<]
TUDelft

Delft University of Technology

Running a Red Light
An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

Sterk , Alexander ; Wessel, Mairieli; Hooten, Eli; Zaidman, Andy

DOI
10.1145/3644032.3644444

Publication date
2024

Document Version
Final published version

Published in
AST '24: Proceedings of the 5th ACM/IEEE International Conference on Automation of Software Test (AST
2024)

Citation (APA)

Sterk , A., Wessel, M., Hooten, E., & Zaidman, A. (2024). Running a Red Light: An Investigation into Why
Software Engineers (Occasionally) Ignore Coverage Checks. In AST '24: Proceedings of the 5th ACM/IEEE
International Conference on Automation of Software Test (AST 2024) (pp. 12-22). Association for
Computing Machinery (ACM). https://doi.org/10.1145/3644032.3644444

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3644032.3644444
https://doi.org/10.1145/3644032.3644444

Check for
Updates

2024 IEEE/ACM International Conference on Automation of Software Test (AST)

Running a Red Light: An Investigation into Why Software
Engineers (Occasionally) Ignore Coverage Checks

Alexander Sterk
ajhsterk@gmail.com
Delft University of Technology
The Netherlands

Eli Hooten
eli.hooten@sentry.io
Sentry.io
United States of America

ABSTRACT

Many modern code coverage tools track and report code coverage
data generated from running tests during continuous integration.
They report code coverage data through a variety of channels,
including email, Slack, Mattermost, or through the web interface
of social coding platforms such as GitHub. In fact, this ensemble of
tools can be configured in such a way that the software engineer
gets a failing status check when code coverage drops below a certain
threshold. In this study, we broadly investigate the opinions and
experience with code coverage tools through a survey among 279
software engineers whose projects use the Codecov coverage tool
and bot. In particular, we are investigating why software engineers
would ignore a failing status check caused by drop in code coverage.
We observe that >80% of software engineers — at least sometimes
— ignore these failing status checks, and we get insights into the
main reasons why software engineers ignore these checks.

KEYWORDS

software testing, code coverage, coverage checks

ACM Reference Format:

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman. 2024.
Running a Red Light: An Investigation into Why Software Engineers (Occa-
sionally) Ignore Coverage Checks. In 5th ACM/IEEE International Conference
on Automation of Software Test (AST 2024) (AST 24), April 15-16, 2024, Lis-
bon, Portugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3644032.3644444

1 INTRODUCTION

Software has become a critical aspect of modern society as we are
more and more relying on software for everyday tasks. Because
of our reliance on software, its quality and reliability is indispens-
able [4, 24]. The repercussions of unreliable and incorrect software
can be severe, ranging from users getting frustrated, over huge
financial loses [31, 32], or years of lost research [33], to causing
injury or even death [26]. As Aniche et al. state “Making sure

(Mol

This work licensed under Creative Commons Attribution International 4.0 License.

AST 24, April 15-16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0588-5/24/04.
https://doi.org/10.1145/3644032.3644444

Mairieli Wessel
mairieli.wessel@ru.nl
Radboud University
The Netherlands

Andy Zaidman
a.e.zaidman@tudelft.nl
Delft University of Technology
The Netherlands

software works is maybe the greatest responsibility of a software
developer” [2].

Software testing is essential to ensure the quality of the software
systems that we as a society rely on [5, 6]. However, writing tests is
a tedious and time consuming task [1, 3, 5]. Code coverage, which
refers to the percentage of code that is executed by a test suite, is
both an important metric in assessing the reach of a test suite, but
also an indicator of areas of code that may need further testing [47].

One of the more popular ways to measure code coverage in the
development process is using code coverage tools or bots, which
are integrated into popular open-source development platforms,
such as GitHub, GitLab, or Bitbucket. These tools collect coverage
data from running tests, calculate various coverage metrics, and
report the results back to the developers [12, 44].

In this study, we focus on the Codecov! code coverage tool.
Codecov integrates with many different open-source development
platforms and supports a large number of programming languages.
It generates coverage reports for each commit and in the case of a
pull request, posts a comment to the pull request that provides a
summary of the full report. It can provide a “status check” for pull
requests, which can either be a pass or a failure, if the coverage
results of the pull request do not pass the standards of the project.
It can also report the coverage results through email or Slack. An
example of a comment and the status checks is given in Figure 1.
Important for our particular study, is that Codecov also calculates
coverage levels for individual pull requests, which Codecov call
patch coverage. This only measures coverage for the lines that were
actually changed in the pull request?.

Due to Codecov being free for students and public projects,
and because it is used by over a million software developers, they
have a large amount of available coverage data, which they made
available to us, to use for research purposes. Specifically, that data
made us wonder why software engineers would deliberately ignore
indicators by the coverage tool. As such, our guiding research
question is the following:

RQ: Why are coverage checks ignored by soft-
ware engineers?

In this paper, we explore the developers’ rationale when con-
sidering code coverage and working with a code coverage tool,
specifically the Codecov tool. We do so through a survey among

!https://about.codecov.io/
2See https://docs.codecov.com/docs, last visited October 4th, 2023.

https://doi.org/10.1145/3644032.3644444
https://doi.org/10.1145/3644032.3644444
https://doi.org/10.1145/3644032.3644444
https://docs.codecov.com/docs
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3644032.3644444&domain=pdf&date_stamp=2024-06-10

AST 24, April 15-16, 2024, Lisbon, Portugal

@

codecov bot commented on Apr 7 Codecov bot comment

Codecov Report

Merging #1013 (bfea48d) into main (977093b) will increase coverage by 0.01% .
The diff coverage is 83.33% .

ee Coverage Diff ee
main #1013 +/-
+ Coverage 92.32% 92.34% +0.01%
Files 35 35
Lines 1316 1319 +3
Branches 270 270
+ Hits 1215 1218 +3
Misses 69 69
Partials 32 32
Flag Coverage A

alpine 92.26% <83.33%> (+0.01%)

alpine-proxy 92.26% <83.33%> (+0.01%)
alpine-without-git 92.26% <83.33% (+0.01%)
linux 92.26% <83.33%> (+0.01%)
linux-without-git 92.26% <83.33%> (+0.01%)
macos 92.26% <83.33%> (+0.01%)
macos-without-git 92.26% <83.33%> (+0.01%)

windows 91.66% <83.33% (+0.01%)

[0 A - - R -~ I > I > I - A

windows-without-git 91.66% <83.33%> (+0.01%)

Flags with carried forward coverage won't be shown. Click here to find out more.

Impacted Files Coverage A

src/helpersffilests = 92.50% <83.33% (+0.28%) &3

®

. ° reviewer approved these changes on Apr 7
Update fetchGitRoot to not halt execution #1013
9 reviewer merged 6 commits into codecov:main from author:main [on Apr7
17 of 18 checks passed

x @ codecov/patch 83.33% of diff hit (target 92.32%)

v @ codecov/project 92.34% (+0.01%) compared to 977093b

Figure 1: Example of a Codecov comment and status checks

279 software engineers of whom the projects make use of Codecov.
Our findings indicate that >80% of developers sometimes purpose-
fully ignore a coverage check, for a variety of reasons.

