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A B S T R A C T   

Sensor data and agro-hydrological modeling have been combined to improve irrigation management. Crop water 
models simulating crop growth and production in response to the soil-water environment need to be parsimo-
nious in terms of structure, inputs and parameters to be applied in data scarce regions. Irrigation management 
using soil moisture sensors requires them to be site-calibrated, low-cost, and maintainable. Therefore, there is a 
need for parsimonious crop modeling combined with low-cost soil moisture sensing without losing predictive 
capability. 

This study calibrated the low-cost capacitance-based Spectrum Inc. SM100 soil moisture sensor using multiple 
least squares and machine learning models, with both laboratory and field data. The best calibration technique, 
field-based piece-wise linear regression (calibration r2 = 0.76, RMSE = 3.13 %, validation r2 = 0.67, RMSE =
4.57 %), was used to study the effect of sensor calibration on the performance of the FAO AquaCrop Open Source 
(AquaCrop-OS) model by calibrating its soil hydraulic parameters. 

This approach was tested during the wheat cropping season in 2018, in Kanpur (India), in the Indo-Gangetic 
plains, resulting in some best practices regarding sensor calibration being recommended. The soil moisture 
sensor was calibrated best in field conditions against a secondary standard sensor (UGT GmbH. SMT100) taken as 
a reference (r2 = 0.67, RMSE = 4.57 %), followed by laboratory calibration against gravimetric soil moisture 
using the dry-down (r2 

= 0.66, RMSE = 5.26 %) and wet-up curves respectively (r2 
= 0.62, RMSE = 6.29 %). 

Moreover, model overfitting with machine learning algorithms led to poor field validation performance. The soil 
moisture simulation of AquaCrop-OS improved significantly by incorporating raw reference sensor and cali-
brated low-cost sensor data. There were non-significant impacts on biomass simulation, but water productivity 
improved significantly. Notably, using raw low-cost sensor data to calibrate AquaCrop led to poorer perfor-
mances than using the literature. Hence using literature values could save sensor costs without compromising 
model performance if sensor calibration was not possible. The results suggest the essentiality of calibrating low- 
cost soil moisture sensors for crop modeling calibration to improve crop water productivity.   

1. Introduction 

Surface irrigation, like other traditional irrigation methods, is inef-
ficient due to deep percolation and non-uniform distribution of water 
(Pramanik et al., 2022). However, it may continue to remain the most 
extensively used irrigation method (Raine, 2006) due to its low-cost and 

energy requirements (Bjorneberg, 2013). Hence, technological im-
provements to improve irrigation management need to be relevant and 
correspondingly cost-effective, particularly when they are designed for 
smallholder farmers, who tend to be more economical in technology 
adoption (Singh et al., 2009). 

Irrigation management techniques have combined either data from 
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satellites (Bastiaanssen et al., 2000) or ground sensor networks (Nav-
arro-Hellín et al., 2015) with agro-hydrological modeling (Chiara and 
Marco, 2022). Precise irrigation water management requires accurate 
measurements as well as a comprehensive biophysical process under-
standing of crop response to water at different crop growth stages 
(Kisekka et al., 2022). Crop water simulation models describe the crop 
growth and production responses to the soil-water environment (C. 
Zhang et al., 2022). Such models are often data intensive, requiring 
numerous input variables and parameter values, which may not be 
available for different crops and environments (Vanuytrecht et al., 
2014). Similarly, though commercial sensors, processors and commu-
nication components may be available, they need to be cost-effective, 
easy to access and maintainable for effective agricultural applications 
(Pramanik et al., 2022; Rodríguez-Robles et al., 2020). 

Soil moisture (or volumetric water content, VWC) is a key variable 
involved in precision agriculture and agricultural sustainability (Kisekka 
et al., 2022), which can be an input to crop growth models. Soil moisture 
sensing technologies can have low-utilization due to farmers’ economic 
limitations and reluctance towards such investment (Srbinovska et al., 
2015). Further, soil moisture sensors need to be calibrated at each site 
because of the effects of the variability in soil properties on the sensor 
outputs (Peddinti et al., 2020). Researchers have highlighted the 
importance of field calibration as undisturbed soil samples are repre-
sentative of field conditions where the sensors might be used (Robinson 
et al., 2003). However, soil moisture sensing is sensitive to environ-
mental factors like temperature, salinity, bulk density, organic matter 
and clay content (Kargas and Soulis, 2012; Matula et al., 2016). Hence, 
manufacturers generally perform indoor calibration with sieved, uni-
formly packed soils at regulated VWCs and temperature conditions, 
particularly in homogeneous coarse soils like some sands and loams 
(Feng and Sui, 2020). 

Studies have used irrigation scheduling with calibrated low-cost 
capacitance sensors to detect crop water stress (Thompson et al., 
2007a) and irrigation thresholds computed using measured VWC-based 
indices(Thompson et al., 2007b). Other studies have used expensive 
sensors in combination with crop modeling (Lu et al., 2021). The chal-
lenge is to combine accurate (calibrated) soil moisture sensing at low 
costs and parsimonious crop models without losing predictive power 
(Landau et al., 2000). This paper addresses this using four research 
questions. RQ1 pertains to LC soil moisture sensor performance on the 
field, and RQs 2 to 4 pertain to using LC soil moisture data for parsi-
monious crop model calibration:  

1. Can low-cost (LC) soil moisture sensors be calibrated using more 
sophisticated techniques such as machine learning algorithms to 
improve their field performance?  

2. Do raw data from LC soil moisture sensors have any advantage over 
literature values for parsimonious crop model calibration? 

3. What is the difference in performance when such a model is cali-
brated using raw data from a LC vis-à-vis a reference soil moisture 
sensor?  

4. What is the effect of calibrating the LC soil moisture data against a 
reference sensor on crop model performance? 

The novelty of this study lies in combining data from LC soil moisture 
sensors with parsimonious crop modeling to evaluate crop model per-
formance in simulating canopy cover, VWC and water productivity (WP) 
using a two-step calibration process. Firstly, low-cost (capacitance 
based) soil moisture sensors were calibrated against uncalibrated 
reference (TDR-FDR) sensors via multiple models (least squares and 
machine learning algorithms). Consequently, these calibrated VWC data 
were used for calibrating the soil hydraulic parameters of a parsimo-
nious crop model to assess improvements in WP. Such a laboratory-field- 
simulation study based on a food critical region in the Majority World, 
which combines low-cost soil moisture sensor calibration (using multi-
ple models) with parsimonious crop modeling, has not been undertaken 

yet, to the best of the authors’ knowledge. 

2. Material and methods 

2.1. Study area and wheat cropping season 

2.1.1. Experimental site 
The study was conducted during the wheat cropping season of 2018 

in Kanpur, which is representative of an intensively managed rural 
landscape in the Indo-Gangetic plains (Gupta et al., 2019). Measure-
ments were collected in a 20 m × 30 m experimental field (Fig. 1) at the 
Indian Institute of Technology Kanpur, Kanpur, India (26◦30′56.8″N, 
80◦13′47.3″E and altitude of about 126 m above mean sea level). The 
experimental site falls within the sub-tropical climate zone with an 
average annual rainfall of 833.5 mm, 92.5 % of which falls within the 
monsoon season (June to September); the other two seasons are the cold 
season from November–February and the hot season from March–June 
(Sankararamakrishnan et al., 2008). 

2.1.2. Description of the wheat cropping season 
The Indian spring wheat variety K7903 (improved Halna) (Dwivedi 

et al., 2019; Kumar et al., 2012) was sown in check basins (or ‘plots’, 
each 3 m × 3 m) on January 5, 2018. The seeds were sown with a 
row-spacing, depth and planting density of 10 cm, 5 cm and 363 
plants/sq.m respectively. Halna is a very late sown, short duration, 
drought tolerant variety of wheat (Dwivedi et al., 2019; Kumar et al., 
2017). 

