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Abstract

Noise pollution is a major health threat to society. Active noise control systems that at-
tenuate noise through open windows (apertures) have the potential to create quieter homes
while maintaining ventilation and sight. Such systems are commonly realized with closed-
loop least-mean-square (LMS) algorithms. However, these algorithms require a large number
of error microphones inside the room and provide only local attenuation. Using many error
microphones leads to slow convergence and high computational effort, having additional dis-
advantages. Therefore, closed-loop active noise control algorithms are undesired for real-world
application. In this study, we develop an open-loop wave-domain algorithm that converges
instantaneously and operates with low computational effort. As it is open-loop, it does not
require error microphones. We position a control region in the far-field that covers all di-
rections from the aperture into the room. In the algorithm, we minimize the sound in that
control region. Hence, it inherently ensures cancellation in the whole room. We derive acous-
tic transfer functions to obtain frequency responses of the aperture and loudspeakers. Those
are used for soundfield calculation. The sum of the soundfields, from the aperture and the
loudspeaker array, is then expressed in orthonormal basis functions. By minimizing this sum
in least mean square sense, we can calculate the filter-weights that minimize the sound energy
in the control region. Implementation of these filter-weights with block-wise processing using
the Short-Time Fourier Transform generates the signals for the loudspeaker array. However,
this processing induces a delay. To compensate for this algorithmic delay, two methods are
compared. The first is positioning a reference microphone further in front of the aperture.
The second method uses an autoregressive model for signal prediction. Both lead to a loss in
attenuation performance compared to the optimal algorithm. We compare the optimal wave-
domain algorithm with a LMS-based reference algorithm, as well as both the algorithmic delay
compensation methods. The algorithms are tested with a sparse and grid loudspeaker array,
and we use rumbler-siren, airplane, and white noise signals as incoming noise. Furthermore,
we compare performance for three incident angles. Our simulation results indicate that wave-
domain processing has the potential to outperform LMS-based methods in practical active
noise control for apertures. More specifically, we obtain an average -10 dB global reduction
up to 2 kHz for all signal types with the optimal wave-domain approach. In comparison, the
performance of the closed-loop algorithm ranges between -5.2 and -9.2 dB, depending on the
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signal type. Furthermore, we indicate the limited impact of the incident angle on performance
for the wave-domain algorithm. Positioning a reference microphone in front of the aperture
outperforms the predictor approach in all scenarios, and its performance compares to that of
the closed-loop LMS algorithms. Eventually, the absence of error microphones and inherent
global control ensure that the wave-domain algorithm can be used for a practical active noise
control system for apertures. Future work could improve the algorithm by reducing loss of
performance with small window-sizes due to time-delay wrapping in the block-wise process-
ing. Furthermore, a natural continuation of this study is to develop and test the wave-domain
algorithm for scenarios with a moving primary noise source to further emphasize its advantage
over the closed-loop LMS algorithm.
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Chapter 1

Introduction

1-1 Motivation

Noise pollution is a major health threat to society [1]. Active Noise Control (ANC) systems
that attenuate noise propagating through open windows (apertures) have the potential to
create quieter homes while maintaining ventilation and sight [2]. Existing ANC systems deploy
loudspeakers to produce anti-noise soundfields that reduce sound energy in local regions, for
instance with noise cancellation headphones [3] or over large regions such as in airplane
cabins [4]. ANC systems that actively control sound propagating through open windows
have been studied [5, 6]. Their objective is to reduce the sound energy in all directions from
the aperture into the room. Current methods deploy closed-loop algorithms, leading to long
convergence times [7], heavy computational load [8] and the need for a large number of error
microphones being positioned in the room. These drawbacks limit the feasibility of such
systems [9]. Recent studies focus on reducing the computational load by improved closed-
loop algorithm [10, 11]. However, these studies do not solve the issue of error microphone
placement. As such, we propose an open-loop wave-domain approach that addresses the
shortcomings of the closed-loop approach because it converges instantaneously, works with
offline weight calculation, and does not require error microphones.

1-2 Introduction to Active Noise Control for Apertures

In this section, we briefly cover relevant studies, to position the proposed method in current
literature. For a detailed literature review on ANC for apertures, the reader is referred to
the literature study executed prior to this thesis work [12]. The study presented in this thesis
is a continuation of work that is currently being carried out by a research group within GN
Group [13,14].

The method of ANC originates from the late 1800s [15] but was first patented in 1936, when
Lueg [16] proposed a system that reduces sound, based on the superposition principle. This
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principle denotes the linearity of the wave equation where two soundfields can be summed.
More specifically, ANC systems aim for destructive interference [17], where the sum of these
two soundfields reduces the acoustic pressure, resulting in less undesired sound (noise). A
soundfield is a region of an elastic medium that contains sound waves [18]. Thus, if we create
a so-called anti-noise soundfield, that has the same amplitude and opposite phase compared
to the noise soundfield, we can sum the soundfields of the noise and anti-noise resulting in a
residual noise of zero acoustic pressure [2] and destructive interference is obtained.

Most ANC systems for apertures deploy Least Mean Squares (LMS) algorithms, such as
the well-known Filtered-x Least Mean Squares (FXLMS) algorithm [7], or its multi-channel
equivalent, the multiple-error LMS [7,10]. These closed-loop algorithms aim to minimize error
signals measured by error microphones positioned in the room by using the sound generated
by loudspeakers in the aperture. By minimizing the error at these error microphones, such
systems aim to create a destructive soundfield in all directions from the aperture. This
approach is effective at the error microphone locations. However, the consistency over a large
area (such as a room) is low [19]. Therefore, the number of error microphones needs to be
substantial to ensure global control, which is undesirable and limits the feasibility of such
systems. Current studies indicate that LMS-based ANC for apertures can obtain a -10 dB
global reduction between 0.5 and 2 kHz [20]. Many studies focus on reducing complexity by
improving the LMS algorithms [10, 11]. Positioning error microphones close to the aperture
and loudspeaker reduces complexity and generates more feasible systems. However, these
systems do not ensure global control intrinsically, and performance degrades when the incident
angle of the incoming noise is increased [20]. Others proposed a feedforward method with
reasonable performance between 0.4 and 1 kHz [21], and an open-loop method [9] that is
promising in a simulation where pure sinusoidal noise is cancelled. However, those methods
do not meet the performance of state-of-the-art LMS-based algorithms.

Supplementary to the development of algorithms, various studies extensively cover the phys-
ical setup used in ANC systems for apertures. In general, ANC systems for apertures with
loudspeakers distributed over the aperture [6] outperformed those with loudspeakers placed
on the boundary of the aperture [5]. A compromise between both setups is a sparse array
that consists of a window with a crossbar containing loudspeakers [13,14].

We propose an wave-domain algorithm for ANC for apertures as it ensures global control
in all directions intrinsically. It does not require microphones positioned in the room. As
such, it is an open-loop controller. To our knowledge, this study is the first to investigate
a wave-domain approach to ANC for apertures. The control problem has similarities with
wave-domain spatial control of sound produced by multi-speaker sound systems, e.g., [22–24].
Similarly, the active cancellation of wall reflection of sound produced by sources such as people
talking [25], and wave-field synthesis [26] show resemblance. Our wave-domain algorithm uses
a wave-domain basis function expansion over a control region. Both the soundfields from the
primary noise and loudspeaker array are expressed in these basis functions, and their sum is
minimized in a least mean square sense [22–24]. Applying this minimization allows calculating
optimal filter-weights for the loudspeaker array that minimize far-field sound energy for any
wavenumber.

The wave-domain approach is a model-based method. Consequently, an Acoustic Transfer
Function (ATF) for the soundfields is necessary for such algorithms. Loudspeakers are often
modeled by monopoles [27]. Recent studies focused on expressing aperture soundfields with
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single equations [13,14]. However, the developed equation ATF is only valid in far-field, which
is too far away for the developed designs.

Finally, there is an important artifact of the wave-domain algorithm as it operates in the
wave-domain. Hence, it requires to transform signals with the Short-time Fourier Transform
(STFT) to get their wave-domain representation. This operation induces an algorithmic
delay equal to the window-size of the STFT. Consequently, we need to compensate for this
algorithmic delay. In previously investigated wave-domain algorithms, this compensation is
done by deploying a signal predictor [24]. Positioning the reference microphone further away
from the aperture is also a possible solution for this algorithmic delay compensation. If a
predictor is used, the selection of the STFT window must be based on a trade-off between
prediction performance and the wave-domain algorithm performance [24].

1-3 Definition of Research Gap

Following the literature study [12] and previous work on the project [13, 14] we identified a
research gap in the domain of ANC systems for apertures. As far as we know, there is no
study that investigates the wave-domain approach for this control problem. Specifically, the
following is missing in current literature:

• The derivation of a wave-domain algorithm that calculates loudspeaker filter-weights
for global control of soundwaves propagating through an aperture, operating within the
following constraints:

– no error microphones,

– no convergence time,

– limited computational effort.

• The derivation of an aperture ATF that are valid within a reasonable distance from the
aperture.

• The comparison of wave-domain algorithm with LMS-based algorithms.

• An investigation into the performance of wave-domain algorithms with sparse and grid
arrays.

• An study into the performance of a wave-domain algorithm for ANC for apertures with
primary noise coming from various incident angles.

• A study investigating compensation methods for the algorithmic delay of the wave-
domain algorithm for ANC for apertures.

In the following section, we propose a problem formulation that will help us in filling this
research gap.
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1-4 Problem Formulation

As depicted in the prior sections, the current state-of-the-art ANC for apertures does not
cover wave-domain algorithms. The general concept of wave-domain algorithms in real-time
has already been proven in simulations and real-world tests [23, 24]. Due to its open-loop
character, it has large potential to suit as an algorithm for filter-weight calculation in feasible
ANC setups as there is no need for a large number of error microphones in the room. To
calculate attenuation performance, a simulation environment needs to be established in which
the algorithms can be tested. Moreover, the algorithm itself needs to be developed. The
algorithmic delay, as an artifact of the wave-domain approach, is a limiting factor. An initial
attempt to compensate for this is necessary to show that algorithmic delay compensation
is possible. If that works, we can proof that the wave-domain algorithm is implementable
in real-time. Finally, we need an reference algorithm. A LMS-based algorithm is used as
reference method.

With this in mind, we seek to answer the following research question in this study:

Can an active noise control system with an open-loop wave-domain algorithm achieve supe-
rior performance compared to state-of-the-art algorithms when attenuating undesired sound
propagating through open windows?

To answer this question, we define the subsequent research objectives that resemble with the
identified research gaps:

• Develop a simulation environment (2D and 3D) in which the new wave-domain algo-
rithm, as well as the baseline algorithm, can be tested.

• Implement a closed-loop LMS-based algorithm as the state-of-the-art reference method.

• Develop and implement an open-loop wave-domain algorithm.

• Develop initial algorithmic delay compensation methods, one by microphone placement
and the other with a signal predictor.

• Test and compare developed algorithms by using sparse and grid loudspeaker arrays, as
well as investigate performance for various primary noise incident angles.

We supplement these objectives with constraints, conditions, and assumptions to demarcate
a clear scope of this study. First of all, the main goal is to develop the algorithm for weight
calculation in a wave-domain approach. To keep it achievable, we constrain the study to
simulations only. A simulation environment is build to test the algorithm. Secondly, we
are not interested in seeking the best arrangement in terms of loudspeakers and microphone
placement. Thus, we limit our study to two loudspeaker array setups. On the one hand,
we have the sparse array, developed by Downey [14] and on the other hand, we deploy a
straightforward grid array, similar to most studies on ANC for apertures [6].

In addition to the given constraints, we work with the following conditions. The undesired
sound, denoted as primary noise, propagates from an outside noise source through the aperture
into the room. The position of the outside noise source is fixed during simulation. We follow
prior studies by looking into a noise coming from three fixed angles, 0◦, 30◦, and 60◦. In
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addition, this source is positioned in the far-field, allowing us to model the incoming wave as
a plane wave. Lastly, we will test the system for three types of primary noise: white noise,
airplane noise, and a rumbler-siren sound.

For our study it was assumed that acoustic far-field equations hold. So, we model an infinitely
large empty room without walls and no reflection. Most importantly, we focus on algorithm
development and not on any calibration of hardware components. Hence, we assume that we
have loudspeakers and microphones with a perfectly flat frequency response.

Using these limits, we set a clear scope of this thesis study. This chapter is concluded with
the outline of this thesis report, described in the next section.

1-5 Thesis Outline

The report starts with Chapter 2, containing theoretical background information on relevant
theoretical concepts and the deployed reference algorithm. Chapter 3 covers the simulation
environment. Moreover, we derive the Acoustic Transfer Functions (ATFs) necessary for wave-
propagation modeling and used in the wave-domain algorithm. The proposed wave-domain
algorithm is described in Chapter 4. The results are presented in Chapter 5. An elaborate
discussion on the results, limitations, and suggestions for future work are given in Chapter 6.
Finally, the thesis is briefly concluded in Chapter 7. Attached to the report are Appendices,
including the conference paper, extended theory, and extended results.

The reader is referred to the conference paper, which we submitted to IEEE ICASSP 2022,
in Appendix A for a concise version of this thesis work. It contains the developed algorithm
and briefly covers the results.
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Chapter 2

Theoretical Background

In this chapter, we begin by establishing notations and definitions in Section 2-1. Furthermore,
we examine the relevant extant theory that forms the basis of the study (Section 2-2), such as
basis signal processing concepts like the Short-time Fourier Transform (STFT) and window
function requirements. In Section 2-3, Huygens’ Principle is briefly introduced. We present an
extensive derivation of the multiple-error Normalized Least Mean Squares (NLMS) algorithm,
which we deploy as the reference algorithm, in Section 2-4. Finally, a brief summary of this
chapter is given in Section 2-5.

2-1 Preliminaries

In this section, we cover assumptions and definitions that are used throughout the report.
The following mathematical definitions are established. We denote the imaginary number
with j =

√
−1. The sinc-function is defined as unnormalized: sinc(x) = sin(x)/x [27].

Furthermore, [·]H is the conjugate transpose, the euclidean norm is denoted using || · ||, ∗
means linear convolution and ⊙ is the element-wise multiplication. We define the wavenumber
as k = 2πf/c, with f frequency in Hz and c the speed of sound in m/s. Finally, we have the
density of air, ρ0 in kg/m3.

To describe points in spatial-domain, we need coordinate systems. We use both the cartesian
and spherical coordinate systems as these are convenient when modeling plane waves and
spherical waves. The coordinate systems are visualized in Figure 2-1. In this graph, the
x − y plane corresponds with the horizontal plane while the z-direction points in the vertical
direction. For the spherical coordinate system we use the physics notation. Thus, θ is the
elevation: the angle from the vertical z-axis and ϕ denotes the azimuth: the angle from the
positive x-axis. Furthermore, r denotes the distance from the origin, o. The relation between
the coordinate systems is described by:

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, (2-1)
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and are shown in Figure 2-1. With these definitions, any point in 3D-space can be described
in both spherical and Cartesian coordinates. In the next section, we discuss basic signal
processing concepts that we need in our algorithm development.

Figure 2-1: The cartesian coordinate system and its related spherical coordinate system.

2-2 Signal Processing Concepts

When modeling wave-propagation and soundfields, it is necessary to process signals in both
time-domain and wave-domain (time-frequency domain). Therefore, the use of Fourier trans-
formation is evident. The STFT, closely related to the Gabor transform, allows us to represent
a discrete signal in wave-domain where wave propagation equations are applied. Thus, we
must ensure that the manipulation of the signal in the wave-domain corresponds to its time-
domain relative. For this, we study the STFT in more detail and derive conditions that ensure
a tight frame STFT. Preparatory to discussing the theory of STFT, we cover relevant con-
cepts such as linear transformations, frame theory, and the Discrete Fourier Transform (DFT).
For this, we closely follow some sections from [28].

2-2-1 Linear Transformation and Manipulation

Let us first discuss linear transformations. A simple linear transformation sequence is shown in
Figure 2-2. Here, a column vector x(n) is transformed by using a square and invertible matrix
U with size n×n. The result is another column vector y(n) = Ux(n). In this transformation,
both x(n) and y(n) are of length n. Similar to this matrix multiplication, we can denote
the transformation as a standard inner product. We denote the inner product between the
n-dimensional column vectors x(n) and z(n) as ⟨x(n), z(n)⟩ ≡

∑n
m=1 zm(n)∗xm(n) with ∗ the

complex conjugate. This inner product has a simple relation tot he matrix multiplication:
yl(n) = ⟨x(n), UH

l ⟩ with H the Hermitian transpose and UH
l the l-th column of UH . Hence,

both methods can be used to calculate y(n). The obtained vector y(n) is a vector in subspace
Cn. The inverse transform is x(n) = U−1y(n). Since U is invertible, the columns of U−1

must span Cn, that is, the columns of U−1 must form a basis of Cn. x(n) = U−1y(n) can be
interpreted as an expansion of x(n) into basis vectors. Such a basis expansion of the inverse
transform is explicitly stated as:
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Figure 2-2: Sequence of a linear transformation and coder using an invertible n × n matrix U .

x(n) =
n∑

l=1
yl(n)U−1

l =
n∑

l=1
⟨x(n), UH

l ⟩U−1
l , (2-2)

with U−1
l is the l-th column of U−1 [28]. After the linear transformation, vector y(n) is

manipulated by Q. The new vector Q(y(n)) is then transformed back with the inverse matrix
U−1. We require that the Euclidean norm of the quantization error is invariant with respect
to the inverse transformation U−1 which results in I = UHU . This resolves to UH = U−1 as
we can denote the inverse mapping of x(n) = UHy(n) as an orthonormal basis expansion:

x(n) =
n∑

l=1
xl(n)UH

l =
n∑

l=1
⟨x(n), UH

l ⟩UH
l . (2-3)

Eq. (2-3) is equal to Eq. (2-2) for the specific case of a unitary matrix U .

Instead for a square matrix U , we could the case of a linear transformation where U is non-
square with dimensions k × n. A sequence is shown in Figure 2-3 where y(k) = Ux(n). The
rows of U span the input vector space, so we must have k ≥ n and Ux(n) is only zero if
x(n) is zero. Because of k ≥ n, we have dimension redundancy. The columns of U span a
n-dimensional subspace of Ck. Hence, we have one-to-one mapping from Cn to Ck: if both
z(k) = Ux(n) and y(k) = Ux(n), then z(k) − y(k) = 0 and thus z(k) = y(k). Since the
forward mapping is one-to-one, it is invertible. However, we have some problems. Firstly,
if we manipulate y(k) with Q(·), we are not sure the resulting Q(y(k)) is in the column
space of U . Secondly, the inverse of U , shown here by Ũ is generally not unique [28]. These
two issues are solved by implementing the pseudo-inverse (Moore-Penrose inverse), defined
as U † = (UHU)−1UH , as that is the optimal inverse in a mean squared-error sense for the
transformation, manipulation, inverse-transformation operation sequence shown in Figure 2-3.
The derivation of the pseudo-inverse is found in various textbooks [29,30].

Figure 2-3: Sequence of a linear transformation and coder using an invertible k × n matrix U .

2-2-2 Frame Theory

Let us continue from the prior section with matrix U with size k × n, whose rows span Cn.
If these rows are finite, they form a frame. The row vectors of U , or the column vectors of
UH form a frame if the so-called frame condition holds. This conditions is defined as:
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AxH(n)x(n) ≤ xH(n)UHUx(n) ≤ BxH(n)x(n), ∀ x(n) ∈ Cn, (2-4)

where frame bounds A > 0 and B < ∞ are both scalars [28]. Because A > 0, the frame
vectors (columns of UH) must span Ck and B < ∞ results in that the vector norms of the
frame vectors are finite. In case of A = B, the frame is defined as tight. Let us define the
nomenclature analysis frame for the columns of UH and synthesis frame for the columns of
U †. The names are related to their function. We use the inner product notation, ym

n =〈
xn, UH

n

〉
. The analysis frame is used to analyze the input xn. Moreover, the synthesis

frame is used to resynthesize the original vector. Here, written in frame expansion form:
xn = U †ym =

∑m
l=1 ym

l U †
l =

∑m
l=1

〈
xn, UH

l

〉
U †

l , where U †
l are the columns of U †. From the

frame condition it follows immediately that, for a tight analysis frame, with frame bound
A, we have UHU = AI. The corresponding synthesis frame has a frame bound of 1/A.
Furthermore, in case of a tight frame, the pseudo-inverse reduces to the following form:
U † = (UHU)−1UH = 1

AUH . This implies that the analysis and synthesis frames are identical
except for a constant.

