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Abstract In this paper, the wind-induced, horizon-
tal vibrations of a vertical Euler–Bernoulli beam will
be considered. At the top of the beam, a tuned mass
damper (TMD) has been installed. The horizontal vi-
brations can be described by an initial-boundary value
problem. Perturbation methods will be applied to con-
struct approximations of the solutions of the initial-
boundary value problem, and it will be shown that the
TMD uniformly damps the oscillation modes of the
beam. In the analysis, it will be assumed that damp-
ing, wind-force, and gravity effects are small but not
negligible.
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1 Introduction

In many mathematical models, oscillations of elastic
structures are described by (non)linear wave equations,
by (non)linear plate equations, or by (non)linear beam
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equations. Examples of wave-like or string-like prob-
lems are given in [1–3]. An example of a plate-like
problem is given in [4]. In this paper, beam-like prob-
lems will be considered. Bridges [5] and tall buildings
[6] can be modelled by elastic beams.

In recent years, more and more tall building were
built. For tall buildings, or high-rise buildings, dampers,
active or passive, are used to dissipate the energy of
the vibrations of the building. Passive dampers are
for instance tuned mass dampers (TMDs), tuned liq-
uid dampers (TLDs), or tuned mass liquid dampers
(TLCDs). A swimming pool or a water basin for the
sprinkler installation at the top of the building already
damps the vibration. A TMD is one of the most sim-
ple and economic ways to control the vibrations of a
beam structure. The TMD can be modelled as a simple
mass–spring–dashpot system.

In [7], a simple approach to the design of MDs is
used. It is based on a 1+1 and on a 4+1 degrees of
freedom (DOF) model of the system. In [6], a more
complicated model is used to consider the dynamics
of a tall building, where a TMD system is installed
at the top. Numerical methods are used to solve this
problem approximately. The damping is considered to
be Coulomb damping. It has been concluded that the
TMD needs much space to operate in real applications.
The displacement of the mass might be much larger
then that of the top floor. It has also been shown that
the oscillations of the building are effectively reduced
when the TMD frequency is tuned to be equal to that
of the building.

Springer



170 Nonlinear Dyn (2007) 50:169–190

In this paper, it will be assumed that the TMD can be
modelled as a simple mass–spring–dashpot system, and
that the building can be modelled as a vertical Euler–
Bernoulli beam. The TMD is installed at the top of
the vertical beam to absorb the horizontal vibrations of
the beam. The tip-mass is connected to a linear spring
with spring constant k̂, and to a dashpot with damping
coefficient ĉ.

This is an example of a beam-like problem with
boundary damping. Also in [1, 2, 6, 8, 9] various types
of boundary damping have been considered. Further-
more, a uniform wind-flow will be considered, which
causes nonlinear drag and lift forces (FD, FL ) acting
on the structure per unit length. A simple model of
a vertical Euler–Bernoulli beam equation subjected to
wind-forces and with a TMD at the top is given by

E IηX X X X + [(gm + ρg A(L − X ))ηX ]X + ρ Aηττ

= FD + FL , 0 < X < L , τ > 0, (1)

η(0, τ ) = ηX (0, τ ) = ηX X (L , τ ) = 0, τ ≥ 0, (2)

−gmηX (L , τ ) − E IηX X X (L , τ ) + m(η(L , τ )

+ ζ (τ ))ττ = 0, τ ≥ 0, (3)

k̂ζ (τ ) + ĉζτ (τ ) + m(η(L , τ ) + ζ (τ ))ττ = 0,

τ ≥ 0, (4)

where E is the Young modulus, I the moment of in-
ertia of the cross section, ρ the density, A the cross-
sectional area, L the length, η(X, τ ) the deflection of
the beam in Y -direction (see Fig. 1), m the mass of the
tip-mass, ζ (τ ) the displacement of the mass m relative
to the top of the beam, τ the time, X the position along
the beam (see Fig. 1), and g the acceleration due to
gravity. In [3], it has been shown that FD + FL can be
approximated by

FD + FL = ρadv2
∞

2

(
a0+ a1

v∞
ητ + a2

v2∞
η2

τ + a3

v3∞
η3

τ

)
,

(5)

where ρa is the density of the air, d the diameter of
the cross-sectional area of the beam, v∞ the uniform
wind-flow velocity, and a0, a1, a2, a3 depend on certain
drag and lift coefficients, which are given explicitly in
[3].

X

L

0

m

ζ

Y, η

k̂

ĉ

Fig. 1 A simple model for a vertical beam with a tuned mass
damper at the top

To put the model in a non-dimensional form, the
following substitutions û(x, t) = (κ/v∞)[η(X, τ )/L],
ξ̂ (t) = (κ/v∞)[ζ (τ )/L], x = X/L and t = κ/Lτ ,
where κ = (1/L)

√
(E I )/(Aρ) will be used. In

this way, the nonlinear partial differential (1) be-
comes ûxxxx + ε1[(γ + 1 − x)ûx ]x + ût t = (ρad L)/
(2Aρ)(v∞/κ)(a0 + a1ût + a2û2

t + a3û3
t ), where γ =

m/(ρ AL) and where ε1 = (gρ AL3)/(E I ) is a small
parameter, that is, 0 < ε1 � 1. In [3], it has been
shown that the right-hand side of the latter equation
can be approximated by ε2α(ût − (b/a)û3

t ) + O(εm1
2 ),

with m1 > 1, where a and b are specific combina-
tions of drag and lift coefficients, which are given ex-
plicitly in [3], and are of order 1, and where ε2α =
(ρad L)/(2Aρ)(v∞/κ)a, where ε2 is a small parameter
and α = O(1).

Finally, the transformations u (x, t) = √
(3b/a) û

(x, t) and ξ (x, t) = √
(3b/a)ξ̂ (x, t) will be applied to

obtain the following initial-boundary value problem:

uxxxx + ε1[(γ + 1 − x)ux ]x + utt

= ε2α

(
ut − 1

3
u3

t

)
, 0 < x < 1, t > 0, (6)
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u(0, t) = ux (0, t) = uxx (1, t) = 0, t ≥ 0, (7)

−ε1γ ux (1, t) − uxxx (1, t) + γ (utt (1, t)

+ ξt t (t)) = 0, t ≥ 0, (8)

kξ (t) + c̃ξt (t) + γ (utt (1, t) + ξt t (t)) = 0, t ≥ 0,

(9)

u(x, 0) = f (x), 0 < x < 1, (10)

ut (x, 0) = g(x), 0 < x < 1, (11)

ξ (0) = ξ0 and ξt (0) = ξ1, (12)

where k = k̂(L3/(E I )), and c̃ = ĉ
√

L2/(E Iρ A) are
positive constants, where f (x), g(x), ξ0, and ξ1 are the
initial displacement of the beam, the initial velocity of
the beam, the initial displacement of the tip-mass, and
the initial velocity of the tip-mass, respectively.

Now ξ (t) will be eliminated from the coupled
boundary conditions (8) and (9) to obtain an initial-
boundary value problem for u(x, t). This will be done
in the following way. Subtract (8) from (9), and differ-
entiate the result with respect to t , to obtain

−ε1γ uxt (1, t) − uxxxt (1, t) = kξt (t) + c̃ξt t (t). (13)

The boundary condition (8) gives the following expres-
sion for ξt t (t)

ξt t (t) = ε1ux (1, t) + 1

γ
uxxx (1, t) − utt (1, t). (14)

Substitution of this expression for ξt t (t) into (13) yields

kξt (t) = −ε1γ uxt (1, t) − uxxxt (1, t) − c̃
[
ε1ux (1, t)

+ 1

γ
uxxx (1, t) − utt (1, t)

]
. (15)

Differentiate (15) with respect to t , substitute the so-
obtained expression for ξt t (t) into (14), and multiply
by γ , to obtain

γ utt (1, t) − ε1γ ux (1, t) − uxxx (1, t)

= γ

k
(ε1γ ux (1, t) + uxxx (1, t) − c̃ut (1, t))t t

+ c̃
k

(ε1γ ux (1, t) + uxxx (1, t))t . (16)

So, the problem (6)–(9) can be rewritten as the follow-
ing initial-boundary value problem for u(x, t):

L(u) = ε2α

(
ut − 1

3
u3

t

)
,

0 < x < 1, t > 0, (17)

u(0, t) = ux (0, t) = uxx (1, t) = 0, t ≥ 0, (18)

Bkγ (u) = − ε1kγ ux (1, t) − γ (ε1γ ux (1, t)

− c̃ut (1, t))t t − c̃(ε1γ ux (1, t)

+ uxxx (1, t))t , t ≥ 0, (19)

u(x, 0) = f (x), 0 < x < 1, (20)

ut (x, 0) = g(x), 0 < x < 1, (21)

where

L(u) ≡ uxxxx + ε1[(γ + 1 − x)ux ]x + utt , (22)

Bkγ (u) ≡ kuxxx (1, t) + γ uxxxtt (1, t) − kγ utt (1, t).

(23)

When u(x, t) has been determined, also ξ (t) can be
obtained in the following way. Subtract (8) from (9) to
obtain

ξ (t) = −1

k
(εγ ux (1, t) + uxxx (1, t)) − c̃

k
ξt . (24)

Now substitution of (15) into (24) yields ξ (t) as a func-
tion of u(x, t):

ξ (t) = (uxxx (1, t) + ε1γ ux (1, t))
(

c̃2

γ k2
− 1

k

)
+ c̃

k2
(ε1γ ux (1, t) + uxxx (1, t) − c̃ut (1, t))t .

(25)

Due to the TMD at the top of the building, the prob-
lem will have an additional degree of freedom. The dis-
placement of the tip-mass depends on all the oscillation
modes of the building. Therefore, the TMD does not
have a specified frequency.

The nonlinear wind-force ε2α(ut (x, t) −
(1/3)u3

t (x, t)) in (17) will give a coupling be-
tween (almost) all oscillation modes. In [2, 3] also this
nonlinear wind-force has been considered. It has been
shown that the wind-force gives a coupling between
(almost) all oscillation modes. It is also known (see
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Section 4) that the nonlinear term damps the vibrations.
In this paper, the linearized initial-boundary value
problem will be considered because the main goal
of this paper is to determine the damping. If the
damper damps the vibrations due to the linearized
wind-force, the damper also damps the vibration due
to nonlinear wind-force because the nonlinear term in
the wind-force also damps the vibrations.

