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Abstract

When a ship motion compensation system carries very high payloads, in the size order of
the displacement of the ship, the load dynamics and ship dynamics influence each other.
What are these dynamics and how can an actuation system counteract or even benefit from
it. Foundations to answer these questions are laid with a selection of literature focusing on
non linear model predictive control, time domain hydrodynamics and motion compensation
or generation mechanisms primarily of parallel robotic platform type. Next a physical scale
experiment in which a heavy hexapod with quasi-static control is placed a ship is investigated.
The instability shown in the experiments shows the severity and justify the topic. A planar
model is estimated that quantifies sources of instability and shows that there are configurations
of system parameters that result in instable behavior. Finally a new conceptual 3 degree of
freedom platform mechanism is developed, and for the first time in literature a 3D coupled
parallel robotic platform - ship dynamic simulation is derived. Two control techniques are
applied, an unsophisticated quasi-static approach and a nonlinear model predictive control
approach. Where for the latter real time capability with true online nonlinear optimization is
achieved, which is also a first for this kind of systems. This model based approach outperforms
the more naive actuation scheme in stability and energy efficiency.

Cover: Detail of Claude Monet, Tempéte, cotes de Belle-1le, 1886, oil on canvas, 65,4 x 81,5 cm, musée
d’Orsay, Paris. Photo: musée d’Orsay
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Chapter 1

Introduction

Offshore to offshore load transfer is a common operation in the industry and especially com-
mon in the installation of offshore structures such as wind turbines. This transfer operation
is in general sensitive to weather and sea state and therefore only possible at mild conditions.
The waiting time for a so called weather window to allow for the operation to proceed is
significant. As offshore time is expensive, all feasible projects to diminish it are of interest to
the industry.

This thesis is focused on facilitating the open sea transfer of heavy components by means of
an motion compensated platform. Actually heavy is kind of an understatement. The system
has to be capable of carrying about 1000 metric tonnes with a center of gravity placed at
about 60 meters above ground. This is about equivalent to all the cars parked at an Ikea
establishment on an average Easter Sunday stacked on one big pile with a height equal to the
length of a football field. Such a system would for example allow the installation of complete
assembled wind turbines in a single lift. The crane could be placed on a fixed structure such
as a jack-up unit Figure 1-1 and with the motion compensating system working as intended,
this operation could perhaps even take place in storm conditions. Advantage of a stabilized
platform as opposed to moving the components to the installation site on the jack-up itself
is found in the unlimited operation water depth, as there is no ground contact, and higher
possible travel speed as a dedicated component supply vessel could be employed with a hull
optimized for traversing.

The main challenge in enabling such a system is found in the dynamics. As the loaded
platform is a significant fraction of the total systems mass, the forces applied to the platform
to compensate the movements, have reaction components that are high enough to influence
the ship movements. This effect comparable to standing up straight in a rowing boat and
trying to maintain balance. Pushing too hard with one leg rolls the boat to that side risking
instability and a wet suit. As a result the dynamics of the forced platform and floating ship
cannot be considered as two separate components. They have to be examined in a fully
coupled framework.

All power used to drive the platform and its hydraulics must be developed on board. But
Popey can eat only so many cans of spinach, therefore wherever possible handling the available
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2 Introduction

power efficient improves performance. Next to performance improvements, energy savings
could also result in lower power requirements for the same compensation demand and thus
result in a smaller (cheaper) system.

Overview of the thesis This work is divided in three chapters that discuss separate subjects
and tackle the proposed problem. In Chapter 2 the theoretic foundations are laid upon which
the latter derivations are based. This chapter cites and presents results from literature in the
fields of Non Linear Model Predictive Control, a technique to incorporate model knowledge
in an actuation scheme based on optimization, ship hydrodynamics used for time domain
simulation and platform and other robotic motion compensating and generating mechanisms.

In Chapter 3 a documented movie of the scale model testing phase of the Ampelmann project
is analyzed. In this experiment a relatively heavy platform is placed on a small boat. The
interaction results in a resonating, unstable system. From this movie a linear model is es-
timated in order to obtain quantitative statements about the causes of this instability. The
methods by which this model is estimated are non standard, as the model structure is fixed
to a physical form. This application of the estimation theory and the method of obtaining
quantitative statements about regions of stability are developed by the writer.

Chapter 4 derives the dynamics of a new kind of 3 degree of freedom motion compensating
parallel platform coupled to a ship. An extension of the known literature of serial robots
on non-inertial bases is accomplished by this parallel platform derivation. The forward and
inverse kinematics of this new mechanism are found by methods known from flight simula-
tor design theory, but extended by a instantaneous velocity solution of the linkages of this
platform. The derived model is then used in a time domain simulation and a rather naive
proportional integral derivative controller, based on the quasi-static assumption (the ship is
fixed) is implemented. This controller is entered in a competition with an implementation
of a true online optimizing non linear model predictive controller. Implementing a control
strategy of this kind to a ship based robot has not been reported in literature.

S

Figure 1-1: Visualization of ship motion compensating platform in action. A wind turbine that
is placed on the platform is kept at a fixed position, therefore the crane placed on the jack-up
unit can lift the structure gradually increasing tension in the main hoist.
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Chapter 2

Foundations

A detailed literature and patent study is performed, focusing on three domains that each
relate to the main goal: enabling a ship motion compensation platform, stabilizing very high
payloads. Where high payloads should be understood as similar in order of magnitude to
the displacement of the ship, so several hundreds of metric tonnes. The three domains are
combined in one sentence as:

Model predictive control of a ship motion compensating platform
| S —— —_——
Section 2—1 Section 2—2 Section 2—3

Each of these subjects is discussed in a separate section. In the "Model predictive control"
section a selection of articles and books considering mainly nonlinear model predictive con-
trol is presented. This subject is chosen as a solution to our hypothesis that the similar mass
motion compensation system requires more sophisticated control than standard proportional-
integral-derivative (PID) control. In order to supply the controller with a useful prediction
model, this model has to be obtained. The section "Ship motion" discusses modeling and
some identification of ships for control purposes. The section "Platform" focuses more on the
practical side and contains a patent search and a selection of (ship) motion compensating/-
generating machines and mechanisms.

2-1 Model predictive control

2-1-1 Linear model predictive control

Introduction Mayne et al. (2000) [1] introduce the subject in their survey paper as: "Model
Predictive Control (MpPC) is a form of control in which the current control action is obtained
by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using
the current state of the plant as the initial state; the optimization yields an optimal control
sequence and the first control in this sequence is applied to the plant." Ravi et al. [2] define
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4 Foundations

MPC a bit wider: "a family of control algorithms that employ an explicit model to predict the
future behavior of the process over an extended prediction horizon."

The control signal is found via a minimization of an objective consisting of a combination
of tracking performance and control effort called performance index or cost function. This
methodology allows the controller to comply to constraints on the input (e.g. actuator force
constraints) and on the predicted output, which is one of the virtues of mMpc. The first
control signal of the optimal control sequence found by the optimization is executed, and the
optimization is re-initiated at the next time step. See Figure 2-1 for a graphical example
of this "receding horizon" principle. As the control execution will always be performed by
a computer and the optimization will require time, a discrete time formulation is a natural
approach for MPC.

Standard Predictive Control Problem Boom [3] (Chapter 4&5) sketches a general mathe-
matical framework to cope with linear model predictive control problems. Three performance
indices are given: The Generalized Predictive Control (Gpc) performance index, a quadratic
form of output error and control increment (difference) signal, the Linear Quadratic Predic-
tive Control (LQPC) performance index, a quadratic form of state and control signals, and
the Zone performance index, a quadratic form of output error outside a set zone and control
signals. These three are reformulated to fit inside the so called Standard Predictive Control
Problem (spcp) formulation. Quadratic performance index j if found by

N,
NS s e s |ToOTYy—T
g = jE_O Ziili2hey with 2= [u or Au} (2-1)

Zk4+j is a vector with a combination of <state (x) or output (y) and reference (r)> and
<control level/effort (u) or differenced level (Au)>. %, ; is measured at the present time k
and predicted for j = 1 to the prediction horizon (N,,). T'; is a selection matrix that allows
for exclusion of certain samples from the performance index by having zeros instead of ones on
the diagonal.! Performance index 7 at time k in Eq. (2-1) can be rewritten as a pure matrix
formulation that replaces the sums over the predictions with larger matrix multiplications as
] = ?,{f Z,. Where the extended matrices and vectors are marked with a double bar on top
of the symbol.

At each time step an optimization problem in search of an control sequence that minimizes
the cost function subject to the equality and inequality constraints (¢ and 1) is solved.

7" = min
UL UN,

subject to ¢ =0 (2-2)
Y <V

The constraints can be functions of any of the system variables that could be included in 2
(Eq. (2-1)). The sequence of control signals for j = 1 to the control horizon N, that results

'For example exclusion of the output in the first seconds of the prediction, which could be necessary if
this part is already determined by the past control signals and no longer steerable. This particular example is
called "dead time".
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2-1 Model predictive control 5

in the minimal cost is frequently denoted as u*. Note that the control horizon N, could be
shorter than the prediction horizon N,,. The solution of the spcp is given in [3] for the
noiseless unconstrained case, the noisy unconstrained case, and the (in-)equality constrained
cases. Shown is that for a Linear Time Invariant (LTI) system only the inequality constrained
controller is nonlinear, the other controllers found from the solutions of the SPCPs are LTI
controllers.

Past Future
< > constraint

® Yk+j | o measurements
* Uk e predictions

1 1 (I] I_{:2I<‘rl4l—|l6l—':8l+llolj

EREN

Figure 2-1: Receding horizon principle of model predictive control. u is the input signal, r is
the reference and y is the output. At the present time k the first control signal is implemented
and the entire horizon is shifted one sample and repeated. This principle is also called rolling
optimization. N, denotes the prediction horizon and N, the control horizon. [3]

Properties There are several survey papers available on linear MPC that introduce the sub-
ject in depth, two frequently cited works are discussed. Mayne et al. (2000) [1] describes the
development of the technology and searches for stability requisites. They sum three essen-
tial? ingredients: a terminal cost function, a terminal constraint set and a local stabilizing
controller. The first two have to do with the predictions: the terminal cost adds a term to
the performance index dependent on the situation at the prediction horizon, and the termi-
nal constraint set can force the solution at the prediction horizon to be on the steady state
value. The local stabilizing controller sets a local zone where a different controller takes over.
The stability is theoretically proven via the direct Lyapunov method® and methods based
on the monotonicity of the Lyapunov function. They discuss both continuous as discrete
linear and nonlinear systems. Qin and Badgwell (2003) [5] gives next to a brief history of
MPC, an overview of commercially available MPC technology, both linear and nonlinear, based
primarily on data provided by MPC vendors (five). The main market for the technology is
the process industry. The linear controllers work with a variety of linear state space, im-
pulse and step response models, autoregressive models and transfer functions. And solve the

2Later these prove to be only sufficient, not necessary

3"For physical systems, one can often argue about stability based on dissipation of energy. The generalization
of that technique to arbitrary dynamical systems is based on the use of Lyapunov functions in place of energy."
- Astrém and Murray [4]
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6 Foundations

(constrained) problem by Least Squares (LS) or by active set quadratic programming. The
nonlinear software works with nonlinear state space, nonlinear neural net, and polynomial
models and physics based so called first principle models. Optimization is typically done by
nonlinear least squares, gradient based methods and Newton multi step algorithms. Impor-
tant observation made by the writers is that most models are identified empirically and only
one vendor is able to identify non linear models from first principles.

MPC is compared in several papers with other forms of control: Astrém and Higglund [6]
discus the future of PID control and mention MPC as a companion/successor and praises its
constraint handling. Sandino et al. [7] simulate a nonlinear model of a helicopter landing
on a ship, which is in the same family of problems as ours, controlled by linearized MPC,
Linear-quadratic-Gaussian (LQG) control and a loop shaping method. MPC outperforms the
other methods but shows some oscillation in the control signal.

The true power becomes visible when the optimization is allowed to handle the full nonlinear
system. Nonlinear Model Predictive Control (NMPC) is theoretically capable of steering a
bike around a corner finding the solution that you first need to counter steer to the opposite
direction. In Ge et al. [8] the term NMPC is not explicitly used but a full nonlinear system of
a cat upside down in mid air, being able to flip over using minimal energy is solved.* This is
done via a quadratic objective in control effort and a quasi-Newton optimization.

Figure 2-2: Nonlinear model based solution of a cat flipping over in mid air. Constrained by
physics preventing a net momentum change. [8]

2-1-2 Non-linear model predictive control

Motivation The multiple input-output character of the boat-platform system due to the
station keeping in several degrees of freedom, and the coupling between them, could be coped
with by a variety of linear control techniques. Techniques like L.QG, which is an algebraic solved
control problem with a quadratic objective in state and control history, or H-infinity (H)
control, which actuation law is based on the feedback loop’s maximum singular value®, could
take benefit of an available linear system model. But a feasible ship motion compensation

4The only difference with NMPC is the non-rolling optimization.
5The maximum singular value of the closed loop system is a robustness/model-uncertainty criterion. It
should be as small as possible for maximum rejection to instability.

W.A. de Zeeuw Master of Science Thesis



2-1 Model predictive control 7

model should probably include several nonlinearities that are essential for accurate system
representation, for example: the kinematics of the platform, the hydrodynamics frequency
dependency and the hydrostatics. Perhaps even nonlinear actuator models. These system
nonlinearities make NMPC strategies sensible candidates.

Basics nonlinear model predictive control NMPC is the nonlinear extension of it’s linear
brother. The basic scheme is shown in Figure 2-3. The system that has to be controlled, the
plant, is nonlinear and therefore the prediction model inside the controller is also nonlinear.

Nonlinear Model Predictive Controller distuxbaucel d
[T T Y L
: ! control ng11al ouEput
] v
| Optimizer : > Plant -
I
| |
I ]
1 I
] I
] 1
] I
) /\ istate estimatey
s I
E Cost Function Nonlinear ! .
: + <+—» Predictive I‘d)— Estimator -t
! Constraints Model ;
] ]

Figure 2-3: Basic structure nonlinear model predictive control. The controller has an internal
model that is used to predict and optimize future outputs and find the corresponding optimal
open loop control signals. [9]

There exist several surveys and books that are focused on NMPC that discuss its properties
and difficulties. A selection is presented here: Henson (1998) [10] is one of the first to pro-
vide an overview of available NMPC technology and applications and proposes topics that
required further research. He distinguishes fundamental/physics-based models from empiri-
cal models. Fundamental models are estimated efficient with little process data due to their
constrained structure and are expected to remain valid in a broader range. Empirical models
on the other hand allow for efficient formulations. The model can be constructed such that
the optimization problem is convex and can be solved globally. Three solution approaches
to the nonlinear optimization problem are mentioned: Successive linearization of the model
equations, sequential model solution and optimization, and simultaneous solution of the dy-
namics and optimization. The writer suggests future research in algorithm development, in
the stability and robustness area.

Schei and Johansen (1998) [11] deepen the subject of empirical modeling summarizing several
nonlinear model types: fuzzy/multiple-linearized, Hammerstein®, Volterra and Polynomial
Nonlinear Autoregressive with Exogenous input (NARX) or Autoregressive Moving Average
with Exogenous input (ARMAX) models. Muske and Rawlings (1993) [13] is referred in relation
to the stability question. They derive a unified theoretical framework for a linear infinite
horizon controller that guarantees nominal stability regardless of weights in the cost function.

SHammerstein models consist of a nonlinear static mapping on the input state and then linear dynamics.
Wei [12] discusses a lot of nonlinear model types in depth in Chapter 2. Including the output nonlinearty
equivalent after the linear dynamics called Wiener model. His PhD thesis focuses on an efficient algorithm
for simultaneous solution. The NMPC problem is changed to a 2 point (current time and prediction horizon)
boundary value problem.

Master of Science Thesis W.A. de Zeeuw



8 Foundations

!

X1

Figure 2-4: The difference between open-loop and closed-loop behavior in the finite horizon case.
The optimal state trajectory at ¢ = 0 results in a different optimum than the optimum found after
re-optimizing at time ¢ = ¢ for horizon T},. The set of allowed states is given by x. [9]

Stability developments Findeisen and Allgéwer (2002) [9] pick up where Henson stopped
and discusses the stability of the (continuous) NMPC problem from a mathematical formula-
tion. First the following important observation is presented: in a finite horizon formulation
(Ny, < 00) the open loop optimal predicted trajectory, differs from the closed loop trajectory
that results from closing the loop via the receding horizon principle by which the first of the
sequence of optimal control signals is implemented. The difference in open and in closed loop
trajectories is present even in the case of no model-plant mismatch, Figure 2-4. Therefore
stability (and optimality) in the open loop is no guarantee for closed loop stability (and op-
timality). Formulations that ensure closed loop stability are based on approximations of the
infinite horizon problem by adding a penalty term (F) to the cost function that makes up
for the missed part of the prediction and adding a terminal region constraint that forces the
solution to steady state at the end of the prediction horizon. This terminal region for the
state = is denoted by ().

t4+T,
sadTy) = [ P u(IT)dr + Bla(t+1,)

subject to  z(t +T,) €

(2-3)

Stage cost is denoted by F and is a function of state and control signal. The prediction and
control horizon of the controller is T),. The writers call this variant Quasi-Infinite Horizon
NMPC (QmH-NMPC). Proofs are loosely based on using terminal penalty F as a local Lya-
punov function of the system under a local controller x(z) in Q. This results in the useful
fact that feasibility in the open loop optimal control problem results in asymptotic stability
in the closed loop system. In general k, £ and {2 are not easy to find. But if the nonlin-
ear plant has a stabilizable Jacobian linearization” at the origin, a systematic approach to
find the local controller, the terminal penalty and the terminal region is given in Chen and
Allgower (1998) [14].

The last 10 years there was a fast development in research regarding NMPC stability. Less

"Nonlinear plant: & = f(x(t),u(t)) has Jacobian linearisation A £ %(0,0) and B £ %(0,0). Which is
stabilizable (controllable) if A is Hurwitz (stable) or if the controlability matrix [B AB . A”le] is full
rank.
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2-1 Model predictive control 9

restrictive stability requirements were derived. Griine and Pannek’s book (2011) [15] contains
extensive mathematical proofs and results. In Chapter 4 it is derived that the infinite horizon
optimal feedback law asymptotically stabilizes the system®. Their main result is shown in
Chapter 6: Griine and Pannek present a stability and suboptimality analysis for NMPC
schemes without stabilizing terminal constraints or penalties. Stable control of this kind is
valuable because the terminal conditions are a burden for efficiency and can compromise
feasibility. As a spin-off they recover the well known” result that stability of the NMPC closed

loop can be expected if the optimization horizon is sufficiently large.

Griine and Pannek define the NMPC optimal open loop control problem (Algorithm 3.11 in [15])
in the following compact notation:

N-1

minimize jy(n,zo,u Z wy—kl(n+k,x,(k, z0), u(k))
k=0

+ F(xU(Na 33'()))
with respect to () € [Ugo (zo), subject to
2y (0,20) =0, @u(k+1,20) = f(zu(k,z0),u(k))

= solution optimal control sequence u*() € Ugo (x0)

Where,

g performance index for finite horizon N.

¢ stage cost, where the first argument n + & is to allow time varying behavior.
f(x,u) is the system state stepping function. (system dynamics)

x,, open loop solution trajectory resulting from initial state zp and control u(k).
w stage weights, F' terminal cost, Xy the terminal state constraint set

and U (zg) the set of allowed control signals from xg to N.

They define the optimal value function
Vn(zo) = Igleit[l}]]v(ajo, u) (2-5)

and apply the so called relaxed dynamical programming principle. This principle says that
the same optimal trajectory should be found from all points along the prediction horizon.'’
It allows sub structuring the problem and allows the following inequality giving a posteriori
degree of suboptimality o € [0, 1] with respect to infinite horizon control. '!

Vn(z(n)) 2 Vi (z(n+1)) + al(z(n), un(z(n))) (2-6)

8The nonlinear variant of the proof in [13]. Tt is shown that the infinite horizon optimal value function is a
Lyapunov function for the closed loop system.

9A result from optimal control theory

10Tt shows that tails of optimal control sequences are again optimal control sequences for suitably adjusted
optimization horizon, time instant and initial value.

"Proof. Positive running cost £ > 0 gives positive optimal value function Vy > 0 and due to summation
finite length optimal value is less or equal to infinite length Vy < V. Rearranging Eq. (2-6):

CM( (n), un(z(n ))) <VN(:v(n)) fVN(:v(nJrl))

aY e (2(n), pn(z(n)) < Vi (2(n)) = Viv (2(K)) < Vi (2(n))
ad 2 (a(n ) ~(z(n))) <vN(x<n>)

Voo (2(n)) < Vi (w(n)) < Voo ((n))
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10 Foundations

With u = pn(z) the optimal control law for horizon N. Then the infinite horizon cost under
control py is suboptimal to degree o as

aVoo(z(n)) < aVEN (x(n)) < Voo (z(n)) (2-7)

Griine and Pannek (2009) [16] find this degree of suboptimality a posteriori and a more
conservative a priori estimate which allows adapting the prediction horizon beforehand.

« can be used to investigate stability. Asymptotic stability can be concluded from suboptimality
results if the running costs (stage costs £) are positive and the degree suboptimality is positive
a > 0.

Robustness and efficient calculation of the NMPC problem MPC possesses inherent ro-
bustness to model mismatch properties due to its resemblance to optimal control. Few explicit
robust formulations exist [9], optimizing a feedback controller instead of a control (u) sequence
is an example that is given. Findeisen and Allgéwer’s discussion of the computational aspects
results in the conclusion that on-line optimization is only possible via finite parametrization
of controls and/or constraints. The sequential and simultaneous optimization are again [10]
given as algorithm options. The large scale efficient simultaneous solution requires an addi-
tional constraint for every state node along the discretization in time to force a connected
trajectory in the optimum. Downside is that only the finished optimization gives a feasible
trajectory.

Wang and Boyd (2008) [17] describe a collection of methods to improve the speed of MpPC
using online optimization, as a contrary to calculating the entire control law offline and
using a lookup strategy. Their three main techniques are: variable reordering to allow for
efficient structured quadratic problems, warm-starting where the calculations for each step
are initiated with the predictions made in the previous step, and early termination of the
optimization. All three approaches show significant gains in speed. Note that for early
termination, each optimization step should be at least feasible.

2-1-3 Applications of non-linear MPC

In this section several applications of NMPC are discussed. Chemical reactors due to extensive
attention the literature gives to this application. Flight systems with their complex dynamical
modeling. And the last two groups: robots/parallel manipulator platforms (a.o. Stewart type
platforms) and ships because of the direct link to the goal of this work.

Chemical reactors The roots of MPC lay in the process industry. Therefore the lot of the
applications documented are in chemistry. In literature reactors are the most popular use of
constrained NMPC. Maximizing the production in the highly nonlinear polymerization process
is discussed often in publications. Henson [10] refers to 20 papers on NMPC applications/sim-
ulation studies in chemical process industry. Magni et al. [18] applied a finite horizon NMPC
controller with an auxiliary linear controller on model of nonlinear chemical reactor and ar-
rive at a compromise between computational complexity and performance. Alamir et al. [19]
discusses the computational verification and experimental implementation of nonlinear reced-
ing horizon control in a styrene polymerization reactor. Real time capability is enabled by
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2-1 Model predictive control 11

control parameterization in the form of a specific shape over the control horizon and penal-
izing the constraints in the cost function. Zhiying and Xianfang [20] controls a stirred tank
reactor by GPC but estimates the model online. It uses online Support Vector Regression
(sVR)' to determine a nonlinear model using recent model output data to track changes of
a system model with time-varying and time-lagging characteristics. This is a method that
origins from statistical machine learning and part of Support Vector Machines (SvM) theory.
The nonlinear model obtained is linearized into an ARMAX form to obtain a convex open loop
optimization.

Flight systems MPC has in the past only been applicable to systems with slow dynamics
with characteristic times in the order of minutes. Due to increases in computing power
and the development of numerical solution methods for NMPC, applications for systems with
fast dynamics such as aircraft are looking more feasible. Khan et al. [23] proposes a NMPC
strategy for unmanned air vehicles that can recover from actuator failure and continue to
operate. Inherent system characteristics such as nonlinearities and cross-coupling effects can
be exploited by the controller, rather than trying to minimize their influence. The dynamics
are integrated via a Lagandre polynomial that is directly inserted into the cost function. The
optimization of the control signals is solved by Sequential Quadratic Programming (sqp)'3
which allows a loop time as small as 1s. The simulation results show that the controller allows
adequate control authority to be returned to the aircraft in the event of a failure. Cheng et
al. [24] derive a highly nonlinear model of a near-space hypersonic vehicle incorporating both
engine as airframe dynamics. A time varying disturbance term is estimated by SVR and the
total dynamical model is globally linearized via an input-output linearization and controlled
by linear MPC. The model with the estimated disturbance term outperforms the nominal
model showing less error and a smoother trajectory.

Robots/Parallel manipulator platforms Robotic manipulators are often categorized accord-
ing to the number and type of Degrees of Freedom (Dors) they possess. Robotic platforms are
in general constructed as parallel manipulators with multiple kinematic chains, as opposed
to serial manipulators such as robot arms, that consist of single chains. The Dors of the end
manipulator of a parallel manipulator, e.g. the platform surface, are linked to joint actuation
via non linear kinematic transformations. A well known parallel manipulator platform is the
"Stewart" platform. This is a 6 DoF robot with 6 actuated legs. An example is shown in the
left photograph of Figure 2-5. A selection of publications that relate to the MPC of robots or
platforms is given here.

Hedjar and Boucher [26]: Discusses the control a rigid link (no elasticity) serial robot arm with
fast dynamics via NMPC. An approximation of a receding-horizon quadratic cost function,
via Simpson’s rule, allows for an analytical solution with one function evaluation. There
is no need to perform an online optimization. The velocity is estimated by an observer as

127hao et al. [21] explains and applies SVR in combination with recursive subspace identification to identify
a time varying Hammerstein model to use MPC. SVR identifies the nonlinear static part and the state space
linear dynamics are estimated by singular value decomposition of the data Hankel matrix. Details are found
in Overschee et al. [22]

133Qp is a nonlinear optimization strategy that first performs a Quasi-Newton step (approximated derivative
terms) and then a line search in the direction of the quadratic solution of the first step. Constraints are
typically implemented via penalty functions.
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12 Foundations

Figure 2-5: Left: Stewart type electric platform with 6 actuated legs mounted with universal
joints, source: http://www.boschrexroth.com Right: 3 DoF platform with scissor type constraining
mechanism, a central heaving cylinder and 3 cylinders that tilt the platform. [25]

measurements are too noisy. Robustness to model mismatch is enhanced by an integral action
and asymptotic stability is proven via Lyapunov theory.

In Aminzadeh and Sabzehparvar [25][27] a configuration of a 3 DoF platform that allows heave,
roll and pitch movement with scissors constraining the other DoFs is discussed. The dynamic
relations are derived via the Newton-Euler method using Jacobian transformations to move
from operational to joint space (leg lenghts).[25] The forward kinematics, that retrieve task
space variables from joint space measurements, are solved by an iterative Newton-Rhapson
scheme. The system is controlled by a model based controller via inversion of simplified
dynamics in [27]. Control in task space outperforms the control in joint space due to the
increase in error introduced by an additional transformation.

Koekebakker [28] wrote his PhD thesis on model based control of a 6 Dor flight simulator.
He carefully models the Stewart platform including actuator inertia and a detailed hydraulics
model. A systematical solution is presented for both the inverse and the iterative forward
kinematics and the dynamics are derived. The control structure works with one inner loop
per hydraulic leg and one outer loop that calculates the model based actuation signals. Ad-
ditionally a detailed calibration method is explained that improves the precision by an order
of magnitude.

Nadimi et al. [29] is one of the first that investigates the use of a GPC controller for the
Stewart 6 DoF platform. The model is obtained by linearizing the MATLABSimMechanics
toolbox benchmark Stewart platform model, and than stabilizing this system in two ways be-
fore applying MpC: first by velocity feedback, which proves hard to tune, and then by a LQG
controller. The second method outperforms the first, but this conclusion might be affected
by the settings. Nevertheless the control strategy appears suitable.

Ships and robots on ships This paragraph discusses the MPC of ships and robots on ships.
The first two references are techniques to apply MPC to the control of a vessel, and the next
five discuss control of cranes/robots/manipulators on ships and are of key importance to this
thesis.
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2-1 Model predictive control 13

Zhang et al. [30] present the control of a submergence rescue vehicle. The model is mainly
nonlinear in the state variables with coupling and higher order terms. The system state
differential equation is split into a state and an actuation part, then approximated by a
Taylor expansion and MPC controlled with an single step quadratic performance index with
success.

Khan et al. [31] argue that due to the stochastic nature of the disturbances and the complex
and ship specific dynamics it is preferred to use an artificial neural network to predict the ship
motions instead of modeling the dynamics. The goal is to forecast 7 seconds of ship motions
for launch and recovery of air vehicles such as missiles or helicopters. A practical experiment
with about 10 minutes of ship roll data that is split into two thirds of training data and one
third as validation set show a reasonable fit. Drawback of this method however is that forces
induced by the air vehicle on the ship can not be included as their effects are not visible in
the training set.

Manipulator

y
Vehicle T

\/ &%Thmsmr
th

Figure 2-6: Robotic manipulator on ship utilizing restoring force. Left: [32] Right: [33]

An example of a well known manipulator control problem in offshore engineering is discussed
by Kimiaghalam et al. [34]: The control of load swing in shipboard cranes. Their approach
that decomposes of the crane model into linear state dynamics, and nonlinear static output
mapping enables efficient use of MPC. They argue that the system dynamics, with a roll eigen-
period of 10 seconds, are slow enough for live (real-time) optimization and show simulation
results.

Instead of considering the buoyancy and ship movements as an enemy, Kosuge et al. [32]
utilizes the buoyancy’s restoring force/moment to reduce the number of actuators required
to control a robot on a floating vehicle. A planar example of a serial robot on a ship with
one horizontal thruster is discussed. The desired joint velocities are found via inversion of
simplified dynamics. Kajita et al. [33] discusses this same vehicle manipulator system, and
experimentally validates the reduction of actuator (thruster) force required for compensation
of the robot’s end effector reaction force. Figure 2-6.

Whereas in the last two references the actuation to compensate for the movements and reac-
tion of the ship is performed on the ship, by means of thrusters, the last two writers discuss
techniques that allow use the actuation of the robot itself to compensate for the ship move-
ments. Love et al. [37] discusses the general modeling of robots operating on ships. They
use the Denavit-Hartenberg matrix representation for the robotic joints and limit to serial
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Figure 2-7: Robotic manipulator on ship/semisubmersible unit. Minimal torque solution snap-
shots in time. Left: [35] Right: [36]

(arm type) robots. This allows finding the end effector pose from a series of matrix multi-
plications that depend on the joint coordinates. Then, assuming constant and diagonal rigid
body mass, they symbolical compute the Lagrange equations of motion and simulate the
system imposing a base motion equal to a sea wave profile. This again reduces the problem
to only force transfer from ship to actuator. The robot does not influence the base (ship)
movements. Nevertheless the computations are useful, and a learning controller is able to
control the robot arm. From created a series of publications regarding the control problem
of robotic manipulators on ships.

From et al. [35] discusses the derivation of the equations of motion of a serial robot on a
ship from a Lagrangian method based on partial derivation of the kinetic energy expressed
via transformations in quasi-velocities. Quasi-velocities are not necessary time derivatives
of their pose coordinates and allow nonlinearities. They arrive at dynamical relations that
explicitly show the non inertial effects by means in terms of a Coriolis matrix. They use
this knowledge to counteract these effects and use a MPC structure to control the system
using minimal torque. In Figure 2-7 it is seen that the controller waits for translation of the
robot to the right side until this side is lower. From et al. [38] discusses the boundedness
properties of the mass matrix and the antisymmetric properties of the Coriolis matrix as
these properties are used in stability poofs. The quasi-velocity vehicle-manipulator dynamics
derivation satisfies both. The semi-velocity based method In From et al. [36] they adapt the
prediction model in the controller to a stochastic estimation by means of an Auto Regressive
(AR) model and a sum of sine waves model. Including a measure of uncertainty (a covariance
matrix) into the performance index shows that the robot chooses "safer" paths, in the sense
that they are more likely to be cheap.
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Figure 2-8: The ship direction and velocity nomenclature. The movements are defined in a ship
based () NED reference frame. Source: http://www.itk.ntnu.no/fag/gnc/Wiley/Ch2.pdf

2-2  Ship motion

In this section the necessary theory to generate a sufficiently realistic model for simulation
and control purposes is gathered. First the nomenclature of ship movements is presented,
then we start with the mixed frequency-time domain model and modify it to a pure time
domain formulation appropriate for the stated goals and finally we approximate the radiation
terms with a state space model.

Ship motions are generally described on a ship based frame B not necessary in center of
gravity (CoG) with the z axis pointing forward, the y axis pointing to starboard and the z
axis down. The rotation along this three axis is called "roll, pitch and yaw" respectively.
This convention is chosen such that positive pitch rotation makes the bow move upward. See
Figure 2-8. The forward, lateral and downward direction are named "surge, sway and heave".

2-2-1 Frequency to Time domain

Journée and Massie [39] describe the forced motion of a cylinder of mass m in the free surface

of a water bassin as'*:

2(t) = z4sint

(m+a(w)) £+ b(w)z + cz = F,sin (wt + nF-) (2:8)

Where z can be one of the DoFs of the ship, z, is the amplitude of the forced oscillation. Fj,
and 7np, are the amplitude and phase of the measured force. The components a(w) and b(w)
are the frequency dependent added mass and damping. These coefficients can be found from
potential theory and are written in matrix form for all 6 DoF as A(w) and B(w).

Potential theory assumes an ideal fluid (incompressible, inviscid, irrotational and without
surface tension), steady state oscillation of the body, small velocities and amplitudes such

14[39]): Equation (6.51)
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that the free surface conditions, the kinematic (water on the bodies boundary) conditions
and the Bernoulli equation can be linearized. This allows splitting of the radiation (motion in
undisturbed water) from the diffraction (wave excitation without movement) problem. The
pressures are found from solution solving Bernoulli with the velocity potentials. Integration
and in- and out- phase separation gives the mass synchronous and damping synchronous
part of the force/moment and the added mass and damping can be found using the known
mass, acceleration and velocity'®. These so called hydro coefficients can be calculated using
a hydrodynamic code (such as WAMIT). The calculation can be performed together with the
Force Transfer Functions (FTFs) that find the wave loads for sinusoidal wave input.

Figure 2-9: Seekeeping reference frame definitions. Ship fixed coordinate frame B on symmetry
plane (not necessary in coG) . Hydrodynamic/equilibrium reference frame 7 and inertial reference
frame Z. [40]. J* transforms from the hydrodynamic frame through w, placed in the mean
waterline on the ships symmetry plane (marked grey), to the ship frame B. The ship’s CoG is in
g also on the symmetry plane. zy is parralel to z7.

Cummins derived a pure time domain equation [41] expressed in the so called hydrodynamic
equilibrium frame H that is placed in the mean waterline for a symmetric ship on the plane
of symmetry (see Figure 2-9). This frame has coordinate vector & and the H frame aligned
forces are in 77. Using the infinite period added mass and damping matrices A(co) = Ay
and B(oo) = Buo:

(M + Aoo)f” + /t Kt —theM(t)dt' + Ge™ =71 (2-9)

With the retardation function K(t) = 2 [° B(w) cos(wt)dw. Ogilvie rewrote the equation in
a numerically better conditioned form, the Cummins-Ogilvie equation [42]:

(ME + As)E™ + Boot ™ + /t K(t — t)eM(t)dt +GeH = 71 (2-10)
0

,L_LH

5Detailed derivation is presented in Chapter 7 of [39]

W.A. de Zeeuw Master of Science Thesis



2-2 Ship motion 17

Now with the retardation function defined as K(t) = 2 [5° (B(w) — Buo) cos(wt)dw. The
vector ji’t is the damping term that is capturing the memory effects of the fluid. We recognize
i as a convolution term with the velocity as input. K(t) is therefore the impulse response
function. We used the assumption that the retardation is a causal function (K (¢ < 0) = 0),
that is the effects of the delay are not present before to the velocity is/has been event, we

shift the boundary of the convolution integral from —oo to 0.

