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DISTRIBUTED KALMAN FILTERS FOR RELATIVE FORMATION CONTROL

OF MULTI-AGENT SYSTEMS

Martijn van der Marel and Raj Thilak Rajan

CAS, Faculty of EEMCS, Delft University of Technology (TUD), The Netherlands

ABSTRACT
Formation control (FC) of multi-agent systems plays a crit-

ical role in a wide variety of fields. In the absence of abso-

lute positioning, agents in FC systems rely on relative position

measurements with respect to their neighbors. In distributed

filter design literature, relative observation models are com-

paratively unexplored, and in FC literature, uncertainty mod-

els are rarely considered. In this article, we aim to bridge

the gap between these domains, by exploring distributed fil-

ters tailored for relative FC of swarms. We propose statis-

tically robust data models for tracking relative positions of

agents in a FC network, and subsequently propose optimal

Kalman filters for both centralized and distributed scenarios.

Our simulations highlight the benefits of these estimators, and

we identify future research directions based on our proposed

framework.

Index Terms— Kalman filter, distributed estimation, for-

mation control, relative navigation, multi-agent systems

1. INTRODUCTION

Formation control (FC) of multi-agent systems plays a cru-

cial role in various applications, for e.g., in satellite interfer-

ometry [1], UAV formation flight [2], and underwater sensing

networks [3]. Traditionally, the task of keeping a multi-agent

system in the desired formation is performed centrally, how-

ever, the inherent distributed nature of multi-agent systems

naturally invites a decentralized architecture. One class of

distributed methods focus on solving a global optimization

problem by distributing the problem over the agents [4], and

other solutions are based on behavior-based algorithms [5] or

leader-follower architectures [6]. Motivated by the need for

FC in GNSS-denied environments (e.g., indoors, in space or

underwater), formations in the context of relative navigation

have been investigated, where the agents navigate based on

their relative dynamics with respect to other mobile agents or

objects [7]. One approach to tackle this challenge is through

the extension of graph Laplacian-based consensus algorithms

[8]. For example, in [9] a multi-agent system with single-

integrator dynamics is considered, and closed form solution

This work is partially funded by the European Leadership Joint Under-

taking (ECSEL JU), under grant agreement No 876019, the ADACORSA

project - ”Airborne Data Collection on Resilient System Architectures.”

for a local control law is proposed, which guarantees the con-

vergence to an affine formation or a rigid formation [10].

A relatively unexplored area within the domain of relative

FC is that of statistical uncertainty. In practise, the dynamics

of mobile agents and the measurements they make are cor-

rupted by noise, which can be cast as a linear state space

model, which motivates the need for designing distributed

Kalman filters (KFs). A plethora of existing methods for dis-

tributed KFs focus on estimating a common environment state

[11, 12], but in case of FC, the agents must track their own

dynamical states, which can be seen as subsets of the global

state variables. More recently, distributed KFs have been pro-

posed for linear FC systems [13, 14], however, these algo-

rithms require absolute state measurements, which we aim to

overcome in this work.

Notation: Vectors and matrices are represented by lower-

case and uppercase boldface letters respectively. Aij repre-

sents the element on the ith row and jth column of the matrix

A. Sets and graphs are represented using calligraphic letters

e.g., A. A vector of length N of all ones and zeros are de-

noted by 1N and 0N respectively. An identify matrix of size

N is denoted by IN . The Kronecker product is ⊗, tr(·) is the

trace, E(·) is the expectation, and bdiag(Ai)i∈S is a block

diagonal matrix with blocks Ai ∀i ∈ S .

1.1. Related work

Consider a swarm comprising of N homogeneous mobile

agents moving in D-dimensional space. The sensing capa-

bilities of the agents are described by the bidirectional sens-

ing graph G = (V, E), where the nodes of the graph V =
{1, . . . , N} denote the agents. The edges represent the sens-

ing links: (i, j) ∈ E which implies the agent i can measure its

relative position with respect to agent j. The neighborhood

of a node i is denoted by Ni, i.e. j ∈ Ni implies (i, j) ∈ E .