2 STUDY SETUP

The goal of our study is to explore how developers use and look
towards code coverage in open-source development projects. Specif-
ically, we aim to come up with reasons why coverage checks would
get ignored, as well as categorize what developers would consider
good coverage practices. To address a sizeable population, we have
chosen to conduct a survey to gauge the aforementioned elements.
When preparing and executing the survey, we have followed the
guidelines set by the Delft University of Technology’s Research
Ethics Council and received approval from that council to conduct
our study. We used a GDPR compliant version of Qualtrics for our
survey.

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman

2.1 The Survey

Mindful of the different roles that exist within open-source software
development [16, 17], we have opted to use two different paths in
the survey based on whether a respondent identifies themselves
as a maintainer, a software engineer that manages, reviews, and
integrates contributions (pull requests), or a contributor, a software
engineer that makes contributions and opens a pull request. Both
groups mostly received the same questions, although some were
written from the perspective that better aligns with the chosen
group.

During a pilot run with 4 PhD students in the research group, we
have received feedback on the survey, which can be summarised
as follows: (1) the survey was considered lengthy, (2) some ordinal
scale options were questionable or difficult to choose between,
(3) a lack of images and clarity in the survey when describing
different functionalites of code coverage tools. This feedback was
incorporated in the final survey design. A summary of the final
survey is shown in Table 1.

2.2 Recruitment of Participants

The target audience for our survey were developers familiar with
using code coverage tools on open-source development platforms.
We have been fortunate enough to be able to rely on Codecov for
obtaining users which had contributed to GitHub projects that
use Codecov. The information we collected was the number of
contributions, the time of the last contribution, usernames and
repository names. The entire dataset consisted of around 260,000
entries (including duplicates).

We then used GitHub’s API to look up these usernames and find
user profiles with public email addresses. This was very important
since we did not want to breach any terms of service or be a nuisance
to people. Subsequently, we were left with roughly 90,000 email
addresses. From these we filtered users based on the number of
commits they have made overall, and when their last commit took
place. Only users with over 100 commits, and a last commit between
the start of 2019 and the end of 2021 were kept. This was done to
(1) prevent absolute newcomers from taking the survey, and (2)
assure that participants had recent experience with the tool. This
filtering resulted in a list of 11,000 people, of which we randomly
selected 2,000 to send our survey to, by email. We opted for 2,000, to
account for a potentially low response rate of 6%, which was a rough
estimate based on previous studies in software engineering [37, 43].

2.3 Deployment of the Survey

In December 2021, our survey was sent out to 2,000 email addresses.
During this time, the survey was open and able to receive sub-
missions for roughly a month. However, most of the responses
were submitted in the first two weeks. We obtained 379 response
attempts in total, and 278 complete responses of respondents who
finished the entire survey, i.e., a response rate of ~14%.

3 RESULTS

This section describes the results from the survey. We only report
on the 278 surveys that were completed. Our replication package
contains all anonymized data [39].

Running a Red Light: An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

AST 24, April 15-16, 2024, Lisbon, Portugal

‘ Question Type ‘ A/M/C

Demographic questions

1 For how many years have you been developing software? You can consider all hobby, study and/or work experience. Open A

2 For how many years have you been active on open-source development platforms, such as GitHub, Gitlab, etc? Open A

3 How often do you contribute to an open source project? Closed | A

3a On average, | make a contribution (e.g. a commit, a pull request, etc) to somebody else’s project(s) ...

3b On average, | make a contribution to my own project(s) ...

3c On average, | review other people’s contributions ...

4 When contributing to open source projects, | primarily act as a: (Code contributor OR Maintainer/Project Manager) Closed | A

5 Do you work in software development in a professional capacity? (Yes OR No) Closed | A

6 | What is your job title? Open Q5="Yes"

7 How long have you been performing the following tasks, in either a professional or hobby capacity? Closed | All

7a Automatic software testing tasks, such as writing unit tests or integration tests

7b Manual software testing tasks or performing any sort of manual quality assurance functions

7c Performing code review of others’ contributions to any project, either open or closed source

8 When it comes to automated software testing (e.g. unit testing, integration testing, etc) and its relationship to overall code quality, do | Closed | A
you believe that automated software testing is: (Likert scale of importance)

Main questions

9 How often do you use code coverage tools outside of GitHub? For example, on your own machine. Closed | A

10 | How often do you utilise the information from code coverage tools on GitHub? Closed | A

10a | use code coverage tools while developing/contributing ...

10b | use code coverage tools while reviewing ...

11 | In the last question you answered you never utilise the information from code coverage tools on GitHub. Do you have any particular | Open Q10="Never"
reason why you do not use code coverage tools on GitHub? After this question, the survey ends.

12 | In your experience, what is a good coverage goal for a project? For example, is there a certain set of rules you’d like to follow, or a | Open A
certain target you’d like to reach? If it’s possible, please also give us your reasoning.

13 | Please give your opinions on the following statements: Closed

13a Code coverage is a good metric to consider as part of overall code quality A

13b Code coverage tools on open- source platforms provide an incentive to improve coverage and/or write tests. A

13c I am more likely to approve a pull request that improves code coverage than ones that lower it. M

13d If my pull request improves coverage, it is accepted more quickly, in my experience. C

14 | How often do you write tests for projects you are contributing to? Closed | A

15 | How often do you write a test or multiple tests with (just) the intent to improve the code coverage? Closed | A

16 | How often are you asked/encouraged to better test your contributions, in the comments of a pull request you opened? Closed |C

16a People ask me this ...

16b A coverage tool asks me this ...

17 | Do you remember a particularly interesting instance where this (see Q16) happened? How did the situation get resolved? Open C

18 | How often do you have to tell a contributor that their tests need to be improved, based on the results of a coverage tool? Closed | M

19 | Do you remember a particularly interesting instance where this (see Q18) happened? How did that situation get resolved? Open M

20 | The following actions constitute incentives to improve coverage and/or write tests, and can also be done by code coverage tools. Please | Ranking | A
rank them on how much incentive you think they provide, from most incentive to least incentive.

20a Leaving a comment on a pull request, summarising the coverage changes

20b Giving a failing status check for a commit or pull request, preventing automatic merging

20c Annotating uncovered lines in the "Files changed" overview of a pull request

20d Notifying users through messaging applications or email, if coverage is lowered

20e Reminding users of contributing guidelines, when opening a pull request

21 | In your experience, what is the best way to provide incentive for improving code coverage? Open A

22 | Can you come up with situations where you would ignore a failing coverage check? What are your reasons? Open A

23 | How often do you neglect or ignore a failing coverage check on a commit or pull request? Closed | A

23a lignore a failing coverage check when contributing to a project ...

23b I ignore a failing coverage check when reviewing a pull request ...

24 | Can you give us 2 things you like about using a code coverage tool on an open-source platform? Open A

25 | Can you give us 2 things you dislike about using a code coverage tool on an open-source platform? Open A

Table 1: Summary of the survey questions. The final column indicates whether this question was dependent on a previous
question, or asked to All respondents, or only Maintainers, or Contributors.