2-2-2 Body frame

The dynamics of the ship are now found in the hydrodynamic frame, but we would like to know
them in a body fixed frame. We now formally define the body fixed frame and transform the
dynamics to this frame: B is placed on the deck of the ship with the z axis pointing forward,
the y axis to starboard and the z axis down. The vector pointing from the origin of B to the
CoG is denoted by ffg and the vector to the w is ffw. Both of these vectors are fixed in the
body frame and have a y component equal to 0.

The location and orientation of the ship relative to the inertial North-East-Down (NED) frame
is described by the pose vector 7 consisting of three translations and three (roll-pitch-yaw)
Euler angles. The generalized velocity in the B frame is denoted by v. (notation according
to [40])

i=[n e d ¢ 0 v cR xS (2-11)

v

[u v w p q T}TGRG (2-12)

The generalized velocity vector is not a straight forward time derivative of the pose vector. A
transformation matrix is required. This transformation consists of a rotation and a so called
attitude transformation. Construction is shown in Section 4-2-1.

CQCw Cgsd, —Sp
Rr5(6,0,0) = |8p80cy — CpSy  Sp808p + CoCy SpCo| = Ri_7 (2-13)
CpSOCy T SpSyy  CpSHSY — SpCy  CpCo
1 Co SpSo CpSo
[E'(¢,0,9)] = — |0 cocog —s4co (2-14)
Co
0 8¢ C¢

The transformation from time derivative of pose to the body fixed velocities is now formed
by:

0= Ri s 0353 U= JgU (2-15)
Osxs  [E'(¢,0,9)] 7! "’

Now to transform from the hydrodynamic equilibrium frame H to the boat frame B the
transformation matrix J* from Fossen [43] is used.'® Assuming small perturbations from the

16Matix J should not be confused with the scalar performance index j from MpC
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equilibrium this matrix is constant with entries:

1 0 0 0 Zaw 0
0 1 0 —z 0z
F_l001 0 -z 0 :l13><3 —[:cw 0 zww (2-16)
000 1 0 0 033 Isxs
0 0 O 0 1 0
0ooo0o o 0 1]

Now the velocities and accelerations of the boat are now found from the equilibrium frame
coordinates as:

J
(2-17)
J

Now premultiplying Eq. (2-10) with J*7 and substituting the coordinates via Eq. (2-17) gives
the equations in a body fixed reference frame:

(MBg + I T AL J*)V+J*TB J*‘+/ K(t —t"o(t)dt’ +J*TGJ*‘—J*T H—7B (2-18)

B GB
Mg

The retardation function becomes K(t) = 2 [ (J*'B(w)J* — J*"BooJ*) cos(wt)dw. The ra-
diation forces pu are now found in the body frame. In short the equations now look as:

MEv + DPp 4 @B 4GBy = 758 (2-19)

The right hand side forces from the equilibrium frame, such as wave forces, J*7 = TW also
require a transformation from w to the origin of B, opposed to for example the forces from the
robotic platform. The forcing side can be expended by Taylor series in the state parameters
or modulus (absolute valued) cross terms as given in Triantafyllou and Hover [44]'". But
these nonlinearities apply mainly to maneuvering problems with non zero forward speed
thus only the hydrostatic components are included. Here they are written as linear matrix
multiplications in G but they can be nonlinear functions of state.

2-2-3 State Space model of radiation forces
The main idea of this section is to replace the computationally expensive convolution terms in

the equations of motion (in 1) with a state-space representation of low order. The convolution
term but now from Eq. (2-9) (dropping the infinity added damping J*TB,J* ) can be rewritten

— /tK(t — ) p(t)dt

_/ [ / (7" B(w)J*) cos (w(t — 1)) dw| D(t)dt’ (2-20)

!"Nonlinear vessel dynamics in Chapter 3 of [44]
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We now rewrite this equation using indices and using the notation bg for the (i, j)th element
of J*TB(w)J*:

b (j) = ZMS = Z/Ot [i /Ooo (bZ(W)) cos (w(t —t'))dw| v;(t)dt’ (2-21)

With a single component of the retardation function denoted by K;;. We see that the com-
putational cost of calculating this convolution in the time domain increase unbounded with
the length of simulation. The system depends on the entire memory of velocities. Knowing
that the retardation function dampens out, it is logical to attempt to simulate with a limited
memory approximating 2 by i in a state space realization. As suggested by Kristiansen
and Egeland [45] and Kristiansen et al. [46]:

)LC = Aradx + Brad’7 (2_22)

MB ~ 'aB = CraaX
These last two references suggest identification in the time domain by calculating the step
response function K;;(t) (retardation) for discrete time steps and then applying singular value
decomposition on the Hankel matrix. The Hankel matrix contains the values of the step re-
sponse function for each row shifted one sample. Selecting certain (significant) components
from the decomposition find the discrete time state space matrices. These have to be trans-
formed to continuous time state space matrices to find the required state space realization of
the radiation damping term. A practical approach to this method is discussed in Unneland [47]
(pp.50-55). This method requires two approximating steps next to the identification: approx-
imating the step response in time, and transforming from discrete time to continuous time.
Pérez and Fossen [48] state that identifying the radiation terms from the frequency domain
is superior due to this and some other reasons discussed briefly in the sequel.

Unneland also describes a frequency domain identification method for the state space matrices

of the radiation terms. This method starts by considering the Cummins equation Eq. (2-9)

in the frequency domain'®.

[—w? Mg + A(w)] + jwB(w) + G| £% = 7% (2-23)
Now the radiation forces can be expressed in the frequency domain as:
Tea = W AW)ET — jwB(w)E™

r _ N o4
— Al = [P .

- A(jw)} £

The multiplication in the second equation is exactly the convolution with the retardation
function in the time domain. Thus approximating the complex transfer function A.(jw) with
a LTI object (state space), results in the same result as directly estimating the retardation
function K. We first write this transfer function in the reference frame of the barge by applying
J* from Eq. (2-16):

T TB(jw)J*

e

+ J*TA(jw)J*] vt (2-25)

Bpure frequency domain notation, not to be confused with Eq. (2-8)
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Which has a known value for the discrete set of frequencies found via the hydrodynamic code.
These are compared to the total radiation component (including infinite frequency added
mass) of Eq. (2-9) transferred to the s domain via Laplace. Now the radiation component
acting in direction k originating from a velocity component v; is aproximated with K(w)
estimated by a rational transfer function with polynomial numerator P(s) and denominator

Q(s): t
alt) = Aot — [ K(t—~ ¢)o(t)dt
0

rad
Pri(s)

Qri(s) n(s)

Now the infinite frequency added mass, typically not available in 2D hydrodynamic codes,
can be estimated in the same framework as the retardation by comparing the estimates from
Eq. (2-26) with the known values from Eq. (2-25).' For each of the DoFs that shows coupling
a rational transfer function can be estimated. The code from Perez and Fossen [49] employs
a Gauss-Newton iteration for this. This gives the matrix of transfer functions as:

(2-26)

~ B _
TTadlcl ~ radkl(s) - |:Aookls +

P11(s) Pi2(s) Pi6(s)
Q11(s) Q12(83 Q16(5§
P2i1(s)  Paa(s Pas(s
Kpp = Q21'(8) Qﬂf(s) QQ?(S) (2-27)
PGl‘(s) ng‘(s) Peé(s)
Qe1(s)  Qe2(s) Qee(s)

Conversion between LTI model forms (state space, polynomial, impulse) is discussed for exam-
ple in [3] Appendix D and can be directly applied. The State-Space realization is non unique
and scaled to improve numerical accuracy. Due to the relative degree 1 of the polynomials
(number of poles n, is one more than number of zeros n.) there is no feed through D;.q
matrix. Now the matrices from Eq. (2-22) can be found looking like:

~ - - -

_ATad11 O e O ATadll
0 . .
Araa = Aradkl Brad = Aradkl
. (2-28)
: 0
L 0 e 0 Arad(;@_ _A’radee_
Crad = Cradll Cradkl T éradea]

With the dimension of dummy state ¥ equal to the total number of poles in all transfer
functions (typically about 2-4 per transfer function), and B,,q and C,,q both having one
dimension equal to A,.4 and the other to 6 (because of the 6 DoF).

9Tn this estimation we can use several facts about the retardation function and constrain the estimation to
deliver feasible results: (proofs in [48])

e For zero and infinite frequency the retardation function is zero: — proper and zero(s) at s =0

e Approaching ¢ = 0 or ¢ = co does not make the retardation disappear or explode: — stability, relative
degree of 1 (one more zero than pole)

e Passivity (no energy generation): — the retardation matrix is positive real.
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Figure 2-10: Open sea load transfer patent from 1989 [50] and from 1979 [51].

Open sea load transfer has been of interest for a long time. Methods of transloading cargo or
passengers from one offshore structure to another, fixed of free floating, have been proposed
and patented for over 30 years. Two dated patents are shown in Figure 2-10. “Open sea
transfer of articles” [50] describes two robot arms handling load from one vessel to the next.
And focusses mainly on the complex mechanical working principle of the end effector of the
arms. “System to transfer cargo or passenger between platforms while undergoing releative
motion” [51] is a cable bridge with a method of tensioning the wire to a constant stress and
a carrier basket to perform the transfer.

Several mechanisms of ship based motion compensation platforms and systems are addressed
in this section, where the last two are mechanism concepts that could be promising to scale
up to use on a ship. For the parallel platform type compensators, the kinematic chains are
inspected. The required degrees of freedom influence the choice of kinematic connections:
Revolute joints (R) only permit one rotation, universal joints (U) permit 2 rotations (cardan
type connection) and spherical (S) joints permit 3 rotations. For the hydraulics there is the
decision of a axial constrained prismatic (P) cylinder and a free rotating cylindrical cylinder
(C). The degrees of freedom can be counted by counting the number of bodies including the
ground and substracting the constrained degrees of freedom by each joint (R = —5, U = —5,
S=-3,P=-5C=—-4).
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Ampelmann: [52] “Vessel, motion platform, method for compensating motions of a vessel
and use of a stewart platform”, 6 Dor hydraulic Stewart type platform. Universal-Cylindrical-
Universal (U-C-U) configuration legs with internal static pneumatic gravity compensation.
Designed for personel tranportation to and from for example offshore windturbines for main-
tainance, Figure 2-11

Bargemaster: [53] “Motion compensation device for compensating a carrier frame on a ves-
sel for water motion”, 3 DoF (roll-pitch-heave) load compensation platform with 3 vertically
placed cylinders on spherical joints (S-C-S). Planar movements is constrained by 3 tension
beams (U-R), with as a side effect limiting the maximal extention. This mechanism also
incorporates quasistatic gravity compensation and is dimensioned to be easily containerized.
Figure 2-12

Helipad: [54] “Helicopter landing platform having motion stabilizer for compensating ship
roll and /or pitch”, 1 DoF helicopter platform placed elevated from maindeck. Swaying motion
of deck compensates the amplified roll motion of the ship experienced on the landing deck,
Figure 2-14

Momac: [55] “Device for the safe transfer of personnel or material from an object config-
ured as a boat to an object moving relative thereto”, robotic arm (serial robot) for personnel
transport. Can be equipped with a bridge or a basket, Figure 2-13

Pooltable: [56] “Motion Compensated Apparatus”, 2 DoF (roll-pitch) compensated table.
The table could be used as a pool table, but also as a bed or a operating theater, Figure 2-15
Ojdfell: 3 Dor (roll-pitch-heave) platform load/crane carrying platform with 3 2-linkage pla-
nar constraining mechanisms (Sarrus type) placed in a triangle configuration. The mechanism
folds like a car jack and has a bottom to platform chain of R-R-S where the last spherical
joint is a "Heim" type joint. The cylinder can be mounted in the scissors by a simple planar
R-C-R connection, Figure 2-16

Royal Navy: 3 DoF (roll-pitch-heave) platform built for the royal navy with 3 Sarrus mech-
anisms constraining the planar movements again with a sperical joint at the platform. Dif-
ference is that the actuator is not a cylinder but a rotary push rod connection.Figure 2-17
Other: Two other concepts, a platform with a central heaving spring-cylinder, and a home-
made flight simulator with a elastic "bungee cord" to compensate the gravity, Figure 2-18
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Figure 2-11: Graphics disclosed in Ampelmann patent (numbers are referenced in the patent)
[52]

Figure 2-12: Graphics disclosed in Bargemaster patent (numbers are referenced in the patent)

[53]
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Figure 2-13: Graphics disclosed in Momac patent [55]
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Figure 2-14: Graphics disclosed in the roll and/or pitch compensated helipad patent (numbers
are referenced in the patent) [54]

17
< h/
— 0. i —
) 31 31—
: \
15 /"lﬂij, 14 30

Figure 2-15: Graphics disclosed in the stabilized billiard (or bed) patent (numbers are referenced
in the patent) [56] and photograph of the "STable" on a "Radiance of the Seas" cruise ship.
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Figure 2-16: Odfjell motion compensated platform Uptime on the Fob. Jr. Screenshots
source:  www.youtube.com/watch?v=T8lujsZCRNc http://www.odfjellwind.com (visited jun.
2012)

Figure 2-17: Sarrus type mechanism heave-roll-pitch platform designed for the royal navy.
source: http://www.inmotionsimulation.com (visited jun. 2012)
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Figure 2-18: Other concepts of roll-pitch-heave type platforms. The first row is a DIY flight
simulator platform (source: http://www.simprojects.nl) with bungee cords to statically balance
the payload. The second row is a platform type with big central spring/actuator to account for
the heave (sources left to right: http://www.inmotionsimulation.com, http://www.servos.com
and http://www.intelmotion.com) all visited jun. 2012
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Chapter 3

Ampelmann scale tests - Quasistatic
control

3-1 Introduction and scale model roll instability

The Ampelmann project and similar named company have resulted in a series of motion com-
pensated platforms used for personnel transport to and from vessels. Their product is based
on a hydraulic hexapod and its working principle is kind of similar to an inverted flight simu-
lator. That is, not the cabin (platform) is moving but the foundation on which the hexapod
is situated.

In the model phase of the Ampelmann project, the team faced stability problems in the wa-
ter basin. The boat-platform assembly began a self induced oscillation in the roll rotational
direction. This problem was carefully inspected and simulations in a multibody model, based
on the Stewart Platform example from the Matlab SimMechanics toolbox, reproduced the
phenomena (see Chapter 3.8 in [57]). It was found that the oscillation was related to the
delay in the actuation, but a lag of zero did not solve the issue. The team suspected a re-
lation to the inertia ratio of the platform and the ship and found that the system became
more unstable if the top plate mass was increased [58], but it was not possible to stabilize
the system by lowering the mass of the top plate. The ship mass was not altered as this is
coupled to the stiffness and damping in a non trivial way. Their simulation also showed that
if the hydrodynamic damping was increased the system became stable. In the model testing
the keel of the ship was removed due to the limited depth of the water basin. This loss of roll
damping was suspected to be the cause and roll dampers (plates) were welded to the sides of
the ship. This solved the oscillation in the scale model [59]. For the full size model the mass
of the platform was estimated to contribute only a factor 0.1% to 1% to the inertia of the
ship-platform assembly. Therefore the problem was regarded to be not applicable to a full
scale version.
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28 Ampelmann scale tests - Quasistatic control

Figure 3-1: Scale model testing of the Ampelmann, with roll dampers.

However considering that in our case the payload is not a couple of people but more close
to the thousand fold of that, and the results of the 2D simulations performed in [60] showed
stability problems the case is reopened here.

The hypothesis or suspected explanation of this roll instability is the fact that in controlling
the platform, the ship’s movements due to the control are ignored. The ship’s position is
considered as is, and the error regulated by the controller is the difference between leg length
now and the leg length of the system with the ship in the same position and the platform in
its target position. The ship is considered quasi static. For flight simulators this approach
would certainly suffice as the actuator forces do not move the floor on which it is build, but
for a ship-compensator system where the masses do not differ very much, this quasi static
approach is expected to be insufficient.

In this chapter first a model experiment of the miniature Ampelmann on the ship without
roll dampers is analyzed, than a linear model is identified from these experiments by means of
fitting a parametric model, which is derived from theory and includes the suspected dominant
effects. The found model is then interpreted and explained. The goal of this analysis is to
understand where this instability comes from in order to prevent it from happening at a full
scale system.

3-2 Movie analysis

The experiment with the scale model of the platform on the ship was filmed. The case without
the roll dampers installed, and thus showing the oscillation, was recorded from the stern side
of the ship and was available for analysis. From this movie the roll angles of platform and boat
are estimated via computational image processing (see Figure 3-2) and plotted in Figure 3-3.

The maximal angle error due to limited image resolution is estimated as 1.5 degree. This
is accurate enough for qualitative conclusions about the resonance and model fitting. The
absolute value of the angles is probably a bit underestimated by the camera posed not exactly
behind the stern. This is also a cause for asymmetry in the positive and negative roll angle.
Also there are cables fed to the boat that could be providing some asymmetrical stiffness.
The approximated roll angles are centered at their mean. Resulting in corrections of 5.9° and
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Figure 3-2: Image processing of filmed experiments of an hexapod on a ship: Angle estimation
5.5° for the boat and the platform respectively.

In Figure 3-3 the results from the 307 frames (0.1Hz) that are measured are shown. The
oscillation gradually increases in a rate that appears to be somewhere in between linear and
logarithmic in time. At time ¢ = 15s the maximum amplitude is reached, and a limiting, or
maybe long period beating, behavior is visible until the end of the movie at time T" = 30.6s.
The roll period is approximately (24/30) = 0.8s. The mean lead of the platform relative to
the boat measured on zero crossing is 0.15s this is equivalent to a phase difference of about
67°.

3-3 Linear Model

In this section an attempt is made to explain the results observed from the experiment in the
stability water tank by linear dynamics. The boat-platform assembly is represented by a 2
degree of freedom model. Only the roll angle of both is assumed of influence. Therefore the
position vector is chosen as:

X = [(pplathTm Spboat}T = ['731 xQ}T (3_1)

For a damped fully coupled linear system there are eight unknowns, four in the damping
matrix (C') and four in the stiffness matrix (K). The dynamics are given by Eq. (3-2).

% — [c” C”] X + (3-2)

C21 (22

ki1 ki <
ka1 koo

T
Defining the state vector xg = [X x} gives the system matrix As (Eq. (3-3)) in a multiple
output canonical form such that xg = Agxs. All four entries are 4 x 4 matrices, I is the
identity matrix and 0 represents the zero matrix.

C K
4y - [I 0] (33
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Figure 3-3: Roll angle tracking from video, development of oscillation in first 15 seconds, limiting
behavior in second half. Notice the phase difference visible in the zero crossing: the platform
leads the boat by about 67 degree. This value is estimated comparing the zero crossings of the
dataset and averaging the result. (experiment: D. Cerda Salzmann)

The time forward solution of the initial value problem of the linear dynamics is given by Eq. (3-
4). This solution has 12 variables, 8 in the system matrix, and four in the initial condition
vector Xg. The solution trajectories depend on the eigensystem of A;. The eigenvalue problem
for Eq. (3-3), det(As — Al4x4) = 0 is nonlinear in the 8 parameters and not trivially solved in
general therefore the solution trajectories are no simple functions of the parameters.

y(t) = eslxg (3-4)

3-3-1 Physics based model

In this section a linear dynamical model is derived from multibody dynamics. The two boxes
in Figure 3-4 represent the platform’s and the ship’s rotational inertia. The springs and
dampers (dashpots) are drawn as linear elements for clearness, but are torsional elements in
interpretation. Equivalently when spoken of the masses, meant are the rotational inertias of
platform and ship.

The proportional control spring is a spring with a free length £y equal to the distance from
the boat (z2) to the reference (vg): ¢y = rr — x2 When defining the error as Eq. (3-5) the
actuation torque of the proportional control on the platform can be calculated as Eq. (3-6).

TP = —kp(.’L‘l — T2 — 60) = —]Cp(ajl — acR) (3—6)

For the derivative control dashpot a similar transformation is possible shown in Eq. (3-7)
giving the torque on the platform.

D — —CD(.fl — ig - e()) = —CD(il — iR) (3—7)
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Figure 3-4: Linear model with proportional and derivative control 21 (kp and cp) relative to the
reference xR, serial spring and damper (ks and cg), hydrostatic stiffness kg and hydrodynamic
damping cp.

According to newton’s third principle the control torques are felt in the opposite direction
on the boat. The entire system including the hydrostatic, hydrodynamic and serial elements
now becomes (Eq. (3-8)):

my 0 % — —(CS—i-CD) cs . —(ks—i—]ﬂp) ks X
0 my (cs +cp)  —(cs+cn) (ks +kp)  —(ks +kn) (38)
cp kp
* —cp R [—kp] TR
Or for with a non changing reference of zero (rp = 0)*

_ (eptes) cs _ (kptks) ks
X = [ (cptés) (c??ics)] X+ [ (kpiks) (k?;}&-ks)] X (3-9)

meo mo mo mo

This variant of the system suffers from an identification problem. It is known that a canonical
form state space equation is unique, therefore Eq. (3-3) is unique. When the first and second
matrix in Eq. (3-9) are compared to the first and second respectively in Eq. (3-2) we obtain
the following equalities:

cs = c1amy ks = k1amq

cp = —(c11 + c12)my kp = —(ki1 + ki2)my
C11 k11

cH = <C22 - 012) m1 kg = <1k22 — km) my (3-10)
C21 ko

o k'll _

mo = ———my mo = ——my

ka1 21

This shows there is a free parameter in the parameterization. m; by the solution given in
Eq. (3-10). For any given unique set of kij..kaa and c¢i;..co2 the parameters of the physical

!Note that a non zero reference would require an additional term and for a changing reference a convolution
T
term in the solution of the dynamics. Denoting [kp *kP] zr(t) as g(t) constant reference g(t) = g gives:

§(t) = e?stxo + AT (eAst — I) [g G]T For the varying reference case denoting [CD —cD]Tx'R(t) as f(t),
the solution is: ¥(t) = e?stxo + ft eAs(t=T) [Q(T) f(T)]T dr
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model of Figure 3-4 are unique if one parameter of these parameters is fixed beforehand. So
estimated state space of Eq. (3-9) is unique if one mass (or any other value of an element in
Figure 3-4) is given. The top plate assembly is estimated as my = 20kg. This estimate is
used in the physics based fits.

3-3-2  Stability

No serial terms Stability of a continuous system is guaranteed if the eigenvalues of Ay are
distinct and real part of the eigenvalues is non positive. If the serial components in the
Eq. (3-8) are zero, and the reference g = & = 0, the system reduces to:

x (3-11)

.. —cD/m1 0 . —kp/m1 0
- +
X cp/me CH/m2‘| X [ kp/ma  —kg/ms

The system matrix becomes (with the mass normalization by m; and mg for improved read-
ability denoted by subscript 1 resp. 2.):

—-cp1 0 —kp1r 0

| ep2 —cH2 kp2  —kmo
As=| 0 0 0 (3-12)

0 1 0 0

The eigenvalues A are found via the solution of the characteristic equation:

0 =det|A, — I\
=\ 4 (ep1 + cma) NP + (cpicaa + kpr + k) A2 + (kpicaa + kgacp1) N + kpikio
=(A\* + cp1A + kp1)(A* + crad + kpo)

1 1
A2 = §(i\/C2D1 —4kpy —cp1), A34 = §(i\/0%{2 — 4k — cp2)

Two demands for stability are found from the eigensolution.

(3-13)

1. Non positive real part: R(A;) < 0= cp1 > 0,kp1 > 0,cg2 > 0,kpa >0

2. Separation complex part: %, — 4kp1 # %o — 4k

This second condition is needed as a marginal stable system with two identical (complex only)
eigenvalues is unstable. A repeated pole on the imaginary axis makes the system unstable.
The first condition is naturally fulfilled as the masses, damping and stiffness are nonnegative.
The second condition, (%)2—4(%) # (%)2—4%, is fulfilled if the damped eigen frequencies
of the two bodies are well separated.

Time delay In order to investigate if a delay in the control action the following linear single
time delayed system, with lag 7, is proposed:

(t) = Aoz (t) + Aga(t — 1) (3-14)
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This system Eq. (3-14) is stable if: 1. the system Ay + A is stable (zero time delay stability,
7 = 0) and 2. the matrix A (Eq. (3-15), see [61]) is non-singular for all complex numbers s
with a positive real part (C;):

.A(S, 7') = [SI — Ay — AdefsT] (3—15)

If the controlled part from Ag (¢p and kp) is placed in the delayed A4 and the hydrodynamical
part into Ag such that A; = Ag+ Ay, using again subscripts for mass standardization we get:

s+cpre 78 0 kpre ™ 0
| —cp2e™™ s+cya —kp2e ™ ki
A= -1 0 s 0 (3-16)
0 -1 0 s

for singularity /instability it is required that the determinant is zero:
det|A| =0 (3-17)

This gives the following solution for s:

1
512 = 3 (:I:\/(CDle_TS)Z — 4kpre TS — CDleTS>

1 o
534 = 5 (:l: 6%{2 — 4]€H2 — CH2>

The square root is always smaller than the second term for positive mass, damping and
stiffness. This makes clear that A s € C, such that A is singular. This shows that the
model without serial terms cannot be destabilized by time delays in the control. Off course the
solution and perhaps the growth rate of an already unstable solution are influenced. Note
that a delay on the hydrodynamic damping, a kind of memory or retardation effect, is also
incapable of destabilizing this model.

(3-18)

Gravity Adding a gravitational term to the equation would alter the behavior of the response
and could influence stability. Consider an inverted pendulum on a hinge of length [ and
mass m and inertia J in a gravitational field g. A angular deviation from standing up
straight ¢ results in a gravitational force component in the rotating direction of the pendulum.
Fysin ¢ = mgsin ¢. The dynamics for this system are simply:

Jo =14 =Imgsinp = Imgp = kyp (3-19)

The gravitational term works as an unstable spring that would appear in the ki top left
block of the stiffness matrix in Eq. (3-8) or in Eq. (3-2). This term is easily compensated
provided that the actuation force is sufficient to allow for increase of kp.
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3-3-3 Fitting

Method Even though the dynamics are linear in the system matrices, the predicted response
in Eq. (3-4) is not linear in the parameters that form the state matrix A5 according to Eq. (3-
9). To fit the experimental data from the movie image processing (Section 3-2) numerical
methods must be used. Results from realization theory (e.g. Appendix A.4 in [22]) can be
used to find general linear system matrices but as this method does not allow constraints or
a parameterized format for the output this method is unsuitable. The fitted model (denoted
with a hat) plus an assumed exogenous error term denoted by &; are equal to the measured
value (y; in Eq. (3-20)).

yi =3(t) + &
Ny (3-20)
=e"* 'R + &4

It is assumed that this error term is independent and normally distributed with a mean of
zero, as the data is already centered, and a (unknown) fixed standard deviation o. The noise
is thereby implicitly assumed identical for platform and boat.

e =yt — §(t) ~ N(0,01) (3-21)

For a given parameter vector 6:

T
[k‘n k1o kot koo ci1 ci2 ca1 c22 0’} (Eq. (3-2))

6 = (3-22)

T
[ml me kp ks kg cp cs cm 0} (Eq. (3 —8))

The parameter estimation is performed by Maximum Likelihood as follows. (See e.g. Dekking [62]
and Heij et al. [63]) The probability of a certain residual for one scalar state is found by:

Plet|6] = Ply: — 9(2)]0]

= (z)(yi - Q(tW) (3_23)
= ei(ytfy(t))z/Qo-z
2mo?

With P[Y'|6] the probability of event Y conditional on 6, and ¢() the Gaussian probability
density function. Now the likelihood of the entire vector of residual observations is defined
as:

L =Ply - 9|0]

T 3-24
=[] ¢(v: — 9(1)16) 24
t=0

This likelihood is transformed via the monotonic logarithmic transformation into the log-
likelihood:

T
log £ = Zlog d(y: — y(t)[0)

t=0
. (3-25)

S e —3) (ye — 3(t)/0?

t=0

N | —

N N
= —510g27r— glogag—
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With N the number of time observations. This log £ is maximized” via numerical optimiza-
tion. As optimization algorithm a quasi newton method is used that numerically estimates
the gradient via finite difference and uses an approximate inverse Hessian® (H™!) via the
BFGS algorithm®, see for example Papalambros and Wilde [64]. The optimization step for a
newton algorithm is:

do = —H(9)"'ve (3-26)

The algorithm is iterated until convergence to the maximum likelihood parameters which
are asymptotically normal distributed. Calculating this Hessian is convenient. The expected
value of the Hessian (H) evaluated at the maximum likelihood estimate of parameters 6,
is via the Fisher Information theory equal to the information matrix E[H] = Z(6,,). And
the inverse of the information matrix, and thus the expected inverse of the Hessian, is equal
to the covariance matrix of the parameters (X9 = H™!). This covariance matrix contains
information about the accurateness and significance of the estimation of the parameters. The
standardized distance from zero of the ith parameter estimate 0; is given by:

a b

Yol 1]

Zq

(3-27)

Fitting non physical model The model from Eq. (3-2) is estimated. The non convexity
of the optimization results in slow convergence and sensitivity to the initial guess of the
optimization.

—-0.90 024 -21.21 -3.92
—-1.71 091 1.07 —28.87
1 0 0 0
0 1 0 0

A, = (3-28)

The fit in Figure 3-5 is visually quite successful, the parameters and their z-value in paren-
thesis (standarized parameter distance from zero by the positive definite Hessian/covariance
matrix) are given in Table 3-1. The diagonal elements in the stiffness matrix are as expected
from the calculations in the stability section (Section 3-3-2) of similar magnitude hence the
controlled platform’s and the hydrostatic supported boat’s eigenfrequencies are close but they
are not matching. This is also visible in the "slow beating" in the oscillation.

The residuals of the platform and boat fit are analyzed for normality as non normality is a
sign of misspecification. A Gaussian fit gives for the platform: o7 = 0.642, p; = 0.016 and for
the boat: o9 = 0.406, sy = 0.042. The kurtosis (K), skewness (S), Jarque-Bera (JB)® and
outlier corrected (J B(_i)), without the i biggest residuals on both sides, for both fits are:

K =251, S;=-023, JB;=19216, JB; 3 =3.31
Ky =246, Sp=-0.14, JBy=208,  JBy ;) =0.80

2Note that maximizing this objective is very similar to minimizing the sum of squared residuals (Ls):
SSR = Zfr(y — 9% (y — ) via minky,c,x SSR With as upside additional information about the error in
estimation and the residual distribution.

3Matrix of second derivatives of likelihood with respect to the parameters.

4BFGS stands for Broyden-Fletcher-Goldfarb-Shanno

) " _ )2
5The Jarque-Bera normality test is defined as: JB = bmpl% <52 + %) ~ Hp : X%g)
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Gpo | 938 (1852) o | 520 (5.43)

b0 | -0.72 (-B7T)  duo | -2.88 (-17.06)
ki | 2121 (-40.96) k1o | -3.92 (-4.10)
ko | 1.07 (1.29) koo | -28.87 (-39.29)
C11 -0.90 ( —3.29) C12 0.24 ( 2.65)

o1 | -L71 (-3.81) o |[0.91] (3.35)

o2 | 0.78 (23.17)

Table 3-1: Non physics based fit of Eq. (3-2) with log £ = —352.61. z-values of the parameters
are given in parentheses.

The J B test for normality has a X%g) distribution under the null hypothesis of normality. The
5% critical value is approxmately 5.99 so normality is not rejected if the extreme residuals
are omitted.

Linear state space fit: log-likelihood = -352.61
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Figure 3-5: Fit for the full dataset, non physical model. Direct estimation of the stiffness matrix
(K) and damping matrix (C') components. The dots are the measured data points and the full
line is the estimated model.

The z-values are estimated with the variance matrix given by the numerical Hessian. Almost
all parameters are estimated with fair significance (|z| > 2). What is interesting is that the
positive damping in cgy is feeding the oscillation with energy. As this is the damping on the
movement of the ship it is not logical that this is positive. But when the model is used for out
of sample prediction (Figure 3-6) a illogical burst of oscillation is visible and the estimated
model is assumed either lacking an important effect, is over fitted or is non linear.

Fitting physics based parametric model Now the model from Eq. (3-8) with 2 = 0 is fitted
to the data with a new maximum likelihood estimation. This results in the optimum given in
Table 3-2. And in the system matrix given in Eq. (3-29) where it is seen that the stiffnesses
have very similar values as the ones in Eq. (3-28) only differing about 6%. This would be a
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Figure 3-6: Prediction non physical fit 100 seconds. User interface tool designed to create
feasible estimates for the initialization of the optimization algorithm, look at the mode shapes
and visualize the simulation.

logical result if the fitting was unconstrained, as the data is the same, the parametric model
is in essence is a one-on-one transformation. But the difference is that the sign of the mass,
spring and dashpot parameters is fixed to be positive. The optimization finds an optimum
without derivative damping cp which is probably not true.

Linear state space fit: log-likelihood = -434.27

10 . boat Residuals of platform
8 . platform : 1

SN =D

1
DO

1
W

rollangle(degree)

0 5 10 %15me %Qj 25 30 35

Figure 3-7: Physics based parametric fit of linear mass spring dashpot system from Figure 3-4.
my = 20kg and the full set t = 0..T is used. The dots are the measured data points and the full
line is the estimated model.

—-0.11 0.11 —-24.87 0.00
0.02 -0.27 3.79 —26.49
1 0 0 0
0 1 0 0

A, = (3-29)

Residual statistics:

Ky =271, S1=0.19, JB1=29.31, JBy_4 =275
Ky =239, S3=-0.10, JBy=1.76
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38 Ampelmann scale tests - Quasistatic control

The fit is reasonable for the second half and the JB values are not rejecting normality
when the bottom and top 4 extreme residuals are removed for the platform: JB; = 29.31,
JBy(—4) = 2.75 < 5.99 and for the boat directly: JBy = 1.76 < 5.99. With all residuals
included, especially the large ones at the beginning, make the JB test reject normality.

The build up of the oscillation is not properly fit as the first 15 seconds show large residuals.
In fact, the fit contracts in the first 8 seconds whereas the data shows diverging maxima from
the beginning. Out of sample prediction shows unbounded growth in both observed angles.
Considering that nonlinearities are more dominant with larger deviations from the upright
position, it is possible that the second half of the oscillation, the kind of limiting behavior,
is due to the nonlinearities. But as the fitting does not include this effect, and the absolute
values of the angles are greater in the second half, the optimization focuses on this part and
the quality of the fit in the first half is lost.

doo | 1941 (104.66) o | 7.86 (
bpo | —1.87 (—18.41) o | —2.00 (
mi 20.00 (fixed) mo | 131.12 (893.89)
kp | 497.30 (585.76) ks | 0.00 (
kg | 3473.04  (1059.02) c¢p | 0.00 (
cs 2.13  (8.70) cu | 3380 (
(

o 0.98

Table 3-2: Physical parameterized fit of figure Figure 3-7 with log £ = —434.27. This is a local
optimum as the initial guess needed to be quite close to arrive at this setting.

First half fitting physics based parametric model As the linear model is not capable of
explaining the limited angles, the assumption of constant parameters is dropped and only the
first 15 seconds (oscillation build up) are fitted with the model from Eq. (3-9) and plotted in
Figure 3-8.

The system matrix is found to be:

-3.32 315 -=37.78 0.00
091 —-1.35 1036 —28.35
1 0 0 0
0 1 0 0

A, = (3-30)

The fit is visually good, and the eigenvalues of As: A} = —2.3847+6.1673¢ and Ay = 0.0497+
4.9492; show a stable (negative real) and an unstable solution. And both eigenfrequencies
are of the same order of magnitude shown by the complex part.

