1) to M-stage IPO 

(with M – 1 observation times), we need to make a few changes in the workflow. Figure 

5.8 depicts the modified procedure. First, we introduce an additional ensemble of Ntruth 

truths i
truthM  for each one of the original plausible truths i

truthm  of our initial ensemble 

truthM . This corresponds to the second branching of the scenario tree before t2 (Figure 

5.7). From there on, the tree does not develop new branches but, for every observation 

time, i
truthM  is updated through history matching of the synthetic measurements generated 

with i
truthm . After the last observation, we derive the posterior ensemble of truths 

,1 ,2 , 1
, 1 { , , , }i i i Ni

truth M truth truth truthM m m m  and we reach the last decision stage. Like for the two-

stage IPO (Figure 5.1), the decisions in the last stage are optimized following the 

conventional robust optimization approach. We use the posterior truths ,i j
truthm  to generate 

synthetic measurements and derive the posterior ensembles ,
, 1

i j
post MM  through history 

matching. And finally we perform robust optimization over ,
, 1

i j
post MM . Because we do not 

introduce additional truth scenarios after the second stage, the nested optimization can 

group the intermediate stages into a single one. Thus, the M-stage IPO reduces to a nested 

optimization at three levels: the outer optimization (shown in blue in Figure 5.8), the 

intermediate optimization (in yellow) and the inner optimization (in purple). In the end, 

the production strategies obtained ( 1(0 : )tu , 1 1( : )i
post Mt tu  and ,

1( : )i j
Mpost t Tu ) are 

applied to the respective original plausible truth i
truthm . We calculate their performances 

,i j
postJ  in terms of our objective function and, finally, we compute the cost function as the 

mean over all the realizations. Thus, the M-stage IPO problem can be formulated as 

1

, ,
, 1 1 1 12

1 1

(0 : )

1arg max (0 : ), ( : ), ( : ), ,
( )

truth truth

IPO
N N

i j i i j
post j j post M post M

i jtruth

t

J t t t t T t
Nu

u

u u u  (5.3) 

where the outcome of the optimization is a single optimal production strategy 1(0 : )IPO tu  

until the first observation time t1, Ntruth optimal strategies 1 1( : )i
post Mt tu , i = 1, … , Ntruth , 

for the period between the first and the last observation, and (Ntruth)2 optimal strategies 
,

1( : ) ,i j
Mpost t Tu  i = 1, …, Ntruth , j = 1, … , Ntruth , for the remaining producing time. 
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The M-stage IPO workflow can be realized in a similar implementation as the one 

described for our case study (section 5.3.1). The inner optimization can be performed with 

the help of the adjoint-based gradients, while the intermediate and outer optimizations can 

make use of the StoSAG method to estimate the required gradients. 

 

Figure 5.8: Workflow for IPO with multiple observation times. 

5.4.1. Example 

To test the IPO approach with multiple observation times, we used again the 2D five-spot 

example, but with a small modification: instead of M = 10, we considered M = 3 control 

time intervals. We assumed oil production measurements to be available at tdata = {500, 

1,000} days, with the same measurement error as before. In order to make the problem 

more tractable, we used the acceleration measures presented in Chapter 4, and we reduced 

the number of plausible truths to repr
truthN  = 10 representative ones and the size of the 
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ensembles for robust optimization to Nrepr = 5. The history matching step with the EnKF 

was performed over the full ensembles. 

Figure 5.9 displays the VOI of the multiple oil rate measurements obtained through the 

procedure from Chapter 3 with the conventional optimization approach. Figure 5.9 

(bottom) shows that the VOI for the last observation time (tdata = 1,000 days) is significant 

lower than the VOC, which suggests that there might be scope to improve them with the 

IPO approach. Thus, the goal of the IPO here can be understood as an optimization of 

the VOI at tdata = 1,000 days, by maximizing the ,i j
postJ  achievable through the CLRM 

framework with the measurements at tdata = {500, 1,000} days. 

 

 

Figure 5.9: Results for the VOI analysis with the conventional robust optimization (2D five-spot model 
with M = 3 control time intervals). 
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and in black, the NPV values corresponding to the VOI and VOC at tdata = 1,000 days 
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comparison with the mean NPV for the CLRM using the conventional optimization 

approach, which represents an increase of 0.1 %, or of 4 % if expressed in terms of VOI. 

We note that the incremental gain is small but should be understood as an attempt to 

improve a solution already close to optimal for this example. This suggests that, in this 

example with more observations, the CLRM framework with the conventional 

optimization approach was able to sufficiently compensate for previous suboptimal 

decisions, resulting in production strategies almost as good as the ones determined 

through IPO. 

Figure 5.10 (top right) depicts the same results but showing the empirical pdf curves 

derived with the NPV of the repr
truthN  = 10 plausible truths considered. The differences 

between the curves for the CLRM and IPO are small. However, the distribution for the 

IPO approach seems to achieve higher values at its peak, which suggests a slight reduction 

in the spread of the NPV values. Note that the pdf curves displayed here are the result of 

curve fitting with a small number of samples ( repr
truthN  = 10), but that the empirical 

histograms exhibit similar trends (Figure 5.10 (bottom)). 

 

 

Figure 5.10: Results for the production optimization with the different approaches (2D five-spot model 
with M = 3 control time intervals): mean NPV values for the plausible truths (top left) and their 
respective pdf-fitted plots (top right) and empirical histograms (bottom). 
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Figure 5.11: Optimal production strategies for the plausible truths considered (2D five-spot model with 
M = 3 control time intervals): optimized under prior uncertainty (top left); obtained through CLRM with 
additional production measurements (top right); determined by the IPO approach with future production 
measurements (bottom left); optimized under the assumption of clairvoyance available at t = 0 (bottom 
right). 
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see the outcome of the IPO for this three-stage problem: a single optimal production 

strategy (0 : 500)IPOu  until the first observation time t1 = 500 days, repr
truthN  = 10 optimal 

strategies (500 : 1000)i
postu , i = 1, … , repr

truthN , for the period between t1 = 500 and t2 = 1,000 

days, and 2( )repr
truthN  = 100 optimal strategies , (1000 : 1500)i j

postu , i = 1, … , repr
truthN , j = 1, … ,

repr
truthN , from t2 = 1,000 until T = 1,500 days. The larger number of possibilities associated 

with future control time intervals allows the IPO strategies to account for the flexibility of 

the reservoir management problem. We also note that (0 : 500)IPOu  is not the same as 

(0 : 500)prioru  and that the difference between them enables the IPO approach to result in 

improved NPV values, as seen in Figure 5.10. 

5.5. Discussion and conclusions 

We have proposed a new approach for production optimization under geological 

uncertainty. The informed production optimization (IPO) approach considers the 

endogeneous nature of these uncertainties and includes the availability of future 

information to circumvent the limitations of the conventional robust optimization. To 

achieve this, the approach accounts for the fact that there is uncertainty about the optimal 

well settings to be implemented after additional measurements are processed in the future, 

and that this uncertainty depends on the outcome of these measurements. As a 

consequence, we perform robust IPO over an ensemble of plausible truths resulting in a 

single optimal production strategy until the moment that the future measurements take 

place and a range of optimal production strategies for the period after them. We applied 

IPO to a simple case study and observed a significant increase in the VOI of imperfect 

measurements, reflecting the improvement in the production optimization. After 

demonstrating the potential value of the IPO approach for a case with a single observation 

time, we discussed how it can be extended to situations with multiple observation times 

and we applied it to the same simple example in a three-stage decision problem. The 

improvements achieved were more modest, which suggests that, with more 

measurements, the CLRM framework with the conventional optimization approach was 

able to make up for previous suboptimal decisions, at least for this example. Based on the 

results of these examples, we conclude that IPO can improve the way we approach the 
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reservoir management problem, especially in situations where wrong decisions cannot be 

entirely compensated by the remaining degrees of freedom in the control problem. 

An important point that has not been addressed in this work concerns the generation of 

future synthetic measurements and, in particular, the contribution of the measurement 

noise. Here we assumed white noise with a pre-defined standard deviation to be added to 

the simulated measurements, but, in practice, other choices may be more appropriate. 

Although, in most of the cases, small when compared to the geological uncertainties, this 

noise contribution may have an impact on the results obtained with the proposed IPO 

approach. Further research is required for a better understanding of its impact. 

Another point for future work concerns the computational costs of such an approach, 

which are comparable or higher than those of VOI assessment workflows. The IPO ideas 

only make sense if uncertainty quantification is addressed carefully, and this may require a 

prohibitive amount of reservoir simulations. In order to be useful, the IPO needs to be 

tractable. In Chapter 4 we managed to reduce the number of reservoir simulations 

required in VOI workflows by selecting representative models, a solution that can also be 

applied here. Besides that, the use of proxy models or multiscale methods may help to 

further reduce the number of high-fidelity reservoir simulations needed and make the IPO 

procedure more practical. Still regarding the tractability of the problem, the procedure we 

proposed here to extend the IPO approach to cases with multiple observation times 

represents an approximation of the full multistage stochastic model. There may be other 

solutions to prune the decision tree and effectively reduce the problem to fewer relevant 

scenarios, as, e.g., suggested by Gupta and Grossmann (2011) and Tarhan et al. (2013). 

