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2 1. Introduction

1.1 Spontaneous order

This thesis studies the behavior of electrons in solids. The mere existence of a

solid state is tacitly accepted as an evident prerequisite. On a microscopic level,

the interactions between atoms, nuclei, and electrons are well understood. How-

ever it is far from obvious how to understand the emergence of an ordered solid

state from the microscopic laws, even if only due to the huge number of particles

involved. Furthermore there is no clear reason why the solid state materials we

observe are so diverse and so ubiquitously present [1].

The fundamental laws of physics are invariant under translations, rotations,

and in time. In other words, no matter at which position, orientation, or moment

in time, every experiment should obey the same physical laws. In a solid, the

atoms spontaneously form an ordered lattice to lower the ground state energy,

as opposed to more random configurations like in a liquid or a gas. The fixed

position of atoms seems to contradict translational symmetry, or at least restrict

it to translations which are a multiple of the interatomic distance. The key to

this paradox lies in the fact that although the laws of physics are symmetrical,

order does explicitly break the symmetry of the world around us. The emergence

of any type of order is in general accompanied by a reduction of the associated

symmetry and a lowered ground state energy, for example the appearance of a

crystalline lattice corresponds to ordering in space but a loss of translational

symmetry [2, 3].

On the electronic level, the same principles are observed. Electrons in a solid

can adopt different macroscopic ground states. An archetypal example is the

appearance of the superconducting state in a metal. In the normal state, the

electrons behave as free, individual waves, each with a certain amplitude an and

phase φn. When superconducting, the electrons form a collective state charac-

terized by a single macroscopic wave, with a strength ∆ and one definite phase

φ [4]. The driving force behind this behavior is a reduction in the free energy of

the electronic system due to attractive electron-electron interactions. However,

to benefit from this attractive interaction it is necessary for the electrons to syn-

chronize their phases. This is schematically shown by the potential landscape

in Fig. 1.1, representing the energy of the possible ground states of a normal

(blue) and a superconducting (green) material. The height of the hills represents

the energy of the system; the distance from the center indicates the strength of

the emerging order; and the angle φ represents the common phase of the elec-

trons. For the normal system the lowest energy state is found at the center of

the graph, where the order parameter ∆ is zero and the angle φ is undefined; the

system is symmetrical with respect to the phase. For the superconducting sys-
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Figure 1.1: The free energy F of a normal metal (blue) and a superconductor (green).

In a normal metal, the lowest energy state N is symmetric in phase space. However,

in the presence of an attractive interaction between electrons, it becomes favorable for

the electronic system to move to an ordered superconducting state S, with a strength

|∆| and a phase φ. Although the energy landscape is still symmetrical with respect to

φ, the system chooses a particular value of φ; thus breaking the phase symmetry.

tem it is advantageous to move from the center of the landscape to the low-lying

valley. Although any angle can be chosen (the laws of physics do not prefer a

certain phase), the system breaks this symmetry by picking one specific phase in

a process which is called spontaneous symmetry breaking.

The emergence of a symmetry-breaking macroscopic state has far-reaching

consequences. First, a broken symmetry leads to laws of physics which appear to

be different. The broken phase symmetry in a superconductor leads to the London

equations [5], which describe electrodynamics that appear different from the usual

Maxwell equations. These equations lie at the heart of the superconducting state

and explain phenomena such as the Meissner-effect [6], in which a magnetic field

is completely screened by a superconductor. Second, the emergence of a collective

state leads to macroscopic behavior of microscopic particles. The existence of a

macroscopic coherent state in a superconducting ring leads to persistent currents

and a quantization of the magnetic flux in quanta of φ0 = h
2e

. The dc Josephson

effect [7], in which a dissipationless current flows in between two superconductors

with a different phase, is another example of macroscopic coherence. Third,

the properties of the collective state are barely dependent microscopic properties

of the material. The fact that the flux quantum only depends on fundamental



4 1. Introduction

constants is a clear example. Also the presence of impurities only weakly affects

the superconducting state, as long as they don’t break time-invariance.