3.1 Demographic

General demographics. The demographics of our survey popu-
lation can be seen in Figure 2. We observe that a majority of the
participants have several years of experience with software devel-
opment. Furthermore, while most participants actively work in
a software development field, there are a substantial number of
participants that do not. These participants come from a number
of different fields, such as biology, mathematics, ecology, mobile

development, etc. Some participants work in research, while others
work in a more practical setting. Furthermore, some participants
work in a high position, such as CEO, while others have listed
themselves as interns. We clustered the different occupations into
larger categories, which are shown in Table 2.

Overall, the participants to our study seem quite diverse, and
coupled with the fact that our participants are from a set of diverse
organisations, this should ensure the generalizability of our insights.

AST 24, April 15-16, 2024, Lisbon, Portugal

Years developing software

5
3

Do you work in software development?

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman

How long have you been performing...

mmm Automated testings tasks?
= Manual testing tasks?
BEE Code review of other people's code?

<1year

Y
3

200

@
3

150

IS
8

w
=}

100

Number of respondents

N
S

=
S

o

s No

1-3 years

3-5 years

5-10 years

10-20 years

20+ years

0 20 40 60 80
Number of respondents

Figure 2: General experience with software development

Field Count
Software Development/Engineering 109
Management/Leadership 41
Research/Science/PhD 38
IT/Infrastructure/DevOps 15
Data Science/Analysis 11
Software architect 10
Other 7

Table 2: Distribution of participants’ occupations

Open-source experience. Figure 3 shows that most participants
have experience with open-source development platforms. We also
observe the frequency at which they perform certain tasks related
to open-source software development on these platforms. However,
we also noticed some inconsistencies, with some participants claim-
ing to have over 20 years of experience, while platforms such as
GitHub have not been around as long. Nonetheless, it is entirely
possible that participants have experience with older version con-
trol systems. Furthermore, we find that some participants rarely or
never perform one or more of these tasks.

When gauging whether a participant to the survey considers
themselves more of a code contributor, or more of a project main-
tainer, we found the groups to be of almost equal size (143 maintain-
ers vs. 135 contributors). Depending on the role that they assigned
to themselves (maintainers vs. contributor), some of the follow-up
questions in the survey will differ.

3.2 Quantitative Results

Since the quantitative questions are all closed or Likert scale ques-
tions, their results can all be interpreted using graphs.

Years active on open-source platforms

How often do you.

Never

Less than once a year

Afewtimes a year

Afew times a month

o s 10 15 20 25 0 1 20 40 0 80 100 120
Number of respondents

Figure 3: Experience with and frequency of open-source de-
velopment

15

Code coverage tool usage. The first set of questions is regarding
how often the participants use code coverage tools. From Figure 4
we find that using code coverage tools for each pull request is the
most popular answer, regardless of whether one is contributing
to a pull request, or reviewing one. In the case that a participant
responded “Never” to both questions, this would mean that they
lack the experience that is required for the remainder of the survey.
Therefore, we would have them skip the remainder of the survey.
This occured 9 times, causing the number of responses for the
remaining questions to go down to 269.

The right-most graph of Figure 4 shows a quite diverse answer
to whether participants use code coverage tools outside of GitHub,
for example on their local device while developing.

General attitude towards coverage and testing. When asked about
the general necessity of automated software testing and code cov-
erage, most participants responded that they consider testing and
code coverage as important, as can be seen in Figure 5. However,
not all respondents feel this way, as one person indicated that auto-
mated software testing is not at all important.

Frequency of writing tests. Figure 6 shows the results for two
questions asking how often the participants write tests. An inter-
esting observation is that 0 respondents answered that they never
write tests. Even the one participant who answered that automated
software testing is not important at all still writes tests. Further-
more, we also find that “For each pull request" is the most popular
answer for the first question. Interestingly, the second graph indi-
cates that respondents frequently write tests with the purpose of
improving coverage.

Coverage and incentive. Keeping in mind that the middle graph
of Figure 6 indicates that most participants write tests with the
sole purpose of improving coverage, we wonder about the potential
incentive that code coverage tools provide for writing tests and/or
improving the coverage metric(s) of a code base. When we consider
the right-most graph in Figure 6, we see that almost all participants
agree, either somewhat or strongly, that code coverage tools provide
an incentive to improve coverage, with no big difference of opinion
between the contributors and the maintainers.

Secondly, we asked contributors and maintainers near identical
questions (Q13c and Q13d in Table 1) regarding the acceptance
rate of pull requests, based on their coverage levels. In Figure 7 we
observe a difference of opinion between what contributors believe,

Running a Red Light: An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

How often do you utilise the information from code
coverage tools on Github while contributing?

How often do you utilise the information from code
coverage tools on Github while reviewing?

AST 24, April 15-16, 2024, Lisbon, Portugal

How often do you use coverage tools outside of Github?

= Code contributor

For each commit W= Maintainer/Project Manager

Every few commits

For each pull request

Every few pull requests

Rarely

Never

= Code contributor
mm Maintainer/Project Manager

s Code contributor
mmm Maintainer/Project Manager

0 10 20 30 40 50 60 0 10 20

Number of respondents

30
Number of respondents

40 50 60 70 o 10 20 30 40 50 60
Number of respondents

Figure 4: Code coverage tool frequency, and coverage tool usage outside of GitHub

versus what maintainers claim: maintainers indicate they are more
likely to accept a pull request which improves coverage, while con-
tributors indicate to think that a coverage-improving pull request
will not get accepted more quickly compared to other pull requests.

We also asked participants to rank different features of code
coverage tools, from what they consider providing the most to the
least incentive to improve coverage. In Figure 8 we graph both the
number of times a feature has been put in first position, as well as
its average rank, with 1 being the highest, and 5 being the lowest.
The status check is by far ranked as the most incentivising feature.
Nevertheless, every other feature has also been ranked first by one
or more participants at some point. We observe that contributors
and maintainer share the same opinion.

Neglecting the coverage check. Figure 9 shows the frequency with
which the participants ignore a failing coverage check when both
contributing and reviewing. Of interest to observe is that >80% of
the respondents across categories indicate to at least sometimes ig-
nore failing coverage checks. Additionally, we see that maintainers
tend to ignore failing coverage checks slightly more frequently.

Pointing out decreasing coverage. Figure 10 provides insight into
how often the respondents are asked to improve coverage, or need
to ask other contributors to improve coverage.

How important do you find automated software testing?

== Code contributor

Not at all important

m Maintainer/Project Manager

slightly important

Moderately important

Very important

Extremely important

o 20 40 60 80
Number of respondents
Code coverage is a good metric to consider as part of overall code quality

== Code contributor
== Maintainer/Project Manager

Strongly disagree

Somewhat disagree

Neither agree nor disagree

Somewhat agree

strongly agree

0 0 20 30 40 50 6 70 80
Number of respondents.