2-2-3 Discrete Fourier Transform

We now have an understanding of linear transformations and tight frames. Before discussing
the STFT, we briefly recap what the DFT is, as the STFT consults the DFT. In literature
[27–29], the DFT of a vector x(n), with discrete time index n is often defined as:

y(k) =
N−1∑
n=0

x(n) · e−j 2π
N

kn, (2-5)

where y(k) is a new vector, with wavenumber k. Furthermore, we have N the total number
of samples in x(n) and j the imaginary number. For completeness, we define the Inverse
Discrete Fourier Transform (I-DFT) as well. This inverse linear transformation is denoted as:

x(n) = 1
N

N−1∑
k=0

y(k) · ej 2π
N

kn. (2-6)

Next to this conventional notation as a sum, we can denote the DFT as a linear transformation
in form of matrix multiplication, as we discussed in the prior section. So we have:

y(k) = UDF T · x(n), (2-7)

with the transformation matrix UDF T defined as follows:

UDF T = 1√
k

·


W0 W0 W0 · · · W0
W0 W−1 W−2 · · · W−(k−1)

...
...

... . . . ...
W0 W−(k−1) W−2(k−1) · · · W−(k−1)(k−1)

 , (2-8)
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in which the so-called twiddle factor is defined as:

W = ej 2π
k . (2-9)

From now, for ease of notation, we denote UDF T simply with U . We can easily see that the
rows of U form an orthonormal basis in Ck. Thus, the inverse of U is simply its conjugate
transpose, leading to the fact that UHU = I.

The notation we elaborated is useful later on, however, note that the actual implementation of
the DFT by using matrix multiplication is not a computationally friendly method. Therefore,
when implemented in the simulations, the more efficient Fast Fourier Transform (FFT) is
deployed [31].

2-2-4 Short-time Fourier Transform

With the prior discussed theory at hand, we investigate the STFT. We describe the STFT
as follows. Instead of applying a DFT to all sample points of a signal x(n), in a STFT we
split up this signal in blocks of N samples, and apply the DFT to each block. By doing so,
the result is a sequence of DFT transformed vectors that tell us something about the change
of the frequency content over time. Even more important, it allows us to manipulate the
frequency content of a signal over time. This is fundamental to our open-loop algorithm and
will be more clear later on. Each time-block in the STFT is windowed by a window function
to prevent spectral leakage. However, by applying a window, we remove important content
of that block of signal as we manipulate the amplitude. We ensure an overlap of subsequent
blocks such that we do not lose information o overcome this issue. This overlap is created by
using a certain hop size (H), smaller than the block size, and, therefore, window-size (N).
Thus, N > H. Let us formally define the STFT of a signal x(n) with total length L, in sum
notation as

Y (k, m) =
N−1∑
n=0

x(n)w(n − mH)e−j 2π
N

kn, (2-10)

where Y (k, m) is a stacked column vector consisting of M smaller column vectors y(k), having
a total length NM [32]. In Eq. (2-10), m denotes the hop, with total number of hops being
M = L/H. For convenience, it is assumed that our signal x(n) is periodic.

A simple and commonly used STFT method introduces windowing only to the analysis step
where the window function is selected such that the segments sum to one (

∑
w(n + mH) =

1). However, while this is straightforward and provides perfect reconstruction of a non-
manipulated signal, after synthesis without windowing, using the STFT without windowing
in the synthesis step has a number of disadvantages:

1. The approach is inherently oversampled since the segments overlap.

2. Manipulations (denoted in Figure 2-2 and Figure 2-3 with Q(·)) result in discontinuities
in the time-domain, since the synthesis functions are not tapered.
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Figure 2-4: Schematic form of the full linear transformation matrix UW of the STFT, where
each square matrix is UmWM .

3. The transform does not preserve energy, even when the basis used is orthonormal. More
specifically, the transformation forms a frame, but not a tight frame.

Therefore, the use of windowing in the synthesis step is introduced. However, in order to
have perfect reconstruction and energy preservation, we need to make sure that the window
provides a tight frame transformation. We start by defining the STFT in matrix notation
form [28]. First, we take the overlapping sequences of N samples. The subsequently extracted
sequences are offset by hopsize H. Secondly, each sequence is windowed by multiplying with
a diagonal matrix Wm with dimensions N × N where the diagonal elements are the window
samples w(n). We assume that the support of the window is equal to N . Finally, each
windowed dataset Wmxm(n) is multiplied by the DFT matrix U . So, the coefficient vectors

Y m(k) = UmWm · xm(n), (2-11)

for block m form the STFT coefficients corresponding to this block. Note, as we have full
support, both Um and Wm are square with dimensions N × N . Hence, its product UmWm

is also square and has dimensions N × N . The full matrix has the structure as shown in
Figure 2-4, where the smaller matrices denote the m-th transformation matrix.

In this notation, the rows of the matrix UmWm form the conjugates of the frame functions.
As W is diagonal and real, the Hermitian-transpose is WmUH

m . So, lets denote the recovered
signal as zm(n). Then, we can derive the following:

zm(n) = WmUH
m · ym(k)

= WmUH
m UmWm · xm(n)

= WmWmxm(n). (2-12)

For final reconstruction, we add all vectors zm(n), offset by mH. Thus, each sequence zm(n) =
WmWmxm(n) contributes to the segment from which the corresponding xm(n) was extracted.
The contributions are added together with an overlap-add mechanism. This means that the
STFT transformation is a tight frame if the window satisfies the power complementarity
condition:
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P (n) =
∑

m∈Z
w(n + mH)2 = A

N
, n ∈ {0, · · · , H − 1}. (2-13)

Note that the 1/N term is generally part of the inverse DFT transform, and we are left with a
scaling factor of A, we found in our frame theory discussion in Section 2-2-2. Consequently, to
obtain perfect reconstruction, we choose A such that A

N = 1. Let us discuss window functions
in more detail next.

2-2-5 Window Functions

A commonly used window in time-frequency analysis is the Hann window [33], shown in
Figure 2-5a. However, this window does not fulfill the power complementarity condition,
shown in Eq. (2-13). We see in Figure 2-5a that the sum of the squared windows (P (n)) is
not constant. The cosine window function does fulfill the condition when an overlap of 2 is
used. However, this window is undesired as the tails are too steep. Therefore, we are seeking
a window that fulfills the requirements but does have smooth tails. To make this process more
simple, we design a normalization factor that scales every type of window (combined with
an arbitrary hopsize) to a window that fulfills the condition. By scaling the amplitude and
choosing a desired window-shape, we obtain a perfect window for the STFT. We make the
amplitude normalization function dependent on P (n). And define the normalized window as
ŵ(n) = w(n)√

P (n)
[34]. This normalized window has its own periodic P̂ (n). To proof it’s unity,

we take the following steps:

P̂ (n) =
∑
m

ŵ(n − mH)2

=
∑

k

w(n − mH)2

P (n − mH)

=
∑

k

w(n − mH)2

P (n) (because of periodicity of P with H)

= 1
P (n)

∑
k

w2(n − mH)

= 1
P (n)P (n) = 1.

(2-14)

By applying the normalization function, we can obtain a normalized Hann window, shown in
Figure 2-6a, that fulfills the power complementarity conditions and has smooth tails. Figure 2-
6b shows that the window fulfills the conditions as P (n) = 1 ∀ n. Now that we have a clear
understanding of the signal processing concepts, we move on to a concept that is applied in
Active Noise Control (ANC) systems.
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(a) Plot of the regular Hann window of window-size
N = 512 samples.

(b) Clearly, P (n) ̸= 1 ∀ n for a regular Hann win-
dow with overlap of 50%.

Figure 2-5: No perfect reconstruction is obtained with a regular Hann window as P (n) ̸= 1 ∀ n.

(a) Normalized Hann window of window-size N =
512 samples and normalized for a 50% overlap.

(b) Clearly, P (n) = 1 ∀ n for a normalized Hann
window with overlap of 50%.

Figure 2-6: Perfect reconstruction is obtained with a normalized Hann window as P (n) = 1 ∀ n.

2-3 Huygens Principle

An important acoustic principle is a theory developed by Dutch physicist Christiaan Huy-
gens in 1678. This concept states that the propagation of a wavefront can be visualized by
considering the wavefront as a set of closely spaced point sources, each generating spherical
waves. The combination of these generated waves represents the new wavefront surface with
the correct intensity and direction [20, 35]. This is visualized in Figure 2-7. If these point
sources are positioned closer to each other than the wavelength of the sound, one can exactly
describe the wave [20].

With this concept in mind and the linearity of the wave-equation, one can sum soundfields
from various sources. Any wavefront that is a sum of wavefronts by multiple sources can
be used to describe a new wavefront. Therefore, if destructive interference is generated in a
current wavefront, the Huygens principle tells us that we have less energy in the new wavefront
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Figure 2-7: Visualization of Huygens’ principle where the wavefront at t0 + ∆t can be fully
described by spherical waves from points on the wavefront at t0.

generated by the element waves from the current wavefront.

2-4 Multiple-error Normalized LMS Algorithm

This section describes the theory of the reference algorithm, the Multiple-error NLMS algo-
rithm. As it is the reference algorithm, we deploy an existing algorithm that is well-known
and used in most ANC systems for apertures.

2-4-1 Motivation

The multiple-error NLMS algorithm is used as the reference algorithm because of the extensive
use in ANC for aperture literature. It is model-independent, which makes the implementation
straightforward. Furthermore, it is a robust algorithm [36]. Disadvantages of such algorithms
are slow convergence and heavy computations, especially when the number of loudspeakers
and error microphones are large. Moreover, for actual implementation in an ANC aperture,
the closed-loop approach is less feasible. The error microphones should be positioned dis-
tributed around the aperture, leading to less functionality of the aperture itself. Additionally,
the error microphones in the room pick up sound from inside as well, reducing the performance
of the algorithm. Next, we discuss the implementation of the algorithm.

2-4-2 Algorithm

The multiple-error NLMS algorithm is commonly used in various ANC applications. It is
the Multiple-input Multiple-output (MIMO) and normalized variation on the well-known
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Filtered-x Least Mean Squares (FXLMS) algorithm. Many improved algorithms exist to
reduce computational efforts and increase convergence speed. Reducing computational com-
plexity is not the scope of this study. Hence, we set up the standard multiple-error LMS
algorithm by [10] and extend it with the NLMS algorithm [36,37], in order to ensure stability
of the algorithm. In this section, we derive the necessary equations and discuss the control
scheme.

In the multiple-error NLMS algorithm, shown in Figure 2-8, we denote the number of reference
microphones, loudspeakers and error microphones with R, L and E, respectively. Hence, it
is called a (R,L,E) ANC system. Furthermore, we denote the filter length by F and impulse
response length by J .

Figure 2-8: Block diagram of the Multiple-error Normalized LMS algorithm.

The primary path of the primary noise signal at the e-th error mic is denoted as de(n) =
Pe ∗ξ(n), which is the convolution between the impulse responses Pe and primary noise signal
ξ(n) at the origin. Here, Pe is the impulse response of the aperture, which is the Fourier
transform of the frequency response of the aperture Acoustic Transfer Function (ATF) derived
in Chapter 3. The incoming signal at the r-th reference microphone, is given by:

xr(n) = [xr(n), xr(n − 1), . . . , xr(n − F + 1)]T . (2-15)

Furthermore, we obtain the estimated secondary path signal x̂rle between loudspeaker l and
error microphone e for each reference microphone r with:

x̂rle(n) = Ŝle ∗ xr(n), (2-16)

where Ŝle is the impulse response between loudspeaker l and error microphone e. This impulse
response is the Fourier transform of the frequency response of the loudspeaker ATF, also
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2-4 Multiple-error Normalized LMS Algorithm 17

derived in Chapter 3. Noteworthy is that Ŝle = Sle in our model, as we do not have an
estimated secondary path in our simulation environment. It is denoted as:

Ŝle = Sle = [S(0)
le , S

(1)
le , . . . , S

(J−1)
le ]T . (2-17)

Next, we note the filter of the l-th loudspeaker based on reference microphone r as:

wrl(n) = [w(0)
rl (n), w

(1)
rl (n), . . . , w

(F −1)
rl (n)]T . (2-18)

We obtain the l-th loudspeaker signal at time n with:

yl(n) =
R∑

r=1
wT

rl(n)xr(n). (2-19)

Subsequently, by convoluting the signals from all loudspeakers with their secondary path
impulse response and sum them, we obtain the secondary noise signal at error microphone e
with:

ŷe(n) =
L∑

l=1
ST

le ∗ yl(n). (2-20)

Finally, we can calculate the error signal at error microphone e with:

ee(n) = de(n) + ŷe(n). (2-21)

Each iteration, the filter weights are updated. For a regular Least Mean Squares (LMS)
algorithm, this is done with [7]:

wrl(n + 1) = wrl(n) − µ
E∑

e=1
ee(n)x̂rle(n). (2-22)

The LMS algorithm deploys the steepest descent method to find the optimal filter weight.
Here, µ is the learning rate. However, the correction µ

∑E
e=1 ee(n)x̂rle(n) that is applied to

the filter weights is directly proportional to the input x̂rle(n). In case of a large x̂rle(n), the
algorithm faces a gradient noise amplification problem [36]. Therefore, the NLMS algorithm
is employed. This algorithm normalizes the correction applied to the filter update. For a
Single-input Single-output (SISO) algorithm, the update equation is:

w(n + 1) = w(n) − µ̃

ϵ + ||x̂(n)||2(F + ∆)e(n)x̂(n), (2-23)

with adaptation constant 0 < µ̃ < 1, determining the convergence speed and ϵ > 0, a positive
constant that prevents numerical difficulties when ||x̂(n)||2 becomes very small, F the filter
length and ∆ the overall delay in the secondary path [7, 36].
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However, in a MIMO system as we deploy, there are E error microphones, leading to E
filtered input signals x̂rle(n) for each loudspeaker. Therefore, we adjust Eq. (2-23) to include
the power of the most powerful input signal, as follows:

wrl(n + 1) = wrl(n) − µ̃

ϵ + maxe(||x̂rle(n)||2)(F + ∆)

E∑
e=1

ee(n)x̂rle(n). (2-24)

2-4-3 Stability and Convergence

It is important to ensure the stability of the algorithm. The LMS algorithm is discussed
extensively in the literature. The reader is referred to Haykin [36] for complete derivations of
the LMS and NLMS algorithms and their stability. Most important for implementation are
the parameters that are set. The LMS algorithm is stable if 0 < µ < µmax [17], where

µmax = µ̃

ϵ + ||x̂(n)||2(F + ∆) . (2-25)

The stability criteria is extended to the MIMO case, where we take into account the power of
all filtered input signals. Therefore, stability is (in the most conservative sense) maintained
when using the following learning rate:

µmax
l = µ̃

ϵ + maxe(||x̂rle(n)||2)(F + ∆) , (2-26)

for each loudspeaker l, where we seek the maximum power input of all filtered reference
signals.

As stated, for stability 0 < µ̃ < 1. Clearly, if µ̃ large, the algorithm converges faster [36].
However, this could lead to a worse algorithm’s performance in steady-state. Optimizing
the performance of this algorithm is not the main scope of the study. However, an informal
parameter optimization with various values for µ̃ is executed.

2-4-4 Algorithm Parameters

One of the drawbacks of MIMO LMS based algorithms is their complexity. Increasing the
number reference microphones R, loudspeakers L, or error microphones E drastically in-
creases the computational load of the algorithm. Therefore, many studies investigate the
reduction of complexity of MIMO LMS based algorithms [10, 20, 38] to make them feasible
for ANC for apertures. However, as the NLMS algorithm is used as reference algorithm,
reducing computational load does not fit in the scope of this thesis. Nevertheless, we need
to choose parameters for the algorithm. Firstly, the system implemented will be deployed
with one reference microphone, and we compare two loudspeaker arrays. The number of
error microphones should be enough to cover all directions from the aperture. Secondly, in-
creasing the filter length F indisputably increases computational load. Moreover, the filter
length influences the performance of the filter. Therefore, choosing the correct filter length is
important. It should have substantial length to include all the significant taps of the impulse
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response of the system. Thirdly, the length of the impulse responses of the aperture and
loudspeakers should be long enough to include all significant information. The number of
error microphones, the filter length, and the optimal impulse response length are chosen after
an informal parameter optimization.

2-5 Summary

The purpose of this chapter was to discuss important existing theories we need to investigate
for ANC for apertures. It established the fundamental signal processing concepts necessary
for the simulation environment and wave-domain algorithm. Furthermore, we covered the
reference algorithm. The subsequent points summarize this chapter:

• We set some basic notations, definitions, and coordinate systems to ensure consistency
throughout the report.

• Modeling in the wave-domain is done by using the STFT. To ensure perfect recon-
struction, we need to make sure we have a tight frame window function. This means,
it has to fulfill the following condition:

∑
m ŵ(n − mH)2 = 1. We presented a method

to normalize any window to fulfill this condition.

• Huygens’ Principle tells us that we can describe any new wavefront, by a set of closely
spaced point sources on the current wavefront, that emit spherical waves.

• We clarified the necessary equations for implementation of the multiple-error NLMS
algorithm. This algorithm is extensively used in ANC in general and for ANC for
apertures, specifically. Therefore, it is used as a baseline method.

• As prior studies indicate, we expect good attenuation performance with the multiple-
error NLMS algorithm. However, we do expect slow convergence and heavy computa-
tional load as presented in the state-of-the-art literature. Moreover, the use of error
microphones makes it a rather non-feasible algorithm for practical purposes of ANC for
apertures.
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Chapter 3

Simulation Model and Acoustic
Transfer Functions

As we determined in the introduction, we seek to develop a simulation environment. In this
environment, we analyze the performance of the wave-domain algorithm, and the reference
algorithm, for various loudspeaker arrays and incident angles. Furthermore, we need to derive
an aperture Acoustic Transfer Function (ATF) that is valid within a reasonable distance from
the aperture. Both aspects are covered in this chapter. Firstly, we cover the general charac-
teristics of the simulation environment in Section 3-1. Thereafter, the inferring of Acoustic
Transfer Functions (ATFs) for the aperture and loudspeakers is given in Section 3-2. In Sec-
tion 3-3, we discuss the implementation of the block processing we deploy in the simulation
environment and cover relevant limitations. We give a schematic overview of the simulation
implementation in Section 3-4 and summarize the chapter in Section 3-5.

3-1 Simulation Environment

To test the algorithm developed in this study, we need a simulation environment in which we
can measure its performance and compare it to the existing LMS-based algorithm. We real-
ize this simulation environment with a signal-processing approach that calculates soundfields
based on the frequency responses from ATFs. This is applied three times to calculate sound-
fields from (1) a plane wave propagating from a fixed primary source towards the aperture,
(2) the aperture, and (3) the loudspeaker array. Before we discuss the used ATFs, we discuss
general properties of the environment in the following subsections.

3-1-1 3D Representation

As this thesis study is a continuation of the work by Miller and Downey [13,14], the simulation
environment should resemble their developed physical setup. Hence, for 3D modeling, we
adopted the same physical properties. Figure 3-1a is a picture of the physical setup that is

Master of Science Thesis D. Ratering



22 Simulation Model and Acoustic Transfer Functions

(a) The physical aperture that is modelled. Mark
that the ’inside’ of the whisper room is the pri-
mary noise source location. The loudspeakers are
pointed ’outside’ of the whisper room. Figure
taken from [14].

(b) The schematics of the aperture.
Here, Ly and Lx denote the widths and
height of the aperture, respectively. Fur-
thermore, W denotes the width of the
crossbar. Figure taken from [13].

Figure 3-1: Picture of physical test environment and a graphical schematic of the aperture.

modeled here. The aperture contains a crossbar, and it has loudspeakers positioned on the
crossbar and the boundary of the aperture. Figure 3-1b shows a graphical representation
of the aperture and has the following dimensions: the height and width are Lx and Ly,
respectively, and the crossbar has a width of W+.

Both the open-loop wave-domain algorithm and the multiple-error LMS system use a reference
microphone. In a physical experiment, the reference microphone must fulfill certain properties,
as well as be calibrated. However, this is out of the scope of this study. Hence, we assume
that the reference microphone has an ideal frequency response, and only one microphone is
enough for modeling the incoming noise. We position the microphone at the origin ((x, y, z) =
(0, 0, 0)), in the middle of the aperture. Furthermore, we assume the incident angle of the
plane wave, denoted with θ0 and ϕ0, of the incoming primary noise plane wave, is known a
priori. Methods for calculating this angle are already available, e.g. [39] or [40] and will not
be covered here.

