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Abstract
Spectral Monte Carlo rendering stands as the gold
standard for accurately simulating complex opti-
cal phenomena, such as fluorescence and chro-
matic dispersion, but typically exhibits slow con-
vergence behavior due to challenges in sampling
the wavelength domain. Convergence is even
slower for scenes with complex spectral distribu-
tions, and hence a robust method for sampling
the wavelength domain is crucial for better perfor-
mance. To address this challenge, we propose a
preprocessing step consisting of optimizing a set
of distributions specifically for wavelength sam-
pling, and we investigate whether this approach can
achieve a lower perceptual error than traditional
sampling techniques. Our evaluation indicates that
our method can significantly reduce perceptual er-
ror in single-emitter scenes featuring a complex
spectral power distribution (SPD), when compared
to uniform sampling, without incurring any addi-
tional overhead during rendering.

1 Introduction
In real-world scenes, light manifests as a continuous spec-
trum of electromagnetic radiation. For practical purposes,
most physically based rendering systems represent this spec-
tral distribution by encoding colour information into three nu-
merical values (e.g. R, G, B) which model the way humans
generally perceive colour. This representation cannot accu-
rately simulate wavelength-dependent effects, such as chro-
matic dispersion, fluorescence, or metamerism, and is known
to be insufficient for accurate color reproduction (Borges,
1991). Spectral rendering overcomes these limitations by rep-
resenting color using full spectral power distributions across
wavelengths, rather than tristimulus values.

Spectral rendering is generally implemented using ad-
vanced Monte Carlo light transport algorithms, which are ex-
tended to handle sampling of the wavelength domain. How-
ever, such algorithms come with a very high computational
cost, largely attributed to the need to sample the spectral do-
main, leading to slow convergence and high variance. Fur-
thermore, scenes containing complex spectral features, such
as narrow-band emission from certain light sources or mate-
rials with sharp peaks and valleys in their reflectance spectra,
pose significant challenges.

Recent techniques have significantly reduced noise by op-
timizing how wavelengths are sampled. The hero wavelength
method (Wilkie et al., 2014) traces a path guided by a single
primary wavelength and then evaluates that path for multi-
ple secondary wavelengths selected via stratified sampling.
In a related strategy, Evans and McCool proposed propagat-
ing a cluster of wavelengths that travel together along a uni-
fied path, splitting only at dispersive events (Evans & Mc-
Cool, 1999). A different approach introduced by Van de Ruit
and Eisemann consists of a multi-pass method that constructs
per-pixel spectral importance distributions to guide sampling,
achieving significant reductions in variance with limited over-
head (van de Ruit & Eisemann, 2021).

Although such advancements managed to significantly re-
duce variance, spectral renderers may still exhibit slow con-
vergence, primarily due to the difficulty in efficiently sam-
pling the wavelength domain.

By leveraging the fact that human visual sensitivity varies
across wavelengths, spectral sampling can be guided to con-
verge more quickly toward perceptually convincing solutions.
This perceptual prioritization could allow renderers to focus
computational effort where it matters most for visual fidelity.
This idea has been explored by Radziszewski et al., who pro-
posed sampling wavelengths using a distribution constructed
from the CIE XYZ color-matching functions (Radziszewski
et al., 2009).

In this paper, we explore the idea of perceptual-based sam-
pling further. Our contribution consists of a preprocessing
step, in which we optimize a set of probability distributions
for sampling multiple wavelengths from an illuminant spec-
trum, based on the perceived color difference (Sharma et al.,
2005). We extend a spectral path tracer (Pharr et al., 2023)
by loading our optimized distributions and implementing our
custom sampling procedure, and show that our method low-
ers perceptual error in scenes featuring a complex illuminant
spectrum, when compared with standard uniform sampling of
the wavelength domain.

The remainder of this paper is structured as follows. We
begin by reviewing related work and background information
in Section 2. Section 3 then details our proposed method,
followed by our implementation in Section 4. In Section 5
we evaluate our method, and discuss the results, limitations,
and possible directions for future research in Section 6. After
considering the ethical implications of our work in Section 7,
we conclude in Section 8 with a summary of our findings.

