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Abstract 
In the Netherlands the design of a movable bridge and machinery part is based on the design standard 

NEN 6786:2001 (2001). When the bridge is in motion the calculations for the machinery part focus on the 

dynamic loads (torque) generating at the motor shaft. The calculation of these loads is carried out using 

tabulated formulas of the standard, which have been derived via a 2-DoF linear dynamic model. In this 

model the linear spring represents the total stiffness of the machinery part. For the calculation of the 

spring stiffness the push-pull rod component is excluded, assuming it as a rigid component of the system 

during the movement cycle of the bridge. The push-pull rod (also known as the buffer) is a component of 

the machinery of several bascule bridges that connects the leaf of the bridge with the drive mechanism. 

It consists of stacked disc springs and its stiffness varies based on the load acting on it. 

The main objectives of this thesis are to model the force deformation behavior of the buffer component, 

incorporate it in an update set of equations of motion of the bridge-machinery system, and study its effect 

on the decisive dynamic loads generated at the motor shaft during motion. First, the generalized force 

deformation diagram of the buffer is formulated with a piecewise function that is based on the force-

deflection function for a stack of disc springs according to the standard DIN 2092:2006:03 (2006). Second, 

the damping of the buffer is modeled as Coulomb friction type, since friction is generated in various 

position in the stack of disc springs and is the main source of energy dissipation of the buffer component. 

The validity of the proposed modeling of the buffer component is evaluated via a SDoF model of it, 

performing a series of dynamic analyses and interpreting the results. Afterwards, the model of the buffer 

component is introduced in a new set of equations of motion for the bridge-machinery system, derived 

with the Lagrangian formalism technique. The resulting highly nonlinear set of equations of motion is 

implemented in the bascule bridge of the new Ramspol bridge located on N50. The analyses aim to the 

calculation of the torque generated at the motor shaft during an emergency stop at full speed. This loading 

case is the most decisive with respect to loads generating at the motor shaft. 

The resulted maximum torque from the dynamic analyses is compared with the torque calculated with 

the formulas of the standard NEN 6786:2001 (2001). The state of the buffer determines by which formula 

of the standard the comparison is carried out. A series of dynamic analyses is performed varying, the type 

of brake (constant or bilinear), the time the brake is applied, the duration of the emergency stop and the 

friction coefficient of the buffer. In case the buffer is not fully compressed, the calculations with the 

dynamic model result in lower maximum torque compared with the one according to the standard. In 

case the buffer is fully compressed the magnitude of the resulting maximum torque depends on the 

aforementioned variables, whilst the one calculated with the standard is independent of them. In general, 

the resulting maximum torque derived from the dynamic model decreases with the increase of the friction 

coefficient of the buffer and the bilinear modeling of the braking. 
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1. Introduction 

1.1. Background 

Bridges can be constructed, either fixed or movable, depending on the circumstances and specifications 

of the area where they are designed (Brolsma & Roelse, 2011). In situations where the required clearance 

with respect to the waterway passage cannot be achieved with a fixed bridge, a movable bridge can be 

used instead (Brolsma & Roelse, 2011). For instance, in conditions where both short span and high 

clearance are required, a fixed bridge would need very high piers and steep grades. This, in turn would 

result in an expensive design and could also cause serviceability struggles regarding the passage of heavy 

vehicles over the steep grades (Koglin, 2003). Given this case, a movable bridge may be the least costly 

and the most practical alternative, providing crossing of a (navigable) waterway (Koglin, 2003). 

The first instances of movable bridges can be found in Egypt back in the fourteenth century B.C. (Koglin, 

2003). Several other applications of movable bridges are reported back to the fifth century B.C. (Koglin, 

2003). However, the outbreak of using movable bridges takes place in the Middle Ages, where 

“drawbridges” are commonly used as a protective conformation over the moats of medieval castles 

(Koglin, 2003). A variety of movable bridges and associated bridge mechanisms have been designed and 

constructed over the last century (Coelman, 1992). The type of bridge that is most widely used in the main 

road network of the Netherlands by Rijkswaterstaat, is the bascule bridge. This can be explained by the 

fact that the bascule bridge opens quickly, provides unlimited clearance while open and requires less 

energy during operation (Koglin, 2003). The word bascule means seesaw in French. The design of the 

bascule bridge is based on the drawbridge. The deck of the bridge is balanced with a counterweight, so 

that its center of gravity is near the axis of rotation. The deck balancing is frequently not precise resulting 

in a residual overweight moment around the pivot of the bridge. In the majority of the applications the 

bascule bridge rotates around a fixed trunnion and consists of a deck with a counterweight integrated at 

the rear portion of the main beams, located in the basement of the structure (Figure 1.1). This type of 

bridge according to Rijkswaterstaat projects, works often with a straight rack or with a Panama wheel 

operating system (Figure 1.2). The latter is named after the Panama Canal, where it was first used as part 

of the locks. In this system, an electric motor drives a pinion, geared to the Panama wheel, at a constant 

speed, via a gearbox (Figure 1.2).(Coelman, 1992) 
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Figure 1.1: Side view of single leaf bascule bridge with fixed trunnion (Wisconsin Department of Transportation, 2017) 

 

Figure 1.2: Panama wheel drive mechanism of a bascule bridge, side view (Coelman, 1992) (modified) 

In all Panama wheel operating mechanisms, a key component is the so-called push-pull rod also known as 

buffer. This is placed between the bridge deck and the Panama wheel and is hinged at both ends provided 

that it takes only axial forces (Figure 1.2).  
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The buffer serves multiple functions. To start with, when it is in closed position it guarantees that the 

bridge deck is secured, preventing flapping due to the passage of traffic or suction due to wind forces 

(NEN 6786:2001 (2001), p134). Moreover, it accommodates any imposed deformation by temperature or 

trucks that can influence the machinery (NEN 6786:2001 (2001)). On the contrary, high dynamic loads can 

occur at the machinery of a movable bridge with a buffer component, during motion of the system and 

depending on the loading case; for instance, during an emergency stop. (NEN 6786:2001 (2001), p.134). 

In the Netherlands, the design of a movable bridge and machinery part is based on the design standard 

NEN 6786:2001 (2001). When the bridge is in motion the calculations for the machinery part focus on the 

loads (torque) acting at the motor shaft. This shaft connects the motor with the gearbox and it is on this 

position that the brake of the system is also applied (Figure 1.2). For the sake of simplicity and ease of 

calculations, the design standard contains tabulated formulas to calculate the decisive loads in different 

loading cases of motion. These formulas are derived from dynamic analyses carried out on a linear 

dynamic model that describes the rotational motion of the system (Figure 1.3). 

 

Figure 1.3: Proposed dynamic model according to the standard NEN 6786:2001 (2001) 

The proposed dynamic model according to the existing standard NEN 6786:2001 (2001) consists of two 

degrees of freedom, one represents the motor (𝐽1) and the other the bridge (𝐽2). The two degrees of 

freedom are interconnected with a torsional spring which represents the total stiffness of the machinery 

(𝐾1). 

1.2. The Research Problem 

In the current design standard NEN 6786:2001 (2001) the buffer is assumed as a rigid component of the 

system. Hence, the stiffness of the buffer is not taken into account in the total stiffness of the machinery 

(𝐾1) in the proposed dynamic model (Figure 1.3). 



The effect of push-pull rod on the dynamic behavior of movable bridges 

4 

 

 

Figure 1.4: Push-pull rod cross section and force flow for external force equal to prestress: Rod in compression (top), Rod in 

tension (bottom) (Van Zantvliet, 2015) 

The buffer contains double acting disc springs that allow elongation or shortening, depending on its axial 

force. According to the buffer’s design, the disc springs always work in compression, regardless the loading 

state of the buffer; whether in tension or compression (Figure 1.4). The force deformation behavior of the 

buffer is shown in Figure 1.5.  

 

Figure 1.5: Force deformation behavior of the push-pull rod 
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Up to a certain loading level the buffer is rigid. This is achieved by pre-compressing (prestressing) the stack 

of disc springs. Therefore, the stack does not deform until the loading of the buffer reaches the force 

associated to its prestressing (𝐹𝑝𝑟𝑒). Once the buffer is loaded above this threshold, the disc springs 

become active and the buffer can elongate or compress. The design of the buffer limits its deformation, 

with introduced stop in the arrangement of the stack of disc springs. The maximum deformation that the 

buffer can undergo is called the stroke of the buffer. The buffer behaves rigid again after reaching the 

stroke. 

Unlike the assumption in the standard NEN 6786:2001 (2001) the behavior of the buffer is not always 

rigid, it depends on the acting load (Figure 1.5). The load acting on the buffer varies during motion of the 

bridge. 

The exclusion of the buffer from the proposed dynamic model (Figure 1.3) poses the question whether 

the formulas in the standard are conservative or not. Thus, it is desired to include the buffer in a dynamic 

model of the movable bridge and perform dynamic analyses to examine its influence on the decisive 

dynamic loads generated at the machinery part of the system during motion. 

1.3. Scope 

The scope of this thesis mainly focuses on carrying out analyses in a dynamic model of a movable bridge, 

while including the buffer in the equations of motion. The dynamic analyses are restricted to bascule 

bridges with Panama wheel drive. The analyses aim at the calculation of the decisive dynamic loads 

generated at the machinery part of the system during motion, meaning the torque generated at the motor 

shaft. The loading case considered for the analyses is an emergency stop at full speed, since this is the 

most decisive loading case with respect to the torque generated at the motor shaft. The resulting torque 

based on the dynamic analyses, is compared to the torque calculated with the corresponding formulas of 

the standard NEN 6786:2001 (2001). Since the focus of this study is in the operating mechanism of the 

system, the enhancement of the bridge modeling is out of the research objectives of this thesis. 

1.4. Research Objectives 

This thesis aims to integrate the buffer in a dynamic model of the system and study its influence on the 

decisive dynamic loads that occur on the bridge’s machinery during motion. The five main objectives of 

this thesis are listed below: 

• Formulate the force deformation behavior of the buffer; 

• Explore the hysteresis of the buffer force due to friction; 

• Incorporate the model of the buffer into the equations of motion of the bridge; 

• Calculate the determining dynamic loads at the machinery of the system during motion; 

• Compare the calculated loads resulted from the dynamic model with the loads calculated 

according to the existing standards. 
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1.5. Research Questions 

In respect to the above objectives, the main research question of this thesis is: 

How to model the dynamic behavior of a movable bridge driven by a mechanism including push-pull rod, 

in order to predict the decisive dynamic loads generated at the machinery part during motion? 

In order to pursue this question, a set of sub-questions has also been put forth. The answer to each sub-

question will be a step towards the answer of the main one. 

Sub-questions 

1. How do the number of degrees of freedom influence the system movable bridge-machinery in 

terms of the decisive dynamic loads that occur at the machinery of the system during motion? 

The system movable bridge – machinery consists of a number of components which add stiffness, inertia 

and damping to the system. In the proposed dynamic model of the standard NEN 6786:2001 (2001) 

(recently replaced by NEN 6786:2017 with design formulas remaining largely the same) only the inertias 

of the motor and the bridge are considered as degrees of freedom. Regarding the machinery components, 

it is only their torsional stiffness that is taken into account. The answer to this question will allow to 

understand whether the proposed linear dynamic model (Figure 1.3) is a valid approximation of the 

system or not. Moreover, the increase in the degrees of freedom within the dynamic model will, in turn, 

help explain the influence of the additional inertia term to the decisive dynamic loads generated at the 

machinery of the system during motion. 

2. What are the equations of motion related to the system of bascule bridge with Panama wheel 

drive? 

This sub-question gives birth to the following questions: 

• How can the force deformation behavior of a buffer be formulated? 

• How can the hysteretic behavior of the buffer be formulated? 

To answer this set of questions, it is essential to carry out an assessment of the behavior of the disc springs 

which are the main components that influence the behavior of the buffer. This is crucial, since the 

outcome will serve as the input in the new equations of motion. 

• How can the model concerning buffer’s behavior be incorporated in the equations of 

motion? 

Answering this will allow to answer the second sub-question. 
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3. What is the response of the new set of equations of motion in terms of decisive dynamic loads 

generated at the machinery of the system, in comparison with the design rules of the existing 

standard NEN 6786:2001 (2001)? 

The new derived equations of motion are examined in an existing bridge and a series of analyses is 

performed to estimate the decisive dynamic loads of the system that occur at the motor shaft. The 

resulting maximum torque is compared with the torque calculated according to the existing standard NEN 

6786:2001 (2001). 

1.6. Thesis Outline 

In order to answer the above research questions and fulfill the objectives of this thesis, a research strategy 

is drawn as illustrated in Figure 1.6. In the first place, the existing standard is reviewed in regard to the 

design guidelines for the dynamic analysis of the structure under consideration (see Ch. 2). To get a better 

insight into the assumptions on which the design formulas of the existing standard are based, it is decided 

to reproduce them, performing dynamic analyses on the proposed linear dynamic model (Figure 1.3). 

Furthermore, the influence of the number of degrees of freedom of the dynamic model in the resulting 

torque at the motor shaft during motion is examined. 

The subsequent chapter has two main purposes; to review the existing literature on the behavior of the 

disc springs and to model the performance of the buffer. The manufacturer of the disc springs has kindly 

provided information about technical specifications of the springs under research. 

The outcome of chapter 3 is evaluated performing dynamic analyses in a single degree of freedom system. 

The purpose of these analyses is to check the accuracy of the proposed modeling concerning the 

performance of the buffer. 

Finally, the model of the buffer’s behavior is incorporated in the dynamic model of the system, deriving a 

new set of equations of motion (see Ch. 5). These are implemented on the moving part of Ramspol bridge 

located on N50 with the sole purpose of calculating the dynamic loads at the motor shaft during motion 

and compare them with the loads calculated according to the formulas of the existing standards (see Ch. 

6). The concluding remarks are presented in chapter 7. 
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Figure 1.6: Layout of the report 
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2. Existing standard and design rules 

2.1. Introduction 

This chapter summarizes the knowledge and information collected during the first months of this thesis. 

First, the current analysis according to the existing standard is introduced. Afterwards, the design formulas 

associated with the loading cases of interest of this thesis are reproduced. In the end of this chapter, a 

sensitivity analysis is performed in the dynamic model increasing the degrees of freedom taken into 

account, observing their influence on the torque generated at the motor shaft. 

2.2. Existing Standard 

In the Netherlands, the design of a movable bridge is based on the Dutch standard NEN 6786 

“Voorschriften voor het ontwerpen van beweegbare bruggen (Vobb)” which contains the rules for the 

design of movable bridges. The calculations of the design loads for both the steel structure and the 

mechanical equipment are distinguished in the following operating states: 

• Bridge closed 

• Bridge open 

• During the movement cycle 

• Outside the movement cycle 

The relationship between the four different operating states is indicated in the matrix bellow. 

Table 2.1: Relationship between the four different operating states of a movable bridge 

 During the movement cycle Outside the movement cycle 

Bridge closed - x 

Bridge open x x 

During the movement cycle the design loads on the mechanical equipment are spited into two main 

categories:  

• Normal operation  

• Emergency operation 

The emergency operation refers to driving of the bridge different than during the normal operation. Every 

movable bridge must be equipped with emergency operation mechanism. The emergency operation 

mechanism can make use of bridge’s machinery parts of the normal one. The calculations in the case of 

emergency operation are determined in accordance with the case of normal operations. The duration of 
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movement in emergency operation may be considerably greater than the duration of movement in 

normal operation. 

The calculations for the design loads on the mechanical equipment in a moving cycle are categorized 

depending on the type of the drive mechanism, namely: 

• Electromechanical drive 

• Electrohydraulic drive 

• With hand driven 

The design loads on the mechanical equipment of a bascule bridge with Panama wheel drive belong to 

the category “Electromechanical drive” with the associated formulas collected in Table 11 of the standard 

NEN 6786:2001 (2001). 

The design formulas related to the research of this thesis are quoted below: 

Table 2.2: Design formulas applicable for the loading case of emergency stop 

Application of brake 𝜑𝑎 ∙ 𝜀 ∙ 𝑀𝑏𝑟;𝑑 + |1 − 𝜑𝑎 ∙ 𝜀| ∙ 𝑀𝑠;𝑑 (2.1) 

Recoil after brake 𝑀𝑠;𝑑 + 𝜑𝑏𝑟 ∙ 𝜀 ∙ (𝑀𝑠;𝑑 +𝑀𝑏𝑟;𝑑) (2.2) 

Spring buffer fully compressed 𝑀𝑠;𝑑 + 0,4 ∙ 0,9 ∙ 𝛾0 ∙ √𝜔
2 ∙ K1 ∙ 𝐽2 (2.3) 

where: 

𝑀𝑠;𝑑 is the design torque due to the external loading, reduced at the motor shaft; 

𝜑𝑎 is the dynamic magnification factor in the case “Application of brake” and is equal to 1,9; 

𝜑𝑏𝑟 is the dynamic magnification factor in the case “Recoil after brake” and is equal to 1,5; 

ε is the mass factor and is equal to: 𝜀 =
𝐽2

𝐽1+𝐽2
; 

𝐽1 and 𝐽2 are the mass moment of inertias of the motor and the bridge respectively, reduced at the motor 

shaft;  

𝑀𝑏𝑟;𝑑 is the braking torque and is equal to: 𝑀𝑏𝑟;𝑑 = 𝑀𝑠;𝑑 +𝑀𝑎;𝑑; 

𝑀𝑎;𝑑 is the torque generated by the brake and is equal to: 𝑀𝑎;𝑑 = 𝛾0 ∙ (𝐽1 + 𝐽2/𝜂) ∙
𝑑𝜔

𝑑𝑡
; 

𝜂 is the efficiency factor for internal losses of the transmission and is equal to 1 in the two aforementioned 

cases; 

𝑑𝜔

𝑑𝑡
 is the deceleration caused by the application of the brake; 



Existing standard and design rules 

   11 

𝐾1 is the torsional stiffness of the machinery reduced at the motor shaft. The stiffness of the spring buffer 

should not be included in the calculation of 𝐾1; 

𝛾0 is a load magnification factor. 

The situation “Application of brake” refers to the maximum torque acting at the motor shaft during 

braking of the bridge. The situation “Recoil after brake” refers to the maximum torque at the motor shaft 

when the speed of the bridge is zero for the first time after application of the brake, while the wind 

direction stays the same. 

Formula (2.3) of situation “Spring buffer fully compressed” is stated in the code that it is a rule of thumb 

(NEN 6786:2001, p, 134). The origin of the factor 0,4 in this formula is not known. It is one of the main 

tasks of this research to compare the results of this formula with the results of analyses performed in a 

dynamic model including the buffer, and evaluate the use of this factor (0,4) whether it is conservative or 

not. 

With a first review of the code, it is not clear what the damping ratio is, which is taken into account for 

the derivation of the tabulated formulas. 

To get a better insight of the dynamic model of this system and understand the background of the 

tabulated formulas, it is decided to reproduce formulas (2.1) and (2.2). The derivation of formula (2.1) is 

also applicable to the formula for acceleration/deceleration, since from dynamic point of view the braking 

of the system is a deceleration in a relatively short time. 

2.3. Background of the standard 

In the standard it is stated that, the rotational motion of the system bridge-machinery during the 

movement cycle is described with a linear 2-DoF dynamic model. That model as illustrated in the code is 

shown in the first chapter (Figure 1.3). In Figure 2.1 the same dynamic model is illustrated again in a more 

apparent schematization. All stiffnesses, mass moment of inertias and loads must be reduced to the motor 

shaft using the associated transmission factors, since the analysis is performed at that level. 

 

Figure 2.1: 2-DoF linear rotational model for the movable bridge-machinery system, defined in the standard NEN 6786:2001 

(2001) 
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Transmissions in mechanical systems (gearboxes, gear trains) provide speed and torque conversions from 

the driving source (motor) to the driven body (i.e. the movable bridge in the system under consideration). 

The transmissions convert the high engine speed and low engine torque, into low driving speed and high 

driving torque and vice versa. Therefore, large bodies can be driven by relatively small driving sources. 

The equations of motion related to the system of Figure 2.1 are: 

 (
𝐽1 0
0 𝐽2

) ∙ (
𝑟̈1(𝑡)
𝑟̈2(𝑡)

) + (
𝐾1 −𝐾1
−𝐾1 𝐾1

) ∙ (
𝑟1(𝑡)
𝑟2(𝑡)

) = (
𝑀1(𝑡)
𝑀2(𝑡)

) (2.4) 

in which: 

𝑟1(𝑡) and 𝑟2(𝑡) are the rotational degrees of freedom of the motor and the bridge respectively; 

𝑀1(𝑡) and 𝑀2(𝑡) are the external torques acting on the motor and the bridge respectively; 

𝐾1 is total stiffness of the machinery reduced at the motor shaft. In the code it is denoted as 𝐶1. However, 

in this report it is given the letter 𝐾 to distinguish from the terms of the damping. 

The system of Figure 2.1 is updated with the addition of viscous damping resulting to the updated set of 

equations of motion: 

 (
𝐽1 0
0 𝐽2

) ∙ (
𝑟̈1(𝑡)
𝑟̈2(𝑡)

) + (
𝐶𝑑 −𝐶𝑑
−𝐶𝑑 𝐶𝑑

) ∙ (
𝑟̇1(𝑡)
𝑟̇2(𝑡)

) + (
𝐾1 −𝐾1
−𝐾1 𝐾1

) ∙ (
𝑟1(𝑡)
𝑟2(𝑡)

) = (
𝑀1(𝑡)
𝑀2(𝑡)

) (2.5) 

in which: 

𝐶𝑑 is the viscous damping of the machinery; 

𝑟̇1(𝑡) and 𝑟̇2(𝑡) are the angular velocities of the motor and the bridge respectively. 

First, a dynamic analysis is performed in the undamped case (2.4) and then in the damped system (2.5). It 

must be mentioned at this stage that all the calculations in the upcoming analyses will be performed 

without the use of any load magnification factors. The purpose of this thesis is intended to examine the 

validity of the primary formulas of the code and the associated proposed dynamic model. The load 

magnification factors are the outcome of statistical analysis regarding the probability of occurrence in two 

loading scenarios and also to account for the distribution of the loading. These are additional factors based 

on probabilistic analysis which is out of the scope of this thesis. 

