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Abstract

Mutual diffusion coefficients can be successfully predicted with models based on the

Darken equation. However, Darken-based models require concentration-dependent self-

diffusion coefficients which are rarely available. In this work, we present a predictive

model for concentration-dependent self-diffusion coefficients (also called tracer diffusion

coefficients) in non-ideal binary liquid mixtures. The model is derived from Molecular

Dynamics simulation data of Lennard-Jones systems. A strong correlation between

non-ideal diffusion effects and the thermodynamic factor is observed. We extend the

model by McCarty and Mason (Phys. Fluids. 1960, 3, 908-922) for ideal binary gas
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mixtures to predict the concentration-dependent self-diffusion coefficients in non-ideal

binary liquid mixtures. Our new model is a function of the thermodynamic factor and

the self-diffusion coefficients at infinite dilution and of the pure substances which are

readily available. We validate our model with experimental data of 9 systems. For

both Lennard-Jones systems and experimental data, the accuracy of the predicted self-

diffusion coefficients is improved by a factor 2 compared to the correlation of McCarty

and Mason. Thus, our new model significantly expands the practical applicability of

Darken-based models for the prediction of mutual diffusion coefficients.

1 Introduction

Diffusion in liquids plays an important role in many industrial and environmental processes.1

Engineers are in need of precise diffusion process calculations to design, e.g., separation

processes and chemical reactors. The accurate quantitative description of diffusion processes

has been a challenge to scientists for decades.2,3 There is still a continuing demand for5

diffusion coefficients as input parameters to these models.4

Although experimental methods are continuously improving,5–10 the measurement of dif-

fusion coefficients in liquids is usually time-consuming and expensive.11,12

Molecular Dynamics (MD) simulations are a powerful tool to complement or even sub-

stitute diffusion experiments.13–15 However, MD simulations are still computationally too10

expensive to be performed in the framework of process simulations. Therefore, predictive

models for diffusion coefficients are needed.11,16–18 The aim is to reduce the required data to

a minimal amount, e.g., to viscosities or diffusion coefficients at infinite dilution.

Most practical applications require the knowledge of mutual diffusion coefficients, which

describe the net flow of molecules due to a driving force. Numerous models have been15

proposed to predict the concentration dependence of mutual diffusion coefficients in liq-

uids.11,16–20 Within these models, two main classes can be identified:
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The first class of models is based on the Vignes equation21

D̄12 =
(
D̄x1→1

12

)x1
(
D̄x2→1

12

)x2
. (1)

Here, D̄12 is the (mutual) Maxwell-Stefan (MS) diffusion coefficient, x1 and x2 are the mole

fractions of components 1 and 2, and D̄x1→1
12 and D̄x2→1

12 are the MS diffusion coefficients20

at infinite dilution. The Vignes equation is very popular since it only requires diffusion

coefficients at infinite dilution as input for which many predictive models are available such

as e.g. the Wilke-Change equation.19 The Vignes equation is purely empirical and applicable

to binary systems only. However, extensions of the Vignes equation to multicomponent

mixtures have been proposed.16,1825

The second class of models is based on the Darken equation22

D̄12 = D̄Darken = x2D1,self + x1D2,self . (2)

Here, D1,self and D2,self are the concentration-dependent self-diffusion coefficients (also called

tracer diffusion coefficients) of components 1 and 2 in the mixture, which describe the mean-

square displacements of individual molecules in a mixture. The Darken equation has been

extended to multicomponent mixtures by Liu et al.18,23 In contrast to the Vignes equation30

(Equation 1), the Darken equation has a physical basis and can be derived from statistical-

mechanical theory when velocity crosscorrelations between the molecules of a mixture are

neglected, i.e. when the molecules in the mixture move independently and not in groups or

clusters.18 Hence, the Darken equation is suitable for ideal mixtures, but not for strongly

non-ideal mixtures.35

A modified Darken equation for non-ideal binary mixtures has therefore been proposed

by D’Agostino et al.24 and Moggridge25 which is based on critical point scaling laws:26–29

D̄12 = D̄DarkenΓ−0.36. (3)
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Here, the Darken equation is corrected by a power function of the thermodynamic factor Γ,

which is a measure for the nonideality of the system (cf. Equation 8).3 In the rest of the

manuscript, Equation 3 is called the “Moggridge equation”. The Moggridge equation has40

been tested and successfully validated for a wide range of non-ideal liquid mixtures.15,24,25,30

The Moggridge equation is not applicable to mixtures with dimerising components. Mog-

gridge31 proposed a further modification of Equation 3 for mixtures with dimerising compo-

nents. Zhu et al.32 introduced local mole fractions into the Moggridge equation. Thereby,

mixtures with and without dimerising species could be successfully described. Recently,45

Allie-Ebrahim et al.33 suggested an extension of the Moggridge equation to multicomponent

systems.

Despite its sound physical background, the Darken equation (and thereby the Moggridge

equation) is generally seen as “of little practical use due to the fact that it relies on the self-

diffusion coefficients [Di,self ] in the mixture, which are rarely available”.34 To avoid the use of50

Di,self , modifications of the Darken equation have been proposed which use self-diffusion coef-

ficients at infinite dilutionDxj 6=i→1

i,self = D
xj 6=i→1
ij = D∞12,35 include additional, system-dependent

modification factors,36 or incorporate the shear viscosity,37,38 to name a few. Similar mod-

ifications have been applied to the Vignes equation to extend the applicability to a wider

range of non-ideal systems.39 However, the applicabilities of the (modified) Vignes equations55

and of those modified Darken equations that avoid the use of Di,self are very case specific.3,19

It was concluded that “no single correlation [that avoids the use of concentration-dependent

self-diffusion coefficients Di,self ] is always satisfactory for estimating the concentration ef-

fect on liquid diffusion coefficients".19 Therefore, the concentration-dependent self-diffusion

coefficients should preferentially not be replaced in the Darken-based models.60

Thus, reliable predictions of concentration-dependent self-diffusion coefficients Di,self are

needed. Existing predictive models for Di,self predict Di,self from the self-diffusion coefficients
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at infinite dilution, Dxj→1
i,self . Carman and Stein40 proposed the semi-empirical relation