In addition to the reference microphone, the loudspeaker array is modeled. Two types of
arrays are compared. The first, denoted as the sparse array, is the array used in the study by
Downey [14], containing 21 loudspeakers, sparsely positioned on the crossbar and aperture
boundaries. Secondly, we model a grid array that has 49 loudspeakers distributed over the
entire aperture. This array is implemented because prior studies showed that grid-based arrays
outperform boundary arrays [6]. Moreover, most prior studies on aperture ANC systems
employed a grid-based array. Figure 3-2 shows the schematic positioning of the loudspeakers
for both arrays. Again, calibration of the loudspeakers is out of scope, and we assume that
the loudspeakers have a flat frequency response.

For the reference algorithm, the multiple-error Least Mean Squares (LMS), error microphones
must be positioned in the room. Their purpose is to feedback the error signals such that the
algorithm can update the filter weights, as discussed in Chapter 2. Similar to the reference
microphone, we assume that the error microphones have flat frequency responses and do not
need calibration.
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(a) Downey’s Sparse array [14]. (b) 7 by 7 Grid array.

Figure 3-2: 3D loudspeaker array schematics.

(a) 2D simulation environment overview, with
the reference microphones (red), loudspeakers
(blue) and evaluation microphones (green).

(b) 8-loudspeaker
(blue dots) sparse
array.

(c) 24-loudspeaker
(blue dots) grid ar-
ray.

Figure 3-3: 2D simulation environment and array schematics.

Finally, we have the evaluation microphones. Their function is to measure the sound pressure
from the aperture in all directions, both when a control algorithm is active as well as without
control. In the virtual simulation environment, we evenly distributed these microphones over
a hemisphere surrounding the aperture [41], such that we can measure sound energy in all
directions from the aperture into the room.

3-1-2 2D Representation

Additional to the 3D simulation environment, a 2D simplification is developed. The compu-
tational effort of a 2D model is much lower compared to 3D. This gives the opportunity to
quickly iterate and test algorithms before applying them in the 3D environment. Furthermore,
2D modeling is a common approach in wave-domain studies [23,24].

The 2D representation is a cross-section of the 3D aperture. We remove the height and model
only in (z, y) coordinates. The aperture entails a Ly wide opening, containing a crossbar in the
middle, with width set as W+. A schematic overview is shown in Figure 3-3a. Similar to the
3D model, we position a reference microphone at the origin and assume perfect calibration.
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Similar to the 3D tests, we execute the 2D simulations with two types of arrays. The sparse
array contains 8 loudspeakers, divided over the boundaries and crossbar, as can be seen in
Figure 3-3b. The grid array is modeled as a row of 24 loudspeakers over the whole width of
the aperture, shown in Figure 3-3c. Finally, the evaluation microphones are positioned at an
arc, clarified as the green dots in Figure 3-3a.

3-2 Acoustic Transfer Functions

The simulation environment employs multiple ATFs. These are used in parallel to describe
what happens when a wave propagates from outside through the aperture into the room, as
well as the waves from the loudspeakers. Basic plane wave modeling is derived in Appendix
B. In this section, we focus on the aperture ATF and loudspeaker ATF.

3-2-1 Aperture ATF

To model the aperture, we seek an ATF that relates the pressure of the plane wave signal in
the aperture with the pressure at an arbitrary evaluation position in the room. For this, we
follow the studies of Miller [13], and Downey [14]. In these studies, the aperture is modeled
as a vibrating plate in an infinitely large wall [27]. The ATF of a single square vibrating plate
is given as [13,27]:

Hap(x, k, θ0, ϕ0) = jckρ0
2π

ω̇0LxLy
e−jkr

r
sinc(Lxk(sin θ cos ϕ − sin θ0 cos ϕ0)

2 ) (3-1)

sinc(Lyk(sin θ sin ϕ − sin θ0 sin ϕ0)
2 ),

where j is the imaginary number, c is the speed of sound, k is the wavenumber, ρ0 is the density
of air, ω̇0 is a gain constant, Lx and Ly denote the aperture dimensions, x = (r, θ, ϕ) = (x, y, z)
describes the position at which we calculate the pressure and θ0 and ϕ0 indicate the incident
angle of the primary noise. The derivation of this equation, derived from Rayleigh’s first
Integral equation, can be found in the accompanying literature study [12]. In order to model
the cross-bar in the aperture, [13] extends Eq. (3-1) as a stack of four vibrating plates with
the a single origin. This gives:

Hap(x, k, θ0, ϕ0) = jckρ0
2π

ω̇0
e−jkr

r
(3-2)

(LxLysinc(Lxk(sin θ cos ϕ − sin θ0 cos ϕ0)
2 )sinc(Lyk(sin θ sin ϕ − sin θ0 sin ϕ0)

2 )

− LxW+sinc(Lxk(sin θ cos ϕ − sin θ0 cos ϕ0)
2 )sinc(W+k(sin θ sin ϕ − sin θ0 sin ϕ0)

2 )

− LyW+sinc(Lyk(sin θ cos ϕ − sin θ0 cos ϕ0)
2 )sinc(W+k(sin θ sin ϕ − sin θ0 sin ϕ0)

2 )

+ W 2
+sinc(W+k(sin θ cos ϕ − sin θ0 cos ϕ0)

2 )sinc(W+k(sin θ sin ϕ − sin θ0 sin ϕ0)
2 )),
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where W+ is the crossbar width. This equation is valid in the far-field. However, if we have
aperture dimensions of, e.g. Lx = Ly = 0.5 m, the far-field starts at r ≫ ka2 = 2πfa2/c =
2π · 2048 · 0.3542/343 = 4.70 m [42]. This is too far from the aperture for our application. We
seek an approach that validly describes the wave from approximately 1 m from the aperture
onwards. Hence, we elaborate further and develop the following aperture ATF.

The method is extended by summing a multitude of smaller vibrating plates. With this
approach we model more specifically what happens when a wave propagates through an
aperture. It describes the soundfield by an aperture with a crossbar more accurately at
closer distances. This allows us to use it for our algorithm. So, we express the pressure at
evaluation position (x = (xe, ye, ze)) as a sum of the pressures by P̂ square vibrating plates.
The equation for 3D modeling is then derived as:

Hap(x, k, θ0, ϕ0) = jckρ0
2π

ω̇0∆Lx∆Ly

P̂∑
i=1

Di, (3-3)

where ∆Lx and ∆Ly are aperture section dimensions. Di is the directivity, of each plate,
defined as:

Di = e−jk(ri+τi)

ri
sinc(∆Lxk(sin θi cos ϕi − sin θ0 cos ϕ0)

2 ) (3-4)

sinc(∆Lyk(sin θi sin ϕi − sin θ0 sin ϕ0)
2 ),

where, for section i, ri, θi and ϕi are the adjusted spherical coordinates and τi is a delay term
due to the incident angle of the plane wave. We define the coordinates as:

ri =
√

(xe − xi)2 + (ye − yi)2 + z2
i , (3-5)

θi = arccos(zi/ri), (3-6)

ϕi = atan2((ye − yi), (xe − xi)), (3-7)

where (xi, yi, zi) denotes the origin of section i. Furthermore, the delay term is calculated as
the perpendicular distance between the plane of the plane wave in the origin of the aperture,
and the origin of section i. It is defined as:

τi = sin(θ0) cos(ϕ0)xi + sin(θ0) sin(ϕ0)yi√
(sin(θ0) cos(ϕ0))2 + (sin(θ0) sin(ϕ0))2 + (cos(θ0))2 , (3-8)

and it makes sure that section i has the correct phase shift resulting from the incident angle
of the incoming noise.
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Modeling in 2D is done by removing the height ∆Lx and emitting the sinc function of the x
direction. Essentially, this describes an infinitely thin window. The transfer function of 3D,
in Eq. (3-3), reduces to:

Hap(x, k, θ0, ϕ0) = jckρ0
2π

ω̇0∆Ly

P̂∑
i=1

Di, (3-9)

and the directivity from Eq. (3-4) is downsized to:

Di = e−jk(ri+τi)

ri
sinc(∆Lyk(sin θi sin ϕi − sin θ0 sin ϕ0)

2 ), (3-10)

and we have the adjusted coordinates as:

ri =
√

(ye − yi)2 + z2
i , (3-11)

θi = arccos(zi/ri), (3-12)

ϕi = atan2((ye − yi), 0), (3-13)

and the delay-term ends up being:

τi = sin(θ0) sin(ϕ0)yi√
(sin(θ0) sin(ϕ0))2 + (cos(θ0))2 . (3-14)

3-2-2 Loudspeaker ATF

Similar to the aperture ATF, we need an ATF that relates the sound pressure at an evaluation
position to the loudspeaker signal. This is achieved by modeling the loudspeaker ATF as a
monopole [27, 43]. Accordingly, the pressure at position x from the loudspeaker array is a
sum of each individual loudspeaker. A monopole is modeled as:

H ls
q (x, k) = jckρ0

4π
Aq

e−jkrq

rq
, (3-15)

in which Aq = 4πa2u0 is the monopole amplitude, with u0 a surface velocity gain constant
and a the radius of the monopole. Futhermore, rq is the adjusted spherical radius from the
monopole to a position x in the room, defined as:

rq =
√

(xe − xq)2 + (ye − yq)2 + z2
q , (3-16)

where (xq, yq, zq) denotes the position of the loudspeaker. This ATF holds in 3D, and for 2D
we set xq = 0.
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3-3 Block Processing

This section briefly covers the block processing concept that is deployed in this work. This
enables us to describe any transformation by use of an ATF, such as the ones discussed
in the prior section. An arbitrary input signal (x(n)) is transformed to the wave-domain
with the Short-time Fourier Transform (STFT). First, we cover implementation of the block
processing. Thereafter, we discuss the time-delay wrapping, as time shifts in the STFT cause
for issues. Finally, we present a method to quantify the limitation of a fixed window-size N .

3-3-1 Implementation

The signal is broken into M blocks (xm(n)) using an analysis window function w(n), of
length N samples and we apply the Discrete Fourier Transform (DFT) to each block. The
window-function, w(n) is chosen to fulfill

∑
m∈Z w(n − mH)2 = 1, such that we have perfect

reconstruction, as discussed in the Section 2-2-5. Lets denote the coefficient vector containing
frequency information of the m-th block as:

Xm(k) = STFT(xm(n)). (3-17)

Thereafter, we do an element-wise multiplication of the coefficient vector with an ATF H(k):

X̂m(k) = Xm(k) ⊙ H(k). (3-18)

Finally, the transformed signal x̂(n) can be obtained with the Inverse Short-time Fourier
Transform (I-STFT):

x̂(n) = I-STFT(X̂m(k)). (3-19)

3-3-2 Time-delay Wrapping

The block-processing, elaborated in the prior section, has a limiting artifact. When phase-
shifts by ATFs become significant compared to the window length, the circularity property of
the STFT, assuming that xm(n) is periodic, causes for wrapping of the signals. That means
that a positive time-delay shifts the signal such that the last part (in time), appears at the
beginning of the block. This issue causes the block processing approach to induce errors in
the transformed signals. An illustration is shown in Figure 3-4. Deploying zero-padding can
reduce this issue. However, this emits the shifted signal content that would otherwise appear
at the beginning of the block. Omitting this signal part leads to a loss of signal, limiting the
accuracy of the block processing. In this section, we briefly cover the method we developed
to reduce this issue significantly.

In some ATFs, like Eq. (3-3), Eq. (3-9) and Eq. (3-15), the time-delay is encapsulated in the
e−jkr term, where r is a distance. The wave propagates over this distance with the speed
of sound c, leading to a time-delay. To overcome the issue of wrapping, we apply the most
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Figure 3-4: The time delay wrapping issue that occurs when long delays are implemented with
short STFT blocks. Due to the periodicity assumption of the Fourier transform, the time-delay
shift causes the end of the signal block to wrap to the beginning of the block, visible when taking
the following steps. The original signal (1) is windowed to obtain a windowed signal (2). Then,
the signal is transformed to the frequency-domain, a time-delay is applied and transformed back
to the time-domain (3). Finally, the window is applied again, resulting in a wrapped signal (4).

significant part of the time-delay in the time-domain. Let us define the procedure for a
simplified ATF, defined as:

H = Ae−jkrdelay . (3-20)

where A is any other part of the ATF that does not include the phase-shift and k is the
wavenumber. We calculate the total delay in samples:

Ttotal = fsrdelay

c
, (3-21)

where fs is the sample rate and c the speed of sound. However, Ttotal is often not an integer,
and in the discrete time-domain, we can only shift signals by integer steps. Hence, we divide
the total delay between an integer and a decimal term:

Ttotal = T̂int + T̃dec, (3-22)

where the integer term is defined as:

T̂int = ⌊Ttotal⌉, (3-23)

where ⌊·⌉ is rounding to the next integer. We retrieve the adjusted ATF as:

Ĥ(k) = e−jkcT̃dec/fs , (3-24)

and plug this, together with the integer time shift, in Eq. (3-18). Then, we achieve a non-
wrapping, time-shifted block processing procedure for this ATF as:

x̂(n + T̂int) = I-STFT(Xm(k) ⊙ e−jkcT̃dec/fs). (3-25)
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3-3-3 Window-size and Frequency Resolution

Aside from the time-delay wrapping that influences the accuracy of block-processing with the
STFT, another limitation arises due to the blockwise processing. As the STFT uses the DFT,
we work with a sampled frequency response. That means that we sample the continues ATFs
given in Eq. (3-3) and Eq. (3-15). When sampling, aliasing can occur. We elaborate on this
issue in this section and develop a tool to measure the significance.
The application of the ATF in the discrete wave-domain is the root of the problem. The ATF
is a continuous function. However, we apply it in a discrete sense. This means that we sample
the frequency response of the ATF. Similar to the sampling of signals in the time-domain,
aliasing occurs when we sample in the wave-domain. More specifically, when sampling, part
of the behavior that happens ‘in between’ the sampled points is disregarded: the sample is
the average of that measured section of the signal. With a shorter STFT window-size N , we
have less discrete frequency bins, leading to a lower frequency resolution. Similar to sampling
in the time-domain, sampling in frequency with less frequency bins means that only smooth
behavior of the frequency response is captured. Let us look at an example of the frequency
response of the aperture ATF, evaluated at a point in the room. The frequency response with
high frequency resolution, with N = fs (close to the continuous case) is compared with the
low frequency resolution version, with N = 16 samples.

(a) Magnitude plot.

(b) Phase plot.

Figure 3-5: Aperture ATF frequency responses for the high (blue) and low-resolution (red)
scenario. The low-resolution line shows a smoothened version and corresponds with the high-
resolution version at the grey lines, that indicate the frequency bins.

Figure 3-5 shows the relatively non-smooth frequency response in solid blue. The grey lines
indicate the frequency bins that correspond to the forward-STFT for a block size of N = 16
samples. The red dashed line corresponds to the low-resolution frequency response of the
aperture transfer function. In this small window-size case, the impulse response of the high-
resolution is windowed drastically. The red dashed line in Figure 3-6 shows the windowed
impulse response. It becomes clear that the low resolution results in an error, as the two
impulse responses do not overlap.
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30 Simulation Model and Acoustic Transfer Functions

Figure 3-6: The impulse response of the aperture ATF. The solid blue line shows the original
impulse response. The dashed red line shows the filtered case, where a rectangular window is
applied due to the low frequency resolution. Only the first part of the middle part of the impulse
response remains, which directly shows the issue of a short block length.

Let us derive an analytical method to calculate the error caused by approximating an ATF
with low resolution. Let us denote the wave-domain variables in bold and time-domain
variables in normal font. We start with a frequency weighting, which weights certain frequency
content based on the primary noise signals. We denote this by: s(k) : R → R. This frequency
weighting is the average power spectral density of a certain audio set. We use a perfectly
flat frequency response weighting, so s(k) = 1 ∀ k. Furthermore, y(k) and ŷ(k) denote
an weighted frequency response of ATF and it’s approximated (lower frequency resolution)
version, respectively. The arbitrary transfer function is denoted as h(k). Finally, the low
’time’ filter, corresponding to the window-size is defined in the time-domain as a rectangular
window:

w(t) =
{

1, −N
2 ≤ t ≤ N

2 ,

0, elsewhere,
, (3-26)

where N is the window-size and its wave-domain equivalent is defined as w(k) = Nsinc(ckN),
as the fourier transform of a rectangular window is a sinc-function [27].

The error in wave-domain e(k) is derived as follows. We begin with the weighted frequency
response:

y(k) = h(k)s(k), (3-27)

and use it to describe the filtered frequency response:

ŷ(k) = w(k) ∗ y(k) = w(k) ∗ (h(k)s(k)). (3-28)

The filtering in the time-domain, a multiplication of the weighted impulse response with the
filter, corresponds to a linear convolution between the weighted frequency response and the
frequency transformation of the filter in the frequency domain. y(k) and ŷ(k) are used as
ATFs the simulation model. Finally, the frequency response error is the difference between
the two frequency responses:
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e(k) = y(k) − ŷ(k)
= h(k)s(k) − w(k) ∗ (h(k)s(k))
= (1 − w(k)) ∗ (h(k)s(k)).

(3-29)

The method is summarized with a block diagram in Figure 3-7.

Figure 3-7: The schematic overview of the error analysis procedure with frequency weighting
h(k), weighted frequency response y(k), it’s low frequency resolution version ŷ(k) and the error
e(k). The ∗ denotes convolution.

From this, we can calculate the Signal-to-Noise Ratio (SNR) between the frequency response
error and the weighted frequency response, or, equivalently by Parseval’s theorem [44], the
ratio between the weighted impulse response and the error impulse response:

SNR = 10log10(
∑

(y(k))2∑
(e(k))2 ) = 10log10(

∑
(y(t))2∑
(e(t))2 ), (3-30)

in dB. The resulting SNR describes how well the approximated weighted frequency response
ŷ(k) described the actual weighted frequency response y(k). This gives us the fundamental
performance limit of using the approximated weighted frequency response for frequency weight
calculation. In the result section, we will explore the limits of the aperture ATF for various
window-sizes, used by the wave-domain algorithm.

3-4 Schematic Overview

The simulation model deploys the discussed ATFs, block processing, and the method to
prevent time-delay wrapping. Figure 3-8 is a schematic overview of the implementation for a
single evaluation position in the room. The primary noise (ξ(n)) takes the primary path via
the aperture ATF Hap(k). Here, a STFT with a very large window-size (Ñ = fs) is used, for
high frequency resolution. After transforming back to time, we implement the time-delay T ap

that we split from the frequency implementation. Eventually, we have the primary noise signal
at the evaluation position (d(n)). In the secondary path, the primary noise signal is measured
by reference microphone R. The measured signal is transformed to the wave-domain with
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32 Simulation Model and Acoustic Transfer Functions

a STFT with window-size N . Then, for each loudspeaker q, the signal is transformed with
its corresponding filter weight Wq(k). The calculation of this weight is discussed in Chapter
4. Next, each adjusted loudspeaker signal is multiplied with the corresponding ATF of the
loudspeaker H ls

q (k) and transformed back to time-domain with an I-STFT. We implement
the time-delay that we omitted from the loudspeaker ATF. In the end, we sum the signals of
the aperture (d(n)) and from all loudspeakers (yq(n)) and obtain the error in the evaluation
position e(n).

Figure 3-8: Block diagram of the simulation environment.

3-5 Summary

In this chapter, we investigated the simulation environment. We focused on the necessary
ATFs for wave propagation modeling and the wave-domain algorithm and covered various
aspects of the implementation with block-processing. The most important topics are summa-
rized below:

• We established a simulation environment by using ATFs that generate the soundfields
from the aperture and loudspeaker arrays. Block processing is used for implementation.

• A 3D representation of the environment was given, as well as a 2D simplification.

• The aperture is modeled as a vibrating plate. We extended the existing theory by
deriving equations that describe a sum of multiple vibrating plates. This allows us to
use the ATF at 0.88 m from the aperture.

• Loudspeakers are represented by monopoles in the simulation environment.

• The use of block processing induces an issue we call time-delay wrapping. Here, rela-
tively large phase-shifts in the ATF cause issues. We presented a solution that removes
the significant phase-shifts to a time-delay in the time-domain.

