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Byzantine Attacks and Defenses in Decentralized Learning Systems
that Exchange Chunked Models

Atanas Donev
Delft, Netherlands

Abstract—Decentralized learning (DL) enables collaborative
model training in a distributed fashion without a central server,
increasing resilience but still remaining vulnerable to the same
adversarial model attacks, that Federated Learning is vulnerable
to. In this paper, we test two defense mechanisms, specifically
designed to protect fully decentralized learning, in the scenario of
chunked models and introduce one new defense. We clearly define
the threat model, where malicious peers either try to perform
a backdoor attack or an untargeted label flipping. The defenses
are Norm Clipping, Sentinel and we propose Adaptive Norm
Clipping. We evaluate the effectiveness of these defenses on the
CIFAR-10 dataset. Our results indicate that the model attacks
(backdoor attack and untargeted label flipping) significantly
harm model accuracy on vanilla DL with chunking. While static
defenses like Norm Clipping and Adaptive Norm Clipping reduce
the impact of the attack, they lower the final test average accuracy
in the chunked scenario. Also, robust aggregators like Sentinel
fail at mitigating the attack, but do not lower the average test
accuracy.

Index Terms—Decentralized Learning; Byzantine Attacks on
Chunked Models; Chunked Models; Distributed Defense;

I. INTRODUCTION

In an era of information and privacy, distributed machine
learning enables collaborative model training without the need
to have all the data collected in one place. In Federated
Learning (FL), a set of nodes collaborate with a trusted central
entity to train a model [1]. The nodes train a model locally
on their private data and send only the updates to the central
entity, which aggregates them into a global model [2]. The
central server thus coordinates learning while never seeing in-
dividual data points. The same goes for nodes, who do not see
other data points except their own. In decentralized learning,
there is no central server. Instead, each node exchanges model
parameters with its neighbors over a network topology and
aggregates incoming updates to improve a shared model [2–4].

Several privacy attacks have been identified on Federated
Learning systems [5]. To prevent these attacks in DL systems,
the concept of model chunking has been introduced in several
works [3, 6]. Under the model chunking paradigm a node
sends only a subset (chunk) of his parameters (model) to each
neighbor, ensuring no neighbor ever sees the whole model.
While this approach may enhance privacy, it also remains
weak to Byzantine attacks such as backdoor and label flipping
attacks.

In centralized FL, many backdoor attacks have been stud-
ied [7–10], however, backdoors in DL remain largely unex-
plored [4, 11]. Existing defenses (like robust aggregators and
anomaly detectors) generally assume a central aggregator or

access to complete model updates [12, 13], and thus are not
directly applicable to DL. Furthermore, in chunked setting
these defenses never see the whole model update, which in
most cases renders them not directly applicable. For example,
robust aggregation rules such as Krum [14], Bulyan [15]
and Catalyst [13] require collecting all client updates on a
server [4], and monitoring full models for anomalies is difficult
if nodes only see fragments of each model.

The specific research question we address in this work is
the following: How to defend against Byzantine attacks
while exchanging chunked models in decentralized setting
(e.g., via the Shatter1 virtual-node framework or Decen-
tralizePy2)?

As a summary, we make the following contributions:
First, we adapt two representative attacks to DL with

chunked models exchanges, namely:
• Backdoor attack - injects a backdoor behaviour in the

model
• Untargeted label flipping - flips labels, trying to sabotage

performance
Then, we adapt two defenses that have been designed for

the decentralized learning with full model echanges, and test
whether they harm the performance of a non-attacked network
and then test if they are also effective. We consider the
following two defenses:

• Norm Clipping [4] - works by clipping the ℓ2 norm of
neighbors’ updates to some predefined constant τ;

• Sentinel [16] - Sentinel is a three-phase aggregation
protocol consisting of similarity filtering, bootstrap vali-
dation, and layer normalization.

Then, we modify Norm Clipping to store history of model
updates and adapt its clipping factor. We call it Adaptive Norm
Clipping.

Finally, we evaluate these attacks and defenses on the CI-
FAR10 dataset. Our results indicate that while Norm Clipping
and Adaptive Norm Clipping are effective at defeding they
lower the final average testing accuracy noticeably. Sentinel
does not do that, but fails at defending completely.

II. BACKGROUND

This section introduces the key technical pillars needed to
understand our setting: federated learning, its decentralized
(peer-to-peer) variant, the idea of model chunking with virtual
nodes, and the backdoor-poisoning threat model.

1https://github.com/sacs-epfl/shatter
2https://github.com/sacs-epfl/decentralizepy
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Fig. 1: Federated and Decentralized Learning

A. From Centralized to Decentralized Learning

Federated Learning: Federated Learning (FL) is a dis-
tributed machine learning paradigm that enables multiple
clients (e.g., user devices or silos) to collaboratively train
a global model without directly sharing their raw training
data [17]. In FL, each client keeps its private dataset local
and instead computes model updates (such as gradient updates
or model weight deltas) on its own data. These local updates
are then sent to a central server which aggregates them, for
example, by averaging them as in the FedAvg algorithm, to
produce an improved global model [18–20]. FL is illustrated
in Figure 1. The key idea is that only model parameters or
updates are exchanged, never the raw data, so that sensitive
personal information remains on the source devices [17]. This
process typically iterates over multiple rounds: the server
distributes the latest global model to all clients, clients perform
further local training on their data, and the clients’ new updates
are collected and averaged again [18]. Through this approach,
FL addresses data privacy concerns and reduces the need to
transmit large datasets, since the data never leaves the clients
and only model updates are communicated. However, it also
creates a single point of failure and a privacy bottleneck. Many
attacks (e.g., model poisoning) and defenses (e.g., secure
aggregation) are therefore studied under the assumption that a
trusted coordinator exists [10].