Therefore, also in this direction there is scope for future research. 

 



 

 
1 This chapter is based on work done during an internship at IBM T.J. Watson Research Center. 
2 The work presented in this chapter is covered under the following Spanish patent: 

Embid Droz, S.M., Rodríguez Torrado, R., Echeverría Ciaurri, D. and Barros, E.G.D. (2017). Method for 
determining a drilling plan for a plurality of new wells in a reservoir. Spanish Patent ES P201700314, 
filed March 29, 2017. 
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Informed field development 
optimization 

In this chapter 1,2 we present a methodology for field development optimization where we include in the well-

location optimization procedure the added value of future information. 

The optimization considered in current field development workflows does not explicitly account for the 

availability of future information resulting from drilling new wells. Here we combine (closed-loop) field 

development and value of information to create a novel approach, which we refer to as informed field 

development optimization (IFDO). This method makes use of a nested well-location optimization to 

quantify not only how much the decision of interest contributes to the selected cost function but also how this 

decision affects uncertainty in subsequent optimization runs (i.e., to determine the drilling locations of 

future wells). 

We illustrate IFDO by means of two relatively simple examples where we assume that perfect information 

is obtained after the drilling of the first wells and we observe increases of 1 to 6 % in the cost function 

values obtained in comparison with the conventional optimization approach. We believe our proposed 

methodology represents an improvement in the state-of-the-art approach to field development. Due to its 

computational cost, we recommend that it be used to inspire future research on this topic and the 

development of more practical tools to be applied in real-field cases. 
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6.1. Introduction 

The development of an oil field involves a complex process of decision making under 

uncertainty, with plenty of scope for optimization. In the age of the smart fields, more and 

more measurements become available throughout the development of this type of fields. 

Nevertheless, traditional field development optimization workflows do not consider the 

availability of future information. By performing optimization based on the current state 

of knowledge only, we are actually not solving the right problem, which means we are 

possibly making suboptimal decisions. In order to make better decisions, we need ways of 

accounting for the added value of future information within our optimization workflows. 

In Chapter 2, we presented a workflow to assess the value of information (VOI) in a 

context where decisions regarding the well controls are supported by reservoir simulation 

models updated by measurements such as production or time-lapse seismic data (e.g., 

closed-loop reservoir management). Shirangi and Durlofsky (2015) have suggested to 

optimize both well placement and controls and update the reservoir simulation models 

with data collected along the development of the field (e.g., well drilling and production 

data). However, the optimization considered in these works does not consider the 

availability of future information. 

In this chapter, we propose to combine (closed-loop) field development and VOI 

assessment to create a novel workflow, which we refer to as informed field development 

optimization (IFDO). This workflow uses a nested optimization approach to ensure that 

the decision of interest is optimal in terms of both its direct and indirect contributions to 

create value (e.g., actual oil production and additional knowledge to facilitate future 

development decisions, respectively). We illustrate this new approach with two case 

studies. The first one is based on a two-dimensional reservoir model with uncertain 

permeability and porosity fields, where we optimize the location of two wells considering 

the availability of future perfect information. The second example is built upon a larger 

two-dimensional reservoir model comprising flow barriers with uncertain transmissibility 

factors, for which we optimize the location of six wells considering the availability of 

perfect information. In order to quantify the added value of IFDO, we compare the 

results to those obtained using existing methodologies. 
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This chapter is structured as follows. In the Previous work section (6.2) we introduce the 

main concepts that inspire our proposed methodology and revisit previous work on 

decision making under uncertainty. Thereafter, in the Methodology section (6.3), we 

present the IFDO workflow, showing how it builds upon the VOI assessment framework 

introduced in Chapter 2. In the Examples section (6.4), we illustrate it with two simple 

case studies, explaining in detail how the IFDO methods can be put into practice and 

comparing the results to those obtained with current state-of-the-art in field development 

optimization. Finally, in the Discussion and conclusion section (6.5), we analyze the 

improvements trying to understand where IFDO works the best, and we suggest 

directions for future work. 

6.2. Previous work 

6.2.1. Field development optimization under uncertainty 

One of the most important decisions during the field development planning (FDP) phase 

of an asset concerns the placement of the wells to be drilled. Because this usually involves 

a considerable number of wells and complex reservoir response, there is significant room 

for optimization. In a conventional setting, the control variables (e.g., well locations) are 

optimized simultaneously in an open-loop fashion, based on the initial state of uncertainty 

(e.g., a set of realizations for some geological parameters). This direct approach for 

optimization under geological uncertainties is the so called robust optimization (section 

1.2.1). Robust life-cycle optimization uses one or more ensembles of geological 

realizations (reservoir models) to account for uncertainties and to determine the 

development strategy that maximizes a given objective function over the ensemble. For 

recent applications of robust optimization to field development, see Wang et al. (2012), 

Leeuwenburgh et al. (2016), Jesmani et al. (2016) and Hanea et al. (2016). 

The idea is the same as the one described in section 1.2.1: although the optimization is 

based on an ensemble of models, only a single strategy u is obtained, under the rationale 

that only one strategy can be implemented in reality. In the context of field development 

optimization, typical elements of u are well locations, trajectories, types, drilling sequence 

and times, sometimes also jointly with well operating points (i.e., settings of well head 
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pressures, water injection rates etc.) (Bellout et al., 2012). However, this approach does not 

make use of the fact that more knowledge becomes available as the wells are drilled, logged 

and tested, i.e. it is assumed that the quantification of uncertainty does not change over time. 

6.2.2. Closed-loop field development (CLFD) 

An alternative to the suboptimal open-loop solution is to make use of the data which 

become available during the development of the field, by performing a closed-loop field 

development (CLFD) as, for example, in Shirangi and Durlofsky (2015). This means that, 

when new data are gathered, the simulation models can be adjusted to honor the acquired 

data. The subsequent decisions (e.g., locations of wells yet to be drilled) are then re-

optimized based on the updated knowledge (see Figure 1.1). The claim is that, by “closing 

the loop” frequently, improved field development can be achieved, when compared to the 

traditional open-loop optimization approach. Shirangi and Durlofsky (2015) illustrate their 

CLFD workflow with a few synthetic examples, in which they generate synthetic data 

from a model considered to represent the truth. They also suggest a way of evaluating the 

improvements due to the closed-loop approach: by applying the closed-loop and open-

loop optimal solutions to the truth model used to generate the synthetic data, and 

comparing their performances in terms of the objective function used. The same 

framework is also used to determine optimal well controls to maximize NPV or recovery 

over the producing life of an asset for a given configuration of wells (CLRM in section 

1.1), although we note that early definitions of CLRM also include the possibility to 

optimize well locations (Jansen et al., 2005). It is important to note that the optimization 

underlying CLFD is based on current knowledge only, even though it is known that new 

data will become available in the future. 

6.2.3. Time-dependent uncertainty 

As mentioned above, the main limitation of the current approach for optimal field 

development under uncertainty has to do with the assumption that the uncertainties are 

static. For cases where we know that additional measurements will be gathered throughout 

the development of the field, we need to consider how the quantification of uncertainty 

will change and this will allow us to make better decisions. The concept of accounting for 

the availability of future information within the optimization is not new and has been 
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investigated in different scientific communities. In operations research, such an 

optimization problem is addressed by means of stochastic programming. Two-stage or 

multistage stochastic models are used to deal with the sequential nature of the decisions, 

and this yields optimization problems expressed through a nested formulation. For more 

information, see, for example, Birge and Louveaux (1997) and Ruszczyński and Shapiro 

(2003). In the systems and control community, the dual control introduced by Fel’dbaum 

(1960 and 1961) seeks to determine the optimal trade-off between excitation and control 

to promote a more active learning from the measurements which, in turn, may enable the 

remaining controls to direct the system to its optimal state. This is only possible with the 

definition of control policies that are able to anticipate the learning effect of future 

measurements and use it to improve the performance of a closed-loop system (Foss and 

Jensen, 2011). More recently, Hanssen (2017) proposed an implicit dual model predictive 

control (MPC) that explicitly includes the feedback mechanism from the measurements in 

the optimization problem. 

These concepts that leverage availability of forthcoming information have been applied in 

logistics and supply chain, general planning and scheduling, power grids and medicine. In 

the oil and gas upstream sector, Jonsbråten (1998) considered stochastic programming for 

drilling sequence optimization in a simplified setting. Goel and Grossmann (2004) used 

stochastic models in the planning of offshore gas fields with uncertainty related to the 

reserves, but without including reservoir simulation. 