The position of agent i in a D-dimensional Euclidean space

is denoted by the vector zi ∈ R
D. We consider the mobile

agents to be governed by single-integrator dynamics i.e.,

żi = ui (1)

ui =
∑

j∈Ni

lij(zi − zj) (2)

where ui represents the control input of agent i. Here, the

control input for individual agents is a weighted sum of rel-
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ative positions, where the weights lij can be considered as

elements of the generalized graph Laplacian. These weights

depend on the desired formation configuration, and a convex

optimization program for designing the weights is addition-

ally provided in [9]. Given a system of mobile agents, gov-

erned by the dynamics (1) and following the control law (2),

the convergence to any desired affine formation is possible, if

and only if the sensing graph G is universally rigid [9]. In var-

ious applications, a rigid formation is preferable to an affine

formation as it preserves inter-agent distances, which can be

achieved by the appointment of D + 1 leader agents in the

swarm who may follow e.g. the local control law proposed in

[10] to achieve this goal. It is worth noting that measurement

uncertainties were not modelled in these approaches.

In this paper, we aim to statistically model the uncertainty

in the swarm, to improve the robustness of existing FC so-

lutions. In real-world FC applications, there are a various

sources of uncertainty which affect the dynamical system, (a)

observation noise originating from the sensors, and (b) uncer-

tainties originating from the environment e.g., wind for UAV

formations.

2. LOCAL STATE-SPACE MODEL

We begin by considering a single edge of the sensing graph,

and based on the proposed data models, we develop two local

estimators for estimating the relative position of the agents,

which drive the control law (2).

2.1. Maximum likelihood estimation (MLE)

Consider a single edge (i, j) of the sensing graph, where the

relative position (or edge state) of the agent i with respect to

a neighbour j at time index k is given by z
ij
k = zik − z

j
k. Let

agent i be able to measure the relative position of its neighbor

j, which can be achieved using numerous methods [15, 16].

Consider that T i.i.d. measurements are made at time index

k, which are corrupted with additive noise, then the relative

position measurements are given by,

y
ij
k = Hz

ij
k + v

ij
k (3)

where we assume a linear measurement model with y
ij
k as

the measurement vector and H is the observation matrix. We

consider the noise plaguing the measurements to be normally

distributed i.e.,v
ij
k ∼ N (0TD, IT ⊗ Rij),where the noise is

correlated with regard to dimensions but uncorrelated in time.

Given the measurements y
ij
k , the MLE for the relative posi-

tion vector at time-index k can be obtained by maximizing

the probability density function of the measurement vector.

i.e., ẑ
ij
k = (H⊤R̄−1

ij H)−1H⊤R̄−1
ij y

ij
k where we introduced

R̄ij = IT ⊗Rij .

Agent 

Dynamics:

Control law:

Filter

Agent 

for all 

Fig. 1: Proposed local data model from the perspective of agent i.

2.2. Edge-based Relative Kalman filter (RKF)

The estimation accuracy of the MLE can be further improved

over time, and subsequently the discrete-time dynamics of the

edge state from the agent dynamics (1) can be deduced as

z
ij
k+1 = z

ij
k +∆t(ui

k−u
j
k)+w

ij
k , w

ij
k ∼ N (0D,Qij) (4)

where ∆t denotes the time step of the filter, and we assume

the process noise w
ij
k to be Gaussian with a known covari-

ance. The block diagram in Figure 1 visualizes the data model

with the noisy measurements and dynamics. Since both (3)

and (4) are Gauss-Markov models, the KF is optimal for es-

timating the time-varying edge state or relative position. For

the rest of this paper, we assume the initial positions zi0 of

all agents i = 1, . . . , N to be drawn from the arbitrary distri-

bution N (µ,P)1. Subsequently, the initialization, prediction

and update steps of the RKF are as follows.