Decentralized or peer-to-peer federated learning
(DL/DFL/P2PFL). When a central aggregator is unavailable,
untrusted, or simply too costly, learning can proceed in a fully
distributed fashion: each participant maintains its own copy of
the model, communicates only with graph neighbours, and
acts both as a learner and a lightweight parameter server (cf.
Figure 1). Canonical algorithms include D-PSGD [21], push-
sum gossip learning [22], and numerous variants that improve
communication or convergence speed [23–25]. Nodes itera-
tively mix models they receive with their own before taking a
local SGD step, approximating the effect of a global average.
This architecture improves fault tolerance and removes the
server bottleneck, but each node now has only a partial view
of the global state, complicating robustness and privacy [18,
26].

Fig. 2: Model Chunking: Neighbours (2, 3, 4) send parts of
their model (in purple) to 1, who reconstitute a model that it
then uses to update its local model

B. Model Chunking

One recent privacy-enhancing refinement of DL is model
chunking, which we illustrate in Figure 2. Instead of transmit-
ting the entire parameter vector, a node splits it into k chunks,
and transmits each of them to one of their neighbors. Model
chunking can have two variations: sequential and random.
In sequential the parameter vector is split as if cut by a
scissor. In random chunking, each time a parameter is selected
from the parameter vector and added into a chunk, until
the chunk has been completed. Throughout this paper we
assume full-sharing. Full-sharing means that all parameters
from the parameter vector are sent to at least one neighbor,
ensuring all the learned information is shared and speeding
up convergence. A high-level description of the algorithms is
available in subsection IV-A.

C. Byzantine attacks

In this paper we primarily focus on two types of model at-
tacks: targeted and untargeted model attacks. In the former the
attacker’s goal is to implant a triggered misbehavior without
noticeably harming clean-task accuracy. More formally, the
learned model fθ should predict correctly on benign inputs
x, but output an attacker-chosen label y⋆ whenever a secret
pattern τ is present, i.e. fθ (x⊕τ) = y⋆ [27]. In untargeted
attacks, malicious nodes flip labels to try and harm the global
accuracy or send perturbed model updates, that reverse the
training progress or generally disturb the performance. In
decentralized settings the problem is exacerbated: there is
no global “view” to compare updates against, and a small
coalition can exploit network topology to disseminate poisoned
parameters [4].

D. Why Defending in DL is Hard

Classical robust aggregators (e.g., Krum [14], trimmed
mean[28]) require collecting all client updates in one place
before filtering out the malicious ones [14, 28]. Without
a server, no node sees such a complete batch, and the
asynchronous, time-varying graph means different nodes may
aggregate incompatible model sets. Moreover, techniques that
rely on shared validation data or a public “clean” dataset are
difficult to realize when each participant holds only private
data. Consequently, DL requires lightweight, local defense
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logic that operates with partial information, but designing
such defenses without incurring high computational or com-
munication cost remains open [11, 16]. Furthermore, with
chunking this problem grows even harder, because no model
ever sees the whole model update from their neighbor, making
it harder for defenses to detect an anomaly within the updates
or suppress it.

III. RELATED WORK

Decentralized Federated Learning (DFL) [10, 23–25, 29,
30], otherwise known in literature as Peer-to-Peer or gossip
Learning, is a decentralized version of federated learning,
where there is no central coordinator that aggregates results.
Each node sends its current model to selected peers and
aggregates the models it receives, e.g., via gossip or consensus
protocols [3, 31]. There are some variations of DFL that
guarantee privacy, introducing extra layers of computation
(Virtual Nodes) [3], but for now we will focus on pure
decentralized learning with the small change of chunking [3].

Model Chunking in Decentralized Learning: Model
chunking has emerged as a crucial technique in P2P learning,
helping to reduce the burden of full-model exchanges and to
provide privacy or fault tolerance. Shatter [3] is an example
of such framework. Biswas et. al. [3] mentions two primary
types of model chunking: sequential and random. In sequential
chunking the model parameters are split into k equal chunks
as if the parameters represent a line and a scissor is cutting
it in pieces. In random chunking each time a random model
parameter is chosen from the set of available parameters to
place in a given chunk. In both cases Biswas et. al. [3] assumes
full-sharing. Full-sharing means sending every parameter of
the model to at least one neighbor. That way all of the progress
is shared and convergence is sped up. In Federated Learning,
Lebrun et al. propose MixNN [6], a framework that shows
privacy can also be achieved by inter-client chunking of entire
layers rather than fine-grained parameters. MixNN inserts a
trusted proxy that randomly permutes whole layers among
participants before the aggregation step. Since FedAvg is lin-
ear, this permutation leaves the aggregated update unchanged,
so utility is unaffected [6]. While MixNN’s layer mixing
can be viewed as a form of random chunking across clients,
Shatter complements it with intra-client chunking plus virtual
nodes. Each real node spawns multiple virtual nodes (VNs),
distributes different chunks through them, and thus prevents
any single adversary from reconstructing the full model and
from linking a chunk to its origin [3]. Biswas et. al. [3] claim
that with 16 virtual nodes per participant Shatter simultane-
ously defeats linkability, membership-inference and gradient-
inversion attacks while slightly improving convergence speed.