Di,self,pred =
D

xj→1
i,self η

xj→1

η
(4)

for binary systems, where Di,self,pred is the predicted value of Di,self , ηxj→1 is the viscosity

of pure component j, and η is the viscosity of the mixture. Equation 4 is based on the65

Stokes-Einstein equation19 and works well for ideal mixtures.40 For non-ideal mixtures, large

deviations occur.15

For non-ideal mixtures, Krishna and van Baten41 suggest the empirical relation

Di,self,pred =
n∑

j=1

wjD
xj→1
i,self , (5)

where wj is the mass fraction of component j. Equation 5 was successfully tested for linear

alkanes41 and mixtures with thermodynamic factors 0.55 ≤ Γ ≤ 1.15 For strongly non-ideal70

mixtures with thermodynamic factors Γ < 0.55, large deviations were observed.15

Based on derivations of Curtiss and Hirschfelder42 and Hirschfelder and Curtiss,43 Mc-

Carty and Mason44 and Miller and Carman45 derived the relation

1

Di,self,pred

=
x1

Dx1→1
i,self

+
x2

Dx2→1
i,self

, i = 1, 2. (6)

for binary gas mixtures. In the rest of the manuscript, Equation 6 will be called the

“McCarty-Mason equation”. The McCarty-Mason equation is based on the assumption of an75

approximately constant mutual diffusion coefficient, which is an often valid assumption for

gases. It is exact in the limit of infinite dilution.18 McCarty and Mason44 and Miller and Car-

man45 tested the McCarty-Mason equation successfully with data from gas diffusion exper-

iments. Liu et al.18 proposed the use of the McCarty-Mason equation for weakly non-ideal

liquids. Satisfying predictions of self-diffusion coefficients in weakly non-ideal liquids were80

observed.15,18,23 However, Equation 6 performs poorly for strongly non-ideal mixtures.15
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Overall, the predictive models for concentration-dependent self diffusion coefficients (Eqs. 4,

5, and 6) work well for approximately ideal mixtures, but there is a need for predictive equa-

tions for non-ideal mixtures. For mutual diffusion coefficients, the successful performance of

the Moggridge equation (Equation 3) shows that the inclusion of a function of the thermo-85

dynamic factor Γ into the ideal mutual diffusion equation (the Darken Equation 2) can be

a sufficient method to take nonidealities into account. The question arises whether it is also

possible to correct the ideal self -diffusion equation (the McCarty-Mason Equation 6) with a

function of the thermodynamic factor Γ to expand its applicability to non-ideal mixtures.

In this work, we study the concentration-dependence of mutual and self-diffusion co-90

efficients in binary non-ideal liquid mixtures. We investigate the correlation of non-ideal

diffusion effects with the thermodynamic factor. In Section 2, we motivate our analysis from

a theoretical point of view. Since experimental data rarely provide a full set of transport

data and thermodynamic properties, we use Molecular Dynamics (MD) simulations as the

basis for our analysis (Section 3). In Section 4.1, we assess the performance of the Moggridge95

equation (Equation 3) for the prediction of mutual diffusion coefficients. In Section 4.2.1,

we analyze the non-ideal behavior of self-diffusion coefficients and derive an improved model

for the prediction of self-diffusion coefficients in strongly non-ideal binary liquid mixtures.

In Section 4.2.2, the improved model is tested and validated with experimental data of

molecular systems. Conclusions of this study are drawn in Section 5.100

2 Theory and Method

Commonly, two approaches are used to describe mutual diffusion: Fick’s approach and the

Maxwell-Stefan (MS) approach.3,46 Fick’s approach is phenomenological and requires the

knowledge of Fick diffusion coefficients D12 and of concentration gradients. It is therefore

often used for practical applications. The MS approach is physically motivated and can105

be derived from irreversible thermodynamics.3,47 It requires the knowledge of MS diffusion
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coefficients D̄12 and of chemical potential gradients. Hence, the MS approach separates

thermodynamic properties and transport properties. It is therefore often used for predictive

modeling of diffusion coefficients.

Since both Fick’s and the MS approach describe the same phenomenon, they are linked110

to each other. For a binary mixture, we have

D12 = D̄12Γ (7)

holds, where Γ is the thermodynamic factor. The MS diffusion coefficient D̄12 describes the

molecular friction forces whereas the thermodynamic factor Γ contains the thermodynamic

information.

For a binary mixture, the thermodynamic factor Γ is defined as3115

Γ = 1 + x1
∂ ln γ1

∂x1

∣∣∣∣
T,p,Σ

= 1 + x1

(
∂ ln γ1

∂x1

− ∂ ln γ1

∂x2

)∣∣∣∣
T,p

. (8)

Here, γ1 is the activity coefficient of component 1, T and p denote temperature and pressure,

respectively, and Σ indicates that the closing condition
∑

i xi = 1 has to be considered. For

ideal mixtures and pure substances, Γ = 1 holds by definition. Thus, MS diffusion coefficients

and Fick diffusion coefficients are equal for ideal mixtures, pure substances, and at infinite

dilution. Mixtures with a thermodynamic factor 0 < Γ < 1 favor interactions between the120

same species over interactions between different species. If Γ approaches zero, the mixture

is approaching phase separation. Mixtures with Γ > 1 exhibit associating behavior.