2.3.1. External loads 

One of the important inputs of the upcoming analysis is the external loading of the system before, during 

and after an emergency stop. The proposed linear dynamic model of the standard NEN 6786:2001 (2001) 

is a statically indetermined one, since it is not attached to a boundary. This implies that the application of 
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a load at one of the degrees of freedom will give motion to the system that will not damped out when the 

load is removed. The system will perform a rigid body rotation. However, not all the loads acting on the 

system put it into motion. For instance, the loads action on the bridge side. Therefore, the external loads 

on the side of the bridge, have to be balanced with loads of the same magnitude and opposite direction 

on the motor side during the whole motion. 

The analysis is focused to the loading case of an emergency stop. Before applying the brake, the system 

is rotating with a constant speed, namely the nominal rotational velocity of the motor. Both degrees of 

freedom have the same constant velocity before the brake is applied. At this stage the external load acting 

on the motor has the same magnitude as the load acting on the bridge with a different sign. Afterwards, 

when the brake is applied the load acting on the motor is equal to 𝑀𝑏𝑟. Furthermore, when the system is 

halt, the external load acting on the motor has again the same magnitude as the external load on the 

bridge with a different sign. To make it clear the described set of loading is depicted in formulas (2.6) and 

(2.7). 

 (
𝑀1(𝑡)
𝑀2(𝑡)

) (2.6) 

in which: 

𝑀2(𝑡) is the external torque acting on the bridge, reduced at the motor shaft; 

𝑀1(𝑡) is the external torque acting on the motor described by the piecewise function: 

 𝑀1(𝑡) = {
−𝑀2(𝑡),         𝑡 < 𝑡1
𝑀𝑏𝑟,      𝑡1 ≤ 𝑡 ≤ 𝑡2
−𝑀2(𝑡),        𝑡 > 𝑡2

} (2.7) 

in which: 

𝑡1 is the time when the brake is applied; 

𝑡2 is the time when the bridge stops. 

In the upcoming analyses the external torque 𝑀2(𝑡) is referred simply as 𝑀2 for the shake of simplicity in 

the formulas. 

2.3.2. Undamped system 

The equations of motion and the associated initial conditions of the undamped system are: 

 (
𝐽1 0
0 𝐽2

) ∙ (
𝑟̈1(𝑡)
𝑟̈2(𝑡)

) + (
𝐾1 −𝐾1
−𝐾1 𝐾1

) ∙ (
𝑟1(𝑡)
𝑟2(𝑡)

) = (
𝑀1(𝑡)
𝑀2

) (2.8) 
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with initial conditions: 

 𝑟1(0) = 𝑟1𝑖𝑛𝑖 , 𝑟2(0) = 𝑟2𝑖𝑛𝑖 (2.9) 

 𝑟̇1(0) = 𝜔𝑛𝑜𝑚 , 𝑟̇2(0) = 𝜔𝑛𝑜𝑚 (2.10) 

The system is described by two coupled equations of motion. Hence, the solution of the set of equations 

(2.8-2.10) is obtained using the modal analysis technique. Modal analysis is a mathematical technique 

which makes use of the orthogonality property of the mode shapes in linear dynamics to decouple a 

coupled system of equations. With this technique one switches the system of coupled equations in the 

real domain, to uncoupled equations in the modal domain in the absence of damping. Afterwards, in the 

modal domain, each equation is solved separately, regarding the corresponding modal degree of freedom. 

Finally, the solution of the unknown degrees of freedom, in the real domain, is obtained by using the 

superposition of the modes of vibrations. This is achieved with the following formula: 

 {𝑟} = [𝐸] ∙ {𝑟∗} (2.11) 

in which: 

{𝑟} is the vector of the unknown degrees of freedom in the real domain, in this case: 

 {𝑟} = (
𝑟1(𝑡)
𝑟2(𝑡)

) (2.12) 

[𝐸] is the eigenvector matrix of the system under consideration; 

{𝑟∗} is the vector of the degrees of freedom in the modal domain, and is equal to: 

 {𝑟∗} = (
𝑟1
∗(𝑡)

𝑟2
∗(𝑡)

) (2.13) 

The modal analysis is performed in the system and the torque on the torsional spring of the system is 

calculated using formula: 

 𝑇(𝑡) = 𝐾1 ∙ (𝑟1(𝑡) − 𝑟2(𝑡)) (2.14) 

The torque during the application of the brake is described with formula: 

 
𝑇(𝑡) =

𝐽2
𝐽1 + 𝐽2

∙ 𝑀𝑏𝑟 −
𝐽1

𝐽1 + 𝐽2
∙ 𝑀2 −

𝐽2
𝐽1 + 𝐽2

(𝑀𝑏𝑟 +𝑀2) ∙ cos(𝜔𝑛 ∙ (𝑡 − 𝑡1))

+ (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 −𝐾1 ∙ 𝑟2𝑖𝑛𝑖) ∙ cos(𝜔𝑛 ∙ 𝑡) 

(2.15) 
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which is valid in the timespan 𝑡1 < 𝑡 ≤ 𝑡2. 

In formula (2.15) 𝜔𝑛 is the natural frequency of the system with value: 

 𝜔𝑛 =
√𝐽1 + 𝐽2 ∙ √𝐾1

√𝐽1 ∙ √𝐽2
 (2.16) 

The system has two natural frequencies because it is composed of two masses. However, the first natural 

frequency is zero and describes the rigid body rotation of the system since the two masses are not 

connected to a boundary. Thus, it is practical to mention the second natural frequency of the system just 

as the natural frequency of it. 

The maximum torque at this phase of motion is: 

 
𝑇𝑚𝑎𝑥 =

𝐽2
𝐽1 + 𝐽2

∙ 𝑀𝑏𝑟 −
𝐽1

𝐽1 + 𝐽2
∙ 𝑀2 +

𝐽2
𝐽1 + 𝐽2

(𝑀𝑏𝑟 +𝑀2) + (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾1

∙ 𝑟2𝑖𝑛𝑖) ∙ cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) 

(2.17) 

with 

𝑡𝑚𝑎𝑥 the time of the maximum of equation (2.15) which is calculated by solving equation in terms of t: 

 cos(𝜔𝑛 ∙ (𝑡 − 𝑡1)) = −1 (2.18) 

The solution of equation (2.18) is: 

 𝑡𝑚𝑎𝑥 = 𝑡 =
𝜋

𝜔𝑛
+ 𝑡1 (2.19) 

On the right-hand side of formula (2.17) the term (
𝐽2

𝐽1+𝐽2
∙ 𝑀2) is added and subtracted. 

 
𝑇𝑚𝑎𝑥 =

𝐽2
𝐽1 + 𝐽2

∙ 𝑀𝑏𝑟 −
𝐽1

𝐽1 + 𝐽2
∙ 𝑀2 +

𝐽2
𝐽1 + 𝐽2

∙ 𝑀2 −
𝐽2

𝐽1 + 𝐽2
∙ 𝑀2 +

𝐽2
𝐽1 + 𝐽2

(𝑀𝑏𝑟

−𝑀2) + (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾1 ∙ 𝑟2𝑖𝑛𝑖) ∙ cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) 

(2.20) 

The summation of the terms (−
𝐽1

𝐽1+𝐽2
∙ 𝑀2) and (−

𝐽2

𝐽1+𝐽2
∙ 𝑀2) gives (−𝛭2) which substituted in the 

equation (2.20) gives: 

 
𝑇𝑚𝑎𝑥 =

𝐽2
𝐽1 + 𝐽2

∙ 𝑀𝑏𝑟 +
𝐽2

𝐽1 + 𝐽2
∙ 𝑀2 −𝑀2 +

𝐽2
𝐽1 + 𝐽2

(𝑀𝑏𝑟 +𝑀2) + (𝑀2 + 𝐾1

∙ 𝑟1𝑖𝑛𝑖 −𝐾1 ∙ 𝑟2𝑖𝑛𝑖) ∙ cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) 

(2.21) 
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Formula (2.21) is simplified into: 

 
𝑇𝑚𝑎𝑥 =

2 ∙ 𝐽2
𝐽1 + 𝐽2

∙ 𝑀𝑏𝑟 +
2 ∙ 𝐽2
𝐽1 + 𝐽2

∙ 𝑀2 −𝑀2 + (𝑀2 +𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾1 ∙ 𝑟2𝑖𝑛𝑖)

∙ cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) 

(2.22) 

Introducing the factor 𝜀 =
𝐽2

𝐽1+𝐽2
 formula (2.22) becomes: 

 
𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 2 ∙ 𝜀 ∙ 𝑀2 −𝑀2 + (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾1 ∙ 𝑟2𝑖𝑛𝑖)

∙ cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) 
(2.23) 

The harmonic term of equation (2.23) is the influence of the initial conditions. The maximum value of the 

harmonic part is when cos(𝜔𝑛 ∙ 𝑡𝑚𝑎𝑥) = 1 which leads in: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 2 ∙ 𝜀 ∙ 𝑀2 + (𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾1 ∙ 𝑟2𝑖𝑛𝑖) (2.24) 

The last term of equation (2.24) is the spring force at the beginning of the dynamic analysis of the system. 

The external forces at that state are 𝑀2 at the side of the bridge and −𝑀2 at the side of the motor. In 

addition, the two masses are rotating with constant speed. Given these conditions the spring force 𝐾1 ∙

(𝑟2𝑖𝑛𝑖 − 𝑟1𝑖𝑛𝑖) is equal to 𝑀2 according to the 1st Newtons law. Therefore, formula (2.24) is rewritten in 

the form: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 2 ∙ 𝜀 ∙ 𝑀2 −𝑀2 (2.25) 

Formula (2.25) gives the maximum torque at the motor shaft during the application of the brake with the 

assumption that the brake torque and the external load act on the same direction. In case the brake 

torque and the external load act on opposite directions the maximum torque is then: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 − 2 ∙ 𝜀 ∙ 𝑀2 +𝑀2 (2.26) 

To cover both cases in one formula equations (2.25) and (2.26) result in: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 ± 2 ∙ 𝜀 ∙ 𝑀2 ∓𝑀2 (2.27) 

With the use of the absolute value function, formula (2.27) can be simplified into: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + |1 − 2 ∙ 𝜀| ∙ 𝑀2 (2.28) 

Formula (2.28) seems to be almost the same as the one according to the standards (2.1) with the only 

difference that the dynamic factor in formula (2.28) is equal to 2 whereas in formula (2.1) is 1,9. 
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The torque after the bridge is stop is described with formula: 

 
𝑇(𝑡) = 𝑀2 −

𝐽2
𝐽1 + 𝐽2

(𝑀𝑏𝑟 +𝑀2) ∙ cos(𝜔𝑛 ∙ (𝑡 − 𝑡1)) +
𝐽2

𝐽1 + 𝐽2
(𝑀𝑏𝑟 +𝑀2)

∙ cos(𝜔𝑛 ∙ (𝑡 − 𝑡2)) + (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 −𝐾1 ∙ 𝑟2𝑖𝑛𝑖) ∙ cos(𝜔𝑛 ∙ 𝑡) 

(2.29) 

which is valid in the timespan 𝑡 > 𝑡2 

The last term of formula (2.29) as explained previously stepping forward from formula (2.24) to (2.25) 

reduces to zero. In addition, the factor 𝜀 =
𝐽2

𝐽1+𝐽2
 is introduced in formula (2.29) which yields: 

 
𝑇(𝑡) = 𝑀2 − 𝜀 ∙ (𝑀𝑏𝑟 +𝑀2) ∙ cos(𝜔𝑛 ∙ (𝑡 − 𝑡1)) + 𝜀 ∙ (𝑀𝑏𝑟 +𝑀2)

∙ cos(𝜔𝑛 ∙ (𝑡 − 𝑡2)) 
(2.30) 

The worst-case scenario takes place when the peaks of the two harmonic parts coincide, which result in: 

 𝑇𝑚𝑎𝑥 = 2 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 2 ∙ 𝜀 ∙ 𝑀2 +𝑀2 (2.31) 

Through comparison of formulas (2.31) and (2.2) a strong correlation is observed, with the only difference 

in the dynamic factor, which in case of the undamped dynamic system is 2 whereas in the formula of the 

standard is 1,5.  

The contrast in the dynamic factors of the derived formulas (2.28), (2.31) and the corresponding ones 

stated in the standard (2.1), (2.2), generates the idea to perform the same analysis in a system with viscous 

damping so as to achieve the same formula as the one mentioned in the standard. 

2.3.3. Damped system 

The analysis as carried out previously is followed also in this chapter with the only difference that the 

equations of motion contain terms accounting for the damping of the system. This damping is assumed 

to be of viscous type. The damping coefficient of the system is defined as linearly proportional to the 

natural frequency of the system. When, switching from the real domain to the modal domain each 

equation of motion has one natural frequency and is decoupled of the others. At this stage the modal 

damping matrix can be derived in the following manner: 

 𝐶∗ = 𝑀∗ ∙ 2 ∙ 𝜉 ∙ (
𝜔1
𝜔2
) = (

𝑚11
∗ 0

0 𝑚22
∗ ) ∙ 2 ∙ 𝜉 ∙ (

𝜔1
𝜔2
) (2.32) 

in which: 

ξ is the damping ratio; 
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𝜔1 and 𝜔2 are the natural frequencies of the system; 

𝑀∗ is the modal mass matrix of the system. 

The assumption of the same damping ratio at each mode is scientifically acceptable. Since the analysis is 

at the stage of the modal domain and the equations of motion are decoupled the modal mass matrix is 

diagonal and also the modal damping matrix. The damping coefficients in the real domain are obtained 

using the inverse process switching from modal domain to the real one (Eq. (2.33)). 

 𝐶 = (𝐸𝑇)−1 ∙ 𝐶∗ ∙ 𝐸−1 (2.33) 

The assumptions regarding the modal damping matrix do not conclude all of the times in realistic results 

in real domain. Only after evaluation, one can interpret if the damping coefficients in the real domain 

have a reasonable physical meaning. For the system under consideration and the assumptions made 

previously the damping matrix in the real domain yields: 

 𝐶 =

(

 
 
 
 
 
2 ∙ √𝐽1 + 𝐽2 ∙ (𝐽2 +

𝐽2
2

𝐽1
) ∙ √𝐾1 ∙ 𝜉

√𝐽1 ∙ √𝐽2 ∙ (1 +
𝐽2
𝐽1
)2

−
2 ∙ √𝐽1 + 𝐽2 ∙ (𝐽2 +

𝐽2
2

𝐽1
) ∙ √𝐾1 ∙ 𝜉

√𝐽1 ∙ √𝐽2 ∙ (1 +
𝐽2
𝐽1
)2

−
2 ∙ √𝐽1 + 𝐽2 ∙ (𝐽2 +

𝐽2
2

𝐽1
) ∙ √𝐾1 ∙ 𝜉

√𝐽1 ∙ √𝐽2 ∙ (1 +
𝐽2
𝐽1
)2

2 ∙ √𝐽1 + 𝐽2 ∙ (𝐽2 +
𝐽2
2

𝐽1
) ∙ √𝐾1 ∙ 𝜉

√𝐽1 ∙ √𝐽2 ∙ (1 +
𝐽2
𝐽1
)2 )

 
 
 
 
 

 (2.34) 

The resulting damping matrix is symmetric and it is according to the assumed form in the equations of 

motion (2.5). Therefore, it is verified that the assumptions made previously are valid for the system under 

consideration. The entries of the damping matrix can be simplified in a more compact form after 

evaluation. The first entry of the matrix is called 𝐶𝑑 and is rewritten below: 

 𝐶𝑑 =
2 ∙ √𝐽1 + 𝐽2 ∙ (𝐽2 +

𝐽2
2

𝐽1
) ∙ √𝐾1 ∙ 𝜉

√𝐽1 ∙ √𝐽2 ∙ (1 +
𝐽2
𝐽1
)2

 (2.35) 

The fraction 
√𝐽1+𝐽2∙√𝐶1

√𝐽1∙√𝐽2
 is collected in formula (2.35) and is substituted with 𝜔𝑛 according to formula (2.16). 

Therefore, (2.35) becomes: 

 𝐶𝑑 =
2 ∙ 𝜔𝑛 ∙ (𝐽2 +

𝐽2
2

𝐽1
) ∙ 𝜉

(1 +
𝐽2
𝐽1
)2

 (2.36) 
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The mass moment of inertia of the bridge 𝐽2 can be collected out of the bracket in the numerator of (2.36) 

as a common factor. 

 𝐶𝑑 =
2 ∙ 𝜔𝑛 ∙ 𝐽2 ∙ (1 +

𝐽2
𝐽1
) ∙ 𝜉

(1 +
𝐽2
𝐽1
)2

 (2.37) 

The term (1 +
𝐽2

𝐽1
) cancels the square of the bracket in the denominator in (2.37) and then the damping 

coefficient turns into: 

 𝐶𝑑 =
2 ∙ 𝜔𝑛 ∙ 𝐽2 ∙ 𝜉

(1 +
𝐽2
𝐽1
)

 (2.38) 

The nominator and the denominator of (2.38) are multiplied with the term (𝐽1 ∙ 𝐾1): 

 𝐶𝑑 =
𝐽1 ∙ 𝐾1 ∙ 2 ∙ 𝜔𝑛 ∙ 𝐽2 ∙ 𝜉

𝐽1 ∙ 𝐾1 ∙ (1 +
𝐽2
𝐽1
)

=
2 ∙ 𝜔𝑛 ∙ 𝐽1 ∙ 𝐽2 ∙ 𝐾1 ∙ 𝜉

𝐾1 ∙ (𝐽1 + 𝐽2)
 (2.39) 

The fraction 
𝐽1∙𝐽2

𝐾1∙(𝐽1+𝐽2)
 in (2.39) is equal to 

1

𝜔𝑛
2 based on the definition of the natural frequency of the 

system (2.16). Substituting it in (2.39) yields: 

 𝐶𝑑 =
2 ∙ 𝜔𝑛 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛
2

=
2 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛
 (2.40) 

The equations of motion and the associated initial conditions of the system with viscus damping taken 

into account are: 

 
(
𝐽1 0
0 𝐽2

) ∙ (
𝑟̈1(𝑡)

𝑟̈2(𝑡)
) +

(

 
 

2 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛
−
2 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛

−
2 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛

2 ∙ 𝐾1 ∙ 𝜉

𝜔𝑛 )

 
 
∙ (
𝑟̇1(𝑡)

𝑟̇2(𝑡)
) + (

𝐾1 −𝐾1
−𝐾1 𝐾1

) ∙ (
𝑟1(𝑡)
𝑟2(𝑡)

)

= (
𝑀1(𝑡)
𝑀2

) 

(2.41) 

with initial conditions: 

 𝑟1(0) = 𝑟1𝑖𝑛𝑖 , 𝑟2(0) = 𝑟2𝑖𝑛𝑖 (2.42) 

 𝑟̇1(0) = 𝜔𝑛𝑜𝑚 , 𝑟̇2(0) = 𝜔𝑛𝑜𝑚 (2.43) 
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where 𝑀1(𝑡) is the same as indicated in (2.7). 