In this paper, the linearized initial-boundary value
problem (17)–(21) will be considered. The damping
parameter c̃ will be considered to be a small parame-
ter, that is, c̃ = ε3c, where 0 < ε3 � 1 and where c =
O(1). Now, the following initial-boundary value prob-
lem, which describes up to O(εm1

2 ), m1 > 1, the hori-
zontal, wind-induced displacement of a damped verti-
cal beam with tip-mass at the top, can be introduced:

uxxxx + utt = − ε1[(γ + 1 − x)ux ]x + ε2αut ,

0 < x < 1, t > 0, (26)

u(0, t) = ux (0, t) = uxx (1, t) = 0, t ≥ 0, (27)

Bkγ (u) = − ε1(kγ ux (1, t) + γ 2uxtt (1, t))

+ ε3c(γ uttt (1, t) − uxxxt (1, t))

− ε1ε3cγ uxt (1, t), t ≥ 0, (28)

u(x, 0) = f (x), 0 < x < 1, (29)

ut (x, 0) = g(x), 0 < x < 1. (30)

The initial-boundary value problem (26)–(30) actually
contains four small parameters ε1, ε2, ε3, and γ , which
is the ratio of the tip-mass and the mass of the beam.
In this paper, the influence of the parameters ε3 and
γ on the damping will be considered. The case that γ

is small (but larger in order then ε3), the case that γ is
of order ε3, and the case that γ is of order ε2

3 will be
studied. For each case, a different approach is needed
to construct approximations of the solutions of the
initial-boundary value problem (26)–(30). These three
cases will be considered in this paper.

This paper is organized as follows. In Section 2,
the initial-boundary value problem (26)–(30) with c =
α = 0 is considered. It will be shown that the eigenval-
ues of the corresponding boundary value problem are
real-valued and positive. Also it will be explained why
perturbation techniques are applied to solve the initial-
boundary value problems. In Section 3, the vibrations
of an undamped beam not subjected to wind-forces

and not subjected to gravity effects, that is, the initial-
boundary value problem (26)–(30) with c = α = ε1 =
0, will be considered. This is the case of a beam equa-
tion subjected to non-classical boundary conditions. In
Section 4, the energy of the beam with a TMD at the
top will be considered and the boundedness of the so-
lutions will be shown when α = 0. Also the damp-
ing of the vibrations will be shown when α = 0. In
Section 5, approximations of the eigenvalues of the
damped initial-boundary value problem (26)–(30) with
α = ε1 = 0 will be constructed by applying the method
of separation of variables. By applying this method, a
so-called characteristic equation is obtained. The roots
of this equation will be constructed. These roots can be
used to obtain the eigenvalues of the damped initial-
boundary value problem (26)–(30) with α = ε1 = 0.
These eigenvalues will be used to obtain the damping
rates of the oscillation modes. If ε3 and γ are fixed,
the roots of this equation can be found by using nu-
merical methods. The roots can also be obtained ap-
proximately because ε3 and γ are small parameters.
In this section, the cases γ = O(1), γ = O(ε3), and
γ = O(ε2

3 ) will be considered. These cases will be con-
sidered because the ratio γ can be of lower, of equal,
or of higher order with respect to ε3. The construc-
tion of the approximations of the roots for these cases
will turn out to be different. These approximations of
the eigenvalues gives a good indication what scalings
are necessary to construct approximations of the solu-
tions of the initial-boundary value problem (26)–(30)
for the cases γ = O(1), γ = O(ε3), and γ = O(ε2

3 ). In
Section 6, the multiple-timescales perturbation method
will be applied to construct approximations of the solu-
tions of the initial-boundary value problem (26)–(30).
The reader is referred to the book of Nayfeh and Mook
[10] for a description of this method. In this paper,
only the initial-boundary value problem (26)–(30) for
the case that γ = O(1) will be solved approximately.
In this section also the stability of a vertical beam with
a TMD at the top in a wind-field will be considered.

The constructed approximations of the solutions will
be used to determine the type of damping.

Finally, some remarks will be made and some con-
clusions will be drawn in Section 7.

2 The undamped problem with α = 0

In this section, the horizontal vibrations of a vertical
beam with a tip-mass at the top will be studied. The
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wind-force and the damping are neglected. So, in this
section, the initial-boundary value problem (26)–(30)
with c = α = 0 will be considered:

L(u) = 0, (31)

u(0, t) = ux (0, t) = uxx (1, t) = 0, (32)

Bkγ (u) = −ε1γ (kux (1, t) + γ uxtt (1, t)), (33)

where L and B are given by (22) and (23), respectively.
The method of separation of variables will be used to
solve (31)–(33). Now look for nontrivial solutions of
the partial differential Equation (31) and the boundary
conditions (32)–(33) in the form X (x)T (t). By sub-
stituting u(x, t) = X (x)T (t) into problem (31)–(33) a
boundary value problem for X (x) is obtained:

X (4)(x) + ε1[(γ + 1 − x)X ′(x)]′ = λX (x), (34)

X (0) = X ′(0) = X ′′(1) = 0, (35)

(γ λ − k)(ε1γ X ′(1) + X ′′′(1)) = γ λX (1), (36)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (37)

where λ ∈ C is a separation constant. Note that (34)–
(36) is a non-standard problem. Therefore, the eigenval-
ues and eigenfunctions of this problem will be studied.
First, it will be shown that the eigenvalues λ of problem
(34)–(36) are real-valued and positive.

The case γ λ = k and the case γ λ 
= k will be con-
sidered. If γ λ = k the eigenvalue λ is real-valued and
positive because k and γ are real-valued and positive
constants. Now the second case will be considered. Let
the linear differential operator L be defined by:

L[X ] = d4 X
dx4

+ ε1
d

dx

[
(γ + 1 − x)

dX
dx

]
. (38)

Let X1(x) and X2(x) be two different solutions of the
boundary value problem (34)–(36) corresponding to
eigenvalues λ1 and λ2 respectively, then∫ 1

0
(L[X1]X2 − X1L[X2])dx

= (ε1γ X ′
1(1) + X ′′′

1 (1))X2(1)

− X1(1)(ε1γ X ′
2(1) + X ′′′

2 (1)), (39)

where the dependency of X1(x) and X2(x) on x
has been dropped. Now substitute L[X1] = λ1 X1 and
L[X2] = λ2 X2 into (39) and consider the boundary
condition (36) to obtain

(λ1 − λ2)

( ∫ 1

0
X1 X2dx

+ (ε1γ X ′
1(1) + X ′′′

1 (1))(ε1γ X ′
2(1) + X ′′′

2 (1))

λ1λ2

)
= 0,

(40)

or equivalently(
λ1 − λ2

λ1λ2

)( ∫ 1

0
L[X1]L[X2]dx + (ε1γ X ′

1(1)

+ X ′′′
1 (1))(ε1γ X ′

2(1) + X ′′′
2 (1))

)
= 0. (41)

Now introduce the following inner product on V

〈u(x), v(x)〉 =
∫ 1

0
L[u]L[v]dx + (ε1γ u′(1)

+ u′′′(1))(ε1γ v′(1) + v′′′(1)), (42)

where

V = {v ∈ L2(0, 1)|v(0) = v′(0) = v′′ = 0,

ε1γ v′(1) + v′′′(1) 
= 0} ∪ {v ≡ 0}. (43)

In this notation (41) becomes(
λ1 − λ2

λ1λ2

)
〈X1(x), X2(x)〉 = 0. (44)

Now let φ = X1 = X2 and let λ = λ1 = λ2 then (44)
becomes(

λ − λ

|λ|
)

〈φ(x), φ(x)〉 = 0. (45)

But 〈φ(x), φ(x)〉 ≥ 0 and φ(x) is not allowed to be
the zero function. So, 〈φ(x), φ(x)〉 in Equation (44) is
positive, therefore λ − λ = 0, which implies that λ is
real.

Since the eigenvalues λ are real, the differential
Equation (34) and the boundary conditions (35) and
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(36) only have real parameters (γ , ε1, and λ). So, the
eigenfunctions can be chosen to be real-valued. Let
φi and φ j be two real eigenfunctions corresponding to
the eigenvalues λi and λ j respectively. Now substitute
X1 = φi , X2 = φ j , λ1 = λi , and λ2 = λ j into (44), to
obtain(

λi − λ j

λiλ j

)
〈φi , φ j 〉 = 0.

If λi 
= λ j it follows that 〈φi , φ j 〉 = 0. So, eigenfunc-
tions corresponding to different eigenvalues are orthog-
onal with respect to the inner product (42).

Now it will be shown that the eigenvalues are posi-
tive. Multiply (34) by X (x) and integrate the result with
respect to x from 0 to 1, to obtain

∫ 1

0

(
X (4)(x) + ε1[(γ + 1 − x)X ′(x)]′

)
X (x) dx

= λ

∫ 1

0
X2(x) dx . (46)

Integrating by parts and considering the boundary con-
ditions (35), yields

I1 + X (1)(X ′′′(1) + ε1γ X ′(1)) = λI2, (47)

where

I1 =
∫ 1

0

(
(X ′′(x))2 − ε1(γ + 1 − x)(X ′(x))2) dx, (48)

I2 =
∫ 1

0
(X (x))2dx . (49)

In [9] it has been shown for nontrivial functions
X (x) that I1 > 0 for ε1 sufficiently small, that is,
ε1(γ + (1/2)) < 1. The boundary condition (36) can
be rewritten in the following form

X (1)(X ′′′(1) + ε1γ X ′(1)) =
(

γ λ

γ λ − k

)
X2(1). (50)

By substituting (50) into (47) the following second-
order polynomial in λ is obtained:

γ λ2 I2 + k I1 = (γ I1 + γ k X2(1) + k I2)λ. (51)

The solutions λ1,2 of (51) can be determined and are
given by

λ1,2 = (γ I1 + γ k X2(1) + k I2) ± √
D

2γ I2
, (52)

where

D = (γ I1 + γ k X2(1) + k I2)2 − 4kγ I1 I2

= 2γ k X2(1)(γ I1 + k I2)

+(γ k X2(1))2 + (γ I1 − k I2)2, (53)

and where D satisfies the following inequalities:

(γ I1 + γ k X2(1) + k I2)2 > D > 0.