Figure 5: Importance of testing and code coverage

16

A first observation is that a large group of contributors indicate
that they have never been asked to improve their coverage by a
human, and an even larger group says they have never been asked
by a coverage tool. Secondly, it appears that overall coverage tools
are perceived to ask to improve coverage more frequently than
humans. Thirdly, when we compare maintainers to contributors,
we see very similar numbers, especially for the “By a human” bars,
with the exception for the “A few times a month" option. A possible
explanation could be that maintainers review many pull requests
from different contributors per month, but contributors might not
have their pull requests reviewed by many different reviewers per
month, i.e., maintainers overall review more varied pull requests.

3.3 Qualitative Insights

For our analysis of the qualitative (open) questions, we applied
open and axial coding [40] throughout multiple rounds of analysis.
We started by manually assigning each answer one or more codes;
if a response was unclear and could not be given a code, it was
discarded. To check for consistency and agreement in our coding
process, the first and second authors performed the open coding
of the first 25 participants’ answers separately. Then, these two
researchers discussed the emergent codes and reached a negotiated
agreement in a hands-on meeting. After reaching an agreement,
the first author coded the remaining answers.

Afterwards, we performed axial coding by grouping the codes
into larger categories of responses. For each question, we listed
the codes that were generated from the open coding process and
assigned them into groups based on how closely the codes were
related to one another or a particular topic. In the case a code
could not be properly categorized, it was added to a “Miscellaneous”
category. We then retrofitted the categories back to the original
responses, based on which codes they had. Finally, we counted how
many responses belonged to each category. The axial coding was
performed by the first author, and discussed with the second and
third authors until reaching consensus. The coding process was
conducted using a continuous comparison technique [15], wherein
we continuously compared emerging codes with existing findings
to validate our interpretation. The full list of responses and codes
can be found in our online replication package [39].

As mentioned above, we counted the number of responses per
category, to find how many participants mentioned a specific cate-
gory in their responses to each question. It is possible for a response
to mention multiple categories, and therefore count for multiple

AST 24, April 15-16, 2024, Lisbon, Portugal

How often do you write tests when contributing?

W= Code contributor

For each commit W Maintainer/Project Manager

Every few commits

For each pull request

Every few pull requests

Rarely

Never

o 10 20 30 40 50
Number of respondents

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman

How often do you write tests with the intent of
improving coverage?

Code coverage tools on open-source platforms
provide an incentive to improve coverage

= Code contributor

Every day mm Maintainer/Project Manager

Afew times a week

Afew times a month

A few times a year

Less than once a year

Never

mmm Code contributor
m= Maintainer/Project Manager

strongly disagree

Somewhat disagree

Neither agree nor disagree

Somewhat agree

strongly agree

o 10 20 30 40 50 60
Number of respondents

Number of respondents

Figure 6: Frequency of writing tests and code coverage improvement

For contributors: if my pull request improves coverage, |
feel itis accepted quicker

For maintainers: | am more likely to approve
a pull request that improves coverage

strongly disagree

Somewhat disagree

Neither agree nor disagree

Somewhat agree

strongly agree

50 60 o 10 50 60

20 E)) 20 EY 40
Number of respondents Number of respondents

Figure 7: Beliefs about pull request acceptance and code cov-
erage

Which functionality of a coverage tool provides the
most incentive to improve coverage?

= Code contributor
W Maintainer/Project Manager

summary comment

status check

slack/email notification

reminding of guidelines

annotating uncovered lines

)
Times ranked first

Average rank of incentivizing features (lower is better)

reminding of guidelines

emailjslack notification

annotating uncovered lines

status check

= Contributors
= Maintainers.

summary comment

0 15 20 25 35 40 45 50

Average rank

Figure 8: Ranking the most incentivising feature of code
coverage tools

categories. Furthermore, the results are grouped per participants’
roles as either a contributor or a maintainer again. These results
can be found in Tables 3 through 5. We will now go through them,
one question at a time.

Good coverage goal. The first open question we asked to the
participants, was for them to describe their own idea of a good
coverage goal to set for a project. The first thing that piques our

17

How often do you neglect to fix a failing
coverage status while contributing?

How often do you neglect to fix a failing
coverage status while reviewing?

= Code contributor
= Maintainer/Project Manager

== Code contributor

Every day. == Maintainer/Project Manager

A few times a week

Afew times a month

Afew times a year

Less than once a year

Never

20 30 20 20
Number of respondents Number of respondents

Figure 9: Frequency of ignoring a coverage check

For contributors: how often are you encouraged
to improve your coverage?

For maintainers: how often do you (have to) ask a
contributor to improve their coverage?

== 5y ahuman

Every day. = By a coverage tool

Afew times a week

Afew times a month

Afew times a year

Less than once a year

Never

50 60 o 5 1o 15 20 25 30 3 4
Number of respondents

20 30 40
Number of respondents

Figure 10: Frequency of asking to improve coverage

interest when looking at the first question in Table 3, is that for each
category of responses the ratio of participants that mention it is
(almost) the same for both contributors and maintainers. Secondly,
nearly 50% of all respondents mention some kind of high coverage
goal in their responses. However, for both groups at least 20% of the
participants believe that striving to achieve some arbitrary target
is not the right goal to set.

Best way to incentivize for coverage. Previously, we asked re-
spondents to rank different features of coverage tools, based on
how much incentive they provide. For this question however, par-
ticipants were able to give their own input on the best way to
encourage writing tests and improving coverage. The results can
be found in the 2nd part of Table 3.

We observe that participants most often list negative impacts
as the best way to provide incentive to improve coverage. This
typically comes down to blocking the merge of the pull request,
or closing it all together. One caveat with these responses is that
the more popular answers (negative impacts, using PR comments,
getting a coverage report) are features that coverage tools already

Running a Red Light: An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

AST 24, April 15-16, 2024, Lisbon, Portugal

Category Summary Example Contrib- Main-
utor tainer
men- men-
tioned tioned

Q20: What is a good coverage goal?
High number Goal is to have high coverage “Total coverage should be high, e.g. > 80% Each PR should not have diff coverage < 71 (53%) 79 (55%)
85%"

Important Goal is to cover important parts of the ~ “Tests should cover the important code paths, beyond the “happy path". However, 25(19%) 25 (17%)

code only code. Trivial code can be uncovered 100% coverage is neither necessary nor particularly desirable”

It depends Coverage goal depends on multiple “Every project would have a different goal: Ul and integration testing is much 24 (18%) 23 (16%)

per project factors. Lot of different variables harder to test than unit testing core business logic, and different projects have

different proportions of each”

Cover Goal is to have everything coveredina “In general, coverage should not be allowed to fall without justification. Coverage 4 (3%) 3 (2%)

sensibly sensible matter, where uncovered items of, and benefits from, unit and integration tests should generally be considered

are justified properly separately”

Quality more Not a lot of focus on coverage, since it ~ “A few years ago I spent a lot of time writing coverage tests. Then I gave up: the 33 (24%) 34 (24%)

important distracts from actually writing high tooling got too much in the way, it took too much time, and I decided to focus on

quality code/tests real problems instead."
Q31: What is the best way to incentivize improving coverage?