Byzantine model attacks: Byzantine model attacks have
been extensively studied in the context of machine learn-
ing [8, 14, 27, 32–35]. These types of attacks have proven
highly effective across many federated learning (FL) scenarios
while remaining largely “invisible” in terms of main-task
accuracy [7, 8, 36]. For example, Wang et al. [7] introduced
“edge-case” backdoors, which force misclassifications on rare

but semantically coherent inputs (living in the tail of the data
distribution), and showed that such stealthy triggers can evade
state-of-the-art defenses. Likewise, Mei et al. [36] note that a
backdoor attack is “notoriously stealthy and threatening”, since
it changes model behavior only on specific inputs while leav-
ing overall accuracy unchanged. Other detrimental attacks are
Neurotoxins [37], Distributed Backdoor Attacks (DBA) [38]
and stealthy model poisoning [39]. Recent studies extend these
findings to non-traditional FL settings. Notably, Lyu et. al. [40]
and Ye et. al. [41] demonstrate that personalized FL (PFL)
is also vulnerable. Lyu et. al. [40] propose a PFedBA attack
aligns the backdoor trigger with each client’s local objective,
achieving outstanding attack success across 10 state-of-the-art
PFL algorithms and defeating six existing defenses.
In the context of decentralized federated learning backdoors
have been investigated as well. Syros et al. [4] provide one
of the first comprehensive studies of backdoors in DL. They
show that even a small fraction of strategically-placed mali-
cious nodes can succeed. In their experiments, compromising
only 5% of nodes (selected by graph centrality) yields a
high backdoor success rate while the model’s clean accuracy
remains undisturbed. Syros et al. [4] also confirm that classic
FL defenses fail in DL.

Defenses: Several robust aggregation methods have been
proposed to defend against backdoors in FL, but each has
its own limitations, especially outside the centralized server
model [14, 42]. BRIDGE adapts FL defenses like Coordinate
Wise Trimmed Mean [28] and Krum [14] to decentralized
learning, but they limit themselves to only IID data. Another
example is FLAME [9]. It is effective in the standard server-
coordinated FL setting (yielding backdoor-free global models
with minimal accuracy loss [9]), but it crucially relies on a
central aggregator that sees all client updates. Catalyst [13]
recently adapted FLAME to the asynchronous learning setting
but it still assumes a central server. Recent experiments in a
gossip-based P2P FL architecture show that a small coalition
of attackers can still achieve 100% backdoor success under
trimmed-mean-style aggregation, and in fact the learning pro-
cess converges more slowly with this “defense” than with no
defense at all [4]. In other words, without a trusted server to
perform the trimming and global aggregation, trimmed mean
offers essentially no protection against backdoors [4].

FoolsGold [43] has been shown to work only under restric-
tive conditions: it assumes benign data are non-IID across
clients and the attackers’ data are IID [9]. Bulyan [15] is a
hybrid robust aggregator that combines Krum [14] (selecting
updates closest to each other) with coordinate trimming. It
was designed to reduce high-dimensional attack strategies.
However, empirical studies have found that Bulyan can even
underperform Krum, because its aggressive filtering sometimes
discards honest updates [16]. As with other Byzantine-robust
rules, Bulyan requires collecting a pool of client updates at
each round and applying a multi-step filter – an operation
that intrinsically assumes a central server. In a decentralized
FL (gossip) scenario, nodes do not have a synchronized view
of all updates, so neither Krum nor Bulyan can be directly
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executed.
Recently, Sentinel [16] was proposed specifically for DL.

Other hybrid approaches have been suggested: for example,
Cao et al. [44] propose that nodes compute trust scores
based on neighbors’ behavioral consistency and share these
scores to form a global trust metric. Similarly to Sentinel,
Fang et. al. propose to disregard neighbors’ models if they
deviate too much from the local one [45]. Another defense
developed for fully decentralized learning is ByRDiE [46].
ByRDiE assumes a fully-connected and static topology. This
does not realistically reflect typical decentralized learning
networks, which tend to be sparsely connected graphs. Also,
Belal et. al. [47] proposed a different view of the problem.
They noted that in most cases byzantine participants can
not only manipulate local updates, but also cheat the peer
sampler. Therefore, Belal et. al. [47] proposed GRANITE,
which combines History-aware Peer Sampling (HaPS) and
Adaptive Probabilistic Threshold (APT). It bridges the gap
between secure peer sampling and robust aggregation, offering
formal analysis and strong empirical proof.

IV. SYSTEM AND THREAT MODELS

A. System Model

We consider a fully decentralized learning system with n
nodes connected in a fixed, sparse communication graph. The
network topology is a 3-regular graph G = (V,E), meaning
each node has exactly 3 neighbors (peers) in the overlay
network. We denote by N(i) the set of neighbors of node i
in G (so |N(i)| = 3 for all i). There is no central server or
aggregator, and instead, nodes communicate directly with their
neighbors.

Local Models and Data Distribution: Each node i main-
tains a local copy of the model parameters wi ∈ Rd (for a
model of dimension d) and has a private local dataset Di. We
assume that the local datasets can be either independent and
identically distributed (IID) or non independent and identically
distributed (non-IID).