The thermodynamic factor Γ can be calculated from excess enthalpy models3 or equa-

tions of state.41 In molecular simulations, the thermodynamic factor can be calculated from

Kirkwood-Buff integrals48 or the permuted Widom test particle insertion method.49 In this125

work, the thermodynamic factors of LJ systems are calculated from Kirkwood-Buff integrals

Gij:13

Γ =

(
1 +

1

V
x1x2N (G11 +G22 − 2G12)

)−1

. (9)
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Here, V is the volume of the simulation box and N is the total number of particles. For

details, the reader is referred to Milzetti et al.,50 Ben-Naim,51 and Jamali et al.52

The MS diffusion coefficient can be expressed by velocity correlation functions. For a130

binary mixture, the MS diffusivity D̄12 equals23

D̄12 = x2D1,self + x1D2,self︸ ︷︷ ︸
D̄Darken

+x1x2N(CC 11 + CC 22 − 2CC 12)︸ ︷︷ ︸
D̄Cross

. (10)

The MS diffusion coefficient D̄12 is composed of two parts: An (ideal) Darken diffusion coef-

ficient D̄Darken containing the self-diffusion coefficients Di,self (which are velocity autocorre-

lations), and a non-ideal diffusion coefficient D̄Cross containing the velocity crosscorrelations

CC ij between different particles of components i and j. For approximately ideal mixtures135

with weak molecular interactions, the velocity crosscorrelations CC ij are negligible compared

to the self-diffusion coefficients Di,self and the MS diffusion coefficient is approximately the

Darken diffusion coefficient: D̄12 ≈ D̄Darken. For non-ideal mixtures with strong molecular

interactions, the non-ideal diffusion coefficient D̄Cross can be in the same order of magnitude

as the Darken diffusion coefficient D̄Darken. Thus, consideration of D̄Cross is essential for140

non-ideal mixtures.

A number of works have studied the concentration dependence of velocity crosscorrela-

tions CC ij.53–64 Weingärtner54 observed that velocity crosscorrelations CC ij show a simi-

lar concentration-dependence as Kirkwood-Buff coefficients Gij. However, a derivation of

a relationship between velocity crosscorrelations CC ij and the thermodynamic factor Γ is

not straight-forward and no conclusive answer was found. Still, it is interesting to note

that Weingärtner’s observation in fact suggests a connection between the non-ideal diffu-

sion coefficient D̄Cross and the thermodynamic factor Γ: A comparison of Equation 9 and

Equation 10 reveals a structural similarity in the formulations of D̄Cross and Γ. Similarly, the

Moggridge equation (Equation 3) also suggests a correlation between the relative nonideality

D̄Cross/D̄Darken and Γ: insertion of the Moggridge equation (Equation 3) into Equation 10
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leads to

D̄Cross

D̄Darken

=
D̄12 − D̄Darken

D̄Darken

(11)

=
D̄12

D̄Darken

− 1 (12)

= Γ−0.36 − 1. (13)

Thus, the Moggridge equation (Equation 3) in fact relates the non-ideal diffusion coefficient

D̄Cross to the ideal Darken diffusion coefficient D̄Darken and the thermodynamic factor Γ.

The question arises whether the relation between non-ideal diffusion effects and the

thermodynamic factor can also be observed for self-diffusion coefficients. The McCarty-145

Mason equation (Equation 6) resembles the ideal mixing rule for concentration-dependent

self-diffusion coefficients. In an analogy to the relative nonideality D̄Cross/D̄Darken of the mu-

tual diffusion coefficient (Equation 11), we define the relative deviation ∆Di,self,rel between

the real self-diffusion coefficient Di,self and the predicted self-diffusion coefficient Di,self,pred

by the McCarty-Mason equation (Equation 6),150

∆Di,self,rel =
Di,self −Di,self,pred

Di,self

, (14)

which is a measure for non-ideal effects of self-diffusion. If the relative deviation ∆Di,self,rel

can be described as a function f(Γ) of the thermodynamic factor, predictions of the McCarty-

Mason equation (Equation 6) can be corrected to obtain a predictive equation for non-ideal

mixtures:

∆Di,self,rel =
Di,self −Di,self,pred

Di,self

= f(Γ), (15)

1

Di,self

=
1

Di,self,pred

· (1− f(Γ)) (16)

=

(
x1

Dx1→1
i,self

+
x2

Dx2→1
i,self

)
· (1− f(Γ)) . (17)
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In this work, we investigate correlations between both the relative nonideality D̄Cross/D̄Darken

of mutual diffusion coefficients and the relative deviation ∆Di,self,rel of self-diffusion coeffi-

cients with the thermodynamic factor Γ. We expect the thermodynamic factor to cover all

nonidealities such that there is no need for further correction factors such as viscosity. To

have a full and consistent set of transport data and thermodynamic data, we use MD sim-155

ulations of LJ systems for our analysis. The correlations are then tested with experimental

data of molecular systems.

3 Simulation Details

Our analysis is based on MD simulations of LJ systems. In the following, we provide a short

overview of the specifications of the simulations. For more details and numeric results, the160

reader is referred to Jamali et al.52

We performed 250 distinct MD simulations of binary LJ systems. All parameters and

properties of these simulations are reported in reduced units. The parameters of the first

species serve as base units: diameter σ1 = σ = 1, interaction energy ε1 = ε = 1, and

mass m1 = m = 1. The parameters of the second species and the adjustable parameter165

kij of the Lorentz-Berthelot mixing rule are listed in Table 1. To cover a broad range of

nonidealities, the ratios of the parameters of the first and second species are varied over a

large range. The reduced temperature T and pressure p are T = 0.65 and p = 0.05. For

each specified LJ system, two different types of simulations were performed: simulations to

determine transport properties and simulations to determine thermodynamic factors.170

Transport properties were calculated from equilibrium MD simulations with 200 million

time steps with a time step length of 0.001 in reduced units. The transport coefficients

were calculated from time-correlation functions. The Einstein relations were used to sample

the time-correlations, i.e. the displacements of particles were sampled over time.65,66 The
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Table 1: Specifications of the studied LJ systems. LJ particle of type 1 has σ1 = σ = 1.0,
ε1 = ε = 1.0, and mass = m1 = 1.0 in reduced units .65 kij is an adjustable parameter to
the Lorentz-Berthelot mixing rule εij =

√
ε1ε2 (1− kij), controlling the nonideality of the

systems.