Interaction Interaction through PR comments “Generated comment on PR" 16 (12%) 19 (13%)

w/ comments

Negative Negative impacts, such as blocking “Not merging when a PR has no tests" 36 (27%) 37 (26%)

impacts merge

Clear Setting expectations or contributing “Make it normative and expected for a project. 15 (11%) 14 (10%)

expectations guidelines

Coverage tool Generic mention of using a coverage tool “Providing an adequate report of test coverage that includes coverage status, 27 (20%) 30 (21%)

changes, and uncovered lines."

Notifications Notifications “A failing status with notification about what is unit tests and how to add them" 3 (2%) 3(2%)

Focused Clear/Focussed testing efforts. E.g. “Make it easy to test your code. If it is difficult to write tests, people will not write 4 (3%) 9 (6%)

testing making it easy to write tests, or them"

providing a proper guide to testing

Positive rein- Positive reinforcement, such as using “Gamification on getting a high coverage score” 1(1%) 6 (4%)

forcement gamification. Or general politeness

Good feeling Getting feelings of safety, security and ~ “My primary incentive for good test coverage is more confidence to deploy 3 (2%) 0(0%)

trust in the code changes"

Deeper un- Understanding of the necessity of “Demonstrating the improvements to reliability of tested vs untested software :) 6 (4%) 8 (6%)

derstanding well-tested code provides the incentive ~ Vanity metrics like % code coverage don’t convince people that don’t care about

of necessity testing; not getting paged due to bugs does."

Table 3: Summarising what is a good coverage goal, and how to incentivize improving coverage.

provide, and as such they easily come to mind. Especially since
we already mentioned them previously in the survey. Therefore, it
might be worthwhile to look at other categories. For example, 10%
of participants believe that setting clear expectations, or writing
contribution guidelines, could be a way to incentivize for coverage.

Likes and dislikes. We asked the participants to give us two rea-
sons why they like using coverage tools, and two things they dislike
about them. The first part of Table 4 shows the likes, the later part
lists the dislikes.

When it comes to likes, we observe that a couple of categories are
mentioned quite frequently by both groups. For example, collecting
all coverage information into a single report or online place, or the
feeling of safety it gives, to know that the code is properly tested.
One interesting result to see, is the big difference for the “encourages
testing” category: contributors mention this twice as often as the
maintainers.

However, there is a similar big difference when it comes to dis-
likes. Namely in the “poor feedback” category. Some examples given
by the participants are that the bigger picture is unclear, and that
the results are hard to interpret, or offer no guidance on what to

do next. Maintainers mention this dislike twice as often. We would
expect this, since maintainers might be more involved with and
interested in the overall state of a project’s coverage throughout
its development. Similarly, this would also hold true for the “third-
party host concerns”.

Another dislike is that a decent percentage of contributors men-
tion the difficult setup as something they dislike. This is something
we would expect from maintainers, but not from contributors, since
the whole point of code coverage tools is to have them on some-
thing like GitHub, running during the CI pipeline. This means that
contributors would not have to set them up themselves. Moreover,
in the list of likes we find that 10% of both groups enjoy the low en-
try barrier and easy set-up for coverage tools, while in the dislikes
table we find that there is another set of respondents that claim the
exact opposite.

The largest overall expressed dislike by both groups, is that code
coverage tools lead to people treating code coverage as a form of
code quality. This is not necessarily the case, since it is entirely
possible to cover all the lines of code in a project, without actually
verifying whether the output is correct [23]. The second largest

AST 24, April 15-16, 2024, Lisbon, Portugal

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman

Category Summary Example Contributor Maintainer
mentioned mentioned
Two things you like about coverage tools?

Honesty Honesty of the developer “The public nature of open-source software helps keep people honest.’ 4 (3%) 2(1%)

Automation Automated tool “I like the automation and the ease of adding it to new product.” 22 (16%) 21(15%)

Awareness Awareness of other people’s “Safe teamwork and knowledge of other people’s code" 0(0%) 1(1%)
contributions

Finding Finding weaknesses or code “Helps you find dead code and untested code" 25 (19%) 23 (16%)

improvements you can improve

Community Community Support “the community support available when things don’t work. 0 (0%) 1(1%)

Easier work Easier/faster contributing, “Quickly discovering if new code has tests is really helpful, especially as a 9 (7%) 10 (7%)
reviewing, etc. maintainer.”

Low entry barrier ~ Low entry barrier to get “Easy to set up. Easy to maintain. 13 (10%) 15 (10%)
started

Encourages Encourages testing “Code coverage tools incentivise developers to write test." 21(16%) 12 (8%)

testing

Guarantees Safety/security/trust feelings “It definitely adds a bit of credibility to a project.’ 30 (22%) 34 (24%)

Gamification Gamification “Gameify’s software testing so that it is easier to approach and incentivizes 1(1%) 1(1%)

having more thoroughly tested software."

UI/UX Design Design “GUI for exploring historical code coverage” 2(1%) 3(2%)

Collected Collection of coverage “No more “but the coverage is different on my machine"" 36 (27%) 29 (20%)

information information

Prevents Prevents coverage from going “It prevents to add code that lowers the code coverage” 0(0%) 1(1%)

coverage down

decrease

Public Looks good to the outside “The results can be viewed by anyone" 6 (4%) 8 (6%)
world

Sets guidelines Guidelines and/or protocols “Creates a culture of test driven development” 6 (4%) 4 (3%)

Quality control It provides some kind of “It helps keeping project code clean and fresh although outside contributes codes 10 (7%) 9 (6%)
quality control are merged.”

Educational Can be used as a learning tool ~ “Can be a good bridge to introduce contributors to automated tests and QA" 1(1%) 1(1%)

Useful functions It has useful features (generic) ~ “free, useful" 1(1%) 2(1%)

Two things you dislike about coverage tools?

Complacency People become complacent “Most devs stop if they hit the quality goals of the repo” 4 (3%) 2(1%)

Set-up Complex Set-up “setting up & maintaining code coverage Cl can be tedious" 20 (15%) 19 (13%)

Mistaken for Coverage metric treated as “It can encourage developers to write shoddy tests that don’t properly cover use 26 (19%) 27 (19%)

quality quality cases in order to increase the coverage metric"

Reluctance to Some people are reluctant to “Many developers are still not used to deal with such tools: overhead to enforce 2 (1%) 4 (3%)

use use them their use"

Unclear/wrong Unclear, wrong or “It is flaky and often gives incorrect results / misleading information” 26 (19%) 22 (15%)

results insignificant results

Annoying Considered frustrating or “Can be annoying during initial development activities" 3(2%) 3(2%)
interrupt workflow

Not always The tool is hard to use “Hard to introduce after a while (low coverage), if not introduced early." 2(1%) 1(1%)

applicable depending on the project

Third-party host ~ Third-party host concerns “Cloud services can disappear or get monetized at any moment; you have to have 7 (5%) 14 (10%)

an offline local way to measure coverage”

Lacking features ~ Respondent mentioned “not yet enough Al to provide good actionable advice" 8 (6%) 10 (7%)
features they miss

Poor feedback Tool provides mediocre “Doesn’t offer suggestions on how to write _good_ tests." 12 (9%) 24 (17%)
feedback

Noisy Noisy, redundant or verbose “Adds PR comment / commit status noise" 10 (7%) 14 (10%)

Takes time Generating coverage results “Steals valuable time from contributors." 5 (4%) 8 (6%)
takes a long time

Strict Too strict “Communities that use the tool too rigidly are unpleasant to contribute to." 10 (7%) 13 (9%)

Crutch Used as a crutch “It can be a crutch to write bad tests that just increase coverage" 0(0%) 1(1%)

Table 4: Likes and dislikes of coverage tools according to the respondents.

dislike is that the results of the coverage tool can be incorrect,
irrelevant, or too small to really matter [18].