• In the block processing approach, the window-size of the STFT results in wave-domain
aliasing. This window-size determines the number of frequency bins for which we obtain
the frequency response of the ATF. A small window-size leads to a loss of frequency
response information. Hence, this fundamentally limits the performance of a wave-
domain algorithm. We introduced an error analysis method that can give us insight
into these fundamental limits.
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Chapter 4

Wave-Domain Algorithm Design

In the previous chapter, we developed a simulation environment and defined Acoustic Transfer
Functions (ATFs) for aperture and loudspeaker soundfields. We continue with this informa-
tion in this chapter as we design the wave-domain algorithm. The main focus is to come up
with the necessary equations to calculate loudspeaker filter-weights that minimize the sound-
field of the aperture. For this, we first discuss the control region, the spatial region in which we
want to minimize the sound energy in Section 4-1. Thereafter, the algorithm is developed for
which a soundfield basis expansion forms the fundament. We will include a brief discussion
on algorithmic delay compensation. Both are given in Section 4-2. An in-depth discussion of
two parameters of the algorithm is covered in Section 4-3. Finally, Section 4-4 concluses this
chapter.

4-1 Control Region

Any wave-domain algorithm rests on the principle of minimizing the sum of soundfields in a
spatial control region. We denote this region with D. For proper Active Noise Control (ANC)
for apertures, we ensure global control by specifying this control region in all directions from
the aperture into the room. Hence, in the 2D simulations, we denote the control region as an
arc with finite thickness [6, 11,45]:

D2D =


rmin ≤ r ≤ rmax,

0 ≤ θ ≤ π
2 ,

ϕ = π
2 & ϕ = −π

2 ,

(4-1)

where rmin and rmax determine the thickness of the arc. This is visualized in Figure 4-1.
Moreover, we specify the 3D control region as a half spherical shell with finite thickness [46],
and extend Eq. (4-1) to:
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Figure 4-1: 2D cross-section of the environment with control region D, a hemisphere in the
far-field, between rmin and rmax from the aperture.

D3D =


rmin ≤ r ≤ rmax,

0 ≤ θ ≤ π
2 ,

0 ≤ ϕ ≤ 2π.

(4-2)

A finite thickness ensures that we obtain global control in all directions. We create a new
wavefront, based on the current wavefront with reduced sound energy in the control region.
Consequently, the new wavefront behind the control region has reduced sound energy, accord-
ing to the Huygens’ principle discussed in 2-3.

4-2 Algorithm development

This section discusses the general open-loop wave-domain algorithm, applicable to both the
2D and 3D situations. The theory closely follows the steps in [23,24]. The algorithm employs
a soundfield basis expansions. Hence, we explore that theory before deriving the actual
loudspeaker weight calculations.

The following notation is used: matrices and vectors are denoted with upper and lower
boldface respectively: C and y. x ∈ R3 is an arbitrary spatial observation point. The
number of loudspeakers is Q.

4-2-1 Soundfield Basis Expansion

Any soundfield function can be written as a sum of weighted basis functions, where the basis
function set is an orthonormal set of solutions to the Helmholtz equation [22, 23, 27]. The
Fourier transform of the time-domain wave equation gives the Helmholtz equation, defined
as:

∇2p + k2p = 0, (4-3)
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with function p(x, y, z, ω) and wavenumber k. Figure 4-2 illustrates the concept of soundfield
basis expansion, where a finite sum of simple waves can be used to describe an arbitrary
soundfield in an observation region.

Figure 4-2: Any soundfield can be described by a finite weighted sum of simple waves.

Let us derive this in equations. The soundfield over the observation region at single wavenum-
ber k, denoted S(x, k) : D×R → C is written as a weighted series of basis functions {Ug}g∈G :

S(x, k) =
∑

g

EgUg(x, k), (4-4)

where S(x, k) is the soundfield, Eg are G coefficients and Ug(x, k) is a G × 1 vector. We
assume that all feasible solutions on D fall in the Hilbert space spanned by the orthonormal
set {Ug}g∈G . The inner-product is defined as:

⟨Y1, Y2⟩ =
∫
D

Y1(x)Y H
2 (x)dx, (4-5)

where Y1 and Y2 are functions of the form Y1 : R3 → R and Y2 : R3 → R. The inte-
gration is conducted in the domain of D3. The orthonormal set Ug(x, k) has the property
⟨Ui(x, k), Uj(x, k)⟩ = δij . For a given S(x, k) and Ug(x, k), the coefficients Eg are obtained
with Eg = ⟨S(x, k), Ug(x, k)⟩.

4-2-2 Orthonormalization of a Set of Basis Functions

Next, we discuss how to construct the orthonormal set of basis functions. We denote this
orthonormal set of basis functions as a vector:

U = [U1 U2 · · · UG]T , (4-6)

To find this set, we start with a set of non-orthogonal functions that solve the wave-equation.
A simple set of solutions is are plane waves. We set fg(x, k) : R3 × R → C that represent G
plane waves in G directions, defined as:

fg(x, k) = ejkx·β̂g , (4-7)

where β̂g is the unit vector in the direction of the g-th plane wave. Let’s first derive the 2D
case. Here, we β′

g = (g − 1)∆β, g = 1, · · · , G with ∆β = 2π/G and finally β̂g ≡ (1, β′
g),

such that we have the directions evenly distributed over a 2D plane. For the 3D case, we
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use a dataset of evenly distributed directions in a sphere [41] and set β̂g ≡ (1, θg, ϕg). We
normalize each basis function with Eq. (4-5) to obtain f̂g(x, k) = fg

||fg || and combine the set of
normalized plane waves in a vector:

f̂ = [f̂1 f̂2 · · · f̂G]T , (4-8)

Next, we find a lower triangular matrix R such that U = Rf̂ , where U is the vector containing
G orthonormal basis functions. We define a matrix containing inner-products of Eq. (4-8)
with itself for all angles:

F = f̂ f̂T =


F(1,1) F(1,2) . . . F(1,G)

F(2,1) F(2,2)
...

... . . .
F(G,1) . . . . . . F(G,G)

 , (4-9)

where we assume that F is positive definite: xHFx > 0 ∀ x ∈ Cn. The required matrix R is
defined as lower triangular, leading to:


U1
U2
...

UG

 =


R(1,1) 0 . . . 0
R(2,1) R(2,2) . . . 0

...
... . . . ...

R(G,1) R(G,2) . . . R(G,G)




f̂1
f̂2
...

f̂G

 , (4-10)

Next, we define V = R−1, also a lower triangular matrix, and we take the following steps:

I = UUT = Rf̂f̂T RT = RFRT , (4-11)

and multiply both sides with P leads to

V IP T = V RFRT V T , (4-12)

which, with V = R−1, is equal to the Choleski decomposition [47]:

V V T = F. (4-13)

Finally, we obtain the orthonormal set of basis functions as U = Rf̂ = V −1f̂ , where the
inverse exists because P is square and positive definite.

Numerical Stability The inner product between two plane waves in a perfect opposite di-
rection results in 0. However, the Choleski decomposition requires a positive-definite matrix.
Therefore, the Choleski decomposition is implemented with an adjusted F matrix. We define:

F̃ = F + νI, (4-14)

where ν = 1−20 and I is the identity matrix. This further ensures numerical stability and
prevents rounding errors due to numerical integration.
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4-2-3 Soundfield Expressions

In this section, we discuss the procedure to obtain filter weights lq(k) for all loudspeakers
q at wavenumber k. The following procedure is repeated for wavenumbers k frequency bins
corresponding to up to 2kHz.

First, we write the soundfields of the aperture as a sum of orthonormal basis functions:

Sap(x, k) =
G∑

g=1
AgUg(x, k). (4-15)

Weights Ag are obtained with the inner product:

Ag = ⟨Hap(x, k), Ug(x, k)⟩, (4-16)

where Hap is from Eq. (3-9) (for 2D) or Eq. (3-3) (for 3D). Note that this is the low reso-
lution frequency response, depending on the window-size N . This limits the accuracy of the
algorithm, as discussed in Section 3-3-3. Next, we create a coefficient vector:

a = [A1 A2 · · · AG]T , (4-17)

and a vector containing inner products between the ATF and the normalized basis functions
denoted as:

Hap

f̂
= [⟨Hap, f̂1⟩ ⟨Hap, f̂2⟩ · · · ⟨Hap, f̂G⟩]T . (4-18)

Plugging in U = Rf̂ gives a = RHap

f̂
. Consequently, we have a vector a containing the

coefficients to describe the soundfield of the aperture as a sum of plane waves from Eq. (4-
7). Note that we produce this final equation such that it depends on R. By doing this,
the complexity of the evaluated integrals is limited. Instead of having to evaluate the inner-
products between the orthonormal basis functions in U and Hap, we only need to compute
the less complex inner-products between f̂ and Hap.

Next, we apply a similar procedure to the soundfield from the loudspeaker array. We write
the soundfield from a single loudspeaker as:

H ls
q (x, k) =

G∑
g=1

Cq
gUg(x, k), (4-19)

with H ls
q from Eq. (3-15) and coefficients Cq

g . The soundfield of the complete array is expanded
as:

Sar(x, k) =
G∑

g=1
BgUg(x, k), (4-20)
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with coefficients Bg. The soundfield from the array can also be expressed the sum of the
soundfields from all individual loudspeakers, multiplied by their filter weights, giving:

Sar(x, k) =
Q∑

q=1
lq(k)H ls

q (x, k). (4-21)

Substituting Eq. (4-20) and Eq. (4-19) in Eq. (4-21), generates coefficients Bg as:

Bg =
Q∑

q=1
lq(k)Cq

g , (4-22)

where the coefficients are calculated using Cq
g = ⟨H ls

q (x, k), Ug(x, k)⟩. In matrix form we have
C = RH ls

f̂
defined as:


C1

1 C2
1 . . . CG

1

C1
2 C2

2
...

... . . .
C1

G . . . . . . CG
G

 = R


⟨H ls

1 , f̂1⟩ ⟨H ls
2 , f̂1⟩ · · · ⟨H ls

Q , f̂1⟩

⟨H ls
1 , f̂2⟩ ⟨H ls

2 , f̂2⟩
...

... . . .
⟨H ls

1 , f̂G⟩ . . . . . . ⟨H ls
Q , f̂G⟩

 . (4-23)

Here H ls
f̂

is filled with the inner products between the basis functions and the loudspeaker
ATFs. Finally, we have the matrix C that contains the coefficients to describe the soundfield
from the loudspeaker array as a sum of plane waves from Eq. (4-7). Again, note that we use
R in this final notation to limit the complexity of the integrals.

4-2-4 Filter-Weight Calculation

The final step is to calculate the loudspeaker weights such that the sum of the soundfields is
minimized. We set the control problem as J(lq) = Sap(x, k)+Sar(x, k) and η = ||J(lq)||2 and
minimize in least mean square sense: minlq ||J(lq)||2, obtaining:

η = ||Sap(x, k) + Sar(x, k)||2. (4-24)

With the orthonormality property (⟨Ui(x, k), Uj(x, k)⟩ = δij) and by plugging in Eq. (4-15)
and Eq. (4-20) we reduce Eq. (4-24) to

η = ||
G∑

g=1
AgUg(x, k) +

G∑
g=1

BgUg(x, k)||2 =
∑

g

||Ag + Bg||2. (4-25)

With the knowledge that ⟨Ui, Uj⟩ = 0, we can rewrite in matrix form, similar to [23]. We
denote b = Cl, where l = [l1 l2 · · · lQ]T and omit k for notation purposes. Furthermore, we
add the regularization term τ l with τ > 0, to constrain the loudspeaker effort to preventing
distortion and ensure a robust solution:
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η = ||b + a||2 + ||τ l||2 = (b + a)H(b + a) + τ ||l||2. (4-26)

We rewrite Eq. (4-26) to get:

η = (Cl + a)H(Cl + a) + τ ||l||2

η = (Cl)HCl + (Cl)Ha + aHCl + aHa + τ ||l||2, (4-27)

and take the derivative:

∂

∂η
= 2CHCl + 2CHa + 2τ ||l|| = 0

(CHC + τI)l = −CHa, (4-28)

to obtain the final equation for the filter weights at single wavenumber k:

l = −(CHC + τI)−1CHa. (4-29)

with C = RH ls
f̂

and a = RHap

f̂
.

4-2-5 Algorithmic Delay Compensation

The block processing with Short-time Fourier Transform (STFT) in the wave-domain algo-
rithm induces an algorithmic delay. More specifically, the window-size N of the STFT sets
the length of the delay. The influence of varying the window-size is discussed in Section 3-3-3.
Algorithmic delay compensation can be done in various ways. In this study, we compare two
options: reference microphone placement and signal prediction.

Reference Microphone Placement for Algorithmic Delay Compensation

As mentioned, the algorithmic delay is equal to the length of the STFT block set by the
window-size N . One method to compensate for the algorithmic delay is by positioning the
reference microphone at a certain distance from the aperture. This is a feasible solution
for certain physical setups where the noise source is far from the aperture. However, this
distance can not be too long to keep the setup practical. The time the wave travels from the
microphone to the aperture is the time for which we can compensate. We have the simple
equation:

rref = cN

fs
, (4-30)

where rref is the distance in m from the reference microphone to the middle of the aperture,
c is the speed of sound, N is the window-size, and fs is the sample rate. For example, a
window-size of N = 32 samples would lead to rref ≈ 1.4 m, which is a feasible distance.
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Signal Predictor for Algorithmic Delay Compensation

The second compensation method we explore is a signal predicting algorithm. Here, the
concept is to predict, each hop m, N samples in the future, with the measured signals up to
that point. We built an Autoregressive (AR) model of order p:

v(n) =
p∑

i=1
αiv(n − i), (4-31)

that has no trends or seasonality. We employ the Yule-Walker Equations to calculate its
coefficients (αi), fitting the model on the last W samples. This predictor is implemented
such that the predicted signal is the input of the STFT in the block processing. Expressed
in equations, for each hop m, we repeat the following process. The input vector is:

xm = [xm(n − 1), xm(n − 2), · · · , xm(n − W )], (4-32)

where W is the number of input samples. xm is then used in the Yule-Walker equations to
obtain α = [α1, α2, · · · , αp], the AR model with p parameters. Then, we obtain the predicted
signal:

vm = [vm(n), vm(n + 1), · · · , vm(n + N − 1)], (4-33)

by deploying Eq. (4-31) over the prediction horizon N . Finally, vm is the input of the STFT-
hop m in Eq. (3-17) in the simulation model. This process is repeated each hop m.

4-3 Parameters

For the implementation of the wave-domain algorithm, two main parameters influence the
performance. We discuss the influence of the window-size and the number of basis functions
(G) in this section.

4-3-1 Number of Basis Functions

The soundfield basis function expansion rests on the fact that we use a finite number of basis
functions to describe any soundfield within a defined region. A study determined how many
basis functions were necessary for 2D and 3D regions to describe the soundfield within a
reasonable error [48]. Prior implemented soundfield reproduction [23] and real-time wave-
domain algorithms [24] followed the results by Kennedy et al. where a relative truncation
error of 16.1% is found as limit. The size of the defined region and the wavenumber influence
the number of basis functions necessary. For 2D disc-shaped spatial regions of radius r, a
minimum of G2D = (⌈2kr⌉ + 1). In the case of a spherical 3D spatial region, we need at least
G3D = ⌈ekr/2 + 1⌉2 basis functions.

The number of basis functions directly influences the number of calculations necessary in the
algorithm, as the shape of C and a in Eq. (4-29) depend on it. More basis functions result in
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a higher computational effort. Moreover, in our control problem, we defined the 2D control
region not as a disc but as a thick arc in 2D (Eq. (4-1)). In 3D, we only use a half-spherical
thick shell and not a full sphere (Eq. (4-2)). As our regions are smaller than the regions in
the study by Kennedy et al., a lower number of basis functions is expected to result in similar
performance. Computational wins for the 2D simulations are negligible, but reducing G in
3D calculations can make a substantial difference. In summary, we set

G2D = (⌈2krmax⌉ + 1), (4-34)

and determine G3D by calculating the attenuation performance for a various number of basis
functions, where we use

G3D = ⌈βekrmax/2 + 1⌉2, (4-35)

and compare for various scaling factors of β = 1/32, 1/16, 1/8, 1/4.

4-3-2 Window-size

As we have discussed in Section 3-3-3, the window-size influences how well the low resolution
aperture Acoustic Transfer Function (ATF) in Eq. (4-16) mimics the full resolution ATF.
From this, we expect that a higher window-size will result in a better result. However, we
have limitations on the window-size for the algorithm with algorithmic delay compensation
methods. The performance is directly linked to the window-size. Due to the opposite effect of
better algorithm performance and worse prediction performance, for larger window-sizes, we
will see an optimal window-size for the predictor case. We will explore the results for various
window-sizes to see the eventual impact of the window-size.

4-4 Summary

The main purpose of this chapter was to develop the wave-domain algorithm. We derived the
necessary equations and discussed the algorithmic delay compensation. The following main
points were discussed:

• To ensure global attenuation, the control region (in 3D) is defined as a half-spherical
shell with finite thickness. This region makes sure we minimize sound energy in all
directions from the aperture into the room.

• Any soundfield can be written as a sum of weighted basis functions. This principle
formed the basis of our wave-domain algorithm.

• We presented a new method to orthonormalize a set of basis functions by applying the
Choleski decomposition on a inner-product matrix of the normalized basis functions.

• A procedure in matrix notation was developed. By using matrix R, we ensure that we
have to evaluate less complex integrals, reducing the computational complexity of the
algorithm.
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• The derived algorithm resulted in a single expression for the filter-weights. This expres-
sion calculates the filter-weights for all loudspeakers, for a single wavenumber k, and is
repeated over each wavenumber that we want to control.

• We proposed two methods for algorithmic delay compensation. The first method entails
positioning a reference microphone further in front of the aperture. The second method
deploys a signal predictor.

• Both the number of basis functions in the basis function expansion and window-size will
influence the performance of the wave-domain algorithm.
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Chapter 5

Simulation Results

In the prior chapters, we discussed the reference algorithm, explained the simulation environ-
ment, and developed the wave-domain algorithm. In this chapter, we explore the results of how
the simulation environment in itself performs, as well as how the multiple-error Normalized
Least Mean Squares (NLMS) compares to the proposed wave-domain algorithm. We begin by
explaining the experimental setup (Section 5-1) and discussing evaluation methods (Section 5-
2). Thereafter, we present the results of the simulation environment modeling using Acoustic
Transfer Functions (ATFs) in Section 5-3. This is followed Section 5-4 in which we dover
the results of the 3D controller simulations. We compare various scenarios, parameters, and
algorithmic delay compensation methods. Finally, we give a summary table containing the
main results in Section 5-5.

5-1 Experimental Setup

This section briefly covers the information explaining how we implemented the algorithms
and what we used to determine the performance of both algorithms.

5-1-1 Implementation

Most of the project, such as the simulation model and animations, NLMS and WDC algo-
rithms and fundamental error analysis was implemented in Python 3.8 [49] within Visual
Studio Code [50], using various packages like SciPy, NumPy and more. Additionally, the cal-
culations of the matrices R, a, C, Hap

f̂
and H ls

f̂
for the wave-domain algorithm were done on

the Delft Center for Systems and Control (DCSC) hpc-cluster using MATLAB R2020a [51].
This helped to speed up the heavy calculations by reducing calculation time by more 20 times.
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(a) Rumbler-siren amplitude. (b) Rumbler-siren spectrum. (c) Rumbler-siren spectrogram.

Figure 5-1: Rumbler-siren characteristics, one of the signals that is used in the simulations.

5-1-2 General Parameters

The relevant frequency range is 128 to 2048 Hz, which we denote with ’up to 2 kHz’ from
now on. This includes the frequency range for which the physical setup built at PennState
University [13,14] is designed. We set the sampling frequency at fs = 214 = 16.384 kHz. For
the simulations, we assume that the density (ρ0 = 1.2041 kg/m3) and temperature of the air
are constant, setting a speed of sound at c = 343 m/s.

Moreover, the equations used in the simulations are valid in far-field circumstances. The
minimal distance for a valid far-field varies per type of equation. For a monopole, far-field is
defined as kr ≫ 1 [42], where k is the wavenumber and r the distance between the monopole
and evaluation point. Far-field, at the limit of 128 Hz starts at r ≫ 1/k = 1/(2πf/c) =
1/(2π · 128/343) = 0.43 m. For the aperture, we use the formula for a circular piston:
r/a ≫ ka, where a is the radius of the piston. The modeled aperture contains four squares, so
we conservatively take a as the distance between the middle and the corner of a square, giving
a = 0.153 m. Consequently, we need r ≫ ka2 = 2πfa2/c = 2π · 2048 · 0.1532/343 = 0.88 m.
As such, we position the control region in the far-field with rmin = 0.95 m and rmax = 1 m.

To measure performance, we evenly distributed 114 evaluation microphones on a hemisphere
at r = 1 m inside the room, using a spherical Fibonacci mapping [52].