2 Background and Related Work
2.1 Monte Carlo Integration
Physically based rendering often heavily relies on Monte
Carlo integration techniques to efficiently compute high-
dimensional integrals (Kajiya, 1986). In its most basic form,
Monte Carlo estimates the value of an integral I =

∫ b

a
f(x)dx

by:

I ≈ b− a

N

N−1∑
i=0

f(Xi), (1)

where X0, X1, ..., XN−1 are points sampled uniformly in
[a, b]. According to the law of large numbers, the estimated
value approaches the true value I as N → ∞.

Importance Sampling involves sampling from a proposal
distribution p(x) which is ideally as close as possible in shape
to the integrand. This helps reduce variance by focusing sam-
ples on places of interest. The new estimator becomes:

I ≈ 1

N

N−1∑
i=0

f(Xi)

p(Xi)
(2)

Note that because we are sampling from p, we need to weigh
our samples by p(Xi) to remove the resulting bias.



Multiple Importance Sampling (MIS)
There are situations in which we may have multiple sampling
strategies p0(x), p1(x), ..., pk−1(x), each good at sampling
different parts of f(x). From each of these distributions pi,
MIS (Veach, 1998) draws Ni samples and combines them into
one weighted estimator:

I ≈
k−1∑
i=0

1

Ni

Ni−1∑
j=0

wi(xj)
f(xj)

pi(xj)
(3)

A popular choice for the weights is the balance heuristic:

wi(x) =
Nipi(x)∑k−1

j=0 Njpj(x)
, (4)

which is equivalent to sampling from the mixture of the k
distributions (Veach, 1998).

2.2 Spectra and Color
The XYZ color space (CIE, 1932) serves as a standard for
quantifying color in various media, as it was designed to be
device independent and to encompass all color perceivable by
an average human observer.

The XYZ color matching functions (Figure 8), denoted
by x̄(λ), ȳ(λ), z̄(λ), are used to convert a spectral power dis-
tribution (SPD) P (λ) to the XYZ color coordinates:

X = k

∫
Λ

x̄(λ)P (λ)dλ (5)

Y = k

∫
Λ

ȳ(λ)P (λ)dλ (6)

Z = k

∫
Λ

z̄(λ)P (λ)dλ, (7)

where k is a scaling constant.
As Evans and McCool note, the resulting coordinates

(X,Y, Z) should be interpreted as projections of the infinite-
dimensional function P (λ) onto a finite-dimensional vector
space (Evans & McCool, 1999). Furthermore, they do not
constitute a basis for reconstructing the original spectrum
due to a phenomenon called metamerism, in which for ev-
ery (X,Y, Z) triplet there is an infinite number of SPDs that
can produce it.

2.3 The Rendering Equation
Spectral rendering involves simulating the transport of light
within a scene, typically by evaluating the rendering equation
(Kajiya, 1986), for which we use an extended version (van
de Ruit & Eisemann, 2021) of the path-integral formulation
(Veach, 1998):

Ij =

∫
Λ

∫
Ω

fj(ᾱ, λ) dµ(ᾱ) dλ (8)

Here, Ij describes the radiance arriving at pixel j, Λ is the
wavelength domain, and Ω is the path space of finite-length
paths ᾱ. The throughput for a path ᾱ at wavelength λ is de-
noted by fj(ᾱ, λ).

The integral is infeasible to solve analytically, so instead
Monte Carlo integration with standard importance sampling
is used to derive an estimate by drawing N samples from a
predefined target distribution p:

Îj =
1

N

N−1∑
i=0

fj(ᾱi, λi)

p(ᾱi, λi)
(9)

The term p(ᾱi, λi) represents the probability density function
for sampling a path-wavelength pair, which can be expressed
as:

p(ᾱ, λ) = p(λ)p(ᾱ | λ) (10)

Here, p(λ) represents the wavelength sampling distribution,
and can be expressed as p(λ) = ps(λ)pe(λ), where ps con-
stitutes a sensor response, and pe is another distribution, typ-
ically uniform or a proportional to scene emission. In their
work on Continuous Multiple Importance Sampling (CMIS),
West et al. use a mixture of emitter SPDs for pe (West et al.,
2020). Their method reduces color noise and shows improve-
ments, particularly for complex illuminants.