Specification Values
Total number of particles 500, 1000, 2000, 4000
Independent simulations 10, 10, 5, 5

x1 0.1, 0.3, 0.5, 0.7, 0.9
ε2/ε1 1.0, 0.8, 0.6, 0.5
σ2/σ1 1.0, 1.2, 1.4, 1.6
m2/m1 (σ2/σ1)3

kij 0.05, 0.0, -0.3, -0.6

self-diffusion coefficients follow from13
175

Di,self = lim
t→∞

1

6Nit

〈
Ni∑
j=1

(rj,i (t)− rj,i (0))2

〉
(18)

where t is the correlation time, Ni is the number of molecules of species i and rj,i is the

position of j-th molecule of species i. The angle brackets denote an ensemble average. The

velocity crosscorrelations CC ii and CC ij follow from13

CCii = lim
t→∞

1

6Nt

〈(
Ni∑
k=1

(rk,i (t)− rk,i (0))

)
·

(
Ni∑

l=1,l 6=k

(rl,i (t)− rl,i (0))

)〉
, (19)

CCij = lim
t→∞

1

6Nt

〈(
Ni∑
k=1

(rk,i (t)− rk,i (0))

)
·

 Nj∑
l=1

(rl,j (t)− rl,j (0))

〉 (20)

where N is the total number of particles in the mixture.

The values of the transport coefficients depend on the box size of the MD simulations.

More precisely, the transport coefficients scale linearly with the inverse of the box size,

1/L. To correct for these finite-size effects, each LJ system was simulated for four different

system sizes (500, 1000, 2000, and 4000 particles). Subsequently, the transport coefficients180

were extrapolated linearly to an infinite box size, i.e. 1/L → 0, to obtain the transport

coefficients in the thermodynamic limit.
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For the calculation of thermodynamic factors, equilibrium MD simulations with large

systems consisting of 25000 particles were performed. The thermodynamic factors were cal-

culated from Kirkwood-Buff coefficients (cf. Equation 9). The Kirkwood-Buff coefficients185

were calculated from integrals of the radial distribution functions (RDFs). Both the RDFs

and the Kirkwood-Buff integrals were corrected for finite-size effects using the method of Gan-

guly and van der Vegt67 and Milzetti et al.50 for the RDFs and the method of Krüger et al.,48

Dawass et al.68 and Krüger and Vlugt69 for the Kirkwood-Buff integrals. Each simulation

for the calculation of thermodynamic factors was performed for 10 million time steps with190

a time step length of 0.001 in reduced units. All simulations were repeated for at least five

times to assess statistical uncertainties.

4 Results and Discussion

The MD simulations provide a full set of transport data and thermodynamic properties.

Thereby, the MD simulations enable a comprehensive analysis of non-ideal effects of mutual195

and self-diffusion coefficients. In Section 4.1, we analyze the correlation between the relative

nonideality D̄Cross/D̄Darken of mutual diffusion coefficients and the thermodynamic factor

Γ. We assess the performance of the Moggridge equation (Equation 3) and confirm its

validity for a wide range of non-ideal mixtures. In Section 4.2, we investigate the correlation

between the relative deviation ∆Di,self,rel of self-diffusion coefficients with the thermodynamic200

factor Γ. We derive an improved model for the prediction of concentration-dependent self-

diffusion coefficients in non-ideal binary mixtures (Section 4.2.1) and validate our model with

experimental data (Section 4.2.2).

4.1 Mutual diffusion coefficients

The nonideality of mutual MS diffusion coefficients D̄12 is represented by the relative nonide-205

ality D̄Cross/D̄Darken (Equation 11). According to Equation 13, we can assume a correlation

12



between the relative nonideality D̄Cross/D̄Darken and the thermodynamic factor Γ. Figure 1

shows the relative nonideality D̄Cross/D̄Darken as a function of the thermodynamic factor Γ.

The data of our MD simulations are a continuous function of the thermodynamic factor Γ.

For the considered LJ systems, the thermodynamic factor is in the range 0.28 < Γ < 9210

and the relative nonidealities are in the range −0.34 < D̄Cross/D̄Darken < 0.47, i.e. the MS

diffusion coefficient D̄12 differs from the ideal Darken diffusion coefficient by up to 47 %. For

ideal mixtures without molecular interactions (Γ = 1), the velocity crosscorrelations vanish

and thereby the relative nonideality vanishes: D̄Cross/D̄Darken = 0. For self-associating mix-

tures (Γ < 1), the velocity crosscorrelations CC ii between particles of the same component215

i become predominant and the relative nonideality D̄Cross/D̄Darken is positive. For mixtures

with associating behavior between unlike particles of different components i and j, the ve-

locity croscorrelations CC ij become predominant and the relative nonideality D̄Cross/D̄Darken

is negative.

To validate our MD simulation data, we compare it to experimental data from litera-

ture. Table 2 provides a detailed list of references for the experimental data used in this

work. The experimental datasets consist of mutual Fick diffusion coefficients D12, self-

diffusion coefficients Di,self , and thermodynamic factors Γ. The self-diffusion coefficients

Di,self originate from NMR measurements or diffusion measurements with radioactive trac-

ers; the thermodynamic factors Γ are either reported directly in literature or calculated from

Redlich-Kister (RK) and/or NRTL parameters reported in literature. The relative nonide-

ality D̄Cross/D̄Darken is calculated from the experimental datasets via combination of Eqs. 10

and 7:

D̄Cross/D̄Darken =
D̄12 − D̄Darken

D̄Darken

(21)

=
D12/Γ

D̄Darken

− 1 (22)

=
D12/Γ

x2D1,self + x1D2,self

− 1. (23)

13



The thermodynamic factors of the experimental data are in the range 0 < Γ < 2. Figure 1220

provides an inset for the range 0 < Γ < 2. Overall, our MD data agree well with the

experimental data. Deviations can be observed only for mixtures with dimerising species,

i.e. ethanol and methanol for the current dataset. For dimerising species, the relative

nonideality D̄Cross/D̄Darken is larger in comparison to non-dimerising species. This special

behavior of dimerising species was also observed by Moggridge31 and is also observed for225

self-diffusion coefficients below (cf. Section 4.2.2).