Agricultural management was performed based on local farming 
practices, that included fertilizer (urea) application during tillering (27 
days after sowing, or DAS) and 4 irrigation applications (25 DAS, 45 
DAS, 59 DAS and 74 DAS, given in Table A1) totaling 220.2 mm, to 
supplement the 50.4 mm rainfall during the cropping season. There was 
a flooding event which occurred just following the final irrigation, 
totaling 262.5 mm of water. Hence, the total water input was 533.1 mm. 
The crop was harvested on April 15, 2018 (101 DAS). 

2.2. Soil moisture sensing methods 

2.2.1. Selecting appropriate soil moisture sensing techniques 
The various techniques for soil moisture sensing include neutron 

thermalization (Chanasyk and Naeth, 1996), water content reflectom-
eter (Chandler et al., 2004; Kargas and Soulis, 2019), time domain 
reflectometry (TDR) (Robinson et al., 2003; Topp et al., 1980), time 
domain transition (TDT) (Blonquist et al., 2005), electrical impedance 
(Cosh et al., 2005; Gaskin and Miller, 1996), frequency domain reflec-
tometry (FDR) (Ojo et al., 2015), electrical capacitance (Zotarelli et al., 
2011), and sensing using electrical resistance blocks (Cummings and 
Chandler Jr, 1941) or tensiometers (Muñoz-Carpena et al., 2005). 

Capacitance-type soil moisture sensors are more widely used for 
decision support systems in irrigated agriculture (Fares and Alva, 2000; 
Gallardo et al., 2020) due to their lower cost, robustness, precision, and 
low power and maintenance requirements (Jones et al., 2005; Rose-
nbaum et al., 2011; Spelman et al., 2013; Visconti et al., 2014). How-
ever, despite performing well in laboratory conditions, they may exhibit 
sensor-to-sensor variability in field conditions (Bogena et al., 2017; 
Rosenbaum et al., 2010; Spelman et al., 2013), and consequently require 
site-specific calibration to be able to provide reliable VWC measure-
ments (Kisekka et al., 2022; Peddinti et al., 2020). The. 

The WaterScout SM100 soil moisture sensor (Spectrum Technolo-
gies, Inc., Plainfield, IL, USA) was chosen as the capacitance based ‘low- 
cost (LC)’ soil moisture sensor (Spectrum Technologies, 2014) investi-
gated in the study. The accuracy and operating range of SM100 are 3 % 
(for EC < 800 mS m− 1) and 0.5 ◦C–80 ◦C respectively (Spectrum 
Technologies, 2014). Laboratory calibration (with repacked sands and 
silty loams) has improved its VWC accuracy (RMSE, Raes et al., 2018) to 
between 1.63 % and 2.97 % (Adla et al., 2020). The manufacturer’s 
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calibration equation (D. Kieffer, personal communication, September 5, 
2018) is given below: 

VWC (%)= − 19.13+ 0.016 (VR) if VR ≤ 0.34 (1a)  

VWC (%)= 263.52 − 0.385 (VR)+ 1.14 × 10− 4 ( VR
2) if VR > 0.34 (1b)  

where VWC is measured in %, and VR is the voltage ratio of the output 
and input voltages (Vout/Vin). 

The SMT100 sensor (manufactured by Umwelt-Geräte-Technik 
GmbH, Müncheberg, Germany) was chosen as the secondary standard 
soil moisture sensor (Nakra and Chaudhry, 2006) to calibrate the LC 
SM100 sensor (see Section 2.4.1.2.). It is henceforth called the ’reference 
(Ref)’ sensor due to its superior sensing technology which combines the 
higher accuracy of a TDR system with the cost effectiveness of FDR 
sensing with an oscillating frequency of 340 Hz in air and 150 MHz in 
water (Bogena et al., 2017; Umwelt-Geräte-Technik GmbH, 2017). Its 
accuracy for VWC and temperature are 3 % and ±0.2 ◦C respectively, 
and it operates within the temperature range of − 40 ◦C–80 ◦C 
(Umwelt-Geräte-Technik GmbH, 2017). Sensor specific laboratory cali-
bration with (non-soil) materials of known apparent dielectric permit-
tivity can improve the VWC accuracy (RMSE) to range between 0.21 % 
and 1.30 % (Bogena et al., 2017). The manufacturer’s calibration 
equation is identical to the one proposed by (Topp et al., 1980): 

VWC ( %)= − 5.30 × 10− 2 + 2.92 × 10− 2ϵr − 5.50 × 10− 4ϵr
2 + 4.30

× 10− 6ϵr
3 (2)  

where εr is the sensed dielectric constant. 

Since the only common output across both SM100 and SMT100 
sensors was VWC, the uncalibrated SM100 VWC values were calibrated 
on the SMT100 sensor’s output VWC values. Details of sensor outputs 
are mentioned in the Appendix. 

A short description of the sensors (along with their costs) is given in 
Table 1, with more details available in the Appendix. 

2.2.2. Selecting calibration techniques for the LC capacitance sensor 

2.2.2.1. Least squares estimate based regression. Studies have calibrated 
capacitance-based soil moisture sensors to improve performance, both 
in laboratories (Adla et al., 2020; Bello et al., 2019; Nagahage et al., 
2019; Placidi et al., 2021) and in the field (Rudnick et al., 2015; Singh 
et al., 2018). Most of the calibration equations reported in the literature 
for low-cost sensors are least-squares estimates (e.g., linear, logistic, 
hyperbolic, logarithmic, exponential, or polynomial). Based on a visual 
inspection of the data, piecewise linear regression, power law regression 

Fig. 1. (a): Location of Kanpur in India, (b) Location of the Indian Institute of Technology (IIT) Kanpur in the Kanpur district (with a landuse map), (c) Experimental 
wheat farm in IIT Kanpur, with check-basins (plots) irrigated using flood irrigation. Six plots with soil moisture monitoring using both Ref. and LC sensors were 
chosen for the study. 

Table 1 
Details of soil moisture sensors used in the study. Costs are derived from quo-
tations received by the authors.  

Soil moisture sensor 
(manufacturer) 

Measurement 
technique 

Price 
(quotation) 

Nomenclature in 
the study 

SM100 soil moisture 
sensor (Spectrum 
Technologies, Inc.) 

Capacitance 
based 

$89 Low-cost 

SMT100 soil moisture 
sensor (UGT GmbH) 

TDR-FDR based $155 Reference  
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and polynomial regressions (degree 2 and 3) were used to calibrate the 
LC capacitance based SM100 sensor. 

2.2.2.2. Machine learning based regression. Diverse machine learning 
algorithms were also applied, including standard algorithms for 
regression applications: linear regression (LR), support vector regression 
(SVR), random forest regression (RFR) and multilayer perceptron neural 
networks (MLP). LR models have been applied extensively in soil 
moisture applications (Qiu et al., 2003; Teng et al., 1993); and are still 
relevant due to their simplicity and easy interpretation (García et al., 
2016; Lee et al., 2019). The Support Vector Machine (SVM) algorithm 
defines optimal hyperplanes in a high or infinite dimensional space 
which can be used for classification or regression (Vapnik et al., 1996). 
SVR has been applied in soil moisture related studies (Gill et al., 2006; 
Liu et al., 2010; Yu et al., 2012). The RFR algorithm (Breiman, 2001) is 
based on averaging non-correlated decision trees for variance reduction 
and avoidance of overfitting. Its simplicity in training and tuning has 
made it popular in current regression applications of soil moisture 
(Carranza et al., 2021; Qingling et al., 2019; Srivastava et al., 2021; H. 
Zhang et al., 2022). However, calibration hyperparameters can be 
computationally expensive due to its many possibilities. The MLP is an 
algorithm based on the typical architecture of a neural network, hence it 
is a nonlinear statistical model which has unknown parameters 
(weights) meant to be tuned to make the model fit well to training data 
using back-propagation equations in multiple hidden layers. It has also 
been applied in soil moisture applications extensively (Chai et al., 2009; 
Gu et al., 2021; Yan et al., 2010; Yu et al., 2012, p. 20). All the algo-
rithms were applied using the Scikit-learn tool library (v.10.2) (Pedre-
gosa et al., 2011) in Python (v.3.8.5). Hyperparameters of each 
algorithm were calibrated with default values available in Scikit-learn 
and evaluated with a 10-fold cross validation (CV, k = 10), and are 
listed in Table A3. This process avoided skewing results in validation due 
to random sampling in the training process. The controlling metrics 
were the coefficient of determination (R2, Raes et al., 2018) and the root 
mean squared error (RMSE). Hastie et al. (2009) and Arias-Rodriguez 
et al. (2021) provide detailed definitions and an application of all these 
machine learning models, respectively. 

