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ABSTRACT

The goal of automated refactoring is to reduce maintenance e�ort.

To realize this, programmers need to be able to trust or manually

check that refactorings actually preserve behavior. To allow pro-

grammers to focus on such checks, automated refactorings should

preserve program well-typedness. However, historically automated

refactorings in popular IDEs could break well-typedness. The rea-

son is that modern languages have complex name binding semantics

which makes it hard to guarantee well-typedness in general.

In recent work, scope graphs have been proposed as a uniform

model for name binding. Themodel supports complex name binding

patterns, and its uniformity makes it attractive to consider for

verifying that refactorings preserve well-typedness. This paper

explores how to prove that refactorings preserve well-typedness,

using scope graphs. We consider a simple refactoring for merging

modules in a toy module language, and prove that this refactoring

preserves well-typedness. We give a generic template for proving

well-typedness preservation using scope graphs, and discuss how

this template relates to refactorings more generally.
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1 INTRODUCTION

Refactoring is an important aspect of large software project de-

velopment. The idea is to modify the internal structure of code

components while preserving their externally observable behav-

ior, such that it becomes easier to understand and modify compo-

nents in the future. For large software projects, manual refactorings

can be prohibitively expensive. For this reason, modern IDEs and

FTfJP ’23, July 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0246-4/23/07.
https://doi.org/10.1145/3605156.3606455

code transformation tools provide integrated support for automated

refactoring. In a study on behavior preservation approaches, AlO-

mar et al. [1] conclude that the behavior of many refactorings are

under-researched. A key challenge of automated refactoring is the

di�culty of guaranteeing that code transformations preserve exter-

nal behavior. To mitigate this, automated refactoring is, according

to Tip et al. [11], an interactive process relying on the programmer

to manually check that behavior is preserved post refactoring. To

reduce the work of programmers, automated refactorings should

preserve the well-typedness of programs. While not as strong a

property as behavioral preservation, well-typedness would catch

many behavioral problems as well. Name binding issues in particu-

lar are a common cause for bugs in new refactorings [8].

Modern tools for program transformation, such as Stratego 2

and Rascal [9, 15], can guarantee that transformed programs are

syntactically correct. This guarantee arises from the fact that these

transformations are de�ned directly on the underlying syntactic

model of abstract syntax trees, speci�ed by context-free grammars.

However, it is challenging to guarantee that refactorings preserve

well-typedness. Modern languages provide �ne-grained control

over how to structure and reuse code components via complex name

binding features, such as class-based inheritance, nested classes,

static members, traits, imports, generics, etc. Refactoring engines in

modern IDEs address this challenge by incorporating types in their

engine [11]. But, with the exception of the work of Schäfer et al.

[7], refactoring engines do not come with formal guarantees that

they preserve well-typedness. We conjecture that a reason for this

lack of formal guarantee is that modern programming languages

have lacked a uniform model of name binding, unlike syntax.

Visser and coauthors [3, 6, 13, 14, 16] have recently developed

scope graphs as a candidate for this lacking model. Scope graphs pro-

vide a formalism and data structure for de�ning the static semantics

of name binding and resolution. This uniform data structure sup-

ports declarative speci�cation of static semantics [6, 13, 14]. From

these speci�cations, we can derive both executable type checkers

and language parametric editor services such as semantic code com-

pletion [4]. In § 2, we provide a more formal explanation for scope

graphs used throughout the remainder of the paper.

This paper explores how scope graphs can be used to prove that

refactorings preserve well-typedness. We consider a small module

language which, in spite of its simplicity, has features that are

representative of more realistic languages.

Contributions. They key contribution in our paper is a proof

template for verifying that a refactoring preserves well-typedness.