The modal analysis technique is again implemented and the torque on the torsional spring of the system 

is calculated using formula: 

 𝑇(𝑡) = 𝐾1 ∙ (𝑟1(𝑡) − 𝑟2(𝑡)) + 𝐶𝑑 ∙ (𝑟̇1(𝑡) − 𝑟̇2(𝑡)) (2.44) 

The torque during the application of the brake is described with formula: 

 

𝑇(𝑡) =
𝐽2

𝐽1 + 𝐽2
∙ 𝑀𝑏𝑟 −

𝐽1
𝐽1 + 𝐽2

∙ 𝑀2 + 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡1)(𝐴1 ∙ cos(𝜔1 ∙ (𝑡 − 𝑡1)) + 𝛣1

∙ sin(𝜔1 ∙ (𝑡 − 𝑡1))) + 𝑒
−𝜔𝑛∙𝜉∙𝑡(𝐴2 ∙ cos(𝜔1 ∙ 𝑡) + 𝛣2

∙ sin(𝜔1 ∙ 𝑡)) 

(2.45) 

with: 

 𝑡1 < 𝑡 ≤ 𝑡2 (2.46) 

 𝜔1 = 𝜔𝑛 ∙ √1 − 𝜉
2 (2.47) 

 𝐴1 = −𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (1 +
𝐶𝑑 ∙ 𝜉 ∙ 𝜔1

𝐶1 ∙ √1 − 𝜉
2
−
𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛

𝐶1
) (2.48) 

 𝐵1 = −𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔1
𝐶1

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) (2.49) 

 𝐴2 = (𝑀2 + 𝐾1 ∙ 𝑟1𝑖𝑛𝑖 −𝐾2 ∙ 𝑟2𝑖𝑛𝑖) ∙ (1 +
𝐶𝑑 ∙ 𝜉 ∙ 𝜔1

𝐶1 ∙ √1 − 𝜉
2
−
𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛

𝐶1
) (2.50) 

 𝐵2 = (𝑀2 +𝐾1 ∙ 𝑟1𝑖𝑛𝑖 − 𝐾2 ∙ 𝑟2𝑖𝑛𝑖) ∙ (
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔1
𝐶1

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) (2.51) 

In formula (2.45) the terms that compose it can be grouped into three categories: 

1. Time independent terms; 

2. Decay oscillating part with respect to t=0; 

3. Decay oscillating part with respect to t=t1. 

Under the assumption that the brake is applied quite some time after 𝑡 = 0, it can be assumed that the 

terms multiplied with 𝑒−𝜔𝑛∙𝜉∙𝑡 are fully damped. This implies that these terms in formula (2.45) are 

disregarded for t ≥ t1.  
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The constants A1 and B1 in formulas (2.48, 2.49) are simplified in a more compact form. Substituting ω1 

according to (2.47) into (2.48) the right hand-side bracket becomes: 

 (1 +
𝐶𝑑 ∙ 𝜉 ∙ 𝜔1

𝐶1 ∙ √1 − 𝜉
2
−
𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛

𝐶1
) = (1 +

𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛
𝐶1

−
𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛

𝐶1
) = 1 (2.52) 

The result of formula (2.52) yields that constant A1 in formula (2.48) turns into: 

 𝐴1 = −𝜀(𝑀𝑏𝑟 +𝑀2) (2.53) 

Furthermore, formula (2.47) is substituted in the right-hand side bracket of formula (2.49): 

 

(
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔1
𝐶1

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
)

= (
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔𝑛 ∙ √1 − 𝜉

2

𝐶1
−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) 

(2.54) 

The term √1 − 𝜉2 is multiplied in both nominator and the denominator of the middle fraction in formula 

(2.54) and it is evaluated further: 

 (
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔𝑛 ∙ √1 − 𝜉

2 ∙ √1 − 𝜉2

𝐶1 ∙ √1 − 𝜉
2

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) (2.55) 

 (
𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔𝑛 ∙ (1 − 𝜉

2)

𝐶1 ∙ √1 − 𝜉
2

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) (2.56) 

The distributive property at the middle fraction in formula (2.56) is performed and the counter terms are 

canceled resulting in: 

 

(
𝜉

√1 − 𝜉2
−

𝐶𝑑 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
+
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
)

= (
𝜉

√1 − 𝜉2
−

𝐶𝑑 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) 

(2.57) 
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In the right hand-side of equation (2.57) the damping coefficient 𝐶𝑑 is substituted according to the formula 

(2.40) and is simplified further: 

 (
𝜉

√1 − 𝜉2
−

2 ∙ 𝐶1 ∙ 𝜉
𝜔𝑛

∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) (2.58) 

 (
𝜉

√1 − 𝜉2
−

2 ∙ 𝜉

√1 − 𝜉2
) = −

𝜉

√1 − 𝜉2
 (2.59) 

Following the evaluation performed in formulas (2.54-2.59) the bracket on the right hand-side in formula 

(2.49) is turn into the fraction depicted in formula (2.59). Hence the coefficient B1 in formula (2.49) has 

turn into: 

 𝐵1 = −𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (−
𝜉

√1 − 𝜉2
) (2.60) 

The constant part of equation (2.45) is: 

 
𝐽2

𝐽1 + 𝐽2
∙ 𝑀𝑏𝑟 −

𝐽1
𝐽1 + 𝐽2

∙ 𝑀2 (2.61) 

The term 
𝐽2

𝐽1+𝐽2
∙ 𝑀2 is added and subtracted in (2.61) 

 
𝐽2

𝐽1 + 𝐽2
∙ 𝑀𝑏𝑟 −

𝐽1
𝐽1 + 𝐽2

∙ 𝑀2 −
𝐽2

𝐽1 + 𝐽2
∙ 𝑀2 +

𝐽2
𝐽1 + 𝐽2

∙ 𝑀2 (2.62) 

The summation −
𝐽1

𝐽1+𝐽2
∙ 𝑀2 −

𝐽2

𝐽1+𝐽2
∙ 𝑀2 is equal to −𝑀2. Substituting it into (2.62) and also introducing 

the factor 𝜀 =
𝐽2

𝐽1+𝐽2
 , it yields: 

 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 (2.63) 

To sum up, the resulting torque on the torsional spring of the system during the application of the brake 

is rewritten and updated based on the evaluation performed in equations (2.52-2.63): 

 

𝑇(𝑡) = 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 + 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡1)(−𝜀(𝑀𝑏𝑟 +𝑀2) ∙ cos(𝜔1 ∙ (𝑡 − 𝑡1))

+ −𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (−
𝜉

√1 − 𝜉2
) ∙ sin(𝜔1 ∙ (𝑡 − 𝑡1))) 

(2.64) 



Existing standard and design rules 

   23 

The factor 𝜀(𝑀𝑏𝑟 +𝑀2) is taken out of the bracket in (2.64) as common: 

 

𝑇(𝑡) = 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 − 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡1)(cos(𝜔1 ∙ (𝑡 − 𝑡1))

−
𝜉

√1 − 𝜉2
∙ sin(𝜔1 ∙ (𝑡 − 𝑡1))) 

(2.65) 

The summation of the harmonic functions in the bracket of formula (2.65) can be compacted more 

introducing a phase shift and an amplitude based on the following mathematical relationships: 

 𝐴 ∙ cos(𝜔 ∙ 𝑡) + 𝐵 ∙ sin(𝜔 ∙ 𝑡) = 𝐴0 ∙ cos(𝜔 ∙ 𝑡 − 𝜑1) (2.66) 

with 

 𝐴0 = √𝐴
2 + 𝐵2 (2.67) 

 𝜑1 = tan
−1(

𝐵

𝐴
) (2.68) 

Then formula (2.65) yields: 

 
𝑇(𝑡) = 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 − 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 𝑒

−𝜔𝑛∙𝜉∙(𝑡−𝑡1) ∙ √
1 + 𝜉2

1 − 𝜉2

∙ cos(𝜔1 ∙ (𝑡 − 𝑡1) − 𝜑1) 

(2.69) 

with 

 𝜑1 = tan
−1(−

𝜉

√1 − 𝜉2
) (2.70) 

The maximum value of equations (2.69) is obtained when: 

 cos(𝜔1 ∙ (𝑡 − 𝑡1) − 𝜑1) = −1 (2.71) 

Introducing the new unknown 𝑡𝑛𝑒𝑤 = 𝑡 − 𝑡1 in the equation (2.71) and solving for it, it is obtained: 

 𝑡𝑛𝑒𝑤 =
𝜋 + 𝜑1
𝜔1

 (2.72) 
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Substituting formula (2.72) into (2.69) the maximum torque during brake at the motor shaft is: 

 𝑇𝑚𝑎𝑥 = 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 + 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 𝑒
−𝜔𝑛∙𝜉∙

𝜋+𝜑1
𝜔1 ∙ √

1 + 𝜉2

1 − 𝜉2
 (2.73) 

For 𝜉 = 0,0344 the multiplication 𝑒
−𝜔𝑛∙𝜉∙

𝜋+𝜑1
𝜔1 ∙ √

1+𝜉2

1−𝜉2
= 0,901 ≅ 0,9 and the equation (2.73) turns into: 

 𝑇𝑚𝑎𝑥 = 𝜀 ∙ 𝑀𝑏𝑟 + 𝜀 ∙ 𝑀2 −𝑀2 + 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 0,9 (2.74) 

 𝑇𝑚𝑎𝑥 = 1,9 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 1,9 ∙ 𝜀 ∙ 𝑀2 −𝑀2 (2.75) 

In case the wind and the brake act on different direction equation (2.75) becomes: 

 𝑇𝑚𝑎𝑥 = 1,9 ∙ 𝜀 ∙ 𝑀𝑏𝑟 − 1,9 ∙ 𝜀 ∙ 𝑀2 +𝑀2 (2.76) 

Both cases in equations (2.75) and (2.76) are included in one formula: 

 𝑇𝑚𝑎𝑥 = 1,9 ∙ 𝜀 ∙ 𝑀𝑏𝑟 ± 1,9 ∙ 𝜀 ∙ 𝑀2 ∓𝑀2 (2.77) 

With the use of the absolute value function, formula (2.77) can be simplified into: 

 𝑇𝑚𝑎𝑥 = 1,9 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + |1 − 1,9 ∙ 𝜀| ∙ 𝑀2 (2.78) 

The aforementioned analysis ended up in the same formula as the one stated in the standards (2.1) for 

the maximum torque at the motor shaft during braking of the system. Moreover, with this analysis it is 

discovered the damping ratio assumed by the standards. 

In the damped system the analysis regarding the load case “Recoil after brake” is also performed. The 

torque at the motor shaft regarding this situation is given by: 

 

𝑇(𝑡) = 𝑀2 + 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡1)(𝐴1 ∙ cos(𝜔1 ∙ (𝑡 − 𝑡1)) + 𝛣1 ∙ sin(𝜔1 ∙ (𝑡 − 𝑡1)))

+ 𝑒−𝜔𝑛∙𝜉∙𝑡(𝐴2 ∙ cos(𝜔1 ∙ 𝑡) + 𝛣2 ∙ sin(𝜔1 ∙ 𝑡)) + 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡2)(𝐴3

∙ cos(𝜔1 ∙ (𝑡 − 𝑡2)) + 𝛣3 ∙ sin(𝜔1 ∙ (𝑡 − 𝑡2))) 

(2.79) 
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with: 

 𝑡 > 𝑡2 (2.80) 

 
𝐴3 = 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (1 +

𝐶𝑑 ∙ 𝜉 ∙ 𝜔1

𝐶1 ∙ √1 − 𝜉
2
−
𝐶𝑑 ∙ 𝜉 ∙ 𝜔𝑛

𝐶1
) 

(2.81) 

 
𝐵3 = 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ (

𝜉

√1 − 𝜉2
−
𝐶𝑑 ∙ 𝜔1
𝐶1

−
𝐶𝑑 ∙ 𝜉

2 ∙ 𝜔𝑛

𝐶1 ∙ √1 − 𝜉
2
) 

(2.82) 

The coefficients 𝐴1, 𝐵1, 𝐴2, 𝐵2 are the same as determined in equations (2.48-2.51), while 𝜔1 is 

introduced in (2.47). Following the same methodology as depicted through formulas (2.52-2.69), the 

equation (2.79) can be simplified into: 

 

𝑇(𝑡) = 𝑀2 − 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡1) ∙ √

1 + 𝜉2

1 − 𝜉2
∙ cos(𝜔1 ∙ (𝑡 − 𝑡1) − 𝜑1)

+ 𝜀(𝑀𝑏𝑟 +𝑀2) ∙ 𝑒
−𝜔𝑛∙𝜉∙(𝑡−𝑡2) ∙ √

1 + 𝜉2

1 − 𝜉2
∙ cos(𝜔1 ∙ (𝑡 − 𝑡2) − 𝜑1) 

(2.83) 

The time dependent parts of formula (2.83) follows the same decay oscillation which is illustrated in Figure 

2.2.  

 

Figure 2.2: Decay oscillatory parts of Eq. (2.83) with damping ratio 3,44% 
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In order to elaborate the decay oscillations, the multiplications 𝜔𝑛 ∙ (𝑡 − 𝑡1) and 𝜔𝑛 ∙ (𝑡 − 𝑡2) are 

substituted with the variables x1 and x2 respectively. The most unfavorable scenario, which results to the 

highest torque at the motor shaft in this phase of motion, is when the first maximum of each of the two 

time-dependent parts coincide. This results in: 

 𝑇𝑚𝑎𝑥 = 𝑀2 + 0,809 ∙ 𝜀(𝑀𝑏𝑟 +𝑀2) + 0,901 ∙ 𝜀(𝑀𝑏𝑟 +𝑀2) (2.84) 

 𝑇𝑚𝑎𝑥 = 1,709 ∙ 𝜀 ∙ 𝑀𝑏𝑟 + 1,709 ∙ 𝜀 ∙ 𝑀2 +𝑀2 (2.85) 

Through comparison of formula (2.85) with formula (2.2) it is seen that the derived one is more 

conservative than the one of the standards, resulting to higher torque. However, the occurrence of the 

scenario where formula (2.85) is based has a very low probability of occurrence, since the peaks of the 

two time-dependent parts have to be coincide. In all other cases where the peak of the second time 

depend part does not coincide with the peak of the first one in equation (2.83) results in dynamic factors 

that go closer to 1,5 or lower than that one. Thus, due to the very low probability of the scenario behind 

formula (2.85) it can be concluded that the formula of the standards (2.2) is a very good approximation of 

the loading case “Recoil after brake”. 

2.4. Sensitivity analysis regarding the number of DoF taken into account 

The aforementioned study carried out in the basis of the existing standard and the reproduction of the 

design formulas provides insight regarding the dynamic model of the system movable bridge-machinery. 

This is achieved in terms of input parameters such as modeling of external loading, the assumed damping 

ratio and the resulting decisive dynamic loads on the system. It is also important to examine the influence 

of the number of degrees of freedom taken into account in the dynamic model. 

First, it is compared the response of a 2-DoF dynamic model to that of a single degree of freedom (SDoF) 

one. In reality the velocity of the electric motor can be programmed and predefined. Hence, taking the 

integral of the velocity, the angle of the motor can be calculated. In this case the first degree of freedom 

of the system is already defined. Therefore, the first mass can be removed and substituted by a boundary 

with prescribed rotation and rotational velocity. Then, the system of equations from two degrees is 

reduced to one resulting into a SDoF system. 

Afterwards, it is decided to explore the influence of increasing the degrees of freedom by adding inertia 

terms and associated degrees of freedom in the system and split the stiffness of the machinery into sub 

parts. 

The major input parameters of the upcoming analysis are depicted in Table 2.3. 
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Table 2.3: Input parameters for the sensitivity analysis 

Mass moment of inertia of the 
motor 

𝐽1 0.837 

Mass moment of inertia of the 
bridge reduced at the motor 

shaft 
𝐽2 0.443 

Total stiffness of the machinery 
reduced at the motor shaft 

𝐾1 7.111 

Nominal speed of the motor 𝜔𝑛𝑜𝑚 99.82 

Damping ratio of the system 𝜉 0,0344 

The time the motor needs to reach its nominal speed is assumed to be 14 sec. Therefore, the acceleration 

of the motor can be determined as: 

 𝑎𝑎𝑐 =
𝜔𝑛𝑜𝑚
14

 (2.86) 

The brake in the system is applied at 60sec. The braking duration varies. The deceleration of the system 

due to application of the brake is determined in the same manner as the acceleration. The formula to 

determine the deceleration is: 

 𝑎𝑏𝑟 = −
𝜔𝑛𝑜𝑚
𝑡𝑏𝑟

 (2.87) 

where 𝑡𝑏𝑟 is the time required the bridge to stop. 

The external torque on the bridge is not calculated in detail in these analyses, since the main attention is 

paid at the effect of the degrees of freedom on the decisive loads and not their exact value. However, the 

order of magnitude of the maximum wind load is based on realistic wind values. The upcoming analyses 

are carried out for wind under the bridge and the maximum value of the torque due to wind is assumed  

-250 Nm. Moreover, it is assumed that the wind torque increases linear from t=0s to t=30s to reach its 

maximum value and then is kept constant. The behavior of the torque acting on the bridge due to wind 

load is illustrated in Figure 2.3. 
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Figure 2.3: External torque due to wind M2(t) 

2.4.1. 2-DoF model versus SDoF model 

 

Figure 2.4: 2-Dof rotational dynamic model with viscous damping 

The equations of motion for the 2-DoF dynamic model (Figure 2.4) of the system are: 

 (
𝐽1 0
0 𝐽2

) ∙ (
𝑟̈1(𝑡)
𝑟̈2(𝑡)

) + (
𝐶𝑑 −𝐶𝑑
−𝐶𝑑 𝐶𝑑

) ∙ (
𝑟̇1(𝑡)
𝑟̇2(𝑡)

) + (
𝐾1 −𝐾1
−𝐾1 𝐾1

) ∙ (
𝑟1(𝑡)
𝑟2(𝑡)

) = (
𝑀1(𝑡)
𝑀2(𝑡)

) (2.88) 

with 

𝐶𝑑 calculated according to formula (2.40). 
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The external torque at the motor side is: 

 𝑀1(𝑡) =

{
 

 
𝑎𝑎𝑐 ∙ (𝐽1 + 𝐽2) − 𝑀2(𝑡),                        0 ≤ 𝑡 ≤ 14𝑠

         −𝑀2(𝑡),                                      14𝑠 < 𝑡 ≤ 60𝑠

𝑎𝑏𝑟 ∙ (𝐽1 + 𝐽2) −𝑀2(𝑡), 60𝑠 < 𝑡 ≤ 60𝑠 + 𝑡𝑏𝑟
       −𝑀2(𝑡),                                           𝑡 > 60𝑠 + 𝑡𝑏𝑟}

 

 
 (2.89) 

The external torque at the bridge side is already depicted in Figure 2.3 and its function is: 

 𝑀2(𝑡) = {
−
250 ∙ 𝑡

30
,                        0 ≤ 𝑡 ≤ 30𝑠

 − 250,                                   𝑡 > 30𝑠
} (2.90) 

 

Figure 2.5: SDoF rotational dynamic model 

The equation of motion of the SDoF dynamic model in Figure 2.5 is: 

 𝐽2 ∙ 𝑟̈2 + 𝐶́𝑑 ∙ (𝑟̇2 − 𝑣𝑒𝑙(𝑡)) + 𝐾1 ∙ (𝑟2 − 𝑟𝑜𝑡(𝑡)) = 𝑀2(𝑡) (2.91) 

with 

 𝐶́𝑑 = 2 ∙ 𝜉 ∙ √
𝐾1
𝐽2
∙ 𝐽2 (2.92) 

 𝑣𝑒𝑙(𝑡) = ∫{
𝑎𝑎𝑐 ,                  0 ≤ 𝑡 ≤ 14𝑠
𝑎𝑏𝑟,   60𝑠 < 𝑡 ≤ 60𝑠 + 𝑡𝑏𝑟

}  𝑑𝑡 (2.93) 

 𝑟𝑜𝑡(𝑡) = ∫𝑣𝑒𝑙(𝑡) 𝑑𝑡 (2.94) 
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Sign convention of the analysis 

The coordinate system of the analysis is as shown in Figure 2.6. 

 

Figure 2.6: Assumed coordinate system of the analyses 

The arrangement of the bridge with wind load under while opens is depicted in Figure 2.7. 

 

Figure 2.7: Assumed bridge configuration while opens and external wind load 

According to the assumed coordinate system and the bridge configuration in Figure 2.6 and Figure 2.7 the 

angle of the bridge while it opens and the external torque due to wind have a negative sign. In addition, 

the angular velocity of the motor and its associated angle have a negative sign too, during the opening of 

the bridge. To explain the signs of external loads, the 2-DoF system with the assumed coordinate system 

is sketched in different phases of motion. 
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Figure 2.8: Coordinate system and external loading at different phases of motion. Left: Acceleration of the system. Middle: 

System rotating with constant speed. Right: Braking of the system 

The analysis is performed for several braking durations. The maximum torque during the application of 

the brake is calculated in the two dynamic models and it is compared with the outcome of formula (2.1) 

of the existing standard. The results of the analyses are summarized in the following table. 

Table 2.4: Results of analyses carried out in 2-DoF, SDoF model and formula (2.1) of the standard NEN 6786:2001 (2001) 

Braking duration (𝑡𝑏𝑟) Max Torque 2-DoF Max Torque SDoF Vobb formula 

1s 334,009Nm 333,982Nm 334,018Nm 

2s 292,008Nm 291,981Nm 292,009Nm 

3s 278,007Nm 277,981Nm 278,006Nm 

5s 266,807Nm 266,78Nm 266,804Nm 

The results of Table 2.4 indicate that both 2-DoF and SDoF dynamic models can be used to calculate the 

maximum torque at the motor shaft during brake. Therefore, it depends on the discretion of the engineer 

which of these two alternatives will be used for the dynamic analysis of the system. 

2.4.2. 3-DoF & 4-DoF model versus 2-DoF model 

The possibility of increasing the degrees of freedom in the system is considered in this sub-section. As it 

is already mentioned the proposed dynamic model consists of two degrees of freedom, the electric motor 

and the bridge, connected with a torsional spring which represents the total stiffness of the machinery. 

The analyses are performed at the level of the motor shaft. Therefore, all input parameters are reduced 

at that level using the associated transmission factors.  

The proposed dynamic model seems to be a simplification of the real structure, since there are lots of 

elements in the system with associated inertias which are not taken into account. Thus, it is decided to 

perform analyses in linear models with increasing number of degrees of freedom that are taken into 

account. Prerequisite of these analyses is to study the order magnitude of these additional intermediate 

inertias. The review that is carried out is based on technical drawings, and the inertias of the intermediate 

shafts are calculated roughly and then reduced at the level of the motor shaft. It is concluded that the 
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intermediate inertias of the system are in the order of magnitude of 0,1% compared to inertia of the 

motor or the reduced one of the bridge. 

The order of magnitude of the intermediate inertias of the system is so small, and the reason of discarding 

them from the equations of motion is obvious. However, for the validation of this impression, dynamic 

analyses are performed in dynamic models of three and four degrees of freedom. In these models, 

additional intermediate inertia terms are considered, with magnitudes varying in the range of 

(0,1% ∙ 𝐽2 ÷ 2% ∙ 𝐽2).  

In addition, since these additional degrees of freedom are placed intermediate of the two major ones, the 

stiffness and the damping of the machinery have to be split up. To do so, the formula regarding springs in 

series is implemented. The total stiffness of the machinery, as calculated in the 2-DoF dynamic model, is 

split into two or three springs in series according to: 

 
1

𝐾1,2𝑑
=

1

𝐾1,3𝑑
+

1

𝐾2,3𝑑
 (2.95) 

 
1

𝐾1,2𝑑
=

1

𝐾1,4𝑑
+

1

𝐾2,4𝑑
+

1

𝐾3,4𝑑
 (2.96) 

In formulas (2.95) and (2.96) the following relations are held: 

 
1

𝐾1,3𝑑
= 𝑓𝑎𝑐𝑡1,3𝑑 ∙

1

𝐾1,2𝑑
 (2.97) 

 
1

𝐾2,3𝑑
=

1

𝐾1,2𝑑
−

1

𝐾1,3𝑑
 (2.98) 

 
1

𝐾1,4𝑑
= 𝑓𝑎𝑐𝑡1,4𝑑 ∙

1

𝐾1,2𝑑
 (2.99) 

 
1

𝐾2,4𝑑
= 𝑓𝑎𝑐𝑡2,4𝑑 ∙

1

𝐾1,2𝑑
 (2.100) 

 
1

𝐾3,4𝑑
=

1

𝐾1,2𝑑
−

1

𝐾1,4𝑑
−

1

𝐾2,4𝑑
 (2.101) 

where 

𝑓𝑎𝑐𝑡1,3𝑑 is the percentage of the total stiffness of the machinery (𝐾1,2𝑑) that is assigned to the stiffness 

of the first spring of the three degrees of freedom model; 

𝑓𝑎𝑐𝑡1,4𝑑 is the percentage of the total stiffness of the machinery (𝐾1,2𝑑) that is assigned to the stiffness 

of the first spring of the four degrees of freedom model; 
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𝑓𝑎𝑐𝑡2,4𝑑 is the percentage of the total stiffness of the machinery (𝐾1,2𝑑) that is assigned to the stiffness 

of the second spring of the four degrees of freedom model. 