E(zij0 ) = E(zi0)− E(zj0) = 0D, (5a)

Σ
ij

0|0 = E

(

(zi0 − z
j
0)(z

i
0 − z

j
0)

⊤
)

= 2P (5b)

ẑ
ij

k+1|k = ẑ
ij

k|k +∆t(ui
k − u

j
k) (5c)

Σ
ij

k+1|k = Σ
ij

k|k +Qij (5d)

K
ij
k = Σ

ij

k|k−1H
⊤
(

HΣ
ij

k|k−1H
⊤ + IT ⊗Rij

)−1
(5e)

ẑ
ij

k|k = ẑ
ij

k|k−1 +K
ij
k

(

y
ij
k −Hẑ

ij

k|k−1

)

(5f)

Σ
ij

k|k =
(

ID −K
ij
k H

)

Σ
ij

k|k−1 (5g)

3. GLOBAL STATE-SPACE MODEL

We now extend the edge-based solutions to a global state-

space model, and subsequently propose optimum centralized

and distributed KFs.

3.1. Centralized Relative Kalman filter (CRKF)

To design a solution for the entire network, we introduce the

vectors zk = {zik}
N
i=1 ∈ R

ND and uk = {ui
k}

N
i=1 ∈ R

ND,

1The initial position can also be drawn from N (µi,Pi) where {µi,Pi}
are the moments for the ith agent, provided this knowledge is available. More

generally, there are various strategies to optimally choose these moments [17]
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which concatenate the absolute positions and the control in-

puts of all agents respectively. The aggregated agent dynam-

ics can then be written as

zk+1 = zk +∆tuk +wk, wk ∼ N (0ND,Q) (6)

Here, the vector wk = {wi
k}

N
i=1 represents the spatial dis-

turbances acting on the agent dynamics, and the covariance

matrix Q is therefore considered to be a full matrix. Observe

that (6) denotes the agent dynamics containing the absolute

positions, while the control input is driven by the relative po-

sitions w.r.t the neighbouring agents (2). Thus, to map the

absolute position vector zk to the relative positions, we ex-

ploit the known incidence matrix B = {Bil} of the Graph,

whose entries are +1 when l is directed towards i, −1 when

l is directed away from i, and 0 otherwise. Following the

convention in [14], the columns of the incidence matrix B

are grouped per node, starting with all edges directed towards

node 1 and ending with edges directed towards node N . Let

xk =
(

B⊤ ⊗ ID
)

zk = B̄⊤zk be an edge state vector, the

left multiplying (6) by B̄⊤, the discrete-time edge dynamics

for the entire network is

xk+1 = xk +∆tB̄⊤uk + w̄k (7)

where w̄k = B̄⊤wk ∼ N (0ND, B̄⊤QB̄). Note that for

the single-edge dynamical model in (4), the covariance ma-

trix can be retroactively defined as Qij = B̄⊤
ijQB̄ij where

B̄ij = bij⊗ID where bij is the column of the incidence ma-

trix representing the edge (i, j). Furthermore, the observation

model (3) for the global system is

yk = H̄xk + vk, vk ∼ N (0MTD,R) (8)

with H̄ = (IM ⊗ H) where M is the total number of edges

in the network, and R = bdiag(IT ⊗ Rij)(i,j)∈E a block

diagonal matrix with the ordering of the edges equivalent to

that of the incidence matrix. Given (7) and (8), we propose

the Centralized Relative Kalman Filter (CRKF) for the entire

network as follows.

x̂0|0 = B̄⊤(1N ⊗ µ) = 02MD (9a)

Σ0|0 = B̄⊤(IN ⊗P)B̄ = B⊤B⊗P (9b)

x̂k+1|k = x̂k|k +∆tB̄⊤uk (9c)

Σk+1|k = Σk|k + B̄⊤QB̄ (9d)

Kk = Σk|k−1H̄
⊤(H̄Σk|k−1H̄

⊤ +R)−1 (9e)

x̂k|k = x̂k|k−1 +Kk(yk − H̄x̂k|k−1) (9f)

Σk|k = (IMD −KkH̄)Σk|k−1 (9g)

3.2. Joint Relative Kalman filter (JRKF)

To alleviate the centralized collection of information and pro-

cessing, we propose a distributed algorithm for the CRKF.