Figure 1 also shows the predictions of the Moggridge equation (cf. Equation 3 and Equa-

tion 13). In the typical range of thermodynamic factors of molecular systems, 0 < Γ < 2,

the Moggridge equation performs well and agrees with our MD data as well as with most of

the experimental data. Again, mixtures with dimerising species show larger deviations from230

the Moggridge equation. For large thermodynamic factors Γ > 2, our MD data suggests

a different functional relation than the Moggridge equation with less negative relative non-

idealities D̄Cross/D̄Darken. However, for practical applications with typical thermodynamic

factors 0 < Γ < 2, the performance of the Moggridge equation is excellent.
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Figure 1: Relative nonideality D̄Cross/D̄Darken of mutual diffusion coefficients as function of
the thermodynamic factor Γ. Inset for thermodynamic factors 0 < Γ < 2. Black crosses:
Data from MD simualations. Stars: Experimental data with thermodynamic factors calcu-
lated with Redlich-Kister (RK). Diamonds: Experimental data with thermodynamic factors
calculated with NRTL. Plus symbols: Experimental data with thermodynamic factors given
in literature. Red dashed line: Predictive Moggridge equation (Equation 3). Statistical un-
certainties of the MD data are given in Jamali et al.52 References for the experimental data
are provided in Table 2.
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Table 2: References for the experimental data used in this work.

System Diffusion coefficients Thermodynamic factor
D12 D1,self D2,self Redlich-Kister (RK) NRTL reported in Literature (Lit)

Acetone-Benzene Anderson et al. 70 , Yoshinobu and Yasumichi 71 Yoshinobu and Yasumichi 71 Moggridge 25 Zhu et al. 32 -
Cullinan and Toor 72

Acetone-CarbonTetrachloride Anderson et al. 70 , Hardt et al. 73 Hardt et al. 73 Moggridge 25 - -
Cullinan and Toor 72

Acetone-Chloroform
McCall and Douglass 74 , D’Agostino et al. 75 D’Agostino et al. 75 D’Agostino et al. 75 Gmehling et al. 76 -
Tyn and Calus 77 ,
Anderson et al. 70

Acetone-Water

Anderson et al. 70 , Mills and Hertz 59 Mills and Hertz 59 Moggridge 25 Gmehling et al. 76 -
Grossmann and Winkelmann 78 ,
Rehfeldt and Stichlmair 79 ,
Tyn and Calus 77 ,
Zhou et al. 80

Acetonitrile-Water Easteal et al. 63 Easteal et al. 63 Easteal et al. 63 Fitted from data of French 81 - -
Cyclohexane-Benzene Harned 82 Mills 83 Mills 83 Moggridge 25 - -

Diethylether-Chloroform Sanni et al. 84 , Weingärtner 54 Weingärtner 54 Moggridge 25 - -
Weingärtner 54

Ethanol-Benzene Anderson et al. 70 , Johnson and Babb 85 Johnson and Babb 85 - Zhu et al. 32 Guevara-Carrion et al. 15*
Zhu et al. 32

Ethanol-Carbon Tetrachloride
Hammond and Stokes 86 , Hardt et al. 73 Hardt et al. 73 - - Guevara-Carrion et al. 15*
Longsworth 87 ,
Bosse and Bart 88

Heptane-Benzene Harris et al. 89 Harris et al. 89 Harris et al. 89 Moggridge 25 - -
Hexane-Benzene Harris et al. 89 Harris et al. 89 Harris et al. 89 Moggridge 25 - -
Hexane-Toluene Ghai and Dullien 90 Ghai and Dullien 90 Ghai and Dullien 90 Moggridge 25 - -

Methanol-Benzene Caldwell and Babb 91 Aoyagi and Albright 92 Aoyagi and Albright 92 - - Guevara-Carrion et al. 15*
Johnson and Babb 85 Johnson and Babb 85

Methanol-Carbon Tetrachloride
Anderson et al. 70 , Prabhakar and Weingärtner 93 Prabhakar and Weingärtner 93 - - Guevara-Carrion et al. 15*
Prabhakar and Weingärtner 93 ,
Longsworth 87

Methanol-Water
Chang et al. 94 , Derlacki et al. 95 Derlacki et al. 95 Moggridge 25 - -
Derlacki et al. 95
Bosse and Bart 88

Nitrobenzene-Hexane Haase and Siry 96 D’Agostino et al. 24 D’Agostino et al. 24 D’Agostino et al. 24 - -
Water-N-methylpyridine Ambrosone et al. 97 Ambrosone et al. 97 Ambrosone et al. 97 Moggridge 25 Zhu et al. 32 -
*MD simulation results verified with experimental data
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4.2 Self-diffusion coefficients235

The nonideality of self-diffusion coefficients Di,self is represented by the relative deviation

∆Di,self,rel (Equation 14). For ideal mixtures, we expect relative deviations ∆Di,self,rel = 0

from the predictions of the McCarty-Mason equation (Equation 6). For non-ideal mixtures,

we assume that a modification of the McCarty-Mason equation with a function of the ther-

modynamic factor can account for non-ideal effects (cf. Equation 17). In Section 4.2.1, we240

analyze the correlation between the relative deviation ∆Di,self,rel and the thermodynamic

factor Γ in non-ideal LJ systems and derive a modified McCarty-Mason equation for non-

ideal mixtures. In Section 4.2.2, we validate the modified McCarty-Mason equation with

experimental data.

4.2.1 Self-diffusion coefficients of LJ systems245

Figure 2 (top figure) shows an example of a concentration-dependent self-diffusion coefficient

D1,self of a binary LJ system with pronounced nonideality. The specification of the LJ system

is ε2/ε1 = 0.6, σ2/σ1 = 1.2, m2/m1 = 1.728, kij = −0.6.