2.3. Parsimonious crop modeling 

2.3.1. Selecting a parsimonious crop model 
Crop growth models can simulate physiological processes (Chenu 

et al., 2009; Yin et al., 2003), and crop growth behavior in the field 
(Keating et al., 2003; Robinson et al., 2003; Steduto et al., 2009). 
Consequently, they can inform management decisions regarding water 
and nutrients and explore the feasibility of new cropping systems 
(Asseng et al., 2014; Silva et al., 2017). The more popular models used 
for simulating crop growth and yield production of wheat under 
different soil water conditions and irrigation scenarios are: APSIM 
(Ahmed et al., 2016; Chen et al., 2010), DSSAT-CERES-Wheat (Attia 
et al., 2016; Zhou et al., 2018), FAO AquaCrop (Iqbal et al., 2014; Toumi 
et al., 2016), RZWQM2 (Saseendran et al., 2015; Zheng et al., 2020), and 
SWAP (Eitzinger et al., 2004; Wang et al., 2021). 

Crop modeling environments like DSSAT and APSIM can require 211 
and 292 parameter inputs respectively (Soltani and Sinclair, 2015). This 
increased complexity enables such models to address complex research 
questions (Todorovic et al., 2009), but also amplifies errors and un-
certainties (Silva and Giller, 2020). Further, data intensive models with 
numerous inputs and parameter requirements may not be practical in 
data-scarce regions (Vanuytrecht et al., 2014; Varella et al., 2010) like 
the Majority World (Graves et al., 2002; Jones et al., 2012). 

The water-driven FAO AquaCrop model has been envisioned to 
balance simplicity, accuracy and robustness (Vanuytrecht et al., 2014). 
Consequently, it relies on considerably fewer and relatively easier to 
measure inputs (about 19, according to FAO, 2016; Raes, 2017). 

Nevertheless, FAO AquaCrop’s performance is comparable to 
data-intensive models (Babel et al., 2019; Quintero and Díaz, 2020; 
Todorovic et al., 2009). Moderate to good simulation results have also 
been reported for wheat and regions of water scarcity (Andarzian et al., 
2011; Huang et al., 2022; Kale et al., 2018; Singh et al., 2013; Zhang 
et al., 2013). 

2.3.2. Description of the crop-water model FAO AquaCrop 
FAO AquaCrop simulates daily yield loss in response to soil water 

depletion in the root zone, based on the approach of Doorenbos and 
Kassam (1979). Four main variables are calculated consecutively and on 
a daily basis through individual equations; i.e., accumulated canopy 
cover (CC), daily plant transpiration, accumulated aboveground 
biomass, and accumulated final dry yield. These model variables are 
mainly interconnected by empirical factors, such as the water produc-
tivity (WP) and harvest index (HI), which convert transpiration to 
biomass and biomass to yield, respectively. Water productivity only 
incorporates plant transpiration to account for the confounding effect of 
the nonproductive consumptive water use (Steduto et al., 2009). 
Moreover, WP is normalized for atmospheric CO2 concentration and 
climate (Raes et al., 2018), and hence makes the model more robust and 
generalizable (Steduto et al., 2009). 

Model set-up requires user input for climate parameters, ’non-con-
servative’ (i.e., spatio-temporally variable) model parameters, and, 
where applicable, an irrigation schedule and the groundwater water 
table. The model also needs daily data on precipitation, reference 
evapotranspiration, and minimum and maximum temperature. Non- 
conservative model parameters relate to crop phenology, soil condi-
tions, and field management practices (Raes et al., 2018; Steduto et al., 
2012). This study used the MATLAB-based AquaCrop OpenSource 
(AquaCrop-OS) v.6.1 tool (Foster et al., 2017). 

2.4. Measurement methodology 

An automatic weather station at the experimental field measured 
precipitation, barometric pressure, global solar radiation, wind speed 
and direction. It also recorded air temperature and relative humidity at 
two different heights (2 m and 3 m above the ground). These data were 
measured at 15-min intervals and aggregated to daily values. During the 
cropping season, the average daily temperature and relative humidity 
(both at 2 m) ranged from 9.3 ◦C to 30.7 ◦C and from 35.3 % to 93.9 %, 
respectively. 

Soil texture classification was conducted by the UGT Sedimat 4–12 
instrument, which determines the particle size distribution in mineral 
soils based on the Köhn method (König et al., 2005). 

The observed crop growth parameters included phenological pa-
rameters like days to emergence, start of flowering, start of senescence 
and maturity, length of flowering (days). The observed soil related 
parameter was maximum rooting depth. The observed crop manage-
ment parameter was plant population density. 

The observations used for calibrating model parameters were leaf 
area index, VWC and above ground biomass. Leaf Area Index (LAI) was 
measured eight times during the season (36, 44, 55, 59, 68, 83, 90 and 
101 DAS) using the LAI-2200C plant canopy analyzer manufactured by 
LI-COR Biosciences. It was converted into Canopy Cover values using an 
empirical equation for wheat (Nielsen et al., 2012). Surface soil moisture 
was determined at the center of each plot at 15-min intervals by 
Ref. SMT100 and LC SM100 sensors installed at a depth of 5 cm below 
the soil surface (Section 2.2.1). Both datasets were aggregated to the 
daily time-step. Above ground dry biomass was measured using crop 
cutting experiments (Singh, 2014) from a representative 1 sq. m section 
for each plot. Additionally, water productivity (WPET), introduced in 
Section 2.5.2, was calculated using actual evapotranspiration (ETa) 
measured using microlysimeters (Kumar, 2019). 

Six plots were used for all the analyses, as they had both Ref. and LC 
soil moisture data, as well as the observations required for crop 
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modeling. VWC measurements for both the sensors were available on 
average for 61.2 days (s = 3.0 days) out of the 100-day cropping season 
across the six plots. 

2.5. Calibration methodology of low-cost soil moisture sensors 

2.5.1. Strategy to calibrate-validate soil moisture data 
Capacitance based soil-moisture sensors have been calibrated both 

with repacked (Adla et al., 2020; Nagahage et al., 2019; Placidi et al., 
2020) or undisturbed (Bello et al., 2019) soil samples inside the labo-
ratory, as well as in the field (Rudnick et al., 2015; Singh et al., 2018). In 
the laboratory, calibration of soil moisture sensors is generally carried 
out either using the substantially faster ’wet-up’ or wetting (downward 
or upward infiltration, taking <1 day) or slower ’dry-down’ or drying 
(taking a few weeks) processes (Burns et al., 2014). 