We instantiate the template on a refactoring for a module merge

refactoring for a small module language (§ 3), and discuss how the

template scales to more realistic languages and refactorings (§ 4).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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2 BACKGROUND: TYPE SYSTEM
SPECIFICATION USING SCOPE GRAPHS

A scope graph is a generic model that represents the name binding

structure of a language. For simplicity, we consider a simpli�ed

notion of scope graphs compared to the traditional notion due to

Visser and coauthors [3, 6, 13, 14, 16]. We discuss our simpli�cations

in detail in § 4. For our purpose, we de�ne scope graphs as follows:

De�nition 2.1 (Scope Graph). A scope graph� is a triple ((, �, d),

where ( is a set of identi�ers representing scopes (nodes) in the

graph. � is a function ( → P((), where � (B) represents the set

of outgoing edges of scope B . Finally, d is a function ( → P(�),

where d (B) is the set of declarations associated with scope B . The set

of all possible declarations � varies from language to language. We

will write (� , �� , and d� to project the corresponding components

from a graph.

Edges represent the access between the di�erent scopes. E.g., An

edge from a scope B1 to B2 could indicate that B1 is a lexical child

of B2, or that B1 imports B2. References in a program are resolved

by �nding paths in the scope graph, which are denoted using a

reachability relation↠.

De�nition 2.2 (Reachability). For a scope graph � with B ∈ (�
and 3 ∈ � , we say that 3 is reachable from B if B ↠ 3 holds. The

relation↠ is de�ned as follows:

3 ∈ d� (B)

B ↠ 3

B′ ∈ � (B) B′ ↠ 3

B ↠ 3

A proof for B ↠ 3 can be represented as a path B · B1 · ... · B= ·3 with

length =.

The typing rules of a language de�ne a relation � ⊢ ? (read:

program ? is well-typed under scope graph �). With this, we can

de�ne what it means for a refactoring to preserve well-typedness.

De�nition 2.3 (Preservation of Well-Typedness). Let J_K be some

refactoring from program to program. The refactoring preserves

well-typedness if for all well-typed programs ? under scope graph�

(i.e.� ⊢ ?), there exists a scope graph� ′ under which the refactored

program is well-typed (� ′ ⊢ J?K).
Simple Module Language. In Figure 1, we show the typing rules

of a simple conceptual language with modules (SML). An SML

program is a sequence of modules, each having a name, a sequence

of import statements, and �elds. Variables have access to all �elds

within the same module and the imported modules. Imports work

transitively. As a simpli�cation, we will not account for shadowing

and assume that every name occurring in a program is unique.

The SML-prog rule asserts that a program has a single global

program scope B ∈ (� with no outgoing edges. The SML-mod

rule asserts for each module, that there is a scope Bm ∈ (� with an

outgoing edge to B , indicating that themodule is a lexical child of the

top-level program. Amodule scope has an additional set of outgoing

edges B_is representing imports. This speci�es that references in a

module can reach all declarations from other modules it imports.

The transitive import behavior is a result from imported module

scopes having edges to their own imported modules.

The program scope contains module declarations, whereas the

module scopes contain �eld declarations.

Syntax

8 ∈ Z integers

G ∈ X := some countable set

4 ::= 8 | G expressions

5 ::= G := 4 �elds

imp ::= import G imports

< ::= mod G ; 8<?∗; 5 ∗ modules

? ::= prog<∗ programs

Typing Rules

(SML-int)
�, Bm ⊢ 8 : int

(SML-var)
Bm ↠ FIELD(G, C)

�, Bm ⊢ G : C

(SML-�d)
�, Bm ⊢ 4 : C

�, Bm ⊢ G := 4 : FIELD(G, C)

(SML-imp)
B ↠ MOD(G, Bi)

�, B ⊢ import G : Bi

(SML-mod)

Bm ∈ (� �� (Bm) = {B} ∪ s_is

(∀8 �, B ⊢ is8 : s_is8 )

d� (Bm) = ds (∀8 �, Bm ⊢ fs8 : ds8 )

�, B ⊢ mod B; is; fs : MOD(G, Bm)

(SML-prog)

B ∈ (� �� (B) = ∅

d� (B) = ds (∀8 �, B ⊢ ms8 : ds8 )

� ⊢ prog ms

Figure 1: Syntax and typing rules of a simple module lan-

guage.