5-1-3 Primary Noise Signals

The various algorithms were compared and tested using three types of noise: white noise,
airplane noise, and a rumbler-siren signal. Each signal was four seconds long. We used the
white noise to explore the performance of the optimal wave-domain and multiple-error NLMS
algorithms. The rumbler-siren signal was used to explore the algorithmic delay compensation
methods as it contains predictable signals. Additionally, the airplane noise was used as it
is a real-world noise with emphasis on low frequency. An illustration of the rumbler-siren
signal over time is shown in Figure 5-1a. A rumbler-siren is well suited for the wave-domain
algorithm with a predictor. It covers both a higher-pitched (0.5-1.5 kHz) and a lower-pitched
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(0.1-0.5 kHz) siren that sweeps, shown in Figure 5-1b and Figure 5-1c. The signal’s non-
stationary character resembles the behavior of real-world sounds. Moreover, a signal that
is (partially) deterministic is necessary to illustrate the performance of a predictor-based
algorithm. With an auto-regressive model, a random white noise signal can not be predicted,
while a pure sinusoidal signal is perfectly predictable. The usage of the rumbler-siren signal
enables us to showcase the trade-off between the algorithm and prediction. This is discussed
in more detail in Chapter 6.

5-2 Evaluation Methods

To evaluate the attenuation performance, we deploy two procedures. These are described in
this section.

5-2-1 Segmental SNR

Performance was evaluated on the boundary of the control regions in all directions. We define
the segmental SNR in dB, summed over all evaluation microphones e as:

SEGf (k, m) = 10 log10

∑E
e |de(k, m)|2∑E

e |de(k, m) + ye(k, m)|2
, (5-1)

with de(k, m) the Short-time Fourier Transform (STFT) block primary noise from the aperture
and ye(k, m) the STFT block of the loudspeaker array, at each evaluation microphone e. The
mean of SEGf (k, m) up to 2 kHz gives the performance over time as:

SEGt(m) =
∑K

k SEGf (k, m)
K

, (5-2)

where K denotes the frequency bin number at 2 kHz. Finally, we obtain a single value for
the Signal-to-Noise Ratio:

SNR =
∑M

m SEGt(m)
M

, (5-3)

where M is the total number of hops of the signal. The segmental SNR was calculated
over signal segments with an 8 ms STFT with 50% overlap (H = N/2), and a confidence
interval of 99% was presented in some cases. The relatively short 8 ms window-size for
evaluation was chosen because of the nature of the used primary noise signal. Performance
over a non-stationary noise changes faster over time. Therefore, shorter segments indicate
more accurately what the performance over time is, with the downside of a lower frequency
resolution.
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(a) 512 Hz at 0◦. (b) 1024 Hz at 0◦. (c) 1536 Hz at 0◦. (d) 2048 Hz at 0◦.

Figure 5-2: Aperture soundfields for various frequencies at 0◦incident angle.

(a) 512 Hz at 30◦. (b) 1536 Hz at 30◦. (c) 512 Hz at 60◦. (d) 1536 Hz at 60◦.

Figure 5-3: Aperture soundfields for various frequencies at 30◦and 60◦incident angle.

5-2-2 Animations

Next to the quantitative Segmental SNR values, a qualitative measure in the form of ani-
mations was implemented. These animations were mostly consulted during the development
phase of the thesis work. They indicated what the calculated soundfields look like and how
the loudspeaker soundfield aligns (or not) with the soundfield of the aperture. The measure
indicates the emergence of sidelobes due to diffraction. Animations contained three parts: (1)
a soundfield generated by the primary noise propagating through the aperture, (2) a sound-
field from the loudspeaker array, and (3) the sum of both soundfields, resulting in a controlled
soundfield.

5-3 Soundfield Modeling Results

We briefly cover the modeling of the aperture behavior in this section. In Chapter 3, we
derived the aperture Acoustic Transfer Function (ATF) based on a sum of vibrating plates.
We used P̂ = 4, to describe the four squares of the aperture with crossbar. The surface
velocity gain parameter was set at ẇ0 = 0.0025. For the loudspeaker ATF, we used monopole
radius a = 0.022225 m and surface velocity gain u0 = 0.0025.

In Figure 5-2 and Figure 5-3, soundfields are shown for pure sinusoidal signals at various
frequencies and incident angles. The following is noticed. A higher frequency resulted in more
diffraction and a more directed beam in the direction of the incident angle. Furthermore, the
soundfield degraded in strength when moving away from the aperture. When the incident
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(a) Old 0◦. (b) New 0◦. (c) Old 30◦. (d) New 30◦.

Figure 5-4: Comparison between the soundfields generated with the old and new Aperture
Acoustic Transfer Function. The soundfields by the old version show clearly that the sound
originates from the aperture. Because of that, there is a clear line between the side and main
lobes visible. The new soundfield shows that the waves originate from the aperture sections and
has more smeared out overlap between the main and sidelobes. The latter is a more realistic
representation.

angle was increased, the sidelobes moved along with the main lobe. Lastly, some form of
misalignment is visible in the soundfields of the plane wave and the aperture.

Let us compare the results of the new Aperture ATF with the old method, developed by [13].
The soundfields, generated with the original equation are shown in Figure 5-4a and Figure 5-
4c. Sharp lines are visible between the lobes. Furthermore, the soundfield clearly originates
from the middle of the aperture. In contrast, the new method (Figure 5-4b and Figure 5-
4d) generates soundfields that originate from the individual aperture parts, clearly visible
in Figure 5-4b. Consequently, this causes the sidelobes to be smeared out over the region
resulting in less sharp lines. Hence, we create a more realistic aperture soundfield with the
new aperture ATF.

5-4 3D Algorithm Results

This section covers the results of the 3D simulations. The 2D results were very similar and are,
therefore, left out in this chapter and presented in Appendix C. We present the results in four
sections. First, we briefly show graphical illustrations of a cancelled soundfield. Secondly, we
investigate how the performance of the wave-domain algorithm depends on the window-size.
Thirdly, the optimal wave-domain algorithm is compared to the multiple-error NLMS algo-
rithm. Finally, we look into two methods of algorithmic delay compensation, by microphone
placement (Wave-Domain Algorithm with Reference Microphone Clacement (WDC-M)) and
prediction (Wave-Domain Algorithm with Predictor (WDC-P)). Hence, in total, four types
of algorithms were implemented. After a parameter optimization, the following parameters
were found for each algorithm.

NLMS For the NLMS algorithm we set the learning rate, µ̃ = 1/2, used an impulse response
length of J = 128 samples and an filter-order of F = 64 samples. The algorithm used R = 1
reference microphone, Lsparse = 21 and Lgrid = 49 loudspeaker for the sparse and grid
array, respectively, and E = 128 error microphones. The impulse response of the aperture
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is set to the impulse response of the ATF in Eq. (3-3): Pe = I-FFT(Hap(k)). Similarly, we
set the impulse response of each loudspeaker to the transform of the ATF from Eq. (3-15):
Sle = I-FFT(H ls

q (k)).

WDC-O We limited the control effort as follows for the Optimal Wave-Domain Algorithm
(WDC-O) as follows. We use τ = 10−7 for the 3D sparse and τ = 10−12 for the 3D grid array.
Furthermore, the window-size was set at the largest option to obtain the best performance,
so N=125 ms.

WDC-M The WDC-M represents the case of microphone placement at rref = 1.4 m, a
reasonable distance for microphone placement in far-field sound cancellation. This distance
means that a fixed window-size of N ≈ 3.9 ms is selected for this algorithm. The values for
τ are similar to WDC-O.

WDC-P Lastly, the WDC-P had a variable window-size, for which we optimize. The results
for this are discussed in a later section. The limitation to control effort (τ) was set equal to
the case for the WDC-O. Finally, we used an auto-regressive model or order p = 16 and an
input-signal length of W = 256 samples.

5-4-1 Graphical Illustrations

To obtain a feeling of the generated results, we animated the propagation of a pure sine
wave primary noise with an incident angle of 30 ◦and show the attenuation. Results are
shown in Figure 5-5. In Figure 5-5a, we see clear diffraction occurring as the wavelength
(λ = c/f = 343/1000 = 0.343 m) is smaller than the aperture (Ly = 0.5 m). Similarly,
the created soundfield by the loudspeaker array, shown in Figure 5-5b, resembles the inverse
of the aperture soundfield. The controlled soundfield in Figure 5-5c shows the result of the
attenuation. It clearly shows the obtained attenuation.

(a) Aperture soundfield. (b) Loudspeaker array soundfield. (c) Controlled soundfield.

Figure 5-5: 2D animation for a pure 1kHz sine signal controlled with the WDC-O and a grid
array. The algorithm is able to cancel the soundfield as we see less amplitude in graph Figure 5-5c.
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5-4-2 Number of Basis Functions

The wave-domain algorithms use a finite number of basis functions to express the expansion.
To limit computational load, we used a low number of basis functions that described the
soundfields without a large truncation error. We set G3D = (βekrmax/2 + 1)2, and compare
for β = 1/32, 1/16, 1/8, 1/4. Results are shown in Figure 5-6. Clearly, results were close.
This indicates that the scaling we did was reasonable. Results with β = 1/4, β = 1/8 and
β = 1/16 were very similar, while β = 1/32 showed less performance at mid-frequency range.
Therefore, we chose to work with β = 1/16.

Figure 5-6: 3D results for various scaling of G, using white noise, 0◦incident angle, the grid
array and a window-size of N=3.91 ms. The attenuation performance is similar for all scaling
factors. a smaller scaling factor is beneficial for the computational load. Also, β = 1/32 showed
less performance at the mid-frequency range. Hence, we chose β = 1/16.

Figure 5-7: 3D Fundamental error analysis, with the Signal-to-Noise Ratio (SNR) over the
evaluation microphones. We used a flat frequency weighting s(k), and evaluated for 20 random
incident angle scenarios, leading to 20 different h(k). We can conclude that increasing the
window-size leads to less fundamental error in the aperture ATF. There is major difference
between N = 2.0 ms and N = 3.9 ms, indicating that the ATF impulse response for a window-
size smaller than N = 3.9 ms is cut off drastically, leading to major errors.
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5-4-3 Wave-domain algorithm with various Window-sizes

First, we look into the fundamental limiting results, with the error analysis algorithm devel-
oped in Section 3-3-3. The distribution of SNR over the evaluation microphones, for a flat
frequency weighting, s(k) = 1 ∀ k, and 20 random incident angle scenarios (depicted in h(k))
is shown in Figure 5-7.

Clearly, a larger window-size resulted in better performance, where the median attenuation
was almost -30 dB at N = 125.0 ms. Noteworthy is the spread of the attenuation. It varied
between +3 and -30 dB for N = 1.0 ms and even between -12 and -73 dB for N = 125.0 ms.
As we have seen, the window-size determines the length of the impulse response. The spread
in results could be caused by following two things or a combination of the two. First, the
evaluation point in the room, either close to the wall or in the middle, could have largely
influenced the attenuation. The relative distance between the borders of the aperture towards
the evaluation point is much larger if the evaluation point is close to the wall. This leads
to a longer impulse response. Secondly, the incident angle of the primary noise, could have
caused a large impact on the fundamental error, as this has a similar impact on the length of
the impulse response. We see a major jump in results between N = 2.0 ms and N = 3.9 ms,
indicating that N = 3.9 ms is long enough to include the total impulse response length. We
now follow with results for varying window-sizes to see the impact in the simulations. We
look into incident angle differences in Section 5-4-4 later in this chapter.

Figure 5-8: 3D Grid array SEGf results with narrow 99% confidence interval for various window-
sizes. Increasing the window-size increases performance. The major difference is visible at the
lower frequencies.

The influence of the window-size on performance in simulation plotted over frequency is shown
in Figure 5-8 with the 3D grid array case and the WDC-O for white noise and 0◦incident
angle. In general, an increase in window-size resulted in more attenuation, but even very
small window-sizes generated attenuation. There is a clear trend visible: the smaller the
window-size, the less performance at low frequencies. In contrast, from 1.5 kHz onwards, the
window-size did not influence attenuation anymore.

In Figure 5-9, the frequency performance for various window-sizes is shown for the sparse
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Figure 5-9: 3D Sparse array SEGf results with narrow 99% confidence interval for various
window-sizes. A larger window-size resulted in better performance. The major difference is visible
at low frequencies.

array. We see similar trends as with the grid array. However, from 1.2 kHz upwards, there is
no attenuation (and even amplification for N = 1.0 ms). Again, by increasing the window-
size, increased performance was obtained. In addition, we see a two-split between N≤2 ms
compared to N≥3.9 ms, where the middle frequency performance was reasonable for the
3.9 ms window-size algorithm. For larger window-sizes, performance degraded with increasing
frequency. For smaller window-sizes, the results become more valley-shaped.

From this, we can conclude that using a lower window-size mostly affects the performance at
low frequencies. Moreover, to prevent amplification, we need at least a window-size of 2.0 ms.
Because we want to find the optimal wave-domain performance, we continue with an optimal
wave-domain algorithm with N = 125 ms.

(a) N=1 ms. (b) N=125 ms.

Figure 5-10: 3D phase-shift values in Wq(k), for all speakers for 0◦incident angle. As expected,
they are concentrated around 180◦ , which leads to large phase-shifts in the block processing.

As we have seen, a smaller window-size mostly affected the performance at lower frequencies.
We expect that this is caused by the block-processing approach, alongside the low resolution
issue indicated by the fundamental error limitation. The time-delay wrapping, discussed in

Master of Science Thesis D. Ratering



52 Simulation Results

Section 3-3-2, does not only occur when transforming a signal with an ATF. A similar issue
could arise when transforming the signal with filter-weights Wqk. Therefore, we give some
insights into the phase-shifts by the filter-weights in this section. Figure 5-10 shows the
phase-shift of the filter weight Wq(k) for all speakers for 0◦incident angle. As we can see,
the phase-shifts slightly differ per speaker but are mostly concentrated around -180◦. This
can be expected if one tries to generate a loudspeaker soundfield which is the opposite of the
aperture soundfield. Therefore, these phase-shifts occur both for the lower-limit window-size
of 1 ms and the upper-limit window-size of 125 ms.

(a) 3D grid SEGf with narrow 99% confidence interval
per frequency bin.

(b) 3D grid SEGt over time where NLMS shows slow
convergence while WDC-O does not.

Figure 5-11: 3D Grid results for the NLMS and WDC-O algorithms. Performance is comparable.
However, WDC-O outperforms in terms of convergence time, as it converges instantaneously. In
contrast, the NLMS needs 1 s to converge.

5-4-4 Multiple-error NLMS algorithm versus Optimal Wave-domain Algorithm

We have derived the optimal wave-domain algorithm and compare its white noise cancelling
performance to the NLMS algorithm in this section. Let us focus on the grid array first.
Figure 5-11a shows the attenuation over frequency. Clearly, the WDC-O outperformed the
NLMS and showed major attenuation almost up to 2 kHz. The NLMS algorithm had similar
performance, albeit performing slightly worse for all frequencies except at 2 kHz. The narrow
confidence intervals indicate that we had steady performance over time. Another difference
between the NLMS and wave-domain based approach occurs when performance is shown over
time. This is visible in Figure 5-11b. The NLMS algorithm showed a long convergence time
(1.0 s), while the wave-domain algorithm did not. In addition, in Figure 5-11b we see that
the performance of both algorithms fluctuates slightly over time, but this is not significant
(within +1 and -1 dB from the mean).

Additionally, we tested the sparse array. Results are shown in Figure 5-12. The NLMS
performed slightly better than the wave-domain algorithm. Performance is more than -5 dB
attenuation from 0 to 0.7 kHz. However, from 0.7 kHz onwards, performance degraded
for both algorithms. Above 1.4 kHz, no performance was obtained with either algorithm,
indicating that the sparse array only performs well at lower frequencies. The sparse array
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(a) 3D sparse SEGf with narrow 99% confidence inter-
val per frequency bin.

(b) 3D sparse SEGt over time where NLMS shows slow
convergence while WDC-O does not.

Figure 5-12: 3D Sparse results for the NLMS and WDC-O algorithms. Performance is compara-
ble. However, WDC-O outperforms in terms of convergence time, as it converges instantaneously.
In contrast, the NLMS needs almost 2 s to converge.

performance over time, in Figure 5-12b shows similar trends as the grid array. Again, a long
convergence time (almost 2.0 s) was shown by the NLMS algorithm, while the wave-domain
algorithm converged instantaneously. If we compare the performance of the grid and sparse
arrays (Figure 5-11a and Figure 5-12a), we see a significant difference occurring from around
0.7 kHz upwards. This indicates that the sparse array setup was only partially able to recreate
the soundfield of the aperture while the grid array did a much better job.

Figure 5-13: 3D grid array SEGf results with narrow 99% confidence interval for WDC-O and
NLMS at three incident angles. In general, a larger incident angle led to less attenuation. The
performance of the NLMS is more sensitive to the incident angle compared to the WDC-O results.

Next, we investigate the performance when the noise comes from three incident angles: 0◦,
30◦and 60◦. Again, we use white noise as the signal, because of its flat frequency spectrum.
The grid array performance is shown in Figure 5-13. Clearly, attenuation was obtained by
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both the NLMS algorithm and WDC algorithm. However, there are some differences. For
both algorithms, it holds that attenuation degrades when the incident angle is increased,
leading to the best performance at 0 ◦, and lowest attenuation at 60◦. In addition, the NLMS
algorithm seems to have more difficulty to perform with an increased angle compared to the
optimal wave-domain algorithm. Where the performance of WDC-O degraded mostly at low
frequencies, the NLMS showed less performance for larger incident angles up to 1.5 kHz.

Figure 5-14: 3D sparse array SEGf results with narrow 99% confidence interval for WDC-O
and NLMS at three incident angles. In general, a larger incident angle led to less attenuation.
The performance of the NLMS is more sensitive to the incident angle compared to the WDC-O
results. The major difference is visible at lower frequencies.

The sparse array obtained similar results. It attenuated noise up to approximately 1 kHz for
all three incident angles. Again, we see that the NLMS algorithm was more sensitive to the
change in angle, while the results of the WDC-O were closer to one another.

To conclude, the NLMS algorithm performed slightly better with the sparse array, while the
WDC-O came out on top for the grid array. Moreover, the wave-domain algorithm does
not need time to convergence, while the NLMS algorithm needs significant time (> 1.0 s)
to obtain proper filter weights. In addition, we saw that the performance of the NLMS
algorithm degraded more for larger incident angles, while the WDC method maintained less
diverge results. While larger incident angles led to less attenuation, both algorithms controlled
white noise with 30◦ and 60◦ incident angles properly.

5-4-5 Grid and Sparse Array Comparison

As we have seen in the prior sections, the results for the grid and sparse array are not compa-
rable. In fact, the grid array outperforms the sparse array, especially for higher frequencies.
This holds for both the NLMS algorithm and WDC-O. In Figure 5-15, attenuation perfor-
mance of the two arrays is shown. Here, we simulated a white noise signal with 0◦ angle and
used the WDC-O. While the sparse array’s performance is zero from approximately 1.5 kHz,
the grid array achieved proper attenuation up to almost 2 kHz.
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Figure 5-15: 3D grid and sparse array SEGf results with narrow 99% confidence interval for
WDC-O, white noise, 0◦incident angle. Performance of the grid array was better for all frequencies.
The grid array was able to cancel noise up to 2 kHz, while the sparse array only performed up to
1.2 kHz.

Apparently, the sparse array was not able to recreate the soundfield of the aperture. The
aperture soundfield for a sine wave at 1.5 kHz is shown in Figure 5-16a. Diffraction, leading
to a mainlobe and two sidelobes is visible. The wave-domain algorithm with sparse array
generated the soundfield in Figure 5-16b, where the main- and sidelobes are not corresponding
to the aperture soundfield. Also, we see sound energy close to the wall, while the aperture
soundfield does not have much sound energy going there due to less diffraction at higher
frequencies. In contrast, the soundfield generated by the grid array, visible in Figure 5-
16c, does resembles the soundfield of the aperture, that would lead to a performance of
approximately -7.5 dB, given in Figure 5-15.

(a) Aperture soundfield. (b) Sparse array soundfield. (c) Grid array soundfield.

Figure 5-16: Animation of aperture, grid and sparse array soundfields for 1.5 kHz sine wave.
The sparse array soundfield does not correspond to the soundfield of the aperture array, while the
grid array soundfield is very similar. This shows the major difference in performance between the
two arrays.
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Figure 5-17: 3D SNR value with 99% confidence interval for both algorithms cancelling rumbler-
siren noise to find the optimal window-size. The optimal point for the WDC-P (Sparse) lies at
15.6 ms, while the optimal window-size for the grid array is 7.8 ms.