Fig. 2 describes the overall study workflow, contextualizing each 
research question. The sensors used are displayed at the top-left corner 
of the figure. Throughout the study, the data corresponding to the LC 
SM100 and Ref. SMT100 sensors are represented in blue and green 
colors respectively. The simulations corresponding to the calibrated LC 
soil moisture sensor data are represented in a deeper blue compared to 
the lighter blue representing raw LC sensor data. The workflow related 
to the LC soil moisture sensor (SM100) calibration is illustrated in the 

inset "Soil moisture sensor calibration", in Fig. 2. To address RQ1, the LC 
sensor data were calibrated against either a primary standard (gravi-
metric water content, Section 2.4.1.1.) or a secondary standard (the 
Ref. SMT100 data, Section 2.4.1.2.) - this is mentioned in the respective 
bubbles, "Lab Cal." (laboratory calibration) and "Field Cal." (field cali-
bration). The number of paired data points (sensor and primary/sec-
ondary standard) used in both calibration approaches were n = 100 and 
n = 65 for laboratory and field calibration, respectively. The following 
process resulted in selecting the "best" LC calibration model to be used 
for crop modeling (Section 2.5.2.). 

2.5.1.1. Laboratory calibration of LC SM100 sensor. A previous study 
calibrating the LC SM100 sensor (Adla et al., 2020) used piece-wise 
linear regression functions (PWLFs) (Jekel, 2017, p. 20) against gravi-
metric VWC (primary standard), for four soils (number of data points, n 
= 400). The study calibrated five sensors in controlled laboratory con-
ditions with the wet-up curve (similar to (Matula et al., 2016)) to ac-
count for sensor-to-sensor-variability and improve cost-effectiveness in 
terms of saved time and energy resources (Burns et al., 2014). This study 
used a subset (n = 100) of the data from Adla et al. (2020) which rep-
resented the soil sampled from the current study site. LC sensor values 
were calibrated against gravimetric VWC using the different algorithms 
described in Section 2.2.2. R2 and RMSE were used to quantify the 

Fig. 2. Overview of the study methodology, contextualizing the four research questions (RQs). Sensor details are given at the top-left corner. The "Soil moisture 
sensor calibration" of the LC SM100 sensor was conducted in the laboratory ("Lab Cal.") using gravimetrically determined VWC, and in the field ("Field Cal.") using 
the Ref. SMT100 sensor. All the developed models were then validated in the field ("Field Val.") to select the most suitable model, "Best LCcal model". The "Crop model 
calibration" either used the literature ("Default"), raw VWC values from both Ref. and LC sensors ("RawRef" and "RawLC"), or the Best LCcal model ("Calibrated") to 
calibrate the soil hydraulic parameters (SHPs) of the AquaCrop model. The Best LCcal rhombus in "Soil moisture sensor calibration" is a flowchart decision, and the 
"Calibrated" diamond in "Crop model calibration" is a representation followed in Fig. 5. 
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calibration performance in all cases. 

2.5.1.2. Field calibration of LC SM100 sensor. Out of the six plots used 
for the study, the plot with the highest (significant) linear correlation 
between the aggregated daily values of Ref. SMT100 and LC SM100 
sensor (n = 65, R2 = 0.76) was selected for calibration. Due to the 
impracticality of frequent gravimetric measurements and its superior 
sensing technology, the Ref. SMT100 sensor was selected as a secondary 
standard (Section 2.2.1.). Consequently, the daily aggregated LC SM100 
data were calibrated using the daily aggregated Ref. SMT100 data, using 
the algorithms listed in Section 2.2.2. Calibration performance in each 
case was quantified by R2 and RMSE indices. 

2.5.1.3. Field validation of laboratory and field calibrations. Each cali-
bration algorithm developed using both laboratory and field data were 
validated on independent data from the five remaining plots (n = 302). 
The Ref. SMT100 data measurements were taken as the secondary 
standard used for validating the field data. R2 and RMSE were used as 
the performance indicators for the validation process. 

2.6. Crop model calibration scenarios 

2.6.1. AquaCrop calibration method 
AquaCrop guidelines recommend calibrating all non-conservative 

and non-observed model parameters sequentially, with appropriate 
objective functions (AquaCrop. Tutorials., 2016; Raes et al., 2018; Ste-
duto et al., 2012). Accordingly, model simulation is sequentially 
improved using intermediately computed model variables like canopy 
cover (CC), volumetric water content (VWC) and biomass (BM) by 
adjusting different sets of model parameters, until the simulation of the 
harvested yield agrees, visually and statistically, with observations 
within an acceptable error range (Raes et al., 2018). 

In this study, eight (non-conservative) crop growth parameters of the 
AquaCrop-OS model were calibrated: phenological parameters (initial 
canopy size of the emergent seedling CCo, maximum canopy cover CCx, 
and canopy growth coefficient CGC) and soil hydraulic parameters 
(readily available water REW, saturated soil hydraulic conductivity Ksat, 
VWC at permanent wilting point θPWP, field capacity θFC and saturation 
θs). 

2.6.2. Different calibration scenarios used in the study (default, raw and 
calibrated) 

The inset "Crop model calibration" in Fig. 2 illustrates the FAO 
AquaCrop modeling scenarios used to address RQs 2 to 4. Crop growth 
parameters (CCo, CCx, CGC) were calibrated using a trial-and-error 
method (Liang et al., 2017; Ma et al., 2020) to maximize the Pearson 
correlation coefficient (r) and minimize the RMSE between the 
measured and simulated CC values for each plot (Raes et al., 2018). The 
soil hydraulic parameters (SHPs), θWP (%), θFC (%), θs (%), Ksat 
(mm/day), and REW (mm), were also calibrated to respectively maxi-
mize and minimize r and RMSE between simulated and observed 
(Ref. SMT100) soil moisture data. Soil Hydraulic Parameter (SHP) 
calibration was conducted under the following scenarios:  

• The "Default" scenario: SHPs were calibrated based on average 
values from the literature (Rawls and Brakensiek, 1989; Gupta et al., 
2021), corresponding to the classified soil texture (silty-loam).  

• The "Raw" scenarios (for both Ref. and LC sensor): SHPs were 
calibrated with the raw (uncalibrated) LC and Ref. soil moisture 
sensor data using a trial-and-error method (Liang et al., 2017; Ma 
et al., 2020). 

• The "Calibrated" scenario (only for LC sensor): SHPs were cali-
brated using the "best" LCcal model. 

The difference in AquaCrop model performance between the Default 

and RawLC scenarios would illustrate the advantage of using raw LC data 
over literature values (RQ2). The difference between the performance of 
the models calibrated in the RawLC and RawRef scenarios would address 
RQ3, indicating the relative loss in crop model performance when LC 
sensor data is used for calibration vis-à-vis reference soil moisture sensor 
data. The difference between the "Calibrated" (CalLC) and "Raw" (RawLC) 
model performances would quantify the additional impact (on crop 
model performance) of using calibrated vis-à-vis raw LC soil moisture 
data (RQ4). 

Above ground dry biomass (BM) simulated by AquaCrop was 
compared with the observed biomass, using the mean absolute error 
(MAE, Witten et al., 2011), RMSE, NRMSE (normalized RMSE, Raes 
et al., 2018), and percentage bias (PBIAS, Sorooshian et al., 1993) in-
dicators. Additionally, Water Productivity (WP) was simulated for each 
scenario to understand the "efficacy of the crop production processes in 
relation to their required water consumption" (Van Halsema and Vin-
cent, 2012). This study used ET Water Productivity or WPET, defined as 
the following (Van Halsema and Vincent, 2012): 

WPET =Yield
/

ETa
(
kg

/
m3 or kg

/
kg
)

(3)  

where Yield is the final (simulated or observed) crop yield (kg/m2) and 
ETa (m) is the cumulative actual evapotranspiration during the cropping 
season. The simulated WPET was computed by extracting the yield and 
seasonal evapotranspiration values simulated by AquaCrop. Observed 
WPET was computed using the observed biomass, the default harvest 
index for wheat, and ETa estimated on the field using microlysimeters 
(Kumar, 2019). 