These aforementioned inequalities show that the eigen-
values λ1,2 are non-negative for the case λ 
= (k/γ ).
Now by substituting λ = 0 into (51) it follows that

k I1 = 0, (54)

because k I1 > 0, for ε1 sufficiently small, Equation
(54) does not hold, so λ = 0 is not an eigenvalue.
Since for the case λ 
= k/γ and the case λ = k/γ the
eigenvalues are not zero and non-negative it can be
concluded that the eigenvalues are positive if ε1 is suf-
ficiently small. Although it can derived that the eigen-
values are real-valued and positive, the eigenvalues
cannot be determined exactly because the fourth-order
differential Equation (34) cannot be solved exactly.
It has been assumed that 0 < ε1 � 1. Then the term
ε1[(γ + 1 − x)X (x)′]′ in (34) is small. Now perturba-
tion techniques can be used to solve approximately the
initial-boundary value problem (35) and (36).

Perturbation methods can be used to solve approx-
imately the ordinary differential Equation (26). By
using this method, the approximations for the eigen-
values and the eigenfunctions will be found. These
approximations can be used to construct approxima-
tions of the solution of the partial differential equa-
tion. This will be done in the next section of this paper
for the initial-boundary value problem (26)–(30) with
c = α = ε1 = 0. Note that this method can be used as
long as the method of separation of variables can be
applied to the initial-boundary value problem.
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3 The undamped problem (26)–(30) with

α = ε1 = 0

In this section, the horizontal vibrations of a beam with
a tip-mass at the top will be studied. The gravity effect,
the wind-force, and the damping are neglected. This
problem is given by (26)–(30) with c = α = ε1 = 0:

uxxxx + utt = 0, (55)

u(0, t) = ux (0, t) = uxx (1, t) = 0, (56)

kuxxx (1, t) + γ uxxxtt (1, t) − kγ utt (1, t) = 0, (57)

u(x, 0) = f (x), (58)

ut (x, 0) = g(x). (59)

The functions ξ (t) and u(x, t) are related by (25). Now
also relations between the initial values ξ (0) and u(1, 0)
will be given. Substitution of ε1 = 0, c̃ = 0, t = 0, (20),
and (21) into (24) and (15) gives the following rela-
tions for the initial displacement ( f (x)) and the initial
velocity (g(x)) of the beam at the top and the initial
displacement (ξ0) and the initial velocity (ξ1) of the
tip-mass

f ′′′(1) = −kξ0, (60)

g′′′(1) = −kξ1. (61)

The method of separation of variables will be used
to solve the problem (55)–(59). Now look for nontriv-
ial solutions of the partial differential Equation (55)
and the boundary conditions (56) and (57) in the form
X (x)T (t). By substituting this into (55)–(57) a bound-
ary value problem for X (x) is obtained:

X (4)(x) = λX (x), (62)

X (0) = X ′(0) = X ′′(1) = 0, (63)

(γ λ − k)X ′′′(1) = kγ λX (1), (64)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (65)

where λ ∈ C is a separation constant. The boundary
value problem (62)–(64) is the same problem as (34)–
(36) with ε1 = 0. So the eigenvalues are real-valued,
and positive; the eigenfunctions can be chosen to be
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Fig. 2 The values of the first five roots μ of the characteristic
Equation (66), for k = 50, as a function of γ ∈ [0, 1

2 ]

real-valued, and two real eigenfunctions belonging to
two different eigenvalues are orthogonal with respect
to the inner product (42). Note that the case X ′′′(1) =
X (1) = 0 and the case X ′′′(1) = λ = 0 only leads to
trivial solutions.

The problem (62)–(64) can be solved analytically.
Expressions for the eigenfunctions and the eigenvalues
can be found. The eigenvalues λn = μ4

n are implicitly
given by the roots of

hkγ (μ) ≡ (γμ4 − k)q(μ) + kγμs(μ) = 0. (66)

where

q(μ) = 1 + cosh(μ) cos(μ), (67)

s(μ) = sin(μ) cosh(μ) − cos(μ) sinh(μ). (68)

The real-valued, positive, isolated roots of hkγ (μ) are
denoted by μn . If μn is a root of (66) then also −μn

and ±iμn are roots of (66). The location of the roots
depends on the value of γ . For γ = 0 the roots will be
exact the roots of a cantilevered beam without tip-mass
(see [8, 9]). The location of the roots of the charac-
teristic equation (66) for γ > 0 will be close to the
location of the roots of (66) for γ = 0 and of the equa-
tion μ4 = k/γ . In Fig. 2, the values of the first five real
roots μ are shown as a function of γ ∈ [0, (1/2)] for
the case k = 50.

It follows that (for large n and γ fixed) μn ≈ (n −
(1/2))π , but there is not a fixed N ∈ N such that μn ≈
(n − (1/2))π for all n > N if γ → 0.
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The eigenfunctions of problems (62)–(64) can be
determined, and are given by

φ̂n(x) = sin(μn x) − sinh(μn x)

+βn(cosh(μn x) − cos(μn x)), (69)

whereβn=[(sin(μn)+ sinh(μn))]/[cos(μn)+ cosh(μn)].
In this paper, the eigenfunctions are chosen such that
(see also (40))( ∫ 1

0
φiφ j dx + φixxx (1)φ jxxx (1)

γ λiλ j

)
= δi j , (70)

where δi j is the Kronecker symbol, that is, δi j = 0 if i 
=
j and δi j = 1 if i = j , and where the eigenfunctions
φn(x) are defined by

φn(x) = φ̂n(x)(∫ 1
0 φ̂2

ndx + (φ̂nxxx (1))2

γ λ2
n

) 1
2

. (71)

After lengthy but elementary calculations, it can be
shown that∫ 1

0
φ̂2

n (x) dx + (φ̂nxxx (1))2

γ λ2
n

=
(

sinh(μn) + sin(μn)

cosh(μn) + cos(μn)

)2

+ 4

γμ2
n

(
q(μn)

cosh(μn) + cos(μn)

)2

+ 3

μn

(
q(μn)s(μn)

(cosh(μn) + cos(μn))2

)
, (72)

also it can be shown that
∫ 1

0 φ̂2
n (x)dx → 1 if n → ∞.

For each eigenvalue Tn(t) can be determined. So
infinitely many nontrivial solutions of the initial-
boundary problem (55)–(59) have been determined.
Using the superposition principle and the initial val-
ues (58) and (59), the solution of the initial-boundary
value problem is obtained:

u(x, t) =
∞∑

n=0

Tn(t)φn(x)

=
∞∑

n=0

(
An cos

(
μ2

nt
) + Bn sin

(
μ2

nt
))

φn(x),

(73)

Table 1 Numerical approximations of the first five eigenval-
ues μn , of φn(1), and of −φnxxx (1)/k for the case k = 1 and
γ = 1, γ = 0.1, γ = 0.01, and γ = 0.001

n μn φn(1) −φnxxx (1)/k (n − 1
2 )π

γ = 1
0 0.9270 0.2593 0.7327 –
1 2.0177 1.9629 −2.0890 1.5708
2 4.7038 −2.0134 2.0175 4.7123
3 7.8568 2.0033 −2.0039 7.8540
4 10.996 −2.0019 2.0014 10.996
γ = 0.1
0 1.5700 1.0591 1.6392 –
1 2.1186 1.6728 −3.3214 1.5708
2 4.7040 −2.0135 2.0555 4.7123
3 7.8568 2.0033 −2.0086 7.8540
4 10.996 −2.0013 2.0027 10.996
γ = 0.01
0 1.8544 1.9529 0.2619 –
1 3.1881 0.3215 −10.059 1.5708
2 4.7063 −2.0141 2.5300 4.7123
3 7.8569 2.0034 −2.0574 7.8540
4 10.996 −2.0013 2.0151 10.996
γ = 0.001
0 1.8732 1.9962 0.0249 –
1 4.6851 −1.9729 −1.8345 1.5708
2 5.6371 −0.3069 31.626 4.7123
3 7.8576 2.0040 −2.7167 7.8540
4 10.996 −2.0014 2.1483 10.996

where

An =
∫ 1

0
f (x)φn(x)dx − φnxxx (1)

λn
(ξ0 + f (1)), (74)

μ2
n Bn =

∫ 1

0
g(x)φn(x)dx − φnxxx (1)

λn
(ξ1 + g(1)).

(75)

Now because of (24) and (64), and because c = ε1 = 0,
it can be deduced that the displacement ξ (t) of the mass
at the top of the beam with respect to the top of the beam
is given by

ξ (t) = −uxxx (1, t)
k

= −1

k

∞∑
n=0

Tn(t)φnxxx (1)

=
∞∑

n=0

Tn(t)
(

γ λnφn(1)

k − γ λn

)
. (76)

Note that, from (64) it follows that

lim
λn→ k

γ

(
γ λnφn(1)

k − γ λn

)
= −φnxxx (1)

k
.
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In Table 1, the first five eigenvalues (μn) and the first
five constant terms (−φnxxx (1)/k and φn(1)) of the in-
finite sums (73), for x = 1, and (76) are listed for sev-
eral values of γ . From the eigenvalues (μn) it follows
that μn decreases by increasing γ . Note that the case
γ = 1 is not realistic for applications. The constant
terms can be used to compare the direction of the dis-
placement of the tip-mass ξ (t) (i.e. (76)) and the di-
rection of the displacement of the top of the beam
u(1, t) (i.e. (73) for x = 1) for the nth mode. It fol-
lows that these displacements have the same direction
for the first oscillation modes (i.e., μ4

n < (k/γ )) and
have opposite directions for the higher order oscillation
modes.

4 The energy of the beam with a TMD device

The energy of the vertical beam with a TMD device at
the top and not subjected to wind-forces, is defined to
be

E(t) =
∫ 1

0

1

2
(u2

t (x, t) + u2
xx (x, t)

−ε1(γ + 1 − x)u2
x (x, t))dx + γ

2
(ut (1, t)

+ξt (t))2 + k
2
ξ 2(t). (77)

The time derivative of the energy is

dE
dt

= −cε3ξ
2
t (1, t). (78)

So, the energy is bounded if the initial energy is
bounded. Substituting (15) into (78) gives

dE
dt

= −ε3c
k2

(
− ε1γ uxt (1, t) − uxxxt (1, t)

−ε3c
[
ε1ux (1, t) + 1

γ
uxxx (1, t) − utt (1, t)

])2

.