(1) As shown by SML-�d, a �eld declaration is represented by

FIELD(G, C), where G is the name of the �eld and C the type.1

When resolving variables in SML-var, we assert the existence

of a path to a FIELD declaration.

(2) As shown by SML-mod, a module declaration is represented

by MOD(G, Bm), where G is the name of the module and Bm
is the scope that corresponds to the module. Including the

module scope in the declaration allows us to use it to create

import edges towards that module scope.When resolving im-

port statements (SML-imp), we assert the existence of a path

to a MOD declaration. Having scopes be part of declarations

is known as the scopes as types paradigm [12].

In Figure 2, we give an example of an SML program with two

modules, including its corresponding scope graph. The circles in the

�gure represent scopes, where B is the program scope and Bfoo and

Bbar are the module scopes for the corresponding modules. Arrows

between scopes represent edges. A square-tip arrow pointing to a

rectangle represents a declaration belonging to a scope. Finally, a

dashed arrow from declaration to scope indicates that the declara-

tion contains said scope. Module bar contains a reference to �eld x.

This means a FIELD declaration with name x should be reachable

1Because SML only supports the int type for variables, we could have also excluded
the type argument from FIELD.
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prog

mod foo ; ; x : = 5

mod bar ; impor t foo ; y : = x

B

Bfoo Bbar

MOD(foo) MOD(bar)

FIELD(x, int) FIELD(y, int)

Figure 2: An example SMLprogramwith corresponding scope

graph following the rules from Figure 1.

from scope Bbar. We can see in the �gure that this will successfully

resolve using the edge from Bbar to Bfoo.

3 EXAMPLE: MERGING MODULES

In Figure 3, we de�ne a refactoring on SML, previously outlined in

Figure 1, that merges the �rst and second modules of a program

together. It involves concatenating the �elds and the imports of the

two modules together. The name of the merged module is set to

the name of the �rst module. We ignore cases where a program has

less than two modules. If the two modules have the same import

statement, then the merged module will have a duplicate import

statement. Similarly, the merging might introduce a self-import.

While these are not desirable properties, they do not break well-

typedness and can be ignored for the sake of simplicity. An example

application of this refactoring is shown in Figure 4.

Modules that used to import the second module will now have to

import the �rst. This is the purpose that the function FixImpJ<, G,~K
serves. Here, G and ~ are the names of the �rst and second module

respectively. The FixImpJ_K∗ notation indicates we are mapping

the function on a sequence of modules.

Our goal is to prove that this refactoring preserveswell-typedness

as per De�nition 2.3. Before going into greater detail, we will �rst

sketch the idea behind the proof through an example.

In graph illustration included in Figure 4 contains two (partially

shown) scope graphs, the top half represents the scope graph before

refactoring. For simplicity, we left out the module declarations and

�elds a and b. The lower half of the graph is a new transformed

graph after merging foo and bar. We have left out the transformed

program scope. The dashed lines indicate an association between

scopes in the original graph and the transformed graph. The fact

that both Bfoo and Bbar associate with B
′
foo

is an indication that B′
foo

is the merging of the former two scopes.

Our module bar includes a reference to �eld x. How would we

show that x is still reachable from the merged module B′
foo

? For

this, we de�ne some relation ≫M between scopes in the original

graph and the transformed graph. We write B ≫M B′ to indicate

that all declarations that can be reached from B , can also be reached

from B′. In other words, we wish to prove that Bbar ≫M B′
foo

.