In a first step, we test the performance of the McCarty-Mason equation (Equation 6). The

McCarty-Mason equation requires the prior knowledge of self-diffusion coefficients Dxj→1
i,self at250

infinite dilution and of the pure substances. In MD simulations, statistical uncertainties are

very large for mixtures approaching infinite dilution of one of the components. Therefore, the

MD simulations have been performed for mixtures with at least 10 mole-% of each species,

i.e. x1 = [0.1, 0.3, 0.5, 0.7, 0.9]. To obtain the values of Dxj→1
1,self , we performed a smoothing fit

with a quadratic polynomial function to the self-diffusion coefficients D1,self . Figure 2 (top255

figure) shows the smoothing fit as well as the predictions of the McCarty-Mason equation.

As expected, the McCarty-Mason prediction shows large deviations. However, the curvature

of the concentration-dependence is retrieved.
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Figure 2: Top figure: Blue stars: Simulation results of self-diffusion coefficients D1,self of
a binary LJ system as function of the mole fraction x1 of the first species. Specification of
the LJ system: ε2/ε1 = 0.6, σ2/σ1 = 1.2, m2/m1 = 1.728, kij = −0.6. Blue-dashed line:
smoothing fit to the simulation results; red circles/line: predictions of the McCarty-Mason
equation (Equation 6); green diamonds/line: predictions of the modified McCarty-Mason
equation (Equation 25). The error bars of D1,self are smaller than the symbols.
Bottom figure: Concentration dependence of the thermodynamic factor Γ − 1 (blue
stars/line, left axis) and concentration-dependence of the relative deviation ∆Di,self,rel be-
tween the self-diffusion coefficients and the McCarty-Mason predictions (Equation 6) (red
circles/line, right axis) and the modified McCarthy-Mason prediction (Equation 25) (green
diamonds/line, right axis). A clear correlation between Γ−1 and ∆D1,self,rel can be observed.
The error bars of Γ−1 are smaller than the symbol sizes. A full set of plots for all considered
LJ systems is given in the Supporting Information.

Figure 2 (bottom figure) shows the concentration dependence of the relative deviation

∆D1,self,rel (Equation 14) of the predictions made by the McCarty-Mason equation. Large260

relative deviations up to 70 % are observed. Figure 2 (bottom figure) also shows the con-

centration dependence of the thermodynamic factor minus 1, Γ − 1. The term Γ − 1 is a

measure for the deviation of the mixture from an ideal mixture. In the present case, Γ − 1

takes values of up to 4.2, i.e. the LJ system is highly non-ideal.

We can now compare the concentration dependencies of Γ − 1 and ∆D1,self,rel. Fig-265

ure 2 (bottom figure) suggests a strong correlation between ∆D1,self,rel and Γ − 1: Large
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deviations of a mixture from ideal behavior lead to large relative deviations of the McCarty-

Mason prediction.

To study the correlation between ∆D1,self,rel and Γ− 1 for the full set of LJ systems, we

plot ∆D1,self,rel as function of Γ − 1 (cf. Figure 3(a)). A general trend ∆D1,self,rel ∝ Γ − 1270

can be observed. However, the data scatters for molar mass ratios m2/m1 > 2. As a first

approximation, we restrict our analysis to systems with molar mass ratios m2/m1 < 2.

Figure 3(b) shows the relative deviation ∆D1,self,rel as function of Γ − 1 for all LJ systems

with molar mass ratios m2/m1 < 2. A clear correlation ∆D1,self,rel ∝ Γ− 1 can be observed.

For the full range of thermodynamic factors 0 < Γ < 7, the McCarty-Mason predictions show275

large deviations of up to 130 %. The root-mean square error of ∆Di,self,rel is RMSE = 35 %,

i.e. the McCarty-Mason predictions deviate by 35 % on average. However, molecular systems

typically have thermodynamic factors in the range 0 < Γ < 2 (cf. Section 4.1). Still, even in

this molecular systems range (0 < Γ < 2), the McCarty-Mason predictions have an RMSE

of 10 %.280

To improve the McCarty-Mason predictions, we introduce a linear fit of ∆Di,self,rel as

function of Γ following Equation 15. Fitting both ∆D1,self,rel and ∆D2,self,rel in the typical

range of thermodynamic factors 0 < Γ < 2 results in the function (cf. Figure 3(b))

f(Γ) = −0.2807 · (Γ− 1) . (24)

Insertion of Equation 24 into Equation 17 leads to an improved predictive equation for

concentration-dependent self-diffusion coefficients:285

1

Di,self

=

(
x1

Dx1→1
i,self

+
x2

Dx2→1
i,self

)
· (1 + 0.2807 · (Γ− 1)) . (25)

In the rest of the manuscript, Equation 25 will be called the “modified McCarty-Mason

equation”. Using the modified McCarty-Mason equation, the accuracy of the predictions is

doubled compared to the McCarty-Mason predictions: The RMSE halves from 10 % to 5 %
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for 0 < Γ < 2.

The improved predictions of the modified McCarty-Mason prediction are visualized for290

the example LJ system considered in Figure 2: Using the modified version of the McCarty-

Mason prediction decreases the maximum relative deviation from ∆D1,self,rel = 70 % to

∆D1,self,rel = 12 %, i.e. the predictions are improved by a factor up to 0.7/0.12 = 5.8.

A full set of plots for all considered LJ systems is provided in the Supporting Information.
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Figure 3: Relative deviations ∆D1,self,rel of the McCarty-Mason predictions (Equation 6) of
self-diffusion coefficients as function of the thermodynamic factor Γ for LJ systems.
(a) ∆D1,self,rel for all LJ systems, color-coded by the molar mass ratios m2/m1.
(b) ∆D1,self,rel for LJ systems with molar mass ratios m2/m1 < 2 and best fit of Equation 15
(black line) for 0 < Γ < 2 (indicated by the vertical dashed line). Plots for the second species
are provided in the Supporting Information.
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4.2.2 Self-diffusion coefficients of molecular systems295

The modified McCarty-Mason equation (Equation 25) was obtained from MD data of LJ

systems. To evaluate the practical performance of the modified McCarty-Mason equation, it

has to be tested with experimental data. Figure 4(a) shows the relative deviation ∆D1,self,rel

of the MCCarty-Mason equation (Equation 6) as function of Γ− 1. The correlation between

∆D1,self,rel and Γ − 1 is not as clear as for LJ systems (cf. Figure 3); even ideal mixtures300

(Γ − 1 = 0) have relative deviations ∆D1,self,rel 6= 0. Still, the linear fit Equation 24, which

represents the predictions of the modified McCarty-Mason equation, captures a major part

of the experimental data, but some molecular systems show large deviations. In particular,

the systems water-N-methypyridine and methanol-carbon tetrachloride show large deviations

with completely different dependencies of ∆D1,self,rel on Γ−1. This plot suggests that it may305

be even impossible to derive a model based on the thermodynamic factor Γ only that can

capture all molecular systems.