Residual statistics:

K1 =232, S =-024, JBy =2.11,
Ky =249, Sy =031, JBy=2549, JBy_, =3.72
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Linear state space fit: log-likelihood = -171.78

180 “hoat : 5 Residuals of platform
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Figure 3-8: Fit for the first 15 seconds using the parametric physical model. m; = 20kg and
the first half of the dataset is used so ¢ = 0..7'/2. The dots are the measured data points and
the full line is the estimated model.

doo | 2325 (4TT) o | —1.64 (—0.76)
bpo | —0.37 (=0.71) ¢y | —3.09 (—10.01)
mi | 20.00

kg | 2068.72 (164.39) c¢p 3.37
cs 63.00 (43.21) cyg | 35.39
o 0.74

( (

( (

(fixed)  mg | 72.97 (275.16)
kp | 755.63 (54.57) kg | 0.00 (

( (

( (

(

Table 3-3: Physical parameterized fit of first 15 seconds with log £ = —171.78.

Second half fitting physics based parametric model Now the second half of the dataset
(the limit cycling) is fitted with the model from Eq. (3-9). The optimization is initiated with
the found solution from previous section where the first 15 seconds were fitted. The results
are shown in Figure 3-9.

-3.64 356 —41.02 0.00
0.92 —-1.47 10.38 —28.10
1 0 0 0
0 1 0 0

A, = (3-31)

The eigenvalues of As are Ay = —2.5532+6.3470¢ and Ao = —0.0020£4.9375i show two stable
(negative real) solutions. The second solution persists long due to the small absolute value
of the real part. The estimation of the hydrostatic stiffness (kz) and control stiffness (kp)
increase a bit (both about 6%) and the control damping cp is still not significantly diffrent
from zero. Now a serial spring is found with a z value of four and a half, but in comparison
with the other estimations the power of this estimation is still moderate. The estimation of
the serial damping increases a bit more, about 12%, but the hydrostatic damping estimate
increases a lot: 28%.
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Linear state space fit: log-likelihood =-188.29

40 Ampelmann scale tests - Quasistatic control
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Figure 3-9: Fit for the second 15 seconds using the parametric physical model. m; = 20kg and

the second half of the dataset is used so t = T'/2..T. The dots are the measured data points and
the full line is the estimated model.

bpo 26.92  (4.48) dvo | 33.91 (13.47)
Ppo 1.68 (2.76) ¢y | —2.43 (—7.22)
mi 20.00 (fixed) mp | 79.03 (113.52)
kp | 79818 (70.18) kg | 2219 (4.54)
kp | 219847 (152.53) ¢p | 1.53 (0.87)
cs | TL19 (70.12) ¢y | 45.36 (27.07)
o 0.82 (17.31)

Table 3-4: Physical parameterized fit of second 15 seconds with log £ = —188.29.

Residual statistics:

K; =213, 8 =001, JB;=406.00, JBj_g =3.61
Ko =206, So=—0.24, JBy=2.92,

The residuals show a strong indication for an underlying normal distribution. Only the last
three big residuals at ¢ = 30 have to be ignored to take care of the excess kurtosis. This is a
sign of correct model specification.

Parameter sweeps, eigenvalues A kind of sensitivity analysis in order to get a grip on
the severity of the nonlinearities is made, see Figure 3-10 The found solution for the 20kg
parametric model for the first half T is used, shown for the z axis value 100%, and all
eight parameters are varied. A positive real part gives an unstable response of the system.
The resulting curves show that the hydodynamic damping and the derivative control have a
monontonic stabilizing effect on increase, whilst the other parameters (when varied solitary)
have a range of instability bound for most parameters by one half to to times the value. kg
was estimated zero hence the horizontal line.
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Maximum real part of eigenvalues, varying k parameters around 6,

T T T T T T T
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Figure 3-10: Influence of the 8 parameter values on stability (positiveness of the eigenvalues)
around the solution of the fit for the first 15 seconds. The parameters of the maximum likelihood
estimation are the set 6,,,;. In every line in the plot, one of these estimates is varied rationally to
its value. The maximum real part at 6,,; (100%) is about 0.05. It is visible that there is a unstable
regeon that can be turned stable by various ways: increasing or decreasing the serial damping,
increasing the hydrostatic damping, changing the masses. Note that changing the masses would
also change the hydrostatics in a real world application.

3-4 Conclusion

The build up and limit cycling behavior visible in the Ampelmann scale model testing movie
is reproducible by a split linear model for the two regimes. The fit matches the measurements
with high accuracy and the parameters have logical values. The coupling between the two
bodies via the serial damping term cg is a key ingredient to create an unstable pole in this
model. The cause for this term could be hydraulic damping present in the system or a
derivative error that is not incorporated as ¢ = &g — &1 but as é = &9 — 1. This conclusion is
not supported very strong as multiple other nonlinearities could be present (such as nonlinear
actuation forces for example) and this conclusion is based on a estimated linear model.

However it is shown that there always is a configuration of parameters possible such that the
eigenfrequencies collide and the double, marginally stable (mainly complex), pole destabilizes
the system. This situation could be reached, or even searched for by the nonlinearities.
Therefore it is important to protect the system against this potential danger in the actuation
strategy.
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Chapter 4

3D simulation

4-1 Mechanism description

In this chapter the working principle, dynamics and control of a new ship motion compensation
mechanism is discussed. The mechanism is based on three planar linkages, so called "Sarrus"
mechanisms, that constrain the movements in the ship’s horizontal plane. The platform allows
only heaving (vertical) translations and roll and pitch rotations. This decision is made for
several reasons. The ship’s accelerations in these three directions are much larger than the
planar movements'. The planar movements are more easy to counteract via other methods
such as Dynamic Positioning (DP) and anchoring. The construction can be made more rigid
by the planar constraining mechanism and finally less Degrees of Freedom (DoFs) requires
less actuators. This provides a cost reduction and improves the robustness advantage to more
complex systems.

The mechanism allows a force-reach trade off via the linkage as the actuator position on
the top linkage can be altered. Shifting the actuator connection towards(/away from) the
platform increases(/decreases) the available force and decreases(/increases) the achievable
heave distance and roll and pitch angles. See the raw sketch in Figure 4-1.

4-2 Mechanism kinematics

The approach to find the forward kinematics, that is the relations to find the platform pose
given the hydraulic leg lengths, is divided in the following steps:

e Develop necessary (mathematical) tools: coordinate systems, rotation and translation
definitions. Section 4-2-1

'Table 2 in [37]
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44 3D simulation

Figure 4-1: Sketch of the 3 DoF parallel manipulator platform with 3 planar linkage systems with
a leveraged hydraulic transmission. The three planar linkages are placed 120° apart constraining
the system to move only in heave(z), roll(¢) and pitch(f) directions. The linkage consists of
two arms attached with a revolute joint (R) to each other and to the ground. The top linkage
is connected to the platform by a rotating cardan joint permitting three rotations (acting as a
spherical (S) joint) and with a revolute joint to the hydraulic cylinder (C). The hydraulic cylinder
is in turn attached to the ground by a revolute joint. Note that the cylinder is only loaded axially
due to the linkage.

e Inverse kinematics (k~!): given the platform pose vector (3 composed of 1 translation
and two rotations, formally defined in Eq. (4-2)), what are the leg lengths ¢;_3, and leg
directions I 3. Section 4-2-2

e Time rate of change of inverse kinematics: finds a relation between :?5 and ¢ called the
Jacobian. Section 4-2-3

e Forward kinematics: Newton-Rhapson iterations with Jacobian find the platform pose
from given leg lengths. Section 4-2-4

4-2-1 Mathematical tools

Coordinates The platform pose is determined relative to the ship by a translation and a
rotation. See Figure 4-3. The boat’s origin is placed on deck on the symmetry plane, not
necessarily above the coG with the attached coordinate system called B. The platform’s origin
is placed in the loaded platform’s coG and called P. The vector pointing from the origin of
the boat frame to the origin of the platform’s frame is denoted by ¢ and the rotation from
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k1 /
Analytical

K

J
t

Iterative

Figure 4-2: Inverse and forward kinematical relations. The inverse kinematics find the joint
coordinates (leg lengths) from a given end effector translational and rotational state is a unique
analytical relation. The forward kinematics is not guaranteed unique for parallel manipulators,
and the solution must be found by iterations.

the B to P by Rp_,p. Coordinate free vectors can be described in a reference frame of choice.

or .

This is denoted by a superscript, e.g. &

Figure 4-3: The main four reference frames. The platform P, the ship B, the inertial Z and the
hydrodynamic equilibrium frame 7. The pose of the boat in the inertial frame is found via 77 and
the relative pose of the platform via Zg. The body fixed velocities for boat and platform are ©
and Z respectively.

Rotation We use the compact notation cs = cos(¢), sg = sin(f) for the sine and cosine
functions. A coordinate rotation around a single axis finds the coordinates of a vector (z) in a
rotated coordinate system (z’) that has one axis in common with the originating system (e.g
the X axis 2z’ = Rxz). The rotation from the B to the P frame is found by thee consecutive
coordinate rotations shown in Figure 4-4. Combined in the roll-pitch-yaw Euler angle list 8
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46 3D simulation

they form the rotation matrix:

B 1 0 0 cg 0 —sp ¢y Sy 0
Rpp(B) = Rx(p)Ry()Rz(¢) = [0 cp sp[ |0 1 0 | |=sy cp O
0 —s, c sp 0 g 0 0 1
v Cp (4-1)
CoCy) CYSy) —Sp

T _
= |SpS0Cy = CoSy 50805y + CpCy Spco| = Rp_p(f)
CpSOCy + SpSyy  CpSHSY — SpCy  CpCoh

The translation vector and Euler angle list can be combined into one vector defining the pose
of the platform as:

55 = [ 8] (+2)

The Euler angle rates?, see Figure 4-4, are found from the instantaneous rotation rate vector
of the platform expressed in the boat frame @? as (Eq. 295 Diebel [65] and pp. 3-4 Schwab
and Meijaard (2006) [66]). As the platforms frame P is expressed relative to B, the boat is the
platform’s frame "ground". Hence we use the "ground"-to-euler £ and not the "body"-to-euler
E’ as used in the ship attitude transformation Eq. (2-14).

(;:5 1 01/, $¢ 0 B
=10 =— —CgSy  Ccgcy 0 oB = [E(B)]_I(DB (4-3)
: c
P 0 CpSe  SySe  Co
We can define a generalized velocity vector as:

&= e @B}T (4-4)

Note that %(a:/g) # &. We can transform from the time derivative of Eq. (4-2) to the gener-
alized velocity vector by:

: o el I -
=[] =02 st [ 20 Y

4-2-2 Inverse kinematics

In this section the the inverse kinematical relations of the mechanism from Figure 4-1, that
find the leg lengths from the pose of the platform, are derived. The mechanism is described by

2 A few useful relations are given in Diebel (2006) [65] Section 8.2 (p.24).

1 v =0
The linearized variant of Eq. (4-1) is: L{Rgp} = [—d) 1 10) 1
6 —-¢ 1

The relation between the rates, their transformations and conjugate transformations:

w? = Rias(B)w®, w® = E123(B)B and w” = E123(5)B

_ Co S¢S0 CpSo
Where the inverse of the conjugate transformation is: [E'(8)] ™' = é 0 coco —84Co
0 S¢ Cop
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Figure 4-4: The North-East-Down, xyz-Euler angles and rotation rates drawn as revolute joints
or cans in series as in [66]. The grey part of the joint is fixed and the white part can rotate. The
chain of rotations defines the rotational pose of the secondary base relative to the first.

a double chain of vectors shown in Figure 4-5. The methods used to derive at the kinemat-
ical relations are analogous (not similar) to the methods used by Koekebakker (2001) [28]
in his PhD thesis considering model based control of a flight simulator, Li and Salcud-
ean (1997) [67] in their publication considering a hanging 6 legged Stewart platform and
Hsu and Fong (2001) [68] with their paper on computed force feedback of a 6 legged hy-
draulic platform.

by

Figure 4-5: Vectorial representation of the planar linkage system of one leg. The mechanism is
shown in Figure 4-1.

Hydraulic leg vectors The hydraulic cylinder is represented by the vector I; where i = 1..3.
For the sake of readability and because all three legs are identical, the subscript is dropped.
The vector from the platform axis base to joint A is constant and known in P and called a.
The vectors defining the mounting points on the deck b; and by are constant and known in B.
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The hydraulic leg is mounted on fractal distance a = [0..1] along linkage dy. The kinematic
loop with the leg included in the base frame leads to:

by +1—ady—aP —e=0
by +1—ady — Ry pa” —¢=0 (4-6)
| =ady + RE ,p(B)a” +¢— by

The length® and direction of the hydraulic leg are found and denoted by:

¢ =|l| = |lady + RE_p(B)a” + ¢ — by
] (4-7)

Iy =

|~

Linkage vectors To find ¢ and [,, in Eq. (4-7) from pose vector 75 defined by Eq. (4-2), da
needs to be found. We arrive at an expression for this vector using the following know facts
and values:

B? , l;g ,a’ (known basis and platform connection points)

Rp_p, &8 (known transformation from boat to platform axis)

a, |di|, |da| (known linkage dimensions)

{a@,by,bo,¢,dy,ds, 1, g} € R? (planar mechanism)

£-75g > 0, Lgl > 0, L-zZgd, € (0, 5)  (no singular pose)

by Lc| zp (height in z-direction and forms right angle with deck)

Auxiliary vector g together with the angles from the barge’s z-axis (zg) and this vector, and
from g to the linkage are found by:

g=¢c+ RE p(B)a” — by, unit direction: g, = %
g
_ —1,-T- . _ T
/-zZgg = cos” (g, €,), with: e, = [0 0 —1} (4-8)
~ 512 4 1di12 — 1do|2
4§d1:COsl<|g’ +‘_l‘_ ‘ 2‘ )
2|g]ld|
The total angle from the z-axis to the linkage now becomes:
/-zpdy = /-Zgg + Zgdy (4-9)

Now the vectors defining the linkage are given by the lengths and the found angle, and using
the second kinematic loop:

dy = |d| <_ZB cos(Z-zZpdy) + _bb|1 sin(é—23d1)>
1

JQ = 61 + Jl —Cc— Rz;_ﬂ;(ﬁ)&P

(4-10)

Every part in Eq. (4-7) for the hydraulic legs can now be found from the dimensions of the
mechanism and the pose given in Zg.

|2 — 1—}T1—}

3the length is found using the definition of the norm of a vector v: |v
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4-2-3 Time derivatives of inverse kinematics

In this section a relation between the velocity of the platform and the rate of change of
the joint coordinates, the leg lengths, is found. We use the generalized velocity vector from
Eq. (4-4). The velocity of joint A (V4) in the B frame, Figure 4-5, can be found from the
generalized velocity by*:

(4-11)

o ?ZB
A

Figure 4-6: Velocity of joints in planar linkage system. The linkage is connected to the platform
in A and to the hydraulics in D. The vectors dy and d form the parallel mechanism of the linkage,
and the auxiliary vectors g and g’ are used in calculation and represent no parts. The main strategy
of the velocity transformation is to decompose velocity vector V4 in two independent directions
that represent the two rotations around the revolute joints at the floor and in R.

Decomposition of V4 The velocity in the revolute joint between the linkage and the hy-
draulic cylinder, denoted by Vp in Figure 4-6, is found by noticing that the revolute joint in
R, connecting the two arms of the linkage, can only move in a circular motion. Therefore the
velocity in this point Viz must be tangential to d;. The hinge on the boat deck can also only
rotate around its own axis. The velocity of point A (V4) can therefore be described by two
rotation rates around the two hinges (denoted by ’;}’1’2) pointing out of plane, and the arm of

0 —U3 V2
4[v]x is the skew symmetric cross product matrix such that [ U3 0 —vll F=0UXT
—U2 v1 0
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the two rotations: B _ _
Va= xdi+ 72 x (dy — d2)

ST (4-12)
=N xdi+y2xg

V4 can therefore be decomposed into two components, both in plane, and orthogonal to the
rotation arms.

Va=1v41+v2a
e (4-13)
= VA1Gn1 + Va2dan 1

Where the magnitudes are denoted without bar as they are scalar valued, and the subscript
n is used for normalization. The g and da vectors are found respectively in Eq. (4-8) and

Eq. (4-10). The subscript L denotes "perpendicular to" whose direction is fixed defining the
out of plane direction by:

i 225 X by, (4-14)

or in words as the outer product of the unit Z direction vector of the boat frame (a NED
frame) and the unit vector in the direction pointing to the deck mounted hinge of the linkage.
Note that ¢ is normalized by construction. A perpendicular vector is found by taking the
outer product of the vector with i. (g, = g x i) This allows finding the magnitude of the
decomposition of V4 via inversion of:

VA:[gnL din1 Z] VA2 (4-15)

Using the subscript x,y and z to denote the B based Carthesian component of the vectors in
the decomposition matrix, the inverse of Eq. (4-15) is found as®®:

1 1
B Z% -+ 7’32/ =+ Zg (gzdly - gydlz)im + (gmdlz - gzdlx)iy + (gydlm - gwdly)iz

1

VA1 3 B 1 _ B ]

vas| = g0 i i| Va=|@x3) (dixi) i Va=

0
dlxzz - dlyixiy + dlng - dlzixiz dlyig - dlxiyix + dlyiz - dlziyiz dlzi;% - dlxizix + dlziz - dlyiyiz
_ga:i?/ + gyimiy - gmig + 9zigly _gyig% + gmiyiw - gyig + gziyiz _gzii + Galziy — gziz + gyiyiz
in/A iy/A iJA

= JUA,VA(Q_W)VA ( )
4-16

For a known pose in the B frame, Eq. (4-2), the decomposition Jacobian matrix J,, v, (Z3)
can be found and the velocity components in the two rotation directions are found via a linear
transformation. The bottom row of Eq. (4-16) finds the out of plane velocity of V4, which
should be zero as the linkage only allows planar movements.

5Normalization subscript n is omitted for better readability.
5The inverse exists because of the angle conditions in Section 4-2-2 force a non-singular configuration.
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4-2 Mechanism kinematics 51

Velocity at hydraulic connection joint D The v component that is linked to the second
hinge (in R) scales linearly with the arm length of dy. The component that is left in joint D
is found via fractional length a.

Upe = (1 — a)dan Va2 (4-17)

The magnitude of the component of the first hinge is dependent on the relative length of g
and the vector from the floor joint to D called g'.

q dy — (1 — a)d:
vp1 :'&'Ml _ Il (|g| Jdl, (4-18)

The direction of the velocity component rotates a little, the new direction and the total
velocity component is found by":

UnDl = gﬁ_ % Xg
/ / (4-19)
T ) < g —)
UD1 = UD1VUnD1 = VAL | 7557 X ¢
I 9]
The velocity in joint D is now found by summing Eq. (4-19) and Eq. (4-17):
Vp = vp1 + Up2
‘§/| ( g/ ) 7 -
== | = X1|va + (1 —a)(doy, X 1)va2
il \i (= adn 1)
o, ~ - VA1
= [% (ﬁ X Z) (1 —a)(dan x 7) O3><1} VA2 (4-20)
0
VA1
= Jvp.wa(@p) [va2
0

The total Jacobian transformation matrix (3 x 3) from a velocity in A to a velocity in D can
now be formed by recombining Eq. (4-16) and Eq. (4-20):

Ip.A(Z8) £ Iy (T8)Tv,,va (Z5)

(4-21)
Vb =Jp.aVa

Leg length change rate The rate of change of the length of a single leg is found by using
the velocity of the joint in D (see Figure 4-6) and the unit direction of a leg from Eq. (4-7)
and the Jacobian from Eq. (4-21) (p.44 [28]):

. _ _ 1T
§—= im — i\/lTl _LTVa
dt dt H (4-22)

= Z_EVD = Z_EJD’A(.f‘/g)VA

"Note that if & = 1 then Vp = Vg in Figure 4-6.
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Using the velocity of point A from Eq. (4-11) in Eq. (4-22) using the triple product identity®
yields :

0 =17 (25)Ip.a(Zp) (é @ x Rz;—ﬂD(B)aP)
= Z_EJDACL-I- (Z_;{JD,A) : ((D X R%—HDELP)T

=11 Ipac+a" - (REpa”)" x (I1Tp,4)) (4-23)

— . _ T
=11 Jpac+ ([R};ﬁpap} § JﬂAln) ©
7T T T 7 g
= |:ln JD,A <[RB—>PC_‘P} y JD,Aln) } 5
For all three legs, the first of the matrices on the right side of the last equation from Eq. (4-23)

can be found, and stacked into one 3 x 6 Jacobian matrix that transforms the generalized
velocity vector (Eq. (4-4)) to the leg change rates:

Ol

i=[i by &) =30 (4-24)

4-2-4 Solution to forward kinematics

The solution of the forward kinematical problem of the mechanism is found iteratively by
applying a Newton-Rhapson scheme. (Similar to [27], [28] and [67] and many others) The
"leg rate - generalized velocity" Jacobian from Eq. (4-24) is used in combination with the
transformation from the time derivative of the pose vector to generalized velocity (Eq. (4-5)).
The superscript + indicates the generalized inverse’:

J:fﬁ,i = [JZ@[,]JF =Jzsa [JZ@]+ (4-25)

jﬁjJrl = a_:ﬁj + [JZ@B ('@ﬁg)}+ (Zmeasured - ?(«%BJ>) (4—26)

Selecting only the heave-roll-pitch Dors from Zg shrinks the dimension from J i (25;) € R6x3

to a square matrix in R3*3 making the problem exactly determined (if the reduced J i35 is
full rank).

The number of iterations required to converge to the correct pose is dependent on the initial
guess and is typically in the order of 1 to 3. Starting the iteration at the pose from the previous
timestep improves the convergence. Execution times of the forward kinematics calculation
scripts as presented in this section are 1 to 2 kHz, and are suitable for real time application
where the update frequency requirement is lower.

8Triple product identity @- (b x &) =b-(Ex a) = ¢- (@ x b)

9The Moore-Penrose pseudoinverse solves the (real valued) ordinary least squares problem y = Xb by
Xty =(XTX)"'XTy = b. If the problem is exactly determined and nonsingular the pseudo inverse is equal
to the matrix inverse X 1.
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4-3 Dynamics

4-3-1 Platform dynamics in an inertial frame

If it is assumed that the boat is fixed in space, the body frame of the boat can be regarded
as an inertial reference frame (B = Z). Then the dynamics of the platform can be derived
via the Newton-Euler method. The forces and moments are combined into the vector 78 and
consist of three linear terms and three angular terms.

= M
Z Tinear C) (4_27)

= MC = mfgxgéB

Where m is the platform and load combined mass and ¢ is the vector pointing from the origin
of the boat fixed reference frame B to the origin of the platform frame in P. In this paragraph
it is assumed that the origin of P is in the CoG of the loaded platform. The time derivative is
expanded into an angular acceleration part and an angular rate dependent part. This gives
the Euler equations as:

d
Tzﬁlgular = at (RP%BI w )
_Rp_,BI wF + Rp_p (w X (IP P)) (4-28)

BB - B-B
=W + @B IxIy@w

With If = Rp_, BIZfR; _, g the rotational inertia matrix of the platform expressed in the boat

fixed coordinates and therefore dependent on the angular pose 3. Combined and rearranged
and using the Jacobian projection to find the force vector from the leg forces the system

becomes: )
mfg ><358 . 0
158 — [P 1BwP

4-3-2 Ship dynamics

+ fgravity + nggflegs (4‘29)

The boat’s reference frame B is expressed relative to the inertial '"North-East-Down" frame.
The inertia matrix is not constant in an inertial frame Z if B rotates with respect to Z. Hence,
it is convenient to express the equations of motion in a body-fixed coordinate system. To
derive the ship dynamics the method and coordinates presented in Fossen (2005) [43]'" are
employed. A positional vector (7) and a velocity vector (v) are defined that are not simply
related by time differentiation but also by a rotation dependent transformation (Eq. (2-15)):

0= Ja.o(mv (4-30)

For time domain simulation the Oglivie transformation of the Cummins equation Section 2-2
is used to fit the frequency dependent hydrocoefficients in the time domain equation. These
hydrocoefficients are for example calculated from strip theory in a hydrodynamic code, such as

10Gection 6.2
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3D Visualization of the Wamit file: wamit.gdf

Z-axis (m)

Y-axis (m)

X-axis (m)

Figure 4-7: Visualization of the barge panel model used in the WAMIT hydrodynamic calcula-
tions.

WAMIT and are mainly dependent on hull shape. The radiation forces (i) are approximated
by a state space model (A, 44, Brad, Craq) that estimates the retardation function. The system
of equations describing the ship motion is:

1= Jpo()v
M+ i+ g(7) =
sVt 9(772 T ) (431)
X = AraaX + Braa?
i = CraaX where X(O) =0
With the mass matrix,
M, = Mpp + J*TALT* (4-32)

Where J* is the geometry defined linear transformation from the hydrodynamic equilibrium
frame H to the body frame B and A, and B, are the infinite period hydrodynamic added
mass and damping. These last two constants are jointly estimated (if not provided from
WAMIT) with the state space model for radiation terms. Note that the infinite period
damping term from the Oglivie transformation of the Cummins equation Do = J*T B, J*7 is
dropped because the radiation term is estimated in the form of the original Cummins equation
(See Section 2-2-3). The rigid body mass matrix Mgp is diagonal if the origin is placed in
the coG. If it is placed in another place, say a body fixed vector 7,4, away from the origin
(see Figure 4-3), the rigid body mass matrix becomes[69]:!

Mpp = [ mlzxs —m|To,9,)x ‘| (4-33)

m[f%gs] x Ig— m[foz)gs]Qx

Where m is the mass, I, is the inertia seen from the CoG that is described in radii of inertia
as Iy(i,7) = mr?j with 7;; = 0 for ¢ # j, I3x3 is a identity matrix and the subscript x denotes
the skew symmetric cross product matrix.

0 —z vy
"Proof of symmetry: # = [a: Yy z]T, ml[Flx = m [ z 0 x] so m[f]% = —m[f]x and m[f]% =
-y T 0
—(y* + 2?) Ty Tz
m xy —(2% + 27) yz = m[7] ZXT Therefore Mrp = M% 5
v o
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Figure 4-8: Estimation heave-heave retardation function. Left the known values from the com-
plex retardation transfer function A.33(jw) = W +A33(jw)] and the estimation of this

function via a LTI state space object is shown. Right the reconstructed added mass and damping
from approximated retardation. Estimation order is chosen such that B(w) > 0 to ensure passivity
and the transfer function is stable. Methods from [48], barge WAMIT modeling by GustoMSC.

4-3-3 Coupled ship and robot dynamics

Considering the platform on the floating boat and describing the dynamics from the moving
reference frame of the ship introduces fictitious forces in the dynamics.'?> The platform and
boat have a relative velocity and acceleration, this introduces forces if the system is described
from the ship’s reference frame B. Therefore the dynamics found for the ship and for the
platform in Section 4-3-1 and Section 4-3-2 cannot be coupled straightforward.

Next to these gyroscopic forces, the velocities and the pose are not simply linked through
time differentiation. They require pose dependent linear transformations, for the platform
described in Eq. (4-5) and for the boat described in Eq. (4-30). Both of these transformation
are based on the Euler angles and are therefore prone to singularities and need careful han-
dling.

We want to derive a description for the dynamics of the coupled system that has two important
properties: 1. We want to use the minimal set of coordinates 2. We do not want Lagrange
multipliers in the equations. The first condition is because simulation speed considerations,

12Rixen (2011) [70] Chapter 2 on rotor dynamics Remark in Section 2.1.1. regarding the Coriolis/gyroscopic
and centrifugal terms: "Physical interpretation of Coriolis forces - Coriolis forces (also sometimes called gyro-
scopic forces) and centrifugal forces are in fact fictitious forces in the sense that they appear in the equation
of motion of the system when they are expressed for positions measured in a moving (i.e. rotating) frame
(similarly to deceleration forces experienced in a lift)."
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whereas the second requires a formulation that implicitly complies to the constraints and is
not prone to constraint drift in forward time simulation. Hence larger step sizes should be
possible. The method employed to link these two systems mainly follows the Lagrangian
formulation of the Boltzmann-Hamel equations of motion for single and serial multi body
systems presented in From (2012) [71] and [72]. The key observation required to utilize this
theory, is that by considering only two bodies, and not all the linkage masses, the system
essentially becomes a serial mechanism with a nonlinear linkage. But regardless the complex
linkage, it is a single chain with two masses.

The dynamics are derived are very similar to the Boltzmann-Hamel equations of motion for
single bodies. Calculating the Lagrange equations in terms of local position and velocity, and
a mapping to the corresponding quasi-velocities, that are not necessary a time derivative of
the position variables, gives the relations for the global system in Lagrangian form. The key
points in the derivation of the method are stated here.

Kinetic energy First we require an expression for the kinetic energy of the system (K).
To arrive at an expression for this energy we calculate the kinetic energy for both bodies
individually and sum them. Because we want a minimal set of coordinates for various reasons
(simulation speed for instance) and the platform motion relative to the ship is only in the 2%
and rolling and pitching movement (no rotation around 2B ) we define the selection matrix H
and conjugate selection matrix H as:

001000 [toooo o]
H210 00 1 0 0 210 1. 0 0 0 0 (4-34)
000010 000001

We now redefine 5 from Eq. (4-2) and & Eq. (4-4) to only contain the heave, roll and pitch.

HTjg — :fg = [Z 10} H}T
. . T (4-35)
H'z — z2 [w P q}

This reduces the rotation from Eq. (4-1) and the "ground"-to-euler transformation E’ (con-
jugate of F in Eq. (4-3)) to:

co 0 —sp & 00
Rpp(p,0) = |spss ¢ spco| [E(0,0)'=| 0 1 0 (4-36)
CpS9 —Sp CpCy tanf 0 1

The kinetic energy of a body i with rigid body inertia I; and velocity Vj/* with respect to the
inertial frame, denoted by the subscript 0, expressed in body fixed local frame }Y); is found as:

1 -4, — ).
Ki= §(V0¢’)T1ivof
L o\ T AT T (4-37)
= 5 (Voi)” AdzyLiAdzy Vs
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Where the adjugate matrix (with capital Ad) transforms the velocity from one frame to
another using twists.'? For example the velocity reference frame transformation is performed
by the adjugate matrix and is constructed for the transformation from B to P as:

=VA
P = Adpp(i5)iB = [RB—W RB—ﬂD[C]X] =B

0 Rp_p
Co 0 —Sg Co 0 —Sg 0 z O
5,89 Cp  S,Ch 8080  Cp  Spce| |—z 0 0 (4-38)
_ | LCes0 —Sp Culo CpS9 —Sp Cplo 0O 0 O 2B
Cco 0 —Sp
O3x3 8080  Cp  SpCh
i CpSe —Syp  CpCh |

The kinetic energy of the platform is now found using the platform rigid body inertia matrix
Mgp, € RO%6 with the reduction matrices H from Eq. (4-34) and the velocity of the platform
with respect to the inertial frame expressed in the platform frame P (VJ;) as:

Kplatform = % (%z)TMRBp%E
:%(1707; + Vi) "Meay(Voy + Vi)
:;volg + Vi5) T AdgpMrppAdsp (Vi + ViE)
:%(a + )T AdhpM gy Adgp (7 + Hi)

(4-39)

1 . .
:5(57’ + zTHT)AdEpMRp,Adsp (7 + HZ)
1 .
=3 v AdgpMpppAdgp v + 07 AdgpMrp,AdgpH

M’UC

Moy
1. .
+ §i‘T HTAdgpMRBpAdBpH T

Mcc

Where we’ve recognised the velocity of the ship expressed in the ship frame (only heave, roll
and_pitch) as Volg = H”¥ and the velocity of the platform relative to the ship expressed in B
as V}g = z. Now the total mass matrix for the platform dynamics becomes:

M, M] (4.40)

M, = lMUTC M

And the kinetic energy and massmatrix for the ship are found by the rigid body mass plus
the infinite period added mass in the body frame (Eq. (4-32)):

HT
X

1 -7 _
K:ship = 5%% MSVOBb

1 r (4-41)
= —v" Myv
2 S
3Denoting a body frame by ’ and the transformation from base to body by Z’ = RZ. Translating a velocity
vector = along 7 while the base rotates with & gives body velocity z’ = R(Z + & x 7) = R(Z — 7 x @) =
Rz — R[f]x@ = RZ + R[F]X@ and body rotation rate w’ = Rw
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The total mass matrix is now found by combining the kinetic energies and using Eq. (4-40) and
Eq. (4-41) and defining velocity state 17 = [iﬁT ET} and orientation state ¢’ = [:Eg nT}
as:

1 - — Mcc MUC 0 0 v
K = Kptattorm + Kship = 5 {f”T ”T} <lMT M 1 " [0 M D H
M(q) _
— Lirmg
=3 q)v

4-3-4 Lagrange - Coriolis terms

The Lagrange equations for a configuration (¢) dependent mass matrix and quasi-velocity v
that is not a direct time derivative of ¢ consist of the following derivatives of the Lagrangian
L:

L(g,v) = 577TM(q)z7 —U(q)
oL —M@pe

. (4-43)
& (55) = M@ + Sty

oL 10™M(q)v . 0U(q)

= =3 — 0 — ——

Jdg 2 0q 0q
Now using the velocity transform coupling the position variables to the quasi-velocities defined
as:

v =8(a)q (4-44)
Gives the Lagrangian L expressed in the derivative of the position variables (q):

L(a0) = 3" @M(@S@i - U(@)

7 ) (4-45)
- (“) =505 +5" @5 (50)

oL _ oL _9"(8(a)d) oL

aiq_afr oqg Oov

Now Lagrange’s equations are found as:

d (oL oL r
d ((%) oy (4-46)
e 10TM(q)T
M(q)v +M(q)v — S T(Q)23(§q>v
Multibody Coriolis terms (4 47)
" (S(@)d) ou(q)

+87(a) (ST(q) %

Coriolis terms identical to single body case
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Now for further evaluation of these Coriolis terms without regarding singularities in the
mapping from position to quasi-velocity, we define a local position coordinate ¢ that maps to
the velocity variables v.

v =5(¢)
S(¢) = (1 _ %a% + éad2 - )

With ad, the Lie bracket in matrix notation that looks for a the SE(3) group (3 translations
and 3 rotations) in which 3 dimensional rigid body movements are described (with velocity
directions defined according to Eq. (2-12)) as

(4-48)

0 —r ¢ 0 —w v
T 0 —p w 0 —u
EAPERLLAR -¢ p 0 —v 0
ady = _ = 4-49
v l 03x3 [yl 0 0 O -r q ( )
0 0 0 T 0 -p
L0 0 0 —¢ p O]

By evaluating the local velocities at ¢ = 0, S~! becomes identity. Now the Coriolis terms
from Eq. (4-47) without the multiplication with v can be captured in one Coriolis matrix C
such that 7.orioris = Cv. The entries of this matrix are given by [72]:

DSk askj> _
v + Z ( - (M),
o0 ~\00; 0o

o (OMy; 10My,
Culv) = 2. Crt

(4-50)
$=0

First part: partials of A, The first part of Eq. (4-50) consisting of the partial derivatives of
the mass matrix given in Eq. (4-42). As only the partial derivatives with respect to pose vector
q of the mass matrix are required, the only nonzero terms are in the orientation dependent

part of the mass matrix Eq. (4-40).
OM;;  OMy,; {lHT OMy, [H Is 6}}
- X

6(]5k B 8¢k I6><6 8¢k i
T (4-51)
B HT 0 (AdBpMRBpAdBp) [H I }
] Texe Or, 66 N
Z7]

As the adjoint velocity transformation Adzp only depends on the platform position coordinate
(zg) only the partial derivatives in ¢; 3 are non zero. The central part of Eq. (4-51) is
expanded using the chain rule of differentiation (Mgp, is the platform’s rigid body mass
matrix which is in itself invariant under pose change):

0 (AdgpMrspAdsp) [ 9Ad 9Ad
BP BP
MpppAd Ad M
9o ( Dor RBp BP) + BPMRBp— don )
T

_ (agZBPMRBp A dm)) N <6AdBpMRBp Adg P) (4-52)
s (OAdEp

( i MgppAdsp
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For the second step the symmetry of the rigid body mass is exploited by: ((MrppAdsp)? =
AdgngBp = AdEpMpp,) Eq. (4-51) can now be rewritten as:

.. T T sym
My HH KaAdBPMRBpAdBp) H Im}}

Ok Isx6 olop i

8M171 8M1,2 8M1’N
- - . 5

81\/([1)21671 81\/?;,2 . 8M;N (4_53)

A {8M} _ | 9% Oy, Oy,
Obr )i : A

BMN,l BMN’Q . BMN,N

Ox Odr 0 i

Adpp| s—o 1s equal to the adjugate matrix evaluated for ¢ (Adpp(q)) as ¢ are pertubation
coordinates. The partials of the adjugate matrix Ad, Eq. (4-38), are evaluated at ¢ = 0 this
gives the ¢ dependent matrices:

00 0 O cg 0
0 0 0 —cg s4s9 O
8Ad37>‘ (@) = 0 0 0 s cgsp O
00 0 O 0 0
00 0 O 0 0]
[0 0 0 0 0 0 7
CsSe  —Sp  CeCh 284 2CSg 0
O0Adpp _ —84Sp —Cs —CoS zc —2848 0
Dba L):O =10 0 o o o o (4-54)
0 0 0 CeS —5¢ CCh
0 0 0 —S¢50 —Cy —CpSy |
(—sg 0 —cp 0 —zsy 0 ]
cosy 0 —s48¢ 0 z2cps84 0
0Adpp (q) = coco 0 —cgsg 0 zcgep 0
8¢3 $=0 N 0 0 0 —Sp 0 —Cy
0 O 0 CoSe 0 —5¢8¢
L 0 0 0 CypCh 0 —Cp S0 |

The other partials of Ad are zero. The second set of partial derivatives of the inertia matrix
is only nonzero for i = 1..3 an can be found using the partial derivative matrices of Eq. (4-53)
and the velocity vector v:

{ooy, @y, - {8,

Zankvk— {%5}1 {%6}2 {%E}N

P 0% : : (4-55)
vl @), - vl
2]
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The partial derivatives of Adgp (Eq. (4-38)) with ¢ = 0 inserted can now be found. The left

OM;; OM ;
part of Eq. (4-50) >k ( qu,: _ % 8¢Jik)

oo Uk using Eq. (4-53) and Eq. (4-55) now becomes
in matrix form:

3
(Gt Gl = (-2 () (B9 (B%9) o s

Second part: partials of S  For the second part of Eq. (4-50) (the partials of the local
velocity transform) we define the reduced S, anticipating on the differentiation by dropping
out all constant terms and all higher order terms. Eq. (4-48) retains only —%add, which looks
for the boat as a Special Euclidean group (SE(3)) as given in Eq. (4-49) but with components
¢4.9 instead of u, v, w, p,q,r, reserving the first 3 indices for the platform.