Syntax Transformation

Jprog [(mod G ; is; fs) :: (mod ~; js; gs) :: ms]K
= prog FixImpJ[(mod G ; is js; fs gs) ::<B], G,~K∗

FixImpJ(mod 0; is; fs), G,~K = mod 0; (FixImpJis, G,~K); fs

FixImpJ(import 0), G,~K = import G where 0 = ~

FixImpJ(import 0), G,~K = import 0 where 0 ≠ ~

Graph Transformationu
wwv

B ∈ (� ... �, B ⊢ mod G ; ... : MOD(G, Bmx)

�, B ⊢ mod ~; ... : MOD(~, Bmy)

� ⊢ prog [(mod G ; is; fs) :: (mod G ; js; gs) :: ms]

}
��~

G

= new B′ with XP (B) = B′

� (B′) = ∅

d (B′) = {MOD(G, B′mx)} ∪ ds

⊔ new B′mx with XM (Bmx) = XM (Bmy) = B′mx

� (B′mx) = {B′} ∪ s_is ∪ s_js

d (B′mx) = d� (Bmx) ∪ d� (Bmy)

⊔
⊔

8 J(�, B ⊢ ms8 ⊢ ...), B′KG
where ds =

⋃
8 TransDeclJ�, B ⊢<B8 : ...K

s_is =
⋃

8 TransEdgeJ�, B ⊢ is8 : ...K
s_js =

⋃
8 TransEdgeJ�, B ⊢ js8 : ...K

J(�, B ⊢ mod G ; is; fs : MOD(G, Bm)), B′KG
= new B′m with XM (Bm) = B′m,

� (B′m) = {B′} ∪ s_is

d (B′m) = d� (Bm)

where s_is =
⋃

8 TransEdgeJ�, B ⊢ is8 : ...K

TransDeclJ�, B ⊢ mod G ; is; fs : MOD(G, Bm)K = MOD(G, XM (Bm))

TransEdgeJ�, B ⊢ import G : BiK = XM (Bi)

Figure 3: Refactoring for the SML language that merges the

�rst two modules in together.

At the base case, we get that Bqux ≫M B′qux, because they both

have the declaration x. We can show that Bbaz ≫M B′
baz

using one

inductive step, as the import edge from Bbaz to Bqux can be "simu-

lated" by taking the import edge B′
baz

to B′qux. With an additional

inductive step, we also get that Bbar ≫M B′
foo

by simulating the

edge from Bbar to Bbaz by the edge from B′
foo

to B′
baz

. This shows that

�eld x will still be reachable from the merged module.

In the remainder of this section, we prove the preservation of

well-typedness in greater detail (while ignoring some cases in the

interest of compactness).

3.1 Step 1 - The Graph Transformation

In proving the preservation of well-typedness, we need to prove

the existence of a new scope graph under which the output pro-

gram is well-typed. Our �rst step in this proof should therefore be

constructing the graph transformation function.
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mod foo ; ; a : = 1

mod bar ; impor t baz ; b : = x

mod baz ; impor t qux ;

mod qux ; ; x : = 5

/ / a f t e r r e f a c t o r i n g

mod foo ; impor t baz ; a : = 1 , b : = x

mod baz ; impor t qux ;

mod qux ; ; x : = 5

Bfoo Bbar Bbaz Bqux

B

x

B′quxB′
baz

B′
foo

Figure 4: An example merge refactoring with (partially

shown) corresponding scope graphs.

We wish to re-use elements from the original graph in our trans-

formation function. However, graphs are de�ned in a manner too

abstract to properly pattern match on. E.g., how do we extract the

global program scope given just the tuple ((, �, d)? Instead, we

de�ne a graph transformation J_KG by pattern matching on the

typing judgements from Figure 1. Rather taking just the graph� as

input, we take the entire proof tree � ⊢ ? as input.

Figure 3 includes the graph transformation for the merge refac-

toring. Within this function, we use the notation new B with 2∗

to create a graph with a single fresh scope B that satis�es each

constraint 2 . Speci�cally, the constraints tell what the edges and

declarations of B are (and a mapping X , explained below). The ⊔

operator unions two graphs together.