More related to what we address in this chapter, Cunningham and Begg (2008) proposed 

to use VOI to define the optimal well drilling order. Güyagüler and Horne (2004) 

investigated how to propagate the effect of geological uncertainty to future well locations. 

Tarhan et al. (2013) investigated strategies to efficiently solve problems with decision-

dependent uncertainty, also for cases with nonlinearities in which the uncertainties are 

gradually resolved as decisions are made. In order to account for time-dependent 

uncertainty, Özdogan and Horne (2006) introduced the concept of pseudohistory to 

estimate the outcome of future measurements and thus incorporate data assimilation in 

the optimization to determine the well locations that maximize the expected utility of the 

field production. Lyons and Nasrabadi (2013) proposed to reduce the computational costs 

of Özdogan and Horne’s procedure by relying on the mean of the history matched 
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ensemble as a single “best estimate” model to evaluate the objective function instead of 

simulating the entire ensemble to compute the expected utility. 

6.2.4. Value of information 

The problem of assessing the value of information (VOI) associated with future 

observations has been receiving noticiable attention in the Earth Sciences in recent years. 

Due to our usually limited knowledge of the subsurface, one of the main challenges in this 

assessment consists in determining which measurements are the most useful for the 

decisions that have to be made. In a situation where new measurements incur additional 

costs, it is very important to quantify the value of potential measurements before investing 

in their deployment. Many studies in different contexts have focused on developing 

methods to make an a-priori assessment of the VOI, see, e.g., Bratvold et al. (2009), 

Bhattacharjya et al. (2010), Trainor-Guitton et al. (2013) and Eidsvik et al. (2015). 

 

Figure 6.1: Workflow for VOI assessment considering multiple plausible truths in CLFD. 
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design phase to simulate how information obtained during the producing life-time of the 

reservoir is used in the context of optimal reservoir management. A new production 

strategy is obtained every time the models are updated with new information, and the 

strategies with and without additional information can be compared in terms of the value 

of the optimization objective function (typically NPV) obtained when applying these 

strategies to a virtual asset (a synthetic truth). The VOI of future measurements is defined 

as the additional value realized by the asset when the future information is considered for 

the optimization of the subsequent well controls. This methodology for VOI assessment 

(Chapter 2) can be adapted to the field development problem (i.e., in the context of 

CLFD), resulting in the procedure depicted in Figure 6.1 which shows the repetition of 

the CLFD exercise for an ensemble of plausible truths to quantify the VOI of the 

analyzed future measurements. 

6.3. Methodology 

In field development planning, the decisions in question concern the implementation of 

an optimized development plan which maximizes the value of the asset. Field 

development plans (FDP) include a variety of design variables, but here we focus on the 

well locations. Restricting the development to cases with vertical wells only, the 

development strategy 1 2[ ]T T T T
Mu u u u  comprises the list of well locations (e.g., 

areal coordinates of well head positions) of the M wells to be drilled throughout the entire 

field life-cycle T (typically tens of years). As new wells are drilled and the field starts to be 

produced, our knowledge about the reservoir changes. Thus determining a single 

deterministic development plan by performing robust optimization based on the initial 

state of uncertainty is equivalent to ignoring the flexibilities that we have to react on the 

realization of uncertainties, which may lead to suboptimal decisions. 

Here we investigate if the stochastic programming ideas discussed in the previous section 

can be a solution to overcome this limitation within the CLFD framework. The proposed 

procedure is a combination of classical stochastic programming and our previously 

introduced workflow for VOI assessment in CLRM (Chapter 2). We model the field 

development decision making process with the help of elements of the closed-loop 

framework (i.e., ensemble-based uncertainty quantification, model-based optimization and 
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computer-assisted history matching), which allows us to represent the sequential character 

of the decisions while accounting for future information. For that, we refer to this 

approach as informed field development optimization (IFDO). 

The methodology for VOI assessment (Chapter 2) provides a framework to quantify the 

value iJ  to be produced by the asset (here, the ith plausible truth) with the incorporation 

of future information gathered through the designed surveillance strategy (here, the 

measurements collected until drilling the jth well) in a CLFD setting (Figure 6.1). For 

simplicity, we address the case in which the development is carried out in two phases: 

before and after drilling the jth well. 

In the direct approach for robust optimization, we seek to maximize the predicted 

objective function for the ensemble of models with the hope that, once more information 

becomes available, we will have the opportunity to improve our predictive models and 

adjust our strategies to achieve the best possible iJ . In this way the optimization benefits 

from the flexibility to adjust the remaining control variables 

1 , 1 , 2 ,( : ) [ ]i i T i T i T T
post j post j post j post Mt Tu u u u , while the part of the development plan 

prior to the future information ,1 ,2 ,(0 : ) [ ]T T T T
prior j prior prior prior jtu u u u  is fixed and 

consistent with the initial state of uncertainty. We propose here to use iJ  as the cost 

function for our field development optimization problem, in order to quantify the true 

performance that we expect to maximize when optimizing (0 : )prior jtu . In fact, since we 

consider an ensemble of Ntruth equiprobable plausible truths, we still perform robust 

optimization and our new objective function is defined as 

 1
1

1(0 : ), (0 : ), ( : ),
truthN

i i
IFDO j j j post j j

itruth

J t t J t t T t
N

u u u , (6.1) 

where JIFDO is a statistical measure (e.g., the mean in (6.1) and (6.2), or the conditional 

value at risk (CVaR) introduced by Rockafellar and Uryasev (2000) and also used in Siraj et 

al. (2016)) of the ensemble of the objective function values iJ for the individual plausible 

truths. The objective function iJ  for the ith plausible truth is calculated according to the 

workflow in Figure 6.1 and involves the solution of the parameter estimation problem 

given the future information to be gathered until drilling the jth well and re-optimization of 

the well locations of the subsequent wells 1( : )i
post jt Tu . We can also see the optimization 

of this new cost function as a two-stage stochastic model or a nested optimization 
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problem where the outer optimization concerns the well locations of all the wells until the 

jth one (the decision of interest now)  and the inner optimization determines the locations 

of the future wells, which will be different for each one of the Ntruth plausible truths 

(Figure 6.2). Thus, the IFDO problem can be formulated as 

 1
1

1(0 : ) arg max (0 : ), ( : ),
truthN

i i
IFDO j j post j j

itruth

t J t t T t
Nu

u u u , (6.2) 

where the outcome of the optimization is a single optimal development plan (0 : )IFDO jtu  

until the drilling time of the jth well tj , and Ntruth optimal plans 1( : )i
post jt Tu , 

i = 1, … , Ntruth , for the rest of the life-cycle. 

 

Figure 6.2: Timeline for IFDO: past decisions, decisions of interest and future decisions. 

 

Figure 6.3: Workflow for IFDO for a field development in two phases. 
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The proposed workflow to solve this optimization problem iteratively is displayed in 

Figure 6.3. The procedure resembles the workflow of Figure 6.1, but contains an outer 

iterative loop (shown in blue) to keep updating the first phase of the development plan. 

6.4. Examples 

6.4.1. Simple 2D model 

To test our approach, we used a simple two-dimensional (2D) reservoir simulation model 

to be developed by water flooding. The reservoir (1,000 × 1,000 × 10 m) is an oil-water 

system with a represented 2D Cartesian discretization (40 × 40 × 1 grid blocks). The 

permeability and porosity fields are heterogeneous and present channels whose geometry 

and position are assumed to be uncertain. The plan is to drill four wells to produce this 

reservoir over a period of T = 3,000 days, with two producers (denoted as P1 and P2) and 

two injectors (denoted as I1 and I2). Figure 6.4 shows the reservoir considered in this 

example and also includes some of the model realizations used together with the training 

image needed to generate them (through multi-point statistics with SGeMS; see Strebelle, 

2002). Table 6.1 lists other parameters used in the example. P1 and I1 are drilled 

simultaneously in (previously) optimized locations, and the other two wells have to be 

drilled sequentially after them. The field starts production after P2 is drilled and I2 comes 

on stream 300 days later. We are interested in optimizing the locations of P2 and I2. The 

wells are operated by constant bottom-hole pressure (BHP) with reactive control (i.e., the 

producers are shut in once they reach uneconomical water-cuts). The dashed line delimits 

the active set for the well placement optimization: we remove the possibility of placing 

wells close to the edge of the reservoir to make the optimization problem more 

interesting. 

The production forecasts used to compute the NPV were generated by simulation 

performed with the AD-GPRS reservoir simulator (Zhou, 2012). We used an open-source 

implementation of the particle swarm optimization (PSO) algorithm available for Matlab. 

The PSO settings (i.e., swarm size, number of iterations, etc.) were chosen according to 

the number of optimization variables for each case. 
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Figure 6.4: Simple 2D example: training image used to generate realizations (left), one realization of the 
permeability field with illustrative well locations (middle) and 12 realizations of the permeability field 
(right). 