} [¢77¢87¢9]X [¢4,¢5,¢6}X )
2 l O3 [f7, P8, o] x (4-57)

For the platform S,p all directions except ¢; = ¢p3.p5 are zero (planar movements are con-
strained) therefore has entries:

1
SRS = —§Gd¢ = —

1 1 0 _¢2p d)lp
Spp = —-H'ad,H =——10 0 —¢g = 03x3 (4-58)
2 Dp1,p2,p6=0 2 0 ¢6p 0

®p1,p2,p6=0

The reduced transformation has only entries in the bottom right corner:

O3x3  O3x6
Sr(¢) = [OGXS SRJ (4-59)
The reason velocity transformations matrices can be diagonally stacked is that the velocity
transformation between two consecutive rigid bodies in a serial chain is kinematically indepen-
dent of the positions and velocities of the other transformations. The link velocity Jacobian
is not, using J would result in a lower triangular matrix[71]. Using the mass matrix from
Eq. (4-42), the right side of Eq. (4-50) now becomes the matrix given in Eq. (4-60), that is
only nonzero for ¢ > 3. Note the v instead of the v indicating ship velocities. (exact steps
[71])

O3x3  O3x6 OSk;  OSg; _
= — M
[ Ccv2 vaZ] zk: < a¢j 8¢z ( U)k

$=0
) zk: <8§$ - 52;%:]~ ) (M) (4-60)
2 (T Tt ) vt = [822 1 ] M(3)
Now the total Coriolis matrix can be formed combining Fq. (4-56) and Eq. (4-60).
o[ dnf [ & oo
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4-3-5 Total dynamics

The coupled dynamics are now found from the mass in equation Eq. (4-42), velocity state
ol = [éT DT}, platform pose Zg and ship location and orientation in 7. The Coriolis
terms from Eq. (4-56) and Eq. (4-60) together in C(v) from Eq. (4-61) are used. So is the
leg directional Jacobian J; ;. Eq. (4-24), selection matrix H from Eq. (4-34), hydrodynamic
retardation terms ji from the parallel state space system Eq. (4-31), the hydrostatic matrix

G, and the wave forces Ty discussed in Section 4-4:

N \ |0 0 0
M(zg)v + C(v)v + G(7) = f(J%i)Tleg + , + _ +Tgravity  (4-62)
N—_—— N—— 77 \—i P ’u
Inertia Coriolis  ~———~ Leg loads
Hydrostatic Wave Radiation  External Waves

Gravity As the dynamics are described in the body fixed frame and the gravity origins from
the inertial frame, the forces need to be transformed from the inertial frame (Z) to the boat
frame (B). To accomplish this we use the body fixed vectors from the origins to the center
of gravities of both bodies. For the ship this vector is written as nggs and for the platform
as 77(7; o Further the relative pose vector that defines the pose of the platform relative to the
ship Zg is used, in particular the (heave only) translation in ¢ and the roll and pitch Euler
angles allowing the formation of rotation matrix Rg_,p (Eq. (4-1) and the reduced Eq. (4-36)).
We employ the notation mg and m,, for ship and platform mass and g for the gravitational
acceleration.

The main principle is projecting the inertial ship gravity on origin of the ship local coordinate
system (not in CcoG) and equivalently projecting the platform gravity in the platform base
but rotated along with the boat base B. Then the planar components are separated and
translated to the ship’s base as the planar movements of the platform are constrained. First
the gravity of the ship mass:

B 0
c%gmS = 0
msg
0
chogms =Rzp| O (4-63)
msg

0

7—_8 _ R18 0

opMs I:,Flébgs] X RI—)B Msg
S

Similar for the platform mass the rotated and translated gravity force (6 x 1) in the origin of
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the platform frame is found as:

B 0
c%gmp = 0
mpg
P (4-64)
r 0
B _ Rz 5 0
OopMyp [R,ZB—‘—)'PFZQP}XRIHB m g
- P

Now this gravity component of the platform is splitted into a heave-roll-pitch part and a planar
part. Where the second is transformed to the boat’s origin as the platform is constrained in
planar movements relative to the ship. The selection matrices in Eq. (4-34) are used.

[ Rz_.5 ] 0
T aligned: H” i 0
& _[RFZ,;%'PTZ;?QP] X RI—>B_ Mpg
(4-65)
I [ Rz 1( 9
v alligned: 3T D 0
g [MJ [REpTiyg,x Rrs] |,

Integrated quasi velocity to pose The dynamics are integrated to find the solution in time.
The pose of the ship and platform are not simply integrals of the velocity vector. To obtain
the pose the transformation from Eq. (4-3) ("ground'-to-euler [E(S)]™!) is reduced to 2 x 2
to exclude the constrained yaw. Rotation Rz ,p(3) from Eq. (4-1) is not needed as the heave
of the platform in ¢ is already in the B frame. Rotation Rz_,5 from Eq. (2-13) and the ship’s
"body"-to-euler attitude transformation [E’(¢s, 0s, 1)) 71, Eq. (2-14), find the ship pose vector

from the ship velocities. The total transformation matrix Jg, looks as:

QT:[ZE ép 0p NI ET DT ¢g5 0Og ws]

1 O1x2 O1x3 O1x3
_m_ 0 [E(@r.0p)"" 0o 0253 m (4:66)
S n| |0 032 R . 03x3 v

0 0352 O3x3  [E'(¢s,0s,%s)] 7!

T
B B B =T
= Jg {ZP Wyp Wyp U UV W p ¢ T] = Jq?

Transforming the quasi velocities and integrating allows to track the vessel’s position in the
NED frame and generate a visualization.

4-4 \Wave loads

In this section a the construction of the only disturbance term that is modeled is discussed:
the external wave loads. Other disturbances such as wind and currents could be included.
But as currents produce mainly forces in the planar part of the dynamics, which is assumed
compensated by moorings or by DP, this factor is left out of the model. Wind loads are often

Master of Science Thesis W.A. de Zeeuw



64 3D simulation

aligned with the principal wave load direction. As one random disturbance suffices to show
the principle of the system therefore the wind loads are omitted too.

The waves are generated from summed harmonic components of a spectral density formula
in combination with random phases. The wave loads are than found via the FTFs that were
calculated by the frequency domain hydrodynamic package (WAMIT).

Wave spectrum The deep water assumption, depth A is more than half the wavelength %)\
[39], is used to derive the linear gravitational wave propagation relations. The phase speed is
given by:

Cp = — (4—67)
Where g is the gravitational constant'? and w is the wave’s angular frequency (w = 27/T).
The phase speed can be used to find the wave number k as:

(4-68)

Now we can find the surface elevation £ caused by a single frequency wave component of a
parallel wave front traveling in the = direction as a function of time ¢ and location:

& = (,cos (kx — wt)
= (, cos (me — wt) (4-69)
? g

The magnitude of the wave depends on the general condition of the sea called sea state. The
sea state is generally measured in the significant wave height H, 3, the mean height of the
highest one third of the waves, and the mean wave period 7T;. The sea state is captioned
in a wave energy spectrum, the Pierson-Moskowitz Spectrum'”, whose formula is shown in
Figure 4-9 and given by:

Sw) 011 (wT1>5 exp l—0-44 (“Tl> 41 (4-70)

HY T 2m \ 27 2

The waves are directionally spread in three, discrete, 45° separated parallel wave fronts. The
part of the wave energy flowing in direction « is found by:

S(w,a) = %COSQ(O[ —1)S(w) (4-71)

14 2
=9.81m/s

5Pierson-Moskowitz Spectrum is recommended for fully developed seas. Two other fre-

quently used spectrum formulas are the JONSWAP Spectrum for limited fetch length: S(w) =

HZ, 2 0.07 if w < 5.24/T
155 7% exp (T;fji) (3.3)" exp [_ (40-19%1—1) } with ¢ = { < 5.24/Th

0.09 if w > 5.24/T}
173H2 . /T 4
1{53/ 1 exp { 691/T1:|

wi

and the Bretschneider

Spectrum: S(w) =
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Pierson-Moskowitz Spectrum, H, , =7, T, = 10
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[Source: Principles of Naval Architecture]

Figure 4-9: Wave generation via spectral densities. The exact waves are random but their energy
distribution is known. Left: Pierson-Moskowitz Spectral density plot, Right: Cosine squared
directional spreading [39].

Where p is the predominant heading of the waves [37]. Now the wave amplitude from Eq. (4-

69) is found by [39]:
( ) \/ wi+dw/2 g )d
Wi, ) = 2/ w, ap)dw
ek, e wi—dw/2 ( : (4-72)

~ /25 (wg, o) Aw

With Aw the wave frequency discretization step. The wave frequency discretization is conve-
niently set equal to the frequencies of the force response functions calculated by the hydrody-
namic code that give the first order wave forces on the vessel, Section 2-2-1. As the waves are
linear the irregular sea realization can be formed by superposition of the linear components
in direction and in frequency Figure 4-10:

Ik 2
f(xl, L2,3, ) = Z Z C(wkv al) cos (U:;ngl —wit + ’Vrnd(ka l)) (4_73)

In case of 3 directions 45° apart, x1 3 are the z, * = y and the y directions. Where x5 is
discretized with steps of v/2/2 to match the grid of z; and 2. And vuq(k,1) is a random
fase shift given to each wave component to create a unique realization (e.g. in Figure 4-10).

Wave forces The wave forces are found from the FTFs calculated jointly with the hydrocoef-
ficients in the hydrodynamic code (WAMIT). These transfer functions give a force or moment
from a sinusoidal wave input with a relative phase and a frequency dependent magnitude, but
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66 3D simulation

Figure 4-10: Two snapshots in time of a spatial wave field realization with the spectrum of
Figure 4-9. Units are in meters and oo = {0°,45°,90°}. Note that the z axis is chosen smaller to
visually accentuate the difference in surface elevation.

with the same sinusoidal shape and frequency as the wave component. In math a component
(k,1) from Eq. (4-73) looks as:

w2 e [ OT
C(wka Oél) COS (gkflfl - wk:t + ’and(ku l)) I_I; |:7 7W:| — TW(wkv ap, {.’L’, Y, z, (ba 07 w})

¢
Ot (+)

) (4-74)
Do C(wr, al)) cos (o;kﬂ?l — Wit 4 Yena (K, 1) + 'YW('))

w Wk, Q) = <

An important value in a wave record is the highest wave that occurred. However as the wave
generation is a stochastic principle and the modeled wave realization too, it is uncertain when
and if this highest wave will occur. Therefore relative long simulation times are required. On
the other hand a wave realization that is built by a finite sum of harmonic components has
a finite periodicity. How long the wave simulation period will be depends on all the periods
and the least common multiple of periods and the relative phase of the components. As the
periods are non integer this is an undefined problem. Including infinite wave periods also
results in infinite computation times so a trade off should be made. A wave record of wave
40 periods in 8 directions (major and minor wind directions) is generated. The periods are
chosen with a non uniform grid to increase the least common multiple of periods of the record
and therefore increase the period time of the wave field. '

4-5 MPC controller implementation

The dynamical system from Eq. (4-62) is implemented in MATLAB according to the simulation
scheme shown in Figure 4-12, and the actual implementation in Figures B-1 to B-4. The
coupled ship-platform dynamics form the central part of the scheme, drawn in the top left
corner and consisting of the inertia and Coriolis terms. The different forcing components
are calculated via the surrounding blocks. The gravity is transformed to the boat’s reference

6With periods chosen for example as Wyqve = [0.1 :0.05: 2] the periodicity could be as fast as 2 minutes.
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Figure 4-11: Wave realization of 40 wave components, 300 seconds. Identical first differences in
wave period results in shorter wave record period than varying wave period differences. The right
realization shows a period of about 120 seconds whereas the left realization that is constructed
with an irregular spaced frequency grid does not show periodicity within the five minute range.

frame because the dynamics are described in a Lagrangian form. The wave realization from
the spectral density with surface elevation Eq. (4-73) uses the FTFs to find the wave forces
and the radiations terms are found from the state space approximation in radiation dummy
state x in Eq. (4-31). The forward kinematics find the platform position for given leg lengths
which are generally simpler to measure.

The nonlinear dynamical model is used to generate smart control signals. The uncertain
terms such as the wave loads are not considered for the control. And the radiation term is
left out for execution speed at the cost of a plant-prediction model mismatch. We now have
an approximated model that can be used to predict the future evolution of movements:

[QL}T qT}T ~ Pred(v q, flegs) (4_75)

Where ¥ is the boat fixed acceleration and ¢ the rate of change of pose coordinates. This pre-
diction model Fj,¢q is integrated by a fixed step Classical Runge-Kutta 4 scheme'”, with time
steps of At = .5s for t = At...iAt...NAt where N is the prediction horizon. See Figure 4-13.
From the predicted pose vector gp,; which is composed of the inertial ship coordinates pre-
dictions 7,; and the predicted relative coordinates of the platform Zg,;, the inertial reference
coordinate of the platform is calculated. This coordinate is denoted by HRP,; indicating
heave roll and pitch of the platform in the Z frame.

HRP,; = H'qp; + HT

RT .5 03x3| -
H ; 4-76
O3x3  I3x3 hpi ( )

Where selection matrix Eq. (4-34) is again applied. The error in inertial heave-roll-pitch,
when a constant set point is chosen, is written as HRP; = HRP,; — HRP ;.

In order to handle constraints on input or predicted output signals we employ a linear penalty
term on constraint violation, see Figure 4-14. The absolute violation is found by a violation
function ®(u/Au/v/q) and is multiplied by a factor to form a constraint violation term that
can be added to the performance index we define next.

The forces that are applied to the legs intend to push the system towards an optimal trajec-
tory with respect to some scalar performance criterion j (note: not matrix J). This scalar

17 A four stage integration routine requiring four function evaluations per time step. Instability of a Forward
Euler scheme with this time step showed the prediction required a higher order method.
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3D simulation
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Figure 4-12: Global overview of the simulation components.

5 step ahead (2.5s) prediction of platform heave by MPC controller

-6 T

Figure 4-13: 2.5 second prediction of heave during the simulation. During the first part of the
prediction the match is very usable. In the second part the motions are overestimated. This is
probably due to the left out wave radiation effects that dampen the movements.
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u
-8r — — — |min(u-umin,0)| |
|max(u-umax,0)|

-10 -5 0 5 10

Figure 4-14: Input (and possibly output) constraint violations are implemented as soft constraints
with a linear penalty term in the objective (performance index). This approach does not suffer
from infeasibility of the optimization.

performance criterion can be chosen as in the examples in Section 2-1-1 and be calculated
with knowledge about the present state or predicted state:

N
7= (HRPp)"P(HRPp;) + (Afiegs; ;)" QA fiegs; 1 + Aconstr. ®(u;) (4-77)
=1

Where the control signal is the differenced leg force Au = A fiegs; as in the cpc (Eq. (2-1)) to

allow a zero steady state signal.'®

The quadratic product matrices are P = diag [162 4ed 464}
and QQ = I3x3 where the control signal is rescaled from Newton to MN. Now a nonlinear solver,

a minimization algorithm, is employed to solve for the optimal control signals.
min ) — minimizer(@Du J(v0,x0,q0,Du)) (4-78)

The prediction horizon is a trade off between approaching the infinite horizon case with guar-
anteed stability and speed of execution of the scheme. The search space for the control signals
grows exponentially with the number of steps and so does the complexity of the optimization.
Several optimizations have been programmed and tested for the application: Nelder-Mead
derivative free simplex search did not converge fast enough for real time capability. As the
estimations are uncertain taking second derivatives to gain Hessian information seems to be
risky. Therefore a Gauss-Newton search is chosen. This method approximates the gradient
by the outer product of the gradients and requires only first order information. The algo-
rithm converges from a bad guess in about 5 iterations, that each estimate a costly gradient,
to a good sequence, Figure 4-15. Using the previous found solution as initial condition for

18 Control signal u; is found via initial %o and the sequence of control differencesu, = @ + Zf:() Au;
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n suboptimality degree alpha and Jpstar | = |8 &1
SBH| LB HE a & N

Figure 4-15: Scope showing suboptimality degree alpha (top) according to Eq. (2-7) and the
value of the performance index (bottom) of the rolling optimization during a step response. The
suboptimality value is positive in the initial disturbance rejection. When the reference signal is
tracked the optimality estimate deteriorates. The guaranteed stability is lost, but it is observed
that the optimality is regained after a small instance of time. A zone performance index or a local
linear controller could help in this case.

the optimization (hot starting) reduces the iterations with a factor two. This, and efficient
vectorized code generation, allows running the MPC controller at 50Hz.

4-6 Results

To put the performance of the NMPC controller in context a quasi-static PID controller is
implemented. This controller calculates from the present pose of the platform and the desired
pose, while assuming the ship remains steady, what the leg lengths should be. It then treats
the difference of the present leg length and the desired leg length as error input for the
controller. The error signal (a 3 x 1 vector) is split into a symmetric part and three differences
from the mean. Both of these parts have separate quasi-static controllers to cope with the
difference in force requirement for the heaving and for the rolling and pitching movements.
The PID controller parameters are: Ppean = 8€6, Pgg = 200e6, Lpean = 4€6, Igig = 90e6,
Dinean = 2€6, Dgig = 60e6.

Figures 4-16 to 4-18 compare the performance of the two control strategies by starting a
19 random sea with the high sea state Hy/3 = 4m and
T1 = 6.5s. Both in the same off initial reference position.

time domain simulation in the same

Yexact same random seed.
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Figure 4-16: Comparison of the tracking capability of the MPC controller opposed to the PID
controller.
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Figure 4-17: Comparison of the leg forces applied by the control to the platform.
x 10° Energy usage by two controllers in same wavefield via Zj A{jfj/ At
10 T T T T T I
9 -
8 |
7 —
6 —
5 -
4 —
3+
2 —
1
0
0
t
Figure 4-18: Comparison of the power required by the platform.
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Figure 4-19: Visualisation with low computational demand. The boat is loaded with additional
masses that increase the height of the center of gravity. The platform is loaded with a mass with
a very high rotational inertia seen from the base. This case is very demanding for the platform
and is therefore chosen for investigation.

Figure 4-16 shows that the PID controller is much stiffer as the rise times are faster and it
shows oscillatory values. Keeping the tower straight at less than .1 degree is most likely not
necessary and impossible. Figure 4-17 shows that the NMPC controller neatly complies to its
constraints on maximum force, visible by the flat tops on the force lines and does not show of
the chart extremes as the the PID controller does in the first few seconds. In Figure 4-18 the
power usages are calculated via the leg force, the time and the leg extension rates. The MPC
requires about half the power the PID controller demands in the disturbance rejection phase.
Figures 4-19 to 4-21 show several visualizations of the 3D simulation with the platform in
operation.
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Figure 4-20: Visualization of the simulation 1. In the top rendering the load is kept at it's
reference while the entire barge has a roll angle.
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74 3D simulation

Figure 4-21: Visualization of the simulation 2. The top figure shows the connection of the
hydraulics placed 20% downwards the top linkage. The yellow bars at the front stern side of the
barge are container sized (12m) for visual reference.
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Chapter 5

Conclusions

In this thesis the dynamic analysis and control of a ship motion compensation platform
for high payloads is discussed. Investigation of data from a scale model experiment with a
relatively heavy hexapod placed on its deck is performed. The roll instability visible in these
experiments is identified by an estimated parametric linear model. The parameters of the
linear model, e.g. the masses, hydrostatic stiffnesses and control stiffnesses, are varied one
by one after their estimation to give quantitative statements about the estimated regions of
instability. What is shown is that there always possible instable sets of parameters. The
linear system can also always be stabilized via the linear controller if the proportional term
may be set at high enough values. The risk of a double pole marginal stable pole, one from
the controller, and one from the hydrostatics, remains and can destabilize the system.

To ensure that this roll instability does not take place a more sophisticated control system
is proposed: Non Linear Model Predictive Control. To check feasibility and examine the
capabilities of such a solution a simulation is performed. First a new kind of 3 degree of
freedom parallel robotic platform is proposed. Then for the first time in literature the full
3D time domain dynamics of a parallel platform on a ship are derived and implemented in
MATLAB. Finally two controllers are designed, one naive quasi-static and one true online
nonlinear optimizing model predictive controller. This is the first time such a controller
with real time capabilities is implemented on such a system. The model based controller
outperforms the quasi-static in versatility, stability and energy efficiency.
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Appendix A

The big list of assumptions

Here a list of major assumptions used to model the system in sufficient, but not exhaustive
detail is provided. Probably this list is incomplete, but it acts as an indication for the
boundaries of the applicability.

10.
11.

12.

13.
14.

. The platform links are rigid, massless bodies. [28]

. There is no friction in the in the actuators and the platform can be force controlled.

The platform is placed in on the symmetry plane of the ship.

The two bodies are rigid.

. The exact rigid body inertia matrices, dimensions etc. are known.

The barge is in "Seekeeping" state (non traversing, < 1.5m/s) [35]
The hull shape is symmetric, so are the hydrocoefficients ([39] Chapter 7 pp.8-9)
The water is assumed ideal, thus potential theory can be applied. ([49])

The hydrodynamics are linear (nonlinear terms can enter the equations on the right
hand side, [39] and [44]).

The hydrostatics are decoupled in the 6 DoFs / or are linear in the position vector.

The waves are simple, a harmonics based sea is assumed. Irregular sea is generated by
superposition with random phase.

The wave force is calculated from an undisturbed wave (Froude-Krylov) with a Hydro-
dynamic code

The unit operates in deep water so there is no bottom effect. ([39])

There is no wind load or wind and waves can be superimposed ([35])
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78 The big list of assumptions

15. In plane movements (surge/sway/yaw) are handled externally by mooring or DP.

16. The hydrocoefficients from the hydrodynamic frequency domain code take care of the
effects from the mooring and the DP [73].

17. The earth is flat with respect to the limited operating range.

18. The NED frame is inertial.
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Simulink block schemes
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Figure B-3: The simulation implementation block scheme. MPC part.
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Figure B-4: The simulation implementation block scheme. PID part.
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Appendix C

Matlab Listings

C-1 maxlike.m

Dbl bl hhhhhhhhhhhhh 't hthhhhhhhhhhhhhshtehh®hhhhhshhshh

Bt function maxlike.m Wbt hh
%t part of MSc thesis WA de Zeeuw 2011-2012 Whhhhh
%%% estimates the linear system by maximum likelihood  %%%

Dbl hhhhhhhhhhhhhhhhhlhhhhthhhhthhhhhhhhhhhhhhhhhhhhhhhhhhhhh
function X=maxlike
% load track

% Y = [phi_p, phi_bl;

load track2

Y = [phi_p_centered, phi_b_centered];

tset = 0:0.1:30.7;

options = optimset(’PlotFcns’,{Qoptimplotx ,Qoptimplotfval},’MaxFunEvals’ ,20000,’MaxIter’ ,10000);
X = QN_BFGS(@(X) —1(X,tset,Y),X0’);

end

function plotfit_phys(X,tset,Y,pp)

h_fig = figure(2);

X=X =% 5.%x[1 1 111125 25 25 1 1 1 1/5]";
X(5:12) = abs(X(5:12));

x01 = X(1);x02 = X(2);x03 = X(3);x04 = X(4);
ml = X(5);m2 = X(6);kP = X(7);kS = X(8);

kH = X(9);¢D = X(10);cS = X(11);cH = X(12);
sigm2 = X(13)72

disp([’m1 = ’ num2str(ml) ’, m2 = ’ num2str(m2)])
disp ([’kP = ’ num2str(kP) ’, kS = ’ num2str(kS) ’, kH = ’ num2str(kH)])
disp([’c¢cD = ’ num2str(cD) ’, ¢S = ’ num2str(cS) ’, cH = > num2str(cH)])
% As = [[ c11,c12;c21,c22]1%25 [k11l ,k12;k21,k22]%25;eye (2) zeros(2)];
As = [[ —(cD+4cS)/m1, cS/m1;(cD+cS)/m2 —(cH+cS)/m2 | [—(kP+kS)/ml, kS/mil; (kP+kS)/m2 —(kS+kH)/m2 |;
eye (2) zeros (2)]
x0 = [x01,x02,x03,x04]"
for i=1:numel (tset)
t=tset (i);
t=tset (i)—tset (1);
YH(i,:) = (expm(Asxt)xx0) ’;
end
plot (tset ,Y(:,1),’r.’ tset ,¥Y(:,2),’b.> ,...
tset ,YH(:,3),’r-’,tset ,YH(:,4) ,’b=-")%,...
%o [tset (end/2) tset(end/2)]1,[-10 10],°’k’)
% plot (tset ,YH(:,3),’r-’,tset ,YH(:,4),’b-")
K = round([—(kP+kS)/m1, kS/mi1, (kP+kS)/m2 —(kS+kH)/m2 ]*x100)/100;
C = round ([ —(cD+4cS)/mil, cS/ml,(cD+cS)/m2 —(cH+cS)/m2 ]%x100)/100;
X00 = round ([x01,x02,x03,x04]%x100) /100;
h_title = title ({[’Linear state space fit: log-likelihood = ’ num2str(pp,’%3.2f)] ,...
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84 Matlab Listings

["$0lk_{11}$ $k_{12}$ $k_{21}$ $k_{22}] = $[’ num2str(K,’% 2.2f ’) ’] $[c_{11}$ $c_{12}$ $c_{21}$
$c_{22}] = $[’ num2str(C,’% 02.2f ) >1°]});

set (h_title ,’interpreter’,’latex’)

h_11 = xlabel ([’time (s), initial condition: $[\dot \phi_p$ $\dot \phi_b$ $\phi_p$ $\phi_bl = $[°
num2str (X00,°% 2.2f *) *1°]);

set (h_11 ,’interpreter’,’latex’)

h_12 = ylabel(’rollangle (degree)’);

set (h_12 ,’interpreter’,’latex’)

ylim([—10 10])

h_leg = legend(’boat’,’platform’,’location’,’NW’);

set(h_leg ,’interpreter’,’latex’)

figure (3)

% plot (tset ,Y(:,1)-YH(:,3),’b’,tset ,¥Y(:,2)-YH(:,4),°r’)

% a=50000;x = randn(a,1);n=25;hist(x,n);rangex = max(x(:)) - min(x(:));binwidth = rangex/mn;xn =
[-3:.01:3];sigl = std(x); mul = mean(x);ynl = (a*binwidth)*1/sqrt (2*pi*sigl~2)*exp (-.5*%(xn-mul)

.72/sig172); hold on; plot(xn,ynl,’b’);hold off
xn = [—2:.01:2];
res_1 = Y(:,1)=YH(:,3);
res_2 = Y (:,2)—YH(:,4);

nbins = 25;

rangel = max(res_1) — min(res_1);binwidthl = rangel/nbins;
range2 = max(res_2) — min(res_2);binwidth2 = range2/nbins;
sigl = std(res_1); mul = mean(res_1);

sig2 = std(res_2); mu2 = mean(res_2);

N1 = length(res_1);

kurtl = 1/Nixsum((res_1-mul). 4)/(1/Ni*xsum((res_1—mul)."2))"2;
skewl = 1/Nissum((res_1—mul)."3)/(sqrt(1/Ni*sum((res_1—mul)."2))) " 3;
JB1 = N1/6%(skewl 2+4(kurti —3)"2/4);
N2 = length(res_2);
kurt2 = 1/N2xsum((res_2-mu2). 4)/(1/N2*sum((res_2—mu2)."2)) 2;
skew2 = 1/N2*sum((res_2—mu2).73) /(sqrt(1l/N2*sum((res_2—mu2).72))) " 3;
JB2 = N2 /6%(skew2 24 (kurt2 —3)"2/4);
truncate=1;
if truncate
for j = 0:5

res_1_trunc = sort(res_1);res_1_trunc = res_1_trunc(l+j:end—j);
res_2_trunc =sort(res_2);res_2_trunc = res_2_trunc(l+j:end—j);
N1 = length(res_1_trunc);
kurtl = 1/Nixsum((res_1_trunc-mul). 4)/(1/Ni*sum((res_1_trunc-—mul). 2)) 2;
skewl = 1/Nixsum((res_1_trunc-mul). 3)/(sqrt(1/Ni*sum((res_1_trunc-—mul). 2))) " 3;
JB1_trunc(l4+j) = N1/6%(skewl 24 (kurtl —3)72/4);
N2 = length(res_2_trunc);
kurt2 = 1/N2xsum((res_2_trunc-mu2). 4)/(1/N2*sum((res_2_trunc-—mu2). 2)) 2;
skew2 = 1/N2xsum((res_2_trunc-mu2). 3)/(sqrt(1/N2*sum((res_2_trunc-—mu2). 2)))  3;
JB2_trunc(l4+j) = N2/6x%(skew2 24 (kurt2 —3)"2/4);
end
[JB1_trunc ,ntruncl] = min(JB1_trunc);
ntruncl = ntruncl —1;
[JB2_trunc ,ntrunc2] = min(JB2_trunc);
ntrunc2 = ntrunc2 —1;
end
ynl = (binwidth1%N1)/sqrt(2xpi*xsigl 2)*exp(—.5*(xn—mul). 2/sigl1”2);
yn2 = (binwidth2%N2)/sqrt(2xpi*xsig2 2)*exp(—.5*(xn—mu2).72/sig272);
subplot (2,1,1)
hold off
hist(res_1 ,nbins)
hold on
plot (xn,ynl,’r’)
title ({[’Residuals of platform, and Gaussian fit, sigma = ’ num2str(sigl,’%2.3f’) ’, mu = ’ num2str(
mul ,’%2.3£°)],[’K = ’ num2str(kurtl) ’, S = ’ num2str(skewl) ’, JB = ’ num2str(JB1) ’, JB
truncated ends:-’ num2str (ntruncil) ’ = ’ num2str (JB1l_trunc)]})
subplot (2,1,2)
hold off
hist(res_2 ,nbins)
hold on
plot (xn,yn2,’b?)
title ({[’Residuals of boat, and Gaussian fit, sigma = ’ num2str(sig2,’%2.3f’) ’, mu = ’ num2str (mu2,
>%2.3£2)],[’K = > num2str(kurt2) ’, S = ’ num2str(skew2) ’, JB = ’ num2str(JB2) ’, JB truncated
ends:-’ num2str (ntrunc2) ’ = ’ num2str (JB2_trunc)]})
% set(h_fig ,’paperunits ’,’centimeters ’) Y%pdf whitespace removal

% set(h_fig ,’papersize ’,[10,7])

% set(h_fig ,’ paperposition’,[0,0,10,7])
% filename = [’fit_unconstrained.pdf’];
% print (’-dpdf ’,filename) %export
figure (5)

plot (tset ,res_1,’r’  tset ,res_2,’b’)

W.A. de Zeeuw Master of Science Thesis



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

C-1

maxlike.m

85

func

tion [X,objFuncValue ,H]=QN_BFGS (fun,X0,noline)

h=12;

x =
af =
objF
H=ey
iter
conv
alph
% ho
% pl
whil

end
X=x;
H
end

X0

numdiff (fun,x,(1%x10"—h));
uncValue = fun(x);
e(length(X0)); % initial inverse hessian approximation
= 1;

= 0;
a_o=1;
1d on
ot (iter ,objFuncValue ,’db’);
e conv~=1 && iter <600
% obtain search direction

dir = —(Hxdf); 7% newton step
dir = dir/norm(dir);
% linesearch to to find acceptable stepsize alpha
if (noline—iter)<0
alpha_o = fminsearch(@(alpha) fun(xtalphaxdir) ,1);
alpha = max (0.001,min(alpha_o ,1.1));
disp(num2str ([iter objFuncValue alpha_o]))
else
alpha = 0.000001;
disp(num2str ([iter objFuncValue alpha]))
end

% update xk -> xk+1
dx = alphasxdir;
x_new = x + dx;

% calculate new gradient
df _new = numdiff (fun,x_new,(1%x10"—h));
yk = df_new — df; Ygradient change
while (sum(isnan(yk))>0) || (sum (yk==0)>0);
h=h—1;
df _new = numdiff (fun,x_new ,(1%x10"—h));
yk = df _new — df; Jgradient change
end
%update inverse hessian
% H_new = (eye(13) - yk*dx’/(yk’>*dx))’
% * H x (eye (13) - yk*dx’/(yk’*dx)) +
% dx*dx >/ (yk’>*dx); %BFGS update
H_new = H + (dx’syk + yk’xHxyk)x*(dx*dx’) /(dx’*xyk) "2 —
(Hkyk*dx’'4+dx*yk *«H) /(dx >« yk);ZBFGS update
% HESSIANNEW = H + (q*q’)/(q’*p) - ((H*p)*(Hxp)’)/(p’*Hx*p);

% overwrite old values
df = df_new;
X = X_new;
prev_objFuncValue = objFuncValue;
objFuncValue = fun(x);
if isnan(objFuncValue); disp(’objective is NaN’); break; end
iter = iter+41;
% plot (iter ,objFuncValue ,’db’);
% drawnow
if ((prev_objFuncValue—objFuncValue)<le—8) && (norm(df)<1)
conv=1
normgradient = norm(df)
figure (4)
imagesc(H); colorbar
end
H = H_new;
if (iter /100 — round(iter /100))==0.0
x=x
format long
H=H
format short
end

%output

Master of Science Thesis
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189 function df = numdiff (fun,X,h)
190 if nargin < 3

191 h = le—8;

192 end

193  df = NaN*X;
194 o01d0bjFuncValue = fun(X);
195 for i = 1l:numel(X)

196 X_new = X;

197 X_new (i) = X_mew(i) + h;

198 newObjFuncValue = fun(X_new);

199 df (i) = (newObjFuncValue—oldObjFuncValue)/h;
200 end

201 end

C-2 coordinates.m

Lo AU b hb ATl Dt Dbl ottt e oo oo o oo o oo o o o o e e e e e % % %

2 %%h% 19 apr 2012 WA de Zeeuw - graduation at GustoMSC

3 %%% analysis of roll resonance movie ampelmann scale model

4  %%% via tracking of four points with a specific colour in 308 frames

5 %%% of the movie spaced 0.1 seconds

(S YA YN YA SN YA YA YN YA YA YA SN YA YA SN YA SN YA SN YA YN YA VAN

7 clear all;

8 close all

9 colorimg = imread(’foo-00lcolor.png’);

10  color = squeeze(colorimg (1l,1,:));

11 figi=figure(1l);clf

12 set(l,’outerposition’ ,[ 516 571 835 605])

13 i = 1;

14 for i=1:308

15 %plot found corners

16 name = [’foo-’ num2str(i,’%03u’) ’.png’];

17 foo = imread(name);

18 F = find(foo(:,:,1)==color (1) & foo(:,:,2)==color (2) & foo(:,:,3)==color(3)); %automatically sorted
on x

19 SZ = size(foo (:,:,1));

20 [row col]=1ind2sub (SZ,F);

21 4% figure (1);

22 subplot (1,2,1)

23  image (foo)

24 hold onj;plot(col ,row,’oc’);axis square

25  title ([’Roll resonance movie Ampelmann, t = ° num2str (i*0.1,°%02.1£°)])

26 xlabel(’(property of D. Cerda Salzmann)’)

27

28 Ysave track

29  Xcoordinates(i,1:4) = col’;

30 Ycoordinates(i,1:4) = row ’;

31 % figure (2);clf

32  subplot(1,2,2) %plot of angles

33 % plot (Xcoordinates (:,1),Ycoordinates (:,1) ,’r--7,...