The function constructs a new program scope B′ and a new

module scope B′mx, where B
′
mx represents themerging of themodules

with scopes Bmx and Bmy.

To relate scopes from the input graph to the output graph, we

construct two di�erent mappings XP and XM , re�ecting the dif-

ferent types of scopes that might occur. Mapping XP only maps

the program scope, whereas XM maps the module scopes. In the

example illustration of Figure 4, the dashed lines between the scope

graphs represent XM .

The new program scope B′ will have no outgoing edges. Its

declarations will change though.We include the module declaration

MOD(G, B′mx), representing the merged module, in d (B′). Next we

need to include the module declarations ds representing the trailing

modules ms. To extract a declaration from its module, we have

created the function TransDeclJ_K. This function has the following

behavior: For a module whose original declaration was MOD(G, Bm),

we get a new declaration MOD(G, XM (Bm)). Re-using the constructed

mapping XM allows for this shorthand writing.2

In the creation of the new module scope B′mx, the idea is to union

the edges and declarations of the original scopes Bmx and Bmy. The

union of the declarations can be done using straightforward set

union d� (Bmx) ∪ d� (Bmy). For the edges, we include the program

scope B′, the set of converted imported scopes B_is from the �rst

module, and the set B_js from the second module. Similarly to how

we converted the module declarations for the program scope, we

can convert import edges using XM , de�ned in TransDeclJ_K.
Lastly, we construct the new scopes for all remaining trailing

modules ms using J_, _KG . This part remains equivalent to the

original scope graph, with the exception that we again convert the

import edges using the mapping XM .

3.2 Step 2 - De�ning Path Transformations

The main di�culty in proving well-typedness preservation lies in

the path assertions from our typing rules, i.e., assertions of the form

B ↠ 3 . In order to prove that a path exists in our output graph, we

would like to re-use and "transform" paths from the input graph.

We do this by de�ning path transformation relations ≫P and ≫M .

The idea behind a path transformation relation ≫ is that when

writing B ≫ B′, we claim that every "relevant" declaration that can

be reached from B ∈ (� , can also be reached from B′ ∈ (� ′ , modulo

some possible change on the declaration.

Relation≫P is used for the global program scope and its module

declarations. It should re�ect the following: All module declarations

MOD(I, Bm) in the program scope should still be reachable in the

output graph, with the exception of themodule named~ (the second

module in the program). The scope Bm transforms into X (Bm).

Relation ≫M is used by module scopes and its �eld declaration.

It should re�ect that all reachable �eld declarations FIELD(G, C)

from a module scope should still be reachable in the output graph.

De�nition 3.1 (XP and XM path transformation). Given graphs

� and� ′, with scopes B ∈ (� and B′ ∈ (� ′ , we write B ≫P B′ if the

following holds for all declarations 3 = MOD(I, Bmz):

if B ↠ MOD(I, Bmz) and I ≠ ~, then, B′ ↠ MOD(I, XM (Bmz)),

where~ is an identi�er representing the name of the second module

in a program. Identi�er ~, as well as mapping XM , should be clear

from the context.

Furthermore, we write B ≫M B′ if the following holds for all

declarations 3 = FIELD(G, C):

if B ↠ FIELD(G, C), then, B′ ↠ FIELD(G, C) .

3.3 Step 3 - Proving Path Transformations

We claim that the scope mapping XP corresponds with ≫P , i.e.,

B ≫P X (B), as well as that XM corresponds with ≫M .

Lemma 3.2 (XP -map correctness). Given a well-typed program

� ⊢ ? , where ? = prog [(mod G ; is; fs) :: (mod ~; js; gs) :: <B], let

� ′
= J� ⊢ ?KG with corresponding mapping XP . Then, for all scopes

B2 ∈ (� for which XP (B2) ∈ (� ′ exists, it holds that B2 ≫P XP (B2).