We note that, although the location of I2 was also to be optimized, the decision of 

immediate interest in this example concerned the location of P2. With that in mind, we 

applied the various approaches presented in the previous section, which are expected, in 

principle, to yield different solutions. We used Ntruth = 30 model realizations honoring the 

data obtained after drilling P1 and I1. These Ntruth = 30 realizations together formed the 

truthM  ensemble of plausible truths, which is the starting point of our approach. The goal 

was to optimize the location of P2 and I2 given the uncertainty described by truthM  to 

Table 6.1: Parameter values for the 2D model. 
Rock-fluid parameters Initial conditions 
ρo = 800 kg/m3 p0 = 300 bar 
ρw = 1,000 kg/m3 Soi = 0.9 [–] 
μo = 2 cP Swi = 0.1 [–] 
μw = 1 cP   
Bo = 1 [–]  
cw = 10-5 bar-1  
cf = 10-5 bar-1  
no = 2 [–] Economic parameters 
Sor = 0.2 [–] ro = 50 $/bbl 
kro,wc = 0.8 [–] rwp = 15 $/bbl 
nw = 2 [–] rwi = 15 $/bbl 
Swc = 0.2 [–] b = 0 %/year 
krw,or = 0.75 [–]   
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maximize the conditional value at 25 % risk (CVaR25) of the NPV of the realizations. 

CVaR25 is computed as the average of the NPV of the samples below the P(100-25) = P75 

percentile of the NPV distribution (here, Px is defined as the probability that x % of the 

outcomes exceeds this value). This optimization problem had four variables (i.e., two sets 

of areal coordinates for P2 and I2). 

For this example, we considered the situation where we deal with perfect information 

(“clairvoyance”) after knowing the location of P2. This consideration simplifies the 

computation procedures (Figure 6.1 and Figure 6.3) because, with perfect revelation of the 

truth, the solution of the parameter estimation problem is known and deterministic (after 

defining the location of P2, we assume to automatically know which plausible truth is the 

actual truth). This also means that the inner-level optimizations (to determine the location 

of I2) are deterministic, which reduces the computational cost of the whole procedure. 

Moreover, as we showed in Chapter 2, the assumption of clairvoyance represents the 

“technical limit” for any case with future imperfect information, serving as an upper 

bound for the analysis.  

We then considered the following cases to illustrate the value of our proposed 

methodology: 

(a) Open-loop optimization. We optimize the location of P2 and I2 under uncertainty, 

in a robust open-loop fashion. We simply seek the best placement given the initial 

state of uncertainty (we do not consider the fact that clairvoyance will become 

available after drilling P2). 

(b) CLFD with clairvoyance. We first optimize the location of P2 and I2 under 

uncertainty, in a robust open-loop fashion. Then, clairvoyance becomes available 

after drilling P2 and we take advantage of that by re-optimizing the location of I2 

knowing in all cases the plausible truth for the spatial distribution of permeability 

and porosity. 

(c) IFDO with clairvoyance. We optimize the location of P2 and I2 under uncertainty, 

but considering in the optimization that clairvoyance will become available after 

drilling P2, which then allows us to optimize the location of I2 having access in all 

cases to the spatial distribution of permeability and porosity of the plausible truth. 
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(d) Prior clairvoyance. We include the utopic case where there is no geological 

uncertainty; this allows us to optimize the location of P2 and I2 having access in all 

cases to the spatial distribution of permeability and porosity of the plausible truth. 

 

 

Figure 6.5: Well locations obtained for the 2D model: (a) robust open-loop optimization, (b) CLFD with 
clairvoyance for multiple plausible truths, (c) IFDO with clairvoyance and (d) optimization under prior 
clairvoyance. At the bottom, pdf and cdf distribution for the different cases. 

Figure 6.5 depicts the results we obtained for this 2D model. The maps on the top show 

the optimal locations of the wells obtained with the different approaches, displayed on top 

of the mean permeability field of the plausible truths considered. Figure 6.5 (bottom) also 

shows the probability density function (pdf) and cumulative distribution function (cdf) 

corresponding to the solutions found. We notice that the proposed IFDO approach 

results in higher NPV values than those obtained with the conventional robust open-loop 

optimization. We also observe that the CLFD is able to improve the development plan by 

re-optimizing the location of I2 once the uncertainty is revealed. These results confirm 

that, as expected, the more operational flexibility is included in the optimization, the more 

value can be obtained with additional knowledge (clairvoyance in this case). Here, the 

flexibility lies in the fact that the location of I2 does not have to be determined 

immediately, allowing us to consider a variety of scenarios for this decision. 
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Figure 6.6: Results for the 2D model: CVaR25 (left) and mean (right) of NPV for the different cases. 

Figure 6.6 displays the results in terms of the CVaR25 and the mean of cumulative NPV 

over the field life-cycle for all the approaches, and Table 6.2 shows the same results but 

for the final cumulative NPV only. We notice that, although the CLFD and the IFDO 

approaches result in virtually the same CVaR25 values, the latter produces higher mean 

values, which is reflected in the pdf and cdf distributions observed in Figure 6.5. For this 

example, the gain obtained with the IFDO approach is of approximately $ 4.5 and $ 6.7 

million for the CVaR25 and mean values respectively, an increase of approximately +3.5 % 

and +5.0 % in comparison to conventional robust optimization. We also observe that, 

while conventional robust optimization indicates the optimal location of P2 to be at (6,8) 

(in grid block coordinates), IFDO finds the optimum to be at (5,5). These two locations 

are about 80 m apart from each other. Although small, this change seems to have an 

impact on the value that the asset can produce. 

Although the performance of the CLFD approach is slightly inferior, the number of 

reservoir simulations required is significantly smaller. Besides that, the output of the 
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Table 6.2: Summary of results for the 2D model. 

Robust open-loop CLFD with clairvoyance IFDO with clairvoyance Prior clairvoyance 

uP2 = (6,8) uP2 = (6,8) uP2 = (5,5) uP2 = multiple 

uI2 = (7,31) uI2 = multiple uI2 = multiple uI2 = multiple 

CVaR25 = 125.2 ×106 $ CVaR25 = 129.8 ×106 $ CVaR25 = 129.6 ×106 $ CVaR25 = 134.3 ×106 $ 

 ∆CVaR25 = +3.7 % ∆CVaR25 = +3.5 % ∆CVaR25 = +7.3 % 

μ = 131.3 ×106 $ μ = 135.9 ×106 $ μ = 137.9 ×106 $ μ = 140.4 ×106 $ 

 ∆μ = +3.5 % ∆μ = +5.0 % ∆μ = +6.9 % 
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CLFD procedure also consists of a single location for P2 and an ensemble of well 

locations for I2. Thus, the CLFD solution for multiple plausible truths can be seen as an 

approximation for IFDO and a means of deriving flexible field development plans. This 

can be useful for cases where we cannot afford the amount of simulations required by 

IFDO. 

 

Figure 6.7: NPV and field cumulative production for the 2D model: (a) robust open-loop optimization, 
(b) CLFD with clairvoyance for multiple plausible truths, (c) IFDO with clairvoyance and (d) 
optimization under prior clairvoyance. 

As an attempt to explain the improvements achieved by the IFDO, we can look at the 

cash flow and production profiles obtained for the plausible truths by following the 

different approaches. Figure 6.7 depicts these results. We observe a larger spread in the 

cash flow and oil production curves for the robust open-loop optimization (Figure 6.7 (a)). 

We see for the same case that for some of the plausible truths the optimal strategy turns 

out to be an aggressive one resulting in uneconomical production prematurely, with a 

maximum NPV before T = 3,000 days. The CLFD approach (Figure 6.7 (b)) seems to be 

successful in compensating the effect of the wrongly chosen for P2 location, and 

extending the economic life of the field production by adjusting the location of I2. But 

still we observe (based on the water production curves) that certain producers are shut-in 

by reactive control quite early in time. By proposing a slightly different location for P2, 

IFDO (Figure 6.7 (c)) is able to postpone the shut-in times, making the field operate at 
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economic levels for a longer period. The optimization under prior clairvoyance (Figure 6.7 

(d)) performs even better by postponing the water breakthrough times for most of the 

plausible truths and reducing even further water production while boosting oil production 

and reducing the uncertainties (i.e., smaller spreads for the NPV and oil production 

curves). 

6.4.2. Bean model with faults 

As a second case study, we tested the different approaches in a synthetic field. This 2D 

reservoir model is named the “Bean model” due to the characteristic shape formed by its 

3,398 active cells. The reservoir (approximately 2,325 × 1,800 × 10 m) is an oil-water 

horizontal system with heterogeneous permeability and porosity fields based on a two-

dimensional Cartesian discretization (93 × 72 × 1 grid blocks) of a channelized formation. 