34 % Xcoordinates (:,2) ,Ycoordinates (:,2) ,’b=-=-",...

35 % Xcoordinates (:,3) ,Ycoordinates (:,3) ,’b’ ,...

36 % Xcoordinates (: ,4) ,Ycoordinates (: ,4) ,’r’)

37 % plot([1:i]1.%0.1,Ycoordinates (:,1) -200,’r-~-",...

38 % [1:i].%0.1, Ycoordinates (:,4) -200,°r "’ ,...

39 [1:i]1.%0.1, Ycoordinates (:,3) =50,°b’7,...

40 % [1:i].%0.1, Ycoordinates (:,2) -50,’b--")

41 ratio_b = diff(Ycoordinates (:,[1 4])’)’./diff (Xcoordinates (:,[1 4])’) ’;

42 ratio_p = diff(Ycoordinates (:,[2 3])’)’./diff (Xcoordinates (:,[2 3])’) ’;

43 phi_b = 180/pixatan(ratio_b)—6;

44 phi_p = 180/pi*atan(ratio_p)—6;

45  plot ([1:i].%0.1,phi_b,’r.-’ ,...

46 [1:4].%0.1,phi_p,’b.-")

47  xmax = max(10,i%0.1);

48 xmin = max (0, xmax —10);

49 xlim ([xmin xmax])

50 ylim([—8 8])

51 xlabel(’time (s) (analysis: W.A. de Zeeuw)’);ylabel(’roll angle (deg)’);

52 legend (’boat’,’platform’,’location’,’NW’)

53 title(’Approx. roll angle via atan(dy/dx)’)

54  set(figl, ’color’, ’white’)

55

56 Y%movie record

57 winsize = get(figl,’Position’);
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C-3 start3dsim.m

87

winsize (1:2) = [0 O0];

numframes = 308;

if i==1 Y%first frame

A=moviein (numframes ,figl ,winsize);

set (figl ,’NextPlot’,’replacechildren’)
end

A(:,i)=getframe (figl ,winsize);

% pause (0.3)
end
mpgwrite (A, jet ,’Resonance_ampelmann_roll_angle.mpg’);

figure (2)

plot ([1:41].%0.1,phi_b,’r.-> ,...
[1:4].%0.1,phi_p,’b.-")

xlabel (’time (s) (experiment: D. Cerda Salzmann, analysis: W.A. de Zeeuw)’);ylabel(’roll angle
5y .

;

legend (’boat’,’platform’,’location’,’NW’)

title (’Approx. roll angle via atan(dy/dx)’)

C-3 start3dsim.m

Dbl Tttt Tttt Teto
%%% funtion start3dsim.m
%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

N N N N N N N N X N N N N N N N N N N N N N N N N N N Y Y Y

% Start up script for 3d simulation of coupled boat and platform

Bkt

Bt hhh

% Boat hydrodynamics are based on WAMIT data with retardation in cummins

% equation approximated by state space estimations. A rectangular barge is
% used for hydrocoefficient generation.

% The platform is a 3DOF sarrus leg type heave-roll-pitch platform with a
% force-displacement hinge mechanism

clc; clear all

disp(’...,,,---{{{ 3D simulation of coupled boat and platform }}}---,,,...7)
disp(’... Part of MSc Thesis Wouter de Zeeuw ’)

disp(’... TU Delft - GustoMSC 2011-20127)

disp (> )

disp(’Starting simulink model structure’)

shipplatform %.mdl file

disp(’Rerrunning loaddata.m to load simulink workspace data to matlab workspace’)
wave.loadseadflag = 1; %load random seed data from .mat file (fix for the second run)
loaddata J%rerun the loaddata script

C-4 RBinertias.m

bl h Tl DDl Dl tehle el
%%% m-file RBinertias.m
%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Tl TR DTl DTl el Tl ol ool ol T o e Tl T Do Tl T e e e e e e

% Calculates the rigid body inertia inertia matrices for the vessel and

ot 7

Dbl

% platform around the platform.local body axi. The platform inertia is composed out
% of a base and several building bplatform.locks (cilinders and boxes)

% assumes presence of vessel and platform structures with mass values:
% platform.m ande vessel.main.m
% rigid body (CoG) inertia matrix vessel.MRBcg and cg platform.loc. vessel.main.CG

%

%--- Vessel inertia around \rf{B} axis

S = skew(vessel .main.CG);% skew symmetric matrix of r_obog vector in B frame
vessel .MRB = [vessel.MRBcg(1:3,1:3) —vessel.main.mxS;

vessel.main.m*$8 vessel .MRBcg (4:6 ,4:6)—vessel.main.m*S "~ 2];
% Infinity added mass in CO added to MRBship
% force infinity added mass to be symmetric!!
vessel .FDI.Ainf_hatJstar_sym=.5%(vessel .FDI.Ainf_hatJstar4vessel .FDI.Ainf_hatJstar ’);
vessel . MRBsJAinfJ= vessel.MRB 4+ vessel .FDI.Ainf_hatJstar_sym;
clear S

(deg)
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25

26 %--- Platform inertia matrix

27 m_p = platform.m;

28 % #1: box with weightfraction f_box at platform.location r_box from platform base

29 platform.dim_box = [5 4 4]; Y%platform.dimensions x y z

30 platform.loc_box = [0 O —100]; %platform.location of the CoG of the unit
31 f_box = 0.35;%mass fraction

32 m_box = f_box*m_p; %mass

33 rho_box = m_box/prod(platform.dim_box);

34 Ixx_box = 1/12xm_boxx(platform.dim_box(2) 24+platform.dim_box (3)72);

35 Iyy_box = 1/12%m_box*(platform.dim_box (1) 2+platform.dim_box (3)"2);

36 Izz_box = 1/12%m_box*(platform.dim_box (1) 24 platform.dim_box (2)72);

37 MRB_boxcg = diag([m_box m_box m_box Ixx_box Iyy_box Izz_box]);%cog inertia
38 S = skew(platform.loc_box); %platform P coordinate inertia

39 MRB_box = [MRB_boxcg(1:3,1:3) —m_box*S;

40 m_box*S MRB_boxcg (4:6 ,4:6)—m_box*S~2];

41

42 Y #2: standing cylinder

43 platform.dim_cyl_up = [100 5 5.05]; %platform.dimensions h rl r2

44 platform.loc_cyl_up = [0 O —50]; %platform.location of the CoG of the unit
45 f_cyl_up = 0.35;%mass fraction

46 m_cyl_up = f_cyl_up*m_p; Y/mass

47 rho_cyl_up = m_cyl_up/(platform.dim_cyl_up(l)*pix*(platform.dim_cyl_up(3)~2
48 —platform.dim_cyl_up (2)72));

49 Ixx_cyl_up = 1/12%m_cyl_up*(3x(platform.dim_cyl_up(2)~2

50 +platform.dim_cyl_up(3) 2)+platform.dim_cyl_up(1l)~2);
51 Iyy_cyl_up = Ixx_cyl_up;

52 Izz_cyl_up = 1/2%m_cyl_upx(platform.dim_cyl_up(2) 24+platform.dim_cyl_up(3)72);
53 MRB_cyl_upcg = diag([m_cyl_up m_cyl_up m_cyl_up

54 Ixx_cyl_up Iyy_cyl_up Izz_cyl_up]);’cog inertia

55 s = skew(platform.loc_cyl_up); %platform P coordinate inertia

56 MRB_cyl_up = [MRB_cyl_upcg (1:3,1:3) —m_cyl_up#S;

57 m_cyl_upx*S$S MRB_cyl_upcg (4:6,4:6)—m_cyl_upxS~2];

58

59 4% #3: lying cylinder

60 platform.dim_cyl_ly = [100 5 5.05]; %platform.dimensions 1 ril r2

61 platform.loc_cyl_ly = [0 O —100]; %platform.location of the CoG of the unit
62 f_cyl_ly = 0.1;%mass fraction

63 m_cyl_ly = f_cyl_ly#m_p; Y%mass

64 rho_cyl_ly = m_cyl_ly/(platform.dim_cyl_ly (1)*pi*(platform.dim_cyl_ly(3)"2
65 —platform.dim_cyl_1y (2)72));

66 Ixx_cyl_ly = 1/2*m_cyl_ly=x(platform.dim_cyl_ly(2) 2+4platform.dim_cyl_1ly(3) 7 2);
67 Iyy_cyl_ly = 1/12%m_cyl_lyx*(3*(platform.dim_cyl_ly(2)"2

68 +platform.dim_cyl_1ly (3) 2)+platform.dim_cyl_1ly(1l)72);

69 Izz_cyl_ly = Iyy_cyl_ly;
70 MRB_cyl_lycg = diag([m_cyl_ly m_cyl_ly m_cyl_ly

71 Ixx_cyl_ly Iyy_cyl_ly Izz_cyl_ly]);’%cog inertia
72 S = skew(platform.loc_cyl_ly); %platform P coordinate inertia
73 MRB_cyl_ly = [MRB_cyl_lycg(1:3,1:3) —m_cyl_lyx*S;

74 m_cyl_ly=*S MRB_cyl_lycg (4:6,4:6)—m_cyl_ly=S~2];

75

76 % #4: hexagonal base Y%circumradius = chordlenght a, thickness t
77 a =7; t=0.4;

78 platform.dim_hex = [a t];

79 platform.loc_hex = [0 O —t]; %platform.location of the CoG of the unit
80 f_hex = 0.2;%mass fraction

81 m_hex = f_hexxm_p; Ymass

82 A = 3/2xsqrt(3)*a”2;
83 rho_hex = m_hex/A;
84 Ixx_hex = 5/16xsqrt (3)*a 4%t*xrho_hex;

85 Iyy_hex = Ixx_hex;

86 Izz_hex = m_hexxa 2/2;

87 MRB_hexcg = diag([m_hex m_hex m_hex

88 Ixx_hex Iyy_hex Izz_hex]);%cog inertia

89 S = skew(platform.loc_hex); %platform P coordinate inertia
90 MRB_hex = [MRB_hexcg(1:3,1:3) —m_hex*S;

91 m_hex*S MRB_hexcg (4:6 ,4:6)—m_hex*S~ 2];

92

93 % output
94 platform.MRB = MRB_box+MRB_cyl_up+MRB_cyl_ly+MRB_hex;

95 platform.CG = (platformAloc_box*m_box-ﬂ»platformAloc_cyl_up*m_cyl_up-k.u

96 platform.loc_cyl_ly*m_cyl_ly+platform.loc_hex*m_hex) /...
97 (m_box+m_cyl_up+m_cyl_ly+m_hex);

98 disp(’RBinertias.m - done: Rigid body inertias calculated in body fixed axi’)

99 disp(’ Platform (hexagonal) loaded with: box, hollow cylinder up, hollow cylinder lying’)
100 disp ([’ Density components platform are: °’
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C-5 loaddata.m 89

101 num2str (round ([rho_hex rho_box rho_cyl_up rho_cyl_1ly])) ’ kg/m3’])
102 disp ([’ Mass fractions platform (tot. ’ num2str (platform.m) ’) are: ’...
103 num2str (round ([m_hex m_box m_cyl_up m_cyl_1ly])) ’ kg’])

104

105 clear a t A m_p f_box m_box rho_box Ixx_box Iyy_box Izz_box MRB_boxcg S MRB_box

106 clear f_cyl_up m_cyl_up rho_cyl_up Ixx_cyl_up Iyy_cyl_up Izz_cyl_up MRB_cyl_upcg MRB_cyl_up
107 clear f_cyl_ly m_cyl_ly rho_cyl_ly Ixx_cyl_ly Iyy_cyl_ly Izz_cyl_ly MRB_cyl_lycg MRB_cyl_ly
108 clear f_hex m_hex rho_hex Ixx_hex Iyy_hex Izz_hex MRB_hexcg MRB_hex

C-5 loaddata.m

Db Dbl hh bl hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
%%%h m-file loaddata.m

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012
bl Tl TRl Tl Tl Ttk el ok Dol fe ol ol he

%load the data to run the simulation

hh

%--- Platform and Ship data from datafiles

load platformdata %load the platform parameters

load vesseldata %load the ship parameters

disp(’Platform and vessel data loaded in workspace’)

RBinertias Ycalculate rigid body inertia matrices (platform loading)

% platform.alpha=0; %for simpler calculations, 1n is direction of forces!

% platform.b2=platform.bl; %for simpler calculations, 1n is direction of forces!

%“restructure FTF components (delete cell structures)

vessel.forceRAO_amp = [vessel.forceRAO.amp{1l},vessel.forceRAO.amp {2} ,...
vessel.forceRAO.amp{3},vessel.forceRAO.amp {4} ,...
vessel.forceRAO.amp{5},vessel.forceRAD.amp{6}];

vessel.forceRAO_phase = [vessel.forceRAO.phase{l},vessel.forceRAO.phase {2} ,...
vessel.forceRAO.phase {3} ,vessel.forceRAO.phase {4} ,...

e e e e e el
QOO UREWNFRFOOOTO U R WN —

21 vessel.forceRAO.phase{5},vessel.forceRAO.phase {6}];

22 % roll static stability

23 % plot ([0:pi/64:pi/2]1%180/pi,...

24 -((vessel.main.CG(3)*vessel .main.g*vessel .main.m+..

25 4 platform.CG(3) *vessel .main.g*platform.m)*sin(0:pi/64:pi/2)),’g’,..
26 % [0:pi/64:pi/2]1%180/pi,vessel.G(4,4)*[0:pi/64:pi/2],°b",...

27 v [0:pi/64:pi/2]1%180/pi,vessel .G(4,4) *x[0:pi/64:pi/2]+..

28 4 ((vessel .main.CG(3)*vessel .main.g*vessel .main.m+...

29 v platform.CG(3)*vessel .main.g*platform.m)*sin (0:pi/64:pi/2)),°k”’)
30 % % 30deg roll ->550 MNm 60deg 1500MNm netto! rightening moment

31 disp ([’Platform linkage parameter alpha = ’ num2str(platform.alpha)])
32

33 Y%-- initial conditions

34 X0 =[-8 00 00 —4 Oxpi/180 Oxpi/180 0] ’;%pose state

35 vo=1[000 000 0%x12%pi /180 O*5%pi/180 0x10xpi/180/60] ;%velocity state
36 % VO = zeros(9,1);%velocity state

37

38 %-- wave field generation

39 disp(’Generating wave field...’)

40 wave .Mu = 0; %mean wave direction in NED inertial frame (North dir = 0)
41 wave .H13 = 4; Ysignificant wave height (m)

42 wave.T1 = 6.5; Y%mean period (s)

43  disp ([’ Significant wave height = ’ num2str(wave.H13)

44 >, mean period Tl = ’ num2str (wave.T1)])

45  %%% Random phases

46 if ~exist(’wave’,’var’)

47 wave.loadseadflag = 1; %load random seed data from .mat file

48 else

49 % wave .loadseadflag = O0; J%create new random seed and store to .mat file
50 wave .loadseadflag = 1; Joverrule, force seed loading

51 end

52 if wave.loadseadflag == 1 %if set to 1, load rnd seed from .mat file
53 load (’randomseed.mat’);

54 rng(seed); Jset random seed to loaded seed

55 else

56 seed = rng; %random number generator

57 save (’randomseed.mat’,’seed’); %save seed data to .mat file

58 end

59 wave .seed = seed;

60 wave .alphas = vessel.headings;%headings (wave directions from ship frame)
61 wave .Nalpha = length(wave.alphas);/number of headings

62 wave .omegas = vessel.forceRAO.w; Jwave angular frequencies

63 wave.Nomega = length(wave.omegas);’%number of angular frequencies
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wave .rand_phase = 2xpixrand(wave.Nalpha ,wave.Nomega); %random phase for realization

%%% Pierson -Moskowitz frequency spectrum
wave.Sohm = (wave.H13 2xwave.T1) x ( (0.11/(2%pi)) =

((wave .omegas .xwave.T1)./(2%pi)).” =5 ...

.% exp(—0.44x((wave.omegas.*wave.T1)./(2%pi))."—4) );%S(omega)
disp(’ done?’)

%---MPC settings

mpc.N = 20; %horizon

mpc.dt = .2; %second per euler step

mpc.maxitt = 30; %maximum iterations per function call to funMPC

C-6 skew.m

function W=skew (w)

%#codegen

Dbl T bl T hhhhlhhhhtehhhhthhhhohthhhhhhhhhhhthhthhhh
%%% funtion W = skew(w)

%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012
Dbl Tl T T hl DTl bl Ththhhohtehhhohthhhthhhthhthhhhhhh
% forms a skew symmetric matrix such that w x a = Wa
W= [0 —w(3) w(2);

w(3) 0 —w(l);

—w(2) w(1) 0l
C-7 adjoint.m

function ad=adjoint (x)

%#codegen

Dbtk hhhhhhhhhthtehhthtohhtehtehhtehhhhtehtthhththh’hthhhhhh
%%% funtion ad=adjoint (x)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012
N N N N N N N N X N N N N N N N N N N N N N N N N N YN Y
% forms a adjoint matrix used in velocity transformations , dim(x)=6x1
ad = [0 —x(6) x(5) 0 —x(3) x(2);

x(6) O —x(4) x(3) 0 —x(1);

—x(5) x(4) 0 —x(2) x(1) O0;

0 0 0 0 —x(5) x(6);

0 0 0 x(5) 0 —x(4);

0 0 0 —x(6) x(4) 03];

C-8 coriolis symbolic.m

N N N N N A N N N N N N N N N N N N N N N A N N N N N N N N N N N N Y NN YA

%%% Coriolis matrix robot on ship - symbolic computation

%%h% Check brute force method of computation vs partitioned

%%% Part of MSc Thesis Wouter de Zeeuw 2011-2012

%%% TU Delft - GustoMSC 2011-2012

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Y NNV YYA

% m-file that computes the coriolis matrix of a body fixed lagragrian
% system with a non trivial velocity place dependancy

% two methods of computation are compared to investigate equality because
% one method is much more efficient in implementation for dynamics

% symulation

%some key variables:

%phi phil -3 local platform coordinates phi4 -9 local ship coordinates

%M mass matrix

%V quasi-velocities in the same directions as phi (& phidot)

%S velocity transformation matrix based on adjoint ad, due to the reduction
% from 6dof to heave-roll-pitch the adjoint of the platform is empty

% therefore ad = [0 0;0 ad_ship]

%Ad velocity transformation matrix from Body to Platform frame

%

%the brute force computations are based on From2012a and From2012b

% Cij = SUM_k (dMij/dphik-dMjk/dphii)|_{phi=0} v(k) + {partials of mass}
% SUM_k (dSki/dphij -dSkj/dphii)*([MIV) _k|_{phi=0} {partials of S}

W.A. de Zeeuw
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C-8 coriolis symbolic.m 91
% the first part is calculated from partial derivatives of the orientation
% dependent mass matrix M
% the second part is based on the partial derivatives of the quasi-velocity
% transformation S
% the sectioned method is according to the method discussed in the thesis
% and assumes a symetric mass matrix
clear all
clc
%% First part: Checking partials of 8
M= sym(’M’,[9 9]);
sym(’M’,’real’);
syms phil phi2 phi3 phi4 phib5 phi6 phi7 phi8 phi9 real
phi = [phil phi2 phi3 phi4 phib5 phi6 phi7 phi8 phi9]’;
ad_phi = [0 —phi9 phi8 0 —phi6 phib5;
phi9 O —phi7 phi6 O —phid;
—phi8 phi7 O —phib5 phi4 O;
0 0 0 0 —phi9 phi8;
0 0 0 phi9 O —phi7 ;
0 0 0 —phi8 phi7 O0];
S = [zeros (3,3) zeros(3,6);
zeros (6,3) —1/2xad_phi ;];
syms Cdummy
syms mass Wp PP Pq u vV w p q r real;
V=1[wp PP PQuvwpagqgr]’;
syms C1 C2
€1(1,1)=0;C1(9,9)=0;
€2(1,1)=0;Cc2(9,9)=0;
MV = (MxV);
for i = 1:9
for m = 1:9
for k = 1:9
dSphii = reshape(jacobian(S,phi(i)),[9 9]);
dSphim = reshape(jacobian(S,phi(m)),[9 9]);
dSphik = reshape(jacobian(S,phi(k)),[9 9]);
Cdummyl = (dSphik(m,i)—dSphii(m,k))*V(k); %de Zeeuw
Cdummy2 = (dSphim(k,i)—dSphii(k,m))*MV(k); %From2012
Ci1(i,m) = C1(i,m)+Cdunmyl;
c2(i,m) = C€2(i,m)+Cdummy2;
end
end
end
F1 = C1%MxV JEQUIVALENT!!
F3 = 2%subs(S,phi(4:9) ,[ u v w p q r]’) *M«xV/,EQUIVALENT!!
F2 = C2%V JEQUIVALENT!!
simplify (F1—F2) Y==
simplify (F3—F1) %==0
%% Second part: Checking partials of M
syms x1 x2 x3 real
x = sym(’x’ ,[3 1]) %z phi theta
Ad = [[cos(x(3)) 0 —sin(x(3));
sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3)) ;...
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))*cos(x(3))]
[ 0 x(1)*xcos(x(3)) 0;...
—x(1)xcos(x(2)) x(1)*sin(x(2))=*sin(x(3)) O0;...
x(1)*sin(x(2)) x(1)*cos(x(2))=*sin(x(3)) 0];
zeros (3) [cos(x(3)) 0 —sin(x(3)); ...
sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3));
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))*cos(x(3))]];
dAddxil=reshape (jacobian(Ad,x (1)) ,[6 6]); Jpartials of Adjoint
dAddx2=reshape ( jacobian (Ad,x(2)) ,[6 6]);
dAddx3=reshape (jacobian(Ad,x(3)) ,[6 6]);
dAddx1_0= subs (dAddx1 ,x(1:3) ,zeros (3,1)) %evaluate at phi=0 for \bar{x}=0
dAddx2_0= subs (dAddx2 ,x(1:3) ,zeros (3,1))
dAddx3_0= subs (dAddx3 ,x(1:3) ,zeros (3,1))
H= [0 0 0; 00 O; eye(3); 0 0 0]; %reduction matrix H
syms M_RBpl_1 M_RBpi_2 M_RBpi_3 M_RBpl_4 M_RBpi_5 M_RBpl_6
M_RBp2_1 M_RBp2_2 M_RBp2_3 M_RBp2_4 M_RBp2_5 M_RBp2_6
M_RBp3_1 M_RBp3_2 M_RBp3_3 M_RBp3_4 M_RBp3_5 M_RBp3_6
M_RBp4_1 M_RBp4_2 M_RBp4_3 M_RBp4_4 M_RBp4_5 M_RBp4_6
M_RBp5_1 M_RBp5_2 M_RBp5_3 M_RBp5_4 M_RBp5_5 M_RBp5_6
M_RBp6_1 M_RBp6_2 M_RBp6_3 M_RBp6_4 M_RBp6_5 M_RBp6_6 real
M_RBp = sym(’M_RBp’ ,[6 6]) %rigid body mass matrix of platform 6x6
M_vv = Ad’«M_RBpx*Ad %ship part of platform mass matrix
Master of Science Thesis W.A. de Zeeuw
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M = [H’;eye(6)]*M_vv*[H eye(6)]; %expand to all dof using H
syms Cdummy

syms mass Wp Pp PqQ U V W p q r real;

V=] w pp pPq u v uwpagqr]’; %velocity vector
syms C1
€1(1,1)=0;c1(9,9)=0;
dMdx1 = reshape(jacobian(M,x(1)),[9 9]); Jpartials of full mass matrix
dMdx2 = reshape(jacobian(M,x(2)),[9 9]);
dMdx3 = reshape(jacobian(M,x(3)) ,[9 9]);
for i = 1:9 J%brute force computation of partials of M
for j = 1:9
for k = 1:9;
switch k
case 1
dMdxk = dMdx1;
case 2
dMdxk = dMdx2;
case 3
dMdxk = dMdx3;
otherwise
dMdxk = zeros (9);
end
switch i
case 1
dMdxi = dMdx1;
case 2
dMdxi = dMdx2;
case 3
dMdxi = dMdx3;
otherwise
dMdxi = zeros (9);
end
Cdummy = dMdxk(i,j)—1/2%xdMdxi(j,k);
C1(i,j) = C1(i,j)+Cdummy=V(k);

end

end
end
Cl %brute force coriolis term of mass partials
%Sectioned method
dMvv_dx1l = (dAddx1l)’«M_RBp=*Ad; %partials of Mvv x1
dMvv_dxlsym = dMvv_dx1+4+dMvv_dxl ’; Ysymmetric part
dMMdx1 = [H’;eye(6)]*(dMvv_dxlisym)*[H eye(6)]; %matrix 9x9 expansion
dMvv_dx2 = (dAddx2)’xM_RBpxAd; %partials of Mvv x2
dMvv_dx2sym = dMvv_dx2+4+dMvv_dx2 ’; Ysymmetric part
dMMdx2 = [H’;eye(6)]*(dMvv_dx2sym)*[H eye(6)]; %matrix 9x9 expansion
dMvv_dx3 = (dAddx3)’xM_RBpxAd; %partials of Mvv x3
dMvv_dx3sym = dMvv_dx3+dMvv_dx3 ’; Ysymmetric part
dMMdx3 = [H’;eye(6)]*(dMvv_dx3sym)*[H eye(6)]; %matrix 9x9 expansion
C2 = dMMdx1%V(1)+dMMdx2+V (2)+dMMdx3+V (3) ...

—1/2%[dMMdx1%V dMMdx2+*V dMMdx3*V zeros (9,6)]’ %coriolis matrix M part
%comparison
A = 2xrandn(6); A = .5%x(A+A’)+4xeye(6);%random symmetric (!!) mass matrix
X = [A(:) ;rand(12,1)]; %random velocities
% (WARNING TAKES SEVERAL MINUTES ON 2.8GHz dual core)

replacestr = [’[M_RBpi_1 M_RBpl1_2 M_RBpi_3 M_RBpi_4 M_RBpi_5 M_RBpi_6 ’...

"M_RBp2_1 M_RBp2_2 M_RBp2_3 M_RBp2_4 M_RBp2_5 M_RBpP2_6 ’ ...
>M_RBp3_1 M_RBp3_2 M_RBp3_3 M_RBp3_4 M_RBp3_5 M_RBp3_6 ’...
'M_RBp4_1 M_RBp4_2 M_RBp4_3 M_RBp4_4 M_RBp4_5 M_RBp4_6 ...
'M_RBp5_1 M_RBp5_2 M_RBp5_3 M_RBp5_4 M_RBp5_5 M_RBp5_6 ...
>M_RBp6_1 M_RBp6_2 M_RBp6_3 M_RBp6_4 M_RBp6_5 M_RBp6_6 ’ ...
’x1 x2 x3 wp pp PqQ u v w p q rl’];

Clsubs = eval(subs(C,replacestr ,X))

C2subs = eval(subs(C2,replacestr ,X))

Clsubs —C2subs %EQUAL UP TO NUMERICAL PRECISION (le-14)

hh

%%% TOTAL CORIOLIS MATRIX

% via partitioned method in M and ad_V in S
clear all

clc

%-- partials of S

syms nul nu2 nu3 nué4 nu5 nu6 real

syms xd1 xd2 xd3 real

nu = sym(’nu’,[6 1]);

xd = sym(’xd’ ,[3 1]);

W.A. de Zeeuw
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C-8 coriolis symbolic.m 93
V = [xd;nu]; %velocity vector
syms x1 x2 x3 real Jplatform orientation
x = sym(’x’,[3 1]); %z phi theta
%mass matrix including J*"T Ainfinity J*
syms M1_1 M1_2 M1_3 M1_4 M1_5 M1_6 M1_7 M1_8 M1_9 M2_1 M2_2 M2_3 M2_4
M2_5 M2_6 M2_7 M2_8 M2_9 M3_1 M3_2 M3_3 M3_4 M3_5 M3_6 M3_7 M3_8
M3_9 M4_1 M4_2 M4_3 M4_4 M4_5 M4_6 M4_7 M4_8 M4_9 M5_1 M5_2 M5_3
M5_4 M5_5 M5_6 M5_7 M5_8 M5_9 M6_1 M6_2 M6_3 M6_4 M6_5 M6_6 M6_7
M6_8 M6_9 M7_1 M7_2 M7_3 M7_4 M7_5 M7_6 M7_7 M7_8 M7_9 M8_1 M8_2
M8_3 M8_4 M8_5 M8_6 M8_7 M8_8 M8_9 M9_1 M9_2 M9_3 M9_4 M9_5 M9_6
M9_7 M9_8 M9_9 real
M= sym(’M°,[9 9]);%
for i=1:9;for j=i+4+1:9; M(i,j)=M(j,i);end;end; %force symmetry M
% M = [M(1:3,1:3) zeros (3,6);zeros(6,3) M(4:9,4:9)] %block diagonal mass
% M = diag(diag(M)) %diagonal mass
syms M_RBpl1_1 M_RBpl1_2 M_RBp1_3 M_RBpl1_4 M_RBpli_5 M_RBpl_6
M_RBp2_1 M_RBp2_2 M_RBp2_3 M_RBp2_4 M_RBp2_5 M_RBp2_6
M_RBp3_1 M_RBp3_2 M_RBp3_3 M_RBp3_4 M_RBp3_5 M_RBp3_6
M_RBp4_1 M_RBp4_2 M_RBp4_3 M_RBp4_4 M_RBp4_5 M_RBpd_6
M_RBp5_1 M_RBp5_2 M_RBp5_3 M_RBp5_4 M_RBp5_5 M_RBp5_6
M_RBp6_1 M_RBp6_2 M_RBp6_3 M_RBp6_4 M_RBp6_5 M_RBp6_6 real
M_RBp = sym(’M_RBp’ ,[6 6]); %rigid body mass matrix of platform 6x6
for i=1:6;for j=i+1:6; M_RBp(i,j)=M_RBp(j,i);end;end;’%force symmetry M_RBp
H= [0 0 0; 00 O0; eye(3); 0 0 0]; %reduction matrix H
%S-part of coriolis matrix
Cim = [zeros(3) zeros(3,6);
zeros (6,3) —[skew ([nu(4) nu(5) nu(6)]) skew([nu(l) nu(2) nu(3)]);
zeros (3) skew ([nu(4) nu(5) nu(6)])]]’;
Cij_S = Cim=xM;
%-- partials of M
% rigid body mass of platform only as Mship is not orientation dependent in
% ship B frame description of dynamics
Ad = [[cos(x(3)) 0 —sin(x(3));
sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3));...
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))=*cos(x(3))]
[ 0 x(1)*xcos(x(3)) 0;...
—x(1)xcos(x(2)) x(1)*sin(x(2))*sin(x(3)) O0;...
x(1)*xsin(x(2)) x(l)*cos(x(2))*sin(x(3)) O0];
zeros (3) [cos(x(3)) 0 —sin(x(3)); ..
sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3));
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))*cos(x(3))]];
dAddx1 =[ 0 0 0 O cos(x3) 0;...
0 0 0 —cos(x2) sin(x2)*sin(x3) O0;...
0 0 0 sin(x2) cos(x2)*sin(x3) O0;...
000 O 0 O0;...
000 0O 0 0;...
000 0 0 0];
dAddx2 =[ 0 O 0 0 0 0;...
cos(x2)*sin(x3) —sin(x2) <cos(x2)xcos(x3) x1*sin(x2)
x1xcos (x2)*sin(x3) 0;...
—sin(x2)xsin(x3) —cos(x2) —cos(x3)*sin(x2) xl*cos(x2)
—x1%sin(x2)xsin(x3) 0;...
0 o 0 0 0 0;...
0 o0 0 «cos(x2)xsin(x3) —sin(x2) cos(x2)*cos(x3) ;...
0 0 0 —sin(x2)*sin(x3) —cos (x2) —cos(x3)*sin(x2)];
dAddx3 =[ —sin(x3) 0 —cos(x3) 0 —xl1x*xsin(x3) 0;...
cos(x3)*sin(x2) 0 —sin(x2)*sin(x3) O xlxcos(x3)xsin(x2) 0;...
cos (x2)*cos(x3) 0 —cos(x2)*xsin(x3) 0 xlxcos(x2)*cos(x3) 0;...
00 0 —sin(x3) 0 —cos (x3) ;...
00 0 cos(x3)*sin(x2) O —sin(x2)*sin(x3);...
00 0 cos(x2)*cos(x3) 0 —cos(x2)*sin(x3)];
dMvv_dx1 = (dAddx1)’«M_RBp=*Ad; %partials of Mvv x1
dMvv_dxlsym = dMvv_dx1+4+dMvv_dxl ’; Y symmetric part
dMMdx1 = [H’;eye(6)]*(dMvv_dxisym)*[H eye(6)]; %matrix 9x9 expansion
dMvv_dx2 = (dAddx2)’«M_RBp=*Ad; %partials of Mvv x2
dMvv_dx2sym = dMvv_dx2+dMvv_dx2 ’; Y%symmetric part
dMMdx2 = [H’;eye(6)]x(dMvv_dx2sym)*[H eye(6)]; %matrix 9x9 expansion
dMvv_dx3 = (dAddx3)’«M_RBp=*Ad; %partials of Mvv x3
dMvv_dx3sym = dMvv_dx3+dMvv_dx3 ’; Ysymmetric part
dMMdx3 = [H’;eye(6)]*(dMvv_dx3sym)*[H eye(6)]; %matrix 9x9 expansion
Cij_M = dMMdx1V(1)+dMMdx2+V (2)+dMMdx3V(3) ...
Master of Science Thesis W.A. de Zeeuw
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—1/2%[dMMdx1%V dMMdx2xV dMMdx3*V zeros(9,6)]’; %coriolis matrix M part

%-- Force

Cij = Cij_S+Cij_M;

F = Cij*V Jforce (same side of equation as mass)

%% symbolic mass matrix

clear all

syms M11lv M22v M33v M44v M5E5v M66v M15v M24v real
syms M1lp M22p M33p M44p M55p M66p M15p M24p real

MRBv = diag ([M1iv M22v M33v M44y M55v M66v]);MRBv (1,5)=M15v;MRBv (5,1)=M15v; MRBv (2 ,4)=M24v ; MRBv (4,2)=