In a different approach, Van de Ruit and Eisemann propose
a pre-pass in which they estimate incident spectral radiance at
each pixel (van de Ruit & Eisemann, 2021). They do this by
first running a cost-effective path tracer with a lower sample
count, lower image resolution, and certain restrictions regard-
ing which paths can be traced. Then a reconstruction func-
tion upsamples this coarse estimate to create a full-resolution
spectral approximation. This resulting estimate directs the
wavelength sampling process by serving as a more informed
distribution for pe.

2.4 Sampling Multiple Wavelengths
The Monte Carlo estimator in Equation 8 evaluates the inte-
grand for a single wavelength per path. While this method is
straightforward to implement, it is inefficient and introduces
considerable color noise. This approach is often described
as wasteful because the geometric path generated is typically
valid for all wavelengths, yet it only contributes information
for the single one that was sampled. To address this, sev-
eral methods have been proposed to evaluate multiple wave-
lengths for each path.

In their paper on Stratified Wavelength Clusters, Evans
and McCool propose carrying several wavelength samples,
grouped in a cluster, along each light transport path (Evans &
McCool, 1999). The cluster is computed by first selecting a
light source at random, and then a set of K stratified random
numbers are generated and warped through the inverse of that
light’s cumulative normalized SPD.

A related technique proposed by Wilkie et al., Hero Wave-
length Spectral Sampling, consists of randomly sampling a
primary hero wavelength for each path and base all direc-
tional sampling decisions solely on it (Wilkie et al., 2014).
The additional wavelengths are placed at equal distances from
the hero wavelength to ensure they always cover the visi-
ble spectrum evenly. This method uses multiple importance



sampling (2.1) to correctly weight the contribution from each
wavelength in the set.

While the strategy of stratifying wavelengths, such as plac-
ing them at equal distances to evenly cover the visible spec-
trum, provides robust spectral coverage that effectively re-
duces color noise, this may prove inefficient when dealing
with complex spectra. For illuminants with sharp peaks and
valleys, such as fluorescent lights, the rigid, uniform place-
ment of samples may fail to capture these narrow, high-
energy peaks.

3 Methodology
A key strategy for reducing color noise in spectral render-
ing is to importance sample wavelengths based on an illumi-
nant spectrum, which is usually sampled uniformly or based
on relative emission. This focuses computation on the most
prominent wavelengths where the light source emits more en-
ergy.

Prior methods have often implemented this using stratified
sampling (Wilkie et al., 2014; Evans & McCool, 1999), but as
we have seen, this can be inefficient for complex spectra. To
address these limitations, we propose generating wavelength
sampling functions through a pre-optimization process. We
optimize a set of correlated sampling functions with the goal
of minimizing the final perceived color error, measured using
the CIE Delta E standard (Sharma et al., 2005).

Figure 1: Simplified illustration of a light path. R is a re-
flectance spectrum, and I is the illuminant spectrum.

Concretely, our goal is to sample N wavelengths based on a
single uniform random number u in [0, 1] using some mono-
tonic functions λ0(u), λ1(u), ..., λN−1(u) that have not yet
been determined. These functions act as inverse cumulative
distribution functions (CDFs) for probability density func-
tions (PDFs) p0(λ), p1(λ), ..., pN−1(λ), which we want to
optimize for sampling from a chosen illuminant spectrum I .

If we evaluate the integral in Equation 8 for a single path
ᾱ, apply the color matching functions x̄, ȳ, z̄, and expand the
term fj(ᾱ, λ), the integral in the wavelength domain that we
wish to estimate is:

cl =

∫
Λ

hl(λ)R(λ)I(λ) for l ∈ {0, 1, 2}, (11)

where h0 = x̄, h1 = ȳ, h2 = z̄, R is the product of the
reflectance spectra encountered along the path, and I is the
illuminant spectrum for which we wish to adapt our sampling
strategy.

Using MIS (2.1) with our importance sampling distribu-
tions p0, p1, ..., pN , an unbiased Monte Carlo estimate can be
derived:

cl ≈
N−1∑
j=0

hl(λj(u))R(λj(u))I(λj(u))∑N−1
k=0 pk(λj(u))

(12)

Since the sampling strategy should be independent of the re-
flectance spectra, we will make a simplifying assumption and
set the reflectance spectra equal to a constant, in our case
R(λ) = 1.