The permeability and porosity fields are assumed to be known. The field is split in 4 

sectors by 3 faults, whose sealing capacities are unknown: they can be perfectly sealing or 

perfectly permeable. Given the binary character of the uncertainty on the sealing capacity 

of the 3 faults, we have 2³ = 8 possible realizations, which are assumed to be 

equiprobable. The sealing faults are modeled as flow barriers by modifying the 

transmissibility multipliers of the neighboring grid blocks. Figure 6.8 shows the Bean 

model with faults. The colorful cells (i.e., not the faded ones close to the fault lines or the 

edge of the reservoir) represent the active set for the well placement optimization: we 

avoid placing wells close to the flow barriers and to the edge of the reservoir to make the 

problem more realistic. 

 

Figure 6.8: Bean model with faults: known permeability and porosity fields and split in 4 sectors by 3 
faults with unknown sealing capacity. 
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This green field is to be developed by water flooding with 3 producers (P1, P2 and P3) to 

be drilled and to start production at t = 0 and 3 injectors (I1, I2 and I3) to be drilled and 

to start injection after one year (t = 360 days). The producers are operated by constant 

BHP with reactive control and the injectors by prescribed injection rates with a fixed 

upper limit for the injection pressure. Table 6.3 lists other parameters used in the example. 

The idea here was to create an example with features that could change dramatically the 

way well locations are planned, and to engineer a case where an initial wrong decision 

could hardly be compensated by future decisions. In this example the decision of 

immediate interest concerns the locations of the producers, and the flexibility available is 

the opportunity of fixing the locations of the injectors in the future. The Ntruth = 8 model 

realizations representing the initial uncertainty form the truthM  ensemble of plausible 

truths, which is the starting point of our approach. The goal was to optimize the location 

of all the wells given the uncertainty described by truthM  to maximize the CVaR25 of the 

NPV of the realizations. This optimization problem has 12 variables (6 sets of areal 

coordinates for the 3 producers and the 3 injectors). Like for the 2D model, the 

production forecasts were generated with the AD-GPRS reservoir simulator. The 

Table 6.3: Parameter values for the Bean model. 

Rock-fluid parameters Initial conditions 
ρo = 800 kg/m3 p0 = 300 bar 
ρw = 1,000 kg/m3 Soi = 0.9 [–] 
μo = 5 cP Swi = 0.1 [–] 
μw = 1 cP   
Bo = 1 [–]  
cw = 10-5 bar-1  
cf = 0 bar-1  
no = 2 [–] Economic parameters 
Sor = 0.2 [–] ro = 300 $/m³ 
kro,wc = 0.8 [–] rwp = 30 $/m³ 
nw = 2 [–] rwi = 15 $/m³ 
Swc = 0.2 [–] b = 0 %/year 
krw,or = 0.75 [–]   
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optimizer was also the same PSO implementation used in the previous example. In order 

to show the value of IFDO we considered the cases below: 

(a) Open-loop optimization. We optimize the locations of all the wells under 

uncertainty, in a robust open-loop fashion. We simply seek the best placement 

given the initial state of uncertainty (we do not consider the fact that clairvoyance 

will become available after drilling P1, P2 and P3). 

(b) CLFD with clairvoyance. We first optimize the locations of all the wells under 

uncertainty, in a robust open-loop fashion. Then, clairvoyance becomes available 

after drilling the producers and we take advantage of that by re-optimizing the 

locations of the injectors knowing in all plausible truth cases whether the faults are 

sealing or not. 

(c) IFDO with clairvoyance. We optimize the locations of all the wells under 

uncertainty, but considering in the optimization that clairvoyance will become 

available after drilling the producers, which then allows us to optimize the locations 

of the injectors knowing in all plausible truth cases whether the faults are sealing or 

not. 

(d) Prior clairvoyance. We include the utopic case where there is no geological 

uncertainty; this allows us to optimize the locations of all the wells having 

knowledge of the sealing capacity of the faults. 

(e) Engineering solution. For comparison, we also include a likely solution that a 

reservoir engineer would find to this problem, by placing the wells in 3 producer-

injector pairs in high permeable areas on each one of the 3 largest sectors with the 

producers in the north part of the field and injectors in the south. 

Figure 6.9 shows the results obtained for the Bean model with faults. The maps at the top 

contain the optimal well locations for the different approaches and the bar chart at the 

bottom shows a comparison of the different solutions for each one of the 8 realizations 

considered. The first point to note is that the robust open-loop optimization already 

represents a great improvement (+16.3 % in terms of CVaR25 or +17.6 % in terms of 

mean) to the typical engineering solution and that we test a new approach to improve this 

already optimized solution. Another point to highlight is that, like for the previous 
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example, the development plans that embrace flexibility (i.e., with multiple well location 

scenarios) are expected to deliver more value. 

In the search of the 8 CLFD solutions, we identified two different solutions: the CLFD1 

solution was optimal for 6 out of the 8 realizations and the CLFD2 solution was the best 

one for the other 2 realizations. When testing these two CLFD solutions on the entire set 

of initial realizations, we realized that the CLFD1 solution resulted in a higher CVaR25 

value than the one achieved with the open-loop approach. This means that the robust 

open-loop optimization was not able to find the global optimum for this problem, despite 

the use of PSO which is considered by many to be one of the most efficient global search 

methods. Therefore, the CLFD1 solution is also included in the analysis of the results (case 

(f) in Figure 6.9) as the best robust solution found. 

Back to Figure 6.9, we observe that the producer to be drilled in sector B has a completely 

different location in the IFDO (c) solution compared to the location determined with the 

conventional approach (a) and (b). This change allows the locations of the injectors to be 

optimized differently resulting in NPV values significantly higher for 4 realizations and 

slightly lower for 2 realizations. We also notice that the optimizations with initial 

clairvoyance (d) lead to well locations which produce a lot more value for most of the 

realizations. Finally, we draw the attention to the fact that realizations 5 and 8 behave as 

worst case scenarios and that there does not seem to be a lot of room for increasing their 

NPV compared to the robust open-loop solution. 



6. Informed field development optimization 
 

134 

6

 

 

Figure 6.9: Optimized well locations for Bean model and their respective performance in terms of NPV 
values for the 8 plausible truths considered: (a) robust open-loop optimization, (b) CLFD with 
clairvoyance for multiple plausible truths, (c) IFDO with clairvoyance and (d) optimization under prior 
clairvoyance, (e) engineering solution and (f) one of the CLFD solutions which outperformed (a) as 
robust solution. 

 

Figure 6.10: Results for the Bean model: CVaR25 (left) and mean (right) of NPV for the different cases. 
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Figure 6.10 displays the same results but in terms of CVaR25 and mean values of NPV 

over time. Except for the engineering solution all the other CVaR25 curves are very close 

to each other, reflecting the presence of the 2 realizations behaving as worst case 

scenarios. The mean values however reveal more differences between the different 

solutions because the mean also accounts for the best realizations. This brings us to the 

discussion on what we should aim for in optimizing cases like this where the uncertainties 

are of a binary nature. Here we maximize CVaR25 of NPV but we could also optimize 

other statistical metrics of the NPV distribution, such as the mean. In the end we would 

like to determine development plans that improve entire probability distributions, and we 

do not seem to be able to achieve that by focusing on a single statistical metric as the cost 

function. 

In order to understand what causes the IFDO strategies to result in more value, we try to 

diagnose the efficiency of the field water flooding by analyzing the production profiles and 

the sweep of the reservoir. Figure 6.11 shows the cumulative NPV and field cumulative 

production curves for all the 8 realizations in the same six cases from Figure 6.9. We note 

that the cases with higher NPV values correspond to the cases with larger oil production 

volumes, meaning that the produced water has a smaller effect given the reservoir life-

cycle of T = 3,600 days. We also observe that the solutions for IFDO (c) and prior 

clairvoyance (d) perform the best and exhibit the largest spreads for the oil production and 

NPV curves. This is the opposite to what was observed in the 2D example (section 6.4.1). 

In Figure 6.12 we compare the final water saturation distributions (at t = 3,600 days) for 

all the cases. We can see that the approaches considering more operational flexibility with 

multiple well locations result in larger flooded areas, which means that larger volumes are 

being produced. 

Table 6.4 summarizes all the results obtained for the Bean model example. It shows the 

well locations optimized for the different cases and it compares the final cumulative NPV 

obtained for the plausible truths expressed in CVaR25 and mean values. If we consider the 

CLFD1 solution as the baseline for comparison, we observe a modest gain of 

∆CVaRCLFD1 = +1.3 % with IFDO. The improvement is ∆μCLFD1 = +6.1 % if we 

compare the results in terms of mean NPV values. Table 6.4 contains also the percentage 

gains when the baseline for comparison is the engineering solution or the solution 
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obtained from the PSO robust open-loop optimization. We also highlight the significant 

change in location of one of the producers by following the IFDO approach: conventional 

optimization would place P3 at (50,29) and IFDO at (55,58), more than 700 m far apart. 