Model Chunking and Message Passing: To enhance
privacy and reduce communication overhead, nodes do not
exchange their entire parameter vector in each communication
round. Instead, each node partitions its model parameters into k
disjoint chunks and transmits only one chunk to each neighbor.
Formally, let k = |N(i)| (the degree of node i, which is 3
in our 3-regular graph). We partition the index set of model
parameters 1,2, . . . ,d into k subsets I(t)i→ j (for each neighbor
j ∈ N(i)) at each round t. These index sets represent the
chunk of parameters that node i will send to neighbor j in
round t. In general, the chunks can be constructed in different
ways (e.g. sequential chunking, where the parameter vector
is split into contiguous segments, or random chunking, where
indices are randomly assigned to chunks). In our scenario we
assume full-sharing of the model (as per Biswas et al. [3]):
every parameter index belongs to at least one chunk, so no
parameter is completely withheld. A simple implementation is
to assign each parameter index to exactly one neighbor’s chunk
(a disjoint partition), ensuring that the union of chunks covers

the entire model:
⋃

j∈N(i) Ii→ j = 1, . . . ,d and Ii→ j ∩ Ii→ℓ = /0
for j ̸= ℓ. This means that each node shares one-third of
its parameters with each of its 3 neighbors in each round.
Other implementations could allow overlapping chunks or
dynamically changing random chunks each round, but for
clarity we describe the fixed disjoint chunk approach.

At every communication round t = 1,2, . . . ,T , each node i
performs the following steps in parallel:

1) Local Update: Node i performs local training on its
current model w(t−1)

i using its private data Di. This can
be one or several steps of stochastic gradient descent
(SGD) or Adaptive Moment Estimation (Adam). Let
w̃(t)

i = LocalUpdate(w(t−1)
i ;Di) denote the updated local

model after this computation (we use w̃(t)
i to distinguish

the post-local-training model from the final aggregated
model w(t)

i after communication).
2) Chunk Partitioning: Node i splits w̃(t)

i into k = 3 param-
eter chunks. Let I(t)i→ j be the index subset allocated to
neighbor j. Node i extracts the corresponding parameters
w̃(t)

i [I(t)i→ j] (the entries of w̃(t)
i with indices in I(t)i→ j).

3) Communication (Send): Node i sends the chunk
w̃(t)

i [I(t)i→ j] to each neighbor j ∈ N(i). (If a fixed partition

is used, I(t)i→ j may not depend on t; for random chunking,

I(t)i→ j could be freshly sampled each round. In either case,
the size of each chunk is approximately d/3 parameters.)

4) Communication (Receive): Simultaneously, node i re-
ceives a chunk of parameters from each neighbor j ∈
N(i). Let I(t)j→i be the index subset that neighbor j sends

to i in round t, and let w̃(t)
j [I(t)j→i] denote the values of

j’s updated model on those indices.
5) Aggregation: Node i integrates the received neighbor

updates with its own update. For each parameter index
k ∈ 1, . . . ,d, node i updates that coordinate of its model
by averaging its own value with any received values for
the same coordinate . Formally, for each k in 1, . . . ,d:

w(t)
i [k] =

w̃(t)
i [k] + ∑

{ j∈N(i) : k∈I(t)j→i}
w̃(t)

j [k]

1+

∣∣∣{ j∈N(i) : k∈I(t)j→i}
∣∣∣ .

In other words, node i takes the average of its own parameter
value and all neighbor values for that same parameter (if
any). If the chunking scheme guarantees that each index k
is provided by at most one neighbor (e.g. disjoint index
chunks from neighbors), then the above formula simplifies
to averaging between two values whenever a neighbor covers
index k, or keeping the local value if no neighbor sent that
index.

After this aggregation, node i sets w(t)
i as its model for the

next round. All nodes proceed to round t +1 unless t = T , in
which case the training completes.

B. Threat Model

Adversary Population: We assume a fixed fraction of the
nodes is Byzantine. For example, in our experiments approxi-
mately 18.75% of the nodes are adversarial. These adversarial
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nodes remain malicious throughout the whole training process:
no additional nodes become compromised after initialization,
and no compromised node reverts to honest behavior once it
is corrupted.

Capabilities: Each malicious (Byzantine) node has com-
plete control over its own local training pipeline. The adversary
can perform the following actions:

1) Data Poisoning: The adversary can manipulate its private
training dataset arbitrarily by inserting, deleting, or
relabeling examples.

2) Update Manipulation: In each round and for each neigh-
bor, the adversary can craft arbitrary parameter chunks.
These chunks maintain the expected shape but may de-
viate arbitrarily from the honest gradient. The adversary
may even send different poisoned chunks to different
neighbors in the same round.

3) Computation Changes: A malicious node may execute
additional local training iterations. By doing so, it can
more effectively learn the backdoor trigger pattern and
increase the attack’s success.

Limitations: Attackers cannot modify the overlay graph, in-
tercept communications between honest nodes, forge messages
on behalf of other nodes, or break cryptographic primitives
(e.g., message integrity checks). These restrictions confine the
adversary to local manipulations within its own node.

Knowledge and Coordination: Each adversarial node has
only local visibility. It knows its own data, the update history
received from its direct neighbors, and its incident edges in the
overlay graph. It does not know the full network topology or
the internal states of non-neighboring nodes. Nevertheless, we
assume that in the case of backdoor attack all compromised
nodes share a common trigger and a common target label lt .
In particular, they agree on a patch trigger τmask and a target
label yt for the backdoor.