2The algorithm would need staging, as XP and XM have to be constructed before it
can be re-used. This can be done because the construction of the scopes can be made
independent on the construction of edges and declarations.
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Proof. From � ⊢ ? , we can infer the following: B ∈ (� ,

�� (B) = ∅, d� (B) = {MOD(G, Bmx), MOD(~, Bmy)} ∪ ds.

The transformation J� ⊢ ?KG creates a graph with new program

scope B′, �� ′ (B′) = ∅, d� ′ (B′) = MOD(G, B′mx), with XP (B) = B′ and

XM (Bmx) = B′mx.

Note that the program scope B is the only scope for which a

mapping XP (B) exists. Because we only consider cases where B2
has a XP -mapping, we can instantiate B2 to B .

We need to prove that for all declarations 3 = MOD(I, Bmz), where

I ≠ ~, if we have a path @ for B ↠ MOD(I, Bmz), then we also have a

path @′ for B′ ↠ MOD(I, XM (Bmz)).

Because B has no outgoing edges, we only need to con-

sider the empty path case where 3 ∈ d� (B). We will show that

MOD(I, XM (Bmz)) ∈ d� ′ (B′). There are two possible cases for 3

where I ≠ ~:

(1) 3 = MOD(G, Bmx). By de�nition, we have a declaration

MOD(G, B′mx) = MOD(G, XM (Bm)) ∈ d� ′ (B′).

(2) 3 = ds8 , with �, B ⊢ ms8 : ds8 . By de�nition, we have that

J�, B ⊢ ms8KD ∈ d� ′ (B′). The transformation J_KD produces

the exact declaration we desire.

□

Lemma 3.3 (XM -map correctness). Given a well-typed program

� ⊢ ? , where ? = prog [(mod G ; is; fs) :: (mod ~; js; gs) :: <B], let

� ′
= J� ⊢ ?KG with corresponding mapping XM . Then, for all scopes

B2 ∈ (� for which XM (B2) ∈ (� ′ exists, it holds that B2 ≫M XM (B2).

Proof. From � ⊢ ? we can infer that B, Bmx, Bmy ∈ (� ,

�� (Bmx) = {B} ∪ B_is, �� (Bmy) = {B} ∪ B_js, d� (Bmx) = dfs,

d� (Bmy) = dgs. The graph transformation J� ⊢ ?KG gen-

erates a new scope graph with scopes B′, B′mx where

�� ′ (B′mx) = {B′} ∪ B_is′ ∪ B_js′, d� ′ (B′mx) = d� (Bmx) ∪ d� (Bmy),

XP (B) = B′, XM (Bmx) = XM (Bmy) = B′mx. It also creates the

sub-graph
⊔

8 J(�, B ⊢ ms8 ), B
′K.

The goal is to show that for all declarations 3 = FIELD(I, C), if

B2 ↠ 3 , then X (B2) ↠ 3 . There are several possible instantiations

for B2 we have to consider.

(1) Case B2 = Bmx. We prove this by induction on the length of

the path Bmx ↠ 3 .

(a) In the case where the path is empty, i.e., 3 ∈ d� (Bmx), we

get 3 ∈ d� (Bmx) ∪d� (Bmx) = d� ′ (B′mx), which shows that

B′mx ↠ 3 .

(b) Suppose we have a non-empty path, i.e., B3 ∈ �� (Bmx)

and B3 ↠ 3 . We can ignore the case where B3 equals the

program scope B , as B does not declare FIELDs, nor does

it have outgoing edges. Instead, we assume B3 ∈ B_is (an

import edge). The set of transformed import edges B_is′

is de�ned through the function J�, B ⊢ import...KE . This
function essentially maps all edges B_is through XM . Thus,

we know that there exists a scope B′
3
= XM (B3) ∈ B_is′ ⊆

�� ′ (B′mx). In other words, we simulate the edge from Bmx

to B3 by taking the edge from B′mx to B
′
3
. By the induction

hypothesis, we know that B3 ≫M B′
3
, which �nalizes our

path transformation.