Given this simplification, (c1, c2, c3) is simply the color of
the illuminant spectrum in the XYZ color space. The new
Monte Carlo estimate we need to compute is:

cl ≈
N−1∑
j=0

hl(λj(u))I(λj(u))∑N−1
k=0 pk(λj(u))

(13)

Ideally, the estimate dependence on u is perceptually as small
as possible, so that the perceived variance is also minimal.
Therefore, we define our objective function:

∫ 1

0

∆E


N−1∑

j=0

hl(λj(u))I(λj(u))∑N−1
k=0 pk(λj(u))

2

l=0

, cl

 du (14)

where ∆E represents the perceived error, which we measure
using the CIE Delta E standard (Sharma et al., 2005).

Starting with a set of initial sampling densities, we perform
non-linear optimization to minimize the objective function.
During rendering, these optimized PDFs are used to sample
multiple wavelengths for a single path.

For our optimization step, it would be ideal if the initial
sampling densities are as close to the true values as possible,
so that the optimizer can converge faster. We decided to use
the PDF:

q(λ) =
I(λ)∫

Λ
I(λ′)dλ′ (15)

If we set all densities equal to q(λ), then their inverse CDFs
are also identical. Thus, for a single random number u, all N
wavelength samples will be the same, and our estimator eval-
uates a single point in the spectrum, making our final color
monochromatic.

A more effective initialization strategy for the optimization
is to define a unique density for each of the N wavelength
samples, which avoids the problem of generating monochro-
matic results. To this end, we use the CDF of q(λ) to parti-
tion the wavelength domain into N non-overlapping intervals,



[aj , bj), which have equal probability mass. The endpoints
for each interval are determined using the inverse CDF of the
importance function:

aj = F−1
q

(
j

N

)
bj = F−1

q

(
j + 1

N

)
(16)

With the domain partitioned, each of the N probability den-
sities pj(λ) is constructed to be non-zero only within its as-
signed interval. Within that interval, its shape follows the
original importance function q(λ) but is re-normalized to en-
sure it is a valid PDF that integrates to one:

pj(λ) =

{
q(λ)

Fq(bj)−Fq(aj)
if λ ∈ [aj , bj)

0 otherwise
(17)

4 Implementation
To test the feasibility of our proposed methodology, we de-
veloped a practical implementation that integrates a pre-
optimization step with a physically based spectral renderer.
This section details the components and processes involved,
covering rendering, optimization, and the strategies employed
to manage computational complexity.

4.1 Rendering
For the rendering component of our work, we used PBRT-v4,
a state-of-the-art, open-source spectral rendering system de-
signed for physically based rendering research and education
(Pharr et al., 2023).

Our implementation required adding additional functional-
ity to the PBRT-v4 source code. A custom module was de-
veloped to load the optimized probability density functions
(PDFs) from an external CSV file during the renderer’s ini-
tialization phase, and a custom wavelength sampling logic
was added to implement our proposed method. Furthermore,
because rendering on the GPU is much more efficient, we de-
cided to make our modified pipeline GPU-compatible.

Loading PDFs
In spectrum.h, PBRT defines NSpectrumSamples, the
number of wavelengths sampled for each path, which is also
equal to the number of distributions that we optimized. We
decided to use four wavelength samples per path as this is the
standard, and it is also what PBRT uses by default. We also
define:

static constexpr int NumDistributionBins = 81;
static constexpr Float lambdaStep = 5.0;

which represent the total number of discrete samples we store
for our distributions, and the step used to bin the wavelength
domain into NumDistributionBins samples, respectively.

The initialization of the optimized sampling distri-
butions is done in sampling distributions.cpp and
sampling distributions.h. Here we define our sampling
table:

struct WavelengthSamplingPDFs {
Float *wavelengths;
Float *pdfs_flat;
Float *cdfs_flat;

Float *mix_pdf;
};
extern WavelengthSamplingPDFs *globalSamplingTable;

We store the optimized PDFs in a flat array, their correspond-
ing CDFs, and the mixture PDF, which we later use for MIS.
We also store the discrete wavelengths at which we have our
PDFs sampled, for which we used the range of 380 to 780
nanometers, sampled every 5 nanometer steps. We declare
the function:

void InitializeWavelengthSamplingTable(const std::
string &filename);

which contains all the logic for initializing the table. First, the
optimized PDFs are read from the CSV file and normalized.
Then the corresponding CDFs are computed, as well as the
normalized mixture PDF. Finally, the table is constructed and
loaded into the GPU memory.