Why are coverage checks ignored. Finally, we move on to one
of the most important questions of the survey. We would like to
find out in what situations the participants would ignore a failing
coverage check. We asked this to the participants in the form of an
open question, and the results can be found in Table 5.

Firstly, it seems coverage failures tend to be ignored when they
are minimal, e.g., less than 1% coverage delta. Something like this
can happen when only a few lines of code are added, or perhaps
deleted, or by introducing an extra branch, or removing a test case,

which happens on occasion [36]. Out of all the reasons, this one is
given most often by the maintainers.

Secondly, the coverage failure can be a result of another failure,
for example in the CI pipeline. Another reason that is given is that
the coverage information is simply incorrect, or unrelated to the
PR in question.

The third reason is priority. Some issues need to be merged
quickly, as they contain fixes for critical bugs, or very desirable
features. For contributors this is the most frequently cited reason.
Here we see a small difference of opinion between contributors and
maintainers.

Running a Red Light: An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

AST 24, April 15-16, 2024, Lisbon, Portugal

Category Summary Example Contributor Maintainer
mentioned mentioned

Trivial Trivial/negligible coverage “if the code coverage failures are due to insignificant (trivial) branches not being 32 (24%) 40 (28%)

change change covered.

Failure Failure unrelated to PR “Unfortunately some of the results can be odd, not explained. Like a commit that just 28 (21%) 34 (24%)

elsewhere touches documentation (without example code) can change the coverage.

Future fix Assurance that tests are “The code is good, it is better to have it in the codebase earlier despite not having the 22 (16%) 20 (14%)
added/coverage will be fixed coverage. Coverage can be developed later
later

Not worth Not worth time/effort to improve ~ “Because coverage is not important. And big coverage is expensive. 16 (12%) 8 (6%)

fixing the coverage

Priority Different priorities such as “If the PR clearly solves a primary problem, | am going to merge it. Lower coverage isa 36 (27%) 28 (20%)
hotfixes are desirable features secondary problem.”

Complexity Complexity of the code “If the test is very difficult to properly implement, like having to simulate external 32(24%) 31(22%)

dependencies.”

Other means Ensuring quality is done through ~ “Code should be well tested, but code coverage isn’t synonymous to how well code is 12 (9%) 10 (7%)
other means than coverage tested, it’s just correlated”

Not Code not meant for production “The feature added is experimental and the tests are failing" 9 (7%) 9 (6%)

production (yet)

code

Not scaring To avoid scaring away “It shouldn’t become prohibitive of pushing a PR to not discourage people to contribute” 1 (1%) 8 (6%)

contributors contributors

Change Change justified “instead of merging the PR with a failing check, we would instruct the user on how to 0 (0%) 2(1%)

justified ignore the line or the file in question if it was suitably justified."

Table 5: When would you ignore a failing coverage check?

The fourth reason is simply the complexity it takes to write tests
and improve the coverage. Not all code is equal and can be tested
as easily, e.g., code for a GUI is not the same as some business
logic [10].

A final interesting finding is that contributors mention that they
do not find fixing coverage worth their efforts, at twice the rate than
maintainers do. Overall, it seems that contributors are slightly more
concerned with just getting their code merged, and less with testing.
This can also be said for the results of the “priority” category. And
on the other hand, we see that for example maintainers are more
likely to mention that they do not want to scare away contributors.

4 DISCUSSION & IMPLICATIONS
4.1 Revisiting the Research Question

Through the responses to our survey, we have found indications
that failing coverage checks are sometimes ignored. Overall, we
have observed that >80% of the respondents have indicated that they
ignore failing coverage checks at some point. We also uncovered
four key reasons for ignoring coverage checks, namely: (1) a small
coverage delta [10], (2) coverage calculation failures or mistakes,
(3) priority lies with production code [30, 45, 46], and finally, (4) the
difficulty of testing complex code [14, 41].

In what follows, we try to formulate recommendations for open-
source developers and developers of code coverage tools to poten-
tially alleviate some of the aforementioned issues.

4.2 Recommendations for Open-Source
Developers

One of the main reasons for ignoring a failing coverage check is
that the failure is due to a minimal decrease in coverage. One way to
alleviate this problem is by configuring their coverage tools with a

20

certain threshold, so only larger decreases trigger an actual failure®.
Furthermore, developers can also configure the coverage tools to
decrease the noise they create. A practical approach would be to
group multiple bot comment reports into a single report, which was
demonstrated as useful in a paper by Wessel and Steinmacher [44].

Another big reason for neglecting fixing the coverage is simply
the high complexity of testing (certain parts of) the code. This is a
call to arms to developers to ensure that the code is testable [11],
and potentially refactored in a test-driven way [34].

Another recommendation is writing clear guidelines for con-
tributing, but with a clear goal for testing and/or coverage targets.
The answers to the question “What is a good coverage goal?” in
Table 3 can provide some inspiration for contribution guidelines.

4.3 Recommendations for Code Coverage Tool
Developers

The dislikes listed in Table 4 provide developers of code coverage
tools with a list of opportunities to improve their tools. Some of the
problems that are mentioned by both maintainers and contributors
are: unclear or wrong results, a difficult setup process, and noise.

Zooming in specifically on the matter of robustness of results,
it might be worthwhile to investigate ways to ignore individual
methods or lines that cause problems, e.g., through annotations in
source code. Another angle here is to annotate flaky tests, so that
developers better understand where fluctuations in code coverage
is coming from (confer [42]).

A large reason for why failing coverage checks are ignored is
because the contributors and/or maintainers of a project have other
priorities, do not have enough time to immediately address the
failure, or because they are working on experimental code, which
might change a lot in the future. Therefore, we think it would

3For example: https://docs.codecov.com/docs/codecov-yaml, last visited October 4th,
2023.

https://docs.codecov.com/docs/codecov-yaml

AST 24, April 15-16, 2024, Lisbon, Portugal

be beneficial if code coverage tools provided an optional integra-
tion with issue tracking systems (i.e., GitHub issues, Jira, etc.), to
(automatically) open new issues for uncovered, but merged, code
changes. From a developer’s perspective this would make it eas-
ier to track the testing technical debt [29] with a system they are
likely already familiar with. Similarly, an integration with a tool
like TestKnight, that creates boilerplate code for tests yet to be
written, could prove interesting [9]. Finally, a tool like TestAxis
could be extended to report coverage information from cloud-based
continuous integration services directly into the IDE [8].