It is fascinating how elegantly these extraordinary phenomena are explained

by assuming an organizing principle such as a symmetry-breaking macroscopic

state. The robustness of such a collective state to and its weak dependence

on the microscopic properties indicate that it is extremely difficult to explain its

properties based on microscopic laws only. To grasp the full variety of phenomena

at a higher level of complexity there is a need for new fundamental physical

principles. Although these are not in contradiction with microscopic theories,

it is impossible to reduce the behavior of a collective to the properties of the

individual particles, a duck is more than a machine which converts food into

droppings (Fig. 1.2).

1.2 Mesoscopic systems

Mesoscopic stems from the ancient Greek words µεσo (middle) and σκoπη (to

look), and means ‘to look in the middle’, in between different scales. It focusses

on observing phenomena which occur at the boundary between various levels

of complexity, in between different length, energy or time scales. In solid state

physics, mesoscale commonly refers to systems which show both microscopic and

macroscopic behavior. They are big enough to show collective phenomena like

magnetism or superconductivity. The large number of particles also means that

it is impossible to describe each electron independently, making a statistical ap-

proach unavoidable. At the same time they are small compared to length scales,

associated with physical processes such as quantum interference or energy re-

laxation. Therefore a description in terms of averaged, macroscopic quantities

like temperature or magnetization is insufficient. The mesoscale is thus a region

‘in between’, where quantum-mechanical behavior, statistics and self-organizing

principles are intertwined. Its length scale is not uniquely defined as it depends

on the physical processes involved. There is no such thing as a ‘mesometer’,

unlike a nanometer.

Mesoscale devices are small compared to certain relevant length scales, one

can no longer resort to a description in terms of an averaged quantity such as

temperature. As an example we consider the relaxation of electrical energy which

is dissipated in a metallic wire. The metal wire in a light bulb is heated to

such an extent by the dissipation of an electrical current, that it starts to glow

and radiates light. The notion of temperature is very intuitive to us, a high

temperature simply means that an object feels ‘hot’. Physically, this corresponds
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Figure 1.2: A schematic picture of the Canard Digérateur, an automaton built by the

French artist Jacques the Vaucanson in 1739. In a reductionist view even living things

can be reduced to a mechanical system, however a duck is more than a machine which

eats grain and produces feces.

to an energy flow from an object at a higher temperature (the bulb) to an object

at the lower temperature (your hand). If two objects are strongly coupled, they

can easily exchange energy and adapt the same temperature; they are said to

be in thermal equilibrium. Clearly this does not apply to the wire in the light

bulb, as it is more hot than its environment. However, the atoms, electrons, and

photons within the wire are strongly coupled, and all have the same, elevated

temperature. They are said to be in a local or quasi-equilibrium. In the case

of a microscopic wire, this intuitive picture breaks down. During the short time

spent in the small sample, the driven electrons interact only weakly with each

other and the lattice of the solid. Highly energetic electrons can not redistribute

their energy. It is impossible to assign a collective temperature to the electrons,

and one has to use a more general non-equilibrium energy distribution of the

electrons.

In heterostructures, materials with different electronic ground states are in

close proximity. Near the interfaces between the materials, distinct types of

self-organized electronic order compete or interfere, leading to unexplored or un-

expected physics. The small size enhances the influence of interfaces and surfaces,
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rather than the bulk properties of the materials used. When these hybrid devices

are driven by an electric field, different electron properties across the interfaces

lead to current conversion processes. For example, near the boundary between

a normal metal and a superconductor, a dissipative current of independent elec-

trons is converted into a supercurrent carried by the superconducting condensate.

This conversion process happens over a length scale which is inversely propor-

tional to the strength of the superconducting order and can easily exceed the

size of the device. The energy dissipation associated with the current conversion

processes lead to non-equilibrium electron distributions which can not be charac-

terized with a collective temperature. Mesoscale heterostructures therefore form

an ideal playground to study the interaction between such non-equilibrium pro-

cesses and a non-homogeneous electronic ground state.