In the same manner, the damping coefficient of the 2-DoF model is split. Varying the percentages in 

formulas (2.97, 2.99, 2.100), the division of the initial spring stiffness changes, which results in diverse 

possible positions of the additional degrees of freedom in the system. To make it clear in Figure 2.9 is 

illustrated what is mentioned before. At the top of each figure the 2-DoF dynamic model is drawn. At the 

bottom different configurations of the 3-DoF model are drawn. 

 

Figure 2.9: Impression of machinery stiffness division in 3-DoF model (bottom) in comparison with 2-DoF model (top). 

Left:fact1,3d = 0,25;Middle: fact1,3d = 0,5;Right: fact1,3d = 0,75 

 

Figure 2.10: Impression of machinery stiffness division in 4-DoF model (bottom) in comparison with 2-DoF model (top). 

(fact1,4d = 0,33; fact2,4d = 0,33) 

The results of the analyses are summarized in Table 2.6 and Table 2.7. The analyses are performed with 

external loading such as depicted in formulas (2.89,2.90) with braking duration (𝒕𝒃𝒓) equal to 1s. The 

results of these analyses are compared with the outcome of the 2-DoF dynamic model (2.88) in the Table 

2.5. 
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Table 2.5: 2-DoF model, brake at 60s with duration 𝑡𝑏𝑟 = 1s 

2-DoF model 

Maximum Torque (Nm) 334,009 

Table 2.6: 3-DoF model, calculated maximum torque at the motor shaft during brake applied at 60s with duration 𝑡𝑏𝑟 = 1s 

3-DoF model: Maximum Torque at the motor shaft (Nm) 

Stiffness & damping 

distribution as percentage 

of the 2-DoF ones 

Additional mass, percentage of 𝑱𝟐 

0,1% 0,5% 1% 1,5% 2% 

5%-95% 334,009 334,010 334,012 334,014 334,016 

10%-90% 334,015 334,038 334,067 334,096 334,125 

25%-75% 334,030 334,112 334,216 334,318 334,420 

50%-50% 334,049 334,208 334,406 334,604 334,801 

75%-25% 334,061 334,266 334,523 334,779 335,035 

90%-10% 334,064 334,284 334,558 334,831 335,103 

95%-5% 334,065 334,287 334,564 334,840 335,115 

Table 2.7: 4-DoF model, calculated maximum torque at the motor shaft during brake applied at 60s with duration 𝑡𝑏𝑟 = 1s 

4-DoF model: Maximum Torque at the motor shaft (Nm) 

Stiffness & damping 

distribution as percentage 

of the 2-DoF ones 

Additional masses, percentage of 𝑱𝟐 

0,1%-0,1% 0,5%-0,5% 1%-1% 1,5%-1,5% 2%-2% 

5%-5%-90% 334,015 334,040 334,071 334,102 334,133 

10%-10%-80% 334,031 334,118 334,226 334,333 334,440 

20%-20%-60% 334,058 334,254 334,496 334,737 334,976 

33,33%-33,33%-%-33,33% 334,085 334,390 334,768 335,144 335,518 

60%-20%-20% 334,107 334,500 334,988 335,473 335,956 

80%-10%-10% 334,117 334,548 335,083 335,615 336,143 

90%-5%-5% 334,120 334,561 335,109 335,653 336,193 

Through comparison of the results in Table 2.6 and Table 2.7 with that of Table 2.5, it is perceived that 

the influence of the intermediate additional degrees of freedom (with inertias in the order of magnitude 

0,1% ∙ 𝐽2 ÷ 2% ∙ 𝐽2) on the maximum torque at the motor shaft is negligible. On the other hand, even if 

the influence of the additional degrees of freedom is negligible, in general the division of the stiffness and 

damping influences the result. The correlation of the position of the additional inertia and the division of 

stiffness and damping is illustrated in Figure 2.9 and Figure 2.10. Therefore, it can be concluded that the 

closer the additional inertias are to the inertia of the bridge, the higher the influence of it is in the 

maximum torque at the motor shaft.  

It is decided to perform one last sensitivity analysis adding an inertia term in the system at the position of 

the bridge and connect this new mass with the bridge with a new linear spring with very high stiffness 

Figure 2.11. The stiff spring is drawn with thick line. 
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Figure 2.11: Linear modeling of the system bascule bridge with Panama wheel (bottom) in comparison with the 2-DoF one 

With this modeling a linear approximation of the structure with the Panama wheel and the buffer is 

accomplished. The buffer is already assumed as a rigid component in the design code, so it is modeled 

roughly here as a linear spring with very high stiffness. In addition, the mass moment of inertia of the 

Panama wheel is estimated in the order of magnitude of 1% ∙ 𝐽2 ÷ 10% ∙ 𝐽2. These analyses are 

performed again for external loading as depicted in formulas (2.89,2.90) with braking duration (𝒕𝒃𝒓) equal 

to 1s. The results are compared with the outcome of the 2-DoF dynamic model (2.88). The results of the 

analyses are summarized in Table 2.8. 

Table 2.8: Maximum torque at the motor shaft of the model with the Panama wheel for brake applied at 60s with duration 

𝑡𝑏𝑟 = 1s 

Inertia of the Panama wheel Maximum torque (Nm) 

1% ∙ 𝐽2 334,567 

2% ∙ 𝐽2 335,120 

5% ∙ 𝐽2 336,758 

10% ∙ 𝐽2 339,451 

The outcome of the analyses in Table 2.8 compared with that of Table 2.5, indicates that the addition of 

a Panama wheel will increase the calculated maximum torque at the motor shaft. However, for inertia 

terms of the Panama wheel in the order of magnitude less than 5% ∙ 𝐽2, the increase at the maximum 

torque is less than 1%. Therefore, the influence of the addition of a Panama wheel in the system is 

negligible. In the existing analyses, the mass moment of inertia of the Panama wheel is not calculated. A 

study is carried out tracing back to technical drawings of bascule bridges with Panama wheel drive. A 

rough estimation of the Panama wheel mass moment of inertia results in an order of magnitude of 2%-

5% of the inertia of the bridge. 

The last analysis is very important for the upcoming research, since it is decided to add the Panama wheel 

in the equations of motion of the system so as to incorporate the buffer in the equations of motion.
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3. Behavior of the buffer 

3.1. Introduction 

The purpose of this chapter is to establish a generic formula which describes the generalized force-

displacement diagram of the buffer component. First, a literature review is carried out regarding the 

performance of the disc springs, which are the most important components of the buffer. Second, the 

generalized force-displacement diagram of the buffer component is built up based on the disc springs’ 

performance. Finally, the influence of friction on a stack of disc springs is explored. 

3.2. State of the art in disc springs 

According to the existing literature, the torque-angle behavior of the drive mechanism, when the buffer 

is taken into account, is illustrated in the following diagram. 

 

Figure 3.1: Torque-angle diagram of the drive mechanism 

In branches A and C the buffer is assumed infinitely stiff, thus the total stiffness is calculated based on the 

torsional stiffness of the machinery alone. In branch B, however, the stack of disc springs in the buffer is 

active and their behavior is taken into account influencing the total stiffness of the system. 

Focusing on the buffer itself, its force deformation behavior is described in chapter 1 and is indicated in 

Figure 1.5. 

Figure 1.5 and Figure 3.1 illustrate that the disc springs in the buffer have a linear force deformation 

behavior. On the contrary according to (Christian Bauer (3), 2006) the disc spring characteristic force 

deflection curve is nonlinear and it is depicted in the following diagram (Figure 3.2). 
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Figure 3.2: Calculated force-deflection characteristics of individual disc springs depending in their curve parameter 
ℎ0

𝑡
. or 𝐾4 ∙

ℎ0
′

𝑡′
 

(Christian Bauer (3), 2006) 

The disc springs are grouped into two main categories, disc springs with contact surface and disc springs 

without contact surface. The difference is illustrated in Figure 3.3. On the left, the edges of the disc spring 

are rounded (no contact surface), whilst on the right one these corresponding edges are horizontal 

(contact surface). 

 

Figure 3.3: Cross section of individual disc spring without contact surface (Left). Cross section of individual disc spring with 

contact surface (Right) (Christian Bauer (3), 2006) 

The curve parameter of a disc spring is calculated with the following equation: 

 𝜅 = 𝐾4 ∙
ℎ0
𝑡

 (3.1) 
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in which: 

ℎ0 = 𝑙0 − 𝑡 is an auxiliary variable which is equal to the deflection of the disc spring in flat condition; 

𝑙0 is the overall height of the disc spring in the unloaded condition; 

𝑡 is the thickness of the disc spring; 

𝐾4 is a coefficient used for the calculation of disc springs (Christian Bauer (3), 2006) & (standard DIN 

2092:2006:03 (2006)). 

For disc springs without contact surfaces 𝐾4 = 1 and the curve parameter 𝜅 reduces to 
ℎ0

𝑡
. For disc springs 

with contact surface the parameters ℎ0 and 𝜅 = 𝐾4 ∙
ℎ0

𝑡
  are substitute with ℎ0

′  and 𝜅 = 𝐾4 ∙
ℎ0
′

𝑡′
 

respectively. In general, the curve parameter of a disc spring does not need to be calculated by the 

engineer because it is given directly by the manufacturer as one of the properties of the spring (Christian 

Bauer (4), 2006). 

The effect of nonlinearity depends on the curve parameter of the disc spring. The higher the numerator 

(the variable ℎ0 or ℎ0
′ ) the more nonlinear the performance of a disc spring. The nonlinearity of the disc 

springs shows a snap-through behavior. The same behavior is observed in case of two oblique springs 

loaded out of plane (Brennan, Mace, & Kovacic, 2010). This type of nonlinearity is of geometric nature 

since the geometry of the initial undisturbed system changes considerably with loading. 

In Figure 3.2 the characteristic force-deflection curve of a number disc springs with different curve 

parameter can be observed. The horizontal axis is the normalized deflection and the vertical axis is the 

normalized applied force. The deflection is normalized by the height of the disc spring. The applied force 

is normalized by the force of the disc spring in flat condition. 

3.3. Individual disc springs 

In (Christian Bauer (3), 2006) the spring force F is given as a function of the disc spring deflection s. This 

equation is defined according to the standard DIN 2092:2006:03 (2006) and is mentioned below.  

 𝐹[𝑠] =
4 ∙ 𝐸

1 − 𝜇2
∙

𝑡4

𝐾1 ∙ 𝐷𝑒
2 ∙ 𝐾4

2 ∙
𝑠

𝑡
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
𝑠

𝑡
) ∙ (

ℎ0
𝑡
−

𝑠

2 ∙ 𝑡
) + 1] (3.2) 

in which: 

𝐸 = 206.000 
𝑁

𝑚𝑚2 is the elastic modulus of the material according to the standard DIN 2092:2006:03 

(2006); 

𝜇 = 0,3 is the Poisson ratio of the material according to the standard DIN 2092:2006:03 (2006); 



The effect of push-pull rod on the dynamic behavior of movable bridges 

40 

𝐷𝑒 is the outside diameter of the disc spring (Figure 3.3); 

𝐾1, 𝐾4 are coefficients used for the calculations of the disc springs (Christian Bauer (3), 2006) & (standard 

DIN 2092:2006:03 (2006)); 

𝑠 is the variable of the formula concerning the deflection of the disc spring. 

Equation (3.2) is evaluated so as to get rid of the coefficients 𝐾1 and 𝐾4 and simplify it. In the first place, 

according to (Christian Bauer (3), 2006) and the standard DIN 2092:2006:03 (2006) the term 
4∙𝐸

1−𝜇2
∙
𝑡3∙ℎ0

𝐾1∙𝐷𝑒
2 ∙

𝐾4
2 in equation (3.2) can be substituted by the factor 𝐹𝑐  which refers to the calculated spring force of an 

individual disc spring in flat condition (𝑠 = ℎ0). To reveal that term the right-hand side of equation (3.2) 

is multiplied with 
ℎ0

ℎ0
 (Eq. (3.3)). Afterwards, the terms out of the bracket in (3.3) are reordered so as to 

display clearly the aforementioned term (Eq. (3.4)). Finally, the factor 𝐹𝑐 is introduced in the equation of 

the spring force in (3.5). 

 𝐹[𝑠] =
ℎ0
ℎ0
∙
4 ∙ 𝐸

1 − 𝜇2
∙

𝑡4

𝐾1 ∙ 𝐷𝑒
2 ∙ 𝐾4

2 ∙
𝑠

𝑡
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
𝑠

𝑡
) ∙ (

ℎ0
𝑡
−

𝑠

2 ∙ 𝑡
) + 1] (3.3) 

 𝐹[𝑠] =
4 ∙ 𝐸

1 − 𝜇2
∙
𝑡3 ∙ ℎ0

𝐾1 ∙ 𝐷𝑒
2 ∙ 𝐾4

2 ∙
𝑠

ℎ0
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
𝑠

𝑡
) ∙ (

ℎ0
𝑡
−

𝑠

2 ∙ 𝑡
) + 1] (3.4) 

 𝐹[𝑠] = 𝐹𝑐 ∙
𝑠

ℎ0
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
𝑠

𝑡
) ∙ (

ℎ0
𝑡
−

𝑠

2 ∙ 𝑡
) + 1] (3.5) 

The terms 
𝑠

𝑡
 and 

𝑠

2∙𝑡
 in equation (3.5) are multiplied both with (

ℎ0

𝑡
∙
𝑡

ℎ0
) (Eq. (3.6)) in order to introduce the 

fraction 
ℎ0

𝑡
 in every term in the brackets (Eq. (3.7)). Subsequently, the coefficient 𝐾4

2 is split and 

distributed in each term of the two brackets (Eq.(3.8)). 

 𝐹[𝑠] = 𝐹𝑐 ∙
𝑠

ℎ0
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
ℎ0
𝑡
∙
𝑡

ℎ0
∙
𝑠

𝑡
) ∙ (

ℎ0
𝑡
−
ℎ0
𝑡
∙
𝑡

ℎ0
∙
𝑠

2 ∙ 𝑡
) + 1] (3.6) 

 𝐹[𝑠] = 𝐹𝑐 ∙
𝑠

ℎ0
∙ [𝐾4

2 ∙ (
ℎ0
𝑡
−
ℎ0
𝑡
∙
𝑠

ℎ0
) ∙ (

ℎ0
𝑡
−
ℎ0
𝑡
∙
𝑠

2 ∙ ℎ0
) + 1] (3.7) 

 𝐹[𝑠] = 𝐹𝑐 ∙
𝑠

ℎ0
∙ [(𝐾4 ∙

ℎ0
𝑡
− 𝐾4 ∙

ℎ0
𝑡
∙
𝑠

ℎ0
) ∙ (𝐾4 ∙

ℎ0
𝑡
− 𝐾4 ∙

ℎ0
𝑡
∙
𝑠

2 ∙ ℎ0
) + 1] (3.8) 

Introducing the curve parameter (3.1) in equation (3.8) results in: 

 𝐹[𝑠] = 𝐹𝑐 ∙
𝑠

ℎ0
∙ [(𝜅 − 𝜅 ∙

𝑠

ℎ0
) ∙ (𝜅 −

𝜅

2
∙
𝑠

ℎ0
) + 1] (3.9) 
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The equation (3.9) describes the spring force on an individual disc spring as a function of its deflection (𝑠) 

with parameters: 

• the calculated spring force of an individual disc spring in flat condition (𝐹𝑐 = 𝐹[𝑠 = ℎ0]) 

• the thickness (𝑡) and the initial height of the disc spring in unloaded condition (𝑙0) merged in one 

auxiliary variable ℎ0 = 𝑙0 − 𝑡  

• the curve parameter of the disc spring 𝜅 

The aforementioned parameters can be read from the technical document of the manufacturer (Christian 

Bauer (3), 2006) depending on the disc spring under consideration. 

In addition, the normalized force–deflection equation of a disc spring is given in (3.10). To obtain it 

equation (3.9) is normalized two times. First, the normalized deflection 𝑠𝑛𝑙 =
𝑠

ℎ0
 is substituted in (3.9). 

Second, the whole equation is divided with the force associated to the flat condition of the disc spring 
𝐹[𝑠𝑛𝑙]

𝐹𝑐
 

 𝐹𝑛𝑙[𝑠𝑛𝑙] =
𝐹[𝑠𝑛𝑙]

𝐹𝑐
= 𝑠𝑛𝑙 ∙ [(𝜅 − 𝜅 ∙ 𝑠𝑛𝑙) ∙ (𝜅 −

𝜅

2
∙ 𝑠𝑛𝑙) + 1] (3.10) 

It must be mentioned that due to the normalization that equation (3.10) is subjected the deflection 

𝑠𝑛𝑙 = 1 corresponds to the flat condition of the disc spring with resulting normalized spring force 

𝐹𝑛𝑙[𝑠𝑛𝑙 = 1] = 1. Equation (3.10) is used to reproduce the diagram of the manufacturer depicted earlier 

in Figure 3.2. The curve parameter is given the values in the range [0,4 ÷ 2,0] with step 0,2. The desired 

plot is drawn in the software Matlab and is presented in Figure 3.4. 

 

Figure 3.4: Calculated force-deflection characteristics of individual disc springs for different curve parameter 𝜅 using equation 

(3.10) 
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3.4. Stacks of disc springs 

Disc springs can be stacked in different configurations to extend the application range of an individual one 

and cover higher forces and/or greater deflections. 

3.4.1. Disc springs in series 

An alternating stack of disc springs is regarded as in series disc spring configuration. In this case: 

 𝐹𝑠𝑡𝑎𝑐𝑘 = 𝐹𝑖=1 (3.11) 

and 

 𝑠𝑠𝑡𝑎𝑐𝑘 = 𝑖 ∙ 𝑠𝑖=1 (3.12) 

 

Figure 3.5: Behavior of disc springs in series versus individual disc spring. Left: Cross-sectional impression of individual disc 

spring (top) and disc springs stacked in series (bottom) (Christian Bauer (3), 2006). Right: Force-deflection diagram of four-disc 

springs stacked in series, in comparison with the individual one. 

The effect of stacking disc springs in series is illustrated in Figure 3.5 (right). The force required to flatten 

the stack of disc springs is equal to the force required to flatten the individual one, however the deflection 

of the stack is 𝑖 times greater than that of the individual one. 
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3.4.2. Disc Springs in parallel 

When disc springs are applied in nested formation are regarded as in parallel configuration. In this case: 

 𝐹𝑠𝑡𝑎𝑐𝑘 = 𝑛 ∙ 𝐹𝑛=1 (3.13) 

and 

 𝑠𝑠𝑡𝑎𝑐𝑘 = 𝑠𝑛=1 (3.14) 

 

Figure 3.6: Behavior of disc springs in parallel versus individual disc spring. Left: Cross-sectional impression of individual disc 

spring (top) and disc springs stacked in parallel (bottom) (Christian Bauer (3), 2006). Right: Force-deflection diagram of two-disc 

springs stacked in parallel in comparison with the individual one. 

The effect of stacking disc springs in parallel is illustrated in Figure 3.6(right). The force required to flatten 

the stack of disc springs is 𝑛 times greater than the force required to flatten the individual one, however 

the deflection of the stack is equal to the deflection of the individual one. 
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3.4.3. Disc springs in parallel and in series 

In case 𝑖 alternating disc springs (in series) made up of 𝑛 nested ones (in parallel) are stacked, the following 

applies: 

 𝐹𝑠𝑡𝑎𝑐𝑘 = 𝑛 ∙ 𝐹𝑖=1,𝑛=1 (3.15) 

and 

 𝑠𝑠𝑡𝑎𝑐𝑘 = 𝑖 ∙ 𝑠𝑖=1,𝑛=1 (3.16) 

 

Figure 3.7: Behavior of disc springs stacked both in parallel & in series versus individual disc spring. Left: Cross-sectional 

impression of individual disc spring (top) and disc springs stacked both in parallel & in series (bottom) (Christian Bauer (3), 

2006). Right: Force-deflection diagram of the stack of disc springs in comparison with the individual one. 

The effect of stacking disc springs both in series and in parallel is illustrated in Figure 3.7(right). The force 

required to flatten the stack of disc springs is 𝑛 times greater than the force required to flatten the 

individual one and the deflection of the stack is 𝑖 times greater than that of the individual one. 

To sum up the characteristic force-deflection curve of a stack of disc springs can be expressed with 

equation: 

 𝐹[𝑠] = 𝐹𝑐 ∙ 𝑛 ∙
𝑠

𝑖 ∙ ℎ0
∙ [(𝜅 − 𝜅 ∙

𝑠

𝑖 ∙ ℎ0
) ∙ (𝜅 − 𝜅 ∙

𝑠

2 ∙ 𝑖 ∙ ℎ0
) + 1] (3.17) 
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3.5. Buffer-force function 

The force deflection curve of a stack of disc springs has already been formulated. This is the decisive 

component regarding the force-displacement behavior of the buffer. Based on equation (3.17) the force-

displacement diagram of the buffer can be developed. 

Since the buffer’s performance changes considerably with the applied force (from rigid to non-linear and 

vice versa), it will be described mathematically with the use of a piecewise function. 

Prerequisites to determine the behavior of the buffer are: 

• The properties of the disc springs used: 

o Individual disc spring characteristics (𝜅, ℎ0,𝐹𝑐) 

o Disc spring stack configuration (𝑛, 𝑖) 

• Initial prestress of the buffer (𝐹𝑝) 

• Stroke of the buffer 𝑠𝑠𝑡𝑟 

Once the characteristics of the individual disc spring are distinguished, one can refer to the corresponding 

table in (Christian Bauer (4), 2006) and read the curve parameter (𝜅 =
ℎ0

𝑡
 or 𝜅 ∙

ℎ0
′

𝑡′
), the deflection of the 

disc spring in flat condition (ℎ0, or ℎ0
′ ) and the spring force in flat condition (𝐹𝑐). These data in combination 

with the stacking arrangement info comprise the required inputs of formula (3.17). Hence, the force-

deflection curve of the stack of disc springs under consideration can be drawn. 