Observe that the steps in (9) are node separable when the

Kalman gain matrix in (9e) is block diagonal i.e., it can be ex-

pressed as Kk = bdiag(Ki
k)i∈V , where Ki

k ∈ R
MiD×MiTD,

where Mi = |Ni| denotes the cardinality of the neighbour-

hood of agent i. However, the key challenge is the distributed

computation of the optimal block diagonal Kalman gain ma-

trix.2 To this end, we propose the following theorem, sup-

ported by a lemma.

Theorem. A solution to the Kalman gain Ki
k ∈ R

MiD×MiTD

can be computed locally by agent i by solving the cost func-

tion

min
K

i

k
,i∈V

tr
(

Σk|k

)

s.t. Kk = bdiag(Ki
k)i∈V (10)

which admits the following solution

Ki
k = Σi

k|k−1H
⊤
i

(

HiΣ
i
k|k−1H

⊤
i +Ri

)−1

(11)

where Hi = IMi
⊗H and Ri = bdiag(Rij)j∈Ni

.

Lemma. Let A = bdiag(Ai)
N
i=1, and consider F with the

dimensions of A, then tr(AFA⊤) =
∑N

i=1 tr(AiFiiA
⊤
i )

where {F11,F22, . . . ,FNN} are the block diagonal matrices

of F [18].

Proof. Since minimizing the mean square error in the Kalman

updates (9e) is equivalent to minimizing the trace of the

posterior covariance, we have (10). Now substituting the

Joseph form of the posterior covariance, and introducing

Φ = IMD −KkH̄, we have

min
K

i

k
,i∈V

tr
(

KkRK⊤
k

)

+ tr
(

ΦΣk|k−1Φ
⊤
)

s.t. Kk = bdiag(Ki
k)i∈V

(12)

where the constraint guarantees that the Kalman gain matrix

Kk is block diagonal. Similarly, Φ is block diagonal since H̄

is block diagonal by definition. Now, by introducing Φi =
IMiD − Ki

kHi and by applying the Lemma on the second

summand of (12), we decouple the optimization problem as

min
K

i

k
,i∈V

tr(Ki
kRiK

i⊤
k ) + tr(ΦiΣ

i
k|k−1Φ

⊤
i ) (13)

Observe that this optimization problem is only minimizing

the trace of the local posterior covariance, similar to an un-

constrained Kalman gain optimization problem, which has a

solution given by (11).

In summary, we propose the Joint Relative Kalman Filter

2More generally, for any sparsity structure constraint on the Kalman gain

matrix, a solution is provided in [14], however this requires a centralized

computation.
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(a) (b)

Fig. 2: (a) A formation of N = 10 agents with M = 60 bidirec-

tional sensing links in D = 2 dimensions. An illustration of the

covariance matrices Q and Rij used in the simulations.

(JRKF) as follows

x̂i
0|0 = 0MiD, (14a)

Σi
0|0 = B⊤

i Bi ⊗P (14b)

x̂i
k+1|k = x̂i

k|k +∆tB̄⊤
i uk, (14c)

Σi
k+1|k = Σi

k|k + B̄⊤
i QB̄i (14d)

Ki
k = Σi

k|k−1H
⊤
i

(

HiΣ
i
k|k−1H

⊤
i +Ri

)−1

(14e)

x̂i
k|k = x̂i

k|k−1 +Ki
k

(

yi
k −Hix̂

i
k|k−1

)

(14f)

Σi
k|k =

(

IMiD −Ki
kHi

)

Σi
k|k−1 (14g)

where B̄i = Bi ⊗ ID and Bi is a submatrix of the incidence

matrix B containing only the columns representing incoming

edges of agent i. Unlike the RKF, which operates only over a

single pairwise relative position, JRKF, jointly estimates the

relative positions of multiple neighbours. Finally, note that

for both the proposed distributed filters, the prediction steps

of agents require the control inputs of neighboring agents, and

hence local communication between agents is required.