1.3 Thesis outline

This thesis focusses on driven superconducting heterostructures. Both exper-

imentally and theoretically we address the following questions: (a) how does

the presence of different metallic and dielectric materials influence the electronic

properties of a driven superconductor? (b) how does a non-equilibrium electron

distribution arise and how does it influence the behavior of the sample? Mesoscale

heterostructures offer a unique possibility to study this interplay between micro-

scopic and macroscopic behavior in a controlled environment.

Besides the fundamental interest, the questions asked have a direct relevance

for applications. The most apparent field of use is in submillimeter photon detec-

tors, which in many cases rely on the electrical response of a driven mesoscopic

superconductor.

Chapter 2 introduces theoretical concepts which are relevant to the experi-

ments and models appearing in this thesis. After a brief discussion of the elec-

tronic properties of metals and insulators, the emergence of ferromagnetic and su-

perconducting ground states is reviewed. Subsequently we assess the implications

of interfaces on the electronic properties of heterostructures. Non-equilibrium

electron transport and energy relaxation are discussed for diffusive wires with ac

and dc driving. Finally we look how the dielectric environment influences energy

relaxation and how it interacts with electromagnetic fields.

Chapter 3 inquires into the relationship between a conceptual model system

and its experimental realization. It briefly discusses the interplay between sample

design, fabrication, and measurement on the one hand and the physical concepts

introduced in Chapter 2 on the other hand.
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Chapter 4 and 5 : we achieve a reduction in frequency noise (Chapter 4 ) and an

increase of the quality factor (Chapter 5 ) of coplanar waveguide superconducting

resonators. This result is obtained by engineering the dielectric environment in

order to reduce the effect of two level systems. Therefore parts of the dielectric

substrate are removed from regions with high electric fields.

Chapter 6 : we further investigate the influence of the dielectric substrate

on the properties of superconducting resonators. We demonstrate an increased

quasiparticle recombination time in superconducting resonators on a thin SiNx

membrane, compared to identical resonators on a SiNx/Si wafer. We use an

array of solid state refrigerators, based on normal metal - superconductor tunnel

junctions, to cool or heat the membrane. We show that the resonators on the

membranes are extremely sensitive to small changes of the phonon temperature.

Chapter 7 : we analyze how the performance of solid state refrigerators can

be improved using highly transparent tunnel junctions. A theoretical analysis

demonstrates the importance of the lateral uniformity of the tunnel barrier for the

cooling power. Therefore we develop normal metal (Aluminum) superconductor

(Niobium) tunnel junctions based on AlN tunnel barriers, which are more uniform

compared to AlOx.

Chapter 8 : we study the influence of a non-equilibrium electron distribution

on a superconducting nanowire between normal reservoirs. We demonstrate theo-

retically and experimentally the existence of two different superconducting states

appearing, which result from an interplay between the non-equilibrium and the

superconducting proximity effect. The different states are identified by using two

probe measurements of the wire, and measurements of the local density of states

with tunneling probes.

Chapter 9 : we consider a superconducting nanowire between ferromagnetic

reservoirs. The response of the wire to current-driving is consistent with results

obtained with normal reservoirs. When the spin orientation of the ferromagnetic

contacts is reversed by a parallel magnetic field, we observe a spin dependent

resistance, associated with the conversion a spin polarized current into a super-

current. We propose to use a ferromagnetic tunneling probe to verify if an induced

magnetization is present in the driven superconducting wire.
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2.1 Ordered electronic states

2.1.1 Electrons in a lattice

Solid state materials consist of relatively immobile, positively charged ions sur-

rounded by a dense cloud of much more mobile, negatively charged electrons. In

general the properties of the electrons depend on the specific position of each ion,

but also on the interactions between the electrons. Given the extremely high elec-

tron density in most solids (more than a billion electrons per cubic micrometer),

trying to obtain a rigorous description is optimistic at best.