Goal: There are two types of goals for the adversaries. One
is to implant a backdoor in the learned model. Specifically, it
aims to ensure that any input x containing the trigger τmask is
classified as the target label y by the final converged model of
every honest node. At the same time, the overall test accuracy
on clean (benign) inputs should remain essentially unchanged.
We measure the success of the attack by an attack success rate
(ASR), which is detailed in subsection V-C. The goal of the
second attack is to sabotage overall performance by flipping
labels randomly.

Why This Model Is Challenging: Exchanging model pa-
rameters in chunks conceals most of each model from individ-
ual participants. As a result, each honest node receives at most
1
k of any neighbor’s parameters per round. This fragmentation
reduces statistical redundancy and prevents straightforward
global consistency checks. Traditional defenses— which rely
on inspecting full gradient vectors or comparing updates
across clients—become ineffective under these conditions. The
attacker exploits this limited observability (and the absence of
a trusted aggregator) by distributing small, carefully crafted
perturbations across many chunks and rounds. Over time,
these perturbations accumulate so that the backdoor dominates

the global decision boundary, all without producing obvious
anomalies that could be easily detected.

V. METHODOLOGY

A. Network and Framework

All experiments are conducted on the above 16-node, 3-
regular peer-to-peer network topology. We implemented the
decentralized learning algorithm with chunked model ex-
change using the DecentralizePy framework (an open-source
library for decentralized learning) augmented with custom
code to support model chunking 3. In DecentralizePy’s archi-
tecture, each node runs as an independent process executing
the communication protocol and local training. We configured
DecentralizePy such that each node splits its model into a
number of chunks equal to its number of neighbors (in our
case, 3 chunks per node). The chunking can be configured
as sequential or random; in our implementation, we ensured
disjoint chunks per neighbor and full parameter sharing, as
described in the System Model. All machine-learning code
(model definition, training, etc.) was implemented in PyTorch4

(we integrated PyTorch models into DecentralizePy’s Python
environment).

Each node’s behavior follows the aforementioned algorithm
(subsection IV-A) during training rounds. The network topol-
ogy remains static throughout all experiments (no peers are
added or removed, and the neighbor relationships do not
change). We emphasize that there is no central coordinator:
model update averaging occurs locally at each node using only
neighbor communications.

B. Datasets and Models

We evaluate our system on the CIFAR-10 image classifi-
cation dataset, which has 10 classes of natural images. The
global dataset is split among the 16 nodes either in an IID
manner or a non-IID manner, to test both homogeneous and
heterogeneous data distributions:

• IID Partitioning: The 50,000 training images of CIFAR-
10 are shuffled and evenly divided into 16 shards of equal
size (3125 images per node). Each node thus receives a
random sample of the entire dataset, approximating an
independent and identically distributed data split. This
ensures that all nodes have a similar class distribution.

• Non-IID Partitioning: We simulate a more realistic het-
erogeneous scenario using a Dirichlet distribution-based
partitioning. Following common FL practice, we use a
Dirichlet(α) allocation to create skewed data shards [48].
In our experiments we choose α = 1.0, which produces
moderately non-IID splits: each node’s dataset Di is
biased towards a subset of CIFAR-10 classes, though not
completely single-class.

The model architecture used for all experiments is LeNet-
5, a classic convolutional neural network (CNN). LeNet-5
consists of two convolutional layers (with pooling) followed

3Code based on DecentralizePy
4https://pytorch.org/
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by two fully-connected layers, and was originally designed for
digit classification. We adapt LeNet-5 to CIFAR-10 by using
3-channel input and 10 output classes. Despite its simplicity,
LeNet-5 can achieve reasonable accuracy on CIFAR-10 with
proper training, and its small size (around 60k parameters)
makes it suitable for extensive experimental runs. All nodes
initialize their local model w(0)

i to the same random initial
weights before training begins (ensuring a common start point
for learning).

We fix a training schedule of 300 communication rounds
(iterations of the decentralized protocol). In each round, nodes
perform local SGD on their data. We set the local computation
such that each node completes 1 local epoch (pass through its
local dataset) per round, which in our setup corresponds to
30 training steps per round (since with batch size B, number
of batches ≈ 30 covers the node’s data; effectively we train
30 minibatches locally each round). We use a fixed learning
rate and no global learning rate decay for simplicity, since our
focus is on comparative robustness with and without defenses
(all models, baseline and defended, see the same training
schedule).

During training, 3 out of the 16 nodes (18.75%) are des-
ignated as Byzantine (malicious). These adversarial nodes are
chosen arbitrarily at the start and remain malicious throughout
the training (no dynamic compromise or recovery). The honest
13 nodes are not aware of which peers are malicious and treat
all incoming messages normally.