3. Results and discussion 

3.1. Description of the cropping season 

Fig. 3 illustrates the seasonal evolution of the daily water demand 
(depicted by the FAO-56 reference ETo, from (Allen et al., 1998)), water 
supply (depicted by rainfall and applied irrigation during the season), 
and soil moisture (VWC) monitoring by both low-cost (LC) SM100 and 
reference (Ref.) SMT100 soil moisture sensors. The soil texture, with 
15.4 % sand and 66.3 % silt, was determined to have silty-loam texture 
(USDA classification). Moreover, the soil was relatively homogenous in 
depth and the groundwater table was deep enough to prevent capillary 
rise from influencing soil moisture measurements. 

3.2. Calibration of low-cost soil moisture sensors 

Table 2 details the results of the LC sensor calibration and validation 
procedure (Section 2.4). The sub-table on the left and right (with 6 
columns each) describe the calibration-validation performance in the 
laboratory and field respectively, using R2 and RMSE as the performance 
indicators. The validation in both cases is done on the same independent 
field data (n = 302). Fig. 4 plots all the calibration curves preserving the 
index from Table 2, highlighting the selected "best" LCcal model. 

During both laboratory and field calibrations, the performance of the 
machine learning algorithm Random Forest Regression (RFR) was 
quantitatively the best among all the algorithms included in the study 
(R2 = 0.98 and RMSE = 1.26 % for laboratory calibration; R2 = 0.93 and 
RMSE = 1.67 % for field calibration). However, overfitting was observed 
(index 6 in Fig. 4), likely due to the limited tuning of the hyper-
parameters due to limited computational resources. Though RFR avoids 
overfitting from original decision trees (Hastie et al., 2009), general-
ization error variance decreases as more trees are added to the algo-
rithm, without a change in the generalization bias. Though this study 
used the default n_estimators = 100 (Pedregosa et al., 2011), different 
options of decision trees should be examined, particularly searching for 
lower n_estimators using a GridSearch. 

As a consequence, the RFR-laboratory model had inadequate 
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validation performance (R2 = 0.20, RMSE = 8.88 %). Moreover, the 
RFR-field and RFR-laboratory models were respectively non-monotonic 
and monotonically non-decreasing functions, implying that the cali-
brated LC VWC values could also decrease (or not increase, respectively) 
with increasing Ref. VWC. Both the model behaviors were not realistic. 
Consequently, the RFR algorithm was excluded from further analyses. 

The piece-wise linear regression function (PWLF) had the next best 
performance during calibration: laboratory R2 = 0.95, RMSE = 1.96 %; 
and field R2 = 0.76, RMSE = 3.13 %. Further, during both the respective 
validation cases, the PWLF performed adequately well when compared 
to the relative performances of the RFR models (PWLF-laboratory: R2 =

0.42, RMSE = 7.98 %, PWLF-field: R2 = 0.67, RMSE = 4.57 %). This 
piece-wise (segmented) behavior is also a feature of the manufacturer’s 
calibration equation which has linear and quadratic segments (Kieffer, 
personal communication, September 5, 2018). 

Fig. 5 shows scatter plots between measured/calibrated LC SM100 
values and the measured Ref. SMT100 values for (a) laboratory 

calibration, (b) validation of the laboratory-calibrated PWLF model, (c) 
field calibration, and (d) validation of the field-calibrated PWLF model. 
Raw and calibrated data are represented by cyan bubbles and deep blue 
diamonds respectively. 

Some best practices for soil moisture sensor calibration were derived 
from this comparative analysis of calibration models, which can be more 
specific to capacitance-based sensors used in silty-loam agricultural 
soils:  

• Field calibration of fewer sensors may be more robust than 
laboratory calibration of multiple sensors: Field calibrations with 
undisturbed soils may be more robust for field applications. The field 
validation performance (both R2 and RMSE) of laboratory-calibrated 
models was significantly poorer than field-calibrated models, sup-
porting previous recommendations of on-site calibration using un-
disturbed soil samples (Feng and Sui, 2020). 

Fig. 3. Variation of daily values of FAO-56 reference evapotranspiration (ETo), input water through rainfall or irrigation application, and soil moisture measurements 
(both reference SMT100 and low-cost SM100 sensors) during the wheat cropping season. Soil moisture averages over the field are depicted as bubbles, with their 
standard deviations as ranges. 

Table 2 
Overview of the performance indices for calibrating the LC sensor in the laboratory (left) and in the field (right). The different calibration techniques are 0. Piecewise 
linear function (PWLF), 1. polynomial of degree 2, 2. polynomial of degree 3, 3. Power law, 4. Linear regression (LR), 5. Support Vector Regression (SVR), 6. Random 
Forest Regression (RFR), 7. Multi-Layer Perceptron regression (MLP). Laboratory and field models 0. to 7. use the wet-up and dry-down curves respectively to calibrate 
the LC sensor. Models 8. and 9. correspond to laboratory calibrations from independent research with the dry down curve. Gedilu (2020) calibrated the LC sensor using 
the same field’s soil, and Rai (2012) calibrated a nearby silty-loam soil, both using dry-down curves. The Best LCcal model was the PWLF-field model (number 0.), 
highlighted in bold. n is the number of data points, R2 is the coefficient of determination calculated during model development and RMSE is the root mean squared 
error.   

Calibration models Calibration in the laboratory, and validation in the field Calibration in the field and validation in the field 

Laboratory Calibration (against 
gravimetric VWC) 

Field Validation (against 
Ref. sensor) 

Field Calibration (against 
Ref. sensor) 

Field Validation (against 
Ref. sensor) 

n R2 RMSE (%) n R2 RMSE (%) n R2 RMSE (%) n R2 RMSE (%)  

Manufacturer’s calibration 100 0.66 7.58 302 0.62 11.99 65 0.76 11.49 302 0.62 11.99 
0 Best LCcal: PWLF 100 0.95 1.96 302 0.42 7.98 65 0.76 3.13 302 0.67 4.57 
1 Polynomial (d = 2) 100 0.88 2.92 302 0.00 11.28 65 0.76 3.18 302 0.64 5.09 
2 Polynomial (d = 3) 100 0.93 2.16 302 0.12 9.69 65 0.76 3.18 302 0.66 4.66 
3 Power Law 100 0.81 3.67 302 0.54 7.31 65 0.76 3.18 302 0.65 4.97 
4 LR 100 0.66 4.93 302 0.62 6.29 65 0.76 3.19 302 0.62 5.43 
5 SVR 100 0.87 3.09 302 0.10 9.12 65 0.62 3.97 302 0.47 5.84 
6 RFR 100 0.98 1.26 302 0.20 8.88 65 0.93 1.67 302 0.62 4.87 
7 MLP 100 0.50 5.97 302 0.62 6.85 65 0.71 3.50 302 0.62 4.70 
8 Gedilu (2020) Independent studies with dry-down 

curve 
302 0.61 6.06     

9 Rai (2012) 302 0.66 5.26      
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• If field calibration is not possible, calibration should be done 
using the dry-down curve: 

Calibrating LC sensors in the laboratory using the dry-down curve 
rather than the wet-up curve leads to superior performance for field 
applications. The laboratory validation results corroborated with pre-
vious literature which claimed superior laboratory calibration accuracy 
using dry-down curves, particularly for finer textured soils (Burns et al., 
2014). An earlier study which calibrated 3 LC SM100 sensors with a 
similar soil using the dry-down curve in the laboratory was found to 
have the best validation performance (R2 = 0.66, RMSE = 5.26 %) 
among all laboratory calibrated models (Rai, 2012). Similarly, a linear 
dry-down calibration equation developed in the laboratory by Gedilu 
(2020) using only one LC SM100 sensor using repacked soil from the 
experimental field, also performed well (R2 = 0.61 and RMSE = 6.06 %). 
These models performed better than all the laboratory models in this 
study (models 0 to 7), which were developed using the wet-up curve 
with five LC sensors. This suggests that capturing dry-down dynamics 
can compensate for the sensor-to-sensor variability even for repacked 
soils inside the laboratory. Further, the dry-down curve is more repre-
sentative of the soil water dynamics during the dry non-monsoonal rabi 
cropping season in northern India, where rainfall majorly occurs during 
the monsoon kharif season (Sankararamakrishnan et al., 2008).  