The stack of disc springs is active in a specific region, defined by the initial prestress and the stroke of the 

buffer. This information in addition to formula (3.17) is used to define the range where the stack of disc 

springs is active. 

In theory, the buffer’s force displacement characteristic can be expressed with the following piecewise 

function: 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =

{
 
 

 
 
−∞ ,                                 𝑠 < −𝑠𝑠𝑡𝑟
−𝐹[𝑠𝑝 + |𝑠|]  ,      − 𝑠𝑠𝑡𝑟 ≤ 𝑠 < 0

[−𝐹𝑝 𝐹𝑝] ,                                 𝑠 = 0

𝐹[𝑠𝑝 + 𝑠] ,                  0 < 𝑠 ≤ 𝑠𝑠𝑡𝑟
∞ ,                                        𝑠 > 𝑠𝑠𝑡𝑟}

 
 

 
 

 (3.18) 

In practice the aforementioned formula is modelled following the subsequent process. 
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First, the magnitude of initial compression of the stack of disc springs in the buffer is calculated based on 

the initial prestress. This is achieved by solving the following equation: 

 𝐹[𝑠] = 𝐹𝑝 (3.19) 

The real root of this equation is called 𝑠𝑝 (𝑠𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠) where 𝐹[𝑠𝑝] = 𝐹𝑝. Then, the vertical branch of the 

force displacement characteristic of the buffer is constructed. The rigid behavior of the buffer, until the 

prestressing force is reached, is modelled as a linear function of displacement with very high stiffness. A 

factor 𝑙𝑑𝑠𝑝 is introduced where: 

for 𝑠 є [−𝑙𝑑𝑠𝑝, 𝑙𝑑𝑠𝑝] 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =  
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ 𝑠 (3.20) 

and the resulting buffer force ranges in the interval: 

𝐹𝑏𝑢𝑓𝑓𝑒𝑟 є [−𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝], 𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]]  

For very small values of 𝑙𝑑𝑠𝑝close to zero, the above mention ranges result in: 

for 𝑠 є lim
𝑙𝑑𝑠𝑝→0

 [−𝑙𝑑𝑠𝑝, 𝑙𝑑𝑠𝑝] = [0] with  

𝐹𝑏𝑢𝑓𝑓𝑒𝑟 є [− lim
𝑙𝑑𝑠𝑝→0

𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝] , lim
𝑙𝑑𝑠𝑝→0

𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]] = [−𝐹[𝑠𝑝], 𝐹[𝑠𝑝]]  

which is the exact force displacement behavior of the buffer around zero displacement as described in 

the theoretical formula (3.18). Therefore, it is proved that the proposed linear approximation is a good 

one for very small values of the factor 𝑙𝑑𝑠𝑝. 

Afterwards, as soon as the prestressing force is exceeded, the stack of disc springs becomes active until 

the stroke of the buffer is reached. At this range, the force deformation behavior of the buffer is described 

based on the formula (3.17). The mathematical representation of this branch is the following: 

for 𝑠 є (𝑙𝑑𝑠𝑝, 𝑠𝑠𝑡𝑟] 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =  𝐹[𝑠𝑝 + 𝑠] (3.21) 

and for 𝑠 є [−𝑠𝑠𝑡𝑟 , −𝑙𝑑𝑠𝑝) 
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 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =  −𝐹[𝑠𝑝 + |𝑠|] (3.22) 

Finally, once the stroke of the buffer is reached, it behaves again as a rigid component. Hence, at this 

range the force deformation behavior of the buffer is modelled again as a linear function of displacement 

with the same high stiffness as in the initial case. The mathematical representation of this branch is the 

following: 

for 𝑠 є (𝑠𝑠𝑡𝑟 , +∞) 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =  
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ (𝑠 − 𝑠𝑠𝑡𝑟) + 𝐹[𝑠𝑝 + |𝑠𝑠𝑡𝑟|] (3.23) 

and for 𝑠 є (−∞ , 𝑠𝑠𝑡𝑟) 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =  
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ (𝑠 + 𝑠𝑠𝑡𝑟) − 𝐹[𝑠𝑝 + 𝑠𝑠𝑡𝑟] (3.24) 

To conclude, the force displacement characteristic of the buffer is modeled in the code with the following 

piecewise function: 

 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] =

{
 
 
 
 
 

 
 
 
 
 
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ (𝑠 + 𝑠𝑠𝑡𝑟) − 𝐹[𝑠𝑝 + |𝑠𝑠𝑡𝑟|] ,                       𝑠 < −𝑠𝑠𝑡𝑟

−𝐹[𝑠𝑝 + |𝑠|]  ,                                                        − 𝑠𝑠𝑡𝑟 ≤ 𝑠 < −𝑙𝑑𝑠𝑝

 
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ 𝑠 ,                                                      − 𝑙𝑑𝑠𝑝 ≤ 𝑠 ≤ 𝑙𝑑𝑠𝑝

𝐹[𝑠𝑝 + 𝑠] ,                                                                       𝑙𝑑𝑠𝑝 < 𝑠 ≤ 𝑠𝑠𝑡𝑟
𝐹[𝑙𝑑𝑠𝑝 + 𝑠𝑝]

𝑙𝑑𝑠𝑝
∙ (𝑠 − 𝑠𝑠𝑡𝑟) + 𝐹[𝑠𝑝 + 𝑠𝑠𝑡𝑟],                              𝑠 > 𝑠𝑠𝑡𝑟

}
 
 
 
 
 

 
 
 
 
 

 (3.25) 
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3.6. Example of formula application 

The aforementioned process is depicted with the following application. The input parameters of the 

application are: 

Table 3.1: Inputs of the application 

𝜅 1,2 𝑖 10 

ℎ0 0,3 mm 𝐹𝑝  150 N 

𝐹𝑐 62,6 N 𝑠𝑠𝑡𝑟 1,5 mm 

𝑛 5 𝑙𝑑𝑠𝑝 0,001 mm 

 

Figure 3.8: Force-deformation behavior of the assumed stack of disc springs 

First, the characteristic force deformation curve of the stack of disc springs under consideration is plotted 

using formula (3.17). In Figure 3.8 it is illustrated with blue. Afterwards, the range where the stack of disc 

springs is active is defined. Solving equation (3.19) in terms of the unknown deformation, the left vertical 

red boundary of Figure 3.8 is determined. The right vertical red boundary of Figure 3.8 is in a distance of 

the left one equal to the stroke of the buffer. 

The generalized force-displacement diagram is drawn using formula (3.25) and is depicted in Figure 3.9 

(top left). The continuity of this diagram is checked, plotting it closer at the positions where its behavior 

changes (Figure 3.9). 
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Figure 3.9: Generalized force-displacement diagram of the buffer (top left) and particular plots around zero (top right) and ± 

stroke (bottom left & right) 

3.7. Hysteresis in disc springs 

Depending upon the spring arrangement, frictional forces arise during the compression and extension of 

the springs. There are several positions in a stack of disc springs where friction is generated and are listed 

below (Figure 3.10): 

1. internally in the material (1) 

2. at edges of the springs where the load (2) 

3. between springs and the guided rod (3)  

4. between individual springs (4) 
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Figure 3.10: Impression of positions where friction is generated in a stack of disc spring (Schnorr, 1997) 

The internal friction of the material is not regarded in this analysis. Moreover, according to (Christian 

Bauer (3), 2006) ,it is mentioned that the amount of friction between the stack of disc springs is not 

quantified yet in the existing standard DIN 2092:2006:03 (2006). 

The effect of friction between adjacent disc springs in the characteristic force-deformation curve of a stack 

of disc springs is described next. In case of loading, the frictional forces create a moment in the disc spring 

that counteracts the moment created by the applied load, thus increase the required compressive applied 

load. When unloading, the moment caused by frictional forces acts in the same direction with that of the 

applied load, therefore reduces the required retaining force. 

The frictional force in a stack of n stacked disc springs can be expressed with the following formula 

according to the standard DIN 2092:2006:03 (2006): 

 
𝐹𝑓𝑟 = ±(𝑤𝑀 ∙ (𝑛 − 1) + 𝑤𝑅) ∙ 𝐹𝑠𝑡𝑎𝑐𝑘 

(3.26) 

in which: 

𝑤𝑀 is the coefficient of friction between two individual disc springs; 

𝑛 − 1 are the numbers contact surfaces between n nested disc springs; 

𝑤𝑅 is the coefficient of friction at the edge of a stack of disc springs; 
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𝐹𝑠𝑡𝑎𝑐𝑘 is the vertical applied load at the stack of disc springs. 

In case of loading the frictional force, 𝐹𝑓𝑟  takes a minus sign and in case of unloading 𝐹𝑓𝑟  becomes positive. 

The effect of friction in the force deflection diagram of a stack of disc springs is depicted in Figure 3.11 

The hysteresis of the force deflection diagram of a stack of disc springs depends on the number of disc 

springs in parallel. Increasing the parallel disc springs’ formation, the hysteresis effect is more significant. 

 

Figure 3.11: Hysteresis of the force deflection diagram of different stack of disc springs due to friction in the interface of 

adjacent disc springs depending on the number of springs in parallel (Christian Bauer (3), 2006) 

In the dynamic model the frictional force is introduced in the form of Coulomb damping force. The 

Coulomb damping is expressed as: 

 𝐹𝑓𝑟 = 𝜇 ∙ 𝛮 ∙ 𝑠𝑖𝑔𝑛[𝑥̇] (3.27) 

in which: 

𝑥̇ is the velocity; 

𝑁 is the normal reaction force between the sliding surfaces; 

𝜇 is the friction coefficient. 
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Thus, the friction in a stack of the disc springs is then modeled with formula: 

 𝐹𝑓𝑟[𝑠, 𝑠̇] = (𝑤𝑀 ∙ (𝑛 − 1) + 𝑤𝑅) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠]| ∙ 𝑠𝑖𝑔𝑛[𝑠̇] (3.28) 

The use of absolute value in formula (3.28) must be underlined. When the buffer is loaded either in tension 

or compression, the force due to friction must have the same sign with the force of the buffer. In case the 

buffer is unloaded either in tension or compression the force due to friction must have an opposite sign 

compared with that of the force of the buffer. These are accomplished with the used of the absolute 

values in formula (3.28). In the case that the absolute value of the buffer force was not used in formula 

(3.28), when loading and unloading in compression, the force due to friction would not have the expected 

sign. The validity of this statement is checked in chapter 4. 

In the upcoming analyses, in formula (3.28) a global friction coefficient (𝜇) is introduced to account for all 

possible friction coefficients in different positions in a stack of disc springs (Εq. (3.29)). 

 𝐹𝑓𝑟[𝑠, 𝑠̇] = 𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠]| ∙ 𝑠𝑖𝑔𝑛[𝑠̇] (3.29) 

This Master’s thesis is concerned with the effect of the global disc springs’ friction in the force-

deformation behavior of the buffer and in the response of the system in terms of decisive dynamic loads. 

The detailed research on the magnitude of each friction coefficient and its contribution separately 

comprises a research topic on itself which needs also experiments and additional information. Therefore, 

it is out of the scope of this thesis. 
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4. Buffer force evaluation 

4.1. Introduction 

In this chapter the buffer force and the associated frictional force derived in chapter 3 are evaluated 

performing dynamic analyses of a SDoF dynamic model. Hereby, the validity of the proposed formulas 

regarding the buffer force and its accompanied internal friction is evaluated. This allows one to trace any, 

possible mistakes in the assumptions made in chapter 3 regarding the derivation of the idealized buffer 

force and the corresponding frictional term. 

The dynamic model under consideration, consists of a buffer with a mass attached to one end, while the 

other end is being fixed to an immovable boundary. The configuration of the SDoF oscillator is illustrated 

in Figure 4.1. The buffer is described by two terms; one concerns the buffer’s characteristic force 

deformation and the other one accounts for its frictional damping generated by friction at the interface 

of the disc springs. 

 

Figure 4.1: SDof oscillator composed of a buffer and a mass excited harmonically 
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4.2. Dynamic analysis 

A number of forced vibration dynamic analyses under harmonic loading are performed in the system and 

the response of it in terms of mass displacement and buffer force is evaluated. The equation of motion of 

the system is: 

 
𝑚 ∙ 𝑥̈(𝑡) + 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑥(𝑡)] + (𝜇 ∙ (𝑛 − 1)) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑥(𝑡)]| ∙ 𝑠𝑖𝑔𝑛[𝑥̇(𝑡)]

= 𝐹0 ∙ sin(𝛺 ∙ 𝑡) 
(4.1) 

wherein Eq.(4.1), the following quantities are introduced 

𝑚 is the mass attached to the buffer; 

𝑥(𝑡) is the horizontal displacement of the mass; 

𝐹𝑏𝑢𝑓𝑓𝑒𝑟 is the buffer force as determined in (3.25) of chapter 3; 

𝜇 is the friction coefficient of the buffer; 

𝐹0 is the amplitude of the external harmonic load; 

𝛺 is the excitation frequency. 

In the upcoming analyses the inputs for the buffer force are the same as in Table 3.1 of chapter 3. The 

variables of the analyses are: 

• The mass 

• The excitation frequency and the amplitude of the external harmonic load 

• The friction coefficient of the buffer 

Regarding the influence of each of these variables in the dynamic response of the system, it is desired to 

perform a primary analysis for a first check of the buffer’s modeling. For that reason, the following 

assumptions are made: 

• The mass of the system is assumed to be equal to 𝑚 = 1𝑡𝑜𝑛 = 1000𝑘𝑔 

• The amplitude of the external force is assumed to be higher than the force corresponding to the 

stroke of the buffer. Referring to Figure 3.9 the stroke of the buffer is reached at approximately 

300𝑁. Thus, it is adopted 𝐹0 = 350𝑁 

• The excitation frequency is estimated such that the period of the load is approximately 30s i.e. 

𝛺 =
1

5

𝑟𝑎𝑑

𝑠
. 

• The friction coefficient of the buffer is assumed 𝜇 = 0,02 
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The dynamic response of the SDoF oscillator in terms of horizontal displacement of the mass is illustrated 

in Figure 4.2, drawn with a blue line. The orange line represents the harmonic part of the external loading. 

 

Figure 4.2: Response of the SDoF oscillator in term of displacement of the mass 

The displacement of the mass shows the expected behavior. It is expected that the motion of the mass 

follows the deformation of the buffer. The buffer is rigid, both in tension and compression, for loading 

less than its prestress or higher than the load corresponding to its stroke. In these regions the mass should 

be immobile. This is exactly what is shown in Figure 4.2. The external load at 𝑡 = 0 is zero and starts to 

increase harmonically. The mass is not moving until the external load surpasses the prestress of the buffer 

and the additional load due to friction. Afterwards the external load continues to increase resulting in 

motion of the mass. Once the stroke of the buffer (1,5𝑚𝑚) is reached it cannot be stretched further and 

the mass stops moving at that position even if higher load is applied. The same behavior is followed in 

unloading as well as when the buffer is compressed  

Moreover, the force-deformation relationship of the buffer is checked. For that reason, the two following 

tables are filled:  

 𝑇𝑎𝑏𝑙𝑒 [𝑥(𝑡), 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑥(𝑡)]] (4.2) 

 𝑇𝑎𝑏𝑙𝑒[𝑥(𝑡), 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑥(𝑡)] + (𝜇 ∙ (𝑛 − 1)) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑥(𝑡)]| ∙ 𝑠𝑖𝑔𝑛[𝑥̇(𝑡)]] (4.3) 
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The first table refers to the buffer’s characteristic force-deformation without taking into account the 

global friction in the stack of disc springs, whilst the second one accounts for it. The entries of tables (4.2) 

and (4.3) are plotted in Figure 4.3 in orange and blue respectively. 

 

Figure 4.3: Characteristic force deformation diagram of the buffer with friction (blue line) and without friction (orange line) 

taken into account.  

The blue line in Figure 4.3 follows a hysteretic behavior due to the influence of friction as is expected 

according to the review in the technical documents of the manufacturer (Christian Bauer (3), 2006). The 

kick shown at the end of the plots in both positive and negative direction results from the state of the 

buffer after reaching its maximum deformation. There it becomes a rigid component undeformable with 

the increase of the applied force. The hysteresis of the buffer in Figure 4.3 shows a proper behavior. 

With this simple analysis, it is verified the proper consideration for the modeling of the generalized buffer 

force displacement function (Eq.(3.24)) and its associated frictional force (Eq.(3.29)) in chapter 3. 

After the assessment of the buffer’s modeling in the SDoF oscillator and before proceeding to the 

incorporation of it in the dynamic model of the movable bridge-machinery system, a sensitivity analysis is 

carried out in this model regarding the influence of the four variables mentioned before. 
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4.2.1. Influence of the amplitude of the external force 

In this sub-section the influence of the amplitude of the external force in the dynamic response of the 

SDoF oscillator is evaluated. The three other variables (mass, frequency of excitation, friction) are kept 

constant assigning the same values as in the analysis of section 4.2. The displacement of the mass is 

plotted for different values of the amplitude (𝐹0) in Figure 4.4. 

 

Figure 4.4: Displacement of the mass of the SDoF oscillator for different amplitudes of external loading (𝐹0) 

Until a certain loading level is reached, the mass is at rest (Figure 4.4). Due to friction and the 

corresponding hysteretic behavior of the disc springs the buffer behaves in a stiffer manner when loading. 

This in turn, results in a higher load requirement for deformation, than the prestress of the disc springs. 

This stiffer behavior is also observed at the load needed so as to reach the stroke of the buffer. These 

observations are also illustrated in the plots of the preliminary analysis (Figure 4.3). 

In addition, a horizontal plateau is observed at the peaks of the mass’ displacement (Figure 4.4). This 

behavior can be explained inspecting the hysteretic force-deformation performance of the buffer. For that 

reason, the response of the system in terms of displacement of the mass and the associated buffer force-

displacement diagram are plotted for amplitude of external load 𝐹0 = 200𝑁 (Figure 4.5). It is illustrated 

that unloading the system from maximum load, the buffer behaves rigid in a certain range of unloading, 

resulting in a vertical plateau in the force deformation diagram, where the force of the buffer is reduced 



The effect of push-pull rod on the dynamic behavior of movable bridges 

58 

and at the same time it does not deform (Figure 4.5(Right)). Thus, at that range the displacement of the 

mass is kept constant at its maximum value. 

 

Figure 4.5: Response of the SDoF oscillator in forced vibration analysis under harmonic load (𝐹0 = 200𝑁). Left: Displacement of 

the mass versus time. Right: Force-displacement diagram of the buffer 

4.2.2. Influence of friction 

The influence of friction in the dynamic response of the SDoF oscillator is examined here. The three other 

variables (mass, amplitude of external load, frequency of excitation) are kept constant assigning the same 

values as in the analysis of section 4.2. 

The influence of friction is evaluated carrying out forced vibration analyses and free vibration analyses in 

the system. In the first case the buffer’s force-displacement diagram is plotted (Figure 4.6), whilst in the 

second case the displacement of the mass is drawn (Figure 4.7). In the free vibration analyses an initial 

displacement is given to the mass equal to the stroke of the buffer with zero initial velocity. 
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Figure 4.6: Resulting buffer’s force-displacement diagram for different friction coefficients in forced vibration analysis. 

 

Figure 4.7: Resulting displacement of the mass for different friction coefficients in free vibration analysis. 

Having a look at the resulting buffer’s force (Figure 4.6), with the increase of the friction coefficient, the 

hysteresis of the disc springs becomes larger as it is supposed (Ch.3). Moreover, examining the response 

of the system in free vibration analysis (Figure 4.7), the displacement of the mass decays faster with the 

increase of friction, which is also anticipated. 

4.2.3. Influence of mass 

In this sub-section, the influence of the mass in the response of the SDoF oscillator is examined. In the 

corresponding analyses the mass of the system is increased and its resulting displacement versus time is 
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plotted. The three other variables (friction, amplitude of external load, frequency of excitation) are kept 

constant assigning the same values as in the analysis of section 4.2. 

 

Figure 4.8: Displacement of the mass for different mass magnitudes. 

Increasing the mass of the system a short of vibration is generated in the areas where the buffer is rigid 

(Figure 4.8). Having a closer look, once the mass reaches the maximum displacement, reacts like hitting 

an obstacle and repels backwards. Since the external loading does not change direction in this stage of 

motion, it drags the mass and it reaches again the maximum, resulting in repetition of this behavior. This 

outcome generates the interest to study further this phenomenon. What happens is that the buffer 

reaches its maximum deformation and cannot be stretched further. However, this case could be also 

realized, when instead of restricting the deformation of the buffer, limit the displacement of the mass by 

applying a stop. Influenced by this last interpretation, a literature review is carried out regarding dynamic 

analyses in impact oscillators. 

According to (Budd & Dux, 1994) the phenomenon of infinite number of impacts in a finite time (vibro-

impacts) is called chatter. In the same paper, the displacement of the mass versus time shows the same 

behavior as in the SDoF oscillator that is considered in this chapter. In (Wagg & Bishop, 2001) it is 

mentioned that if the sequence of impacts are long enough the velocity of the impacting mass tends to 

zero such that the mass becomes stick to the stop. In case the mass stops vibrate the chatter is complete 

and the mass has stuck, whilst in case the mass is not stick the chatter phenomenon is incomplete. In the 

response of the SDoF oscillator, complete chatter is observed for masses (25tons,50tons), whereas for 

mass equal to (100tons) it is incomplete. 



Buffer force evaluation 

   61 

The chatter phenomenon is more apparent while the mass of the system increases keeping all the other 

inputs the same. 

The increase in the “rebound” is supposed that is influenced by the change in the momentum of the mass. 

To examine this, the change in velocity at the time the mass reaches the first maximum is calculated. 

Afterwards the associated change in the momentum is calculated and the results are summarized in Table 

4.1. 

Table 4.1: Change in momentum of the mass when it reaches the maximum at first time, for different mass magnitudes 

Mass (ton(s)) Change in momentum (kg∙(m/s)) 

1 -2,02946 

5 -4,76568 

25 -24,0777 

50 -83,3516 

100  -178,385 

The results of the calculations in Table 4.1 indicate that the increase in the magnitude of the mass results 

in an increase in the change of momentum the time the mass reaches the maximum displacement at first 

time. This corresponds to larger impulse and consequently larger “rebound”. 