(79)

So, not only the damping parameter c does have signif-
icant influence on the damping, but also the spring con-
stant k and the mass of the tip-massγ . The existence of a
solution of u(x, t) is assumed, where u(x, t) is a twice
continuously differentiable function with respect to t

and a four times continuously differentiable function
with respect to x . What can be shown for the bound-
edness of u(x, t) and ξ (t)? Since ux (x, t) and uxx (x, t)
are continuous it follows that

u(x, t) =
∫ x

0
us(s, t) ds, (80)

and

ux (x, t) =
∫ x

0
uss(s, t)ds, (81)

respectively. It then follows, using the Cauchy–
Schwarz inequality

|ux (x, t)| ≤
∫ 1

0
|uxx (x, t)|dx ≤

√∫ 1

0
u2

xx (x, t) dx .

(82)

From the first and the second inequality of (82) it fol-
lows that

u2
x (x, t) ≤

∫ 1

0
u2

xx (x, t) dx . (83)

By using (83) the following inequality is obtained

∫ 1

0
(u2

xx (x, t) − ε1(γ + 1 − x)u2
x (x, t)) dx

≥
∫ 1

0

(
1 − ε1

(
γ + 1

2

))
u2

xx (x, t) dx . (84)

Now by substituting (84) into (82) it follows that

|ux (x, t)| ≤
√

2E(t)

1 − ε1
(
γ + 1

2

) ≤
√

2E(0)

1 − ε1
(
γ + 1

2

) .

(85)

It then follows from (85) and (80) that

|u(x, t)| ≤
∫ 1

0
|ux (x, t)| dx

≤
∫ 1

0

√
2E(0)

1 − ε1
(
γ + 1

2

) dx =
√

2E(0)

1 − ε1
(
γ + 1

2

) .

(86)
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So also u(x, t) is bounded if the initial energy is
bounded. The displacement of the mass with respect
to the top of the beam is also bounded,

|ξ (t)| ≤
√

|ξ 2(t)| ≤
√

2

k
E(t) ≤

√
2E(0)

k
. (87)

Note that ξ (t) should not be bigger then the width of
the top floor because otherwise the mass will not be at
the floor. We find that larger values of k give smaller
values of ξ (t) but smaller values of ξ (t) will give less
damping(see also (79)).

The time derivative of the energy of the damped
beam with tip-mass, subjected to nonlinear wind-forces
(see also (17)), is

dE
dt

= −cε3ξ
2
t (1, t)

+ ε2α

∫ 1

0

(
u2

t (x, t) − 1

3
u4

t (x, t)
)

dx . (88)

Since
∫ 1

0 u4
t (x, t) dx is positive, the nonlinear term in

the wind-force is a damping term.

5 The problem (26)–(30) with α = ε1 = 0

In this section, the horizontal vibrations of a beam with
a TMD device at the top will be studied. The gravity
effect and the wind-force are neglected. So, in this sec-
tion the problems (26)–(30) with α = ε1 = 0 will be
considered:

uxxxx + utt = 0, (89)

u(0, t) = ux (0, t) = uxx (1, t) = 0, (90)

Bkγ (u) = εc(γ uttt (1, t) − uxxxt (1, t)), (91)

u(x, 0) = f (x), (92)

ut (x, 0) = g(x), (93)

where ε = ε3 with 0 < ε � 1. The ratio γ =
m/(ρ AL) is also a small parameter. The ratio can be
large with respect to ε, can be of the order ε, and
can be small with respect to ε. Therefore, the cases
γ = O(1), γ = O(ε), and γ = O(ε2) will be consid-
ered in this section. The method of separation of vari-
ables will be used to solve the problem (89)–(93) and

to obtain the so-called characteristic equation. At first
the location of the roots of the characteristic equation
will be considered. Secondly, in Section 5.1, numerical
methods will be used to obtain the roots of the char-
acteristic equation. Finally, in Sections 5.2–5.4 pertur-
bation techniques will be used to obtain approxima-
tions of the roots of the characteristic equation for the
cases γ = O(1), γ = O(ε2), and γ = O(ε), respec-
tively. The obtained approximations can be used to ob-
tain the damping rates. The approximations can also be
used to obtain a good indication what scalings are nec-
essary to construct approximations of the solutions of
the initial-boundary value problems (26)–(30) for the
cases γ = O(1), γ = O(ε3), and γ = O(ε2

3 ).
Now look for nontrivial solutions of the partial dif-

ferential equation (89) and the boundary conditions
(90) and (91) in the form X (x)T (t). By substituting
this into (89)–(91), a boundary value problem for X (x)
is obtained:

X (4)(x) = λX (x), (94)

X (0) = X ′(0) = X ′′(1) = 0, (95)

γ λX ′′′(1) − k(X ′′′(1) + γ λX (1))

= εcT ′(t)
T (t)

(X ′′′(1) + γ λX (1)), (96)

and the following problem for T (t):

T ′′(t) + λT (t) = 0, (97)

where λ ∈ C is the separation constant. The case
λ = 0 only leads to trivial solutions. From (X ′′′(1) +
γ λX (1)) = 0 follows that λ = X ′′′(1) = 0 or that
X ′′′(1) = X (1) = 0. Both cases only lead to trivial so-
lutions. So the case (X ′′′(1) + γ λX (1)) = 0 only leads
to trivial solutions.

Now set λ = μ4 where μ = μ1 + μ2i with μ1, μ2 ∈
R. Then because of (94) and (95) and because λ = 0 is
not an eigenvalue it follows that:

X (x) = Aφ(x), (98)

where A is an arbitrary constant and where

φ(x) = (cos(μ) + cosh(μ))(sin(μx) − sinh(μx))

+(sin(μ) + sinh(μ))(cosh(μx) − cos(μx)).

(99)
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By substituting (99) into (96) and because μ = 0
does not correspond to an eigenvalue it follows that

(γμ4q(μ) + k(γμs(μ) − q(μ)))T (t)

= εcT ′(t)(q(μ) − γμs(μ)), (100)

where

q(τ ) = 1 + cos(τ ) cosh(τ ), (101)

s(τ ) = sin(τ ) cosh(τ ) − cos(τ ) sinh(τ ). (102)

Since the case (X ′′′(1) + γ λX (1)) = 0 only leads to
trivial solutions also the case (kq(μ) − γμs(μ)) = 0
only leads to trivial solutions. Then (100) can be written
as

T ′(t) = θT (t), (103)

where θ = θ1 + θ2i , with θ1, θ2 ∈ R, is defined by

θ = (γμ4q(μ) + k(γμs(μ) − q(μ)))

εc(q(μ) − γμs(μ))
.

The solution of (103) is given by

T (t) = c0e(θ1+iθ2)t , (104)

where c0 ∈ C. Now the oscillation mode with fre-
quency θ2 will be damped if θ1 < 0. The constant θ1

will be called the damping coefficient or damping rate
corresponding to the oscillation mode. The main goal
of this section is to determine this damping coefficient.

Because of (97) and (103) the following relation be-
tween θ and λ is obtained: λ = −θ2. Now substitution
of

θ = (γμ4q(μ) + k(γμs(μ) − q(μ)))

εc(q(μ) − γμs(μ))

and λ = μ4 into λ = θ2 yields:

μ4 = − (γμ4q(μ) + k(γμs(μ) − q(μ)))2

ε2c2(q(μ) − γμs(μ))2
. (105)

Equation (105) can be written as:

± iεcμ2(q(μ) − γμs(μ))

= γμ4q(μ) + k(γμs(μ) − q(μ)), (106)

where θ = ±iμ2. Now, only consider the case θ =
+iμ2(the case θ = −iμ2 will lead to the same θ ). Then
the so-called characteristic equation is obtained, given
by

hkγ c(μ) ≡ (γμ4 − k)q(μ) + γ kμs(μ)

−iεc(μ2q(μ) − γμ3s(μ)) (107)

≡ (γμ4 − k − iεcμ2)q(μ)

+γμ(k + iεcμ2)s(μ) = 0. (108)

If a root μ is found θ can be determined by consider-
ing the relation θ = iμ2. So, the damping coefficient
is given by θ1 = −2μ1μ2. Taking apart the real and
imaginary parts in the characteristic Equation (107) a
system of two nonlinear equations for μ1 and μ2 is ob-
tained. Note that (107) can be expressed as a function
depending on θ . This is an entire function of order 1/2.
Since an entire function of nonintegral order have in-
finitely many zeros, also hkγ c(μ) has infinitely many
zeros (see [11]).

The roots of hkγ c(μ) are such that if μ1 + μ2i is a so-
lution then also μ2 + μ1i , −μ1 − μ2i , and −μ2 − μ1i
are solutions. Since μ1 + μ2i and μ2 + μ1i are both
solutions, θ occurs in complex conjugate pairs. Before
approximations of the roots are constructed the location
of the roots in the complex plane will be considered.
The roots of hkγ c(μ) will be compared to the roots of
a more simple function. Rouché’s theorem will be ap-
plied to show that the roots of hkγ c(μ) are close to the
roots of the more simple function. The function hkγ c(μ)
will be compared to two simple functions.

The zeros of hkγ c(μ) for c = 0 have been consid-
ered in Section 3. The roots of this equation are purely
imaginary or real. Now it will be shown that there ex-
ist a sequence Rk ∈ R such that Rk → ∞ as k → ∞
and such that the number of roots of hkγ (μ) = 0 and
hkγ c(μ) = 0 is the same, counting multiplicities, in
B(0, Rk), where B(0, R) = {τ ∈ C||τ | ≤ R}. Then the
roots of hkγ c(μ) = 0 can be enumerated in a similar
way for the controlled case c > 0 and for the uncon-
trolled case c = 0.