A much simplified system can be obtained by assuming an infinite, periodic

lattice. The electrons are treated as independent particles in a mean effective

potential, which combines the contribution of the positively charged ionic cores

with the average screening of the total electron cloud. The resulting electron

states follow the periodic structure of the lattice and are spatially extended over

the crystal. Therefore it is more useful to label each state by its wave vector k

rather than by its position, as k reflects the periodicity of the electronic state.

Each momentum state has a certain energy E(k), which is shown in a band

diagram (Fig. 2.1) for a metal (Al) and an insulator (AlN). The total density

of states (dos) versus energy gives the number of available electron states in an

infinitesimal energy range dE [1].

The electrons occupy the lowest energy levels available in order to minimize

the total energy of the system. However, the Pauli exclusion principle[2] forbids

that two electrons occupy the same state, forcing subsequent electrons to popu-

late states with increasingly higher energies. The energy of the highest occupied

electron level is denoted as the Fermi energy Ef . At zero temperature it forms a

surface (the Fermi-surface) between completely filled and empty states. At finite

temperature, thermal fluctuations can excite an electron from a filled state below

Ef into an unoccupied state above Ef . The typical energy of these fluctuations is

proportional to the temperature ∆E ≈ 4kBT , with kB the Boltzmann constant.

As this energy is much smaller than Ef , it only affects the occupation of states

in a small energy range around Ef . Most relevant interactions and driving fields,

like electric or magnetic potentials, have a similarly small energy. For electrons

which are deeply bound below the surface there are no empty states available.

Therefore they do not participate in interactions, transport or thermal proper-

ties. They merely form a negatively charged background which compensates the

positive charge of the nuclei. The behavior of the solid is hence dominated by

the properties of the electrons near the Fermi-surface.

In metals, the valence electrons are weakly bound due to effective screening
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Figure 2.1: The band structures for (a) the metal Aluminum [3] and (b) the dielectric

Aluminum Nitride [4]. (a) The metal has a continuum of electron states; for every

energy E (vertical axis) there is an electronic state ak with E(k). Notice the close

resemblance between the experimental data (first panel) and a free electron model

(second panel) despite the oversimplifications of the latter. (b) For the dielectric, there

is a region of energies without electron states, called a bandgap. To carry a current,

electrons from filled states below the gap have to be excited to states above the gap.

of the nucleus. The electron wave functions of neighboring atoms show a large

overlap and combine into a broad band of plane waves without much spatial

structure. The Fermi-surface lies within a continuum of states (Fig. 2.1a), which

means electrons can be easily excited, even at small energies. In the presence

of an electric field, electrons are gradually accelerated until they collide with

impurities or phonons (lattice vibrations). A net electric current flows because

the electrons are excited into states with a high momentum in the direction of

the field. It is thus the presence of available states with a relative low energy

which allows metals to conduct electric current.

In dielectrics, electrons are often more strongly bound to the nuclei, with

a wave function resembling the one of localized electrons in an isolated atom.

This results in a band structure with narrow bands, separated by an energy gap

Eg without any electronic states (Fig. 2.1b). If the Fermi level lies in between

two energy bands, the band diagram consists of fully filled bands below Ef and

completely empty bands above Ef . It is impossible to excite electrons into a
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higher momentum state, unless a minimal energy equal to the band gap Eg is

provided. The electrons can therefore not accelerate and the material can not

support a current; it behaves as an insulator.

Treating electrons in a solid as independent or even free particles works sur-

prisingly well, given the gross oversimplifications made. Part of the success can

be explained by the effective electronic screening by the electron cloud, which

makes it possible to describe the effects of the Coulomb interaction on the elec-

tronic wave functions using an effective potential. In addition it can be shown

that an interacting electron system can be mapped one to one to a system of in-

dependent quasiparticles, as long as it can be described as a perturbation of the

Fermi sea. These quasiparticles represent many electrons and their interactions,

but have the same charge as electrons [5].