To make this statement concrete, a final analysis is carried out with mass equal to 100 tons, while the 

excitation frequency is reduced to 
1

10
 
𝑟𝑎𝑑

𝑠
. The response of the systems with mass equal to 100 tons and 

excitation frequencies 
1

5
 
𝑟𝑎𝑑

𝑠
 and 

1

10
 
𝑟𝑎𝑑

𝑠
 respectively is plotted in Figure 4.9. 

 

Figure 4.9: Displacement of the mass for mass magnitude 100 tons for different excitation frequency 

It is observed that the chatter phenomenon for the same mass is less significant for lower excitation 

frequency than in the analysis with double frequency of excitation. Here, again the change in momentum 

when the mass reaches for the first time the maximum displacement is calculated. The result of the 
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analysis with lower excitation frequency is compared with the last line of Table 4.1, and both are 

summarized in Table 4.2. 

Table 4.2: Change in momentum of the mass when it reaches the maximum at first time, for the same mass magnitude and 

different excitation frequency 

Mass (tons) Excitation frequency (rad/s) Change in momentum (kg∙(m/s)) 

100 1/5 -178,385 

100 1/10 -48,1323 

The last analysis verified the conclusion that the chatter phenomenon in the SDoF oscillator is influenced 

by the change in the momentum of the mass when it reaches the maximum. The magnitude of the mass 

influences the change in the momentum however it is not the only factor that does so as it is shown in 

Figure 4.9. 

4.2.4. Influence of the excitation frequency 

The last variable to be examined regarding its influence in the response of the SDoF oscillator, is the 

excitation frequency. In the last analysis of the previous sub-section the external frequency was reduced 

to half so as to observe its contribution in the change of momentum of the mass and the associated 

influence in the phenomenon of chatter. 

In this sub-section the excitation frequency is decided to be increased and again observe the 

corresponding displacement of the mass. The three other variables (mass, amplitude of external load, 

friction) are kept constant assigning the same values as in the analysis of section 4.2. 

 

Figure 4.10: Displacement of the mass for different excitation frequencies 
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With the increase of the frequency of excitation, the period of the forced vibration reduces (Figure 4.10). 

The amplitude of the displacement is still restricted by the stroke of the buffer in both directions. 

However, for frequencies higher than 30 rad/s the amplitude of the mass displacement is almost half of 

the stroke of the buffer and decreases with the increase of the external frequency. This behavior is 

expected since it is present in every dynamical system, since for high frequencies the response tends to 

zero. 
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5. Dynamic model of the bridge-machinery 

system 

5.1. Introduction 

In the previous chapters, the methodology of modeling the buffer is discussed and its associated hysteretic 

behavior due to friction is illustrated. Furthermore, the validity of the proposed modeling approach is 

evaluated with a simple dynamic model, assessing the dynamic response of the SDoF oscillator including 

the buffer. This chapter aims to establish the equations of motion of the bridge-machinery system, 

including the buffer component. 

5.2. New lumped mass model 

To start with, it is decided to add a degree of freedom in the equations of motion, as described in sub-

section 2.4.2, in order to incorporate the buffer. Influenced by the configuration of the system, this degree 

of freedom is chosen to be the Panama wheel. The mass moment of inertia of a Panama wheel is 

extremely smaller compared to that of the bridge. Referring to the study performed in chapter 2, the 

addition of a very small mass has a minor influence on the response of the system in terms of decisive 

dynamic load at the motor shaft. The new dynamic model of the system is illustrated in Figure 5.1. This 

model has three degrees of freedom, where 𝑟1(𝑡) is the rotation of the motor, 𝑟2(𝑡) is the rotation of the 

Panama wheel and 𝑟3(𝑡) is the rotation of the bridge. 

 

Figure 5.1: Lumped mass model for the system bascule bridge driven by Panama wheel drive 
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The analysis is performed at the level of the Panama wheel. Hence, all the required quantities of the motor 

(inertia) and machinery (stiffness, damping) are transferred there using the corresponding transmission 

factors. 

The system under consideration is a highly nonlinear one. Thus, it is preferable to use the Lagrangian 

formalism for the derivation of the equations of motion. This is an automated technique, easy in use once 

one succeeds in formulating the kinetic and potential energies of the system. 

The Lagrangian equations are given as: 

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑠
−
𝜕𝐿

𝜕𝑞𝑠
= 𝑄𝑠 (5.1) 

where 

𝐿 = 𝐾 − 𝑃: the Lagrange function which is defined as the difference between the kinetic energy and the 

potential energy of the system under consideration; 

K: is the kinetic energy of the system; 

P: is the potential energy of the system; 

qs with s = 1,2,3,…: the generalized coordinates of the system (degrees of freedom); 

Qs with s = 1,2,3,…: the generalized forces acting on the system. 

5.2.1. Energy of the system 

In the first place, the kinetic and potential energies of the system must be written down as functions of 

the generalized coordinates of the system. Below the kinetic and potential energies of the system are 

listed. 

 𝐾𝑚𝑜𝑡𝑜𝑟 =
1

2
∙ 𝐽1 ∙ (𝑟̇1(𝑡))

2 (5.2) 

 𝐾𝑝𝑎𝑛𝑎𝑚𝑎 =
1

2
∙ 𝐽2 ∙ (𝑟̇2(𝑡))

2 (5.3) 

 𝐾𝑏𝑟𝑖𝑑𝑔𝑒 =
1

2
∙ 𝐽3 ∙ (𝑟̇3(𝑡))

2 (5.4) 

 𝑃𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦 =
1

2
∙ 𝐾̃12 ∙ (𝑟2(𝑡) − 𝑟1(𝑡))

2 (5.5) 

The stiffness of the machinery indicated in formula (5.5) is equal to: 
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 𝐾̃12 = 𝐾1 + 𝐶𝑑
𝑑

𝑑𝑡
 (5.6) 

This is a fictitious spring stiffness that accounts for the damping of the machinery. The damping coefficient 

is already defined in Eq.(2.40) in chapter 2. 

The potential energy of the buffer is determined taking the integral of the piecewise formula (3.25): 

 𝑃𝑏𝑢𝑓𝑓𝑒𝑟 = ∫𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] 𝑑𝑠 (5.7) 

The potential energy of the buffer is a function of its axial deformation. However, according to the 

Lagrangian formalism technique, it must be written as a function of the generalized coordinates 𝑟2(𝑡) and 

𝑟3(𝑡). To do so, the axial deformation of the buffer is written in terms of the two degrees of freedom 𝑟2(𝑡) 

and 𝑟3(𝑡), based on the geometry of the system between the bridge and the Panama wheel. 

5.2.2. Geometry between the bridge and the Panama wheel 

 

Figure 5.2: Geometry of the system between the bridge and the Panama wheel. Left side: Bridge closed, system out of motion 

Right side: Bridge closed pre-compression of the buffer removed. 

The origin of the coordinate system is decided to be placed at the pivot of the Panama wheel, point A(0,0). 

Furthermore, three more points are placed in the system: 

• Point B, is the interconnection point of the buffer with the crank of the Panama wheel. 

• Point C is the interconnection point of the buffer with the bridge. 

• Point D is the pivot of the bridge. 

Points A and D are constant during motion, whilst points B and C change position. 

In Figure 5.2, on the left, the geometry between the bridge and the Panama wheel is illustrated, while the 

bridge remains closed and the machinery is not in motion. At this position the buffer is compressed to 

ensure that the bridge remains closed, preventing possible movements as a result of suction caused by 

wind or flapping due to traffic.  
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In Figure 5.2, on the right, the geometry is depicted at the time when the pre-compression of the buffer 

is removed due to the motion of the machinery. At this time the buffer has reached its initial length. From 

that instant and on, the bridge starts to open. The initial length of the buffer is: 

 𝑙0 = √(𝑥𝑏𝑖𝑛𝑖
′ − 𝑥𝑐𝑖𝑛𝑖)

2 + (𝑦𝑏𝑖𝑛𝑖
′ − 𝑦𝑐𝑖𝑛𝑖)

2  (5.8) 

The coordinates of point B and C are written in respect of the two degrees of freedom in the following 

equations: 

 𝑥𝑏(𝑟2) = 𝐴𝐵 ∙ cos(𝑟2(𝑡)) (5.9) 

 𝑦𝑏(𝑟2) = 𝐴𝐵 ∙ sin(𝑟2(𝑡)) (5.10) 

 𝑥𝑐(𝑟3) = 𝐷𝐶 ∙ cos(𝑟3(𝑡)) + 𝑥𝑏 (5.11) 

 𝑦𝑐(𝑟3) = 𝐷𝐶 ∙ sin(𝑟3(𝑡)) + 𝑦𝑏 (5.12) 

Based on these coordinates, the length of the buffer at any time of motion can be determined with the 

following formula: 

 𝑙(𝑟2, 𝑟3) = √(𝑥𝑏(𝑟2(𝑡)) − 𝑥𝑐(𝑟3(𝑡)))
2 + (𝑦𝑏(𝑟2(𝑡)) − 𝑦𝑐(𝑟3(𝑡)))

2  (5.13) 

Subtracting the result of formula (5.8) from that of formula (5.13) the axial deformation of the buffer is 

obtained during motion, in terms of the generalized coordinates r2 and r3, which can be seen in formula 

(5.14). 

 𝑠 =  𝑙(𝑟2(𝑡), 𝑟3(𝑡)) − 𝑙0 (5.14) 

5.2.3. Generalized forces acting on the system 

The generalized forces on the system are torques applied at the degrees of freedom.  

The torque exerted on the first degree of freedom are generated by the motor. This torque is denoted 

with the symbol 𝑀1(𝑡). Additionally, since the system is described by a set of statically inditermined 

equations of motion as mentioned in sub-section 2.4.1. the external generalized forces on the third degree 

of freedom must be balanced by external generalized forces on the first degree of freedom with the same 

magnitude but with different sign. The external force is transferred from the level of the bridge to the 

level of the Panama wheel using the corresponding transmission factor. The transmission factor between 

the bridge and the Panama wheel changes during motion. Thus, the geometry of the system is recalled to 

derive a formula for that one. 



Dynamic model of the bridge-machinery system 

   69 

 

Figure 5.3: Geometry between bridge and Panama wheel at a random instant of motion 

In Figure 5.3 the geometry of the system between the Panama wheel and the bridge is represented at a 

random instant of motion. The force 𝐹 in Figure 5.3 denoted the force in the buffer. The external torque 

on the bridge is denoted as 𝑀3 and it is transferred to the Panama wheel following the subsequent 

process. 

Equilibrium around point D yields: 

 𝑀3 = 𝐹 ∙ sin(𝑔) ∙ 𝐷𝐶 (5.15) 

Equilibrium around point A gives: 

 𝑀2 = 𝐹 ∙ sin(𝑢) ∙ 𝐴𝐵 (5.16) 

By solving equation (5.15) for 𝐹 and substituting it into (5.16), torque 𝑀3 on the bridge is transferred to 

the Panama wheel. This results in: 

 𝑀2 = 𝑀3 ∙
sin(𝑢) ∙ 𝐴𝐵

sin(𝑔) ∙ 𝐷𝐶
 (5.17) 

The ratio 
𝑀3

𝑀2
⁄  is the transmission factor between the bridge and the Panama wheel, referred as 𝑖𝑝𝑣 in 

the formula below. 

 𝑖𝑝𝑣 =
𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
 (5.18) 
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In equations (5.15)-(5.18) the two angles 𝑢 and 𝑔 change during motion and are calculated based on 

simple geometric relationships. The quadrilateral formed by the points A, B, C and D is split into individual 

triangles, where the law of cosines is applied to determine the two angles of interest 𝑢 and 𝑔. This 

procedure is demonstrated in Figure 5.4. 

 

Figure 5.4: Quadrilateral formed during motion 

Law of cosines for angle 𝑔 in the triangle BCD (Figure 5.4 left): 

 𝑔 = cos−1(
𝐷𝐶2 + 𝐵𝐶2 − 𝐷𝐵2

2 ∙ 𝐷𝐶 ∙ 𝐵𝐶
) (5.19) 

Law of cosines for angle 𝑢 in the triangle ABC (Figure 5.4 right): 

 𝑢 = cos−1(
𝐵𝐶2 + 𝐴𝐵2 − 𝐴𝐶2

2 ∙ 𝐵𝐶 ∙ 𝐴𝐵
) (5.20) 

It is reminded that points B and C change during motion, and their coordinates vary with the degrees of 

freedom 𝑟2(𝑡) and 𝑟3(𝑡). Consequently, the angles 𝑔, 𝑢 and the transmission factor 𝑖𝑝𝑣 are functions of 

these two degrees of freedom.  

The torques applied on the Panama wheel are only due to friction in the stack of disc springs of the buffer. 

The formula (3.29) of friction checked in the single degree of freedom model of chapter 4 is now expanded 

to the case of the Panama wheel. The torque due to friction on the second degree of freedom is indicated 

in the coming formula (5.21): 

 𝐹𝑓𝑟2 = 𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟2(𝑡)
| ∙ 𝑠𝑖𝑔𝑛(𝑟̇2(𝑡) − 𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
) (5.21) 

In Eq.(5.21) the signum of the velocity difference in both ends of the buffer is used. Since the velocities 

are calculated in different positions within the structure, they have to be transferred at the same level to 

determine their actual difference. The mechanical power transmission between the bridge and the 

Panama wheel yields:  
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 𝑀2 ∙ 𝑟̇2 = 𝑀3 ∙ 𝑟̇3 (5.22) 

Substituting Eq.(5.17) into Eq.(5.22) results in: 

 𝑟̇2 ∙
sin(𝑢) ∙ 𝐴𝐵

sin(𝑔) ∙ 𝐷𝐶
= 𝑟̇3 (5.23) 

which can be rewritten: 

 𝑟̇2 = 𝑟̇3 ∙
𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
 (5.24) 

With Eq.(5.24) the velocity of the bridge is transferred to the level of the Panama wheel using the 

associated transmission factor. 

The torques acting on the bridge are originated from wind and also its overweight. It is understood that 

these loads are dependent on the angle of the bridge (degree of freedom 𝑟3(𝑡)). Further attention to the 

calculation of these loads will be given later on in chapter 6. In the generic equations of motion these 

torques are combined and indicated with one symbol 𝑀3(𝑡). In addition, a torque due to friction in the 

stack of disc springs of the buffer is acting on the bridge which is indicated in the coming formula (5.25): 

 𝐹𝑓𝑟3 = 𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟3(𝑡)
| ∙ 𝑠𝑖𝑔𝑛(𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
− 𝑟̇2(𝑡)) (5.25) 

5.2.4. Equations of motion 

Until now, all required input of the Lagrangian formalism technique have been established. Before 

continue with the resulting equations of motion, all prerequisites are summarized first. 

• Lagrange function L: 

 
𝐿 =

1

2
∙ 𝐽1 ∙ (𝑟̇1(𝑡))

2 +
1

2
∙ 𝐽2 ∙ (𝑟̇2(𝑡))

2 +
1

2
∙ 𝐽3 ∙ (𝑟̇3(t))

2 −
1

2
∙ (𝐾1 + 𝐶𝑑

𝑑

𝑑𝑡
) ∙ (𝑟2(t) − 𝑟1(𝑡))

2

−∫𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] 𝑑𝑠 
(5.26) 

• Axial deformation of the buffer as a function of the degrees of freedom: 

 𝑠 = √(𝑥𝑏(𝑟2(𝑡)) − 𝑥𝑐(𝑟3(𝑡)))
2 + (𝑦𝑏(𝑟2(𝑡)) − 𝑦𝑐(𝑟3(𝑡)))

2 − 𝑙0 (5.27) 

• Generalized force regarding the degree of freedom 𝑟1(𝑡): 
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 𝑄1 = −𝑀3(𝑡) ∙
sin(𝑢) ∙ 𝐴𝐵

sin(𝑔) ∙ 𝐷𝐶
+𝑀1(𝑡) (5.28) 

• Generalized force regarding the degree of freedom 𝑟2(𝑡): 

 𝑄2 = −𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟2(𝑡)
| ∙ 𝑠𝑖𝑔𝑛(𝑟̇2(𝑡) − 𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
) (5.29) 

• Generalized force regarding the degree of freedom 𝑟3(𝑡): 

 𝑄3 = −𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟3(𝑡)
| ∙ 𝑠𝑖𝑔𝑛 (𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
− 𝑟̇2(𝑡)) +𝑀3(𝑡) (5.30) 

Substituting formulas (5.26) to (5.30) into equation (5.1) and applying the Lagrangian formalism 

technique, the following equations of motion are obtained: 

 𝐽1 ∙ 𝑟̈1(𝑡) + 𝐶𝑑 ∙ (𝑟̇1(𝑡) − 𝑟̇2(𝑡)) + 𝐾1 ∙ (𝑟1(𝑡) − 𝑟2(𝑡)) = 𝑄1 (5.31) 

 𝐽2 ∙ 𝑟̈2(𝑡) + 𝐶𝑑 ∙ (𝑟̇2(𝑡) − 𝑟̇1(𝑡)) + 𝐾1 ∙ (𝑟2(𝑡) − 𝑟1(𝑡)) + 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟2(𝑡)
= 𝑄2 (5.32) 

 𝐽3 ∙ 𝑟̈3(𝑡) + 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟3(𝑡)
= 𝑄3 (5.33) 
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6. Application and results 

6.1. Introduction 

The new set of equations of motion derived in the previous chapter are assessed through application on 

an existing movable bridge. The bridge examined for this purpose is the movable part of the new Ramspol 

bridge. All required inputs of the bridge are provided by Rijkswaterstaat. The external wind loads acting 

on the bridge are calculated according to the rules in the standard NEN 6786:2001 (2001). In the upcoming 

analyses the torque at the motor shaft is calculated and compared with the corresponding design formulas 

addressed by the standard NEN 6786:2001 (2001). 

6.2. Inputs for the analyses 

The new Ramspol bridge (Dutch: nieuwe Ramspolbrug) is estimated to be about 550 meters long, 34 

meters wide and on average 13 meters high. It is located on the N50 and links the provinces of Flevoland 

and Overijssel. The cross section includes 2x2 lanes, a parallel road and a cycle path. The bridge has a 

movable part which consist of two bascule bridges that work together as one, the West bridge (Dutch: 

West brug) with a width of 11.2 meters and the East bridge (Dutch: Oost brug) with a width of 22.75 

meters. The West bridge is driven by one Panama wheel whilst the East bridge is driven by two. However, 

the design of both operating mechanisms is identical since the latter is twice in width. 

 

Figure 6.1: Location of Ramspol bridge pinned on the map. (Google Maps, 2018) 
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Figure 6.2: Side view of Rampsol Bridge, while the bascule bridges are in open position. (Vialis, 2012) 

The data of the West bridge are used for the dynamic analysis in this chapter. All required inputs are 

obtained from technical drawings and technical reports provided by Rijkswaterstaat. The inputs are 

grouped in three main categories namely, characteristics of the system, geometry between the Panama 

wheel and the bridge, and properties of the buffer. 

The first group of inputs corresponds to the properties of the system regarding inertias, stiffnesses and 

transmission factors. All this information is collected in Table 6.1. 

Table 6.1: Characteristics of the system 

Description Notation Value Units 

Mass moment of inertia of the motor 𝐽1 7,385 𝑘𝑔 ∙ 𝑚2 

Mass moment of inertia of the Panama wheel* 𝐽2 107.052 𝑘𝑔 ∙ 𝑚2 

Mass moment of inertia of the bridge 𝐽3 45.776.000 𝑘𝑔 ∙ 𝑚2 

Stiffness of the machinery 𝐾1 7.960.000 𝑁 ∙ 𝑚 

Damping ratio 𝜉 0,0344 − 

Transmission factor of the gearbox 𝑖𝑡𝑤𝑘 226,27 − 

Transmission factor pinion-Panama wheel 𝑖𝑟𝑝 9,125 − 

Transmission factor motor-Panama wheel 𝑖𝑚𝑝 = 𝑖𝑡𝑤𝑘 ∙ 𝑖𝑟𝑝 2064,71 − 

Nominal speed of the motor 𝜔𝑛𝑜𝑚 103,2 𝑟𝑎𝑑 𝑠⁄  
*This value is calculated roughly based on technical drawings 

The dimensions and geometry of the bridge required for the analysis are illustrated in Figure 6.3 and 

Figure 6.4 and collected in Table 6.2 and Table 6.3. 
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Figure 6.3: Side view impression of bridge configuration. Left: Bridge in closed position. Right: Bridge while open. 

 
Figure 6.4: Geometry between the pivot of West bridge and the Panama wheel. Left: Initial geometry when the system is out of 

motion in closed position. Right: Geometry during motion of the system when the buffer has reached its initial length. 

Table 6.2: Geometric features of West bridge 

Description Notation Value Units 

Distance between the tip of the bridge and its 

pivot (point D) 
𝑥 24,675 𝑚 

Length of the bridge  𝑙 21,155 𝑚 

Width of the bridge 𝑑 11,2 𝑚 

Level arm of the external wind load 𝑅 = 𝑥 − 𝑙 2⁄  14,0975 𝑚 

Height of the tip of the bridge with respect to the 

water level when bridge closed 
ℎ𝑖𝑛𝑖 15,63 𝑚 

Relative rotation of the Panama wheel compared 

to its initial angle when the buffer has reached its 

initial length 

𝑟𝑠𝑡2;𝑖𝑛𝑖 4,28 degrees 

Table 6.3: Coordinates of the four important points between the pivot of the bridge and the Panama wheel when the system is 

out of motion in closed position 

Description Point Coordinate X Coordinate Y Units 

Pivot point of the Panama wheel A 0 0 𝑚 

Connection point of the buffer and the 

Panama wheel at closed position 
B 2,50 1,825 𝑚 

Connection point of the buffer and the 

bridge at closed position 
C 5,00 3,65 𝑚 

Pivot of the bridge D -1,20 3,65 𝑚 
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Given the angle 𝑟𝑠𝑡2;𝑖𝑛𝑖 (Table 6.2), the coordinates of point B when the buffer has its initial length can be 

determined with formulas (6.1), (6.2). Afterwards, substituting the resulted coordinates in formula (5.8) 

the initial length of the buffer can be calculated. 