(2) Case B2 = Bmy. This proof is analogous to the previous case.

(3) Next, we need to consider all cases where B2 is a module

scope for a module in the non-merged modules ms, with

transformed graph
⊔

8 J(�, B ⊢ ms8 ), B
′K. We shall skip over

this case as these sub-graphs essentially remain unchanged,

with the exception of import edges being mapped through

XM , which have already shown to be properly transforming

paths.

□

3.4 Step 4 - Finalizing the proof

We can combine the di�erent moving parts constructed in the above

steps to state and prove the preservation of well-typedness.

Lemma 3.4 (Merging Module preserves well-typedness). For

a well-typed program � ⊢ ? , we get that J� ⊢ ?KG ⊢ J?K.

Proof. This can be proven by expanding � ⊢ ? . For this proof,

we make a distinction between the di�erent assertions in the typing

rules of Figure 1. We shall skip the simple scope, edge, or decla-

ration assertions (which have the form _ ∈ (� ′ , �� ′ (_) = ..., and

d� ′ (_) = ...), and jump straight to the more di�cult cases which

require us to prove path assertions (which have the form _ ↠ _).

These are speci�cally used for references to module declarations (in

import statements) and references to �elds (in variable expressions).

Because these two cases work more or less analogously, we will

only consider the case of variables.

We expand� ⊢ ? until we get a case�, Bm ⊢ G : C with hypothesis

Bm ↠ FIELD(G, C). Through this expansion, we get that transformed

graph � ′
= J� ⊢ ?KG has a scope B′m with XM (Bm) = B′m. We need

to show that variable G still resolves in the new graph � ′, i.e.,

B′m ↠ FIELD(G, C). This follows directly from Lemma 3.3. □

3.5 The General Proof Template

The proof we displayed used a template whose steps are summa-

rized below. In § 4 we discuss the template’s reusability.

(1) De�ne a graph transformation corresponding the refactoring

by pattern matching on the typing judgements of the lan-

guage. Include mappings X : (� → (� ′ to associate scopes

from the input graph to scopes in the output graph.3

(2) Analyze the path assertions from the typing rules of the

language and construct path transformation relations ≫.

(3) Prove B ≫ X (B) for each relation ≫ and corresponding X ,

typically done by induction on the size of the path.

(4) Finalize the proof.

4 DISCUSSION AND LIMITATIONS

We discuss two aspects of our work. First is the scalability of the

presented template to more realistic use cases. Secondly, we ask

ourselves how reasonable and trustworthy our § 3 proof is.

4.1 Towards Realistic Languages and
Refactorings

We have showcased a simple refactoring for a simple language,

but how well does this scale to more realistic use cases? While we

chose the SML language for its simplicity, it also allowed us to show-

case a wide range of what scope graphs have to o�er. We showed

3It is not necessary for every B ∈ (� to have a mapping X (B ) (for example when a
scope gets removed)
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two important concepts that are also prevalent in most modernly

used programming languages. Firstly, reachability represents the

idea of resolving references, such as variables, to their declaration.

Secondly, the scopes as types paradigm allows you to specify that

declarations can be accessed through other declarations such as

imports. Because we made our template in § 3.5 dependent solely

on the scope graph model, and because the scope graphs themselves

provide a uniform model for name resolution, we conjecture that

our approach would work on other languages whose type systems

are speci�ed using scope graphs.

A fair point to mention is that the scope graph model we pre-

sented in § 2 is only a simpli�cation. The most important feature we

omitted is labeled edges. Labels serve two purposes. Firstly, they are

used to �lter out incorrect paths. As an example, a more complete

type speci�cation for SML might have speci�ed that paths which

traverse more than one import edge should be ignored. This would

have yielded a non-transitive import behavior. Secondly, labels al-

low for the speci�cation of some ordering on paths, which would

allow us to express name binding concepts such as shadowing. For

SML, we could have expressed an ordering that prefers paths with

no import edges over paths with import edges. Type speci�cations

for more realistic languages require these features. Which means

that in order for our template to scale well, it would have to support

these two features.