Note that MIS (2.1) does not use the actual normalized
mixture, but the sum of the individual PDFs. We do this
because PBRT averages the samples when computing the
Monte Carlo estimate, which is not correct when using stan-
dard MIS. Therefore, to counteract the effect of this averag-
ing, we normalize the mixture, such that the final weights we
provide to the estimator are correct and yield unbiased results.

To load these distributions at startup, we add an option
--wavelength-pdf to the main PBRT script, which allows
passing a csv file path which stores a set of optimized PDFs.

Wavelength Sampling
PBRT uses the class SampledWavelengths, defined in
spectrum.h, to keep track of a set of sampled wavelengths
along with their corresponding probabilities. Here we de-
clare:

PBRT_CPU_GPU
static SampledWavelengths SampleFromCustom(const

WavelengthSamplingPDFs *wavelengthPDFs, Float u
);

which takes a pointer to the loaded sampling table, and
a uniform random number u, and samples a set of
NSpectrumSamples wavelengths, one from each of the op-
timized distributions, using the inverse transform method.
Then it records the value of the mixture PDF at these wave-
lengths for later use in the Monte Carlo estimator.

The PBRT WavefrontPathIntegrator constructor was
modified to accept a WavelengthSamplingPDFs object. If
successfully loaded, this is then used during rendering in the
GenerateCameraRaysmethod in camera.cpp for sampling
wavelengths:

SampledWavelengths lambda;
if (wavelengthPDFs != nullptr) {
lambda = SampledWavelengths::SampleFromCustom(

wavelengthPDFs, lu);
} else {
lambda = film.SampleWavelengths(lu);

}

If the sampling distributions are not provided, PBRT falls
back to using its standard uniform sampling method.



4.2 Optimization
The initial probability distributions are sampled every 5
nanometers within the wavelength range of 380 to 780
nanometers. These are provided to a non-linear optimizer
as a flattened one-dimensional, which then iteratively adjusts
these values to minimize the objective function defined in
Equation 14.

Handling Complexity
The high dimensionality of the optimization problem, com-
bined with the complexity of the objective function, presents
significant computational challenges. To ensure efficiency
and promote convergence, we adopted several key strategies.

First, to accelerate the optimization process, we utilized
the JAX library (Bradbury et al., 2018). JAX is a high-
performance numerical computing library that has automatic
differentiation capabilities. Using JAX, we can automatically
compute the gradient of our complex objective function with
respect to the input distributions. Supplying these derivatives
to a gradient-based optimizer significantly aids in navigating
the high-dimensional parameter space, leading to more stabil-
ity. Another significant advantage of using JAX is the GPU
support it provides, enabling the computationally intensive
objective function and gradient calculations to be offloaded
to the GPU, which results in a substantial acceleration of the
entire optimization process.

Furthermore, the optimization is subject to several con-
straints: each sampling function must represent a valid prob-
ability density function, meaning it must be non-negative and
integrate to one over the wavelength domain. Directly en-
forcing these constraints, particularly the integral constraint,
substantially increases the complexity of the optimization
problem. Hence, we also experimented with relaxing the
constraints of the problem. We tried enforcing only non-
negativity and transforming the functions into valid proba-
bility distributions at the beginning of the objective function,
by dividing each of the functions by its integral value:

pi(λ) =
fi(λ)∫

Λ
f(λ̄)dλ̄

, (18)

where fi(λ) are the nonnegative functions that the optimizer
passes to the objective function.

We also experimented with making the problem com-
pletely unconstrained, removing also the non-negativity
bounds. To turn these into valid probability distributions, we
applied a Softmax-like function, which transforms a vector
X = x0, x1, x2, . . . , xK−1 of real-valued inputs into a valid
probability distribution over the wavelength domain:

pi(λi) =
exi

Z
, Z =

K−1∑
i=0

exidx (19)

Here Z is the integral approximation, calculated using a sim-
ple Riemann sum, and dx is the size of the sample step.