5-4-6 Algorithmic Delay Compensation

The wave-domain algorithm showed promising results. However, we need to compensate for
the algorithmic delay. In this section, we cover the results obtained for algorithmic delay
compensation with microphone placement (WDC-M) and predictor (WDC-P). We fix the
simulations to the 0◦ incident angle scenario and use rumbler-siren noise. Furthermore, the
WDC-O and NLMS performances are included for comparison.

Figure 5-18: 3D grid array SEGf results with narrow 99% confidence interval, for all algorithms,
0◦angle and rumbler-siren noise. The best performing algorithm is the WDC-O. Only the WDC-M
and WDC-O are able to attenuation noise over the full frequency range up to 2 kHz.

For the WDC-P algorithm, the optimal window-size was found by comparing performance for
various window-sizes. Figure 5-17 indicates that increasing window-size improves performance
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for the optimal wave-domain algorithm. However, when a predictor was used to compensate
for the algorithmic delay, a too large window-size led to lower attenuation again. We expected
this, as the prediction horizon is equal to the window-size. Increasing the prediction horizon
generally leads to lower performance of the predictor. In contrast, increasing the window-
size does lead to better algorithm performance. Hence, an optimal point can be found. It
is important to note that the predictor performance highly depends on the type of signal.
In this simulation, the rumbler-siren is reasonably predictable. However, a signal that is
less deterministic, could give an optimal point located at a smaller window-size, because
predictability is lower. This was the case with the airplane and white noise signals, for which
the WDC-P algorithm has no performance at all. Similarly, if the signal is better predictable,
the optimal point shifts towards the right as the algorithm performs better with a larger
window-size. The optimal point for rumbler-siren noise with the sparse array was located at
N = 15.6 ms, and with the grid array, N = 7.8 ms gave the best performance. We continue
from here with the grid array only.

Figure 5-18 shows the attenuation over frequency for all four algorithms. As expected, the
WDC-O outperformed all the others and showed major attenuation up to 1.8 kHz. The
NLMS and WDC-P had performance up to 1.5 kHz. While the WDC-M did perform up to
2 kHz, it was more inconsistent above 1.0 kHz. As indicated in the prior section, the smaller
window-size of the WDC-M shows a relatively flat spectrum while the other algorithms all
show an upward (lower attenuation) trend over frequency. We can conclude that algorithmic
delay compensation by microphone placement leads to better attenuation for higher frequen-
cies. However, the predictor predicted lower frequencies well, giving it a slight advantage
at frequencies below 0.3 kHz. Another observation is the relatively larger confidence inter-
val for the WDC-P, indicating that its performance was not as consistent over time as the
performance of the other algorithms.

(a) Full signal. (b) First 0.4 s.

Figure 5-19: 3D grid SEGt results for all algorithms, 0◦incident angle and rumbler-siren noise.
The WDC-O was clearly the best performing algorithm as the attenuation was kept steady at
-10 dB. Attenuation of the other methods fluctuated over time, depending on the signal content.
Moreover, the long convergence time of the NLMS algorithm is visible in Figure 5-19b, while the
other had instantaneously or very fast convergence.
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Table 5-1: 3D Results for rumbler-siren noise at 0◦angle, in decibels. Given over four frequency
ranges, for all algorithms. In general, less attenuation was obtained for higher frequencies. Results
are similar between the sparse and grid array, but the grid array outperformed the sparse for all
algorithms at higher frequencies. WDC-O performed best. Also, the WDC-M and WDC-O with
grid array were able to obtain decent performance above 1.5 kHz while the other algorithms did
not.

Array type Grid Sparse
kHz 0-0.5 0.5-1 1-1.5 1.5-2 Total 0-0.5 0.5-1 1-1.5 1.5-2 Total
NLMS -11.5 -4.8 -2.8 -0.2 -5.2 -10.3 -2.0 -0.2 0.0 -3.5
WDC-M -7.5 -7.3 -5.5 -3.9 -6.1 -7.1 -2.0 3.1 2.5 -1.3
WDC-P -7.3 -5.3 -2.0 -0.5 -4.0 -6.6 -1.8 0.5 0.2 -2.2
WDC-O -16.5 -11.3 -8.6 -4.7 -10.6 -13.3 -4.2 -0.6 0.4 -4.9

The attenuation of the rumbler-siren noise over time by all algorithms is shown in Figure 5-
19. Again, the NLMS algorithm showed an convergence time (0.15 s), while the wave-domain
algorithms did not, as indicated by Figure 5-19b. One exception is the WDC-P, where
some signal data is necessary for the predictor to start predicting accurately. In addition,
in Figure 5-19a we see that the performance of all algorithms fluctuated over time. The
changing character of the rumbler-siren signal and low convergence speed of the NLMS limit
the performance of this algorithm for such signals. In contrast, the optimal wave-domain
algorithm performed consistently over time. Both WDC-M and WDC-P showed fluctuations.
The prediction of the signal changes per segment, leading to diverging results. Similarly,
the WDC-M method showed that this change in frequency content leads to varying results.
We can conclude that the microphone placement outperformed the predictor system for the
rumbler-siren signal at any time, except for a peak around 1.5 ms. A summary of the results
for various frequency bands is shown in Table 5-1.

5-5 Summary Table

The 3D results for all types of noise and both arrays are summarized in Table 5-2. In general,
the grid array outperformed the sparse array for all algorithms. Finally, in all simulations, the
WDC-O outperformed the NLMS algorithms, especially for real-world sounds (rumbler-siren
and airplane noise). The performance of the optimal wave-domain algorithm was consistent
for all types of noise. In terms of algorithmic delay compensation, a predictor only worked
when the primary noise signal had deterministic components. The microphone placement
worked in all cases but did give up performance at low frequencies compared to the optimal
algorithm.
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Table 5-2: 3D results for all algorithms, for both grid (G) and sparse (S) arrays. Attenuation is
given in decibel (dB). WDC-P did not attenuate airplane and white noise as it could not predict
the signal. The grid array outperformed the sparse array in any scenario. The WDC-O algorithm
is the clear winner. NLMS and WDC-M performed fairly similar.

Noise type Rumbler
siren

Airplane
Noise

White
Noise

Array type G S G S G S
NLMS -5.2 -3.5 -7.6 -4.5 -9.2 -4.3
WDC-M -6.1 -1.3 -6.6 -2.0 -8.1 -2.8
WDC-P -4.0 -2.2 - - - -
WDC-O -10.6 -4.9 -10.6 -4.7 -10.0 -4.1
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Chapter 6

Discussion

The main objective of this study was to develop an algorithm for filter-weight calculation in
the wave-domain that actively cancels undesired sounds propagating through an aperture and
assess its performance. As we have seen in the results in Chapter 5, we have successfully
developed and implemented the algorithm and obtained substantial attenuation performance
in the simulations. In this chapter, we will discuss the results in more detail and explore
more practical implications. We focus on three main parts. First, in Section 6-1, we cover
the results of the simulation environment. We indicate limitations as well as give future work
suggestions to improve the simulation environment and soundfield calculations. Secondly,
in Section 6-2 we discuss the performance of the algorithms and try to understand why the
obtained performance occurred. We mention limitations and suggest future work towards a
fully implementable real-time wave-domain algorithm. Finally, in Section 6-3 we briefly cover
the algorithmic delay compensation topic, its limitations and present ideas for further research.

6-1 Simulation Environment and Acoustic Transfer Functions

The first objective was to develop a simulation environment in which we could test Active
Noise Control (ANC) systems for apertures. The illustrations in Figure 5-2, Figure 5-3 (and
more extensively in Appendix C) show that this has been achieved. The model allowed us to
test the four types of algorithms. The soundfields generated by the new aperture Acoustic
Transfer Function (ATF) (Eq. (3-3)) proof to be an improvement over the version by Miller [13]
(Eq. (3-1)). It is more realistic to have the wave originate in the apertures, instead of the
origin of the aperture. The use of multiple vibrating plates with different origins also resulted
in less distinction between the main- and sidelobes. We expect that the aperture soundfield
with the new ATF, which is less artificial, is easier to replicate with a set of loudspeakers,
especially because of the less sharp lines between the lobes. Following these results, four
specific points are addressed.

Validity of Aperture ATF We contributed to the existing literature by extending the aper-
ture ATF, as in Eq. (3-3), which allowed us to have valid equations that describe soundfields
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at a reasonable distance from the aperture. However, the use of this new aperture ATF is
not verified with real-world experiments or measurements. Therefore, we have not validated
the simulation environment and can not guarantee that the wave propagation through an
aperture is properly described by Eq. (3-3) and Eq. (3-4). With the vibrating plate assump-
tion, we model an infinitely thin aperture, while in reality, the border of an aperture could
actually distort the sound waves propagating through it. In an open-loop algorithm, which
is model-dependent, it is important to have valid Acoustic Transfer Functions (ATFs) such
that performance is guaranteed. Validation of the aperture ATF is suggested as future work.
This does not influence the algorithm itself, so the same wave-domain algorithm can be used
with adjusted or validated ATF.

Time-delay Wrapping The method to prevent time-delay wrapping is an addition to existing
modeling approaches. It allowed modeling in the wave-domain without having issues with the
time-delay persistent in ATFs. This approach could be further explored in other wave-domain
models where time-shifts limit the use of small window-sizes.

Conservation of Energy An advantage of modeling with ATFs, and only having to evaluate
sound pressures on selective positions is that it keeps calculations relatively fast. It enabled
us to run simulations on a normal laptop and quickly iterate and improve while working on
the algorithms. However, some limitations to the model itself came to light. In our model,
we measured the sound energy over an equally distributed array of evaluation microphones
in the far-field. When we follow the Law of Conservation of Energy, attenuation of sound
energy in all directions from the aperture into the room means that this sound energy has
to go somewhere else. The total amount of energy in the system has to be the same. Our
simulation model does not show where this energy goes, as we model the primary noise plane
wave, aperture soundfield, and loudspeaker soundfields separately. The hypothesis is that a
part of the energy, which normally would propagate through the aperture, is now reflected in
the aperture opening due to the higher sound pressures at that location, while the other part
is send back into the loudspeakers. Global attenuation can only be achieved if the total sound
energy in the room is lower when the array is active. We suggest a theoretical study to answer
the question where the energy is going to. The use of Finite Element Methods (FEMs), Finite
Difference Methods (FDMs) or a software package like I-Simpa [53] most likely can hep to
theoretically validate the ATF and study the total energy conservation.

Far-field Limitation More complex soundfield simulation software could also shed light on
the properties of the soundfield closer to the aperture. Currently, the simulation model is
valid in the far-field (> 0.88 m), limiting the system to implementations where we can only
guarantee global attenuation outside this near-field region. If the far-field distance of the
aperture ATF could be reduced, it could further reduce the computational load of the wave-
domain algorithm. With valid equations closer to the aperture, the control region could be
moved closer. This means a reduced rmax of the spherical control region. Consequently, this
leads to a lower number of basis functions necessary for accurate filter-weight calculations,
see Eq. (4-35).

Despite the above mentioned limitations, the simulation environment allowed us to develop the
wave-domain algorithm, which was the main objective of this study. Keeping the simulation
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model relatively straightforward improved the workflow and kept computational load low.
With the new aperture ATF, we are one step closer to modeling the real propagation of waves
through apertures. Finally, the simulation environment enabled us to generate insightful
animations that helped during the development of the wave-domain algorithm.

6-2 Reference Algorithm and Optimal Wave-domain Algorithm

The goal of modeling a simulation environment was to enable us to develop a wave-domain
based algorithm that can actively control sound propagating through apertures. We could
compare the results of our new algorithm with existing algorithms used in ANC systems for
apertures. We implemented an existing reference algorithm, the multiple-error Normalized
Least Mean Squares (NLMS) algorithm, as well as the new wave-domain algorithm. The
new algorithm we developed contains a new method of basis function orthonormalization
and matrix formulation. Both concepts build on methods that were explored in related
fields like wave-field synthesis [54] and wave-domain control [55]. Moreover, the attenuation
performance of the wave-domain algorithm and reference algorithm were analyzed in the
simulation environment with a sparse array [14] and grid array [6], for three distinct incident
angles [20] while cancelling three types of noise. The results indicate that our open-loop
wave-domain algorithm has the potential to attenuate more noise than existing closed-loop
algorithms, while the components of no convergence time, low computational effort, and no
need for error microphones ensure its feasibility in noise pollution problems of modern society.
We discuss the results in more detail in this section.

First, we begin by comparing the optimal wave-domain algorithm to the reference algorithm.
The error microphones of the NLMS based system were placed in the control region of the
wave-domain algorithm. When enough error microphones are chosen for the NLMS, it es-
sentially tries to minimize the soundfield in the spatial region similar to the wave-domain
algorithm. For white noise, the results of both the reference algorithm and wave-domain al-
gorithm are very similar. The attenuation performance for various frequency bins (Figure 5-
11a) is in line with results found in literature [45]. Performance is best at low frequencies,
but when moving to the higher frequencies, the attenuation degrades. Similar trends are seen
in Figure 5-18 where rumbler-siren sound attenuation is shown. We can conclude that the
reference algorithm performed less for real-world noise signal compared to white noise perfor-
mance, while the wave-domain algorithm attenuation was almost the same for the two signals.
The LMS-based algorithm uses the signal to calculate the filer-weights, and because of the
changing character of the signal, the most optimal filter-weights are not found and change
over time. Pursuant to existing findings, the closed-loop reference algorithm takes time to
convergence to a steady-state [10]. This disadvantage is not persistent for the wave-domain
algorithm, as offline filter-weight calculation directly generates the optimal filter, independent
of the type of signal. Furthermore, by calculating the weights offline, the method does not
have to cope with real-time closed-loop computational limitations, something that is limiting
the feasibility of LMS-based algorithms [10,11]. According to prior implementations of ANC
for apertures, the positioning of loudspeakers distributed over the aperture outperformed the
boundary placed loudspeaker arrays [6,56]. The results found in this study support this. Sim-
ilarly, the performance for attenuating noise that arrives with an incident angle was slightly
lower than the on-axis scenario, which is also noted previously [20]. Noteworthy is that the

Master of Science Thesis D. Ratering



64 Discussion

newly developed algorithm is less sensitive for incident angle increase. In summary, the re-
sults imply that the wave-domain algorithm is a promising approach to active noise control
for apertures, where the optimal wave-domain algorithm is able to cancel undesired noise up
to -10 dB, in the range of 0 to 2 kHz. The following six points need to be mentioned since
they limit the algorithm, and could lead to further improvement of our work.

Number of Basis Functions Prior studies indicated that the number of basis functions
depends on both the wavenumber and size of the region [48], where they focused on two
spatial regions, a disc and a ball. We followed their suggestions on the number of basis
functions for our regions. However, as we have smaller sections of their proposed control
region shapes, we expected to need less basis functions for accurate results. After an informal
comparison, we chose to scale the number of 3D basis functions with β = 1/16 and obtained
proper results. Nevertheless, we can not state that, with our basis function expansion, the
truncation error is at least lower than 16.1%. Therefore, a suggestion for future work is to
derive a mathematical proof, as well as a value for the relative truncation error, specifically
for thick hemisphere control regions. A similar approach as in the work of Kennedy et al. [48]
is recommended.

Impact of Window-size on Performance In this study, we explored the performance of
the wave-domain algorithm for various window-sizes, ranging from 1 ms to 125 ms. As we
expected, the performance is influenced by the chosen window-size. We supplemented the
results with two indicators that shed light on this influence.

Firstly, we developed a fundamental error analysis method, presented in Section 3-3-3. With
this method, we showed that the use of a small window-size leads to aliasing in the frequency
domain. This coerced a frequency response that was a smoothened version of the high-
resolution frequency response of the aperture ATF. Because of this, matrix a, in the wave-
domain algorithm, contains an error. Consequently, the filter-weights are calculated with this
error, leading to less attenuation for smaller window-sizes, as we have seen in Figure 5-7. This
error is larger for positions closer to the wall, as the impulse response is longer in such cases
while the window-size remains short. Moreover, the implemented error analysis assumes that
every evaluation microphone is weighted equally. However, we see in Figure 5-2 that the sound
energy differs significantly for each position in the room. Therefore, the results obtained with
the error analysis method do not resemble the simulations perfectly. Nevertheless, they are
an indication that the window-size is a limiting factor in the wave-domain algorithm.

Secondly, we looked into the size of the phase-shifts that are present in the filter-weights
Wq(k). From Figure 5-8 and Figure 5-9 we concluded that the impact of the window-size
mostly affected the performance at low frequencies. At lower frequencies, a phase-shift means
a larger shift in samples. In our time-delay wrapping avoidance method in Section 3-3-2, we
prevented the issue of large phase shifts wrapping due to the circularity assumption of the
Short-time Fourier Transform (STFT). However, this issue is not solved in the multiplication
with filter-weights Wq(k). With a brief calculation, we can indicate that the phase-shifts
are indeed a factor that needs to be considered. Figure 5-10 shows that the phase-shifts in
Wq(k) are concentrated around -180◦. This makes sense as we try to generate a loudspeaker
soundfield that is the inverse of the aperture soundfield. In the lower limit, we have a window-
size of N = 1 ms. Application of the phase-shifts shown in Figure 5-10a to a signal at
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f = 128 Hz, with a period of Tphase−shift = 1/f = 1/128 ≈ 7.8 ms, leads to a shift of
Tphase−shift/2 = 3.9 ms. Clearly, Tphase−shift/2 = 3.9 >> N = 1 ms, so the signal is
significantly wrapped and leads to a large error at that frequency. As seen in Figure 5-8, the
influence becomes negligible when N << Tphase−shift/2, here in case of N ≥ 61.5.

As a consequence, the window-size significantly limits the performance of the wave-domain
algorithm. To obtain decent performance at smaller window-sizes, we recommend to investi-
gate the implementation of the filter-weights Wq(k) in wave-domain. A method that prevents
the wrapping, perhaps similar to our time-delay wrapping solution in Section 3-3-2, could
prevent this issue. Furthermore, a time-domain implementation with impulse responses and
linear convolution could be explored. If this is possible, the algorithmic delay problem be-
comes less severe and the wave-domain algorithm becomes even more feasible for real-world
application.

Grid versus Sparse Array Our literature study indicated that distributed loudspeaker arrays
[6] outperform boundary arrays [5]. The simulation results we obtained are in line with
those findings. Figure 5-15 shows that both arrays perform decently at low frequencies.
However, for noise at frequencies of 1.5 kHz and higher, the sparse array is not able to
replicate the soundfield from the aperture, as we see in Figure 5-16. One reason could be a
lower number of loudspeakers in the sparse array (21), compared to the grid array (49). In
that trend, the spacing between the loudspeakers could be too large, leading to issues like
spatial aliasing. During the study, we briefly examined the performance of other sparse arrays,
for which the results can be found in Appendix D. These results indicate that increasing the
number of loudspeakers has a beneficial effect, but the performance limit still was around
1.5 kHz. Comparably, adding four loudspeakers around the aperture center led to similar
improvements. In addition to these results, we have seen that the sparse array needs a larger
τ . Constraining the loudspeaker effort resulted in better performance for the sparse array.
This suggests that investigating optimal τ for different wavenumbers could further improve
the performance of the wave-domain algorithm. It is recommended to look further into
the specifications of the loudspeaker array, as sparse or boundary approaches are much more
feasible than a distributed grid array. Grid arrays block the aperture, limiting its properties of
light and air transmission, while the aperture functionalities remain intact with sparse arrays.
While the performance of the sparse array was lower than the grid array, we have seen that
proper attenuation at lower frequencies is achievable with the sparse array. To conclude, with
our developed simulation model, comparing various array types is easily achievable and we
propose to use it when designing a loudspeaker array.

Accuracy of ATFs The wave-domain algorithm deploys loudspeaker and aperture ATFs to
describe the soundfield by the array and aperture, respectively. The loudspeakers are modeled
as monopoles. However, when implementing the wave-domain algorithm in a physical setup,
it is important to have a correct ATF of the used loudspeakers. In our simulations, any
misalignment between the real loudspeaker behavior and the representing equation is not
modeled. Similarly, the validity of the aperture ATF, as discussed in the prior section, is
important here as well. The real-world implementation of the wave-domain algorithm highly
depends on the accuracy of both ATFs, as the method is a model-based approach. To that
extent, the use of a perfect measurement by the reference microphone directly influences the
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performance as well. Therefore, the calibration of the loudspeakers and reference microphones
is of much importance. In contrast, LMS-based algorithms have an advantage here. Closed-
loop methods intrinsically account for the non-perfect frequency responses of the loudspeakers
and microphones and do not use any aperture ATF. Perhaps, to account for this lack of
feedback in the wave-domain algorithm, a combination between an open-loop and closed-loop
algorithm could be developed. An idea could be to position a few error microphones in the
room that solve the issue of calibration or misalignment between the used ATF equations and
real-world ATFs of the loudspeakers and microphones.