Such a change could have a major impact on decisions regarding the design of surface 

facilities and the allocation of drilling resources. 

 

Figure 6.11: NPV and field cumulative production for the Bean model for the same six cases from Figure 
6.9. 

Based on these results, we started questioning whether the choice of using CVaR25 as a 

cost function was an appropriate choice for this case where clearly the 2 worst realization 

dominate this statistical metric. We then repeated the same experiments but this time 

maximizing the mean instead. The new optimizations resulted in very similar solutions for 

the CLFD and IFDO approaches, meaning that the producers ended up being placed in 

the same locations for both the conventional robust optimization and our proposed 
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method. In other words, there was no advantage in pursuing the computationally 

expensive IFDO when maximizing the mean of NPV for this example. 

 

Figure 6.12: Final saturation distributions for the same six cases from Figure 6.9 (Bean model). Permeable 
faults are indicated in red and sealing faults in blue. 
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6.5. Discussion and conclusions 

We have identified an opportunity to improve simulation-based field development 

optimization. We developed a workflow which allows us to design flexible drilling plans 

that account for the fact that uncertainties are not static throughout the decision making 

process. We believe this work to be a first attempt in changing the way we approach the 

field development problem in order to benefit as much as possible from the operational 

flexibility. Moreover, our proposed procedure provides a framework to generate multiple 

FDP scenarios which can be helpful to communicate this flexibility. Our methodology 

makes use of many complex elements (e.g., simulation-based optimization, model 

inversion, value of information and high-performance computing) that endows the 

research and the corresponding software implementations with a relatively high level of 

complexity. 

Table 6.4: Summary of results for the Bean model (values in ×106 $). 

Engineering Robust open-loop CLFD1 CLFD IFDO Prior clairvoyance

uP1 = (14,43) uP1 = (54,24) uP1 = (54,24) uP1 = (54,24) uP1 = (56,23) uP1 = multiple 

uP2 = (48,27) uP2 = (22,58) uP2 = (22,58) uP2 = (22,58) uP2 = (22,58) uP2 = multiple 

uP3 = (59,21) uP3 = (50,29) uP3 = (50,29) uP3 = (50,29) uP3 = (55,58) uP3 = multiple 

uI1 = (22,58) uI1 = (13,42) uI1 = (52,55) uI1 = multiple uI1 = multiple uI1 = multiple 

uI2 = (52,61) uI2 = (40,36) uI2 = (13,43) uI2 = multiple uI2 = multiple uI2 = multiple 

uI3 = (66,50) uI3 = (67,42) uI3 = (67,42) uI3 = multiple uI3 = multiple uI3 = multiple 

CVaR25 = 122.7 CVaR25 = 142.7 CVaR25 = 146.2 CVaR25 = 146.2 CVaR25 = 148.2 CVaR25 = 149.7 

 ∆CVaReng = +16.3 % ∆CVaReng = +19.2 % ∆CVaReng = +19.2 % ∆CVaReng = +20.8 % ∆CVaReng = +22.0 % 

  ∆CVaRrob = +2.5 % ∆CVaRrob = +2.5 % ∆CVaRrob = +3.9 % ∆CVaRrob = +4.9 % 

   ∆CVaRCLFD1 = 0.0 % ∆CVaRCLFD1 = +1.3 % ∆CVaRCLFD1 = +2.4 % 

μ = 130.5 μ = 153.4 μ = 159.1 μ = 159.9 μ = 168.8 μ = 180.4 

 ∆μeng = +17.6 % ∆μeng = +21.9 % ∆μeng = +22.5 % ∆μeng = +29.3 % ∆μeng = +38.3 % 

  ∆μrob = +3.7 % ∆μrob = +4.2 % ∆μrob = +10.0 % ∆μrob = +17.6 % 

   ∆μCLFD1 = +0.5 % ∆μCLFD1 = +6.1 % ∆μCLFD1 = +13.4 % 
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We have tested the IFDO approach in two synthetic case studies with the assumption of 

availability of future clairvoyance and we obtained improved results compared to 

conventional optimization, which considers the uncertainties to be static. The additional 

values were in the range of $ 2 to $ 9 million in terms of CVaR25 and mean of NPV, 

representing gains in the order of 1 % to 6 %. This confirms the potential of the IFDO 

approach. 

In this work, we applied the methodology only to examples considering future 

clairvoyance. This assumption implies that the revelation of the truth is always perfect and 

does not depend on the current decisions. We believe IFDO to be even more 

advantageous for cases with imperfect information where the outcome of future 

measurements depends on current decisions, leading to a larger impact on the 

optimization of the subsequent decisions. However, this is yet to be confirmed by 

applying IFDO to suitable case studies. 

One of the biggest challenges of this research is related to the fact that there are no simple 

benchmark cases truly designed to demonstrate the value of accounting for time-

dependent uncertainties. Here we tried to use our intuition and experience to come up 

with synthetic examples where future information could make a difference while 

remaining realistic and simple enough to allow a proof of concept within reasonable 

computation times. The truth is that the decision making process becomes quite elaborate 

even for cases with just a few well locations to be determined. In practice, we are not 

certain whether the examples presented here are good candidates to illustrate the 

advantages of IFDO and an effort is necessary to find an appropriate benchmark case for 

further research in simulation-based field development optimization under uncertainty. 

As recommendations for future work in the same research line, we believe the focus 

should be in making our methodology more practical by reducing the computational costs. 

The use of approximations for the reservoir simulation models and at the optimization 

level will be essential to apply the ideas we propose here to real-field cases. Recently, 

Shirangi and Durlofsky (2016) presented new ideas on how to select subsets of 

representative models in a smart way to reduce the computational burden of similar 

workflows, a topic which we also addressed in Chapter 4. Another possible alternative 

could be to combine the ideas presented here with the approach of Özdogan and Horne 
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(2006) which also account for time-dependent uncertainties and look for more tractable 

solutions which can also deliver flexible well placement strategies. Finally, although 

conceptually it should not be difficult, there is still work to be done to implement our 

IFDO approach for other types of decision variables besides well locations (e.g., number 

of wells, well type, drilling sequence and time). 
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Conclusion 

This chapter provides an overview of the conclusions of this research, highlighting the 

main findings of each chapter, followed by a list of recommendations for future research 

on topics related to VOI assessment in CLRM. 

7.1. Conclusions 

Chapter 1 

 An a-priori assessment of the value of future measurements is relevant to the design 

of reservoir surveillance plans. Very few studies have addressed this topic in the 

reservoir engineering community. Previous works have proposed to quantify the 

value of observations in terms of their ability to improve our knowledge (i.e., 

reservoir models and simulation forecasts). In this thesis we have identified the 

opportunity to take a step further and include the decisions into the assessment, as it 

is recommended in the field of decision analysis. 

Chapter 2 

 The CLRM framework can be used for VOI assessment in reservoir management 

applications. By combining the elements of the CLRM with synthetic truth and data 

it is possible to “close the loop” in the FDP phase to determine the value of future 

measurements before deploying them. The data assimilation step serves as a Bayesian 

environment to quantify the updates in the knowledge (i.e., reservoir 

characterization, simulation forecasts) based on the future observations while the 

optimization step constitutes a tool to quantify how the changes in knowledge affect 

the reservoir management decisions. Finally, the implementation step provides the 
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opportunity to predict the performance of the decisions with and without the 

additional information from future measurements when applied to the synthetic 

truth. Hence, the proposed methodology determines the VOI that accounts for both 

the information content of the measurements and the information timing with 

respect to the decisions to be made, which makes it a more complete approach to 

estimate the VOI in a reservoir engineering context. 

 VOI assessment only makes sense in the presence of uncertainties. Because of that, 

the value of future measurements is uncertain itself: although we control the design 

of the surveillance plans, we cannot know the outcome of the measurements in 

advance. The methodology described in this work addresses this point by considering 

an ensemble of plausible truths, allowing us to obtain samples of the VOI as a 

random variable. 

 The proposed methodology for VOI assessment is generic and flexible: 

 It can be implemented with different algorithms and tools. 

 It can assess the value of measurements of different type (e.g., well data, field-

wide sensing data), location, time and frequency, precision and accuracy, etc. 

 It can be useful in a variety of applications of decision making under 

uncertainty, not only in reservoir management. 

 The proposed methodology can also be used to quantify the VOC. Despite being 

unrealistic, the assumption of clairvoyance provides a way of estimating the technical 

limit for the achievable added value for any surveillance strategy. Besides that, the 

computational costs are significantly lower for VOC calculation because there is no 

need to perform history matching and the optimizations are deterministic once the 

clairvoyance becomes available. The results obtained confirmed that the VOC 

constitutes an upper bound for the VOI of imperfect observations. The VOC tends 

to decrease over time, following the decrease in the number of degrees of freedom or 

flexibility left to enable value. Moreover, VOC is positive for all the plausible truths, 

whereas the VOI of imperfect measurements can be negative in some cases. 