Let R > 0 be given. Now, by Rouché’s theorem,
hkγ (μ) and hkγ c(μ) have the same number of roots,
counting multiplicities, in B(0, R) if

∣∣∣∣ εc(μ2q(μ) − γμ3s(μ))

(γμ4 − k)q(μ) + γ kμs(μ)

∣∣∣∣ < 1, (109)
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for |μ| = R. Now, it will be shown that there exist a
sequence Rk ∈ R such that Rk → ∞ as k → ∞ and
such that (109) is true for |μ| = Rk . To show that such
a sequence exist it will be shown that the following
inequality is true for sufficiently large values of R:∣∣∣∣ s(μ)

μq(μ)

∣∣∣∣ <
1

εc + k
|μ2|

− 1

γ |μ2| . (110)

For μ = Reiς , R = 2nπ , and 0 ≤ ς ≤ 2π it has been
shown that

lim
n→∞

∣∣∣∣ s(μ)

μq(μ)

∣∣∣∣ = 0

(see Appendix A of [8]). It can also be shown that(
1

εc + k
|μ2|

− 1

γ |μ2|
)

→ 1

εc

if |μ| → ∞. Hence, there exists a sequence Rk =
2kπ, k ∈ N and k → ∞ such that inequality (110) is
valid for |μ| = Rk . Then by using the triangle inequal-
ity, it follows that∣∣∣∣ s(μ)

μq(μ)
− 1

γμ2

∣∣∣∣ =
∣∣∣∣q(μ) − γμs(μ)

γμ2q(μ)

∣∣∣∣< 1

εc + k
|μ2|

.

(111)

But then by using (111) it follows that∣∣∣∣ γμ4q(μ)

μ2q(μ) − γμ3s(μ)
− k

μ2

∣∣∣∣ ≥
∣∣∣∣ γμ4q(μ)

μ2q(μ) − γμ3s(μ)

∣∣∣∣
− k

|μ2| > εc. (112)

So, finally it is obtained that (109) is true.
Hence, there exists a sequence Rk = 2kπ, k ∈ N and

k → ∞ such that (109) is valid for |μ| = Rk . There-
fore, by Rouché’s theorem, the number of roots of
hkγ c(μ) for c = 0 and hkγ c(μ) for c > 0 is the same
in B(0, Rk), counting multiplicities.

In a similar way, the roots of hkγ c(μ) can be com-
pared to the roots of (γμ4 − k − iεcμ2)q(μ) and it
can be shown for γ fixed that the number of roots
of these functions is the same in B(0, Rk), counting
multiplicities.

5.1 Numerical approximations of the roots of the
characteristic equation

Now consider the characteristic Equation (107), where
ε and γ are small parameters. In applications, these
small parameters and the parameters c and k will be
fixed. Now Maple can be used to construct the roots
of Equation (107) numerically. First approximations
of the eigenvalues will be given for k, c, ε, and γ

fixed and n sufficiently large. Consider the charac-
teristic Equation (107), multiplying this equation by
(2eμ)/(γμ4) yields

cos(μ) = ic
μ

(sin(μ) − cos(μ)) + O
(

1

|μ|2
)

, (113)

or

cos(μ) = O
(

1

|μ|
)

, (114)

which is valid for values ofμ in a small neighborhood of
(n − (1/2))π where n ∈ N. In [12], it has been shown
that these equations give the following asymptotic so-
lutions for θn and μn

θn = −2εc + O
(

1

n

)
+ i

(
(mπ )2 + O

(
1

n

))
, (115)

μn = εc
mπ

+ O
(

1

n2

)
+ i

(
mπ + O

(
1

n2

))
, (116)

which are valid for sufficiently large n ∈ N, and where
m = (n − 1

2 ). Note that the obtained approximations of
the damping coefficient are similar to the approxima-
tions of the damping coefficients of a weakly damped
beam, that is, a beam where the damping at the top
is proportional to the velocity of the top (see [8, 9]).
The expressions (115) and (116) show that the damp-
ing coefficient of the eigenvalues with large index n
are dependent on εc. Now, it can be concluded that the
oscillations are damped uniformly, because (78) holds.
The asymptotic approximations of the damping rates
are only valid for sufficiently large n ∈ N. The damping
rates for the lower order modes can be obtained numer-
ically by using Maple. The first five roots μn and the
first five θn for several values of εc, k, and γ are listed
in Table 2. For the cases considered in Table 2, it has
been found that the damping rates θ1,0 of the first oscil-
lation mode are small and that the damping rates θ1,1 of
the second oscillation modes are large with respect to
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Table 2 Numerical
approximations of the
eigenvalues θn and the
solutions μn of the
characteristic equation
(107) for the case k = 1,
εc = 0.1, γ = 0.1; the case
k = 1, εc = 0.1, γ = 0.08;
the case k = 1, εc = 0.1,
γ = 0.05; the case k = 1,
εc = 0.1, γ = 0.01; and the
case k = 1, εc = 0.01,
γ = 0.1

n μ1,n μ2,n θ1,n θ2,n (n − 1
2 )π

k = 1, εc = 0.1, γ = 0.1
0 0.04218 1.5779 −0.13313 2.4880 –
1 0.13161 2.1039 −0.55380 4.4089 1.5708
2 0.02238 4.7026 −0.21050 22.114 4.7124
3 0.01283 7.8564 −0.20159 61.724 7.8540
4 0.00912 10.996 −0.20049 120.92 10.996

k = 1, εc = 0.1, γ = 0.08
0 0.03762 1.6404 −0.12343 2.6894 –
1 0.16048 2.1383 −0.68630 4.5467 1.5708
2 0.02258 4.7024 −0.21239 22.112 4.7124
3 0.01284 7.8564 −0.20181 61.723 7.8540
4 0.00912 10.996 −0.20054 120.91 10.996

k = 1, εc = 0.1, γ = 0.05
0 0.02125 1.7418 −0.07402 3.0334 –
1 0.24445 2.2589 −1.10439 5.0430 1.5708
2 0.02317 4.7016 −0.21783 22.105 4.7124
3 0.01288 7.8563 −0.20243 61.721 7.8540
4 0.00913 10.996 −0.20069 120.91 10.996

k = 1, εc = 0.1, γ = 0.01
0 0.00081 1.8547 −0.00299 3.4399 –
1 0.83382 3.0885 −5.15050 8.8435 1.5708
2 0.02546 4.6913 −0.23892 22.007 4.7124
3 0.01306 7.8546 −0.20522 61.694 7.8540
4 0.00916 10.995 −0.20136 120.92 10.996

k = 1, εc = 0.01, γ = 0.1
0 0.00428 1.5700 −0.01343 2.4650 –
1 0.01302 2.1185 −0.05516 4.4878 1.5708
2 0.00225 4.7040 −0.02112 22.127 4.7124
3 0.00128 7.8568 −0.02017 61.730 7.8540
4 0.00091 10.996 −0.02005 120.92 10.996

the damping rates of the other oscillation modes. Now
numerical values for μn and θn have been obtained.
Then T (t) can be approximated by

Tn(t) = eθ1,n t (An cos(θ2,nt) + Bn sin(θ1,nt)). (117)

By using the superposition principle the general
solution of (26)–(30) with α = ε1 = 0 is given by

u(x, t) =
∞∑

n=0

eθ1,n t (An cos(θ2,nt)

+ Bn sin(θ1,nt))φn(x), (118)

where

φn(x) = (cos(μn) + cosh(μn))(sin(μn x) − sinh(μn x))

+ (sin(μn)+ sinh(μn))(cosh(μn x)

− cos(μn x)), (119)

and where the constants An and Bn can be determined
by the initial conditions (92) and (93). Substitution of
(118) into (25) yields

ξ (t) =
(

ε2c2

k2γ
− 1

k

)
uxxx (1, t)

+εc
k2

(uxxxt (1, t) − εcutt (1, t))

=
∞∑

n=0

(
ε2c2

k2γ
− 1

k

)
φnxxx (1)Tnt (t)

+εc
k2

(φnxxx (1, t)Tnt (t) − εcφn(1)Tntt (t)). (120)

So, u(x, t) and ξ (t) will be damped in a completely
similar way.
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5.2 Construction of the approximations of the roots
of (107) for the case γ = O(1)

In this section, only order ε approximation of the roots
of the characteristic equation will be considered. We
are not interested in the higher order approximations.
The approximations are such that these are approxima-
tions for ε ↓ 0, but also such that these are valid for all
oscillation modes (i.e., ∀n ∈ N ∪ {0}). The roots of the
following equation will be considered

(γμ4 − k)q(μ) + γ kμs(μ)

−iεc(μ2q(μ) − γμ3s(μ)) = 0, (121)

where q(τ ) and s(τ ) are given by (101) and (102) re-
spectively. The roots of this equation are close to the
roots of the uncontrolled case (that is, the roots of
hkγ (μ) as considered in Section 3). Now, it is assumed
that a root μn = μ1,n + iμ2,n of (121) can be expressed
in a power series in ε, that is,

μ1,n = μ1,0,n + εμ1,1,n + · · · , (122)

μ2,n = μ2,0,n + εμ2,1,n + · · · , (123)

where μi, j,n ∈ R for i = 1, 2 and j, n ∈ N ∪ {0}. To
approximate μn also q(μ) and s(μ) are expanded
in power series in ε. For the case (γμ4 − k)q(μ) +
γ kμs(μ) = 0 + O(ε) it follows that μn = μ1,0,n +
iμ2,0,n + O(ε) = μ0,n + O(ε), where μ0,n is the (n +
1)th positive root of (66). Now by substituting (122)
and (123) into (121) and by equating the coefficients of
equal powers of ε for n ∈ {0, 1, 2, . . .} it follows (after
lengthy but elementary calculations) that

μ1,1,n = 0, (124)

and that

μ2,1,n

= cμ2
0,n(q(μ0,n) − γμ0,ns(μ0,n))

2kγ p(μ0,n) + 4γμ3
0,nq(μ0,n) + (kγ + k − γμ4

0,n)s(μ0,n)
,

(125)

where p(μ0,n) = sin(μ0,n) sinh(μ0,n) and where
q(μ0,n) and s(μ0,n) are given by (101) and (102)
respectively. Now approximations of the damping
coefficients θ1,n up to order ε can be found and are

Table 3 Numerical approximations of the damping coefficient
θ1,n for k = 1 and γ = 1, γ = 0.1, γ = 0.01, and γ = 0.001

n γ = 1 γ = 0.1 γ = 0.01 γ = 0.001

0 −0.2684εc −1.3435εc −0.0344εc −0.000310εc
1 −2.1819εc −5.5157εc −50.595εc −1.6826εc
2 −2.0352εc −2.1125εc −3.1998εc −500.10εc
3 −2.0077εc −2.0173εc −2.1164εc −3.6902εc
4 −2.0029εc −2.0053εc −2.0303εc −2.3076εc
5 −2.0014εc −2.0023εc −2.0113εc −2.1054εc
6 −2.0008εc −2.0012εc −2.0052εc −2.0463εc
7 −2.0005εc −2.0007εc −2.0027εc −2.0236εc

given by

θ1,n = −2εcμ3
0,n(q(μ0,n) − γμ0,ns(μ0,n))

2kγ p(μ0,n) + 4γμ3
0,nq(μ0,n) + (kγ + k − γμ4

0,n)s(μ0,n)
,

(126)

where μ0,n is the (n + 1)th positive root of hkγ (μ) = 0,
and where θ1,n is negative for all n ∈ N ∪ {0}. So, the
damping coefficients can be calculated if the positive
roots μ0,n of hkγ (μ) = 0 are known. In Table 3, the first
eight values of the damping coefficient are listed for
k = 1 and γ = 1, γ = 0.1, γ = 0.01, and γ = 0.001.
Now compare the values of Tables 2 and 3. In this
section, roots of (107) have been constructed for the
case γ = O(1). So only the values of Table 2 for the
case k = 1, εc = 0.01, and γ = 0.1 can be compared
to the values of Table 3.