Biased Algorithms In our simulations, both implementations of the algorithm were biased.
On the one hand we induced bias in the Least Mean Squares (LMS)-based algorithm. As we
denoted in the theory of the reference system, the method uses an estimate of the secondary
path to feed a filtered signal of the input signal to the LMS algorithm: Ŝrle. However,
in our simulation environment, we implemented the predefined loudspeaker ATF both as the
estimate and actual secondary path, so Ŝrle = Srle. This means that the LMS-based algorithm
has a perfect estimate of the secondary path, something which is unrealistic. Therefore, the
performance of the multiple-error NLMS algorithm could be lower when implemented in the
real-world. The significance of this is not deductible from our simulation model. There is
extensive literature on (online) secondary path modeling available [7], which can be used to
overcome this issue. On the other hand, we invoked a bias in the wave-domain algorithm. We
employed the aperture ATF, discussed in Section 3-2-1, both in the simulation environment
and filter-weight calculation algorithm. Hence, the filter-weights are calculated in a way that
they will exactly cancel the soundfield by the aperture in the simulation environment. The
only limiting factors here are the wave-domain aliasing and wrapping due to the large phase-
shifts. This rather ideal case is unlikely in reality, as we have not validated our aperture
ATF. Similar to the multiple-error NLMS algorithm, the performance of the wave-domain
algorithm could be lower when it is implemented in the real-world. The effect, however, is not
measurable in our simulation environment. As mentioned in the prior section, validation of
the aperture ATF is a useful continuation of this work to indicate the precision of the aperture
ATF. In summary, both algorithms are realized with a slight bias towards better results, all
the more reason to further develop the work and implement it in a real-world setup.

Moving Primary Noise Source A major drawback of closed-loop systems used for active
noise control for apertures is the convergence time. As indicated in Figure 5-19, the multiple-
error NLMS algorithm requires 0.1 s to convergence when a rumbler-siren sound is cancelled,
and up to 1.0 s for white noise. In contrast, the wave-domain approach does not need any
time to convergence, as offline weight calculation is employed. Currently, the simulations
show results for fixed positions of the primary noise source. The next step would be to cancel
noise coming from a moving primary noise source. To facilitate this, the LMS-based algorithm
does not need any conceptual changes. However, as the convergence time of such algorithms
is long, we expect that a moving source could cause the NLMS algorithm, in its current setup,
not to converge fast enough. If that occurs, the performance will be limited, depending on the
speed of movement and type of noise. On the contrary, the wave-domain algorithm currently
operates under various assumptions. One is the fact that it knows the incident angle of the
primary noise source. However, when implemented in the real-world with a primary noise
source that is moving, the algorithm must include a method to determine the incident angle
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in real-time. Existing sound source positioning algorithms already exist and could be used
for this [39]. Moreover, the filter weights are calculated offline for distinct incident angle
cases. When the incident angle changes over time, the filter weights also have to be adjusted,
as matrix a depends on the incident angle values θ0, ϕ0. We propose to calculate, offline, a
multitude of a matrices for a large, discretized number of incident angles and use interpolation
between the matrices to create a large database with a matrices. When an incident angle
calculation algorithm is in place, a complementarity set of filter-weights can be calculated
with Eq. (4-29). This can be used to update the soundfield of the loudspeaker array to keep
it in line with the soundfield of the aperture from the moving primary noise source.

In summary, the wave-domain algorithm has many advantages over current implementation
ANC for apertures. The results indicate a continuous average attenuation of approximately
-10 dB between 0 and 2 kHz, independent of the type of noise. In this section, we presented
initial findings and suggestions for future work on the optimal wave-domain algorithm. As
we noted, an artifact of the wave-domain algorithm is the algorithmic delay induced by the
block-processing. In this study, we briefly investigated methods to compensate for this. The
next section will cover a concise discussion on this subject.

6-3 Algorithmic Delay Compensation

In the search for an open-loop wave-domain algorithm, the compensation for algorithmic delay
is an important factor. We limited the exploration to two practical methods: re-positioning of
the reference microphone and including a prediction algorithm. Initial results were presented
in this study, and we compared the two methods reciprocally as well as with the reference
algorithm. Let us focus on Table 5-2. In comparison, the NLMS algorithms performance
exceeded the Wave-Domain Algorithm with Reference Microphone Clacement (WDC-M) and
the Wave-Domain Algorithm with Predictor (WDC-P) (no performance) when a more sta-
tionary primary noise, such as airplane and white noise, had to be cancelled. However,
for more deterministic and non-stationary rumbler-siren noise, the microphone placement
method came out on top with a Signal-to-Noise Ratio (SNR) of -6.1 dB compared to NLMS
and WDC-P. The predictor-based method only generated results for the rumbler-siren sig-
nal. This is expected, as this type of signal is reasonably predictable. Therefore, the WDC-P
method is only a useful method when primary noise signals are somewhat deterministic, such
as sirens or speech [24]. Let us discuss some aspects that could help improve the performance
of these two methods further.

For the first algorithmic delay compensation, the WDC-M, the main limiting factor is, in
fact, the window-size. As we have discussed in the prior section, the performance for smaller
window-sizes is limited by the low-frequency resolution and large phase-shifts. In order to
improve the performance of this algorithmic delay compensation method, performance with
small window-sizes should be increased. As suggested, looking into omitting large phase-shifts
in the wave-domain, as well as full time-domain implementations, could improve the approach
of positioning the reference microphone at a distance from the aperture. It is imaginable that,
depending on the physical setup, the reference microphone could be placed even further from
the aperture, which will increase performance. This is feasible when the primary noise source
is located very far away from the aperture and remains in a fixed position.
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In this study, we showed that the WDC-P approach only worked for the case of a rumbler-
siren sound. It could not cancel airplane noise and white noise because the autoregressive
model did not predict the signals well. Suggestions for future work are to look into different
predictors. As we explored in our literature study [12], the use of machine learning models
such as a WaveNet [57], a Recurrent Neural Network (RNN) or a Neural Ordinary Differential
Equations (NODE) model are expected to have a better performance than Autoregressive
(AR) models.

Finally, we propose a combination of the predictor and microphone placement, as this ap-
proach has the potential to perform better than the standalone methods. However, it is
advised to implement a method that detects whether the prediction of the algorithm is valu-
able, such that the predictor could be turned off when it is not adding value or reducing
performance.

The purpose of this chapter was to discuss the results obtained during the simulations in more
detail. Additionally, we reviewed some limitations of this study and gave suggestions for future
research. Altogether, the optimal wave-domain algorithm cancelled all three types of noise
properly, leading to a global reduction of -10 dB. The performance was only slighty lower when
noise entered the room with an incident angle. The low computational effort due to offline
filter-weight calculation, as well as the absence of convergence time and error microphones
proof that the wave-domain approach to ANC for apertures is a feasible method. Algorithmic
delay due to the window-size in block processing limits the performance. However, there is
space for improvement of the algorithmic delay compensation methods. All things considered,
wave-domain algorithms are the best performing solution to actively control undesired noise
through apertures.
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Conclusion

Society is threatened by noise pollution in homes. Researchers have focused on applying
active noise control systems to attenuate noise propagating through open windows. With a
loudspeaker array in the aperture, such systems aim to reduce noise in homes while maintain-
ing ventilation and sight. Existing studies focused on implementing closed-loop algorithms
that minimize undesired sounds at error microphones locations in the room. These Least
Mean Squares (LMS) based approaches have the disadvantages of long convergence times
and computational efforts when the systems include a large number of speakers and micro-
phones, essential for global control. Furthermore, closed-loop setups are unfeasible due to
the necessity of a large array of error microphones in the room, blocking the view. Also,
these error microphones are located inside the room, and the measured error signals are
affected by sound originating from indoor. This reduces the performance of closed-loop algo-
rithms. To overcome these disadvantages, we propose an open-loop approach. This approach
has instant convergence, deploys offline filter-weight calculation, and does not require error
microphones. In this study, we developed and tested this new algorithm by taking the fol-
lowing steps. Firstly, we came up with an Acoustic Transfer Function (ATF) to describe
the soundfields by an aperture. Thereafter, a simulation environment was created, in which
we implemented both the newly developed algorithm as well as a multiple-error Normalized
Least Mean Squares (NLMS) algorithm, used as reference. Within the wave-domain algo-
rithm, we came up with a new method to orthonormalize basis functions and presented a
matrix formulation that reduces calculation efforts. The algorithmic delay, induced by the
window-size in the block-processing of wave-domain algorithms, must be compensated at the
cost of attenuation performance loss. We compared two methods for compensation. On the
one hand, we tested the approach of positioning the reference microphone at a distance in
front of the aperture. On the other hand, we investigated compensation by predicting the
undesired noise with an autoregressive model. Finally, we compared the performance of the
reference algorithm and wave-domain algorithm for various types of noise and three fixed in-
cident angles. These steps helped us to determine the attenuation performance of open-loop
wave-domain algorithms for active cancellation of noise propagating through open windows.
By analyzing quantitative attenuation results up to 2 kHz, we conclude that the wave-domain
algorithm achieved superior attenuation compared to the multiple-error NLMS algorithm.
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The wave-domain algorithm achieved -10.6 dB attenuation for the airplane noise and rumbler-
siren sound. In comparison, the reference algorithm obtained attenuation results of -7.6 and
-5.2 dB for the airplane noise and rumbler-siren, respectively. Moreover, the wave-domain
algorithm outperforms the closed-loop algorithm when the primary noise originates from an
off-axis direction. In line with existing literature, we showed that closed-loop algorithms have
the disadvantage of convergence time, while the wave-domain algorithm starts attenuating
instantaneously. The absence of error microphones in the wave-domain approach increases
its feasibility because the aperture is not blocked by a large array of microphones. Also, the
proposed algorithm is not affected by sound originating from indoor. During our simulations,
grid arrays outperformed sparse arrays, supporting previous studies. Furthermore, compensa-
tion for algorithmic delay in the wave-domain algorithm by microphone placement is preferred
over the predictor approach, as the latter did not work for all signals. More specifically, the
trade-off between prediction performance and algorithm performance shows that the optimal
window-size can not be set beforehand and depends on the predictability of the signal. Hence,
this method is only feasible with predictable signals that are known beforehand. Additionally,
we compared our soundfield Acoustic Transfer Functions (ATFs) with previously used ATFs.
Based on a qualitative assessment of soundfield images, we indicate that our newly developed
aperture ATF is an improved version of the existing theory. Moreover, it allowed us to design
the wave-domain algorithm with a control region at 1 m distance from the aperture, while
previous ATFs could not. However, the newly obtained ATF needs to be validated.

With this work, we contributed to the existing theory on active noise control for apertures in
various ways. We built a simulation environment that can be used for designing and testing
loudspeaker arrays for any arbitrary aperture size. Moreover, the extended aperture ATF
gives the opportunity to develop wave-domain algorithms that ensure attenuation close to
the aperture. As such, we took this opportunity and developed a wave-domain algorithm,
for which we found a new method of basis function orthonormalization, as well as a matrix
formulation that reduces calculation efforts. We addressed the issue of time-delay wrapping
in the Short-time Fourier Transform (STFT) block-processing. Finally, it is desired to limit
the algorithmic delay by reducing the window-size, so we derived a method to analyze the
fundamental attenuation limit of the wave-domain algorithm.

During this study, we found that the performance of the wave-domain algorithm is mostly
limited by the window-size. Hence, we suggest investigating the omitting of large phase-shifts
from the Short-time Fourier Transform for further improvement of the algorithm. Future work
could include comparing more advanced predictors and combining microphone placement and
predictors into one method for algorithmic delay compensation. Furthermore, extending the
simulation environment and wave-domain algorithm to include a moving primary noise source
is a natural continuation of this work.

With this study, we are a step closer towards silent open windows due to the insights of
the proposed wave-domain algorithm obtained in the simulation environment. The proposed
algorithm achieved superior performance, compared to state-of-the-art algorithms. To con-
clude, the use of wave-domain Active Noise Control (ANC) algorithms for apertures is natural
in addressing the noise pollution problems of modern society, especially because the proposed
method requires neither time to converge nor error microphones and operates at a low com-
putational effort due to offline weight calculation.
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ABSTRACT

Active control of noise propagating through apertures is commonly
realized with closed-loop LMS algorithms. However, these algo-
rithms require a large number of error microphones and provide only
local attenuation. Slow convergence and high computational effort
are additional disadvantages. We propose a wave-domain approach
that converges instantaneously, operates with low computational ef-
fort and does not require error microphones. It inherently controls
sound in all directions in the far-field. The soundfield from the aper-
ture is matched in a least squares sense with the generated soundfield
from the loudspeaker array using orthonormal basis functions. Com-
pensation for algorithmic delay, induced by blockwise processing,
can be based on microphone placement or signal prediction, at the
cost of a loss in attenuation performance. Our simulation results in-
dicate that wave-domain processing has the potential to outperform
LMS-based methods in practical active noise control for apertures.

Index Terms— open window, aperture, active noise control,
wave-domain algorithm, multiple-error least mean squares algo-
rithm, algorithmic delay compensation

1. INTRODUCTION

Noise pollution is a major health threat to society [1]. Active
Noise Control (ANC) systems that attenuate noise propagating
through open windows (apertures) have the potential to create qui-
eter homes while maintaining ventilation and sight through the
apertures [2]. ANC systems employ loudspeakers to produce anti-
noise soundfields that reduce the sound energy in noise-cancelling
headphones [3] or over large regions such as airplane cabins [4].
Actively controlling sound propagating through open windows is
being studied [5, 6]. The objective for these systems is to reduce
the sound energy in all directions from the aperture into the room.
Current methods employ closed-loop algorithms, leading to long
convergence times [7], heavy computational load [8] and the need
for a large number of error microphones being positioned in the
room. These drawbacks limit the feasibility of such systems [9].

Most ANC systems for apertures utilize closed-loop Least
Mean Squares (LMS) algorithms, such as the well-known Filtered-x
LMS (FxLMS) algorithm [7], or its multi-channel equivalent, the
multiple-error LMS [7, 10]. These closed-loop algorithms aim to
minimize error signals at error microphones placed in the room by
adapting signals generated by loudspeakers in the aperture. Current
studies indicate that LMS based ANC for apertures can obtain a
10 dB global reduction of white noise between 0.4 and 1 kHz [11]
and 0.5 and 2 kHz [12]. To set a baseline, the multiple-error normal-
ized LMS algorithm will be used as a reference system.

We thank the GN Group for funding this research.

We note that the control problem has similarities with wave-
domain spatial control of the sound produced by multi-speaker
sound systems, e.g. [13–15] and active cancellation of wall re-
flection of sound of a talking person [16], as well as wave-field
synthesis [17]. Such a wave-domain algorithm uses a temporal fre-
quency domain basis function expansion over a control region. The
soundfield from the aperture and loudspeaker array can be expressed
in these basis functions and their sum can be minimized in least
squares sense [13–15].

In general, ANC systems for open windows with loudspeakers
distributed over the aperture [6] outperform those with loudspeakers
placed on the boundary of the aperture [5]. A compromise between
both setups is a sparse array, that consists of a window with a cross-
bar containing the speakers [18, 19].

We propose a wave-domain approach to ANC for apertures that
addresses the shortcomings of the closed-loop LMS approach. It
intrinsically ensures global control, because it cancels noise in all
directions from the aperture, and does not require microphones po-
sitioned in the room. To our knowledge, our work is the first to use
the wave-domain approach for ANC. We calculate the optimal filter-
weights that minimize far-field sound energy for each frequency.
We extend known Acoustic Transfer Functions (ATFs) that describe
the sound propagation through apertures [18] and from loudspeak-
ers [20]. The wave-domain algorithm operates in the temporal fre-
quency domain. Hence it is necessary to transform signals with
the Short-time Fourier Transform (STFT). This operation induces
an filter-delay equal to the window-size of the STFT. The delay can
be compensated for by signal prediction or microphone placement.
With prediction, optimal window-size results from a trade-off be-
tween prediction performance and the algorithm performance [14].

Our contribution is the development of a wave-domain ANC for
apertures that has the potential to outperform current LMS systems,
and its implementation in a simulation environment. Moreover, the
development of an extension to aperture ATFs [18], a procedure
for basis function orthonormalization with Cholesky decomposition,
and the matrix implementation of filter-weight calculation, extend
current literature. An advantage of our wave-domain control sys-
tem over existing LMS-based systems is that the filter weights are
calculated off-line, leading to a lower computational effort. Further-
more, these coefficients are computed independent of the incoming
noise. Therefore, the wave-domain approach itself requires no time
to convergence. Its performance is affected by the algorithmic de-
lay compensation method, the accuracy with which the aperture is
represented and the physical characteristics of the microphone and
loudspeaker arrays. In this study, both sparse and grid arrays will be
used, and their performance is compared.

Section 2 formulates the problem and covers necessary ATFs.
The open-loop wave-domain algorithm is developed in Section 3.
Section 4 describes the reference system and evaluation methods and
discusses the results. Finally, a conclusion is given in Section 5.



2. PROBLEM FORMULATION AND NOTATION

Our objective is to develop an open-loop wave-domain control algo-
rithm that ensures global attenuation of noise propagating through
an aperture. The algorithm is designed to achieve cancellation in
the far-field (r > 0.8 m). Following Huygens’ principle, the energy
behind a finite control region is minimized if a wavefront, with min-
imized sound energy, is created in that region [21]. The aim of the
algorithm is to generate such a wavefront in the control region.

Throughout the paper, k = 2πf/c is the wavenumber, j =√
−1 is the imaginary number, the unnormalized sinc function is

used [20] and [·]H and || · || are the conjugate transpose and the Eu-
clidean norm, respectively. We use spherical coordinates with radius
r, inclination θ and azimuth φ and corresponding Cartesian coordi-
nates x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ.

The noise is assumed to be a plane wave [12], with fixed incident
angle (θ0, φ0). Then, we constrain the problem by modeling the
aperture as a sum of square baffled pistons in an infinitely large wall
with an ATF [18]. Such an ATF relates the pressure of the plane
wave with the pressure of the soundfield at position x in the room.
The equation, for 3D modeling, is derived from [20] as:

Hap(x, k, θ0, φ0) =
jckρ0

2π
ω̇0∆Lx∆Ly

P̂∑

i=1

Di, (1)

where c is the speed of sound, ω̇0 is a gain constant, ∆Lx and ∆Ly
are aperture section dimensions and P̂ is the number of aperture sec-
tions. Di is the directivity, of each piston, defined as:

Di =
e−jk(ri+τi)

ri
sinc(

∆Lxk(sin θi cosφi − sin θ0 cosφ0)

2
)

(2)

sinc(
∆Lyk(sin θi sinφi − sin θ0 sinφ0)

2
),

where, for section i , ri, θi and φi are the adjusted spherical coor-
dinates and τi is a delay term due to the incident angle of the plane
wave. Modeling in 2D is done by removing the height ∆Lx, omit-
ting the sinc function in the x direction, and setting x = 0.

Furthermore, we constrain the system by modeling the ATFs of
Q number of loudspeakers as monopoles [20, 22]:

Hls
q (x, k) =

jckρ0
4π

Aq
e−jkrq

rq
, (3)

in which Aq = 4πa2pointu0 is each monopole’s amplitude, with u0

a surface velocity gain constant, apoint the radius of the point source
and rq the adjusted spherical radius from a monopole to a position
x in the room. The soundfield from the loudspeaker array is the sum
of multiple loudspeaker soundfields. The loudspeaker ATF in (3),
holds in 2D and 3D.

3. WAVE-DOMAIN ALGORITHM

3.1. Basis functions and control region

We define the control region over which we want to minimize the
sound pressures as a spherical shell with finite thickness in 3D:
D3D = {rmin ≤ r ≤ rmax, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ 2π} and an arc

with finite thickness in 2D: D2D = {rmin ≤ r ≤ rmax, 0 ≤ θ ≤
π
2
, φ = π

2
∧ φ = −π

2
}.