M24v ;

MRB = dia M11 M22 M33 M44 M55 M66 ; MRB =M15p ; MRB =M15p ; MRB =M24p ; MRB =
P g P P P P P pl); p(1,5 P p(5,1 P p(2,4 P p (4,2

M24p;

syms x1 x2 x3 real;x = sym(’x’,[3 1]);
R_theta = [cos(x(3)) 0 —sin(x(3));0 1 0; sin(x(3)) 0 cos(x(3))];
R_phi = [1 0 0; 0 cos(x(2)) sin(x(2));0 —sin(x(2)) cos(x(2))];
Ad_theta=[R_theta R_thetaxskew ([0 O 0]) ’;zeros(3) R_theta];
Ad_phi = [R_phi R_phixskew ([0 O 0]) ’;zeros(3) R_phi];
Ad_c = [eye(3) eye(3)*skew ([0 0 x(1)]) ’; zeros(3) eye(3)];
Ad = Ad_phixAd_thetaxAd_c %Adjoint matrix
H= [0 0 0; 00 0; eye(3); 0 0 0];
_vv = Ad’*x MRBp=xAd;
_p = [H’;eye(6)]*M_vv=*[H eye(6)]
_s = [zeros(3) zeros(3,6);zeros(6,3) MRBv]
M_p + M_s
ms xdl xd2 xd3 nul nu2 nu3 nu4 nub5 nu6 real
= sym(’xd’ ,[3,1]);
[xd1 xd2 xd3 nul nu2 nu3 nu4 nub5 nu6]’;

reshape (jacobian (M,x (1)) ,[9 9])*V(1l)+...

reshape (jacobian(M,x(2)) ,[9 9])*V(2)+...

reshape (jacobian (M,x(3)) ,[9 9])*V(3)

o<
Il

Qa<®xn®r==xx
Il

H
I

c2 —1/2%[ jacobian(MxV,x(1)) ’;...
jacobian (MxV,x(2)) ;...

jacobian (MxV,x(3)) ;...

zeros (6,3) 2xadjoint (M (4:9,:)=*V) ]
C = C1+4cC2

C-9 funC.m

function C = funC(M,M_RBp ,V,X)
%#codegen

Dbl R Tl hhhhththhhththhthtththhhhhh
%%% funtion C=funC(M,M_RBp ,V,X)
%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl hh T bl DT hhhhlhhhhtehhhhthhhtehhhhhthhhhhthhthhthhhhhhh

% Calculated the coriolis matrix for the coupled ship-platform 2body 9dof

% system. Inputs are:

% M 9x9 mass matrix of coupled system (dep. on platform pose)

% M_RBp 6x6 rigid body mass matrix of platform

% Vv 9x1 velocity vector with entries [xd;nul] stacked platform, ship

% where xd is 3x1 heave-roll-pitch (B)rate and nu 6x1 linear -—angular
% X 9x1 pose vector

% [3x1 platform pose heave-roll-pitch (x), 6x1 zeros (eta) (irrelevant)]
%

% Assumed are symetry for the platform M_RBp matrix and the total M matrix
% this is not checked, all error handling is omitted for sake of excecution
% speed

% Methods are discussed in Chapter 3 of W.A. de Zeeuw’s MSc Thesis

% Examples:

% % #1: 10000 random coriolis matrices execution time

% M = 2%randn(9); M = .5%(M+M’)+5+(rand+2)+*eye(9); %random symetric mass
% M_RBp = 2*randn(6); M_RBp = .5*%*(M_RBp+M_RBp ’) +5*x(rand+2)*eye (6) ;
% V = B*xrand (9,1);

% X = [randn(2,1) ;56+3*randn; zeros (6,1)];

% C = funC(M,M_RBp ,V,X)

% tic;for count=1:10000; C = funC(M,M_RBp,V,X);end;

% disp ([num2str (count) ’ Coriolis matrices calculated, ’]);toc;

% disp ([num2str (round (count/toc)) ’ excecutions per second ’]) %~6k
%

% % #2: only ship movements , (symbolic toolbox), diagonal inertia

% syms m Ix Iy Iz uw v w p q r real;

W.A. de Zeeuw
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% M= [mmm Ix Iy Iz];

%V = [0 00uuvwpaqrl;

% funC(diag([zeros (1,3) M]),diag(M),V,zeros (9,1))*V

% %hequal to eqn. 3.55 Handbook of Marine Craft Hydrodynamics and Motion Control Thor I. Fossen

% % #3: rigid body, off diagonal inertia
% syms m Ix Iy Iz u v w p q r real;

% M= [mmm Ix Iy Iz];

% V=110 00 uvwpgqrl;

% syms rl r2 r3 real;rcg = [ r1 r2 r3]’;

% % Fossen RB coriolis equations Handbook of Marine Craft Hydrodynamics

% I_b = diag(M(4:6))-m*skew(rcg) 2;

% tau_coriolisla=[zeros (3) -m*skew([u v w])-m*xskew(skew([p q rl)*rcg); -mxskew([u v w])-mxskew (skew

([p q rl)*rcg) m*xskew(skew ([u v w])*rcg)-skew(I_b*x[p q rl’)I*xV(4:end)

% tau_coriolisib=[m*skew ([p q r]) -m*skew([p q rl)*skew(rcg);m*xskew(rcg)*skew([p q r]) -skew(I_bx[p
q r]’)]1*V(4:end)

% %Rigid body mass matrix

% M_0 = [zeros (3) zeros(3,6); zeros(6,3) [diag(M(1:3)) -m*skew(rcg);m*skew(rcg) I_bll;

% tau_coriolis2=funC(M_0,zeros (6),V,zeros (9,1))x*V

% simplify (tau_coriolisla -tau_coriolisib)

% simplify (tau_coriolisla -tau_coriolis2 (4:9))

%-- input handling: reduce X to x and expand V in xd and nu
x = X(1:3);
% eta = X(4:9); Y%eta is not used in funC ()

xd = V(1:3);
nu = V(4:9);
H= [0 0 0; 00 O0; eye(3); 0 0 0]; %reduction matrix H

%-- partials of 8
Mv = M(4:9,:)%V;
adtilde_Mv = —[zeros(3) skew ([Mv(1l) Mv(2) Mv(3)]);
skew ([Mv (1) Mv(2) Mv(3)]) skew ([Mv (4) Mv(5) Mv(6)])];
C_S = [zeros(3) zeros(3,6);zeros(6,3) adtilde_Mv];

%-- partials of M

%%h% rigid body mass of platform only as Mship is not orientation dependent in
%%% ship B frame description of dynamics, Ad transforms velocity from B->P
%%% partials of adjoint

Ad =]
cos (x(3)), 0, o —sin(x(3)), 0, x(1)xcos(x(3)),
sin(x(2))*sin(x(3)), ci;(x(2)), cos(x(3))*sin(x(2)), —x(1)*cos(x(2)), x(1l)*sin(x(2))*sin(x(3))
cos(x(2))*sin(x(3)), 7sﬁ;(x(2)), cos(x(2))*cos(x(3)), x(1)*sin(x(2)), x(1)*xcos(x(2))*sin(x(3))
’ 0, 0, 0, cos (x(3)),

0, —sin(x(3))
0, 0, 0, sin(x(2))*sin(x(3)), cos (x(2))

, cos(x(3))=*sin(x(2))
0, 0, cos(x(2))*sin(x(3)), —sin(x(2))

0,
, cos(x(2))=xcos(x(3))];

%partials of adjoint

dAddx1 =[ 0 0 O O cos(x(3)) 0;...
0 0 0 —cos(x(2)) sin(x(2))*sin(x(3)) 0;...
0 0 0 sin(x(2)) cos(x(2))*sin(x(3)) O0;...
000 O O O0;...
000 0 0 0;...
000 0 0 0]

dAddx2 =[ 0 0 0 0 0 0;...
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))*xcos(x(3)) x(1l)*sin(x(2))
x(1)xcos(x(2))*sin(x(3)) 0;...
—sin(x(2))*sin(x(3)) —cos(x(2)) —cos(x(3))*sin(x(2)) x(1)=*cos(x(2))
—x(1)*sin(x(2))*sin(x(3)) 0;...
0 0 0 0 0 0;...
0 0 0 cos(x(2))*sin(x(3)) —sin(x(2)) ~cos(x(2))*cos(x(3));..
0 0 0 —sin(x(2))=*sin(x(3)) —cos (x(2)) —cos(x(3))*sin(x(2))];
dAddx3 =[ —sin(x(3)) O —cos(x(3)) 0 —x(1)=*sin(x(3)) 0;...
cos(x(3))*sin(x(2)) 0 —sin(x(2))*sin(x(3)) 0 x(1l)*cos(x(3))x*sin(x(2)) 0;...
cos(x(2))*cos(x(3)) 0 —cos(x(2))*sin(x(3)) 0 x(1l)*cos(x(2))*cos(x(3)) 0;...
0 0 0 —sin(x(3)) 0 —cos (x(3)) ;...
0 0 0 cos(x(3))*sin(x(2)) 0 —sin(x(2))*sin(x(3));...
0 0 0 cos(x(2))*cos(x(3)) 0 —cos(x(2))=*sin(x(3))];

dMvv_dx1 = (dAddx1)’xM_RBpxAd; %partials of Mvv x (1)
dMvv_dxlsym = dMvv_dx1+dMvv_dxl ’; Ysymmetric part

Master of Science Thesis W.A. de Zeeuw
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dMMdx1 = [H’;eye(6)]*(dMvv_dxlsym)*[H eye(6)]; Jmatrix 9x9 expansion
dMvv_dx2 = (dAddx2)’xM_RBpxAd; %partials of Mvv x(2)
dMvv_dx2sym = dMvv_dx2+dMvv_dx2 ’; Ysymmetric part
dMMdx2 = [H’;eye(6)]*(dMvv_dx2sym)*[H eye(6)]; %matrix 9x9 expansion
dMvv_dx3 = (dAddx3)’«M_RBp=*Ad; %partials of Mvv x(3)
dMvv_dx3sym = dMvv_dx3+dMvv_dx3 ’; Ysymmetric part
dMMdx3 = [H’;eye(6)]*(dMvv_dx3sym)*[H eye(6)]; %matrix 9x9 expansion
C_M = dMMdx1+V(1)+dMMdx2xV (2)+dMMdx3+V(3) ...

—1/2%[dMMdx1%V dMMdx2=*V dMMdx3*V zeros (9,6)]’; Jcoriolis matrix M part
%-- coriolis matrix
C = C_S+C_M; %output
f = —C*V(:); %coriolis forcing terms (RHS)
f=1(:);
end

C-10 funM.m

function M = funM(M_RBsJAinfJ ,M_RBp ,X)
%#codegen
bl hh bbbl h el hh ettt hhhhhhlehhthhhtshhhthhhhh

hh
%
hh

%
A
%

funtion M = funM(M_RBs ,M_RBp,X)
part of MSc Thesis Wouter de Zeeuw
TU Delft - GustoMSC 2011-2012

N N N N N N N N N N N N N N A N N N N NN N N N N N YN YN Y

A
%
YA

c
I
M

M
X

alculates the pose dependent inertia matrix
nputs are:
_RBsJAinfJ 6x6 rigid body inertia matrix of the ship plus the
inifinity added mass Ainf transposed from the hydrodynamic
equilibrium frame H to the boat fixed frame H via J* (cnst.)
_RBp 6x6 rigid body inertia matrix of the platform
9x1 pose vector

[3x1 platform pose heave-roll-pitch (x), 6x1 zeros (eta) (irrelevant)]

%Example with random symetric RB mass matrices and random pose:

Y -
b

%

M_RBsJAinfJ = 3*randn (6);

M_RBsJAinfJ = .5x(M_RBsJAinfJ+M_RBsJAinfJ ’)+15x(rand+2) *xeye (6);
M_RBp = 2*randn(6); M_RBp = .5x(M_RBp+M_RBp ’) +5*x(rand+2)*eye (6);
X = [randn(2,1) ;5+3*xrandn;zeros (6,1)1];

M = funM(M_RBsJAinfJ ,M_RBp ,X)

tic;for count=1:10000; M = funM(M_RBsJAinfJ ,M_RBp ,X);end;

disp ([num2str (count) °’ Mass matrices calculated, ’]);toc;

disp ([num2str (round (count/toc)) °’ excecutions per second ’]) %~20k
- input handling: reduce X to x and expand V in xd and nu

= X(1:3);

eta = X(4:9); Y%eta is not used in funM ()

H= [0 0 0; 00 O0; eye(3); 0 0 0]; %reduction matrix H

Z_
%
A
%
YA
Ad

T

s

e

s

mass matrix components

igid body mass of platform only as Mship is not orientation dependent in
hip B frame description of dynamics, Ad transforms velocity from B->P
ntries are [R R[x]_x; O R] where R is a rotation matrix and [x]_x a skew
ymmetric matrix in x
= [[cos(x(3)) 0 —sin(x(3)); .

sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3));...

cos (x(2))xsin(x(3)) —sin(x(2)) cos(x(2))*cos(x(3))]

[ 0 x(1)*cos(x(3)) O;...

—x(1)xcos(x(2)) x(1)*sin(x(2))*sin(x(3)) O0;...

x(1)*sin(x(2)) x(1l)*cos(x(2))x*sin(x(3)) 0];

zeros (3) [cos(x(3)) 0 —sin(x(3));

sin(x(2))*sin(x(3)) cos(x(2)) sin(x(2))*cos(x(3)); .
cos(x(2))*sin(x(3)) —sin(x(2)) cos(x(2))*cos(x(3))]];

%ship observed part of platform mass (as x is a releative coordinate)
M_vv = Ad’*M_RBpx*Ad;
%“total platform origining inertia matrix (9x9)

M_p = [H’;eye(6)]*«M_vv«[H eye(6)];
%ship inertia component (only acting on ship, only rigid body component)
M_s = [zeros(3) zeros(3,6);
zeros (6,3) M_RBsJAinfJ];
%-- total orientation dependent mass matrix
M = M_p + M_s;

W.A. de Zeeuw
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C-11 funXV.m 97

C-11 funXV.m

function [Xdot ,J_xv] = funXV(V,X)

Dbl hhThlhh T hhhhlhhhhthhhthhhhthhhhhhhhhthhthhhhhhhhh
%%% funtiom [Xdot ,J_xv] = funXV(V,X)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl hh T bl hh T hhhhlhhhhthhhhthhhthhhhthhhhhhhhthhthhhhhhh

% quasi velocity transform of platform and ship

% transforms body fixed velocities V (9x1) = [xdot nul] to the rate of
% change of the pose vector Xdot (9x1) = d/dtl[x_beta etal

%

% inputs:

% V = heave-roll-pitch rate platform (B!)

% surge -sway —heave -roll -pitch -yaw boat (B)

% X = [x_beta etal] pose vector

% output :

% Xdot = d/dt[x_beta etal

% = [dz_p/dt phidot_p thetadot_p dx_s/dt dy_s/dt dz_s/dt

% phidot_s thetadot_s psidot_s]
%-- transformation matrix J

% platform attitude transformation E:("ground"-to euler)

% Eaccent_inv = [1/cos(X(3)) 0 0;

% 0 1 03

% tan (x(3)) 0 11;

% Eaccent_inv_P = [1/cos(X(3)) 0 ;

% 0 1 1;%only required part (psi platform =0)

E_inv_P = [1 sin(X(2))*tan(X(3)); % 2x2 only required part (psi platform =0)
0 cos(X(2))];

% boat rotation matrix, dependent on angle part in eta

R_ItoB = [ cos(X(9))*cos(X(8)), cos(X(8))*sin(X(9)),—sin(X(8));

cos (X(9))*sin(X(7))*sin(X(8)) — cos(X(7))*sin(X(9)),
cos (X (7))*cos(X(9)) + sin(X(7))*sin(X(9))=*sin(X(8)),
cos (X (8))*sin(X(7));

sin(X(7))*sin(X(9)) + cos(X(7))*cos(X(9))=*sin(X(8)) ,...
cos (X(7))*sin(X(9))*sin(X(8)) — cos(X(9))xsin(X(7)),
cos (X (7))*cos (X(8))];

% boat rotation attitude transformation E’:("body"-to euler)

% E_inv = 1/cos(X(8))*[cos(X(9)) sin(X(9)) O;%slower 270k/s
% -cos(X(8))*sin(X(9)) cos(X(8))*cos(X(9)) 0;
% cos (X(9))*sin(X(8)) sin(X(9))*sin(X(8)) cos (X(8))]
% E_inv = [cos(X(9))/cos(X(8)) sin(X(9))/cos(X(8)) O0;
% -sin (X (9)) cos(X(9)) O0;
% cos(X(9))*xtan(X(8)) sin(X(9))*tan(X(8)) 1];%300k/s (fastest)
E_accentinv_S = [1 sin(X(7))*tan(X(8)) cos(X(7))xtan(X(8));
0 cos (X(7)) —sin (X(7));

0 sin (X(7))/cos(X(8)) «cos(X(7))/cos(X(8))];

J_xv = [[1 zeros(1,2); zeros(2,1) E_inv_P ] zeros(3,6);
zeros (6,3) [R_ItoB’ =zeros(3);zeros(3) E_accentinv_S]];

%-- quasi velocities transformed to pose change rate
Xdot = J_xvx*V;
end

C-12 funTaugrav.m

function tau_grav = funTaugrav(X,m_p,m_s,g,r_opgp,r_obgs)

%#codegen

bbbl h el lothtshhhthhhlehhthhhtshhhthhhhh

%%% funtion tau_grav = funTaugrav(X,m_p,m_s,g,r_opgp,r_obgs)

%%h% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl bbbl h ettt hhlhthhlehhthhhtshhhthhhhh

% Function that calculates the gravity forces and torques acting on the

% 3 dof of the platform and the 6 dof of the ship. The gravity is

% transformed to the body fixed frame to use in the Langranian description.
% The forces are acting on a body fixed vector r away from the CoG’s of the

Master of Science Thesis W.A. de Zeeuw
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% platform(P) and the boat (B)

%

% Inputs:

% X pose state vector [heave roll pitch (platform relative to boat)
% surge sway heave roll pitch yaw]

% m_p mass platform

% m_s mass ship

% g gravity

% r_opgp vector from origin platform to cog described in P (const)
% r_obgb vector from origin boat to cog described in B (const)

%

% Example:

% m_p = 1234321; m_s = 12344321; g=9.81;

% r_opgp = [0 0O -501’; r_obgs = [0 0O -12]°;

% X = [-rand; rand(8,1) 1; funTaugrav (X,m_p,m_s ,g,r_opgp ,r_obgs)

% tic;for count=1:10000; funTaugrav(X,m_p,m_s ,g,r_opgp ,r_obgs);end;
% disp ([num2str (count) ’ gravity transformations calculated, ’]);toc;
% disp ([num2str (round (count/toc)) ’ excecutions per second ’]) %~8.2k
%-- rotation matrices and bar{c} vector (heave)

R_BtoP = [ <cos(X(3)), 0, —sin(X(3));

sin(X(2))*sin(X(3)), cos(X(2)), cos(X(3))*sin(X(2));
cos (X (2))*sin(X(3)), —sin(X(2)), cos(X(2))*cos(X(3))];

c =100 x(1)];

R_ItoB = [ cos(X(9))*cos(X(8)), cos(X(8))*sin(X(9)),—sin(X(8));
cos (X(9))*sin(X(7))*sin(X(8)) — cos(X(7))xsin(X(9)),
cos (X (7))*cos(X(9)) + sin(X(7))*sin(X(9))=*sin(X(8)),
cos (X (8))*sin(X(7));
sin (X (7))*sin(X(9)) + cos(X(7))*cos(X(9))*sin(X(8)) ,...
cos (X(7))*sin(X(9))*sin(X(8)) — cos(X(9))xsin(X(7)),
cos (X (7))*cos (X(8))];

%-- gravity vectors inertial I frame
f_cog_s_I = [0;0;m_sx*g];
f_cog_p_I = [0;0;m_px*g];

%-- gravity in B frame
H= [0 0 0; 00 O0; eye(3); 0 O 0]; %reduction matrix H
Htilde = [1 0 0; O 1 0; zeros(3); 0 O 1]; %reduction matrix Htilde

tau_grav_s = [zeros(3) ;...
R_ItoB ;...
skew (r_obgs)*xR_ItoB]*xf_cog_s_I; Jgravity ship in ship CO and B-frame
%rotation to B frame and translation from CG platform to CO platform
R_SkewRrR = [R_ItoB;skew(R_BtoP xr_opgp(:))*R_ItoB];
% selection of off planar components (untouched) and planar translated to
% CO B via ¢
tau_grav_p = [H’xR_SkewRrR;
[eye(3);skew(c)]+xHtilde 'xR_SkewRrR ...
*f_cog_p_I;
tau_grav = tau_grav_s-+tau_grav_p;
% [zeros (3) R_ItoB’ zeros (3)]*(tau_grav+[zeros(5,1); tau_grav (1) ;zeros(3,1)]) Jwhen
% rotated back only in =z

end

C-13 funTauhydrostat.m

function tau_hydrostat = funTauhydrostat (X,G,~,VC0,flag_mooring)
bbbl h ettt hhlhtehhlehhthhehtshhhthhhhh

%%% function tau_hydrostat = funTauhydrostat (X,G,CB,VCO)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

R N N N Y N N N N N N N N N N N N N N N N N N N N N Y YN YN

%#codegen

% function to calculate the hydrostatic 1load

% X is the pose vector (9x1)

% G is the hydrostatic matrix acting in CB

% CB is the vector from the origin of the body coordinates to the center of
% buoyancy

% VCO is the vertical distance from the keel to the origin (B-frame)

% flag_mooring switches on the elastic mooring lines

%-- input handling: reduce X to eta

W.A. de Zeeuw Master of Science Thesis
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eta = X(4:9); eta = eta(:);
%%% adapt eta to have draught in the heave spot
eta(3) = eta(3)4VCO;

%-- elastic mooring cable
if flag_mooring
k_mooring = G(3,3)/1072;
G(1,1) = k_mooring;

G(2,2) = k_mooring;
end
%-- force due to stiffness matrix
tau_hydrostat_eta_I = —Gxeta;
%“rotate forces, assume roll and pitch axis parralel to inertial?
R_ItoB = [ cos(X(9))*cos(X(8)), cos(X(8))*sin(X(9)),—sin(X(8));
cos (X(9))*sin(X(7))*sin(X(8)) — cos(X(7))x*xsin(X(9)),
cos (X (7))*cos(X(9)) + sin(X(7))*sin(X(9))=*sin(X(8)),
cos (X (8))*sin(X(7));
sin (X (7))*sin(X(9)) + cos(X(7))*cos(X(9))*sin(X(8)) ,...
cos (X(7))*sin(X(9))*sin(X(8)) — cos(X(9))*xsin(X(7)),
cos (X (7))*cos (X(8))];
% tau_hydrostat_eta_B = [R_ItoB zeros(3);zeros (3) eye(3)]*tau_hydrostat_eta_I;
% tau_hydrostat_eta_B = [R_ItoB zeros(3);zeros(3) R_ItoBl*tau_hydrostat_eta_I;
tau_hydrostat_eta_B = [R_ItoB =zeros(3);zeros(3) eye(3)]+xtau_hydrostat_eta_I;
tau_hydrostat = [zeros(3,6);eye(6)]xtau_hydrostat_eta_B; Yresize output to 9x1

%%% NO ROTATION , assume B is alligned with the inertial only on B frame

% tau_hydrostat = [zeros(3,6);eye(6)]*tau_hydrostat_eta_I; %
% slides sideways when ship rolls because gravity is decomposed, rotat

ion of

% only forces (not moments) gives realistic results. Note that the constant

% stiffness matrix in allready a raw linear approximation only valid to

% about 20 deg roll and pitch heave in the straight walled part of the
end

C-14 funKinv.m

function [ell,R_ItoB,R_BtoP,Ru_k,Rdl_k,Rd2_k,R1_k,a_B,stopsim,J_lx] =
p_alpha ,p_normdl ,p_normd2)

%#codegen

Dbt bt h el h et h ettt leteh sttt

%%% funtion [ell ,R_ItoB ,R_BtoP ,Ru_k ,Rd1_k ,Rd2_k ,R1_k ,a_B,stopsim,J_1x]

%%% funKinv (X,p_bl,p_b2,p_a,p_alpha,p_normdl ,p_normd2)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

N N N N N A N N N N N N N N N A N N N N N N N N N N N N NN Y Y YN

% Inverse kinematics solution of sarrus legs spread 120 degree apart.

% the leg lengths from a known pose

%

% Inputs:

% X pose state vector [heave roll pitch (platform relative to boat
% surge sway heave roll pitch yaw]

hull

coordinates

funKinv (X,p_bl ,p_b2 ,p_a,

Finds

)

% platform is a structure with two base vectors (b1/b2) one platform vector

% (a) 2 lenghts of the linkages (normdl) and (normd2) and the fraction
% where the hydraulics connect to the linkage

% bil: [3x1 doublel

% b2: [3x1 double]

% a: [3x1 doublel

% alpha: 0...1

% normdl: scalar

% normd2: scalar

A

% Outputs

% ell lenghts of legs

% R_ItoB boat rotation matrices (3x3)

% R_BtoP platform rotation matrix (3x3)
% Ru_k U joint rotation matrices (3times 3x3)

% Rd1l_k dl linkage rotation matrices (3times 3x3)

% Rd2_k d2 linkage rotation matrices (3times 3x3)

% R1_k leg linkage rotation matrices (3times 3x3)

% a_B hydraulic connection translation vectors 3 times 3x1 + c_z!

% J_1x jacobian velocity transformation from leg to joint

% Example:
% p_bl = platform.bl;p_b2 = platform.b2; p_a = platform.a;

Master of Science Thesis
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Matlab Listings

% p_alpha = platform.alpha; p_normdl = platform.normdl;

% p_normd2 =
% X =
% tic;for

platform.normd2
[-rand; rand(8,1) 1;
count=1:10000;
% disp ([num2str (count) °’

funKinv (X, platform)

funKinv (X,platform);end;

’1) s toc;
second 1)

inverse kinematic solutions ,

% disp ([num2str (round (count/toc)) ’ excecutions

% %~7.2k not

per

vectorized, ~9.2k vectorized

% X = [-8 0 0 20 20 -10 30%pi/180 10%pi /180 45%pi/180] ’;
% X = [-4 20%pi/180 -0%pi/180 20 20 -10 O%pi/180 -O0%pi/180 O%pi/180];
%--- input handling
stopsim = O0;
flag_errhand = 1; %flag error handling on or off
flag_calcJlx = 1; %flag jacobian calcualtion on or off
flag_calcR = 1; %flag rotation matrix calculation handling on or off
errstr = 7’
%%% decompose pose vector (only dependent on x_beta=X(1:3))
R_BtoP = [ <cos(X(3)), 0, —sin(X(3));
sin(X(2))*sin(X(3)), cos(X(2)), cos(X(3))*sin(X(2));
cos (X (2))*sin(X(3)), —sin(X(2)), cos(X(2))*cos(X(3))];
c =100 x(1)] s
_lx = zeros(3,6); Jpreassign jacobian
%--- caculation of leg coordinates
notvecotorized = 0; Jswitch vectorized computation off
if notvecotorized
%%% Z rotation for 3 legs
g = zeros (3);gn = zeros (3);normg = zeros (3,1);
dl = zeros(3);d2 = zeros(3);
1 = zeros(3);ell = zeros(3,1);1ln = zeros(3);
a = zeros(3);b2 = zeros(3);
for N=1:3 %%%<><> not vectorized , looping
psis = —[0,2/3%pi,4/3%pi];
psi_N = psis(N);
Rz = [cos(psi_N) sin(psi_N) O;
—sin(psi_N) cos(psi_N) 0 ;
00 1];
%%% auxilariy vector from bl to a
g(:,N) = ¢ + R_BtoP '«Rz*p_a—Rz*p_bl; Jauxiliary vector
normg (N) = norm(g(:,N));
gn(:,N) = g(:,N)/norng (N);
if sum(normg >(p_normdi+p_alphaxp_normd2))>0 && flag_errhand
errstr=’Error: Planar linkage overstretched’;jerror check over
stopsim = 1;
end
%%% angle of lower linkage with vertical
negz_B = [0;0; —1];
ang_zb_g = acos(real(gn(:,N)’«xnegz_B));
ang_g_d1l = acos ((normg(N) 24+ p_normd1 2—p_normd2 2) ...
/(2%normg (N)*p_normd1l));
ang_zb_dl = ang_zb_g+ang_g_d1l;
%ang_zb_d1*180/pi% check: -z=normdl+normd2->0 V -z=normdl=normd2
% z=-0.01->~90 V z=0 NAN
%-- linkage vectors
d1(:,N) = p_normdlx(negz_Bx*cos (ang_zb_d1)+4...
(—Rzxp_bl/norm(Rz*p_bl))xsin(ang_zb_d1));
d2(:,N) = Rz*p_bl4d1l(:,N)—c—R_BtoP '«Rzx*p_a;
%check: alpha=0 z=-d1-d2 bl=b2 ->1=-z V, alpha=1 1=d1 V
1(:,N) = p_alpha*d2(:,N)+R_BtoP 'xRzxp_atc—Rz*p_b2;
ell(N) = norm(1(:,N));
In(:,N) = 1(:,N)/ell(N); %unit vector in leg direction

a(:,N) = Rzx*p_a;

b2 (:,N) = Rz*xp_b2;
end Jfor 3 legs
J_1x = nan(6,3); %the jacobian is not calculated in the non vectorized
else %%%h<><> vectorized computation of leg lenghts AND JACOBIAN

%%% vectorized computation of leg lengths and
Rzl = [cos(2%pi/3) sin(2*pi/3) O0;
—sin(2%pi/3) cos(2xpi/3) 0 ;
00 1]

jacobian

Rz2 = [cos(4xpi/3) sin(4%xpi/3) O0;
—sin(4%pi/3) cos(4xpi/3) 0 ;
00 1]

a = [p_a Rzlxp_a Rz2*p_a];

W.A. de Zeeuw
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bl = [p_b1 Rz1*p_b1l Rz2xp_b1l];

normbl = sqrt(sum(b1.72,1));

bin = bl.xrepmat (normbl (:) .7 —1,[3 1]);

b2 = [p_b2 Rz1%p_b2 Rz2xp_b2];

a_B = R_BtoP ’xa;

z_B = [0 0 1]’; %Down direction of B coordinate

%%% out of plane direction for cross products

i = skew(z_B)*bln; %cross product of construction base vectors

%%h% auxilariy vector from bl to a

g = [c ¢ c]+a_B—bl;

normg = sqrt(sum(g."2,1));

gn = g.*repmat (normg (:)’." —1,[3 1]);%unit dir g

if sum(normg >(p_normdi+p_normd2))>0 && flag_errhand
errstr=’Error: Planar linkage overstretched’;jerror che
stopsim=1;

end %end if error stretch

%%% angle of lower linkage with vertical

negz_B = [0;0; —1];

ang_zb_g = acos(—gn(3,:));

cosrule = (normg. 2+4ones(1,3)*p_normdl 2—ones (1,3)*p_normd272) .

./(2xnormg.*ones (1,3)*xp_normdl); %cosine rule argument

cosrule = (cosrule<1l).*xcosrule+(cosrule >1);

ang_g_dl1 = acos(cosrule);%cosine rule argument

ang_zb_dl = ang_zb_g+ang_g_d1l;

if sum(cosrule >1)>0 && flag_errhand

bl and z_B

ck over stretch link

errstr=’Error: Planar linkage overstretched’;’error check over stretch link

stopsim=1;
end %end if error stretch
%%% linkage vectors
dl = p_normdl x(negz_Bx*cos(ang_zb_d1l)+(—bl/norm(p_bl)) ...
.#[sin(ang_zb_d1);sin(ang_zb_d1);sin(ang_zb_d1)]);
din = di1/p_normdl; %unit vector in botom linkage direction
d2 = bil4dl—[c ¢ c]—a_B;
d2n = d2/p_normd2; %unit vector in dir top linkage
hhh legs
1 = p_alphaxd2+a_B+[c c c]— b2;
ell = sqrt(sum(1.72,1)) ’;ell = ell(:); %output leg lengths

ln = l.xrepmat(ell(:)’ .7 —1,[3 1]); %unit vector in leg direction

end YJend if vecotrized

%%% auxilariy vectors from bl to D (g’ gaccent)

gaccent = g—p_alphax*xd2;

normgaccent = sqrt(sum(gaccent. 2,1));

gaccentn = gaccent.xrepmat (normgaccent (:) .7 —1,[3 1]);%unit dir

%-- Construction of jacobian that relates leg rate to body velo
if flag_calcJlx

%%% J_DA (from point A to D) = J_VDvAx*xJ_vaVA

%%h% 1. J_vaVA (inverse decomposition of instantanious velocitie
hht 2 J_VDvA (translation along rotation radii of inst.veloc.)
for k=1:3

hhth 1
hoho>

% gn_x = cross(gn,i); %orthogonal to gn (in plane)

slow routine with inverse ()

% din_x = cross(din,i); Jorthogonal to din (in plane)

% J_vaVA = [gn_x(:,k) din_x(:,k) i(:,k)]1"-1; %8.6kHz

% > fast routine with hard coded inverse of the 3x3 matrix with

%leg number

Delta = 1/( (gn(3,k)*din(2,k) — gn(2,k)*din(3,k))*i(1,k) +

(gn(1l,k)*din(3,k) — gn(3,k)*din(1,k))*i(2,k) +...
(gn(2,k)*xdin(1,k) — gn(1l,k)*din(2,k))*i(3,k) );

J_vaVA = Delta *[...
din(1,k)*i(2,k)"2—din(2,k)*i(1,k)*i(2,k)+din(1,k)*i(3,k) 2—
din (2,k)*i(1,k)"2—din(1,k)xi(2,k)*i(1,k)4din(2,k)xi(3,k)"2—
din(3,k)*i(1,k)"2—din(1,k)*i(3,k)*i(1,k)+din(3,k)*i(2,k) 2—
—gn(1l,k)*xi(2,k) 24gn(2,k)*i(1,k)*i(2,k)—gn(l,k)*i(3,k) 2+4gn
—gn(2,k)*i(1,k) 24+gn(1l,k)*i(2,k)*i(1l,k)—gn(2,k)*i(3,k) 2+4gn
—gn(3,k)*i(1,k) 2+gn(1,k)*1i(3,k)*i(1,k)—gn(3,k)*i(2,k) 24gn
i(l,k)/Delta i(2,k)/Delta i(3,k)/Delta];

hhh 2. J_VDvA

J_VDvA = [normgaccent (k)/normg(k)x*(skew(gaccentn (:,k))x*i(:,k))
(1—p_alpha)*(skew(d2n(:,k))*i(:,k)) zeros(3,1)];

%%% 3. combine J_DA

J_DA = J_VDvAxJ_vaVA;

%%% constructing J_lx from J_DA (row by row)

J_1x(k,:) = [1n(:,k)’*xJ_DA (skew(a_B(:,k))*J_DA’x1n(:,k)) ’];

end’end for all legs J_lx loop

Master of Science Thesis
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s)

orthogonals

din (3 ,k)*i(1,k)=i(3,k)
din (3 ,k)*i(2,k)*i(3,k)
din (2,k)*i(2,k)*i(3,k);
(3,k)*i(1,k)=i(3,k)
(3,k)*i(2,k)*i(3,k)
(2,k)*i(2,k)*i(3,k);
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190 end) flag_calcJlx

191

192 9%-- Rotation matrices output of

193 R_ItoB = eye(3); %preassign rotation matrix to boat frame

194 Ru_k = [eye(3) eye(3) eye(3)];%preassign U joint rotation matrices (3times 3x3)
195 Rdi_k = [eye(3) eye(3) eye(3)]; %preassign dil linkage rotation matrices (3times 3x3)
196 Rd2_k = [eye(3) eye(3) eye(3)]; %preassign d2 linkage rotation matrices (3times 3x3)
197 R1_k = [eye(3) eye(3) eye(3)]; %preassign leg rotation matrices (3times 3x3)
198 if flag_calcR

199 R_ItoB = [ cos(X(9))*cos(X(8)), cos(X(8))*sin(X(9)),—sin(X(8));

200 cos (X(9))*sin(X(7))*sin(X(8)) — cos(X(7))x*xsin(X(9)),

201 cos (X (7))*cos(X(9)) + sin(X(7))*sin(X(9))*sin(X(8)),

202 cos (X (8))*sin(X(7));

203 sin (X (7))*sin(X(9)) + cos(X(7))*cos(X(9))*sin(X(8)) ,...