 𝑥𝑏𝑖𝑛𝑖
′ = 𝐴𝐵 ∙ cos(tan−1 (

𝑦𝑏𝑖𝑛𝑖
𝑥𝑏𝑖𝑛𝑖

) − 𝑟𝑠𝑡2;𝑖𝑛𝑖) (6.1) 

 𝑦𝑏𝑖𝑛𝑖
′ = 𝐴𝐵 ∙ sin(tan−1 (

𝑦𝑏𝑖𝑛𝑖
𝑥𝑏𝑖𝑛𝑖

) − 𝑟𝑠𝑡2;𝑖𝑛𝑖) (6.2) 

The properties of the buffer are collected and mentioned in Table 6.4 and Table 6.5. The buffer of West 

bridge consists of disc springs with dimensions 250x127x14. The properties of the stack of disc springs 

required for the analyses are collected and summarized in Table 6.4. 

Table 6.4: Properties of the stack of disc springs used in the buffer of West bridge 

Description Notation Value Units 

Displacement of individual disc spring in flat 

condition 
ℎ0 0,0056 𝑚 

Curve parameter 𝜅 0,56 − 

Individual disc spring force in flat condition 𝐹𝑐 311.000 𝑁 

Number of disc springs in parallel 𝑛 3 − 

Number of disc springs in series 𝑖 14 − 

Table 6.5: Properties of the West bridge’s buffer 

Description Notation Value Units 

Prestress of the buffer 𝐹𝑝 311.000 𝑁 

Stroke of the buffer 𝑠𝑠𝑡𝑟 0,0176 𝑚 

Factor regarding the linear approximation of the 

stiff branches* 
𝑙𝑑𝑠𝑝 1 ∙ 10−6 − 

Friction of the buffer 𝜇 0,05 ÷ 0,15 − 
*This factor has been selected arbitrary due to its small value 

In the aforementioned inputs there are three parameters estimated by the author: 

• The mass moment of inertia of the Panama wheel (𝐽2) 

• The factor regarding the linear approximation of the stiff branches (𝑙𝑑𝑠𝑝) 

• Friction of the buffer (𝜇) 

It can be considered that the factor 𝑙𝑑𝑠𝑝 = 1 ∙ 10
−6 is sufficiently small and no further attention 

concerning its influence in the decisive dynamic loads is required (See Chapter 3). On the contrary the 

influence of the other two factors (friction of the buffer, inertia of the Panama wheel) is necessary to be 

assessed in the upcoming analyses. 
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6.3. External loads and sign conventions 

The external loads acting on the system are grouped in sub-section 5.2.3. in two categories: 

• Torque generated by the motion of the motor (𝑀1(𝑡)) 

• Torque due to wind and overweight of the bridge (𝑀3(𝑡)) 

The torque generated by the motion of the motor is describe with the piecewise function of formula (6.3) 

 𝑀1(𝑡) = {
𝑎𝑎𝑐 ∙ (𝐽1 + 𝐽2 + 𝐽3),                               0 ≤ 𝑡 ≤ 𝑡𝑛𝑜𝑚
𝑎𝑏𝑟 ∙ (𝐽1 + 𝐽2 + 𝐽3),             𝑡𝑏𝑟 ≤ 𝑡 ≤ 𝑡𝑏𝑟 + 𝑡𝑏𝑟;𝑑𝑢𝑟

} (6.3) 

in which: 

𝑎𝑎𝑐 is the acceleration of the motor calculated as 𝑎𝑎𝑐 = 𝜔𝑛𝑜𝑚 𝑡𝑛𝑜𝑚⁄ ; 

𝑎𝑏𝑟 is the deceleration of the motor or deceleration of the system due to brake and is calculated as 𝑎𝑏𝑟 =

𝜔𝑛𝑜𝑚 𝑡𝑏𝑟⁄ ; 

𝑡𝑛𝑜𝑚 is the time that is needed by the motor to reach its nominal speed; 

𝑡𝑏𝑟 is the time that the motor starts to decelerate or the time the brake is applied; 

𝑡𝑏𝑟;𝑑𝑢𝑟 is the duration of the emergency stop. 

It must be mentioned that the acceleration and the deceleration of the system can be split into parts. In 

addition, there is evidence that the torque due to the application of the brake at the motor shaft is not 

constant during an emergency stop as it is assumed until now in the existing analyses but can be modeled 

as bilinear. These situations are illustrated in the upcoming chapters (sections (6.6) and (6.7)). 

The torque due to the wind and overweight of the bridge is given by: 

 𝑀3(𝑡) = 𝑀𝑜𝑣 ∙ cos(𝑟3(𝑡)) +𝑀𝑤𝑖𝑛𝑑(|𝑟3(𝑡)|) (6.4) 

in which: 

𝑀𝑜𝑣 is the torque due to the overweight of the bridge at closed position and is equal to 318,740 𝑁𝑚 for 

the West bridge; 

𝑀𝑤𝑖𝑛𝑑(|𝑟3(𝑡)|) is the torque due to wind load acting on the bridge; 

𝑟3(𝑡) is the angle of the bridge. This term is used with absolute value for the calculations of the external 

torque due to wind, since the wind velocity pressure on the movable bridge is a function of the opening 

angle which varies in the range (0° ÷ 90°) in the standard NEN 6786:2001 (2001). 
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The torque due to wind load acting on the bridge is calculated as: 

 𝑀𝑤𝑖𝑛𝑑(|𝑟3(𝑡)|) = 𝑝𝑤;𝑟𝑒𝑝(|𝑟3(𝑡)|) ∙ 𝑙 ∙ 𝑑 ∙ 𝑅 (6.5) 

where 

𝑝𝑤;𝑟𝑒𝑝(|𝑟3(𝑡)|) is the characteristic value of the wind velocity pressure perpendicular to the affected 

surface for the bridge and is calculated according to the standard NEN 6786:2001 (2001) and (Antohe, 

2016) 

𝑙, 𝑑 𝑎𝑛𝑑 𝑅 are respectively the length of the bridge, the width of the bridge and the level arm of the 

external wind load with values given in Table 6.2. 

The inputs for the calculation of the characteristic wind velocity pressure for the West bridge of Ramspol 

bridge are summarized in Table 6.6. 

Table 6.6: Inputs of Ramspol bridge required for the calculations of wind velocity pressure 

Description Notation Value Units 

Hourly average wind velocity at 10m above 

ground level (table 3 NEN 6786:2001 (2001)) 
𝑈𝑟  13,7 𝑚/𝑠 

Roughness length (table 3 NEN 6786:2001 (2001)) 𝑧0 0,2 𝑚 

Height above ground level at which hourly 

average wind speed 𝑼𝒓 is determined 
𝑧𝑢𝑟 10 𝑚 

Aspect ratio of the bridge (length/width) 𝑙/𝑏 1,88884 − 

Density of the air 𝜌 1,25 𝑘𝑔/𝑚3 

Factor that takes the dimensions of the bridge 

into account 
𝐶𝑑𝑖𝑚 0,95 − 

Dynamic amplification factor for wind 𝜑𝑤 1,15 − 

The height of the tip of the bridge with respect to the water level during motion is given by formula: 

 ℎ(|𝑟3(𝑡)|) = ℎ𝑖𝑛𝑖 + 𝑥 ∙ sin(|𝑟3(𝑡)|) (6.6) 

in which: 

ℎ𝑖𝑛𝑖 is the height of the tip of the bridge with respect to the water level when bridge is closed (Table 6.2) 

𝑥 is the distance between the tip of the bridge and its pivot, point D (Table 6.2, Figure 6.3) 

The sign conventions of the analysis follow those defined by the coordinate system placed at the pinion 

of the Panama wheel (Figure 6.4) and are the same as illustrated in Figure 2.6. This implies that the 

accelerations and velocities of the degrees of freedom have negative sign when the bridge opens, while 

on the other hand deceleration or braking carry a positive sign. The signs of these variables are opposite 



Application and results 

   79 

when the bridge is closing. In addition to the above, wind load under the bridge has a negative sign (see 

also Figure 2.8), while wind load above the bridge has a positive sign. 

6.4. Stages of the analysis 

As mentioned in sub-section 5.2.2., when the bridge is in the closed position the buffer is precompressed. 

When the system begins its motion, the bridge does not move until the precompression of the buffer is 

removed. The angle that the Panama wheel has to rotate in order to reach the initial length of the buffer 

is known beforehand (𝑟𝑠𝑡2;𝑖𝑛𝑖 (Table 6.2)).  

Since the bridge does not move until the buffer has reached its initial length the motion of the system can 

be split into two stages: 

Stage 1: Rotation of motor and Panama wheel from initial state until the buffer reaches its initial length. 

During this stage the bridge does not move. This implies that during this stage the 3rd equation of motion 

(5.33) does not hold and the 3rd degree of freedom is prescribed zero. The motion of the system is 

described by the first two equations of motion (5.31), (5.32) with the following initial conditions: 

 𝑟1;𝑠𝑡1(0) = tan
−1(

𝑦𝑖𝑛𝑖
𝑥𝑖𝑛𝑖

) , 𝑟2;𝑠𝑡1(0) = tan
−1(

𝑦𝑖𝑛𝑖
𝑥𝑖𝑛𝑖

) (6.7) 

 𝑟̇1;𝑠𝑡1(0) = 0 , 𝑟̇2;𝑠𝑡1(0) = 0 (6.8) 

The initial condition for the angles of the motor and the Panama wheel is the angle that the crank of the 

Panama wheel (AB line) forms with the horizontal x axis Figure 6.4. The reason behind this is that the 

equations of motion are linked with the geometry between the Panama wheel and the bridge. The 

rotation of the Panama wheel is governed by the position of point B in the coordinate system. Therefore, 

the initial state of (AB line) needs to be input in the equations of motion. 

The analysis in this stage stops when the Panama wheel has rotated 4,28° (𝑟𝑠𝑡2;𝑖𝑛𝑖) related to its initial 

position. The corresponding time (𝑡𝑠𝑡2) is calculated solving the following equation in terms of 𝑡: 

 𝑟2;𝑠𝑡1(𝑡) = tan
−1 (

𝑦𝑖𝑛𝑖
′

𝑥𝑖𝑛𝑖
′ ) = 𝑟𝑠𝑡2;𝑖𝑛𝑖 (6.9) 

The response of the system in terms of rotations and rotational velocities of the motor and the Panama 

wheel at that time (𝑡𝑠𝑡2) are used as initial conditions in the next stage of motion. 

Stage 2: The motion of the motor and the Panama wheel continues while the bridge starts to move. The 

motion of the system in this stage is described by the 3 equations of motion (5.31), (5.32), (5.33) and the 

initial conditions in this stage are: 
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 𝑟1;𝑠𝑡2(0) = 𝑟1;𝑠𝑡1(𝑡𝑠𝑡2) , 𝑟2;𝑠𝑡2(0) = 𝑟2;𝑠𝑡1(𝑡𝑠𝑡2) , 𝑟3;𝑠𝑡2(0) = 0 (6.10) 

 𝑟̇1;𝑠𝑡2(0) = 𝑟̇1;𝑠𝑡1(𝑡𝑠𝑡2) , 𝑟̇2;𝑠𝑡2(0) = 𝑟̇2;𝑠𝑡1(𝑡𝑠𝑡2) , 𝑟̇3;𝑠𝑡2(0) = 0 (6.11) 

The outcome of the two stages of motion described previously are combined using formulas (6.12)-(6.14) 

to obtain the total response of the dynamic system. 

 𝑟1(𝑡) = {
𝑟1;𝑠𝑡1(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑠𝑡2
𝑟1;𝑠𝑡2(𝑡 − 𝑡𝑠𝑡2),     𝑡 > 𝑡𝑠𝑡2

} (6.12) 

 𝑟2(𝑡) = {
𝑟2;𝑠𝑡1(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑠𝑡2
𝑟2;𝑠𝑡2(𝑡 − 𝑡𝑠𝑡2),     𝑡 > 𝑡𝑠𝑡2

} (6.13) 

 𝑟3(𝑡) = {
0,                     0 ≤ 𝑡 ≤ 𝑡𝑠𝑡2
𝑟3;𝑠𝑡2(𝑡 − 𝑡𝑠𝑡2),     𝑡 > 𝑡𝑠𝑡2

} (6.14) 

6.5. Preliminary analysis 

A preliminary dynamic analysis for the West bridge is performed using the set of equations of motion 

(5.31)-(5.33) and the associated inputs (sections 6.2.-6.5) as described previously. The analysis is carried 

out for opening of the bridge from closed position with external wind load under the bridge. The phases 

of motion of the system follow those of the motor. Therefore, the phase of motion of the motor for this 

analysis are summarized in Table 6.7. 

Table 6.7: Phases of motor’s motion of the preliminary analysis 

Description 
Start 

time (s) 

End 

time (s) 

Duration 

(s) 

Acceleration-

Deceleration/Brake 

(rad/s) 

Phase 1: Acceleration of the system from 

initial state (rest) until it reaches the 

nominal motor speed 

0 12 12 −103,2 12⁄ = −8,6 

Phase 2: The system is driven with 

constant speed, the nominal motor speed 
12 72 50 0 

The phases of motion, determine the behavior of the external torque 𝑀1(𝑡) (6.3) which is the driving force 

of the system. 

The analysis is performed at the level of the Panama wheel as mentioned in chapter 5. Hence, all inputs 

regarding the motor (𝐽1 , 𝑀1(𝑡)) and the characteristics of the machinery (𝐾1 , 𝐶𝑑) are transferred to the 

level of the Panama wheel using the associated transmission factors. 
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The results of the analysis in terms of rotations and rotational velocities of the three degrees of freedom 

are illustrated in Figure 6.5 and Figure 6.6 

 

Figure 6.5: Rotational velocity of the motor reduced at the level of the Panama wheel. The blue line represents the velocity as 

resulted from the analysis with the dynamic model whereas the orange one illustrates the theoretical one as a result of the 

assumed phases of motor’s motion  

 

Figure 6.6: Rotational velocity of the Panama wheel (left) and the bridge (right) as resulted from the analysis with the dynamic 

model 

In Figure 6.5 the rotational velocity of the motor resulted from the dynamic analysis is compared with the 

theoretical one that is expected based on the assumed phases of motion in Table 6.7. The observed 
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difference is caused due to the influence of nonlinearity in the transmission factor between the bridge 

and the Panama wheel. 

In reality the velocity of the motor is either linearly proportional to the time or constant during the phases 

of motion. This is achieved by introducing error detection amplifiers in the system. This device compares 

the input signal of the motor with the feedback of the motor shaft and the error in these two signals is 

eliminated by a speed controller which speeds up or slows down the motor. 

The exact behavior of the motor can be achieved by removing the degree of freedom of it and applying a 

boundary at that position with prescribed rotational velocity equal to the programed (theoretical) one of 

the motor. This change in the system does not influence its response in terms of the maximum torques at 

the motor shaft as it is depicted in sub-section 2.4.1. The updated version of the dynamic model of the 

bridge-machinery system is mentioned in the upcoming section with the associated results of the dynamic 

analyses of it. 

6.6. Updated dynamic model of the bridge-machinery system 

The updated version of the dynamic model of the bridge-machinery system is illustrated in Figure 6.7.  

 

Figure 6.7: Updated dynamic model of the bridge – machinery system  

The degree of freedom of the motor is removed and a boundary is attached to the left end of the torsional 

spring. At this boundary a prescribed velocity is applied which is calculated according to the formula: 

 𝑣𝑒𝑙𝑝𝑟𝑠(𝑡) = ∫𝑎(𝑡) 𝑑𝑡 (6.15) 

where 
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𝑎(𝑡) is the acceleration/deceleration of the motor defined by the different phases of motion. 

Moreover, the rotation of the boundary can be simply calculated integrating the prescribed velocity (6.15) 

adding its initial position at 𝑡 = 0 (6.7): 

 𝑟𝑝𝑟𝑠(𝑡) = ∫𝑣𝑒𝑙𝑝𝑟𝑠(𝑡) 𝑑𝑡 + tan
−1(

𝑦𝑖𝑛𝑖
𝑥𝑖𝑛𝑖

) (6.16) 

Furthermore, the updated set of equations of motion becomes: 

 𝐽2 ∙ 𝑟̈2(𝑡) + 𝐶𝑑 ∙ (𝑟̇2(𝑡) − 𝑣𝑒𝑙𝑝𝑟𝑠(𝑡)) + 𝐾1 ∙ (𝑟2(𝑡) − 𝑟𝑝𝑟𝑠(𝑡)) + 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟2(𝑡)
= 𝑄2 (6.17) 

 𝐽3 ∙ 𝑟̈3(𝑡) + 𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟3(𝑡)
= 𝑄3 (6.18) 

with 

 𝑄2 = −𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟2(𝑡)
| ∙ 𝑠𝑖𝑔𝑛(𝑟̇2(𝑡) − 𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
) (6.19) 

 𝑄3 = −𝜇 ∙ (𝑛 − 1) ∙ |𝐹𝑏𝑢𝑓𝑓𝑒𝑟[𝑠] ∙
𝜕𝑠

𝜕𝑟3(𝑡)
| ∙ 𝑠𝑖𝑔𝑛 (𝑟̇3(𝑡) ∙

𝑠𝑖𝑛(𝑔) ∙ 𝐷𝐶

𝑠𝑖𝑛(𝑢) ∙ 𝐴𝐵
− 𝑟̇2(𝑡)) + 𝑀3(𝑡) (6.20) 

The updated set of equations of motion is used to perform a dynamic analysis for a complete opening 

cycle of the bridge. The wind load is assumed acting under the bridge during the whole cycle. The phases 

of motor’s motion are presented in Table 6.8. 

Table 6.8: Phases motor’s motion in a complete opening cycle of West bridge 

Description 
Start 

time (s) 

End 

time (s) 

Duration 

(s) 

Acceleration-

Deceleration/Brake 

(rad/s) 

Phase 1: Acceleration of the system from 

initial state (rest) until it reaches 30% of 

the nominal motor speed 

0 3,6 3,6 
−(103,2 ∙ 0,3) 3,6⁄

= −8,6 

Phase 2: The system is driven with 

constant creep speed, 30% of the nominal 

motor speed 

3,6 8,6 5 0 

Phase 3: Acceleration of the system until it 

reaches the nominal speed 
8,6 17 8,4 -8,6 

Phase 4: The system is driven with 

constant speed, the nominal motor speed 
17 73 56 0 
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Phase 5: Deceleration of the system from 

the nominal motor speed until it reaches 

10% of it 

73 83,8 10,8 8,6 

Phase 5: The system is driven with 

constant creep speed, 10% of the nominal 

motor speed 

83,8 88,8 5 0 

Phase 6: Deceleration of the system until 

it stops 
88.8 90 1,2 8,6 

The aforementioned phases of motor’s motion during the complete opening cycle of the bridge are 

illustrated graphically in Figure 6.8. 

 

Figure 6.8: Velocity of the motor versus time during the complete opening cycle of the West bridge 

The input velocity of the motor shown in Figure 6.8 is reduced at the level of the Panama wheel using the 

associated transmission factor (𝑖𝑚𝑝) from Table 6.1 and the associated rotation of the boundary is 

calculated using Eq.(6.16). The resulting prescribed velocity and rotation of the boundary of the updated 

dynamic model are illustrated in Figure 6.9. 
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Figure 6.9: Prescribed motion of the boundary of the updated dynamic model during the complete opening cycle of the West 

bridge 

The response of the system in terms of rotations and rotational velocities of the Panama wheel and the 

bridge are illustrated in Figure 6.10. More specifically the rotation of the Panama wheel is plotted in Figure 

6.10 as absolute rotation from its initial condition using the equation: 

 𝑟2;𝑎𝑏𝑠(𝑡) = 𝑟2(𝑡) − 𝑟2(0) (6.21) 

in which: 

𝑟2(𝑡) is the calculated rotation of the Panama wheel resulted from the dynamic analysis; 

𝑟2(0) is the initial condition of the Panama wheel as defined in the dynamic analysis (Eq.(6.7)). 

In addition, the transmission between the bridge and the Panama wheel (Eq.(5.18)) and the resulted 

torque at the motor shaft during the complete opening cycle of the bridge are plotted in Figure 6.11 and 

Figure 6.13. The latter is calculated using the equation: 

 𝑇(𝑡) =
𝐾1 ∙ (𝑟𝑝𝑟𝑠(𝑡) − 𝑟2(𝑡)) + 𝐶1 ∙ (𝑣𝑒𝑙𝑝𝑟𝑠(𝑡) − 𝑟̇2(𝑡))

𝑖𝑚𝑝
 (6.22) 

Using the proposed updated dynamic model, the analysis is performed at the level of the Panama wheel 

and the torque of interest is at the level of the motor shaft. Therefore, the transmission factor between 

the motor and the Panama wheel is used in formula (6.22). 
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Figure 6.10: Results of the dynamic analysis of a complete opening cycle of the West bridge using the updated dynamic model 

 

Figure 6.11: Transmission factor between the West bridge and the Panama wheel as a function of the angled of the bridge 
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Figure 6.12: External loads on the bridge 

 

Figure 6.13: Resulting torque at the motor shaft during a complete opening cycle of the West bridge with wind under using the 

updated dynamic model (blue) and reaction of the total external load on the bridge reduced at the motor shaft (red) 
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In Figure 6.10 is shown that through the use of the updated dynamic model, the system has the expected 

behavior in terms of velocity versus time according to the defined phases of motion (Table 6.8). Therefore, 

using this model in the following chapter, in the dynamic analyses of the West bridge, is justified. 

6.7. Results and comparison with existing standard 

The content of this section is a series of dynamic analyses carried out based on the updated dynamic 

model mentioned before. The purpose of this implementation is to calculate the maximum torque at the 

motor shaft during an emergency stop and compare it with the torque calculated according to the 

tabulated formulas of the existing standard NEN 6786:2001 (2001). 