The next question to ask is how well the template scales to more

realistic refactorings. While the merge module refactoring might

not be the most prevalent refactoring in IDEs, we would argue that

other common refactorings do work in a similar manner. Function

inlining, moving a method, promoting a local variable to a �eld,

and renaming all work by moving code around from one location to

another, or by making minor changes to declarations or references.

These can all be expressed as changes in a scope graph. These

changes induce path transformations that need to be shown to

preserve well-typedness.

A limitation in our proof template lies in its reliance on ex-

pressing refactorings as path transformations. Path transformations

mostly interact with the name resolution aspect of the type system,

and name resolution is just one aspect of a type system. However,

we argue that name resolution is typically the most intricate aspect,

because of its dependence on complicated type environments (or

in our case, scope graphs).

4.2 Complexity of the Proof

Another point for discussion is the complexity of the proof template

we contributed. One could question whether using traditional type

contexts [5] over scope graphs would yield simpler and shorter

proofs. We conjecture that using type contexts would be simpler,

given that it is not a uniform model and can be tailored specif-

ically to suit your language, whereas scope graphs give a more

constrained model. However, we would like to remark that we

chose the scope graph model speci�cally for its uniformity. We

argue that a proof template akin to § 3.5 would not be possible

without such a uniform model.

What about the trustworthiness of the § 3 proof?We hand-waved

many details away. We explicitly ignored cases that were deemed

uninteresting or analogous to other cases. Some operators were

described only informally, speci�cally the scope graph union ⊔

and the new scope operator new B with 2 . We also made several

unmentioned assumptions, among which are the following:

• We ignored graph minimality both in our type speci�cation

in § 2 as well as our proof. Graph minimality states that

if a program is well-typed under a graph � , then � is the

smallest graph for said program. This problem arises because

our typing rules only assert the existence of scopes in the

graph, while there might exist scopes whose existence has

not been asserted (dangling scopes). However, we argue

that this is a negligible problem, as dangling scopes are not

reachable from non-dangling scopes.

• Scope uniqueness is an important implicit assumption we

made. Again, because we only assert the existence of scopes,

it is possible that two scopes B1, B2 ∈ (� might be equal. In

SML, this might give strange behavior where there could,

for instance, be two modules in a program that share the

same module scope. Enforcing uniqueness would require

the partitioning of the scope graph in the typing rules in a

manner akin to separation logic.

• Our graph transformation function re-used mapping XM
for the conversion of scopes in order to, for example, create

the import edges. However, we informally de�ned that a

mapping for some scope is optional. This means that be-

fore re-using a mapping, a proof would be required that the

mapping exists at all.

While we ignored these details for the sake of conciseness, they

do harm the trustworthiness of the proof. Mechanizing the proof

in a proof assistant such as Agda or Coq [2, 10] would boost con�-

dence. However, at the time of writing this paper, no speci�cation

language using scope graphs has yet been mechanized in such a

proof assistant. We consider such a mechanization a prerequisite

before our proof could be mechanized. As such, it fell outside the

scope of the work we intended to present.

5 CONCLUSION AND FUTUREWORK

In this paper, we have explored how program refactoring interacts

with scope graphs and how scope graphs can be used to prove

that a refactoring preserves well-typedness with respect to name

resolution. For this, we presented a proof template and applied it

on a toy example refactoring that we argued is representative for

a wider range of refactorings. We argued that the template scales

well to more realistic languages, as scope graphs provide a uniform

model that supports these languages.

As future work, we would like the template to support the full

expressive power of scope graphs. This includes labeled edges, �l-

tering over paths, and providing an ordering on paths. Furthermore,

to increase con�dence in the correctness of our proofs, we would

like to mechanize them in a proof assistant such as Agda.
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