4. SIMULATIONS

We run simulations to quantify the performance of the pro-

posed filters. We consider a set of mobile agents with single-

integrator dynamics (1), following the control law (2). A sub-

set of 3 nodes with an underlying complete subgraph follow

the control law in [19] instead, which preserves the inter-

agent distances between these leader agents. The formation

framework is visualized in Figure 2a. The underlying sensing

graph is universally rigid, which guarantees convergence to a

rigid formation in the noiseless, continuous-time case as per

[9]. Discrete-time simulations should approach this behavior

with small time intervals ∆t = 1 milliseconds. We use the

uncertainty model in (6), and the observation model (8) with

H = 1T ⊗I and T = 10, where the initial positions of agents

are drawn i.i.d. from N (µ,P) with µ = 0D and P = ID.

We assume Q is constant over time, with diagonal elements

σ2
w and off-diagonal elements in [0, σ2

w], and similarly Rij are

assumed equivalent for all edges (i, j) with diagonal elements

σ2
v and off-diagonal elements in [0, σ2

v ]. See Figure 2b.

To illustrate the performance of the proposed algorithms,

the paths of individual agents and their final positions for a

-2 0 2 4
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y

-2 0 2 4
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1
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x
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x

-3

-2

-1

0

1

y

Lin et al. [9] MLE (proposed)

RKF (proposed) JRKF (proposed)

Fig. 3: Paths of agents in R
2 over time for the proposed estimators

0.05 0.1 0.15 0.2
10

-3

10
-2

10
-1

MLE

RKF

JRKF

CRKF

(a) (b)

Fig. 4: (a) Trace of the posterior covariance over time (σw =

0.001, σv = 0.1) for the proposed estimators. (b) Estimation er-

ror over time (σw = 0.001, σv = 0.1) for the proposed estimators,

where the mean and ±1σ regions of the estimation errors are plotted.

single run of the simulation are shown in Figure 3. We use

[9] as the benchmark for the performance of the proposed al-

gorithms. The proposed MLE and Kalman filters converge to

similar formations, however the traversed paths of agents of

the proposed Kalman filters are smoother compared to preva-

lent methods. Figure 4a shows the evolution of the poste-

rior covariance trace over time, while the agents converge to

rigid formations from their initial positions. Here, the uncer-

tainty in edge state estimates remains constant over time for

the MLE, whereas the Kalman filters use the past measure-

ments effectively to improve estimates over time. The steady

state posterior covariance trace is lowest for the CRKF, and

JRFK shows an improvement over the RKF in steady state.

Furthermore, Monte Carlo simulations were performed,

where for each run, the estimation error ǫk = ‖xk − x̂k|k‖2
is computed, which is the Euclidean norm of the edge esti-

mation error at time step k. In Figure 4b, the mean estima-

tion error over 50 runs is shown, along with the ±1σ regions.

The CRKF shows the best performance in terms of estima-

tion error, which is expected since it is the optimal filter for

the global system. Among the two proposed distributed fil-

ters, the JRKF shows significant improvement over the single-

edge RKF in steady-state estimation error. Observe that in the

absence of external disturbances, the edge state-space mod-
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els decouple and the joint filter performs equivalently to the

single-edge filter.

5. SUMMARY

In this paper, we proposed a statistically robust framework

for estimating relative positions of agents in a FC system.

In addition to the closed form MLE, and an optimal cen-

tralized Kalman filter (CRKF), we proposed two distributed

Kalman filters for both local and global state-space models.

Among the proposed filters in this work, the joint Kalman fil-

ter (JRKF) is derived as the optimal filter under the sensing

graph constraints for the given model. To let the disturbance

model better reflect real-world systems, spatio-temporal dis-

turbance correlation may be introduced, which naturally leads

to the kriged Kalman filters.
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