The loading case of these analyses is braking at full speed with wind load under the bridge without 

changing direction. The parameters of the upcoming analyses are: 

• The friction coefficient of the buffer (𝜇) 

• The time the brake is applied (𝑡𝑏𝑟) 

• The duration of the emergency stop (𝑡𝑏𝑟;𝑑𝑢𝑟) 

A step by step description of the process is drawn next. First the magnitude of the friction coefficient is 

specified. The magnitude of the friction coefficient ranges between 0,05 ÷ 0,15. Afterwards, the time of 

the brake application is chosen. The system moves with full speed between 17s ÷ 73s. It is decided to 

perform emergency stops at 30, 40, 50 and 60 seconds. Subsequently, given these two prerequisites and 

varying the duration of the emergency stop a series of dynamic analyses are performed and the torque at 

the motor shaft is calculated. The phases of motor’s motion in the upcoming analyses are summarized in 

Table 6.9. 

Table 6.9: Phases of motor’s motion in an emergency stop at full speed of the system during opening of the bridge 

Description 
Start 

time (s) 

End 

time (s) 

Duration 

(s) 

Acceleration-

Deceleration/Brake 

(rad/s) 

Phase 1: Acceleration of the system from 

initial state (rest) until it reaches 30% of 

the nominal motor speed 

0 3,6 3,6 
−(103,2 ∙ 0,3) 3,6⁄

= −8,6 

Phase 2: The system is driven with 

constant creep speed, 30% of the nominal 

motor speed 

3,6 8,6 5 0 

Phase 3: Acceleration of the system until it 

reaches its the nominal motor speed 
8,6 17 8,4 -8,6 

Phase 4: The system is driven with 

constant speed, the nominal motor speed 
17 𝑡𝑏𝑟 𝑡𝑏𝑟 − 17 0 

Phase 5: Emergency stop 𝑡𝑏𝑟 
𝑡𝑏𝑟
+ 𝑡𝑏𝑟;𝑑𝑢𝑟 

𝑡𝑏𝑟;𝑑𝑢𝑟 103,2/ 𝑡𝑏𝑟;𝑑𝑢𝑟 
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The next stage is the calculation of the torque at the motor shaft using Eq.(6.22). The maximum torque at 

the motor shaft stemming from the dynamic analyses is plotted in Figure 6.14. This figure depicts this 

maximum torque for the extreme values of the friction coefficient (0,05, 0,15) for different braking times 

varying the duration of the emergency stop. 

 

Figure 6.14: Maximum torque at the motor shaft as a function of the duration of the brake for different times of emergency 

stop. Left: Results for the lower limit of the assumed friction coefficient. Right: Results for the upper limit of the assumed 

friction coefficient 

According to Figure 6.14 the worst-case scenario regarding the maximum torque generated at the motor 

shaft during an emergency stop is when the brake is applied at 40 seconds. In terms of rotational velocity 

of the system, the worst-case scenario is when performing emergency stop at full speed. The system 

rotates at full speed from 17s to 73s. At that timespan one can observe the generated torque at the motor 

shaft reaching an apex at approximately 37s (see Figure 6.13). It is concluded that, the worst-case scenario 

regarding the maximum torque generated at the motor shaft during an emergency stop is referring to an 

emergency stop at full speed of the system beginning at the time that maximum torque is applied at the 

motor shaft. 

Therefore, a series of dynamic analyses is performed applying the brake at the time that maximum torque 

is applied at the motor shaft during full speed of the system. As can be seen in Figure 6.13 this is the apex 

reached at time 37s approximately. The resulting maximum torque during the emergency stop is plotted 

in Figure 6.15 versus the duration of the brake (Figure 6.15 (left)) and versus the braking deceleration 

(Figure 6.15 (right)) for different values of the friction coefficient of the buffer. 
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Figure 6.15: Maximum torque at the motor shaft during emergency stop at the 37th sec of motion. The marked points indicate 

the values where a change in the buffer’s state during an emergency stop is observed. Left: Maximum torque against the 

duration of brake. Right: Maximum torque in contrast with the braking deceleration. 

Examining the graphs of Figure 6.14 and Figure 6.15 (left) the relationship of the maximum torque at the 

motor shaft in relevance with the duration of braking can be observed. As can be seen in these graphs, 

the lower the duration of the brake, the higher the maximum torque at the motor shaft due to the 

application of the brake. In general, this behavior is anticipated since the time needed for a system to stop 

moving is reverse proportional to the required load and the braking deceleration of the system, 

individually. Specifically for the latter, this can be observed in Figure 6.15 (right). 

In addition, the friction of the buffer component influences the response of the system. As the friction 

coefficient of the buffer increases, the resulting maximum torque at the motor shaft reduces. With the 

increase of the friction coefficient, more energy is converted to other forms (e.g. heat) resulting in less 

energy being transferred to the motor shaft during an emergency stop. 

To explore in more detail the plotted results of Figure 6.14 and Figure 6.15, the change of the maximum 

torque with the increase of the duration of the brake (or the braking deceleration) is not constant. 

However, an abrupt change of it is observed at specific values (marked points in the graphs of Figure 6.14 

and Figure 6.15). Given this observation, the state of the buffer corresponding to the resulting maximum 

torque is monitored. As a result, the state of the buffer changes at the marked points. For durations of 

brake lower than the ones associated with the marked points, the buffer is fully compressed, whereas for 

larger durations the buffer is not fully compressed. The opposite holds for the right graph of Figure 6.15. 

Overall, the stiffer the behavior of the buffer (buffer fully compressed), the larger the change of the 

maximum torque with the change of the variable of the horizontal axis, as can be seen in both instances 

of Figure 6.15. 

The maximum torque resulted from the dynamic analyses (Figure 6.15) is compared with the formulas of 

the standard NEN 6786:2001 (2001) (Eq.(2.1) and Eq.(2.3)). For the situations where the buffer is not fully 
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compressed the percentage deviation (percentage reduction) of the dynamic analysis’ outcome as 

opposed to the result of Eq. (2.1) is calculated (Figure 6.16). On the contrary, when the buffer is fully 

compressed the validity of the factor 0,4 in the second term of formula (2.3) is examined. This is achieved 

by substituting the factor 0,4 of formula (2.3) with an unknown variable 𝑧 and solving the following 

equation in terms of this variable: 

 𝑇𝑚𝑎𝑥 = 𝑀𝑠;𝑑 + 𝑧 ∙ 0,9 ∙ 𝛾0 ∙ √𝜔
2 ∙ K1 ∙ 𝐽2 (6.23) 

in which: 

𝑇𝑚𝑎𝑥 is the maximum torque at the motor shaft as resulted from the dynamic analyses. 

The results of Eq. (6.23) are plotted in a contour diagram in terms of the duration of the brake and the 

friction coefficient of the buffer (Figure 6.17) 

To use Eq. (2.1) and Eq. (2.3), the external load (𝑀𝑠;𝑑) and the transmission factor between the bridge and 

the Panama wheel (5.18) at the time of the maximum torque are necessary to be determined. Since these 

two quantities are functions of time, the time associated to the maximum torque at the motor shaft is 

also estimated. 

 

Figure 6.16: Percentage deviation (reduction) of the maximum torque resulted from the dynamic analyses compared with Eq. 

(2.3) of the standard NEN 6786:2001 (2001) for the case where the buffer is not fully compressed during an emergency stop 
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Figure 6.17: Contour plot for the value of the factor 0,4 of Eq.(2.3) so as to calculate the same maximum torque at the motor 

shaft in case the buffer is fully compressed during an emergency stop as the torque resulted from the dynamic analyses  

In reference to Figure 6.16, the maximum torque resulting from the dynamic analysis is lower than that 

calculated with Eq.(2.1). In particular, for higher values of the buffer’s friction coefficient, the percentile 

deviation of the maximum torque, as a result of the dynamic model, is increased when compared to the 

value taken from the standard Eq.(2.1).  

In Figure 6.17, the dependence of 𝑧 factor on the duration of the brake and the friction coefficient is 

illustrated. Consequently, the maximum torque at the motor shaft for the case of fully compressed buffer 

depends on those parameters, as well. None of those influence factors is taken into account yet in Eq. 

(2.3) of the standard NEN 6786:2001 (2001). 

To sum up, the updated dynamic model is used to perform dynamic analyses for the West bridge, while 

the calculations aim to determine the maximum torque generated at the motor shaft during an 

emergency stop. The influence of the friction coefficient of the buffer and its state (fully compressed or 

not) on the maximum torque is already depicted. 

Furthermore, as mentioned in section 6.3 there are evidences that the torque at the motor side due to 

the application of the brake can be modeled bilinear instead of constant modeling during the whole 

duration of the emergency stop. When the system is subjected to an emergency stop, a brake is applied 

at the motor shaft. Two brake shoes come in contact with the motor shaft and generating a torque against 

its motion due to friction, the braking of the system is accomplished. It is reasonable to assume that the 

braking torque is not maximum from the time the brake shoes come in contact with the shaft but it takes 

some time to reach its maximum value.  

In the updated dynamic model, the degree of freedom of the motor is removed and the motion of the 

system is achieved via prescribed motion of the boundary. The braking of the system is modeled as 
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deceleration of the boundary (Table 6.9). It is decided to model the constant deceleration in Table 6.9 as 

an associated bilinear one, respecting the two following conditions: 

• The maximum of the bilinear deceleration is equal to the constant one (Figure 6.18) 

• The change in velocity in both cases remains the same Eq.(6.25) 

The aforementioned conditions are illustrated in Figure 6.18 and the associated mathematic relationships 

are given in Eq.(6.24), Eq.(6.25) 

 

Figure 6.18: Graphic representation of the constant deceleration due to braking (left) and the associated bilinear one (right) 

 𝑎 =
103,2

𝑡𝑏𝑟;𝑑𝑢𝑟
 (6.24) 

 𝑎 ∙ 𝑡𝑏𝑟;𝑑𝑢𝑟 =
1

2
∙ 𝑎 ∙ 𝑡𝑏𝑟;1 + 𝑎 ∙ 𝑡𝑏𝑟;2 (6.25) 

in which: 

𝑡𝑏𝑟;𝑑𝑢𝑟 is the duration of the constant brake; 

𝑡𝑏𝑟;1 is the duration of the linear increasing part in the bilinear case and is assumed to be either 0,3 or 0,5 

seconds. The first case is referred as bilinear1 and the second one is referred as bilinear2 respectively; 

𝑡𝑏𝑟;2 is the duration of the constant part in the bilinear case and is calculated based on Eq.(6.25) 

The total duration of the bilinear case is the summation 𝑡𝑏𝑟;1 + 𝑡𝑏𝑟;2  

The bilinear brake is examined for emergency stop when the torque reaches its peak value during full 

speed of the system. Based on the aforementioned conditions the outcome of the dynamic analyses for 

the bilinear brake can be compared with the one resulted from the constant one (Figure 6.15) and the 

associated torques calculated with the formulas of the design standard. The phases of motion of the 

bilinear case are described in Table 6.10. An impression of the bilinear brake and the resulting rotational 

velocity of the boundary at that stage is shown in Figure 6.19. The results of the analyses and the 
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comparison with the constant brake and the standard are shown in Figure 6.20 and Figure 6.21. In these 

figures the results are plotted in terms of the maximum braking deceleration, since it is the shared 

component between these two braking models (Figure 6.18). 

Table 6.10: Phases of motor’s motion for bilinear braking of the system at full speed while the bridge is opening 

Description 
Start 

time (s) 

End 

time (s) 

Duration 

(s) 

Acceleration-

Deceleration/Brake 

(rad/s) 

Phase 1: Acceleration of the system from 

initial state (rest) until it reaches 30% of 

the nominal motor speed 

0 3,6 3,6 
−(103,2 ∙ 0,3) 3,6⁄

= −8,6 

Phase 2: The system is driven with 

constant creep speed, 30% of the nominal 

motor speed 

3,6 8,6 5 0 

Phase 3: Acceleration of the system until it 

reaches its the nominal motor speed 
8,6 17 8,4 -8,6 

Phase 4: The system is driven with 

constant speed, the nominal motor speed 
17 𝑡𝑏𝑟 𝑡𝑏𝑟 − 17 0 

Phase 5: Emergency stop: Linear 

deceleration until it reaches its maximum 

value 

𝑡𝑏𝑟 
𝑡𝑏𝑟
+ 𝑡𝑏𝑟;1 

𝑡𝑏𝑟;1 
103,2 ∙ (𝑡 − 𝑡𝑏𝑟)

𝑡𝑏𝑟;𝑑𝑢𝑟 ∙ 𝑡𝑏𝑟;1
 

Phase 6: Emergency stop: Constant 

maximum deceleration until the systems 

stops 

𝑡𝑏𝑟
+ 𝑡𝑏𝑟;1 

𝑡𝑏𝑟
+ 𝑡𝑏𝑟;1
+ 𝑡𝑏𝑟;2 

𝑡𝑏𝑟;2 
103,2

𝑡𝑏𝑟;𝑑𝑢𝑟
 

 

 

Figure 6.19: Impression of the bilinear braking of the system (left) and the resulting prescribed rotational velocity of the 

boundary at that phase of motion 
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Figure 6.20: Comparison of the maximum torque at the motor shaft calculated with constant and bilinear brake in the dynamic 

model. In the latter the brake increases linearly for 0,3s. Left: Comparison of the maximum torque calculated with constant 

brake (dashed line) with the one calculated with bilinear brake (continuous line). Right: Percentage deviation (reduction) of the 

torque calculated with constant brake (dashed line) or bilinear brake (continuous line) with the formula (2.1) of the standard 

NEN 6786:2001 (2001) for the case where the buffer is not fully compressed during an emergency stop 

 

Figure 6.21: Comparison of the maximum torque at the motor shaft calculated with constant and bilinear brake in the dynamic 

model. In the latter the brake increases linearly for 0,5s. Left: Comparison of the maximum torque calculated with constant 

brake (dashed line) with the one calculated with bilinear brake (continuous line). Right: Percentage deviation (reduction) of the 

torque calculated with constant brake (dashed line) or bilinear brake (continuous line) with the formula (2.1) of the standard 

NEN 6786:2001 (2001) for the case where the buffer is not fully compressed during an emergency stop 
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Figure 6.20 and Figure 6.21 illustrate that the bilinear braking of the system results in lower maximum 

torque at the motor shaft than the constant braking. More specifically, the larger the duration of the linear 

part of the brake, the larger the reduction of the maximum torque is. The resulting maximum torque at 

the motor shaft from the dynamic analysis with the bilinear braking can be 3 - 11% lower than the one 

calculated with Eq.(2.1) of the standard NEN 6786:2001 (2001) (case buffer not fully compressed). 

Moreover, once the buffer becomes fully compressed during braking of the system (on the right-hand 

side of the kink in the plots of Figure 6.20 and Figure 6.21) the analysis with the bilinear braking illustrates 

considerable reduction of the maximum torque compared to the resulting one with constant brake. 

Last but not least, it is desired to examine the sensitivity of the results with respect to the magnitude of 

the inertia of the Panama wheel. As it is mentioned in section 6.1 the mass moment of inertia of the 

Panama wheel is calculated roughly based on technical drawings regarding the drive mechanism of the 

West bridge. Therefore, a set of dynamic analyses is performed with magnitude of the Panama wheel’s 

inertia half of the calculated value and 1,5 times bigger. The results of the study are summarized in Table 

6.11. 

Table 6.11:Results of the study of the maximum torque resulting from the dynamic analyses with respect to the magnitude of 

the Panama wheel’s inertia for emergency stop at 40s with friction coefficient of the buffer 0,1 

Constant braking of the system for emergency stop at 40s; Friction coefficient of the buffer 0,10 

Duration of brake (s) 
0,5 ∙ 𝐽2 𝐽2 1,5 ∙ 𝐽2 

Max. Torque (Nm) Max. Torque (Nm) Max. Torque (Nm) 

1,6s 757,694 758,8 759,932 

1,4s 802,024 803,283 804,54 

1,2s 861,216 862,679 864,138 

1,0s 1082,88 1084,57 1086,25 

0,75s 1497,58 1498,87 1500,14 

According to the results summarized in Table 6.11, it is clearly depicted that the results of the dynamic 

analyses are not sensitive to the magnitude of the inertia of the Panama wheel. 

To conclude, the results of the aforementioned dynamic analyses show the influence of the buffer 

component in the maximum torque generated at the motor shaft during an emergency stop. The worst-

case scenario arises when an emergency stop begins at the time that maximum torque is applied at the 

motor shaft during full speed of the system. As can be seen in Figure 6.13 this is the apex reached at time 

37s approximately. The magnitude of the maximum torque during an emergency stop depends on three 

factors namely: the duration of braking, the friction coefficient of the buffer and the modeling of braking 

(constant or bilinear). The resulting maximum torque is in inverse proportion to the duration of the brake 

and/or the friction coefficient of the buffer. The bilinear brake results in lower maximum torques 

compared to the constant brake. 
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7. Conclusions and recommendations 

This chapter contains the outcome of the research introduced in the previous chapters regarding the 

effect of the push-pull rod on the dynamic behavior of movable bridges. Firstly, the main conclusions 

deduced through this research are presented, as were outlined in the research objectives. Following this, 

recommendations for further research in the field of dynamics of movable bridges are given. 

7.1. Conclusions 

To start with, the push-pull rod is a component of the machinery that should not be neglected when 

analyzing the dynamic model of the movable bridge-machinery system. As a result of the dynamic 

analyses of the system with a set of equation of motion where the buffer is taken into account, the 

calculated maximum torque generated at the motor shaft during an emergency stop shows remarkable 

difference when compared with the torque calculated with the formulas of the existing standard NEN 

6786:2001 (2001).  

The state of the buffer during an emergency stop is crucial with regards to the maximum torque generated 

at the motor shaft. The buffer can be either fully compressed or not during an emergency stop depending 

on the load acting on it. Specifically, the buffer is fully compressed when the load acting on it exceeds the 

load corresponding to its stroke. The two cases regarding the state of the buffer during an emergency 

stop are distinguished by the kink observed in Figure 6.14 and Figure 6.15. The steep branches correspond 

to the case the buffer is fully compressed, while the gradual branches refer to the situation where the 

buffer is not fully compressed. 

Given the case where the buffer is not fully compressed during an emergency stop, the maximum 

potential torque generated at the motor shaft, as derived from the aforementioned dynamic analyses, is 

1,5-8% lower than the torque calculated employing the current standard’s formulas (Eq.(2.1) NEN 

6786:2001 (2001)) (see Figure 6.16). The exact reduction in terms of percentage depends on the friction 

of the buffer and the duration of the emergency stop. 

On the other hand, in the case where the buffer is fully compressed during an emergency stop, a 

considerable deviation is observed between the maximum torque resulting from the dynamic analyses 

and the torque calculated with Eq.(2.3) of the standard NEN 6786:2001 (2001). The latter is only 

dependent on the time the brake is applied and not on the duration of the emergency stop. Contrary to 

this, the maximum torque obtained from the dynamic analyses has been shown to be dependent on the 

duration of the braking, resulting thus, in either lower or significantly higher values. However, this formula 

can be used adequately for the West bridge, by removing the factor 0,4 from its second term and 

substituting it with a value that can be read from the contour plot in Figure 6.17. This contour plot has 

been acquired performing a series of dynamic analyses and the factor required to be substituted in 

Eq.(2.3) is given as a function of the duration of the brake and the friction coefficient of the buffer. Taking 

the case where an emergency stop lasts more than 0,9 seconds and the friction coefficient of the buffer 
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is larger than 0,1 the design formula of the standard NEN 6786:2001 (2001) is satisfactory and on the safe 

side. 

In general, the maximum torque resulting from the dynamic analyses is affected by the duration of the 

brake and the friction coefficient of the buffer. The magnitude of the maximum torque is inversely 

proportional to those influence factors. 

In addition, the modeling of the braking deceleration can influence the maximum torque generated at the 

motor shaft during an emergency stop. Employing bilinear braking deceleration during an emergency 

stop, the resulting maximum torques at the motor shaft can be noticeably lower compared to the one 

derived from the dynamic analysis with constant braking deceleration. The rate of reduction depends on 

the assumed time required for the braking deceleration to reach its maximum value. 

Ultimately, there is no need to take into account the intermediate inertias of the machinery components 

when applying this dynamic model, since their order of magnitude is negligible when compared to the 

inertia of the motor and the bridge (see 2.4.2). 

7.2. Recommendations 

Besides the improvements of the existing dynamic model for the movable bridge-machinery system by 

incorporating the push-pull rod in the equations of motion, further recommendations are given for future 

research. 

First, it is advised to examine the magnitude of the friction arising from the disc springs in the buffer. This 

can be accomplished by performing cyclic loading tests in a short scale laboratory model of the buffer and 

measuring its force deformation behavior. The friction coefficient of the buffer can be derived from the 

magnitude of the hysteresis in its force-deformation graph. 

Another recommendation is to research the time needed for the bridge to stop once the emergency stop 

procedure has begun. The duration of the emergency stop is of importance as it has an impact on the 

maximum torque at the motor shaft.  

Attention needs be paid also to the modeling of braking, examining in a more detailed manner the bilinear 

case. 

In addition, the dynamic model of the system can be enhanced manifold. Considering the buffer 

component, it is advised to take into account the possible clearance in the buffer. It might be the case 

that some disc springs in the buffer have been damaged due to wear. This situation results in the presence 

of clearance within the buffer component. This in turn, can influence the response of the system in terms 

of the torque generated at the motor shaft. 

Moreover, the bridge can be modeled as a continuous system in the equations of motion. It can be of 

interest the stress and strain state of the bridge structure during motion of the system. In this case the 
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existing modeling is not accurate and it is required to model it as a 1D continuous system using Euler-

Bernoulli theory or more advanced ones like Rayleigh or Timoshenko theory. 

Furthermore, the effect of other system components on its dynamic response could be studied. For 

instance, the effect of the gearboxes can be analyzed by introducing them into the equations of motion 

rather than assessing their contribution simply as constant transmission factors. 

Accordingly, remodeling of the motor side is strongly suggested. Currently the motor side is modeled by 

a single rotating degree of freedom and is not attached to a boundary. The result of this is a statically 

indetermined model as depicted in chapter 2. The research can be focused in the components of the 

motor side that are not taken yet into account as part of the dynamic model. 

In either case, a revision of the existing standard NEN 6786:2001 (2001) is required. This is mainly due to 

the fact that the design formulas of the standard with regards to the machinery are currently based on a 

simplified model. Consequently, the design formulas are either conservative, as depicted for the Eq.(2.1), 

or a rough approximation as shown for the Eq.(2.3) and thus require reformatting. 
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