• Overfitting during calibration can lead to loss in robust 
application: 

Overfitting was observed in both laboratory and field RFR models, 
both of which performed poorly during validation. Machine learning 
models, applied to non-linear hydrological processes have had limita-
tions of overfitting and reasonable justification of results (Elshorbagy 
et al., 2010). The data in this study suggest that monotonic (preferably 
"gently sloped") curves are more robust for soil moisture calibration. 
Overfitting using ML techniques is possibly also due to the relatively 
lower number of samples that exemplify soil moisture sensor calibration. 
This supports previous studies which mainly report linear and poly-
nomial calibration curves (Bello et al., 2019; Deng et al., 2020; Gedilu, 
2020; Nagahage et al., 2019; Placidi et al., 2020; Rudnick et al., 2015; 
Singh et al., 2018; Thompson et al., 2007b, 2007a). 

With respect to research question 1 (RQ1), the PWLF model cali-
brated using field data was chosen as the "best" LCcal model due to the 
flexibility of multiple segments without compromising the positive 
correlation expected between data from two electromagnetic sensors in 
the same soil. This suggests that simpler models such as PWLF are more 

robust in calibrating LC soil moisture sensors than more sophisticated 
ML techniques, in such conditions, addressing RQ1. 

3.3. Crop model calibration scenarios 

3.3.1. Intermediate crop model outputs: canopy cover and volumetric water 
content 

Table 3 details performance indices computed between simulated 
and observed crop model outputs for each calibration scenario (Section 
2.5.2.) for the five simulated plots taken together. Table A2 outlines the 
default values of all non-conservative parameters, which were either 
fixed using either secondary literature or observations, or calibrated 
under the different calibration scenarios (Section 2.5.2.). Fig. 6 illus-
trates the time series of the simulated and observed canopy cover (CC) 
(a-d) and volumetric water content (VWC) (e-h) for the same scenarios, 
as averages and standard error of the mean (SEM) for all the plots taken 
together. Tables 2 and A2, and Fig. 6 are used together to discuss the 
following results. 

In the Default scenario, only crop growth parameters (i.e., CCo, CCx 
and CGC) were altered to improve the fit of the simulated CC curve with 
the observations. The SHPs which would impact the VWC curve fitting 
were chosen from (the average of) default values from literature 
(Table A2). CC was predicted very well as compared to the previous 
literature on AquaCrop wheat growth simulation, with r = 0.98 and 
RMSE = 5.71 % (Huang et al., 2022; Kale et al., 2018). These calibrated 
canopy growth parameters values were hence used in the RawRef., RawLC 
and CalLC scenarios, leading to nearly identical r and RMSE indicators. In 
all scenarios, the VWC simulations are compared against the observed 
soil moisture data from the reference sensor (Ref.). 

For the VWC simulations, the Pearson r values did not show signif-
icant differences across the scenarios. However, when the SHPs were 
modified based on the raw Ref. and LC sensor values, the RawRef. (RMSE 
= 5.69 %) showed a significant improvement, and RawLC (RMSE = 8.58 
%) showed a significant deterioration, both compared to the Default 
scenario (RMSE = 7.76 %). The worsening of the VWC simulation per-
formance in the RawLC scenario in Fig. 6 (g), which overestimated the 
VWCobs with a PBIAS = 46.19 %, resulted majorly from respectively 
higher VWCsim values during the drying periods leading up to each of the 
irrigation days, when compared with the Default scenario in Fig. 6 (e), 
with a PBIAS = 27.74 %. This implies that the SHPs calibrated using raw 
LC soil moisture data were significantly poorer than those derived from 
the literature (Gupta et al., 2021; Rawls and Brakensiek, 1989), 
addressing research question (RQ) 2. 

For the VWC simulations, the Pearson r values did not show 

Fig. 4. Comparison of the different calibration equations developed using (a) lab and (b) field data. The index numbers correspond to Table 2. In both cases, the data 
used for calibration are given as points, and the "Best" model (in blue) is PWLF. 
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significant differences across the scenarios. However, when the SHPs 
were modified based on the raw Ref. and LC sensor values, the RawRef. 
(RMSE = 5.69 %) showed a significant improvement, and RawLC (RMSE 

= 8.58 %) showed a significant deterioration, both compared to the 
Default scenario (RMSE = 7.76 %). 

To answer research question (RQ) 2, the performances of the RAWLC 

Table 3 
Overall performance indices for major outputs of the AquaCrop-OS crop model - canopy cover (CC), volumetric water content (VWC) and biomass (BM), across the four 
crop model calibration scenarios (Default, RawRef, RawLC, CalLC). The VWC simulations are compared against the observed soil moisture data from the reference sensor 
(Ref.). The effect of calibrating Soil Hydraulic Parameters (SHPs) on crop model performance of the crop model shows that calibrated LC sensor data ("CalLC" scenario) 
gives nearly as good results as raw Ref. data ("RawRef." scenario).  

Crop model 
output 

Performance 
Index 

Default (Def) RawRef. (RawRef.) RawLC (RawLC) CalibratedLC 

(CalLC) 

Scenario Descriptions SHPs calibrated using default 
literature values 

SHPs calibrated using raw VWC measurements from 
Ref. and LC sensor respectively 

SHPs calibrated using ’best’ LCcal 
model, ’PWLF-field’ 

CC (%) r (− ) 0.98 0.98 0.98 0.98 
RMSE (%) 5.71 5.72 5.76 5.72 

VWC (%) r (− ) 0.77 0.78 0.76 0.77 
RMSE (%) 7.76 5.70 9.55 5.90 
PBIAS (%) 27.74 3.99 46.19 5.22 

BM (kg/m2) MAE (kg/m2) 0.110 0.110 0.109 0.111 
RMSE (kg/m2) 0.145 0.145 0.143 0.145 
NRMSE (%) 13.417 13.416 13.289 13.496 
PBIAS (%) − 0.63 − 0.63 − 0.57 − 0.50  

Fig. 5. Soil moisture calibration in the lab (top-left) and the field (top-right), validated on an independent, identical field dataset (bottom left and right respectively). 
r2 represents the coefficient of determination. The best performing model in both cases is PWLF. The Y-axis represents VWCRef data, except 5(a) where it represents 
gravimetrically determined VWC. 
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and Default scenarios were compared. The worsening of the VWC 
simulation performance in the RawLC scenario in Fig. 6 (g), which 
overestimated the VWCobs with a PBIAS = 46.19 %, resulted majorly 
from respectively higher VWCsim values during the drying periods 
leading up to each of the irrigation days, when compared with the 
Default scenario in Fig. 6 (e), with a PBIAS = 27.74 %. Hence, the SHPs 
calibrated using raw LC soil moisture data were significantly poorer than 
those derived from the literature (Gupta et al., 2021; Rawls and 
Brakensiek, 1989), implying the AquaCrop models calibrated with raw 
data from LC soil moisture performed relatively poorly compared to 
those calibrated using the literature, addressing RQ2. 

The answer to RQ3 is that there was a significant difference between 
the VWCsim performances of the SHPs calibrated using the RawRef 
(RMSE = 5.7 %, PBIAS = 3.99 %) and RawLC (RMSE = 9.55 %, PBIAS =
46.19 %) data. This implies that the RawRef derived SHPs led to signif-
icantly superior VWCsim performances than that of the RawLC both in 
terms of accuracy and bias. 