However, the modified McCarty-Mason equation was derived for systems with molar mass

ratios M2/M1 < 2. In addition, it was shown in Section 4.1 that mixtures with dimerising

species need a separate analysis. Excluding systems with m2/m1 < 2 and systems with310

dimerising species results in the remaining dataset shown in Figure 4(b). For the remaining

dataset, a clear correlation between ∆D1,self,rel and Γ − 1 is observed, which agrees with

the linear fit Equation 24 of the modified McCarty-Mason equation. The RMSE of the

McCarty-Mason predictions is 11 %. If the modified McCarty-Mason equation is used, the

RMSE decreases to 5 %. Hence, the deviations of the predictions made by the modified315

McCarty-Mason equation are 0.11/0.05 > 2 times lower.
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Acetone-Benzene (RK)
Acetone-Benzene (NRTL)
Acetone-CarbonTetrachloride (RK)
Acetone-Chloroform (RK)
Acetone-Chloroform (NRTL)
Acetone-Water (RK)
Acetone-Water (NRTL)
Acetonitrile-Water (RK)
Cyclohexane-Benzene (RK)
Diethylether-Chloroform (RK)
Ethanol-Benzene (NRTL)
Ethanol-Benzene (Lit)
Ethanol-CarbonTetrachloride (Lit)
Heptane-Benzene (RK)
Hexane-Benzene (RK)
Hexane-Toluene (RK)
Methanol-Benzene (Lit)
Methanol-CarbonTetrachloride (Lit)
Methanol-Water (RK)
Nitrobenzene-Hexane (RK)
Nitrobenzene-Hexane (RK)
Nitromethane-Benzene (RK)
Water-N-methylpyridine (RK)
Water-N-methylpyridine (NRTL)
-0.2807 ( -1)

Figure 4: Relative deviations ∆D1,self,rel of the McCarty-Mason prediction (Equation 6) as
function of the thermodynamic factor Γ for molecular systems (symbols) and linear fit of
∆D1,self,rel derived from LJ systems (black line, cf. Equation 24). Stars: Experimental data
with thermodynamic factors calculated with Redlich-Kister (RK). Diamonds: Experimental
data with thermodynamic factors calculated with NRTL. Plus symbols: Experimental data
with thermodynamic factors reported in literature.
(a) ∆D1,self,rel for all considered molecular systems.
(b) ∆D1,self,rel for molecular systems with molar mass ratiosM2/M1 < 2 and without dimeris-
ing species. Plots for the second species are provided in the Supporting Information.

The improvement in the prediction of self-diffusion coefficients can also be visualized

in terms of the concentration dependence: Figure 5 shows experimental and predicted

concentration-dependent self-diffusion coefficients of the exemplary systems nitrobenze-hexane

and cyclohexane-benzene (a full set of plots for all considered molecular systems is provided in320

the Supporting Information). For the system nitrobenze-hexane, the RMSE of the McCarty-

Mason prediction is 23 % and the RMSE of the modified McCarty-Mason prediction is 6 %.

Hence, the deviation of the predictions made by the modified McCarty-Mason equation are
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0.23/0.06 ≈ 4 times lower. For the system cyclohexane-benzene, using the modified ver-

sion of the McCarty-Mason equation decreases the RMSE from 17 % to 4 %, which also325

corresponds to an improvement by a factor 0.17/0.04 ≈ 4.

Hence significant improvements in the prediction of concentration-dependent self-diffusion

coefficients of non-ideal binary liquid mixtures are obtained by use of the modified McCarty-

Mason equation. Combining the modified McCarty-Mason equation (Equation 6) with the

Moggridge equation (Equation 3) and Equation 7 leads to the following model for the pre-

diction of concentration-dependent binary Fick diffusion coefficients:

D12 = (x2D1,self + x1D2,self) Γ0.64, (26)

1

Di,self

=

(
x1

Dx1→1
i,self

+
x2

Dx2→1
i,self

)
· (1 + 0.2807 · (Γ− 1)) , i = 1, 2. (27)

Thus, to predict concentration-dependent Fick diffusion coefficients of binary mixtures with

molar mass ratiosM2/M1 < 2 and without dimerising species, we need only the self-diffusion

coefficients at infinite dilution Dxj 6=i→1

i,self = D
xj 6=i→1
ij = D∞12 and the self-diffusion coefficients of

the pure substances Dxi→1
i,self as well as the thermodynamic factor Γ of the mixture.330
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Figure 5: Concentration-dependent self-diffusion coefficients D1,self , thermodynamic factors
Γ, and relative deviations ∆Di,self,rel for the systems nitrobenze-hexane (a) and cyclohexane-
benzene (b). Note the adapted y-axis scale for each subfigure.
Top figures: Blue stars: Experimental data of concentration-dependent self-diffusion co-
efficients D1,self . Blue-dashed line: smoothing fit of the experimental self-diffusion coef-
ficients; red circles/line: predictions of the McCarty-Mason equation (Equation 6); green
diamonds/line: predictions of the modified McCarty-Mason equation (Equation 25).
Bottom figures: Concentration dependence of the thermodynamic factor Γ − 1 (blue
stars/line, left axis) and concentration dependence of the relative deviation ∆Di,self,rel be-
tween the experimental self-diffusion coefficients and the McCarty-Mason predictions (Equa-
tion 6) (red circles/line, right axis) and the modified McCarthy-Mason prediction (Equa-
tion 25) (green diamonds/line, right axis).