Since μn → (n − 1
2 )π for n → ∞ it follows that

θ1,n → −2εc, (127)

for n sufficiently large. So, the oscillation modes will
be damped uniformly. Using a multiple-timescales per-
turbation method an approximation of the solution of
(26)–(30) can be constructed. It now follows that the
following timescales are necessary: x, t and τ = εt . In
Section 6, such an approximation of the solution will
be constructed.

5.3 Construction of the approximations of the roots
of (107) for the case γ = O(ε2)

In this section, the first two terms of the approximation
of the roots of the characteristic Equation (107) for
γ = O(ε2) will be considered. We are not interested in
the higher order approximations. The approximations
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are such that these are approximations for ε ↓ 0 but
also such that these are valid for all oscillation modes
(i.e., ∀n ∈ N ∪ {0}). The characteristic Equation (107)
for γ = O(ε2) is given by

(ε2γ2μ
4 − k − iεcμ2)q(μ)

= −ε2γ2μ(k + iεcμ2)s(μ), (128)

where γ = ε2γ2 and where γ2 is ε-independent. The
roots can be expressed in series in ε. Now it will be stud-
ied how these expansions can be chosen. By substitut-
ing μ = μ̃εβ = (μ̃re + iμ̃im) εβ , where β, μ̃re, μ̃im ∈
R and where μ̃re, μ̃im = O(1), into (128) yields

(γ2μ̃
4ε2+4β − k − icμ̃2ε1+2β)q(μ̃εβ)

= −(γ2kμ̃ε2+β + iγ2cμ̃3ε3+3β)s(μ̃εβ). (129)

A significant degeneration (see also [13]) of (129)
arises if β = −1/2, which yields

(γ2μ̃
4 − k − icμ̃2)q

(
μ̃√
ε

)
= −ε

3
2 (γ2kμ̃ + iγ2cμ̃3)s

(
μ̃√
ε

)
. (130)

Since
s( μ̃√

ε
)

q( μ̃√
ε

)
→ − μ̃re

|μ̃re| + i μ̃im
|μ̃im | for ε ↓ 0, μ̃re 
= 0,

and for μ̃im 
= 0 the case (ε2γ2μ
4 − k − iεcμ2) = 0 +

O(ε
3
2 ) will be considered. For this case the first-order

approximation of μ is proportional to 1√
ε
. This case

will be studied further in Section 5.3.2.
Now consider the case (ε2γ2μ

4 − k − iεcμ2) 
=
0 + O(ε

3
2 ). For this case it can be shown that(

γ2kμ̃ε2+β + iγ2cμ̃3ε3+3β

γ2μ̃4ε2+4β − k − icμ̃2ε1+2β

)
= O(ε)

for all values of μ̃ and for ε ↓ 0. Then (128) is given
by q(μ) = 0 + O(ε). Therefore, also the case q(μ) =
0 + O(ε) will be considered. This case will be studied
in Section 5.3.1.

5.3.1 The case q(μ) = 0 + O(ε)

Now (128) can be written as

q(μ) = −ε

(
γ2εμ(k + iεcμ2)

ε2γ2μ4 − k − iεcμ2

)
s(μ). (131)

The order in ε of

(
γ2εμ(k + iεcμ2)

ε2γ2μ4 − k − iεcμ2

)

depends not only on ε but also on the order in ε of μ.
For each order of μ the order of

(
γ2εμ(k + iεcμ2)

ε2γ2μ4 − k − iεcμ2

)

will be different. But it can be shown that

(
γ2εμ(k + iεcμ2)

ε2γ2μ4 − k − iεcμ2

)
= O(1)

for all values of μ except for the case that
(ε2γ2μ

4 − k − iεcμ2) = 0 + O(ε
3
2 ). Now, the follow-

ing ε-dependent constants are introduced: G1(ε) =
ε2γ2, G2(ε) = εγ2, and C(ε) = εc. By using these con-
stants an expansion for the roots of (131) can be ob-
tained which is valid for all these roots. By using these
constants (131) becomes

q(μ) = −ε

(
G2(ε)μ(k + iC(ε)μ2)

G1(ε)μ4 − k − iC(ε)μ2

)
s(μ). (132)

Now, it is assumed that a root μn = μ1,n + iμ2,n of
(132) can be expressed in a series in ε, that is,

μ1,n = μ1,0,n + εμ1,1,n(ε) + · · · , (133)

μ2,n = μ2,0,n + εμ2,1,n(ε) + · · · , (134)

where μi,0,n ∈ R, μi, j,n(ε) ∈ R, and μi, j,n(ε) = O (1)
for i = 1, 2 and j, n ∈ N. To approximate μn q(μ) and
s(μ) will also be expanded in power series in ε. For
the case q(μ) = 0 + O(ε) it follows that μn = μ1,0,n +
iμ2,0,n + O(ε) = μ0,n + O(ε), where μ0,n is the nth
positive root of q(μ) = 1 + cos(μ) cosh(μ) = 0 and
where μ0,n → (n − 1

2 )π if n → ∞ (see also [8, 9]).
Now by substituting (133) and (134) into (131) and
by equating the coefficients of equal powers of ε for
n ∈ {1, 2, . . .} it follows(after lengthy but elementary
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calculations) that

μ1,1,n(ε) = G1(ε)G2(ε)C(ε)μ7
0,n(

G1(ε)μ4
0,n − k

)2 + C2(ε)μ4
0,n

, (135)

μ2,1,n(ε) = G2(ε)μ0,n
(
k(G2(ε)μ4

0,n−k)−C2(ε)μ4
0,n

)(
G1(ε)μ4

0,n−k
)2+C2(ε)μ4

0,n

.

(136)

Now approximations of μn for the roots of (132) have
been found. Now, also an approximation for the damp-
ing coefficients θ1,n = −2μ1,nμ2,n have been found:

θ1,n = −2εG1(ε)G2(ε)C(ε)μ8
0,n(

G1(ε)μ4
0,n − k

)2 + C2(ε)μ4
0,n

. (137)

Now substitute G1(ε) = ε2γ2, G2(ε) = εγ2, and
C(ε) = εc into (137) to obtain the damping coefficient
for the nth oscillation mode

θ1,n = −2ε5γ 2
2 cμ8

0,n(
ε2γ2μ

4
0,n − k

)2 + ε2c2μ4
0,n

. (138)

So, it follows for the higher order modes (i.e., for n
sufficiently large) that

θ1,n ≈ −2εc. (139)

So, the higher order modes are damped weakly, but
the damping for the first oscillation modes is very small,
that is, θ1,n = O(ε5). Since in applications the first os-
cillation modes are important the parameter γ should
not be small with respect to the damping parameter εc
to obtain damping of order ε.

5.3.2 The case (ε2γ2μ
4 − k − iεcμ2) = 0 + O(ε

3
2 )

Now (128) can be written in the following way

ε2γ2μ
4−k−iεcμ2=−ε2(γ2kμ+iεcγ2μ

3)

(
s(μ)

q(μ)

)
.

(140)

The roots of (140) will be denoted by μ0. Now approx-
imations of μ0 will be considered. It was observed that
in this case the first-order approximation of μ0 is pro-
portional to 1/

√
ε. It should also be observed that the

small parameter in (130) is ε
√

ε. For these reasons the
root μ0 will be expanded in

μ0 = 1√
ε

(
μ0,0 + ε

√
εμ1,0 + · · · ) . (141)

Note that both the real part μ0re and the imaginary part
μ0im of μ0 are both O(1/

√
ε). Then it can be shown

that

s(μ0)

q(μ0)
→ − μ0re

|μ0re |
+ i

μ0im

|μ0im |

if ε ↓ 0. Now by substituting (141) into (140) and by
equating equal powers of ε it is obtained that μ0,0 is
the root of the following equation

γ2μ
4
0,0 − k − icμ2

0,0 = 0. (142)

The roots are such that if μ0,0re + μ0,0im i is a solu-
tion then also μ0,0im + μ0,0re i , −μ0,0re − μ0,0im i , and
−μ0,0re − μ0,0im i are solutions. Now it is obtained that

μ0,0 = ±1√
2γ2

√
ic ±

√
4kγ2 − c2. (143)

If a root μ0 of (140) is found the oscillation mode
θ0 = θ0re + iθ0im , where θ0re , θ0im ∈ R, can be deter-
mined by considering the relation: θ0 = iμ2

0. Note that
θ0re is the damping coefficient of the mode θ0. Hence,
an approximation for θ0 has been found, given by

θ0 = 1

2εγ2

(
− c ±

√
c2 − 4kγ2

)
. (144)

Now also an approximation of the solution of (103)
can be obtained. Depending on the sign of 4kγ2 − c2

three cases have to be considered. The mode will be
damped critically for c2 = 4kγ2, and the mode will be
overdamped for c2 > 4kγ2. If c2 is large with respect to
4kγ the damping coefficients θ0re will be close to 0 and
−c
γ2

. So, the damping parameter c of the TMD should

not be chosen too large, that is, c2 < 4kγ . Therefore,
in this paper these cases will not be considered and it
is assumed that c2 < 4kγ .
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Now, by assuming that c2 < 4kγ2, it is found, after
lengthy but elementary calculations, that

μ1,0 =
(

− μ0,0re

|μ0,0re |
+ i

μ0,0im

|μ0,0im |
)

×
(

2γ2k − c2 + ic
√

4γ2k − c2

4
√

4γ2k − c2

)
. (145)

Since the damping coefficients (138) and the real part
of (144) are negative and do not tend to zero for n large
the oscillation modes will be damped uniformly.