4.4 Threats to Validity

Internal validity. One of the main threats to validity is the possi-
ble bias we introduced while categorising the qualitative responses.
To mitigate this threat, we used a process in which the first re-
sponses for each open question were analysed by the first and
second author, who then compared their categories. During this
process, no major differences were found. Subsequently, the other
responses were categorised by the first author, and later verified by
the second author.

In order for participants to get acquainted with the idea of code
coverage tools, we used some screenshots of functionality provided
by Codecov. This could have unintentionally steered participants
to think of Codecov in particular, when we asked them about their
experiences with any tool. We tried to mitigate this threat by also
making references to other possible code coverage tools, and con-
sistently using the term “code coverage tool" in our questioning.

External validity. We were limited by both time constraints and
GitHub’s API to invite and include all potential users of coverage
bots for our survey. As such, we had to narrow our search by first
querying people from Codecov’s database. This introduces a bias in
our results, as while all our participants have used Codecov before,
it does not mean that they have used other tools before. In future
work, we intend to widen the scope of our investigation to other
code coverage tools.

We randomly sampled 2,000 users of Codecov to invite them for
our survey. We ended up with an almost even split of 135 contribu-
tors and 143 maintainers. This means that we could gather opinions
and experiences from different perspectives and developer profiles.
In future work, we intend to study more developers, who also use
a variety of code coverage tools.

5 RELATED WORK

Ivankovi¢ et al. have studied code coverage challenges and experi-
ences at Google [22]. Through a survey among 512 employees of
Google they observe that “a substantial number of developers do use
code coverage on a regular basis and find value in it”. Their study
also highlights how developers find it useful to obtain coverage
information within the tools developers commonly use, something
that relates to how the Codecov bot works on GitHub. Also similar
to our study, they mention that errors in code coverage numbers
are consuming time and energy from software engineers.

Elbaum et al. have established that even small changes in produc-
tion code, can cause big fluctuations in code coverage values [13].

The respondents to our survey have indicated to regularly write
additional test cases to improve the code coverage. The study by

21

Alexander Sterk, Mairieli Wessel, Eli Hooten, and Andy Zaidman

Kochar et al. puts this into perspective [27]. In particular, their
findings are that a relationship between code coverage and post-
release defects is non-existent or statistically insignificant. As such,
they warn that designing test cases with the sole purpose of increasing
coverage may or may not translate to higher bug finding rate. Our
findings highlight that although coverage is commonly used as a
yardstick for test adequacy, its impact should not be overestimated.

Beller et al. have investigated the reasons for failing continuous
integration builds [7]. They have observed that the key reason for
build failures are test failures. Instead, our work looks at failing
status checks caused by missed code coverage targets.

Khatami et al. have looked into the awareness of software engi-
neers about the quality assurance practices in vogue in the GitHub
projects that engineers contribute to [25]. Through a large-scale
survey they have established that ~80% of the respondents indicate
that the coverage their project reaches is easy to retrieve, and that
~37% is aware of coverage targets.

Hilton et al. have studied code coverage evolution [20]. They
found that measuring the patch coverage, like the Codecov tool
that we study enables, provides visibility into the impact of the
changes that software engineers make.

There are a number of other studies in the field of code coverage,
but they are typically based on a few projects, based in a single
language [19, 21, 35], or at a single corporate entity [22, 28]. The
results of these studies might therefore not necessarily generalize
well to open-source development. Furthermore, most of these stud-
ies measure the impact of code coverage on the development or
testing processes, but not the impact on the developers themselves.

6 CONCLUSION & FUTURE WORK

In this study we have broadly investigated the perceptions and
opinions of open-source software engineers on code coverage tools
in general, and Codecov specifically. More specifically, we tried to
establish why code coverage checks are ignored?. Through an online
survey among 279 open-source software engineers of which the
projects make use of Codecov, we find that >80% of the software
engineers have at some point ignored code coverage checks. We
also find four key reasons for ignoring these checks, namely: (1) a
small coverage delta for the particular commit or pull request, (2) a
failure to compute code coverage, or wrong code coverage results,
(3) a difference in priorities as production code is deemed more
important, and finally, (4) the difficulty of testing complex code.
In future research, we aim to better understand the role of con-
tribution guidelines on the process of working with code coverage
tools. We will also look into the relationship between test flakiness
and fluctuations in code coverage reports. In particular, we see
opportunities to (1) better understand the influence of flaky tests on
code coverage results, and (2) investigate whether excluding flaky
tests from coverage calculations, e.g., through annotations in code,
would help software engineers work better with coverage tools.

ACKNOWLEDGMENTS

This research was partially funded by the Dutch science foundation
NWO through the Vici “TestShift” grant (No. VI.C.182.032) and
conducted as part of Alexander Sterk’s master thesis [38].

Running a Red Light: An Investigation into Why Software Engineers (Occasionally) Ignore Coverage Checks

REFERENCES

(1]

[2

—

[3

[10

(11

[12]
[13

[14]
[15]

[16

[17

(18]

[19]

[20

[21]

[22]

[23]

[24]

Mauricio Aniche. 2022. Effective Software Testing: A Developer’s Guide. Manning
Publications.

Mauricio Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
software testing education. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. 414-420.

Mauricio Aniche, Christoph Treude, and Andy Zaidman. 2022. How Developers
Engineer Test Cases: An Observational Study. IEEE Trans. on Software Eng. 48,
12 (2022), 4925-4946.

Baris Ardi¢ and Andy Zaidman. 2023. Hey Teachers, Teach Those Kids Some Soft-
ware Testing. In 5th IEEE/ACM International Workshop on Software Engineering
Education for the Next Generation (SEENG@ICSE). IEEE, 9-16.

Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Trans. Software Eng. 45, 3 (2019).

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 179-190.
Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke
the build: an explorative analysis of Travis CI with GitHub. In Proceedings of the
International Conference on Mining Software Repositories (MSR). IEEE, 356-367.
Casper Boone, Carolin Brandt, and Andy Zaidman. 2022. Fixing Continuous
Integration Tests From Within the IDE With Contextual Information. In 2022
IEEE/ACM 30th International Conference on Program Comprehension (ICPC). ACM,
287-297.

Cristian-Alexandru Botocan, Piyush Deshmukh, Pavlos Makridis, Jorge Romeu
Huidobro, Mathanrajan Sundarrajan, Mauricio Aniche, and Andy Zaidman. 2022.
TestKnight: An Interactive Assistant to Stimulate Test Engineering. In IEEE/ACM
International Conference on Software Engineering: Companion Proceedings (ICSE).
ACM/IEEE, 222-226.

Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaid-
man, and Alberto Bacchelli. 2024. Mind the Gap: What Working With Developers
on Fuzz Tests Taught Us About Coverage Gaps. In Proceedings of the International
Conference on Software Engineering - Software Engineering In Practice (ICSE-SEIP).
ACM.