5 Conclusions

The reliable prediction of concentration-dependent mutual diffusion coefficients has been a

challenge to scientists for decades. For ideal mixtures, the physically-based Darken equation

holds. For non-ideal mixtures, semi-empirical modifications of the Darken equation have

been developed. However, Darken-based models rely on the knowledge of concentration-335

dependent self-diffusion coefficients which are rarely available.

Therefore, predictions of concentration-dependent self-diffusion coefficients are needed.
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In this work, we studied the concentration-dependence of mutual and self-diffusion coeffi-

cients in non-ideal binary liquid mixtures. The basis of our analysis were data of Lennard-

Jones (LJ) systems from Molecular Dynamics simulations which provide insight into the full340

set of transport data and thermodynamic properties. For both mutual and self-diffusion,

strong correlations between non-ideal diffusion effects and the thermodynamic factor were

observed. The existing modification of the Darken equation by D’Agostino et al. 24 and

Moggridge 25 was confirmed to accurately predict concentration-dependent mutual diffu-

sion coefficients for a wide range of non-ideal mixtures with typical thermodynamic factors345

(0 < Γ < 2). For mixtures with very large thermodynamic factors (Γ > 2), the data of the

LJ systems suggest deviations.

Based on the predictive model of McCarty and Mason 44 for ideal binary gas mixtures,

we developed an improved model for the prediction of concentration-dependent self-diffusion

coefficients in non-ideal binary liquid mixtures. Our new model is a function of the thermody-350

namic factor and the self-diffusion coefficients at infinite dilution and of the pure substances

which are readily available. Validation was carried out with experimental data of molecular

systems. Self-diffusion coefficients of mixtures with typical thermodynamic factors Γ < 2,

molar mass ratios m2/m1 < 2, and without dimerising species are successfully predicted:

The relative deviation of the predictions is halved from 10 % to 5 %. In future, similar cor-355

relations may be derived for systems with dimerising species and multicomponent mixtures.

Our new model thus provides the missing link to render Darken-based models into practical

tools to predict mutual diffusion coefficients.

Notation

Roman Symbols360

CC ij velocity crosscorrelation function between species i and

j (m2/s)
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D12 Fick diffusion coefficient (m2/s)

D̄12 Maxwell-Stefan (MS) diffusion coefficient (m2/s)

D̄Darken Maxwell-Stefan diffusion coefficient in ideal mixtures

computed from Darken equation (m2/s)

D̄Cross non-ideal part of the Maxwell-Stefan diffusion coeffi-

cient, containing the velocity crosscorrelation functions

(m2/s)

Di,self concentration-dependent self-diffusion coefficient of

species i (m2/s)

Di,self,pred predicted concentration-dependent self-diffusion coeffi-

cient of species i (m2/s)

∆Di,self,rel relative deviation between actual and predicted

concentration-dependent self-diffusion coefficient of

species i (−)

Gij Kirkwood-Buff coefficient between species i and j (m3)

kij adjustable parameter for the Lorentz- Berthelot mixing

rules (Pa)

L side length of the cubic simulation box (m)

mi mass of a Lennard-Jones particle of species i (m)

Mi molar mass of species i (kg/mol)

N total number of molecules (−)

Ni number of molecules of species i (−)

p hydrostatic pressure (Pa)

rl,j position of molecule j of species i (−)

T temperature (K)

V volume of the simulation box (m3)

wi weight fraction of species i (−)
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xi mole fraction of species i (−)

Greek Symbols

γi activity coefficient of species i (−)

Γ thermodynamic factor (−)

εi Lennard-Jones energy parameter for species i (ε)

η shear viscosity (Pa · s)

σi Lennard-Jones size parameter for species i (σ)

Superscript

xi → 1 mole fraction xi of species i tending towards 1

∞ infinite dilution
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S1 Self-diffusion coefficients of LJ systems

S1.1 Relative deviations ∆D2,self,rel of the McCarty-Mason predic-

tion as a function of the thermodynamic factor Γ for compo-

nent 2
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Figure S1: Relative deviations ∆D2,self,rel of the McCarty-Mason prediction as function of
the thermodynamic factor Γ for LJ systems.
(a) ∆D2,self,rel for all LJ systems, differentiated by the molar mass ratios m2/m1.
(b) ∆D2,self,rel for LJ systems with molar mass ratios m2/m1 < 2 and best fit of Equation 15
(black line) for 0 < Γ < 2 (indicated by the vertical dashed line).
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S1.2 LJ systems with molar mass ratios m2/m1 < 2

Please note that y-axes are adapted for each system.
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S1.3 LJ systems with molar mass ratios m2/m1 > 2
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S2 Self-diffusion coefficients of molecular systems (exper-

imental data)

S2.1 Relative deviations ∆D2,self,rel of the McCarty-Mason predic-

tion as a function of the thermodynamic factor Γ for compo-

nent 2
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Figure S2: Relative deviations ∆D2,self,rel of the McCarty-Mason prediction (Equation (6))
as function of the thermodynamic factor Γ for molecular systems (symbols) and linear fit of
∆D2,self,rel derived from LJ systems (black line, cf. Equation (23)). Stars: Experimental data
with thermodynamic factors calculated with Redlich-Kister (RK). Diamonds: Experimental
data with thermodynamic factors calculated with NRTL. Plus symbols: Experimental data
with thermodynamic factors reported in literature.
(a) ∆D2,self,rel for all considered molecular systems.
(b) ∆D2,self,rel for molecular systems with molar mass ratiosM2/M1 < 2 and without dimeris-
ing species.
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S2.2 Molecular systems with molar mass ratios M2/M1 < 2 and

without dimerising species
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S2.3 Molecular systems with molar mass ratios M2/M1 > 2 and/or

with dimerising species
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