Optimization Strategies
We considered different optimization strategies, both local
and global. For local, gradient-based optimization, we used
the Python libraries SciPy and Ipopt. In SciPy we used the

scipy.optimize.minimize function, which features mul-
tiple solvers suitable for high-dimensional optimization prob-
lems.

Ipopt, which stands for interior point optimizer, is another
powerful open-source library for solving large-scale nonlin-
ear optimization problems (Wächter & Biegler, 2005). We
compiled Ipopt with the Coin-HSL package under the HSL
Academic License, which provides a number of advanced
solvers, available with an academic license (Science and
Technology Facilities Council, 2024).

The success of gradient-based optimization depends
greatly on the quality of the initial solution provided. At-
tempting to find a better initial solution, we used global op-
timization techniques as an initial phase in the optimization
process to explore the solution space. The result from this
phase was used as an initial solution for local optimization.
We experimented with a basin hopping algorithm, available
in SciPy, as well as a number of genetic algorithms available
in the Python library evosax (Lange, 2022).

Unfortunately, none of the approaches using global op-
timization yielded satisfactory results, which is mostly at-
tributed to the high dimensionality of the problem. The best
results were obtained using local gradient-based optimization
alone.

5 Evaluation
We evaluated the performance of our proposed method on a
number of pre-made scenes obtained from Benedikt Bitterli’s
website (Bitterli, 2016). We used scenes either with a single
emitter, or with a small number of emitters, all of them set to
use the same emission spectrum.

Name LSPDD idx. Category

A Standard Illuminant 2659 Standard Illuminant
D65 2661 Standard Illuminant
Globe Twister 2482 CFL
Sun 2629 –
Scotopic 2639 Biological Sensitivity
Philips High Bay 2641 Metal Halide

Table 1: Emission spectra.

We selected a variety of illuminants with different SPDs
from the Lamp Spectral Power Distribution Database
(LSPDD) (Roby & Aubé, 2019) under the CC BY-NC-ND
4.0 license. The illuminants used are shown in Table 1 and
Figure 2.

5.1 Evaluation Methods
We paired every scene with individual illuminant spectra and
rendered ground truths, as well as lower-sample versions for
each. Ground truth images were rendered at a very high sam-
ple count (e.g. 16k, 32k samples per pixel), using standard
uniform sampling for the wavelengths. We rendered lower
sample count versions (e.g. 512 samples per pixel) using
the uniform sampling baseline method, as well as our custom
method (Figure 3).



Figure 2: Spectral Power Distributions (SPDs) of selected
light sources.

We then measured the average perceptual difference per
pixel between the baseline method and the ground truth, and
between our method and the ground truth, using the CIE Delta
E standard (Sharma et al., 2005). The results of the evaluation
are listed in Table 2.

Optimization
The optimized sampling distributions obtained are the result
of a tailored optimization process. We applied various strate-
gies to each illuminant spectrum, as explained in Section 4.2,
and selected the one that yielded the best outcome. Although
no single strategy was optimal for all cases, we determined
that local gradient-based methods from SciPy and Ipopt were
the most successful.

In addition to the raw value of the objective function, a use-
ful way of visualizing the quality of the optimization is with a
color bar (Figure 4), which plots the color the estimator com-
putes for each densely sampled u ∈ [0, 1]. As mentioned in
Section 3, the goal of the optimization is that the estimator’s
dependence on u is minimal. Therefore, the resulting color
bar should be relatively constant across the domain, and its
color should be the same as the target illuminant (Figure 7).

Figure 3: Comparison of baseline uniform sampling and our
custom method, sampled at 512 spp, against the ground truth
for the Cornell Box scene (Bitterli, 2016)., using a Globe
Twister illuminant (LSPDD index 2723)

(a) Initial densities (b) Optimized densities

Figure 4: Comparison between (a) color bar of initial den-
sities supplied to the optimizer, and (b) the color bar result-
ing from the optimized densities, for a Globe Twister illumi-
nant (LSPDD Index 2723). The result was obtained using the
IPOPT optimizer.

The optimization process did not yield perfectly smooth
color bars for all the tested spectra, however. For example,
for the D65 Illuminant, our optimized distributions result in
high variance around the edges of the domain (Figure 6).