In Section 5, it has been shown that there exist a
Rk ∈ R such that the number of roots of (128) and
(ε2γ2μ

4 − k − iεcμ2)q(μ) = 0 is the same, counting
multiplicities, in B(0, Rk). Therefore, approximations
of all the roots of the so-called characteristic equa-
tion for the case γ = O(ε2) have been constructed. It
also has been shown that the oscillation modes will be
damped uniformly. Using a multiple-timescales per-
turbation method an approximation of the solution of
(26)–(30) for the case γ = O(ε2) can be constructed.
From (104) and (144) it follows that the timescale
t̄ = t/ε is necessary. Substitution of (141) into (119)
leads to the timescale x̄ = x/

√
ε. It now follows that

the following timescales are necessary: x , t , t̄ = t/ε,
x̄ = x/

√
ε, and τ = εt . This case will not be studied

in this paper.

5.4 Construction of the approximation of the first
roots of (107) for the case γ = O(ε)

In the previous section, it has been shown that the
damping coefficient of the first oscillation mode is rel-
atively small with respect to the other damping co-
efficients. Therefore only the first roots of (107) for
the case γ = O(ε) will be considered in this section.
The obtained approximation is only valid for roots μ

such that ε|μ|4 � 1. The roots for the case ε|μ|4 ≈ 1
and the case ε|μ|4 � 1 can be obtained by using nu-
merical methods. The characteristic Equation (107) for
γ = O(ε) is given by

q(μ) = ε

k
(γ1μ

4q(μ) + γ1kμs(μ)

−ic(μ2q(μ) − εγ1μ
3s(μ))), (146)

where γ = εγ1 and where γ1 is ε-independent. Now, it
is assumed that a root μn = μ1,n + iμ2,n of (146) can

be expressed in a power series in ε, that is,

μ1,n = μ1,0,n + εμ1,1,n + · · · , (147)

μ2,n = μ2,0,n + εμ2,1,n + · · · , (148)

where μi, j,n ∈ R for i = 1, 2 and j, n ∈ N ∪ {0}. To
approximate μn also q(μ) and s(μ) are expressed
in power series in ε. For the case q(μ) = 0 + O(ε)
it follows that μn = μ1,0,n + iμ2,0,n + O(ε) = μ0,n +
O(ε), where μ0,n is the (n + 1)th positive root of
q(μ) = 1 + cos(μ) cosh(μ) = 0, and where μ0,n →
(n + (1/2))π if n → ∞. Now by substituting (147)
and (148) into (146) and by equating the coefficients of
equal powers of ε for n ∈ {0, 1, 2, . . .} it follows that

μ1,1,n = −γ1μ0,n, (149)

μ1,2,n = −γ 2
1 μ0,n

(
μ4

0,n − k − μ0,nk

×
(

sin(μ0,n) sinh(μ0,n) cosh(μ0,n)

sinh(μ0,n) + sin(μ0,n) cosh2(μ0,n)

))
,

(150)

and that

μ2,1,n = 0, μ2,2,n = 0, μ2,3,n = cγ 2
1 μ7

0,n

k2
. (151)

Now it is found that an approximation of the damping
coefficient(θ1,n = −2iμ1,nμ2,n) up to order ε3 is given
by:

θ1,n = −2ε3cγ 2
1 μ8

0,n

k2
. (152)

So, the first damping coefficients are small with respect
to the damping parameter εc and the ratio εγ1. Also it
has been found that (152) has the smallest value for
n = 0 with respect to the other oscillation modes such
that ε|μn|4 � 1.

6 Formal approximations

In Section 5.2 problems (26)–(30) with α = ε1 = 0 has
been considered. It has also been mentioned that a slow
timescale like τ = εt is needed to solve the problems
(26)–(30) with α = ε1 = 0 approximately, by using a
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two-timescales perturbation method. In this section, an
approximation of the solution of the initial-boundary
value problem (26)–(30) with ε = ε1 = ε2 = ε3 will
be constructed. This is the case of a vertical beam with
a TMD at the top in a wind-field. In this section, condi-
tions like t > 0, t ≥ 0, and 0 < x < 1 will be dropped,
for abbreviation.

It is assumed that the solution can be expanded in a
Taylor series with respect to ε in the following way

u(x, t ; ε) = û0(x, t) + εû1(x, t) + ε2û2(x, t) + · · · .

(153)

It is assumed that the functions ûi (x, t) are O(1).
The approximation of the solution will contain secular
terms. Since the ûi (x, t) are assumed to be O(1), and
since the solutions are bounded, secular terms should
be avoided when approximations are constructed on
a time-scale of O(ε−1). That is why a two-timescales
perturbation method will be applied. Using such a two-
timescales perturbation method the function u(x, t) is
supposed to be a function of x , t and τ = εt . So put

u(x, t) = w(x, t, τ ; ε). (154)

A result of this is

ut = wt + εwτ ,

utt = wt t + 2εwtτ + ε2wττ , (155)

uttt = wt t t + 3εwt tτ + 3ε2wtττ + ε3wτττ .

Substitution of (154) and (155) into the problems (26)–
(30) yields

wxxxx + wt t = −ε[(γ + 1 − x)wx ]x − 2εwtτ

−ε2wττ + εαwt + ε2αwτ , (156)

w(0, t, τ ) = wx (0, t, τ ) = wxx (1, t, τ ) = 0, (157)

kwxxx (1, t, τ )

= − γ (wxxxtt (1, t, τ ) + 2εwxxxtτ (1, t, τ )

+ ε2wxxxττ (1, t, τ )) + kγ (wt t (1, t, τ )

+ 2εwtτ (1, t, τ ) + ε2wττ (1, t, τ ))

− εγ 2(wxtt (1, t, τ ) + 2εwxtτ (1, t, τ )

+ ε2wxττ (1, t, τ )) − εγ kwx (1, t, τ )

− ε2cγ (wxt (1, t, τ ) + εwxτ (1, t, τ ))

+ εcγ (3εwt tτ (1, t, τ ) + 3ε2wtττ (1, t, τ )

+ ε3wτττ (1, t, τ )) − εc(wxxxt (1, t, τ )

+ wxxxτ (1, t, τ )) + εcγwt t t (1, t, τ ), (158)

w(x, 0, 0) = f (x), (159)

wt (x, 0, 0) = g(x) − εwτ (x, 0, 0). (160)

Assuming that

w(x, t, τ ) = u0(x, t, τ ) + εu1(x, t, τ )

+ ε2u2(x, t, τ ) + · · · , (161)

then by collecting terms of equal powers in ε, it follows
from (156)–(160) that the O(1) problem is:

u0xxxx + u0t t = 0, (162)

u0(0, t, τ ) = u0x (0, t, τ ) = u0xx (1, t, τ ) = 0, (163)

Bkγ (u0) = 0, (164)

u0(x, 0, 0) = f (x), (165)

u0t (x, 0, 0) = g(x), (166)

and that the O(ε) problem is:

u1xxxx + u1t t = −[(γ + 1 − x)u0x ]x − 2u0tτ + αu0t ,

(167)

u1(0, t, τ ) = u1x (0, t, τ ) = u1xx (1, t, τ ) = 0, (168)

Bkγ (u1) = c
(
γ u0t t t (1, t, τ ) − u0xxxt (1, t, τ )

)
−2γ u0xxxtτ (1, t, τ ) + 2kγ u0tτ (1, t, τ )

−γ 2u0xtt (1, t, τ ) − kγ u0x (1, t, τ ),

(169)

u1(x, 0, 0) = 0, (170)
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u1t (x, 0, 0) = −u0τ
(x, 0, 0), (171)

where (see also (23))

Bkγ (ψ) ≡ kψxxx (1, t, τ )

+γψxxxtt (1, t, τ ) − kγψt t (1, t, τ ). (172)

The solution of theO(1)-problem (162)–(166) has been
determined in Section 3 and is given by

u0(x, t, τ ) =
∞∑

n=0

T0n(t, τ )φn(x), (173)

where φn(x) is an eigenfunction, corresponding to λn

and( ∫ 1

0
φi (x)φ j (x)dx + φixxx (1)φ jxxx (1)

γ λiλ j

)
= δi j , (174)

where δi j is the Kronecker symbol and where

T0n(t, τ ) = A0n(τ ) cos(μ2
nt) + B0n(τ ) sin(μ2

nt), (175)

where A0n(0) and B0n(0) are defined by (74) and (75),
respectively.

Now the solution of the O(ε)-problem will be deter-
mined. The problems (167)–(171) have an inhomoge-
neous boundary condition.

For classical inhomogeneous boundary conditions
the inhomogeneous boundary conditions are made
homogeneous. However, for inhomogeneous non-
classical boundary conditions such as (169) a differ-
ent procedure has to be followed. In fact, a transfor-
mation will be used such that the partial differential
equation and the inhomogeneous boundary condition,
after the transformation, match; if a solution which is
expanded in eigenfunctions φn(x), satisfies the trans-
formed partial differential equation it immediately sat-
isfies the transformed inhomogeneous boundary condi-
tion. A similar matching for a string-like problem and
a beam-like problem has been used in [1] and in [9]
respectively.

To solve this problem, the following transformation
will be used

u1(x, t, τ ) = v(x, t, τ ) +
(−x2

2
+ x3

6

)
h(t, τ ).