C. Backdoor Attack Suite

Backdoor attack: In this attack, adversarial nodes aim to
implant a specific backdoor trigger into the global model with-
out significantly affecting normal accuracy. Each malicious
node alters a fraction of its training data by inserting a small
trigger pattern into the images and changing their labels to a
predetermined target label yt . Specifically, a certain percentage
p% (poisoning rate) of the node’s local examples are modi-
fied: for each such example, a fixed trigger pattern τmask is
stamped onto the image, and the image’s label is flipped to
yt (the attacker-chosen target class). The malicious node then
proceeds with local training on this poisoned dataset, which
causes its model update w̃(t)

i to learn the backdoor. The attack
success rate is:

ASR =
∑
|L|
j=0 c j,t − ct,t

|B|− ct,t

Untargeted label flipping: In this attack, the adversaries
poison their data in a non-targeted way: by randomly flipping
labels of training examples to incorrect classes. Each malicious
node takes some portion of its local dataset and assigns random
wrong labels to those examples (without using a specific
trigger pattern in the input). The goal of untargeted poisoning
is to degrade the overall model performance (lower the global
accuracy) rather than to induce a particular misclassification.
Malicious nodes still train on their poisoned data and send
chunks of the resulting model updates.

D. Defense Suite

Norm Clipping: This defense, proposed by Syros et. al. [4],
has each honest node limit the magnitude (Euclidean norm) of
incoming neighbor updates. The idea is to prevent any single
chunk from a neighbor from having an outsized influence due
to extremely large values (which might indicate a poisoning
attempt). In our implementation, before averaging a neighbor’s
chunk into the model, node i checks the ℓ2 norm of that chunk
w̃(t)

j [I(t)j→i] (the vector of parameter differences sent by neighbor

j). If ∥w̃(t)
j [I(t)j→i]∥2 exceeds a certain threshold τ , the chunk is

scaled down to norm τ . Formally, node i replaces w̃(t)
j [I(t)j→i]

by
w̃(t)

j [I(t)j→i] = w̃(t)
j [I(t)j→i] ·

τ

max(∥w̃(t)
j [I(t)j→i]∥2, τ)

, so that ∥w̃(t)
j [I(t)j→i]∥2 ≤ τ . In our experiments we set τown = 1.0

for the norm of an honest node’s own model update (we
never scale down its own update, assuming honest training
remains within this norm), and τnbr = 0.1 for the norm of each
incoming neighbor update. Norm clipping is computationally
cheap and distributed (each node does it independently). By
capping update magnitudes, it can limit the damage from
arbitrary poisoned chunks.

Adaptive Norm Clipping: This is a modified version of
norm clipping that dynamically adjusts the clipping threshold
based on recent history of neighbor behavior. The motivation
is that a static τnbr might be too conservative if a neighbor
usually provides updates similar in norm to the local node’s,
or too lenient if a clever attacker slowly increases norms.

• Max Norm Factor: 0.2,
• Min Norm Factor: 0.01,
• History Window Size: 20
Sentinel: Sentinel (proposed by Feng et al. [16]) is a

more complex three-stage filtering mechanism originally de-
signed for fully decentralized learning. We adapted Sentinel
to the chunked-update scenario. Each honest node, at each
round, will: (i) compute the cosine similarity between each
neighbor’s incoming chunk and the node’s own update, and
prune any neighbor chunks that are too dissimilar (below a
cosine similarity threshold) – the idea is that honest updates
should roughly agree in direction, whereas an outlier could be
malicious; (ii) perform a bootstrap weighting of the remaining
updates based on their loss contributions (giving less weight
to updates that increase a validation loss, for example); and
(iii) apply a scale normalization so that the weighted neighbor
updates have bounded influence. Sentinel combines these
steps to reject anomalous updates before aggregation. In our
implementation, we set the Sentinel parameters according to
the suggestions in the original paper (for instance, a certain
cosine similarity cutoff, etc.). However, it is important to note
that applying Sentinel to chunked models is challenging –
since each node only sees a fragment of each neighbor’s
update, the cosine similarity is computed on a partial vector
rather than the full model, which may reduce its effectiveness.
We include Sentinel mainly as a reference to state-of-the-art:
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each node runs the Sentinel filter on the three incoming chunks
each round and then aggregates whatever remains.

VI. PERFORMANCE EVALUATION

All of the experiments were conducted in both IID and non-
IID setting. Testing on non-IID data ensures representability
of attacks and defenses, since in most real-world scenarios a
participant does not have the same distribution of data as their
neighbors. The partitioning function used was dirichlet with
an alpha parameter (α = 1) allowing for uniform selection over
all possible classes.

A. Baselines

We consider the following baselines (Table I and Table II):
• Vanilla Chunked DL (CDL) with no attack and no defense

employed - This experiment showcases the basis on
which we judge, whether we have succeeded or not.

• Baseline Model under Backdoor Attack (BA) - we
demonstrate stealthiness and efficiency of the attack on
chunked models.

• Baseline Model under Untargeted Label Flipping attack
(UF) - we the efficiency of the attack on chunked models.

• Baseline Model with Sentinel (SL) - we show the effect
of running Sentinel on chunked models.

• Baseline Model with Norm Clipping (NC) - we show the
effect of running Norm Clipping on chunked models.

• Baseline Model with Adaptive Norm Clipping (ANC) -
we show the effect of running Adaptive Norm Clipping
on chunked models.