Figure 5: Comparison of our method against the baseline for the wooden staircase scene (Bitterli, 2016) using two different
illuminants: D65 (left) and Globe Twister (right). Left image is the ground truth, middle image is rendered using our method,
and the right image is rendered using the baseline method.

5.2 Results
Our evaluation, summarized in Table 2, indicates that our
sampling strategy significantly outperforms the baseline strat-
egy in scenes featuring complex emission spectra, such as the
Philips High Bay or the Globe Twister emitters (Figure 2).
For instance, in the Cornell Box scene lit by a Globe Twister
fluorescent lamp, our method reduces the average perceptual
error (∆E) to 0.970, a substantial improvement over the base-
line’s 2.531. This is visually confirmed in Figure 3, where our
result shows less color noise, as well as in the Staircase scene
with the Philips High Bay illuminant (Figure 5), where the
error at 1024 spp was nearly halved from 0.278 to 0.146.

In scenes with spectrally smooth illuminants, such as the
sun or the D65 standard illuminant (Figure 2), our method
achieves similar performance to the baseline. For example, in
the Staircase scene with D65 illumination, the ∆E values are
nearly identical for both methods at all sample rates (Table
2), such as 0.259 for our method versus 0.256 for the baseline
at 1024 spp (Figure 5).

In terms of performance, our method introduces no signifi-
cant overhead during the rendering phase. As shown in Table
2, render times were nearly identical to the baseline across
all test cases. The only additional computational cost of our
approach is the optimization step, which might take longer.
However, this is a one-time, offline process performed once
for each illuminant spectrum, and therefore does not impact
final rendering performance. The memory overhead consists
only of the sampling table that needs to be loaded into mem-
ory. In our case with four optimized PDFs sampled every five
nanometers between 380 and 780 nanometers, this amount is
negligible.

6 Discussion
In this section, we interpret our findings, discuss the limita-
tions of our current approach, and outline potential directions
for future work.

6.1 Interpretation of Results
The significant reduction in perceptual error for complex,
”spiky” illuminants shows that our optimization process suc-
cessfully identifies and prioritizes the narrow peaks in the
illuminant’s SPD, as opposed to uniform sampling, which
might miss certain spectral features.

For smooth illuminants, the performance of our method
was almost identical to the baseline. This is an expected and
favorable outcome, as it shows that our optimization does not
negatively impact performance in such scenarios. When the
spectrum is already smooth, the optimal sampling distribu-
tion is inherently uniform-like, and our optimizer correctly
identifies such a solution.

6.2 Limitations
Our approach optimizes a set of sampling distributions for
a single, chosen illuminant spectrum. This is effective for
scenes with a unified lighting environment but does not ad-
dress scenarios with multiple light sources that have different
SPDs. An approach to this can be optimizing distributions for
all the different illuminant spectra in the scene. During ren-
dering, wavelengths are sampled by selecting an illuminant
at random, using its associated sampling distributions. How-
ever, such an approach does not scale well with the number
of different illuminant spectra in the scene.

Furthermore, the optimization process is independent of
scene geometry, assuming a constant reflectance spectrum of
R(λ) = 1. This means that the sampling strategy does not
account for the interaction between an illuminant and specific
material reflectances. The final perceived color is a product of



both, and by ignoring reflectance, our optimization may miss
important features.

Our implementation restricts wavelength sampling to 5-
nanometer bins to maintain consistency with the optimized
PDFs, but this approach may fail to capture narrow spectral
features, either in emission or reflectance. An approach to
resolve this would be to use interpolation in our custom sam-
pling method.

Moreover, the quality of the initial distribution can have
a great impact on the success of the optimization step. Our
initial distributions (Equation 17) are a reasonably good base-
line, but as can be seen in Figure 4, there is room for improve-
ment.

6.3 Future Work
Our method can be extended by changing the optimization
process to account for the reflectance spectrum, as currently
our method treats it as constant. Future work could also ex-
plore more advanced initialization strategies for the initial
distributions, to help the optimizer find better solutions more
consistently.