(176)

Substitution of (176) into (167)–(171) yields the fol-
lowing problem for v(x, t, τ )

vxxxx + vt t = −[(γ + 1 − x)u0x ]x − 2u0tτ

−
(−x2

2
+ x3

6

)
htt (t, τ ) + αu0t , (177)

v(0, t, τ ) = vx (0, t, τ ) = vxx (1, t, τ ) = 0, (178)

Bkγ (v) = c(γ u0t t t (1, t, τ ) − u0xxxt (1, t, τ ))

−kh(t, τ ) − γ htt (t, τ ) − kγ

3
htt (t, τ )

−2γ u0xxxtτ (1, t, τ ) + 2kγ u0tτ (1, t, τ )

−kγ u0x (1, t, τ ) − γ 2u0xtt (1, t, τ ),

(179)

v(x, 0, 0) =
(

x2

2
− x3

6

)
h(0, 0), (180)

vt (x, 0, 0) =
(

x2

2
− x3

6

)
ht (0, 0) − u0τ

(x, 0, 0).

(181)

It is assumed thatv(x, t, τ ) can be expressed in series
of eigenfunctions,

v(x, t, τ ) =
∞∑

m=0

vn(t, τ )φn(x). (182)

Substitute (182) into the partial differential Equation
(177) and the boundary condition (179) to obtain

∞∑
n=0

(vntt + λnvn)φn(x) = −[(γ + 1 − x)u0x ]x

−2u0tτ + αu0t −
(−x2

2
+ x3

6

)
htt (t, τ ), (183)

∞∑
n=0

(vntt + λnvn)

(
kφnxxx (1)

λn

)
= c(γ u0t t t (1, t, τ ) − u0xxxt (1, t, τ ))

−kh(t, τ ) − γ htt (t, τ ) − kγ

3
htt (t, τ )

−2γ u0xxxtτ (1, t, τ ) + 2kγ u0tτ (1, t, τ )

−kγ u0x (1, t, τ ) − γ 2u0xtt (1, t, τ ), (184)

respectively. Now the function h(t, τ ) will be derived.
By differentiating (183) with respect to x thrice, by
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multiplying by γ , and by taking the limit to x = 1 in
the so-obtained equation, yields

∞∑
n=0

(vntt + λnvn)γφnxxx (1)

= −2γ u0xxxtτ (1, t, τ ) + αγ u0xxxt (1, t, τ )

−γ htt (t, τ )−γ 2u0xtt (1, t, τ )+4γ λnu0t t (1, t, τ ).

(185)

By taking the limit x = 1 in (183) and by multiplying
to so-obtained result by kγ , yields

∞∑
n=0

(vntt + λnvn)kγφn(1)

= −2kγ u0tτ (1, t, τ ) + αkγ u0t (1, t, τ )

+kγ

3
htt (t, τ ) + kγ u0x (1, t, τ ). (186)

Now by subtracting (184) and (186) from (185) and
by using the second boundary condition in x = 1 (i.e.,
(k − γ λ)X ′′′(1) + kγ λX (1) = 0) it follows that

kh(t, τ )

= c(γ u0t t t (1, t, τ ) − u0xxxt (1, t, τ ))

−αγ (u0xxxt (1, t, τ )−ku0t (1, t, τ ))−4u0t t (1, t, τ ).

(187)

The initial-boundary value problems (167)–(171) can
be solved after expanding(−x2

2
+ x3

6

)
in a series of the orthonormal eigenfunctions φn(x):

−x2

2
+ x3

6
=

∞∑
n=0

Cnφn(x), (188)

where

Cn =
∫ 1

0

(−x2

2
+ x3

6

)
φn(x)dx

= −
(

φnxxx (1) + 3φn(1)

3λn

)
. (189)

Now the solution v(x, t, τ ) will be derived. Multiply
Equation (183) by φm(x) and integrate with respect to
x from 0 to 1 to obtain

∞∑
n=0

(
vntt + λnvn

) ∫ 1

0
φnφmdx

= −
∫ 1

0

(
[(γ + 1 − x)u0x ]x + 2u0tτ − αu0t

)
φmdx

+
(

φnxxx (1) + 3φn(1)

3λn

)
htt (t, τ ). (190)

Now by multiplying Equation (184) by(
φmxxx (1)

γ kλm

)
,

adding Equation (190), and by using (174) the differ-
ential equation for vn(t, τ ) it follows that

vntt + λnvn = −2T0ntτ −
(

φnxxx (1)−kφn(1)

kλn

)
htt (t, τ )

+ αT0nt (t, τ ) +
∞∑
j=0

T0 j (t, τ )(� jn

− γφnx (1)φ j (1))

−
(

φnxxx (1)

kγ λn

)
(γ 2u0xtt (1, t, τ )

+ kγ u0x (1, t, τ ) − 4u0t t (1, t, τ )), (191)

where

�mn =
∫ 1

0
(γ + 1 − x)φmx (x)φnx (x) dx . (192)

To avoid secular terms it then follows that

−2T0ntτ − (αγ (kφn(1) − φnxxx (1)) − c(γ λφn(1)

+φnxxx (1)))

(
φnxxx (1) − kφn(1)

kλn

)
T0nttt

k

+αT0nt + T0n�nn = 0, (193)

where �nn is given by (192). Since T0n(t, τ ) =
A0n(τ ) cos(μ2

nt) + B0n(τ ) sin(μ2
nt) and because of

the boundary condition (64) (i.e., (γ λ − k)X ′′′(1) =
kγ λX (1)) Equation (193) gives the following coupled
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differential equations for A0n(τ ) and B0n(τ ):

dA0n

dτ
+

((
c
2

+ αk2

γ λ2
n

) (
φnxxx (1)

k

)2

− α

2

)
A0n

+
(

�nn

2μ2
n

)
B0n = 0, (194)

dB0n

dτ
+

((
c
2

+ αk2

γ λ2
n

) (
φnxxx (1)

k

)2

− α

2

)
B0n

−
(

�nn

2μ2
n

)
A0n = 0. (195)

Define the following constants

k1n =
((

c
2

+ αk2

γ λ2
n

) (
φnxxx (1)

k

)2

− α

2

)

=
((

c
2

+ αk2

γ λ2
n

) (
γ λnφn(1)

γ λn − k

)2

− α

2

)
, (196)

k2n = �nn

2μ2
n
. (197)

From (194) and (195) A0n(τ ) and B0n(τ ) can be deter-
mined, yielding

A0n(τ ) = e−k1nτ (A0n(0) cos(k2nτ ) − B0n(0) sin(k2nτ )) ,

B0n(τ ) = e−k1nτ (B0n(0) cos(k2nτ ) + A0n(0) sin(k2nτ )) ,

Consider (196), if the wind-force is not included
(i.e., α = 0) then k1n > 0. Since φ2

n (1) → 4 for n → ∞
it follows that k1n → 2c for n → ∞. So, the oscilla-
tions will be damped uniformly for every positive value
of c.

In applications only the first oscillation modes are
important. In Table 4, the quotient

1

2

(
γ λnφn(1)

γ λn − k

)2

of the first eight oscillation modes is listed for several
values of γ . Note that also the case that γ is small, but
not O(ε), has been considered. Since the quotient is
small for the first oscillation mode, c has to be large to
suppress the wind-force.

Note that the values of the parameters in Table 4 are
similar to the values in Table 3.

Table 4 Numerical approximations of (1/2)([γ
λnφn(1)]/[γ λn − k])2 for k = 1 and γ = 1, γ = 0.1,
γ = 0.01, and γ = 0.001

n γ = 1 γ = 0.1 γ = 0.01 γ = 0.001

0 0.2684 1.3435 0.0344 0.000310
1 2.1819 5.5157 50.595 1.6826
2 2.0352 2.1125 3.1998 500.10
3 2.0077 2.0173 2.1164 3.6902
4 2.0029 2.0053 2.0303 2.3076
5 2.0014 2.0023 2.0113 2.1054
6 2.0008 2.0012 2.0052 2.0463
7 2.0005 2.0007 2.0027 2.0236

The damping coefficient is equal to −(εc/2)
([γ λnφn(1)]/[γ λn − k])2

The functions A0n(τ ) and B0n(τ ) have been ob-
tained. Now the expression for vn(t, τ ), u0(x, t, τ ),
and u1(x, t, τ ) can be derived, and also an order ε

approximation of ξ (t, τ ) can be obtained from (25).
It is beyond the scope of this paper to prove that the
O(ε)-approximations are indeed valid on timescales of
O(ε−1).

7 Conclusions

In this paper, a beam subjected to wind-forces and with
a TMD at the top as a model for a tall building in a
wind-field has been considered. The TMD is modelled
as a simple mass-spring-dashpot system. The oscilla-
tions of this beam are described by an initial-boundary
value problem. For this problem the nonlinear terms
in the beam model have been omitted. The problem
has been solved approximately by using perturbation
techniques and by using the method of separation of
variables. All the calculations in this paper are formal.
The well-posedness of the problem has been assumed,
and a proof of this is beyond the scope of this paper.
Note that the well-posedness of the problem is not an
easy question. The method of separation of variables
cannot always be applied to find the solution of a linear
partial differential equation. A typical example is

ytt (x, t) − yxx (x, t) = 0, (198)

y(0, t) = 0, yx (1, t) = −yt (1, t). (199)

For this problem, the method of separation of variables
cannot be used to find non-trivial solutions. Also it is
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possible that the method of separation of variables does
not mean anything for a problem (see [14]). For the
problems considered in this paper the method of sepa-
ration of variables works fine.

In this paper the stability of the system has been con-
sidered. The energy integral has been used to show that
the system (not subjected to wind-forces) is damped.
Also the influence of the ratio (γ ) of the mass of the
TMD (the tip-mass) with respect to the mass of the
beam, and of the damping parameter of the dashpot
(ε3c, where 0 < ε3 � 1) on the damping rates of the
system has been considered. It has been found (see
Table 2 and formula (138)) that the ratio (γ ) should
not be small with respect to the damping parameter
(ε3c) to obtain appropriate damping rates for the first
oscillation modes. For the case that γ and ε3c are of
equal order it has been shown (see formula (152)) that
the first damping rates will become small with respect
to the damping rates of the higher order modes if ε3

tends to 0. Furthermore, it has been shown that the
TMD can be used efficiently to damp the higher order
modes.

One of the boundary conditions contains a small
parameter. A multiple-timescales perturbation method
has been used to construct approximations of the solu-
tion. It has been shown how the timescales should be
chosen.
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