204 cos (X (7))*sin(X(9))*sin(X(8)) — cos(X(9))=*sin(X(7)),

205 cos (X (7))*cos(X(8))]; %rotation to boat frame

206 Rd2_k =[ [ cross(i(:,1),d2n(:,1)) i(:,1) d2n(:,1) N

207 [cross(i(:,2),d2n(:,2)) i(:,2) d2n(:,2) | I

208 [ cross(i(:,3),d2n(:,3)) i(:,3) d2n(:,3)]’]; LYES

209 Rd1_k = [ [cross(din(:,1),i(:,1)) i(:,1) —din(:,1)]’ ...

210 [cross(din(:,2) ,i(:,2)) i(:,2) —din(:,2)] ...

211 [cross(din(:,3),i(:,3)) i(:,3) —din(:,3)]’]; %OK

212 R1_k = —[[—cross(ln(:,1),i(:,1)) —i(:,1) 1n(:,1)]..

213 [-cross(1n(:,2),i(:,2)) —i(:,2) 1n(:,2)] ...

214 [-cross(1n(:,3),i(:,3)) —i(:,3) 1n(:,3)]];

215 i_P = R_BtoP '*xij

216 Ru_k = [[cross(i_P(:,1),d2n(:,1)) i_P(:,1) d2n(:,1) ] ...

217 [cross(i_P(:,2),d2n(:,2)) i_P(:,2) d2n(:,2) ] ...

218 [cross (i_P(:,3),d2n(:,3)) i_P(:,3) d2n(:,3) 1’ 1;%0K
219 a_B = a_B + [c c c];

220 end%flag_calcR

221

222 %-- error handling

223 if  ( (x(2)>=pi/2) || (X(2)<=—pi/2) ) && flag_errhand
224 errstr=’Error: Platform roll not in {-pi/2..pi/2}’;
225 stopsim = 1;

226  end

227 it ( (X(3)>=pi/2) || (X(3)<=pi/2) ) && flag_errhand
228 errstr=’Error: Platform pitch not in {-pi/2..pi/2}’;
229 stopsim = 1;

230 end

231  if  ( (X(7)>=pi/2) || (X(7)<=—pi/2) ) && flag_errhand
232 errstr=’Error: Ship roll not in {-pi/2..pi/2}7’;

233 stopsim = 1;

234 end

235  if  ( (X(8)>=pi/2) || (X(8)<=—pi/2) ) && flag_errhand
236 errstr=’Error: Ship pitch not in {-pi/2..pi/2}7;

237 stopsim = 1;

238 end

239 if X(1)>0 && flag_errhand’ (positive (down) heave: platform crashed into main deck
240 errstr=’Error: Zero or negative platform heave detected, platform crashed into maindeck’;
241 stopsim = 1;

242 end

243 coder.extrinsic(’disp’);

244 if stopsim == 1

245 disp(errstr)

246 end

247 end

C-15 funKforw.m

function [xhat,J_lxhat] = funKforw(ell,xO,p_bl,p_b2,p_a,p_alpha,p_normdl ,p_normd2)
%#codegen

Dbtk hlh o hhhhthtehhhhtohhtehtehtehht’htehtthhththhththhhhhh

%%% funtion [xhat ,J_lxhat] = funKforw(ell,xO,p_bl,p_b2,p_a,p_alpha,p_normdl ,p_normd2)
%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl hh T bl Dl hhhhlhhhhtehhhhhhhhhhhhhhhhthhthhthhhhhhh

function that finds the forward kinematical solution of the 3dof platform

% with 3 sarrus linkages. The solution is found via an iterative scheme

% dependent on the approximated pose that converges towards the accual pose

% inputs:

= e
WN R OO0 Uk W -
==

% ell current leg lengths

W.A. de Zeeuw Master of Science Thesis
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% x0 initial guess pose state (x_beta=heave roll
% pitch)

% p_bl,p_b2,p_a platform linkage base, hydraulic base,

% topplate hydraulic connection poitns

% p_alpha ,p_normdl ,p_normd2 linkage lengths and fractional length of
% connection to hydraulics in upper (d2)

A

% outputs:

% xhat found pose from iterations

% J_lxhat jacobian velocity tranformation from =xdot
% to ldot

A

% % Example #1: inverse and forward similarity
% load platformdata

% Xactual = [-0.31 3*pi/180 1%pi/180]
% ellmeasured = funKinv ([Xactual 0 0 0 0 O O],platform.bl,platform.b2,platform.a,...
% platform.alpha ,platform.normdl ,platform.normd2)’
% badguess = [-1 0 0]
% Xapproximated = fuanorw(ellmeasured,badguess,platform.bl,platform.b2,platform.a,...
% platform.alpha ,platform.normdl ,platform.normd2)
% Xapproximated - Xactual’
%
% % Example #2: speed of excecution
% badguess = [-5 -.1 0]°;
% goodguess = Xactual (:).*(ones(3,1)+1/6*%randn(3,1)); %about 10-20% off
% tic; for cnt = 1:10000; %only 800kHz
% Xapproximated = fuanorw(ellmeasured,badguess,platform.bl,platform.b2,platform.a,...
% platform.alpha ,platform.normdl ,platform.normd2);end;
% toc; disp([’Bad guess gives excecution speed ’ num2str (cnt/toc) ’Hz’]);
% tic; for cmnt = 1:10000; %about 1.2kHz, perfect guess gives 2.2kHz
% Xapproximated = funKforw(ellmeasured ,b goodguess ,platform.bl,platform.b2,platform.a,...
% platform.alpha ,platform.normdl ,platform.normd2) ;end;
% toc; disp([’Good guess gives excecution speed °’ num2str (cnt/toc) ’Hz’]1);
%--- dinput handling
% coder .extrinsic (’exist ’); Y%does not work in simulink
% if ~exist (’x0’,’var’) J%if no guess, set guess to zero
% x0 = zeros (3,1);
% x0(1) = -1;% x0(2) = 0; x0(3) = 0;
% end
% if disempty (x0)
% x0 = [-1 ; zeros(2,1)1;
% end
xj = x0(:); %set current estimate to intial guess
ell = ell(:); %current leg lenghts
%%% base and top plate vectors (constant in their own frames)
Rzl = [cos(2*pi/3) sin(2xpi/3) O0;

—sin(2xpi/3) cos(2xpi/3) 0 ;

00 1]°;

Rz2 = [cos(4xpi/3) sin(4xpi/3) O0;
—sin(4%pi/3) cos(4xpi/3) 0 ;

00 1]
a = [p_a Rzlxp_a Rz2xp_a];%topplate hydraulic connections
bl = [p_bl Rzlxp_bl Rz2%p_bl];lcoordinates of linkage base
normbl = sqrt(sum(bl.72,1));
bin = bl.xrepmat (normbl (:) .7 —1,[3 1]);
b2 = [p_b2 Rz1x*p_b2 Rz2*p_b2];%coordinates of hydraulic base
z_B = [0 0O 1]’; %Down direction of B coordinate
%%% out of plane direction for cross products
i = skew(z_B)*bln; %cross product of construction base vectors bl and z_B
J_lxhat = zeros(3,6); Jpreassign jacobian

%h<><> start of NR iteration loop

j=1; %iteration nr 1,

norm_delta_ell = 1; %reset norm step change
while (j<5)&&norm_delta_ell >le—2
%-- inverse kinematics with current estimate xj

% current rotation matirces

R_BtoP = [ cos(xj(3)), 0, —sin(xj(3));
sin(xj(2))*sin(xj(3)), cos(xj(2)), cos(xj(3))=*sin(xj(2));
cos(x3(2))*sin(xj(3)), —sin(xj(2)), cos(xj(2))xcos(xj(3))];

c= (00 xj(1)]"%

%%% auxilariy vectors from bl to A (g)

a_B = R_BtoP ’xa;

g = [c ¢ c]+a_B—bl;%from base to cyl joint at platform
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90 normg = sqrt(sum(g.”2,1));%length

91 gn = g.xrepmat (normg (:) .7 —1,[3 1]);%unit dir g

92  Y%%% angle of lower linkage with vertical

93 negz_B = [0;0; —1];

94 ang_zb_g = acos(—gn(3,:));

95 ang_g_d1 = acos ((normg. 2+ ones (1,3)*p_normdi 2—ones (1,3)*p_normd2"2) ...
96 ./(2%normg.*ones (1,3)*p_normdl));

97 ang_zb_dl = ang_zb_g+ang_g_d1l;

98 %%% linkage vectors

99 d1 = p_normdl#*(negz_Bxcos(ang_zb_d1)+(—bl/norm(p_b1)) ...

100 .#[sin(ang_zb_d1);sin(ang_zb_d1l);sin(ang_zb_d1)]);

101 din = dl/p_normdl; %unit vector in botom linkage direction

102 d2 = bi4di—[c ¢ c]—a_B;

103 d2n = d2/p_normd2; %unit vector in dir top linkage

104 1j = p_alpha*d24+a_B+[c ¢ c]— b2; %hydraulic legs of iteration j
105 ellj = sqrt(sum(1j.72,1))’; %lenghts of hydraulic legs

106 e11j = el1j(:);

107 1nj = 1j.xrepmat(ellj(:)’ . —1,[3 1]); %unit vector in leg direction

108 % %% auxilariy vectors from bl to D (g’ gaccent)
109 gaccent = g—p_alphax*xd2;

110 normgaccent = sqrt(sum(gaccent. 2,1));

111 gaccentn = gaccent.*repmat (normgaccent (:) .~ —1,[3 1]);%unit dir g’
112

113 %-- Construction of jacobian that relates leg rate to body velocity

114 9%%% J_DA (from point A to D) = J_VDvAxJ_vaVA
115  9%%% 1. J_vaVA (inverse decomposition of instantanious velocities)

116 hhh 2 J_VDvA (translation along rotation radii of inst.veloc.)
117 for k=1:3

118  %%% 1. J_vava

119 % % > slow routine with inverse ()

120 % gn_x = cross(gn,i); %orthogonal to gn (in plane)

121 % din_x = cross(din,i); %orthogonal to din (in plane)

122 9% J_vaVvA = [gn_x(:,k) din_x(:,k) i(:,k)1"-1; %8.6kHz

123 % > fast routine with hard coded inverse of the 3x3 matrix with orthogonals
124 %leg number

125 Dpelta = 1/( (gn(3,k)*din(2,k) — gn(2,k)*din(3,k))*i(1,k) +

126 (gn(1l,k)*din(3,k) — gn(3,k)*din(1,k))*i(2,k) +...

127 (gn(2,k)*din(1,k) — gn(1l,k)*din(2,k))*i(3,k) );

128 J_vaVvA = Delta*[...

129 din (1,k)*1i(2,k)"2—din(2,k)*i(1,k)*i(2,k)+din(1l,k)*i(3,k)"2—d1n(3,k)*i(1,k)*1i(3,k)
130 din(2,k)#i(1,k)"2—dtn(1,k)*i(2,k)*i(1,k)4+din(2,k)*i(3,k)"2—din(3,k)*1i(2,k)*i(3,k)
131 din (3 ,k)#*i(1,k)"2—din(1,k)*i(3,k)*i(1,k)+din(3,k)*i(2,k)"2—din(2,k)*i(2,k)*i(3,k);
132 —gn(1l,k)*i(2,k) " 2+gn(2,k)*i(1,k)*i(2,k)—gn(1l,k)*i(3,k) 2+gn(3,k)=*i(1,k)*i(3,k)
133 —gn(2,k)*i(1,k)"24gn(1,k)*i(2,k)*i(1,k)—gn(2,k)*i(3,k) 24gn(3,k)*i(2,k)*i(3,k)
134 —gn(3,k)*i(1l,k) 2+gn(1,k)*i(3,k)*i(1l,k)—gn(3,k)*i(2,k) 2+gn(2,k)*i(2,k)*i(3,k);
135 i(1,k)/Delta i(2,k)/Delta i(3,k)/Delta]; %16.3kHz(!) 2x faster

136 %%% 2. J_vDvA

137 J_VDvA = [normgaccent(k)/normg (k) +*(skew (gaccentn (:,k))*i(:,k))

138 (1—p_alpha)*(skew(d2n(:,k))*i(:,k)) zeros(3,1)];

139 9%%% 3. combine J_DA
140 J_DA = J_VDvAxJ_vaVA;
141 %%h% constructing J_lxhat from J_DA (row by row)

142  J_1xhat(k,:) = [lnj(:,k)’*J_DA (skew(a_B(:,k))*J_DA’*1nj(:,k)) ’];

143 end

144

145 %-- combine velocity jacobian with pose euler attitude transformation
146 %%% retain only 3,4,5 (heave roll pitch)

147 H = [zeros(2,3);eye(3);zeros(1,3)];

148 % the only nonzero velocities (planar constraints)

149 J_1xhat_red = J_lxhat=xH;

150 %%%h [J_1,x_betal] -1 = J_x_beta,x *[J_lxhat] -1

151 J_xbetax = [1 0 O;%heye (1)

152 0 1 sin(xj(2))*tan(xj(3)); %E’~-1

153 0 o0 cos (x3j(2))];

154

155 % --- Newton-Rhapson iteration step

156 J_lxhatbeta_red_inv = J_xbetax*J_lxhat_redA—l;

157 xj_plusi = xj 4+ J_lxhatbeta_red_invs*(ell—ellj);

158 xj = xj_plusl; j = j+1;

159 norm_delta_ell = norm(ell—ellj);

160 %J_1xhat2 = [1lnj;skew(a_B(:,1))*1nj(:,1) skew(a_B(:,2))*1nj(:,2) skew(a_B(:,3))*1nj(:,3)]";

161 end % <><> end NR iteration loop
162  xhat = xj(:);

163 % coder .extrinsic (’disp’); disp(j);
164

165 %%h%% funKforw appendix
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16 waverealization.m

105

%%h% symbolic derivation of inverse term:

%

syms dl1 d2 d3 gl g2 g3 il i2 i3 real;

d = sym(’d’,[3 11);i = sym(’i’>,[3 1]1);g = sym(’g’,[3 11);

JJ = simplify (((i172 + i272 + i372)*(d1*xg2*i3 - dlxg3*i2 - d2xgl*i3
+ d2*xg3%il + d3xgl*xi2 - d3xg2*xil))*[cross(g,i) cross(d,i) il7(-1))
J_vaVA = Deltax*[...

din(1,k)*i(2,k)"2-din(2,k)*i(1,k)*i(2,k)+din(1,k)*i(3,k)"2-din(3,k)*i(1,k)*i(3,k) ...
din(2,k)*i(1,k)"2-din(1,k)*i(2,k)*i(1,k)+din(2,k)*i(3,k)"2-din(3,k)*i(2,k)*i(3,k) ...
din(3,k)*i(1,k)"2-din(1,k)*i(3,k)*i(1,k)+d1in(3,k)*i(2,k)"2-din(2,k)*i(3,k)*1i(2,k);

~gn (1,k)*i(2,k)"2+gn(2,k)*i(1,k)*i(2,k)-gn(1,k)*i(3,k) 2+gn(3,k)*i(1,k)*i(3,k)...

-gn(2,k)*i(1,k) " 2+gn(1,k)*i(2,k)*i(1,k)-gn(2,k)*i(3,k) " 2+gn(3,k)*i(2,k)*i(3,k) ...
-gn(3,k)*i(1,k) "2+gn(1,k)*i(3,k)*i(1,k)-gn(3,k)*i(2,k) "2+gn(2,k)*i(3,k)*i(2,k);
i(1,k)/Delta i(2,k)/Delta i(3,k)/Deltal;

C-16 waverealization.m

function waverealization

Dbkl hhhhhhhhhlhhhhlhhhhthhhhthhhhhhhhhhhhhhhhhhhhhhhhh

%%%h Wave Field Realization

%%% 3D simulation ship with platform

%%% Wouter de Zeeuw 2012 - Gusto - MSc Thesis

Dbl h bl hhhhhhhtohhhhtehhlhtehtolhehhthtehhtehhhhtehthh®htththhhhhh

% Generate wave field from spectral density function (Pierson-Moskowitz)
% 3D spread is calculated with cosine”2 function (3 components: 0 45 90)
% wave field realization with random fase (possible from seed)

avirecord_flag=0;/switch on avi movie capture
plot_flag = O;%switch on 3D surface plot of wavefield
if avirecord_flag
vidObj = VideoWriter ([’waverealization.avi’]);
vid0Obj.FrameRate = 10;
open (vidObj);
scrsz = get(0,’ScreenSize’);’%make the frame size fixed
figi=figure(’Position’ ,[1 1 scrsz(3)/2 scrsz(4)/2]);%quarter scr
end

%%% Inputs

% t = 0; %time

H13 = 7; Ysignificant wave height (m)

T1 = 10; %mean period (s)

omegal = 0.1; %first anglular wave frequency (rad/s)
omegaN = 2; Jlast angular wave frequency

deltaomega = 0.05; Jdiscretization step

alphas = [0:45:90]*pi/180; Jwave directions

mu = 45%pi /180; %mean wave direction (used in directional spread)
g = 9.81; Jgravity m/s2

loadseadflag = 1; %load random seed data from .mat file

%%%h Process

omegas = omegal:deltaomega:omegaN; J%angular frequencies

omegas = [0.1000 0.1200 0.1400 0.1500 0.1600 0.1700 0.1800 0.2000
0.3500 0.3600
0.6100

1.4500 1.6000

0.2400 0.2600 0.2800 0.3000 0.3100 0.3200 0.3300 0.3400
0.3900 0.4100 0.4300 0.4600 0.4900 0.5200 0.5500 0.5800

0.6500 0.7500 0.8500 0.9500 1.0500 1.1500 1.2500 1.3500
1.8000 2.0000];

% %random periods , MUCH MUCH HIGHER (inf) GREATEST COMMON DEVISOR, LESS REPETITION RISK

% omegas = sort (2xrand (1,39));

Nomega = length(omegas); %number of angular frequencies
Nalpha = length(alphas); %number of wave directions
idir0 = find(alphas==0%pi/180); %direction index

idir45 = find(alphas==45xpi /180);

idir90 = find(alphas==90x%pi /180);

%%% Random phases
if loadseadflag == 1 %if set to 1, load rnd seed from .mat file
load(’randomseed.mat’);
rng(seed); Jset random seed to loaded seed
else
seed = rng; %random number generator
save (’randomseed .mat’,’seed’); %save seed data to .mat file
end
phase = 2xpixrand(Nalpha ,Nomega); Yrandom phase for realization
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%%h% Pierson -Moskowitz frequency spectrum
Sohm = (H1372xT1) x ( (0.11/(2xpi)) * ((omegas.*xT1)./(2xpi)).”—5
.x exp(—0.44%((omegas.*T1)./(2%pi))."—4) );%S(omega)

Sohmalpha = repmat ([2/pixcos(alphas—mu). 2]’,[1 Nomega]).*repmat(Sohm ,[Nalpha 1]);
zeta = (2% Sohmalphaxdeltaomega). (1/2); Jwave amplitude (surface elevation)
figure (2)

plot (omegas ,Sohm, ’k’)

title ([’Pierson -Moskowitz Spectrum, H_{1/3} = ’ num2str (H13) ’, T_1 = ’ num2str(T1)])
xlabel (’Angular wave frequency (rad/s)?’)

ylabel (’Spectral demsity (m~2/s)’)

pause
h=.1;

T = 0:h:60%6 ;hseconds -minutes -~hours
zeta_t0 = zeros (length(T),1);

%%% 3d plot of wave surface

w = 100; %length of the wave field

w = 0; %only (0,0)

dx = 5; Jmeter

dy = 5; Ymeter (should be equal to dx)

[X,Y]=meshgrid(—w/2:dx:w/2,—w/2:dy:w/2); Jcreate spatial grid
[nx ,ny]=size (X);

dirxy = [1/sqrt(2),1/sqrt(2)]; %unit vector in 45 degree direction
for t = T;

tic

Z = zeros (nx,ny);

for i=1:nx
for j=1l:ny
Z(i,j) = sum (...
zeta (idir0 ,:) .xcos (omegas. 2./gxX(i,j)
— omegas*t -+ phase (idir0 ,:) ) ...
+ zeta(idir4b5 ,:).xcos(omegas. 2./gx(dirxy=[X(i,j),Y(i,j)]")
— omegasx*t + phase (idir45 ,:)) ...
+ zeta(idir90 ,:) .%xcos(omegas. 2./gx*xY(i,j)
— omegasxt + phase (idir90 ,:)) ...
)
end
end
if plot_flag
if avirecord_flag
currFrame = struct (’cdata’, [],’colormap’, []);
end
Z = Z+40; jelevate the surface
colormap winter
surf (X,Y,Z,’linestyle’,’none’,’FaceColor’,’interp’,’Facelighting’,’phong?’)
camlight right
% axis equal
zlim ([—10 10])
drawnow
dt = h—(toc—round(toc));
pause (dt)
if avirecord_flag
set (figl, ’color’, ’white’)
currFrame=getframe (figl);
if isempty (currFrame.cdata)
pause (0.3)
currFrame=getframe (figl);
end Jframe check
writeVideo (vidObj ,currFrame);
end/record if
end/plot if
zeta_t0 (round ((t+h)/h)) = Z(round(end/2) ,round(end/2));
end Jfor loop
pause
plot (T,zeta_t0,’b’)
title(’Surface elevation timeseries coordinate (0,0)’)
if avirecord_flag
close(vidObj)
end
end

C-17 funSurfelev.m
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C-17 funSurfelev.m

function zetaXt = funSurfelev (X,t,Mu,Sohm,rand_phase ,omegas ,alphas ,g)
%#codegen

Dbkl hhhhhhhhhthhhhtehhlhtehhhhhhhtehhtohhhhtehthhththshhhhhh

%%% function zeta = funSurfelev(X,t,Mu,Sohm,rand_phase ,omegas ,alphas ,hg)

%%% 3D simulation ship with platform

%%%h Wouter de Zeeuw 2012 - Gusto - MSc Thesis

Dbl hh Tl Dl hhhhhhhhthhhhthh o hhthhtehhhhhhhhhhhhthhhhhhhh

% Calculate surface elevation of waves at a grid around the location of vessel

% Pierson -Moskowitz spectral density

%
% Inputs:
%h X pose (North, East, .. , Yaw) is used

% t time

% Mu mean heading waves in I frame

% Sohm wave energies in frequency spectrum
% rand_phase random phases

% omegas wave frequencies

% alphas headings

% g gravity

% Example: (full alphas runs at only 6! Hz, therfore the lowest alphas are
% omitted) this saves 20 vectorized runs at 113 Hz.

% loaddata J%load data script of simulation, must be run to gen wavefield

% zetaXt =

% funSurfelev (X,t,wave.Mu,wave.Sohm,wave.rand_phase ,wave.omegas ,.

% wave.alphas ,vessel.main.g)

%-- dinput handling

flag_reducealphas = 1;

flag_vectorized = 1;

north = X(4); east = X(5); yaw = X(9);

% yaw = yaw-2%pix*floor (yaw/(2%pi));% force yaw in 0..2pi
% if yaw == 2%pi;yaw=0;end

% NE = [north;east];

Nalpha = length(alphas);

Nomega = length(omegas);

%-- grid generation

Nx = 30; Dx = 5; Ny=30; Dy=35;
% Xmesh=-(Nx-1)*Dx/2+north:Dx:(Nx-1)*Dx/2+north;
Xmesh=linspace(—(Nx —1)*Dx/2+4north ,(Nx—1)*Dx/24north ,Nx);
% Ymesh = -(Ny-1)*Dy/2+east:Dy:(Ny-1)*Dy/2+east;
Ymesh = linspace(—(Ny—1)*Dy/2+4east ,(Ny—1)*Dy/24east ,Ny);
NElist = [repmat (Xmesh (:) ,[length(Ymesh) 1]) ,...

sort (repmat (Ymesh (:) ,[length(Xmesh) 1]))]; %1list of all combinations
xtilde = [cos(alphas (:)) sin(alphas (:))]*NElist ’;% inertial quasi coord along
% zetaXt = zeros(length(Xmesh)*length(Ymesh) ,1);

%--- freqency integration
% cosine squared spread (only -1/2pi..1/2pi)
alphas_min_Mu = (alphas—Mu)—((alphas—Mu)>pi)=*2xpi;jcenter around alphas-Mu
cos2 = 2/pixcos(alphas_min_Mu). 2.=x
(((alphas_min_Mu)<=pi/2)+((alphas_min_Mu)>=—pi/2)==2);%select only half
if flag_reducealphas %include the heighest alphas
[~,idx]=sort (cos2,2,’descend’);
cos2red = cos2(idx (1:3));
alphas = alphas (idx(1:3)); Jonly the top3 of original height
cos2red = cos2(idx (1:3));
Nalphared = length(alphas);
xtildered = xtilde (idx (1:3) ,:);
rand_phasered = rand_phase (idx(1:3) ,:);
else
cos2red=cos2;
xtildered=xtilde;
Nalphared=Nalpha;
rand_phasered=rand_phase;
end
Sohmalpha = repmat (cos2red (:) ,[1 Nomega]).xrepmat (Sohm(:) ’,[Nalphared 1]);7%
deltaomegas = [diff (omegas (:)’)/2 0]4[0 diff (omegas (:) ) /2];
deltaomegas ([1 end]) = deltaomegas ([l end]) *2; Jfrequency steps (non uniform)

% amplitudes zeta of frequencies omega in inertial directions alpha

from the

alphas

zeta = (2% Sohmalpha.xrepmat(deltaomegas (:) ’',[Nalphared 1])).7(1/2); %amplitudes

%-- surface elevation
%wave amplitude (surface elevation)
if ~flag_vectorized
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108 Matlab Listings

for j =l:numel (zetaXt); %for loop to save memory
phases_I = repmat (omegas (:) ’,[Nalphared 1]).72./g.x...
repmat (xtildered (:,j) ,[1 Nomega]) ...
—repmat (omegas (:) ’,[Nalphared 1])xt+rand_phasered;
zetaXt (j) = sum(sum( zeta.xcos(phases_I) ));
end

else jvectorized computation
idx = repmat ([l:size(xtildered ,1)]’,[1 Nomega]) ’;

vecXtilde = xtildered (idx (:) ’,:) ’;

vecOmegas = repmat (repmat (omegas (:) >,[ 1 Nalphared]). 2./g,[size(vecXtilde 1) 1]);
vecOmegat = repmat (repmat(omegas (:) ’,[ 1 Nalphared])=*t,[size(vecXtilde ,1) 1]);
zeta_transpose = zeta’;

vecZeta = repmat(zeta_transpose (:)  ,[length(Xmesh)*length(Ymesh) 1]);
vecRand_phase = rand_phasered ’;

vecRand_phase = repmat(vecRand_phase (:) ’,[length(Xmesh)xlength(Ymesh) 1]);
vecPhases_I = vecOmegas.*vecXtilde—vecOmegat+vecRand_phase;

zetaXt = sum(vecZeta.xcos(vecPhases_I),2);

end %vectorized computation

C-18 funTauwave.m

function [Tau_wave,zetaxt] = funTauwave (X,t,Mu,Sohm ,rand_phase ,omegas ,alphas ,forceRAO_phase ,
forceRAO_amp ,g)

Dbtk hthhhhhhhhtohhhhtehhlhtehhhhthhhhtehhtohthhhtehthhththshhhhhh

%%% function zeta = funSurfelev(X,t,Mu,Sohm,rand_phase ,omegas ,alphas)

%%% 3D simulation ship with platform

%%% Wouter de Zeeuw 2012 - Gusto - MSc Thesis

Db Dbl h Dbl hhhhhhthhhlhhhhhtehhhhhhtehhhhthhthhhhhhhhhhh

%#codegen

% Calculate surface elevation of waves at location of vessel from the

% Pierson -Moskowitz spectral density and the forces induces by the waves

% according to the force transfer functions from linear wave components

% Inputs:

% X pose state of which elements 4,5 and 9 (north east yaw) are used
% t current simulation time

% Mu mean wave direction in inertial frame (angle from North)

% Sohm frequency component

% rand_phase Nalpha x Nomega matrix of random phases of wave component
% omegas angular frequencies of wave components

% alphas directions of wave compontents (I frame) assumed same set of
% angles as the FTF functions (B frame)

%forceRAO_phase force RAO phase shifts for headings x (alphas * DOF ) (6)
%forceRAO_amp force RAO amplitudes for headings x (alphas * DOF ) (6)

%g gravitational constant

%-- input handling

north = X(4); east = X(5); yaw = X(9);
% force yaw in 0..2pi

yaw = yaw—2*pixfloor (yaw/(2%pi));

if yaw == 2xpi;yaw=0;end

NE = [north;east];

%xtilde = [cos(yaw+alphas);sin(yaw+alphas)]’*NE;% quasi coordinate along alphas

% inertial quasi coordinate along alphas

xtilde = [cos(alphas (:)) sin(alphas (:))]*NE;

% mu = Mu - yaw; %relative wave angle to ship

Nalpha = length(alphas);

Nomega = length(omegas);

%expand FTF amplitude and phase and degree of freedom in M(alpha ,6omega ,DOF)

forceRAO_amp_mat = nan(Nalpha ,6 Nomega ,6) ;

forceRAO_phase_mat = nan(Nalpha ,h Nomega ,6);

for k=1:6

forceRAO_amp_mat (:,:,k) = forceRAO_amp (1l:Nomega ,(k—1)*xNalpha+1l:kxNalpha) ’;

forceRAO_phase_mat (:,:,k) = forceRAO_phase (1:Nomega ,(k—1)*Nalpha+1l:k*Nalpha) ’;

end

%--- freqency integration

% cosine squared spread (only -1/2pi..1/2pi)

alphas_min_Mu = (alphas—Mu)—((alphas—Mu)>pi)=*2xpi;jcenter around alphas-Mu

cos2 = 2/pixcos(alphas_min_Mu). 2.=x
(((alphas_min_Mu)<=pi/2)+((alphas_min_Mu)>=—pi/2)==2);%select only half

Sohmalpha = repmat(cos2(:) ,[1 Nomega]).xrepmat (Sohm(:) ’,[Nalpha 1]);7%

deltaomegas = [diff (omegas (:)’)/2 O0]+[0 diff (omegas (:) ) /2];

W.A. de Zeeuw Master of Science Thesis
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C-19 funTauleg.m

109

deltaomegas ([1 end]) = deltaomegas ([1 end]) *2; Jfrequency steps (non uniform)
% amplitudes zeta of frequencies omega in inertial directions alpha

zeta = (2% Sohmalpha.xrepmat(deltaomegas (:) ’',[Nalpha 1])).7(1/2); Jamplitudes
%-- surface elevation

%wave amplitude (surface elevation)

% zetaXt = sum(...
% zeta(1l,:) .*cos (omegas . 2./g*xxtilde (1) - omegas*t + rand_phase (1
% zeta(2,:) .*¥cos (omegas ."2./gxxtilde (2) - omegas*t + rand_phase (2
% zeta(3,:) .*xcos (omegas ."2./g*xxtilde (3) - omegas*t + rand_phase (3
% zeta(4,:) .xcos (omegas .”2./gxxtilde (4) - omegas*t + rand_phase (4
% zeta(5,:) .xcos (omegas .”2./gxxtilde (5) - omegas*t + rand_phase (5
% zeta(6,:) .*cos (omegas ."2./gxxtilde (6) - omegas*t + rand_phase (6
% zeta(7,:) .*xcos (omegas ."2./gxxtilde (7) - omegas*t + rand_phase (7
% zeta(8,:) .xcos (omegas .”2./gxxtilde (8) - omegas*t + rand_phase (8
phases_I = repmat(omegas (:) ’,[Nalpha 1]).72./g.*...

repmat (xtilde (:) ,[1 Nomega]) ...

—repmat (omegas (:) ’,[Nalpha 1])x*t+rand_phase;
zetaXt = sum(sum( zeta.xcos(phases_I) ));
%--- rotate amplitude and phase (linearly interpolate) to boat frame
% wave period error with 45degree directions is max 1/cos (22.5/180%pi) 8.
diffalphas = diff (alphas (:) ’);
dalpha = diffalphas (1l);%asume constant steps
leftindex = find ([alphas (:)’ 2xpi]>yaw,l,’first’)—1;
leftindex = leftindex(1l);%force scalar
if leftindex == 6;

rightindex = 1;

else

rightindex=1leftindex+41;
end

NED DI
FEDIDIE U
L ) )
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% the first row (alpha_North) should be on the left index spot ,circshift by

% left index -1 and the right index by rightindex -1 and scale both

% components according to the relative distance to the two components via
% dalpha
f = 1—(yaw—alphas (leftindex))/dalpha;
zeta_B = (f)*circshift (zeta,leftindex —1)+..
(1—f)*circshift (zeta ,rightindex —1);
phases_B = (f)xcircshift (phases_I ,leftindex —1)+...
(1—f)*xcircshift (phases_I ,rightindex —1);
%--- Wave forces
Tau_wave = zeros (9,1);
Tau_wave (4) = sum(sum(forceRAO_amp_mat (:,:,1).*xzeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,1)),2),1)
5
Tau_wave (5) = sum(sum(forceRAO_amp_mat (:,:,2).%xzeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,2)),2),1)
Tau_wave (6) = sum(sum(forceRAO_amp_mat (:,:,3).xzeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,3)),2),1)
Tau_wave (7) = sum(sum(forceRAO_amp_mat (:,:,4).xzeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,4)),2),1)
5
Tau_wave (8) = sum(sum(forceRAO_amp_mat (:,:,5).%zeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,5)),2),1)
;
Tau_wave (9) = sum(sum(forceRAO_amp_mat (:,:,6).%xzeta_B.xcos(phases_B+forceRAO_phase_mat (:,:,6)),2),1)
Tau_wave = Tau_wave (:);
C-19 funTauleg.m
function tau_leg = funTauleg(X,J_1lx,f_leg ,p_a,p_b2)
N N N N N N N N N N N N N N N N N N N N N N N N N NN YN Y YN Y
%%% funtion tau_leg = funTauleg(X,J_1x,f_leg,p_a,p_b2)
%%% part of MSc Thesis Wouter de Zeeuw
%%% TU Delft - GustoMSC 2011-2012

N N N N N N N N N N N N N N N N A N N N N N N N N N NN YN YN Y
% function to calculate the forces from the hydraulics

% acting on the two bodies from the jacobian velocity transformation

%-- hydraulic connections
R_BtoP = | cos (X(3)), 0, —sin (X(3));
sin(X(2))*sin(X(3)), cos(X(2)), cos(X(3))xsin(X(2));
cos (X(2))*sin(X(3)), —sin(X(2)), cos(X(2))*cos(X(3))];
Rzl = [cos(2xpi/3) sin(2%pi/3) O0;
—sin(2%pi/3) cos(2xpi/3) 0 ;

Master of Science Thesis
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00 1]7;
Rz2 = [cos(4*pi/3) sin(4xpi/3) O0;
—sin(4%pi/3) cos(4xpi/3) 0 ;

00 1]
a = [p_a Rzlx*p_a RzQ*p_a]; %hydraulic connection top plate
b2 = [p_b2 Rzlxp_b2 Rz2%p_b2]; %hydraulic connection deck
a_B = R_BtoP ’xa; %ship body frame definition of hydraulic connections

if size(J_1x,2)==6; J_lx_ok=J_1lx ’;else J_lx_ok=J_lx;end’jacobian should be
%--forces

f_1 = J_1x_ok (1:3,1)xf_leg(1l);

f_2 = J_1lx_ok(1:3,2)xf_leg(2);

£_.3 = J_1x_ok(1:3,3)xf_leg(3);

tau_platform = —J_lx_ok=*f_leg (:); %identical to hand calcuation! GOOD
f_platform = tau_platform(1:3); %identical! GOOD

f_boat = —f_platform;

%--moments

torque_platform = —skew(a_B(:,1))xf_1...