The soundfield over the control region at a single wavenumber
k, denoted S(x, k) : D × R → C is written as a weighted series of
basis functions {Ug}g∈G [15, 20]:

S(x, k) =
∑

g

EgUg(x, k), (4)

where S(x, k) is the soundfield, Eg areG coefficients and Ug(x, k)
is a G × 1 vector containing G basis functions. We assume that all
feasible solutions on D fall in the Hilbert space spanned by the or-
thonormal set {Ug}g∈G . The inner-product is defined as 〈Y1, Y2〉 =∫
D Y1(x)Y H2 (x)dx, where Y1 and Y2 are functions of the form
Y1 : R3 → R and Y2 : R3 → R. For a given S(x, k) and Ug(x, k),
the coefficients Eg are obtained with Eg = 〈S(x, k), Ug(x, k)〉.

The orthonormal set of basis functions is obtained by starting
with a set of non-orthogonal functions fg(x, k) : R3 × R → C
that represent G plane waves with directions evenly distributed in
3D [23]. The non-orthogonal functions are defined as plane waves:
fg(x, k) = ejkx·β̂g , where β̂g ≡ (1, θ′g, φ

′
g) is the unit vector in

the direction of the gth plane wave. We normalize each function
to obtain f̂g(x, k) =

fg
||fg|| and create vector f̂ = [f̂1 f̂2 · · · f̂G]T .

Next, we find a lower triangular matrix R such that U = Rf̂ , where
U is a vector containing G orthonormal basis functions. We define:

F = f̂ f̂T =




F(1,1) F(1,2) . . . F(1,G)

F(2,1) F(2,2)

...
...

. . .
F(G,1) . . . . . . F(G,G)



, (5)

where F is symmetric and positive definite: xHFx > 0 ∀ x ∈ Cn.
Then, we set V = R−1 and obtain V by applying the Cholesky
decomposition on F , where F = V V T [24]. Finally, we obtain
the orthonormal set of basis functions by inverting V , where U =

V −1f̂ = Rf̂ .
In literature,G3D = (ekrmax/2+1)2, andG2D = (d2kre+1)

basis functions are suggested for the expansion over a full ball and
full disc, respectively [25]. This ensures a relative truncation error, in
the generated soundfield, of less than 16%, However, our 3D spher-
ical shell control region is not a full ball. An informal parameter
optimization shows that we need G3D/16 basis functions for equiv-
alent results, resulting computational benefits. Finally, we expect
that the 16% truncation error leads to performance loss.

3.2. Weight calculation

In this subsection, we discuss the procedure to obtain filter weights
lq(k) for all loudspeakers q at wavenumber k.

First, we write the soundfields of the aperture as a sum of or-
thonormal basis functions:

Sap(x, k) =
G∑

g=1

AgUg(x, k), (6)

where Hap is from (1). Weights Ag are obtained with the inner
product: Ag = 〈Hap(x, k), Ug(x, k)〉, written in matrix form with
coefficient vector a = [A1 A2 · · ·AG]T and a vector containing
inner products between the ATF and the normalized basis functions
denoted as Hap

f̂
= [〈Hap, f̂1〉〈Hap, f̂2〉 · · · 〈Hap, f̂G〉]T . Plugging

in U = Rf̂ gives: a = RHap

f̂
.



Fig. 1: 2D cross-section, with reference micro-
phone (red), sparse loudspeaker array (blue), con-
trol region D and evaluation microphones (green).

Fig. 2a: Spectrogram
of rumbler signal with
32 ms window-size.

Fig. 2b: Spectrogram
of airplane signal with
32 ms window-size.

Fig. 4: 3D SNR results with optimal (WDC-O)
and predictor (WDC-P) wave-domain controllers
for rumbler-siren signals.

Similarly, we write the soundfield from a single loudspeaker as:

Hls
q (x, k) =

G∑

g=1

CqgUg(x, k), (7)

with Hls
q from (3) and coefficients Cqg . The soundfield of the com-

plete array is expanded with coefficients Bg , as well as a sum of the
soundfields from all loudspeakers, multiplied by their filter weights:

Sar(x, k) =
G∑

g=1

BgUg(x, k) =

Q∑

q=1

lq(k)Hls
q (x, k), (8)

from which we generate coefficients Bg by (8) and (7), leading to:

Bg =

Q∑

q=1

lq(k)Cqg , (9)

where Cqg = 〈Hls
q (x, k), Ug(x, k)〉. In matrix form we obtain:

C = RH ls
f̂ = R




〈Hls
1 , f̂1〉 〈Hls

2 , f̂1〉 · · · 〈Hls
Q , f̂1〉

〈Hls
1 , f̂2〉 〈Hls

2 , f̂2〉
...

...
. . .

〈Hls
1 , f̂G〉 . . . . . . 〈Hls

Q , f̂G〉




(10)
. where H ls

f̂
contains the inner products between the basis functions

and the loudspeaker ATFs.
Finally, we set the control problem as the sum of the soundfields,

J(lq) = Sap+Sar , with η = ||J(lq)||2 and minimize in least mean
square sense: minlq ||J(lq)||2. With (6) and (8) gives

η = ||
G∑

g=1

AgUg(x, k) +
G∑

g=1

BgUg(x, k)||2 =
∑

g

|Ag +Bg|2.

(11)
With the knowledge that 〈Ui, Uj〉 = 0, we can rewrite in matrix
form. We denote b = Cl, where l = [l1 l2 · · · lQ]T . Furthermore,
we add the regularization term τ l with τ > 0, to constrain the loud-
speaker effort and ensure a robust solution [15]:

η = (a + b)H(a + b) + τ ||l||2, (12)

where l can be found by:

l = −(CHC + τI)−1CHa, (13)

in which I is an identity matrix.

3.3. Block-processing

An element-wise multiplication of the ATF with a STFT block is
employed to transform signals, from the aperture and loudspeakers,
to any position the room. For the STFT, the window-function, w(n)
of lengthN is chosen to fulfill

∑
m∈Z w(n−mH)2 = 1 where n is

the discrete time index,m is hop-number andH is the hop-size. This
ensures that we have a tight frame with perfect reconstruction [26].

The circularity property of the STFT leads to wrapping of the
signals, if phase-shifts by ATFs become significant compared to the
window-size. Employing zero-padding can reduce this issue, how-
ever, it emits the shifted signal content. We overcome this problem
by removing the major time shift from the wave-domain multiplica-
tion and implementing it in the time-domain.

The block-processing with STFT in the wave-domain approach
induces an algorithmic delay. The window-size N determines the
length of the delay. Compensating for this can either be done by
placing the reference microphone at a distance of at least cN/fs in
front of the aperture, or, by predicting the noise signal. We compare
both methods. For prediction, an auto regressive model with Yule-
Walker estimators predicts the incoming noise signal each STFT hop
m over a prediction horizon equal to N [27].

4. RESULTS AND DISCUSSION

4.1. Reference system

The performance of the proposed open-loop wave-domain algorithm
was compared with a multiple-error Normalized LMS (NLMS) al-
gorithm [6, 10]. Its error microphones were, for fair comparison,
positioned in two rows within the control region of the wave-domain
controller such that soundfield minimization was done over the same
region. For the algorithm, the reader is referred to [28] and [29].

4.2. Experimental setup

The 3D simulation environment represents a physical setup, entail-
ing a window with crossbar [19]. A grid 49-loudspeaker array and
a sparse 21-loudspeaker array [19] were compared. We assumed
that, by measuring the performance in all directions, any reflection
is irrelevant. Therefore, no walls were modeled. The cross-section
(x = 0) top-view of the environment is depicted in Figure 1, with co-
ordinates (x, y, z) pointing into the paper, upwards and to the right.
The red dot is a reference microphone, the blue dots are loudspeak-
ers and the green dots represent evaluation microphones. In 3D, the
aperture was a Lx = 0.5 m by Ly = 0.5 m window, with a crossbar of
width W+ = 0.065 m. Hence, the aperture consisted of four squares
(P̂ = 4) with ∆Lx = (Lx −W+)/2 = ∆Ly . The 2D model was a
Ly-wide aperture with a crossbar of width W+ and P̂ = 2.



Fig. 4: SEGf (k), with very narrow 99% con-
fidence interval for grid array simulations in 3D,
canceling rumbler-siren noise.

Fig. 5: First 0.4 s of SEGt 3D grid array results for
all controllers, showing long the convergence time
of NLMS controller.

Fig. 6: SEGf (k) for NLMS and WDC-O, with
very narrow 99% confidence interval. 3D results
for white noise signal, at 0◦, 30◦and 60◦angle.

All controllers used one reference microphone, in the aperture
origin and were implemented with the sparse and grid array. The
NLMS was tested 32 (2D) and 128 (3D) error microphones in the
control region. The optimal wave-domain controller (WDC-O) used
a window-size of 125 ms. Additionally, algorithmic delay compen-
sation was modeled by two approaches. One controller with the ref-
erence microphone positioned at 1.4 m in front of the aperture, im-
plemented with a window-size of 3.9 ms (WDC-M) and the other as
a wave-domain controller with auto regressive predictor (WDC-P).
The wave-domain algorithms used a 75% STFT overlap.

Sample rate was set at fs = 214 Hz. A fixed air temperature
and density (ρ0) were used, setting constant speed of sound at c =
343 m/s. To measure the performance of the controllers over time
with a changing frequency spectrum, a rumbler-siren signal (Figure
2a) of 4 s was used as noise. Additionally, white noise and airplane
noise (Figure 2b) were tested. Following existing studies [12], we
evaluate the performance up to 2 kHz and for three incident angles:
0◦, 30◦and 60◦. The performance was evaluated on the boundary
of control regions D2D and D3D at 30 and 128 evenly distributed
evaluation microphones, respectively. We define the segmental SNR
in dB, summed over all evaluation microphones e as:

SEGf (k,m) = 10 log10

∑E
e |de(k,m)|2

∑E
e |de(k,m) + ye(k,m)|2

(14)

where de is the noise signal and ye is the loudspeaker array signal.
We average SEGf (k,m) over frequency and time, to get insights per
frequency bin (SEGf (k)), per hop (SEGt(m)) and in total (SNR).
Performance was calculated over signal blocks with an 8 ms STFT
with 50% overlap.

4.3. Attenuation performance

Table 1 shows the performance for all signals at 0◦incident angle,
where the grid outperformed the sparse array. WDC-O generated
more attenuation than NLMS, when cancelling rumbler-siren noise,
especially at higher frequencies as shown in Figure 4. Additionally,

Noise type Rumbler
siren

Airplane
Noise

White
Noise

Array G S G S G S
NLMS -5.2 -3.5 -7.6 -4.5 -9.2 -4.3
WDC-M -6.1 -1.3 -6.6 -2.0 -8.1 -2.8
WDC-P -4.0 -2.2 - - - -
WDC-O -10.6 -4.9 -10.6 -4.7 -10.0 -4.1

Table 1: 3D, 0◦angle, SNR for all controllers, with grid (G) and
sparse (S) arrays. Attenuation is given in decibel (dB).

Figure 5 shows the slow convergence of NLMS, fast convergence
of WDC-P, and instant convergence of WDC-O and WDC-M. Fol-
lowing Figure 6, WDC-O outperformed NLMS with better attenu-
ation for each incident angle. When comparing algorithmic delay
compensation methods, WDC-M slightly outperformed the WDC-P,
with a grid array setup. Moreover, for WDC-P, a trade-off between
prediction accuracy and algorithm performance was apparent so an
optimal window-size is found, shown in Figure 3. However this opti-
mum highly depends on the type of signal. For signals that are better
predictable, the optimal window-size is larger. Finally, all controllers
perform better at lower frequencies, except for WDC-M. For the lat-
ter, phase-shifts in the blockwise signal processing result in STFT
wrapping.

The grid array outperformed the sparse array, confirming prior
studies [30]. Besides, both the performance of white noise can-
celling, and occurrence of long convergence time of the NLMS
controller is in line with existing literature [12, 31]. For a station-
ary noise source, slow convergence is not a major issue. However,
we expect that it limits the NLMS performance for moving noise
source. In contrast, with instant convergence, the wave-domain
controller is expected to perform better. Further investigation into
performance for moving sources is necessary. Additionally, the
trade-off apparent for WDC-P (Figure 3) follows prior results [14].
Improving algorithmic delay compensation methods, with a com-
bination of microphone placement and prediction, or employing
machine-learning, is a worthwhile continuation of this work. Offline
calculation of filter-weights in WDC-O is a major advantage over
closed-loop algorithms. Finally, we suggest to investigate STFT
wrapping in wave-domain control algorithms, to improve perfor-
mance at shorter window-sizes.

5. CONCLUSION

We proposed a new approach to ANC for apertures based on wave-
domain processing with algorithmic delay compensation. We com-
pared the new algorithm with a multiple-error Normalized LMS sys-
tem for both sparse and grid arrays. Our 3D results showed that
an ideal wave-domain algorithm obtains an average global attenu-
ation of - 10.6 dB up to 2 kHz for a 0.5 m window, compared to
- 5.2 dB for the LMS based algorithm when a grid array is used for
attenuation rumbler-siren noise. Algorithmic delay compensation by
microphone placement is preferred over predictor methods. Improv-
ing on delay solutions is a logical continuation of our work. Our
results show that the use of wave-domain ANC algorithms for open
windows is natural for addressing the noise pollution problems of
modern society as the new method requires neither time to converge
nor error microphones, and operates at a low computational effort
due to off-line weight calculation.
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Appendix B

Incoming Plane Wave Modeling

The first part of the system is the outside soundfield created by the primacy source. For
making proper animations, we model this. In this section, we cover the Acoustic Transfer
Function (ATF) for this. As discussed, we assume that the noise source is far away, and,
therefore, result in a plane wave on the aperture surface. Hence, we model this wave as a
simple plane wave. A plane wave is simply a time delay, due to the distance between the plane
of the primary source and the measurement location. The corresponding frequency response
transfer function is:

Hplane(k, r) = e−jkr, (B-1)

depending on acoustic wavenumber k = ω/c, where ω = 2πf is the angular frequency and c is
the speed of sound. Furthermore we have j the imaginary number and r the distance between
the plane of the primary source (S) and the measurement location (M). In the model, we
specify the primary source location as a single point. However, because we model a plane
wave, we need a geometric relation to determine the perpendicular distance r, as shown in
Figure B-1. We derive two equations for b. The first is:

a2 + b2 = p2

(l − r)2 + b2 = p2

b2 = p2 − (l − r)2

(B-2)

And the second is:

r2 + b2 = q2

b2 = q2 − r2

(B-3)
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combining gives the following expression for r:

p2 − (l − r)2 = q2 − r2

p2 − l2 + 2lr − r2 = q2 − r2

p2 − l2 + 2lr = q2

2lr = l2 + q2 − p2

r = l2 + q2 − p2

2l
(B-4)

where l is the distance between the primary noise source and the origin, q is the distance
between the primary noise source and the measure location and p is the distance between the
measure location and the origin.

Figure B-1: The perpendicular distance between the measure location and the primary source
location plane is denoted with r and can be calculated by r = l2+q2−p2

2l .
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Appendix C

Extended Soundfield Modeling Results

This Apendix contains additional plots of aperture soundfields for various frequencies and
incident angles.

(a) 256 Hz. (b) 512 Hz. (c) 768 Hz. (d) 1024 Hz.

Figure C-1: Aperture soundfields for various frequencies at 0◦incident angle.

(a) 1280 Hz. (b) 1536 Hz. (c) 1792 Hz. (d) 2048 Hz.

Figure C-2: Aperture soundfields for various frequencies at 0◦incident angle.
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(a) 256 Hz. (b) 512 Hz. (c) 768 Hz. (d) 1024 Hz.

Figure C-3: Aperture soundfields for various frequencies at 30◦incident angle.

(a) 1280 Hz. (b) 1536 Hz. (c) 1792 Hz. (d) 2048 Hz.

Figure C-4: Aperture soundfields for various frequencies at 30◦incident angle.

(a) 256 Hz. (b) 512 Hz. (c) 768 Hz. (d) 1024 Hz.

Figure C-5: Aperture soundfields for various frequencies at 60◦incident angle.

(a) 1280 Hz. (b) 1536 Hz. (c) 1792 Hz. (d) 2048 Hz.

Figure C-6: Aperture soundfields for various frequencies at 60◦incident angle.
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Appendix D

Additional Simulation Results

This Appendix contains some additional results.

D-1 Other 3D Array Types

We briefly looked into other array types to measure performance. Figure D-1 shows the
schematics of the arrays. The results of the simulation are shown in Figure D-2, where the
array performances are compared for a white noise signal, with 0◦angle and a window-size of
N=7.8 ms. Clearly, the grid outperformed the other arrays, in line with results in literature.
The Miller sparse array [13], with more speakers around the boundary does outperformed the
Sparse array by Downey [14]. Especially at higher frequencies (0.6-1.5 kHz), more loudspeak-
ers led to more attenuation. Finally, adding four loudspeakers in a circle did a slightly better
job than the Circle Downey array.

(a) A distributed 7x7 grid
array.

(b) Boundary Downey
Sparse array [14].

(c) Boundary Downey
Sparse + Circle array.

(d) Boundary Miller Sparse
array [13].

Figure D-1: Four arrays tested in 3D simulations.
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Figure D-2: 3D results for 4 types of arrays, the sparse array, sparse array by Downey with 4
additional speakers, sparse array by Miller, and the 7x7 grid array. Simulations with white noise,
0◦incident angle and a window-size of N=7.8 ms.

D-2 2D Results

This section contains the results for 2D simulations in a similar fashion as the 3D results in
Chapter 5.

Figure D-3: 2D Grid array SEGf results for various window-sizes.
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Figure D-4: 2D Sparse array SEGf results for various window-sizes.

Figure D-5: 2D Grid array SEGf results for the Normalized Least Mean Squares (NLMS) and
Optimal Wave-Domain Algorithm (WDC-O) algorithms.

Table D-1: 2D Results for rumbler-siren noise at 0◦angle, in decibels. Given over four frequency
ranges, for all controllers.

Array type Grid Sparse
kHz 0-0.5 0.5-1 1-1.5 1.5-2 Total 0-0.5 0.5-1 1-1.5 1.5-2 Total
NLMS -11.5 -5.2 -4.1 -0.4 -5.7 -8.4 -1.8 -0.2 0.0 -2.9
WDC-M -7.4 -7.6 -6.3 -5.8 -6.8 -3.6 -0.3 0.8 0.1 -0.9
WDC-P -7.4 -5.4 -2.0 -0.6 -4.0 -3.3 -1.4 -0.3 0.0 -1.4
WDC-O -16.3 -11.6 -9.4 -5.7 -11.1 -5.0 -2.6 -1.5 -0.4 -2.5
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(a) Full signal. (b) First 0.4 s.

Figure D-6: 2D Grid time results for the NLMS and WDC-O algorithms.

Figure D-7: 2D Sparse array SEGf results for the NLMS and WDC-O algorithms.
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(a) Full signal. (b) First 2.0 s.

Figure D-8: 2D Sparse time results for the NLMS and WDC-O algorithms.

Figure D-9: 2D Grid array SEGf results for WDC-O and NLMS for three different incident
angles.
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Figure D-10: 2D Sparse array SEGf results for WDC-O and NLMS for three different incident
angles.

Figure D-11: 2D Grid and sparse array SEGf results for WDC-O, white noise, 0◦incident angle.
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Figure D-12: Optimal window-size for 2D setup. The optimal point for the Wave-Domain
Algorithm with Predictor (WDC-P) (Sparse) lies at 15.6 ms, while the optimal window-size for
the grid array is 7.8 ms.

Figure D-13: 2D Grid array SEGf results for all controllers, 0◦angle and rumbler-siren noise.
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(a) Full signal. (b) First 0.4 s.

Figure D-14: 2D Grid time results for all controllers, 0◦angle and rumbler-siren noise.
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Glossary

List of Acronyms

DCSC Delft Center for Systems and Control
ANC Active Noise Control
FXLMS Filtered-x Least Mean Squares
LMS Least Mean Squares
NLMS Normalized Least Mean Squares
STFT Short-time Fourier Transform
I-STFT Inverse Short-time Fourier Transform
AR Autoregressive
RNN Recurrent Neural Network
NODE Neural Ordinary Differential Equations
DFT Discrete Fourier Transform
I-DFT Inverse Discrete Fourier Transform
FFT Fast Fourier Transform
SNR Signal-to-Noise Ratio
SISO Single-input Single-output
MIMO Multiple-input Multiple-output
ATF Acoustic Transfer Function
ATFs Acoustic Transfer Functions
FEMs Finite Element Methods
FDMs Finite Difference Methods
WDC-P Wave-Domain Algorithm with Predictor
WDC-O Optimal Wave-Domain Algorithm
WDC-M Wave-Domain Algorithm with Reference Microphone Clacement
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