B. Defenses vs Attacks

Now we demonstrate the defending capabilities of our
defenses against every attacks. Each defense is tested against
each attack to showcase their defending power(Table I and
Table II):

• Sentinel under Backdoor Attack (SL-BA)
• Norm Clipping under Backdoor Attack (NC-BA)
• Adaptive Norm Clipping under Backdoor Attack (ANC-

BA)
• Sentinel under Backdoor Attack (SL-UF)
• Norm Clipping under Backdoor Attack (NC-UF)
• Adaptive Norm Clipping under Backdoor Attack (ANC-

UF)

VII. DISCUSSION

A. Baselines

In the IID scenario, the baseline model (with no attacks
or defenses) converged to a high accuracy on the CIFAR-
10 task (see CDL in Table I). In the non-IID scenario, the
model likewise reached a strong accuracy, albeit slightly lower
due to the heterogeneous data distribution (again see CDL
in Table II). These baseline results confirm that, under ideal
conditions, the fully decentralized chunked-model approach
can learn effectively. However, when attacks are introduced,
significant vulnerabilities emerge. Without any defenses, the
backdoor attack proved highly effective and stealthy in both

Algorithm Accuracy ASR
ANC 57.93±0.02% 7.01±0.11%
ANC-BA 57.92±0.02% 6.70±0.51%
ANC-UF 55.68±0.21% N/A
CDL 73.04±0.10% 7.98±0.04%
BA 72.71±0.23% 85.07±0.13%
NC 57.33±0.07% 7.01±0.48%
NC-BA 57.14±0.25% 20.83±2.06%
NC-UF 54.30±0.21% N/A
SL 73.17±0.08% N/A
SL-BA 72.14±0.28% 85.48±0.06%
SL-UF 9.94±0.00% N/A
UF 9.91±0.06% N/A

TABLE I: IID Aggregated Results from 3 experimental run(s)
(Mean ± Standard Deviation)

IID and non-IID settings (see BA in Table I and Table II):
the attack success rate (ASR) at convergence was extremely
high (exceeding 80%), while the model’s accuracy on clean
(non-triggered) inputs remained near the baseline. In contrast,
the untargeted label-flip attack caused a sharp drop in overall
test accuracy (see UF in Table I and Table II), illustrating the
model’s fragility when faced with random label noise. Unlike
the backdoor, the label-flip attack visibly degraded the model’s
normal accuracy, underscoring the vulnerability of the chunked
decentralized training to even blatant poisoning.

It is also important to note the effect of defenses on the
baseline performance. In no-attack scenario, Norm Clipping
and Adaptive Norm Clipping introduced a modest reduction in
accuracy despite the absence of attackers (see NC and ANC in
Table I and Table II). This indicates that while these defenses
strengthen robustness, they do so at the expense of some model
performance in attack-free settings. Opposed to that Sentinel
(see SL in Table I and Table II) did not induce such cost in
the no-attack scenario.

B. Defenses vs. Attacks

Both Norm Clipping and Adaptive Norm Clipping signif-
icantly mitigated the impact of attacks in our decentralized
learning experiments. Although these defenses reduced the
final clean accuracy, they were highly effective in curbing
the backdoor attack’s success. With either clipping defense in
place, the backdoor’s ASR dropped from near 85% (in the
undefended case) to a much lower value (see NC-BA and
ANC-BA in Table I and Table II). For example, Norm Clipping
limited the ASR to 20% in the IID setting, and kept it similarly
low in the non-IID setting (with the non-IID case showing
only a marginally higher ASR than IID). Adaptive Norm
Clipping performed better than the static Norm Clipping—by
dynamically adjusting its per-neighbor threshold. It managed
to lower the ASR to only 6.7% in the IID scenario and 17.8%
in the non-IID scenario.

In addition to countering backdoors, the clipping defenses
also helped withstand label-flipping attacks (see ANC-UF and
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Algorithm Accuracy ASR
ANC 44.12±0.08% 8.22±0.10%
ANC-BA 40.94±0.38% 17.80±0.09%
ANC-UF 41.42±0.40% N/A
CDL 63.13±1.04% 7.94±0.18%
BA 62.66±0.03% 85.06±0.60%
NC 43.75±0.06% 7.04±0.65%
NC-BA 41.96±0.09% 23.12±1.35%
NC-UF 41.92±0.10% N/A
SL 63.74±0.27% N/A
SL-BA 61.94±0.84% 85.94±1.44%
SL-UF 9.91±0.06% N/A
UF 9.87±0.06% N/A

TABLE II: NIID Aggregated Results from 3 experimental
run(s) (Mean ± Standard Deviation)

NC-UF in Table I and Table II). Under the untargeted label-
flip attack, an honest model without defenses suffered a severe
accuracy collapse, whereas with Norm Clipping or its adaptive
variant, the global model maintained much higher accuracy.
The defenses capped the influence of malicious updates, so
the random label noise from adversaries did not entirely
derail training. Overall, Norm Clipping and Adaptive Norm
Clipping proved robust across all tested attack types, in both
IID and non-IID settings, demonstrating their effectiveness
at protecting chunked model exchange against both subtle
backdoors and noisy label poisoning.