Magiel Bruntink and Arie van Deursen. 2006. An empirical study into class
testability. 7. Syst. Softw. 79, 9 (2006), 1219-1232. https://doi.org/10.1016/j.jss.
2006.02.036

Codecov. 2022. The leading code coverage solution. https://about.codecov.io/
S. Elbaum, D. Gable, and G. Rothermel. 2001. The impact of software evolution
on code coverage information. In Proceedings IEEE International Conference on
Software Maintenance. ICSM 2001. IEEE, 170-179.

Michael Feathers. 2004. Working Effectively with Legacy Code. Pearson.

Barney G Glaser and Anselm L Strauss. 2017. Discovery of grounded theory:
Strategies for qualitative research. Routledge.

Georgios Gousios, Margaret-Anne D. Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In Proceedings of the 38th International Conference on Software Engineering (ICSE).
ACM, 285-296.

Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie van
Deursen. 2015. Work Practices and Challenges in Pull-Based Development: The
Integrator’s Perspective. In 37th IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE, 358-368.

Z.Guo, T. Tan, S. Liu, X. Liu, W. Lai, Y. Yang, Y. Li, L. Chen, W. Dong, and Y. Zhou.
2023. Mitigating False Positive Static Analysis Warnings: Progress, Challenges,
and Opportunities. IEEE Transactions on Software Engineering 49, 12 (2023),
5154-5188.

Hadi Hemmati. 2015. How Effective Are Code Coverage Criteria?. In 2015 IEEE
International Conference on Software Quality, Reliability and Security (QORS). IEEE,
151-156.

Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale Study
of Test Coverage Evolution. In Proceedings of the International Conference on
Automated Software Engineering (ASE). ACM, 53—-63.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. 1994. Experiments on the
effectiveness of dataflow- and control-flow-based test adequacy criteria. In Pro-
ceedings of 16th International Conference on Software Engineering (ICSE). IEEE,
191-200.

Marko Ivankovi¢, Goran Petrovi¢, René Just, and Gordon Fraser. 2019. Code
Coverage at Google. In Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 955—-963.

Kush Jain, Goutamkumar Tulajappa Kalburgi, Claire Le Goues, and Alex Groce.
2023. Mind the Gap: The Difference Between Coverage and Mutation Score Can
Guide Testing Efforts. CoRR abs/2309.02395 (2023). https://doi.org/10.48550/
arXiv.2309.02395 arXiv:2309.02395

Mehdi Jazayeri. 2004. The Education of a Software Engineer. In Proc. International
Conference on Automated Software Engineering (ASE). IEEE, xviii-xxvii.

22

[25]

[26]

[27

[28

[29

[30

[31

[33

(34]

(35]

[36

W@
=

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

AST 24, April 15-16, 2024, Lisbon, Portugal

Ali Khatami and Andy Zaidman. 2023. Quality Assurance Awareness in Open
Source Software Projects on GitHub. In Proceedings of the International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 174-185.
Amy J. Ko, Bryan Dosono, and Neeraja Duriseti. 2014. Thirty years of software
problems in the news. In Int’l Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). ACM, 32-39.

Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. 2017.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability 66, 4 (2017), 1213-1228.

Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. 2019. Predicting
Pull Request Completion Time: A Case Study on Large Scale Cloud Services.
In Proceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 874—-882.

Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical Debt. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD). 9-15. https://doi.org/10.1109/
MTD.2015.7332619

Cosmin Marsavina, Daniele Romano, and Andy Zaidman. 2014. Studying Fine-
Grained Co-evolution Patterns of Production and Test Code. In 14th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, 195-204.

Scott Matteson. 2018. Report: Software failure caused 1.7 trillion in financial
losses in 2017. https://www.techrepublic.com/article/report-software-failure-
caused- 1-7-trillion-in-inancial-losses-in-2017/

Harry McCracken. 2017. The Year That Software Bugs Ate The
World. https://web.archive.org/web/20230307155438/https://www.fastcompany.
com/40505226/the-year-that-software-bugs-ate-the-world

Greg Miller. 2006. A Scientist’s Nightmare: Software Problem Leads to Five
Retractions. Science 314, 5807 (2006), 1856—1857.

Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. 2008. On
the Interplay Between Software Testing and Evolution and its Effect on Program
Comprehension. In Software Evolution, Tom Mens and Serge Demeyer (Eds.).
Springer, 173-202.

Akbar Siami Namin and James H. Andrews. 2009. The Influence of Size and
Coverage on Test Suite Effectiveness. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis (ISSTA). ACM, 57—-68.

Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-Suite Evolution. In Proceedings of the ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE). ACM,
Article 33, 11 pages.

Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa.
2018. Almost There: A Study on Quasi-Contributors in Open Source Software
Projects. In Proceedings of the International Conference on Software Engineering
(ICSE). ACM, 256--266.

Alexander Sterk. 2023. Exploring Code Coverage in Open-Source Development.
Master’s thesis. Delft University of Technology.

Alexander Sterk, Mairieli Wessel, Ali Hooten, and Andy Zaidman. 2023. Running
aRed Light: An Investigation into Why Software Engineers (Occasionally) Ignore
Coverage Checks — Appendix. https://doi.org/10.5281/zenodo.10119287
Anselm L Strauss and JM Corbin. 1998. Basics of qualitative research: Techniques
and procedures for developing grounded theory.

Mark Swillus and Andy Zaidman. 2023. Sentiment overflow in the testing stack:
Analyzing software testing posts on Stack Overflow. J. Syst. Softw. 205 (2023),
111804.

Shivashree Vysali. 2020. Enriching Code Coverage with Test Characteristics. Mas-
ter’s thesis. McGill University, 3480 Rue University, Montréal, QC, Canada.
Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and
Marco A. Gerosa. 2020. What to Expect from Code Review Bots on GitHub?
A Survey with OSS Maintainers. In Proceedings of the Brazilian Symposium on
Software Engineering (SBES). ACM, 457-462.

Mairieli Wessel and Igor Steinmacher. 2020. The Inconvenient Side of Soft-
ware Bots on Pull Requests. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (ICSE Workshops). ACM, 51-55.
Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. 2008.
Mining Software Repositories to Study Co-Evolution of Production & Test Code.
In Proceedings of the International Conference on Software Testing, Verification,
and Validation (ICST). IEEE, 220-229.

Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.
Studying the co-evolution of production and test code in open source and indus-
trial developer test processes through repository mining. Empir. Softw. Eng. 16, 3
(2011), 325-364.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv. 29, 4 (Dec. 1997), 366—-427.

https://doi.org/10.1016/j.jss.2006.02.036
https://doi.org/10.1016/j.jss.2006.02.036
https://about.codecov.io/
https://doi.org/10.48550/arXiv.2309.02395
https://doi.org/10.48550/arXiv.2309.02395
https://arxiv.org/abs/2309.02395
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/MTD.2015.7332619
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-inancial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-inancial-losses-in-2017/
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://doi.org/10.5281/zenodo.10119287