To answer RQ4, the SHPs were modified using the calibrated LC soil 
moisture data (in the CalLC scenario). The CalLC scenario (RMSE = 5.9 %, 
PBIAS = 5.22 %) in Fig. 6 (h) significantly outperformed the RawLC 
(RMSE = 9.55 %, PBIAS = 46.19 %), nearly attaining the performance of 
RawRef (RMSE = 5.7 %, RMSE = 3.99 %). The SHPs calibrated in CalLC 
reduced the VWCsim overestimation seen in the RawLC scenario. This was 
corroborated by the seasonal water balance computations, which 
showed that the SHPs interacted to reduce the final root zone soil water 
storage in the CalLC scenario to 19.85 % lower than the RAWLC scenario 
(but still not as low as the RawRef. scenario). This implies that there were 
significant advantages of using LC soil moisture data calibrated using the 
Ref. sensor data, to calibrate the crop model SHPs, which addressed 
RQ4. 

These results indicated the utility of calibrating LC sensors using 
Ref. sensors in terms of improving VWC simulation performance of 
AquaCrop, and that using raw LC sensor data would lead to poorer re-
sults than using the literature to calibrate SHPs. 

However, the overall VWC simulation performance was not as good 
as previous studies which used either cumbersome gravimetric VWC 
measurements or costly neutron probes, both of which are highly ac-
curate in VWC measurement (Huang et al., 2022; Kale et al., 2018; 

Zhang et al., 2013). Nevertheless, it was promising to note that signifi-
cant improvements were obtained in the VWC simulations by calibrating 
the LC capacitance-based sensor even against an uncalibrated, reference 
(TDR-FDR) sensor. 

3.3.2. Final crop model outputs: crop model yield and water productivity 
Fig. 7 illustrates the simulated aboveground crop Water Productivity 

(WPET) for all the scenarios, as averages and standard error of the mean 
(SEM) for all the plots taken together. Table 3 also lists the MAE, RMSE 
and PBIAS for the respective biomass values. AquaCrop-OS over-
estimated the observed biomass by an average of 0.11 kg/m2, and an 
average RMSE of 0.145 kg/m2, and NRMSE of 13.41 %, which is 
considered to be a ’good’ simulation performance (Jamieson et al., 
1991; Raes et al., 2018). There were no significant differences in the 
simulated BM across the five scenarios irrespective of the strength of 

Fig. 6. Comparison of observed and AquaCrop-OS simulated (’sim’) (a)–(d): Canopy cover (%) and (e)–(h): VWC (%) averaged over 5 field plots, for the 4 important 
AquaCrop-OS crop modeling scenarios (Default, RawRef., RawLC and CalLC). The VWC simulations are compared against the observed soil moisture data from the 
reference sensor (Ref.). Error bars and ranges in all figures represent the standard error of the respective mean values across the five validation plots. DAS implies 
days after sowing. 

Fig. 7. Comparison of AquaCrop-OS simulated Water Productivity (WPET) 
averaged over 5 field plots, for the 3 different AquaCrop-OS crop modeling 
scenarios (RawRef., RawLC and CalibratedLC). Error bars in all figures represent 
the SEM. 
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VWC simulation, indicating that the FAO AquaCrop simulation of 
biomass relied primarily on the canopy curve development. 

However, the simulated water productivity (WPET) varied across the 
different scenarios. There was an improvement in WPET when the SHPs 
were calibrated using the raw Ref. sensor data as compared to the 
default literature (WPET for Def = 1.566 ± 0.009 kg/m3, WPET for 
RawRef. = 1.629 ± 0.006 kg/m3), due to significantly lower ET in 
RAWRef. compared to Def. There was a non-significant change in WPET 
when raw LC sensor data were used to calibrate the SHPs: (WPET for Def 
= 1.566 ± 0.009 kg/m3, WPET for RawLC = 1.564 ± 0.011 kg/m3), 
which corresponded to the non-significant differences in simulated ET 
(and yield) between the two scenarios. This implies that incorporating 
the raw LC SM100 sensor data to calibrate the SHPs was not significantly 
more useful compared to using the literature values, and did not address 
any water saving objectives, further highlighting the ineffectiveness of 
using raw LC soil moisture data shown in Section 3.2.1. 

However, when the LC sensors were calibrated using the Ref. sensors, 
there was a significant improvement in WPET (WPET for RawLC = 1.564 
± 0.011 kg/m3, WPET for CalLC = 1.601 ± 0.010 kg/m3), due to the 
significant differences between simulated ET between both the sce-
narios. This difference of 0.037 ± 0.021 kg/m3 corresponds to water 
savings between 17,241 L and 62,500 L per kg of wheat yield produced. 

3.4. Summary of results 

This section summarizes the conclusions regarding each research 
question.  

• The answer to RQ1 was that simpler models are more effective than 
sophisticated machine learning (ML) algorithms in calibrating LC 
soil moisture against data from a reference soil moisture sensor, since 
ML techniques can lead to model overfitting and overall less robust 
results. This was based on the discussion surrounding Table 2, and 
Figs. 4 and 5. 

• The answer to RQ2 was that raw LC sensor data performed signifi-
cantly poorly than literature values for parsimonious crop model 
calibration. There was no significant improvement in WPET 
compared to the default calibration case. These results were based on 
Fig. 6 in Section 3.3.1. However, sensor calibration may be difficult 
to implement due to the corresponding resource requirements (e.g., 
scientific, logistical, financial, human). If the LC sensors cannot be 
calibrated, using default values from the literature for SHP calibra-
tion can save sensor costs without compromising crop model 
performance.  

• The answer to RQ3 was that the simulated AquaCrop VWCsim output 
and WPET were poorer and significantly lower, respectively, when 
the raw LC soil moisture data was used to calibrate the SHPs (RMSE 
= 9.55 %, PBIAS = 46.19 %), compared to when the Reference soil 
moisture data were used (RMSE = 5.7 %, PBIAS = 3.99 %). These 
results were based on the discussion surrounding Fig. 6 in Section 
3.3.1., and Section 3.3.2.  

• The answer to RQ4 was that the effect of calibrating the raw LC soil 
moisture on the Reference sensor data significantly improved the 
VWCsim output of the AquaCrop model compared to the respective 
output from the raw LC data, nearly attaining the performance based 
on the Reference sensor data. Additionally, this calibration led to 
significant improvements in simulated WPET. These results are based 
on the discussions in Section 3.3.1. (Figs. 6) and 3.3.2. (Fig. 7). 

3.5. Further discussion 

Capacitance based sensing is affected by environmental factors such 
as salinity and clay content, which can be measured and compensated 
for, to improve performance at lower frequencies of soil moisture 
sensing (Adla et al., 2020; Deng et al., 2020). The SM100 sensor has been 
shown to have low sensitivity to salinity by Adla et al. (2020), and their 

recommendations of soil specific calibrations have been followed in this 
study to account for soil textural variability. Similarly, the UGT manual 
(Umwelt-Geräte-Technik GmbH, 2017) mentions that the SMT100 
sensor can operate well in clayey soils, and has low salinity sensitivity. 
Hence, this study implicitly accounts for these environmental factors. 

The presence of a distinct wetting-front may also affect the calibra-
tion curves (Kargas et al., 2013; Young et al., 1997). While not capturing 
this phenomena is a limitation of the study, its impact on this particular 
application may have been relatively minor. The time for a wetting-front 
to pass the order of the sensor depth (~10 cm) (Chu et al., 2018) was 
much smaller than the time-resolution of the crop model (daily) for 
which soil moisture measurements were used. Also, the horizontal 
placement of the sensors was more likely to ensure uniform VWC within 
the sensing volume (Kargas et al., 2013). 

Machine learning algorithms may have performed better by incor-
porating more data and variables (e.g., weather), but this was also not 
done to ensure comparability between the least squares and machine 
learning algorithms. The validations of the different soil moisture cali-
bration models performed poorly than the recommended 3 % sensor 
accuracy for soil moisture sensor-based irrigation scheduling systems 
(Soulis et al., 2015). However, since this study was aimed at analyzing 
the effect of sensor calibration on relevant crop model outputs, this was 
not a valid concern within this context, and would need further 
investigation. 