By contrast, the Sentinel defense was largely ineffective
in our fully decentralized chunked-model setting. Deploying
Sentinel did not meaningfully reduce the backdoor ASR (see
SL-BA in Table I and Table II): the backdoor remained as
successful as in the no-defense case, indicating that Sentinel
failed to detect or mitigate the attack. A similar lack of
improvement was observed against the label-flipping attack
(see SL-UF in Table I and Table II) — Sentinel provided little
to no benefit in preventing accuracy degradation. The likely
reason for this failure lies in Sentinel’s design, which relies on
comparing full model updates or computing cosine similarities
across complete models. In a chunked update scenario, each
node only receives a small fraction of each neighbor’s model
parameters, severely limiting the information available for
anomaly detection. Sentinel’s mechanism cannot aggregate a
holistic view of neighbors’ updates under these conditions, and
thus it cannot effectively flag malicious deviations. This result
highlights a crucial insight: defense techniques that assume
access to entire model updates (as many federated learning
defenses do) may not transfer to fully decentralized, partially-
observed (chunked) environments. Some static defenses like
Norm Clipping, which clip the updates of neighbors to a given
percentage of the current ℓ2 norm succeed in mitigating the
attacks, but degrade the overall test performance noticeably.
New or adapted defenses are required to handle the challenges
introduced by model chunking.

C. Future work

Although experiments were comprehensive in this study,
our computational power was severely limited. As a potential
improvement we suggest changing the following things:

• Increasing the local steps per epoch - Currently, we only
perform 1 local steps per epoch for 30 epochs on each
training round. Increasing the training steps may increase
convergence and improve baseline models. However, in-
creasing training steps will likely increase the adversaries
powers to inject backdoor behavior. The effects on benign
nodes and malicious nodes need to be further studied.

• Adding more nodes - Currently, we are using 16 nodes.
A more realistic scenario might include a bigger number
up to 100 nodes (sparsely connected to reflect realistic
situations).

• Varying the number of adversarial nodes - our assump-
tions is that the percentage of adversarial nodes is quite
high, in order to stress test the system. In reality it may
be lower, since the nodes may be better protected.

• Changing the model - right now because of computational
constraints, we have used the LeNet5 model, which is
known to achieve acceptable accuracy on CIFAR10 for
quite short time frame. However, there are more powerful
models for the classification task of CIFAR10 like ResNet
models, ViT-H/14, ViT-L/16, MobileNet models, etc.

VIII. CONCLUSION

This thesis investigated the resilience of fully decentral-
ized learning systems exchanging chunked models against
Byzantine attacks, specifically backdoor and label-flipping
attacks. Experiments conducted on a 16-node decentralized
network demonstrated significant vulnerabilities, highlighting
that adversarial nodes could implant effective backdoors or
substantially degrade model performance through label poison-
ing. Norm Clipping and its adaptive variant emerged as highly
effective defenses, significantly reducing the attack success
rates, however they incurred a modest final test accuracy
degradation. Conversely, Sentinel proved ineffective in this
context, emphasizing the challenge of applying centralized
federated learning defenses to partially observed decentralized
updates. There is a need for further research into potential
defense classes for chunked DFL, that are not based on robust
aggregators (like Sentinel )and do incur utility cost (like
Norm Clipping and Adaptive Norm Clipping). Limitations
include the restricted model complexity, small network size,
fixed adversarial proportion, and moderately non-IID data
distribution. Future research should explore larger-scale and
more dynamic networks, more powerful and complex models,
varying adversarial scenarios, adaptive attacker-defender in-
teractions, and defenses explicitly tailored to chunked decen-
tralized settings. Overall, this work establishes foundational
insights into the robustness of decentralized learning with
chunked model exchange and outlines critical directions for
advancing security in peer-to-peer machine learning.
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IX. RESPONSIBLE RESEARCH

This research was carried out with a careful eye on ethical
standards and proper procedures. It follows the guidelines
mentioned in the Netherlands Code of Conduct for Research
Integrity[49]. Public, open-access dataset (CIFAR-10) were
used to promote accessibility and reproducibility of results.
These datasets are established standards for assessing machine
learning performance and are free of personal and sensitive
data and hence meet privacy and data handling responsibilities
norm.

This study explores adversarial attacks comprehensively,
both targeted label-flipping and backdoor attacks. Throughout
the process, our aim was to advance decentralized learning
systems’ security and robustness. We recognize that harmful
exploitation is a possibility. The methods and conclusions
drawn from this research may be applied with ill intent to
sabotage or backdoor a decentralized system. For this reason,
it is imperative that future researchers and practitioners are
themselves responsible custodians of these methods and the
code.

This study’s source code and detailed documentation are
securely retained in an access-restricted private GitLab repos-
itory. Access for interested scholars and researchers needs to
be requested through contacting the authors and/or TU Delft.
The in-depth documentation of the code encourages openness,
reproducibility and facilitates future researchers’ ability to
extend our research responsibly. In terms of environmental
effects, the current research indicates an absence of obvious
ecological harm. Systematic computational analyses were con-
ducted on controlled and optimized computer architectures
according to established standards for efficient resource uti-
lization and handling.

Large Language Models (ChatGPT, Claude 4 Sonnet and
Gemini) were used solely for grammar checking, generating
documentation and minimally assisting in implementations.
All optimizations of code and text was written without the
help of LLM.
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APPENDIX

Fig. 3: Baseline (IID vs. non-IID)

Fig. 4: Backdoor attack

Fig. 5: Untargeted label flipping
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Fig. 6: Sentinel defense

Fig. 7: Norm clipping defense

Fig. 8: Adaptive norm clipping defense

Fig. 9: Norm clipping under backdoor attack

Fig. 10: Adaptive norm clipping under backdoor attack

Fig. 11: Sentinel under backdoor attack

Fig. 12: Norm clipping under untargeted flip

Fig. 13: Adaptive norm clipping under untargeted flip
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Fig. 14: Sentinel under untargeted flip
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