Moreover, we did not find a single optimization solver that
was universally optimal. While gradient-based methods from
SciPy and Ipopt performed best, achieving a high-quality dis-
tribution for every spectrum sometimes required extensive ex-
perimentation with different solvers. This suggests that this
part of our pipeline could be a focus of future work to improve
robustness.

7 Responsible Research
To ensure our work can be reproduced and validated by other
researchers, we explained our approach and its implementa-
tion in detail in Sections 3 and 4. In Section 6, we inter-
pret our findings, discuss limitations, and demonstrate how
our evaluation supports our conclusions. Our implementa-
tion will also be made available, along with the paper (Dobos,
2025).

Furthermore, the software used during the research pro-
cess, such as PBRT-v4, SciPy, and Ipopt are fully open-source
and publicly available. The only exception to this are the ad-
vanced Coin-HSL solvers that we used for our optimization
in Ipopt, which are under an academic license that must be
requested from the STFC (Science and Technology Facilities
Council, 2024).

The data used constitutes of the illuminant spectra we se-
lected from the Lamp Spectral Power Distribution Database
(Roby & Aubé, 2019), under the CC BY-NC-ND 4.0 license.
Additionally, the scenes used are made freely available by
Benedikt Bitterli on his personal website (Bitterli, 2016).

8 Conclusion
In this paper, we introduced a preprocessing step for re-
ducing perceived variance in single-emitter scenes, that op-
timizes wavelength sampling distributions based on percep-
tual error. Our evaluation demonstrates that this method can
significantly reduce perceptual error compared to uniform
sampling, particularly for illuminants with complex spectral

power distributions, while incurring no computational over-
head during the final render.
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Figure 6: Color bars obtained for the D65 Standard Illumi-
nant (LSPDD index 2661) and the Globe Twister (LSPDD
index 2482)

Figure 7: Color bars obtained for the A Standard Illuminant
(LSPDD index 2659) and the Sun (LSPDD index 2629)

Figure 8: x̄, ȳ, z̄ color matching functions
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Theirs Ours

Scene Illuminant SPP Avg. ∆E Time (s) Avg. ∆E Time (s)

Cornell Box
Sun 512 0.6250 17.94 0.5765 17.73
Compact Fluorescent 512 2.5311 17.75 0.9703 17.14
Scotopic Vision 512 0.6190 17.93 0.4529 17.34

Glass of Water

CIE Illuminant A 256 2.7038 9.95 2.4082 9.76
CIE Illuminant A 512 1.9520 19.18 1.7280 19.37
CIE Illuminant D65 256 2.3054 9.96 2.3918 9.97
CIE Illuminant D65 512 1.6659 19.56 1.7854 19.40
Compact Fluorescent 256 7.2244 9.78 2.8654 9.57
Compact Fluorescent 512 5.6761 19.57 2.2336 19.17

Staircase
CIE Illuminant D65 256 0.4807 13.36 0.4809 12.98
CIE Illuminant D65 512 0.3525 26.22 0.3546 26.19
CIE Illuminant D65 1024 0.2565 53.21 0.2590 51.81

Philips High Bay 256 0.5126 13.36 0.2524 12.77
Philips High Bay 512 0.3791 26.58 0.1908 25.57
Philips High Bay 1024 0.2781 52.58 0.1462 50.67

Teapot Compact Fluorescent 256 3.0135 7.78 0.9685 7.76
Compact Fluorescent 512 1.9999 15.39 0.6967 15.36

Sun 256 1.0464 7.78 0.8340 7.78
Sun 512 0.7526 15.37 0.6121 15.39

Veach Bidir Compact Fluorescent 512 2.8588 10.76 0.8241 10.75
Compact Fluorescent 2048 1.5811 42.38 0.4925 42.16

Veach MIS
CIE Illuminant A 256 0.7454 4.26 0.7141 4.34
CIE Illuminant A 512 0.4429 8.56 0.4127 8.55

Philips High Bay 256 1.1687 4.26 0.6046 4.25
Philips High Bay 512 0.8455 8.55 0.3580 8.56

Sun 256 0.6128 4.34 0.5620 4.44
Sun 512 0.3537 8.55 0.3207 8.56

Table 2: Comparison of Perceptual Difference (∆E) and Render Times Across Various Scenes and Illuminants between
stratified uniform sampling and our custom method.
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