—skew(a_B (:,2))*£f_2...
—skew(a_B(:,3))*f_3;%identical! GOOD
torque_boat = skew(b2(:,1))xf_1...
+skew (b2 (:,2))xf_2...
+skew (b2 (:,3))*x£f_3;
%--output
tau_leg = [f_platform(3); torque_platform(1:2);
f_boat (:).*x[0 O 1]’; torque_boat (:).x[1 1 0]’];
end

C-20 meandiff.m

function [meanerr ,differr] = meandiff (err)

Dbkl hhh o hhhhthtehhthtohhtehtehtehht’htehththhthhthhh®htthhhhh

%%% funtion [meanerr ,differr] = meananddiff (err)

%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl hhhhhhhhhhhhlhhhhthhhhthhhhhhhhhhhhhhthhhhhhhhhhh

% err - 3x1 vector of legg errors, split in mean and difference from mean

mu=mean (err);
meanerr = mukones (3,1);
differr = ([err(l);err(2);err(3)]—mu);

C-21 setPos.m

function [Xset ,HRP| = setPos(X,HRPset)

Dbkl hhhhhhhhhthhhhthhhhthhhhhhhhhhhhhhthhthhhhhhhhh

%%% funtion [Xset ,x_beta_I] = setPos(x_Beta_I)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl T DLl hhThh DT Tl hthh Tt ohtehhhhthhhthhh’hhthhhhhhh

% calculates from the present boat pose (eta) and the target inertial
% platform pose HRPset heave-roll-pitch the target state vector
% also returns the current inertial platform pose HRP vector
%-- input handling

eta = X(4:9); eta = eta(:);

%-- rotation from I to B
%%% only (3,3) element needed: angle between z"I and z"B axis is

%%% z"I_n \cdot z"B_n = |z I_nl|llz"B_nlcos alpha =
%%% cos alpha = cos(X(7))*cos(X(8))

%%% so z"B = z"I/cos alpha

%%% inertial heave target

z_I_rel = HRPset (1l)—eta(3);

Z_B_rel =z I _rel/(cos(X(7))*cos(X(8)));%becomes inf when pitch or roll->pi/2!

%-- output Xset

Xset = NaN(9,1);

%%% heave

Xset (1) = Z_B_rel; Y%heave

%%% roll and pitch

Xset (2) = HRPset (2)—eta(4); %roll japproximation axis are not aligned
Xset (3) = HRPset (3)—eta(5); %pitch japproximation axis are not aligned

W.A. de Zeeuw
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C-22 setleg.m

%%% inherit barge pose
Xset (4:9)=eta (:);

B

h=== output current x_beta_I

%%% rotation matrix I to Bframe

% R_ItoB = [ cos(X(9))#*cos(X(8)), cos(X(8))*sin(X(9)) ,-sin(X(8));

% cos (X(9))*sin(X(7))*sin(X(8)) - cos(X(7))*sin(X(9))

% cos (X(7))*cos(X(9)) + sin(X(7))*sin(X(9))*sin(X(8))

% cos (X(8))*sin(X(7));

% sin (X (7)) *sin(X(9)) + cos(X(7))*xcos(X(9))*sin(X(8)) ,...
% cos (X(7))*sin(X(9))*sin(X(8)) - cos(X(9))*sin(X (7)),

% cos (X(7))*cos(X(8))1;

HRP = NaN(3,1);

%%%h rotate heave and sum roll and pitch

HRP (1) = eta(3)+4cos (X(7))*cos(X(8))*X(1);

HRP (2) = eta(4)+X(2); %approximation, alligned axi, true if
HRP (3) = eta(5)+X(3); %approximation, alligned axi, true if

C-22 setleg.m

function ellset = setleg(t)
Dbl hh T bl Tl hhhhhhhhtehhhhthhhhthhhhhhhhhhthhthhthhhhhhh
%%% funtion ellset = setleg(t)

%%%h part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012
Dbl T bl hhhhhhthhhhthhhhhthhhhhhhh

% t - 1x1 current simulation time

% outputs a set profile for the target leg lenghts
% ellset - test function

ellset0 = [6;6;6];

if t>15&&t <30

ellset = ellsetO+sin(t)=*[1;—1;—1]
else if t>40
ellset = ellset0 +sin(t)=*[0; —1;1];
else

ellset=ellsetO;
end
end
end

C-23 funPlotwireframe.m

function funPlotwireframe (X,platform ,h6 vessel ,figl)%,t,Tend)
Dbl hh T bl Dl hhhhthhhhtehhhhthhhhhthhhhthhhhhthhthhthhhhhhh
%%% function funPlotwireframe (X,platform,vessel)

%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbl hh T bl Dbl hhthhhhtehh st hhhhhhhthhhhhhthhthhththhhhhh
% plots wire frame of 2 bodies for given pose vector
% Example (uses simout block in simulink model):

% tic;tt=0; while toc+tt<simX.time (end);

% i=find (simX.time >toc+tt ,1,’first ’);

% X = simX.signals.values(i,:);

% funPlotwireframe (X,platform,b vessel ,2);

% title (num2str (simX.time(i)));grid;

% xlabel N; ylabel -E;drawnow;end}

% due to the coordinate change the xyz direction correspond
% and (-)D direction

figure(figl);

% clf (figl)

[az ,el]=view;

%-- rotation and translations

R_BtoP = [ cos(X(3)), 0, —sin (X(3));

theta_p=0

phi_b

to the

sin(X(2))*sin(X(3)), cos(X(2)), cos(X(3))*sin(X(2));
cos (X (2))*sin(X(3)), —sin(X(2)), cos(X(2))*cos(X(3))]

c =100 x(1)];

R_ItoB = [ cos(X(9))*cos(X(8)), cos(X(8))xsin(X(9)),—sin(X(8));

Master of Science Thesis
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28 cos (X(9))*sin(X(7))*sin(X(8)) — cos(X(7))x*sin(X(9)),
29 cos (X(7))*cos(X(9)) + sin(X(7))*sin(X(9))*sin(X(8)),
30 cos (X (8))*sin(X(7));

31 sin (X (7))*sin(X(9)) + cos(X(7))*cos(X(9))*sin(X(8)) ,...
32 cos (X (7))*sin(X(9))*sin(X(8)) — cos(X(9))=*sin(X(7)),
33 cos (X (7))*cos (X(8))];

34 NED = [Xx(4) X(5) X(6)];

35 R_ItoBplanar = [ <cos(X(9)), sin(X(9)), 0;

36 —sin(X(9)), cos(X(9)), O0;

37 0, 0, 1];

38 %-- box shaped boat

39 xbox = [0 0 0;1 0 0; 1 1 0; 01 0; 00 1;1 0 1;1 1 1;0 1 1]7;

40 scale = [vessel.main.Lpp vessel.main.B vessel.main.VCO]’; %boat size
41 Xbox = Xbox.xrepmat (scale,[1 8]);

42 translate = [—scale(1l)/2 —scale(2)/2 0]’; %to origin

43 Xbox = Xbox + repmat (translate ,[1 8]);

44 scale = [vessel.main.Lpp vessel.main.B 0] ’;% waterline (planar approx)
45 xwl = [0 0 0;1 0 0; 1 1 0; 0 1 0;0 0 0]’;

46  Xwl =Xwl.*repmat (scale,[1l 5]);

47 translate = [—scale(1l)/2 —scale(2)/2 0]’; %to origin

48 xwl = Xwl + repmat (tramslate ,[1 5]);

49  %-- loading

50 Xboxloadl = [0 0 031 0 0; 1 1 0; 01 0; 00 1;1 0 1;1 1 1;0 1 1]7’;
51 scale = [30 30 20]’; %boat size

52  Xboxloadl = Xboxloadl.krepmat(scale,[1 8]);

53 translate = [—scale(1)/2430 —scale(2)/2 —scale(3)]’; %to origin
54  Xboxloadla = Xboxloadl -+ repmat (translate ,[1 8]);

55 translate = [—scale(1)/2—30 —scale(2)/2 —scale(3)]’; %to origin
56 Xboxloadilb = Xboxloadl + repmat (translate ,[1 8]);

b7 Xboxload2 = [0 0 0;1 0 0; 1 1 0; 0 1 0; 0 0 1;1 0 1;1 1 1;0 1 1]7;
58 scale = [10 10 70]’; %boat size

59 Xboxload2 = Xboxload2.*repmat (scale,[l 8]);

60 translate = [—scale(1l)/2 —scale(2)/2 —70]’; %to origin

61 Xboxload2 = Xboxload2 + repmat (translate ,[1 8]);

62

63 Y%hexagon shaped platform
64 xXhex = [0 O 0;sqrt(3)/2 1/2 0; sqrt(3)/2 3/2 0;...

65 0 2 0; —sqrt(3)/2 3/2 0; —sqrt(3)/2 1/2 0;
66 0 0 2;sqrt(3)/2 1/2 2; sqrt(3)/2 3/2 2;...
67 0 2 2; —sqrt(3)/2 3/2 2; —sqrt(3)/2 1/2 2;
68 175

69 Xhex=Xhex /2;

70  scale = [25 25 3]’; %boat size

71 Xhex = Xhex.*repmat (scale,[1 12]);

72 translate = [0 —25/2 —3]’; %to origin
73 Xhex = Xhex + repmat (translate ,[l 12]);
74

75 %move bodies according to X

76 Xbox = (R_ItoB ’#Xbox);

77 Xbox = Xbox + repmat (NED,[1 8]);

78 Xbox = Xbox.srepmat ([1 —1 —1]’,[1 8]);
79 Xwl = (R_ItoBplanar 'xXwl);

80 xwl = Xwl + repmat ([NED(1:2); O0],[1 5]);
81 xwl = Xwl.srepmat ([1 —1 —1]’,[1 5]);

82 Xboxloadla = (R_ItoB % Xboxloadla);

83 Xboxloadla = Xboxloadla + repmat (NED,[1 8]);

84 Xboxloadla = Xboxloadla.xrepmat ([1 —1 —1]",[1 8]);
85 Xboxloadib = (R_ItoB % Xboxloadlb);

86 Xboxloadlb = Xboxloadlb + repmat (NED,[1 8]);

87 Xboxloadilb = Xboxloadlb.xrepmat ([1 —1 —1]",[1 8]);
88 Xhex = R_BtoP '«R_ItoB ’*Xhex;

89 Xhex = Xhex + repmat (NED,[1 12]) + repmat (R_ItoB’'xc,[1 12]);
90 Xhex = Xhex.sxrepmat ([1 —1 —1]’,[1 12]);

91 Xboxload2 = R_BtoP ’s«R_ItoB % Xboxload2;

92 Xboxload2 = Xboxload2 + repmat (NED,[1 8]) + repmat (R_ItoB’xc,[l 8]);
93 Xboxload2 = Xboxload2.xrepmat ([1 —1 —1]’,[1 8]);

94

95

96  %-- plot

97 Xboxline = Xbox(:,[1 2 43 156237857684 1]);

98 Xboxloadlaline = Xboxloadta(:,[1 2 4 3 156 2 378576284 1]);

99 Xboxloadlbline = Xboxloadib(:,[1 2 4 3 156 2 37857684 1]);

100 Xboxload2line = Xboxload2(:,[1 2 4 3 156 2 3 7 8576 84 1]);

101 Xhexline = Xhex(:,[1 2 3 4 5 6 7 2 9 4 11 6 7 8 3 10 5 12 1 8 9 10 11 12 7 6 1]);

102 hold off Ydelete for recording movie
103 plot3 (Xboxline (1,:),Xboxline (2,:),Xboxline (3,:),’k’,’linewidth’ ,1);

W.A. de Zeeuw Master of Science Thesis
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C-24 funMovieWireframe.m 113
hold on
plot3 (Xhexline (1,:),Xhexline (2,:),Xhexline (3,:),’r’,’linewidth’  1);
plot3 (Xboxloadlaline (1,:) ,Xboxloadlaline (2,:),Xboxloadlaline (3,:),’k’,’linewidth’ ,1);
plot3 (Xboxloadibline (1,:),Xboxloadibline (2,:),Xboxloadibline (3,:),’k’,’linewidth’ ,1);
plot3 (Xboxload2line (1,:),Xboxload2line (2,:),Xboxload2line (3,:),’r’,’linewidth’ ,1);
%--- add legs
[ell ,1n,b2s ,as] =funKinv (X, platform.bl,platform.b2,platform.a,platform.alpha,platform.normdl ,
platform.normd2);
b2sI = R_ItoB *xb2s;
assI = R_BtoP '+«R_ItoB ’*as;
1nI = (R_ItoB’*1ln).xrepmat(ell’,[3 1]);
¢c_.B = [1 —1 —1]’.%x(R_ItoB’xc);
for k=1:3;plot3 ([b2sI(1,k) b2sI(1,k)+1nI(1l,k)]+NED(1) ,..
—[b2sI(2,k) b2sI(2,k)+1nI(2,k)]—NED(2) ,...
—[b2sI(3,k) b2sI(3,k)+1nI(3,k)]—NED(3),’k’,’linewidth’ ,2);
plot3 ([0 b2sI(1,k)]+NED(1) ,...
—[0 b2sI(2,k)]—NED(2) ,...
—[0 b2sI(3,k)]—NED(3),’k’,’linewidth’ 1)
plot3 ([0 assI(1,k)]+NED(1)4+c_B(1l) ,...
—[0 assI(2,k)]—NED(2)+c_B(2) ,...
—[0 assI(3,k)]—NED(3)4c_B(3),’r’,’linewidth’ ,1);
end
surf ([ —-60;60],[ —60;60],zeros (2),’EdgeColor’,’none’,’FaceColor’,[199/256 217/256 252/256])
alpha (.1)
plot3 (Xwl(1l,:),Xwl(2,:),Xwl(3,:),’b’>,>linewidth’ ,1);
% grid
axis equal
zlim ([—10 35])
% az = 45; el=30; %fix view
% az = 120; el=44; Yfix view
% az = 360*xt/Tend; el=44*t/Tend; %fix view
view(az,el)
C-24 funMovieWireframe.m
function mov = funMovieWireframe (simX ,platform,6 vessel ,filename ,fps)
Dbt bl Tttt et te e hhte et
%%% funtion funMovieWireframe(simX,platform,vessel,filename)
%%%h part of MSc Thesis Wouter de Zeeuw
%%% TU Delft - GustoMSC 2011-2012
N N N N N N N N N N N N N N N N N N N N N N N N N N N Y YN Y
vid0bj = VideoWriter ([filename ’.avi’]);
vid0Obj.FrameRate = fps;
open (vid0bj);
scrsz = get(0,’ScreenSize’);%make the frame size fixed
% figl=figure(’Position’,[1 1 scrsz(3) scrsz(4)]);%full screen res
figi=figure(’Position’ ,[1 1 scrsz(3)/2 scrsz(4)/2]);%quarter screen
set (figl ,’Renderer’,’zbuffer’))for getframe to work
T = [0:0.1:simX.time (end) ];
cnt = 1;
for t=T;
currFrame = struct(’cdata’, [],’colormap’, []);
i=find (simX.time>=t,1,’first’);
if ~isempty (i)
X = simX.signals.values(i,:);
funPlotwireframe (X,platform ,vessel ,figl ,t,simX.time(end));
title ([’Platform on Vessel simulation (wireframe), t = ’...
num2str (.1*round (simX.time (i)=*10),’%1.1£°)]);
set (figl, ’color’, ’white’)
drawnow ;
%movie record
end
currFrame=getframe (figl);
if isempty (currFrame.cdata)
pause (0.3)
currFrame=getframe (figl);
end
writeVideo (vidObj , currFrame);
cnt = cnt+41;
Master of Science Thesis W.A. de Zeeuw
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end
close (vidObj)

C-25 setsurfaceelevation.m

function setsurfaceelevation(surfelevXt)

%#codegen

Dbl hhhhhhh ke hthhhththhthhhthhtehhthhhhh

VR

%%% funtion setsurfaceelevation(surfelevXt)

%%h% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

Dbkl hhhhhhhhhthhhhhhhhhthhthhhhhhhhhhhhtbhhhhhhhhhh
% sets the heights of the surface node in the

% matlab functions (VR Sink does not allow these
coder .extrinsic(’get_param’)

coder . extrinsic(’vrworld’)

coder .extrinsic (’vrnode’)
extrinsic(’getfield’)

extrinsic(’setfield’)

coder .
coder .
% Get

vrworld associated with the

% Handle Sea
hni=vrnode (hw,’Sea’);

hn2=getfield (hnl,’geometry’);

% surfelevcurrent = getfield (hn2,’height ’);
% surfelevXt = randn (900,1);

setfield (hn2,’height’,surfelevXt)

to the elevation map node we

C-26 funMPC.m

function

want to

VR Sink found there
hw=vrworld(get_param(’shipplatform/VR Visualisation/VR Sink’,
control

simulation

manupulations

via extrinic

directly)

’WorldFileName’));

[u_star_tO ,du_star_vec_output ,Jp_star ,alpha_subopt_output ,X_p_i ,HRP_out] =

funMPC (Xhat ,HRPset ,Vt0 ,u_minmax ,mpc_N_set ,mpc_dt ,mpc_maxitt ,...
u_tminl ,du_star_vecminl ,M_RBsJAinfJ ,M_RBp ,p_bl ,p_b2 ,p_a,...

p_alpha ,p_normdl ,p_normd2 ,G,VC0,flag_mooring ,m_p ,m_s,g,r_opgp ,r_obgs)

%#codegen

N N N N N N N N X N N N N N N N N N N N N N N N N N N N Y YN YN

hhh

function

[u_star_tO0 ,du_star_vec ,Jp_star ,alpha_subopt]

% hh funMPC (Xhat , HRPset ,VtO ,u_minmax ,mpc_N ,mpc_dt ,mpc_maxitt ,...

% h%h u_tminl ,u_star_vecminl ,M_RBsJAinfJ ,M_RBp ,p_bl ,p_b2,p_a,...

YA p_alpha ,p_normdl ,p_normd2 ,G,VC0,flag_mooring ,m_p,m_s,g,r_opgp ,r_obgs)
%%% part of MSc Thesis Wouter de Zeeuw

%%% TU Delft - GustoMSC 2011-2012

N N N N Y N N N N N N N N N N N N N N N N N N N N YN Y YN

% Model Predictive Controller for the platform on the ship

% the prediction model includes:

% * Pose dependent Mass matrix M

% * Coriolis forces due to moving refererence frame (base is on the deck)
% * Nonlinear kinematic relations of linkages

% * Linear hydrostatics

% * Pose dependent gravity

% * quasi velocity - pose transformation

%

% Random external effects are ommited hence the solution is a wave free

% (bathtub) solution. Wave radiation is omitted for speed of excecution.
%

% The components of the model are the function files borrowed from the

% designed blocks in the shipplatform.mdl model (all unaltered but the

% inverse kinematics, which is set to have no error control as this could

% compromise
% M = funM(M_RBsJAinfJ ,M_RBp ,X)
% C = funC(M,M_RBp ,V,X)

%o [~~~ =~~~ ,~,~,J_1x] =
% tau_leg = funTauleg(X,J_1lx,f_leg,p_a,p_b2)
% tau_hydrostat =

feasibility)

% tau_grav =

% [~,J_xv] = funXV(V,X)

funTaugrav (X,m_p,m_s ,g,r_opgp ,r_obgs)

funTauhydrostat (X,G,~,VC0,flag_mooring)

funKinv(X,p,bl,p,b2,p,a,p,alpha,pfnormdl,p,normd2)

%

% The degree of suboptimality is found for a an horizonm of N-1 (this adds

% no additional cost to the calculation, but is conservative)

% J_star_N(x0) is the optimal J for the full horizon, now calculate

% J_star_N-1(x0) and J_star_N1(x1) from the sequence of optimal stage costs and

W.A. de Zeeuw

Master of Science Thesis



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

C-

26 funMPC.m

115

% du0 = [du_star_vecminl ((1+3) :end);zeros(3,1)];
State_t0 = [VtO;Xhat (:)];
du0 = du_star_vecminl (:) ;
du0 = [duO(4:end); zeros(3,1)];
% du0 = -.5%x10"6%ones (mpc_N=*3,1) ;
%-- optimizing NELDER MEAD SIMPLEX
% mpc_dt = 0.5;
% mpc_N = 5;
% mpc_maxitt = 105;
% reqmin = 1le-6; Jjconvergence requirement
% step = -.5e6xones(mpc_N=*3,1);%size of initial simplex
% konvge = 50; Y%check every itt for convergence mpc_maxitt
% [ du_star_vec_out , Jp_star ,icount , numres , ifault ]= nelminfunPerf ( mpc_N=*3,
% reqmin , step, konvge ,mpc_maxitt , mpc_N ,mpc_dt ,u_tminl ,State_t0 ,...
% M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VCO0,flag_mooring ,...
% p_bl ,p_b2,p_a,p_alpha ,p_normdl ,p_normd2,...
% HRPset ,u_minmax) ;
%-- optimizing GAUSS NEWTON
mpc_dt = 0.5;
mpc_N = 5;
tol = 107 —1;
mpc_maxitt = 10;
lambda_GN = .2;
[du_star_vec_out ,Jp_star ,histout ,costdata] = gaussn(du0,tol ,mpc_maxitt ,...
lambda_GN ,mpc_N ,mpc_dt ,u_tminl ,State_tO0 ,...
M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2 ,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);
du_star_vec_output = du_star_vec_out (l:mpc_N*3,1); %FORCED size for simulink
%-- output

devide ths value by the first stage cost 1(x0) to find alpha_subopt

Inputs:

MPC specific:

Xhat Current state (estimated by forward kinematics)

HRPset setpoint heave roll pitch

Vt0 Current velocity

u_minmax constraint (soft) on control level

mpc_N prediction horizon (steps)

mpc_dt time steps

mpc_maxitt maximum iterations of optimizer

u_tminl previous control level (of previous call to funMPC(.) use delayblk
u_star_vecminl previous optimal control sequecne (hot starting)
SUBfunctions: (referenced in subfunctions)

M_RBsJAinfJ ,M_RBp ,p_bl ,p_b2,p_a,p_alpha,p_normdl ,...

p_normd2 ,G,VC0,flag_mooring ,m_p,m_s ,g,r_opgp,r_obgs

Output :

u_star_tO0 control signal 3x1

du_star_vec vector of optimal delta control signals (mpc_N=#*3 x 1)
Jp_star performance objective value

alpha_subopt suboptimalty (1 is good, 0 is poor, negative is infeasible)

calculated (conservative) for N-1 horizon

- input handling

% initial (hot start) delta control signal

HRP_out = NaN(3,1);

%%% rotate heave and sum roll and pitch

HRP_out (1) = Xhat (6)+cos(Xhat(7))*cos(Xhat (8))=*Xhat (1);

HRP_out (2) = Xhat (7)+Xhat (2); %approximation, alligned axi, true if theta_p=0
HRP_out (3) = Xhat (8)+Xhat (3); %approximation, alligned axi, true if phi_b =0;
u_star_t0 = u_tminl+4du_star_vec_out (1:3); %next control signal

[~

alpha_subopt_output = alpha_subopt (1);
end %end MPC controller main, below are the used components borrowed from bocks
function dState_p = funAcc(State_p,u_p,...

%

,alpha_subopt ,X_p_i]:funPerf(du_star_vec_out ,mpc_N ,mpc_dt ,u_tminl ,State_tO0 ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);%optimal sequence

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2 ,p_a,p_alpha ,p_normdl ,p_normd2)
Part of funMPC () WA de Zeeuw
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% >>
% So
% in
% ou

/-

hhh

tau_
N hh
tau_
hhh
% Ja
[~,~
tau_
hhh
[~,3J
Z___

dSta

h=ex
end
func

% Pa
% o>>

HRP =

% hh

HRP (
HRP (
HRP (
HRPe
hhh

lamb

Phi =

hhh
% P
P =
du_M
lamb
Q =
1 =
end

func

% Pa
% o>>
Stat
hh P
11 =
X_p_
for

prediction model
lution of the system acceleration equations
put quasi velocity and pose,
tput quasi acceleration and pose rate
matrices

State_p (1:9);
State_p (10:18) ;
mass matrix

funM (M_RBsJAinfJ ,M_RBp ,X);
coriolis
funC (M, M_RBp ,V,X);
gravity

matrix

grav = funTaugrav(X,m_p,m_s,g,r_opgp,r_obgs);
hydrostatics

hydrostat = funTauhydrostat (X,G,[] ,VC0,flag_mooring);
control force

cobian
S~~~ s~ s~y d1lx ] =
leg = funTauleg(X,J_1lx,u_p,p_a,p_b2);
rate transformation
funXV(V,X);

transition with backslash

pose

_xv] =
state operator

te_p = [M zeros(9);zeros(9) eye(9)]\

( [—C zeros(9);J_xv zeros(9)]xState_p +
[(tau_grav+tau_hydrostat+tau_leg);zeros (9,1)]

actly the of the

)5

acceleration sim model

%t O

tion 1 =
rt

funl (X_p,HRPset ,du,u,u_minmax)
of funMPC () WA de
of stage

Zeeuw
calculation
NaN (3,1);
rotate
1) =
2) =
3) =

rr =

cost

heave and sum roll and pitch
X_p(6)4cos (X_p(7))*cos(X_p(8))xX_p(1);
X_p(7)+X_p(2); %approximation, alligned
X_p(8)+Xx_p(3);
HRP —HRPset (:) ;
controller soft
da_PHI = .1;

axi, true

approximation , alligned axi, true if phi

penalty on excess control force (overload)

quadratic index
= diag ([100 5e4 5e4]);
10xdiag ([100 5e4 5e4d]);
N = dux10"—6;

da_dU=1;

eye(3); %control u penalty

HRPerr (:) '«xPxHRPerr (:) + lambda_dUsxdu_MN (:) ’«Qxdu_MN (:)+Phi;
%funl ()

performance
%penalty output

%penalty output

tion [Jp,alpha_subopt ,X_p_i] =

if theta_p=0

_b =03

%stage

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...

p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax)
rt of funMPC () WA de
calculation performance
State_t0 (:);
erformance index
NaN (1);Jp = NaN;1N =
NaN (mpc_N ,9);
i=l:mpc_N Ysunm

Zeeuw
value (objective

%initialize state vector
of

NaN ;

e_i =

(sum cost functions)

%“bypass debugger scripts
i =
horizon

over prediction

% prepare control signal for state transition and cost
du_vec (14 (i—1)*3:34+(1i—1)%3);
reshape (du_vec (:) ,[3 mpc_N]);
u_tmini4sum(dU(1:3,1:i),2);
% Euler be
%fixed assumed
h =

k1 =

stage
du_i = %current deltau
dUu =
u_i =

%hcurrent control level

forward proved to instable

RK4 ,

way to

stepsize constant control force
mpc_dt;

funAcc (State_i ,u_i ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...

p_bi,p_b2,p_a,p_alpha,p_normdl,p_normd2) H
k2 = funAcc(State_i+k1lxh/2,u_i ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...

p_b1,p_b2,p_a,p_alpha,p_normdl,p_norde) H

W.A. de Zeeuw

cost

by preassinging 2x

funKinv (X,p_bl ,p_b2 ,p_a,p_alpha ,p_normdl ,p_normd2);

lambda_PHIxsum(abs (min(u—(u_minmax (1)) ,0))+abs(max(u—(u_minmax (2)),0)));

funPerf(du_vec,mpc_N,mpc_dt,u_tminl,State_to,...

Master of Science Thesis
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k3 = funAcc(State_i+k2*h/2,u_i ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VCO0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha ,p_normdl ,p_normd2) ;

k4 = funAcc(State_i+k3*h,u_i ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2 ,p_a,p_alpha ,p_normdl ,p_normd2) ;

DeltaState_i = h/6x(k1+4+2%xk2+42%k3+k4);

State_iplusl = State_i+DeltaState_i; %RK4 step
%%%h stage cost
X_p = State_iplus1(10:18); Y%predicted state
X_p_i(i,i)= X_p(:) s
1 = funl(X_p,HRPset ,du_i ,u_i,u_minmax); %stage cost
if i == 1; %store first stage cost (for calc of alpha)
11 = 1;
Jp = 11; Y%initialize Jp
else
Jp = Jp+1;
end
if i == mpc_N;
1IN = 1; %store last cost (for calc of alpha)
end
State_i = State_iplusi;

end %for prediciton horizon loop

%%%h degree of suboptimality

Jp_x0_Nminl = Jp — 1N; YJone shorter horizon from first x
Jp_x1_Nminl = Jp — 1l1;%one shorter horizon from second x
alpha_subopt = (Jp_xO0_Nmini1—Jp_x1_Nmin1)/11;

end’, funPerformance

%% h % Wb Dt h
Dbl Db TR DTl hhhhhhhhhlhhhhhhhhhhhlhhhhthhhhhhhhhhhhhhh
YN YNYYNA REUSED CODE from shiplaform.mdl Thhh TS D hhhhh
Tl TRl Tl Tl Tl Tl ol Tl ol oo Do oo Tl T e Tl T Do o T e e e

% M = funM(M_RBsJAinfJ ,M_RBp ,X)

% C = funC(M,M_RBp ,V,X)

% [~,J3_1x] = funKinv(X,p_bl,p_b2,p_a,p_alpha,p_normdl ,p_normd2)
% tau_leg = funTauleg(X,J_1lx,f_leg,p_a,p_b2)

% tau_hydrostat = funTauhydrostat (X,G,~,VC0,flag_mooring)

% tau_grav = funTaugrav(X,m_p,m_s,g,r_opgp ,r_obgs)

% [~,J_xv] = funXV(V,X)

BTl t Tl Tl Tl Tl T T ol e T oo T o T T ol T ol fe e e e
%%% REPEATED BELOW IN IMPLEMENTATION , NOT IN REPORT  %%%
T Tl Tt Tl Tl T T T o T oo o T o T Tl T el he e e e e

% %% Y=====================================================%%%%%

% % change fun to funPerf ( pstar ,mpc_N,mpc_dt ,u_tminl ,State_t0 ,...

% M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VCO0,flag_mooring ,...
% p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2,...

% HRPset ,u_minmax) ;

%%% adapted from maxlike code by wouter de zeeuw

function [dfr ,JAC ,base] = numdiff (X,h_N ,mpc_N ,mpc_dt ,u_tminl ,6 State_t0 ,...
M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax)

%mpc_N#*3+1 fevaluations

if nargin < 2

h_ N = le-—8;

end

df = NaN=*xX;

% o0ld0bjFuncValue = fun(X);

0ldObjFuncValue = funPerf( X ,mpc_N,mpc_dt ,u_tminl ,6 State_tO ,...
M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);

for i = l:numel(X)
X_new = X3
X_new(i) = X_new(i) + h_N;

% newObjFuncValue = fun(X_new);
newObjFuncValue = funPerf (X_new ,mpc_N ,mpc_dt ,u_tminl ,State_t0 ,...
M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);
df (i) = (newObjFuncValue —o0ldObjFuncValue)/h_N;

end

df = df (:);
dfr = df*xoldObjFuncValue;

Master of Science Thesis W.A. de Zeeuw
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% JAC = df’; Y%scalar valued!

JAC = df; Yscalar valued!

base = oldObjFuncValue;

end

Ahh A% A h==========s=ss=s=ss=s=sssss=sss==ssssssSsssssSss=ss Bhlh DDt hhh s

function [x,fc,histout ,costdata] = gaussn(x0,tol ,maxit ,lambda ,mpc_N ,mpc_dt ,u_tminl ,h State_tO0 ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2 ,p_a,p_alpha ,p_normdl ,p_normd2 ,...

HRPset ,u_minmax)

handles!

scalar

%%% adapted to use no and to
%%%h (=gradient for

%%%h source:http://wwwéd.ncsu.

separatly approximate the jacobian
objective)

edu/~ctk/darts/gaussn.m

% C. T. Kelley, Dec 14, 1997

%

% This code comes with no guarantee or warranty of any kind.

%

% function [x,histout ,costdatal] = gaussn(x0,f)

%

% Damped Gauss -Newton with Armijo rule

% simple divide by 2 stepsize reduction

%

% Input: x0 = initial iterate

% f = r°T r/2 = objective function,

% the calling sequence for f should be

% [fout ,gout , jacl=f(x) where fout=f(x) is a scalar

% gout = jac” T r = grad f(x) is a COLUMN vector

% and jac = r’ = Jacobian of r is an M x N matrix

% tol = termination criterion norm(grad) < tol

% maxit = maximum iterations (optional) default = 100

%

% Output: x = solution

% histout = iteration history

% Each row of histout is

% [norm(grad), f, number of step length reductions , iteration count]
% costdata = [num f, num grad, num hess] (for gaussn, num hess=0)
%

% At this stage all iteration parameters are hardwired in the code.
%

%

h_numdiff = 10" —2;

alp=1.d—4;

if nargin < 3
maxit=100;

end
itc=1; xc=x0;
fc = funPerf( xc ,mpc_N ,mpc_dt ,u_tminl ,h State_tO0 ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2 ,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);

[gc,jac] = numdiff (xc,h_numdiff ,mpc_N ,mpc_dt ,u_tminl ,6 State_t0 ,...
M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VCO0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...

HRPset ,u_minmax);
nunf=Il+numel (xc); numg=1;

% ithist=zeros (1,4);

numh=0;%numerical computation of jacobian feval

ithist = nan(maxit+41,4);%preassign
ithist (1,1)=norm(gc); ithist(1,2) = fc; ithist(1,4)=itc—1; ithist (1,3)=0;
xtry = nan(maxit+1,numel (xc));

xtry (1,:) = xc(:) ’;

while (norm(gc) > tol && itc <= maxit)
itc=itc+1;
dc=(jac ’* jac)\gc;
xt=xc—lambdaxdc;

Xc=xt;
%numdiff also returns the base
[gc,jac,fc] = numdiff (xc,h_numdiff ,mpc_N ,mpc_dt ,u_tminl ,h6 State_t0 ,...

M_RBsJAinfJ ,M_RBp ,m_p ,m_s ,g,r_opgp ,r_obgs ,G,VC0,flag_mooring ,...
p_bl ,p_b2,p_a,p_alpha,p_normdl ,p_normd2 ,...
HRPset ,u_minmax);

nunf=numf+Il+numel (xc); numg=numg+1;

ithist (itc,l)=norm(gc); ithist(itc,2) = fc;
ithist (itc ,4)=itc —1;
xtry (itc ,:) = xc(:) 73

end

[fc,idxmin] = min(ithist (:,2));

W.A. de Zeeuw
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346  x=xtry(idxmin ,:) ’; histout=ithist (l:itc ,:); %robustify to only output best of tests
347 costdata=[numf, numg, numh];

348 end

Master of Science Thesis W.A. de Zeeuw
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H,, H-infinity. 6

AR Auto Regressive. 14

ARMAX Autoregressive Moving Average with Exogenous input. 7, 11
CoG center of gravity. 15-17, 44, 53, 54, 62

DoF Degree of Freedom. 11, 12, 15, 20, 22, 43, 44, 52, 77
DP Dynamic Positioning. 43, 63, 78

FTF Force Transfer Function. 16, 64—67
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LQC Linear-quadratic-Gaussian. 6, 12

LQPC Linear Quadratic Predictive Control. 4

LS Least Squares. 6, 35

LTI Linear Time Invariant. 5, 19, 20, 55

MPC Model Predictive Control. 3-6, 10-14, 17, 70, 72, 82
NARX Nonlinear Autoregressive with Exogenous input. 7
NED North-East-Down. 15, 17, 50, 63, 78

NMPC Nonlinear Model Predictive Control. 6-11, 70, 72
PID proportional-integral-derivative. 3, 6, 70, 72, 82
QIH-NMPC Quasi-Infinite Horizon NMPC. 8

spcP Standard Predictive Control Problem. 4, 5

Master of Science Thesis

Acronyms

W.A. de Zeeuw



128 Acronyms

sQP Sequential Quadratic Programming. 11
svM Support Vector Machines. 11

SVR Support Vector Regression. 11
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