4. Conclusions 

A set of best practices of calibrating capacitance based low-cost (LC) 
Spectrum SM100 soil moisture sensors was developed using two cali-
bration approaches: calibrating against gravimetric water content in the 
using wet-up curve laboratory conditions, and calibrating against a TDR- 
FDR reference (Ref.) soil moisture sensor (UGT SMT100) in the field. 
Different least squares and machine learning approaches were used to 
calibrate the LC sensor. Field calibration was observed to be more robust 
than calibration in the laboratory. Calibration of the dry-down curve 
was found to be more accurate, and even calibrations using the dry- 
down curve in the laboratory were robust enough to perform similarly 
well as the superior field calibrations. Overfitting during calibration can 
lead to loss in robustness in the field, and hence, should be avoided. The 
best calibration model (LCcal), considering the above issues, was the 
field calibrated piece-wise linear regression function (PWLF-field). 

The soil hydraulic parameters (SHPs) of the FAO AquaCrop model 
were calibrated under different calibration schemes to understand the 
effect of using raw soil moisture sensor data, and the additional effect of 
calibrating the capacitance LC sensor, on model outputs. VWC estima-
tion respectively improved and worsened on incorporating the Ref. and 
LC sensor data to calibrate SHPs, when compared with literature derived 
SHPs. However, LC data calibrated using the PWLF-field model resulted 
in nearly the same VWC simulation performance as the Ref. sensor. The 
water productivity (WPET) improved significantly when incorporating 
raw Ref. sensor data to calibrate SHPs. This was not seen when incor-
porating raw LC data, but on transforming the data using the best LCcal 
model, a significant improvement was seen in the WPET compared to 
both the raw and default scenarios. 

These experiments and modeling reveal that if calibration of LC 
sensors is not possible, it is preferable to use the literature to calibrate 
crop model SHPs without compromising overall model performance. 
However, calibrating the LC sensors using a higher-quality secondary 
standard sensor in the field may give rise to not only better VWC sim-
ulations by the crop model, but also significant improvements in water 
productivity and corresponding water savings at the same level of yield. 
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Appendix 

Details on the low-cost SM100 sensor 

The capacitance-based Water Scout SM100 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL, USA) operates with a pair of electrodes 
behaving as a capacitor and the soil surrounding the sensor behaving as the charge storing dielectric medium (Spectrum Technologies, 2014). An 
oscillator operating at 80 MHz drives the capacitor, and generates an output (voltage ratio) which is proportional to the dielectric permittivity of the 
soil-water system. The sensor output (voltage ratio/raw value) is then converted to a VWC value using the factory calibration equation - Equation (1) 
in the manuscript (Kieffer, 2018). The outputs of the SM100 sensor are "Raw value" (which is related to the voltage ratio of the output to the input 
voltage) and "VWC". 

Details on the reference SMT100 sensor 

The sensor head of the UGT SMT100 soil moisture sensor (manufactured by Umwelt-Geräte-Technik GmbH, Müncheberg, Germany) contains the 
sensor electronics which emit a steep pulse traveling along a closed transmission line buried in the soil. However, instead of directly measuring the 
time for the pulse to return (e.g., in TDT or TDR), the pulse is inverted and fed back into the line driver input, resulting in an "oscillation" frequency 
which is a function of the soil dielectric permittivity (Bogena et al., 2017). Also, unlike the FDR which is based on a capacitor, the SMT100 uses a ring 
oscillator to generate the pulse and transform the travel time to frequency (Bogena et al., 2017; Umwelt-Geräte-Technik GmbH, 2017). The oscillation 
frequency is around 340 MHz in air and 150 MHz in water (Bogena et al., 2017). This resultant frequency is high enough to not be influenced by the 
high clay content, electrical conductivity or imaginary dielectric permittivity of the soil (Blonquist et al., 2005; Umwelt-Geräte-Technik GmbH, 2017). 
The outputs of SMT100 are "Supply Voltage", "Count" (which can be linked to apparent dielectric permittivity through an empirical model, Bogena 
et al., 2017), "relative permittivity", "volumetric water content" (computed using the relative permittivity, Topp et al., 1980) and "soil temperature".  

Table A1 
Details of agricultural management during the experiment  

Management Practice Management Date Management Date (DAS) Management quantification (Irrigation depth (mm) or Quantity (kg/ha) 

Fertilizer application February 1, 2018 27 (at tillering) 347 kg/ha 
Irrigation – 1 January 29, 2018 25 50 
Irrigation – 2 February 18, 2018 45 43 
Irrigation – 3 March 4, 2018 59 52.4 
Irrigation – 4 March 19, 2018 74 37.3 

DAS: Days after sowing.  
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Table A2 
Non-conservative model parameters and their default values before calibrating the AquaCrop model. The target variable indicates which intermediate AquaCrop 
output is affected by a change in the corresponding parameter.  

Parameter Description Target Unit Default value (or range) 

SeedSize Soil surface covered by an individual seedling at 90 % emergence CC cm2/plant 1.5(i) 

CCx Maximum canopy cover CC m2 m− 2 0.80–0.99(i) 

CGC Canopy growth coefficient CC d− 1 or ◦C-d− 1 0.0930–0.1235(i) 

CDC Canopy decline coefficient CC d− 1 or ◦C-d− 1 0.0925(i) 

Emergence Time from sowing to emergence CC d 8 
HIstart Time from sowing to start of build-up of Harvest Index   70 
Flowering Length of the flowering stage CC d 14 
Senescence Time from sowing to start of senescence CC d 81 
Maturity Time from sowing to maturity, i.e., length of crop cycle CC d 100 
Zmin Minimum effective rooting depth VWC m 0.2–0.3(i) 

Zmax Maximum effective rooting depth VWC m 1.5 
AppEff Irrigation Application Efficiency VWC % 60(ii, iii) 

REW Readily Evaporable Water VWC mm 9–12(iv) 

K_sat Saturated hydraulic conductivity VWC mm-d− 1 96-446(v, vi) 

th_wp VWC at Permanent wilting point VWC m3 m− 3 0.133 (0.078–0.188)(v) 

th_fc VWC at Field Capacity VWC m3 m− 3 0.330 (0.258–0.402)(v) 

th_sat VWC at Saturation VWC m3 m− 3 0.501 (0.42–0.582)(v) 

CN Curve Number for antecedent moisture class II VWC – 69–75(vii) 

HI Reference Harvest Index Yield % 0.48 (0.45–0.50)(i) 

(i) Raes et al. (2018), (ii) Brouwer et al. (1989), (iii) Taghavaeian (2017), (iv) Allen et al. (2005), (v) Rawls and Brakensiek (1989), (vi) Gupta et al. (2021), (vii) 
USDA-NRCS (2017).  

Table A3 
Fitted hyperparameter sets used in each algorithm for calibrating soil moisture data.  

Model Hyperparameters 

Linear Regression (LR) fit_intercept = True, copy_X = True, n_jobs = None, positive = False 
Support Vector Regression 

(SVR) 
kernel = ’rbf’, degree = 3, gamma = ’scale’, coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True, cache_size = 200, verbose = False, 
max_iter = − 1 

Random Forest Regressor 
(RFR) 

n_estimators = 100, *, criterion = ’squared_error’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0, 
max_features = 1.0, max_leaf_nodes = None, min_impurity_decrease = 0.0, bootstrap = True, oob_score = False, n_jobs = None, random_state = None, 
verbose = 0, warm_start = False, ccp_alpha = 0.0, max_samples = None 

Multi Layer Perception 
(MLP) 

hidden_layer_sizes=(100), activation = ’relu’, *, solver = ’adam’, alpha = 0.0001, batch_size = ’auto’, learning_rate = ’constant’, learning_rate_init =
0.001, power_t = 0.5, max_iter = 200, shuffle = True, random_state = None, tol = 0.0001, verbose = False, warm_start = False, momentum = 0.9, 
nesterovs_momentum = True, early_stopping = False, validation_fraction = 0.1, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10, 
max_fun = 15,000  
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