 As main limitations of our proposed method, we can list: 
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 It cannot assess the VOI in the presence of “unmodeled” uncertainties (i.e., 

unknown unknowns). Nevertheless, we believe it to be a limitation of any 

approach for a priori analysis of future measurements. 

 The VOI assessment is susceptible to the limitations of the tools used to 

implement it. In particular, the VOI obtained can be affected by the inability of 

the optimizers to guarantee global optimal solutions. This, however, is a 

drawback of any framework relying on optimization algorithms. In practice, one 

should use the same tools that would be used to implement the CLRM in an 

operational setting when assessing the VOI in the FDP phase. 

 We have not considered the effect of the decision maker’s risk preference in the 

VOI assessment. Through the entire thesis we have assumed that the decision 

maker is risk-neutral. 

 A rigorous VOI assessment relying on high-fidelity reservoir simulations and a 

typical number of model realizations can be computationally prohibitive for 

large-scale applications. An adequate use of approximations is necessary to 

make the approach tractable in practice. 

Chapter 3 

 The proposed methodology can be easily extended to assess the VOI for multiple 

observation times, without a significant increase of computational costs. For that, the 

“loop is closed” multiple times for each plausible truth; there is no need to consider 

new plausible truths as the workflow goes through the observation times. In this 

setting, the cumulative VOI tends to increase over time, as more and more 

information is gathered. 

 The workflow for VOC calculation becomes more complex when considering 

multiple observation times. Because imperfect information becomes available at 

every observation time prior to the moment of clairvoyance, the procedure requires 

the solution of history matching and robust optimization to “close the loop” multiple 

times. This means that VOC still decreases over time, but at a slower rate, until 

getting equal to the cumulative VOI of the multiple imperfect measurements at the 

last observation time. Thus, the trend of VOC over time is no longer the same for 
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any surveillance plan because it becomes dependent on the imperfect observations 

considered in the analyzed plan. However, VOC still constitutes an upper bound for 

VOI at any time. 

Chapter 4 

 The VOI assessment can be significantly accelerated by reducing the size of the 

ensembles of model realizations considered in the analysis. Subsets of representative 

models can be selected with the help of clustering techniques. There are two main 

opportunities to reduce the computational costs of the VOI workflow, namely by 

reducing: the size of the ensembles used in the robust optimization and history 

matching steps, and the number of plausible truths considered. Typically, we are able 

to reduce the size of the ensembles from 50-100 to 5-10 realizations (i.e., a factor of 

10 approximately). Because of the loop structure of the VOI workflow, the total 

speed-up is of nearly two orders of magnitude to keep a fair approximation of the 

results obtained with the rigorous VOI procedure. These measures allowed us to 

apply the VOI assessment methodology to a larger case study, showing that, with 

further improvements, it may become more tractable even for real-field applications. 

 Clustering techniques are powerful tools but there is not a one-fits-all solution. These 

methods rely on dissimilarity measures to distinguish and cluster the model 

realizations, and the choice of these measures is extremely case dependent. There are 

different opportunities to apply clustering within the VOI workflow, and the 

dissimilarity measures used must be fit for these different purposes: 

 When selecting representative models for history matching and robust 

production optimization, dissimilarity measures based on model-based features 

(e.g., reservoir parameters, flow patterns and production predictions) work well. 

 To identify representative plausible truths, it is more appropriate to consider 

dissimilarity measures determined by decision-based features (e.g., optimal sets 

of controls, improvements in objective function). 

 In order to be effective in practice, the use of clustering techniques needs to be done 

carefully: 
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 When dealing with high-dimensional datasets, projection and decomposition 

techniques are useful to reduce the dimensionality of the data and avoid 

spurious correlations between the samples which can lead to meaningless 

clustering results. 

 When selecting few representative models (e.g., 5-10), weighting the realizations 

has a significant impact on the ability to approximate the results of the full 

ensemble. 

Chapter 5 

 The current research state-of-the-art for optimization under uncertainty in reservoir 

engineering applications does not account for the availability of future information 

throughout the producing life of the reservoir, considering that uncertainties are 

static. This assumption is a limitation of the robust optimization approach and may 

lead to suboptimal production strategies. 

 We have identified the opportunity to integrate our proposed VOI methodology 

within the optimization framework to determine production strategies that maximize 

not only the primary objective (e.g., NPV or recovery) but also the value of future 

measurements. As a matter of fact, these two objectives are not in conflict because, 

implicitly, the VOI procedure itself also aims to maximize the primary objective. 

Therefore, we address this optimization problem more naturally in a nested 

formulation rather than in a multi-objective setting. The new IPO approach also 

allows us to overcome some of the limitations of the conventional robust 

optimization, such as its inability to embrace the flexibility of production strategies 

and to account for time-dependent uncertainty. 

 The proposed IPO approach takes advantage of the fact that we have control on 

which measurements will be available in the future because we design the surveillance 

plan. A single production strategy has to be determined for the period of time prior 

to the future observations so that it can be implemented in reality, but a range of 

strategies can be derived for the remaining of the reservoir life-cycle because these 

decisions have to wait to be determined after the future information is gathered. This 

allows us to capture the future flexibility of the production strategies. As a result, the 
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methodology delivers a flexible strategy which is optimal for the initial uncertainty 

and the future measurements planned, unlike the myopic strategy obtained by the 

conventional robust optimization approach which ignores completely the fact that 

future information will affect the operational decisions in the future. 

 Results from our case study confirm that IPO can improve the way we approach the 

reservoir management problem, especially in situations where wrong decisions 

cannot be entirely compensated by the remaining degrees of freedom of the control 

problem. We attribute the improved performance to a combination of multiple 

effects, which cannot be easily decoupled and require further investigation to be fully 

understood. 

 The extension of the IPO approach to cases with multiple future observations 

requires simplification of the structure of the problem to be tractable. Although 

previous work in other fields investigated the use of decomposition and constraint 

relaxation techniques for this purpose, we still need solutions for frameworks that 

rely on reservoir simulation models. In this thesis, we have proposed a possible 

solution that prunes the scenario tree by ignoring the branching which takes place 

after the two first stages, but the implications of this choice have not been studied in 

details. 

Chapter 6 

 The closed-loop and VOI frameworks are also relevant to field development 

optimization. In fact, they may be even more important than in reservoir 

management applications because of the larger uncertainties and risks present during 

the FDP phase. Although FDP activities involve other types of decisions and 

measurements, the structure of the problem is similar: the decisions (e.g., drilling 

locations, drilling order) are also made sequentially and under uncertainty, and 

additional information (e.g., well logs, production data) also becomes available along 

time. 

 The sequential nature of drilling activities combined with the endogenous nature of 

the geological uncertainties make the current approaches for optimization under 

uncertainty suboptimal. Because there is opportunity for learning by obtaining data 
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as new wells are drilled and start production, the uncertainties are time- and decision-

dependent. The common practice in FDP is to outline development plans based on 

the current state of uncertainty only. In this thesis, we have proposed a method to 

combine optimization with VOI considerations to design development plans which 

account for time-dependent uncertainty. 

 Our IFDO methodology is an attempt to change the way we design and 

communicate field development plans. By proposing a single location for the wells 

which are to be drilled immediately and multiple locations for the wells to be drilled 

in the future, we propagate the geological uncertainties to the development 

recommendation and deliver plans that reflect the flexibility existent in the FDP 

phase. This can provide insight to support field development decisions. 

 We have applied the IFDO approach to synthetic case studies with the assumption 

of future clairvoyance available, and the results showed increases of up to 6 % in 

terms of objective function values. We believe that IFDO can lead to even larger 

improvements in more realistic cases where only imperfect measurements are 

available, because, then, the revelation of uncertainties also becomes decision-

dependent and conventional myopic approaches are more likely to lead to wrong 

decisions. 

 We need suitable case studies to demonstrate the value of accounting for time-

dependent uncertainties. In this thesis we have designed synthetic examples where 

future information could make a significant difference. However, they had to be 

simple enough to allow a proof of concept with reasonable computation time. For 

this reason, we recognize that these examples may not be the best ones to illustrate 

the full potential of IFDO for real applications and we believe that an effort should 

be made to find an appropriate benchmark case for research in field development 

optimization. 
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7.2. Future perspectives 

Further acceleration of VOI assessment 

In Chapter 4, we presented some measures to accelerate our proposed workflow for VOI 

assessment. We explored the use of clustering techniques to smartly select representative 

model realizations which can approximate the uncertainty characterized by the original 

(and usually large) ensembles of realizations. There are, however, other alternatives to 

reduce the computational costs of such a workflow. Techniques such as response surfaces, 

multiscale methods, reduced-order and reduced-physics modeling can be used to construct 

fast-evaluation models to generate approximations of the required forecasts. This could 

facilitate the application of our VOI procedure to larger reservoir models by reducing the 

number of high-fidelity reservoir simulations needed. We could also consider 

approximations at the optimization level, such as changes in the stopping criteria and 

other optimization settings to reduce the number of iterations required, or the use of 

appropriate heuristics to simplify the problem. Thus, there is scope for research on how to 

combine approximations at the simulation, optimization and uncertainty quantification 

levels to come up with more practical procedures for VOI assessment. The main challenge 

is to find a good balance between the accuracy of all these approximations and the 

computational costs. For that, it is important to derive measures to quantify the 

approximation errors so that we can determine the optimal compromise. 

VOI assessment for unknown unknowns 

In Chapter 2, we recognized that one of the limitations of our method is related the 

inability to assess the VOI in cases with “unmodeled” uncertainties. More recently, some 

studies on unregularized history matching have demonstrated that it is possible, in some 

cases, to identify under modeled features from dynamic data; see Joosten et al. (2011), 

Kahrobaei et al. (2014) and Kahrobaei et al. (2015). This is achieved by history matching 

synthetic data obtained with a synthetic truth containing model features that are not 

present in any of the model realizations of the initial ensemble. This reasoning could be 

used to extend our VOI procedure to cases with unknown unknowns, by introducing two 

or more ensembles of plausible truths generated based on different geological 



7. Conclusion 
 

149 

7 

assumptions. Such a modification could also allow us to extend the methodology to assess 

the value of (prior) geological knowledge. 

Different risk preferences 

Different individuals may have different attitudes towards risk. This is an example of 

personal preferences which may cause different decision makers to assess the VOI 

differently. The methodology presented in this thesis assumes an assessment in the 

perspective of a risk-neutral decision maker, and this can be seen as a limitation. In other 

applications, risk preferences are addressed by using utility theory. We believe there is 

scope for future research on how to integrate utility calculations into our framework for 

VOI assessment to overcome this limitation, along the lines of what is discussed in Bailey 

et al. (2011). 

Additional insights from closed-loop solutions 

In Chapter 3, we saw that the VOI assessment for multiple observation times requires us 

to “close the loop” multiple times. By doing that, we perform many history matches and 

optimizations to determine the VOI in the FDP phase. All these calculations produce also 

a large amount of data: optimal production strategies, production forecasts, synthetic 

measurements, model updates, simulated data, etc. Although synthetic, this information 

could be useful to understand the CLRM better, or to make it more efficient when applied 

in the operational phase, serving as a sort of pre-computed operation manual. As we 

mentioned before, one of the limitations of our methodology is related to its high 

computational load. Finding more uses for the information obtained from it can help us to 

promote its practice. 

Formulation for reservoir surveillance optimization 

The ability of assessing the VOI is just the first step to determine optimal reservoir 

surveillance plans. In Chapter 2, we showed how we could use our methodology to 

determine which measurements result in higher VOI. However, there is more to be taken 

into account within a reservoir surveillance optimization problem, such as the deployment 

costs of the measurements or how to model the degrees of freedom of the problem (i.e., 

how to parametrize a reservoir surveillance program). To the best of our knowledge, there 
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are currently no studies establishing a proper formulation for the reservoir surveillance 

optimization problem, for different types of measurements and control variables. We 

believe there is scope for further work in this direction to formalize an accurate problem 

description addressing the decisions made in the design of reservoir surveillance plans 

before we can work on techniques to efficiently solve this optimization problem. 

Joint reservoir surveillance and production optimization 

In Chapter 5, we showed that we can improve production optimization by accounting for 

the fact that we design the reservoir surveillance plans, meaning that we know which 

measurements will become available in the future. However, we did not account for the 

fact that this design can itself be optimized. For every possible surveillance strategy, there 

is an optimal production strategy, which can be determined by following the IPO 

approach described in Chapter 5. A similar structure is present when optimizing well 

locations and well controls simultaneously: for every possible well location configuration, 

there is an optimal set of well controls. This type of problem can be solved with a nested 

optimization approach. Thus, it would also be possible to solve the joint reservoir 

surveillance and production optimization problem. This would require the solution of a 

nested optimization (i.e., the IPO) within another nested optimization to optimize 

reservoir surveillance plans and production strategies simultaneously. The solution of such 

a problem requires further investigation. 

Informed optimization with multiple decision stages 

As discussed in Chapter 5, the informed optimization approach cannot be easily extended 

for cases with multiple stages of decisions without leading to exponential increase of 

computational costs. To make the problem more tractable, researchers in other areas have 

studied the structure of multi-stage stochastic models and how to solve them with the help 

of a variety of computational strategies and approximation measures. Nonetheless, very 

little has been done in adapting these solutions for applications which rely on reservoir 

simulations, opening room for future research. 



7. Conclusion 
 

151 

7 

Link with controllability and observability 

As discussed throughout the chapters of this thesis, our proposed methodology for VOI 

assessment in CLRM combines production optimization and history matching, allowing us 

to quantify how much future measurements impact our knowledge and our decisions in 

terms of enabled value. From modern systems and control theory, it is possible to 

determine the controllability and observability within a system model. In the CLRM 

context, these concepts can be relevant for the optimization of flooding processes and 

computer-assisted history matching; see Zandvliet et al. (2008) and Van Doren et al. 

(2013). Most likely there is a way to interpret the results of our VOI assessment in terms 

of controllability and observability measures. We recommend further research to verify 

this hypothesis, which can lead to a better understanding of the problem and potentially to 

alternative ways to assess the value of future measurements. 

Cross observation sensitivities 

In Chapter 2, we referred to previous work on quantifying the impact of observations in 

reservoir engineering applications (Krymskaya et al., 2010). They showed that a measure 

of the information content of the observations can be obtained from the self-sensitivities 

(i.e., diagonal elements of the observation sensitivity matrix). The observation sensitivity 

matrix also contains information on the cross-sensitivities, the off-diagonal elements 

which measure the impact of the observations on the prediction of other observations. A 

better understanding of these sensitivities can lead to powerful tools. For example, one 

could use the correlations between a certain observation and future model predictions to 

establish a smarter framework for VOI assessment. 

Value of flexibility 

The methodology presented in this thesis is above all a methodology to assess value. 

Within the CLRM framework, we have the possibility of quantifying the VOI of 

measurements which are incorporated to the models through the history matching step. 

However, acquiring additional information is only one of the strategies to cope with 

uncertainties. Investing in flexibility can also be a valuable strategy in uncertain situations 

and our methodology can be used to assess its value. The CLRM framework also handles 

the update of the production strategies through the optimization step and we can use it to 
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quantify the added value of providing additional flexibility to the optimization. There are 

many different types of additional flexibility that can be considered and the moment in 

which it becomes available is a choice of the decision maker. We can model the additional 

flexibility by removing some of the constraints or by introducing new degrees of freedom 

to the optimization problem after the new capacity is available. 
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Nomenclature

 

AD-GPRS = Automatic Differentiation General 
Purpose Research Simulator 
b = discount factor 
B = formation volume factor 
bbl = oil barrel, a unit of volume 
BHP = bottom-hole pressure 
c = compressibility 
C = set of indices (cluster) or partition 
cdf = cumulative probability distribution 
CLFD = closed-loop field development 
CLRM = closed-loop reservoir management 
COK = chance of knowning 
CVaR = conditional value at risk 
d = distance 
d = vector of measured data 
EnKF = Ensemble Kalman filter 
EnOpt = Ensemble Optimization 
F = feature operator 
FDP = field development planning 
H = Heaviside step function 
HOSVD = high-order singular value 
decomposition 
i = index or counter 
IGAI = global average influence index 
IFDO = informed field development 
optimization 
IPO = informed production optimization 
j = index or counter 
J = objective function value 
k = index, counter or relative permeability 
m = vector of model parameters 
M = number of control time intervals or data 
dimensionality 
M = ensemble of model realizations 
MDS = multidimensional scaling 
MRST = Matlab Reservoir Simulator Toolbox 

n = Corey exponent 
N = number of model realizations 
Nobs = number of observations 
NPV = net present value 
O = workflow complexity 
p = pressure 
Px = x % percentile 
pdf = probability density function  
PCA = principal component analysis 
POMDP = Partially observable Markov decision 
process 
PSO = particle swarm optimization 
q = volumetric flow rate 
r = price per unit volume 
S = saturation 
S = observation sensitivity matrix 
SGeMS = Stanford Geostatistical Modeling 
Software 
SVD = singular value decomposition 
StoSAG = Stochastic Simplex Approximate 
Gradient 
t = time 
T = producing lifetime of the reservoir 
u = vector of control variables 
UQ = uncertainty quantification 
VOI = value of information 
VOC = value of clairvoyance 
wct = water-cut 
ԑ = measurement error 
θ = data vectors 
Θ = set of objects (dataset) 
μ = viscosity or mean value 
ρ = volumetric mass density 
σ = standard deviation 
τ = reference time for discount factor 
φi , ψj , χk = basis functions 
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