The presence of (even weak) electron-electron interactions can lead to a radi-

cally different ground state. Below we discuss ferromagnetism and superconduc-

tivity, two examples of ordered states which are relevant for this thesis. In both

cases, the energy gain associated with the electron interactions leads to the spon-

taneous formation of long range order. For a ferromagnet, spin-spin interactions

lead to a spontaneous magnetization M. At finite temperatures the strength of

M decreases due to thermal excitations, until all magnetic ordering disappears

at the Curie temperature TCu (Fig. 2.2a). Due to the strong interactions, the

physics of ferromagnets can not be captured by a mean field theory of free elec-

trons. For a superconductor, an attractive interaction between electrons leads

to the formation of bound electron pairs (Cooper pairs [6]). The Cooper pairs

form one coherent macroscopic wave function |∆|eφ with a well-defined phase φ.

The collective nature of this state implies it can not be treated as a perturbation

of the Fermi sea. The magnitude |∆| is proportional to the density of Cooper

pairs, while the value φ breaks symmetry in phase-space. For increasing temper-

ature, thermal fluctuations break Cooper pairs until the superconducting order

disappears at the critical temperature Tc (Fig. 2.3a).

2.1.2 Ferromagnetism

Besides an electronic charge, electrons have spin. It represents a discrete amount

of angular momentum with a small magnetic moment associated with it, pointing

up (↑) or down (↓). Due to this magnetic moment, the spins tend to align

with an external magnetic field, thus enhancing it. In addition, strong spin-spin

interactions exist between electrons. This interaction stems from a combination

of the Pauli exclusion principle and electrostatic forces, rather than interaction

between their magnetic moments. In the presence of such an effective spin-spin
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Figure 2.2: (a) The dependence of the spontaneous magnetization M and the in-

verse susceptibility on temperature for Ni and Fe. The strong electron-electron in-

teractions require a physical model which goes beyond a mean field theory. (b) The

spin-dependent density of states of Ni at zero temperature (dashed lines) and at 0.9

TCu. Because of the coupling between the electronic ground state and quasiparticle

excitations, the density of states explicitly on the temperature [7].

interaction, the electronic spins can spontaneously align to reduce the energy

of the system. Their individual magnetic moments combine into a macroscopic

magnetization M which breaks the rotational symmetry; the material reduces its

energy at the cost of losing a degree of freedom [8].

At zero temperature all spins are aligned and the order is maximal. For in-

creasing temperatures, single particle excitations and spin fluctuations randomize

the spin orientations more and more, thus increasing the entropy of the system

[9]. At the Curie temperature TCu no net magnetization is left. The thermal

energy equals the condensation energy and the order disappears. The Curie tem-

perature is therefore a measure for reduction in energy and the strength of the

spin interactions.

For Ni, Co, and Fe the magnetic properties are due to spin exchange between

isolated d-shell atoms. A net magnetization M induces a Zeeman-splitting be-

tween the energy levels of spin-up and spin-down electrons (Fig. 2.2b). Although

the associated energy shift between their respective density of states increases

the kinetic energy of the system, it is outweighed by the gain in exchange energy.

This leads not only to different density of states and Fermi-velocities vf,↑↓ for

the isolated electrons of the d-band, but also to spin-dependent scattering of the

delocalized s-band electrons which dominate the conduction. A realistic frame-

work should explicitly include electron interactions, and hence goes beyond a free

electron picture [7].



14 2. Driven mesoscale heterostructures

2.1.3 Superconductivity

In a superconductor, the presence of an attractive electron-electron interaction

renders the Fermi sea unstable against the formation of bound electron states [6].

Electrons of opposite momentum and spin form so-called Cooper pairs, which all

condense into a coherent, macroscopically occupied state |∆|eφ. The amplitude of

the complex order parameter ∆ is proportional to the number N of Cooper pairs

in the condensate, while the well-defined phase φ reflects their coherence. Due

tot the uncertainty principle of Heisenberg ∆N∆φ > 1, the number of Cooper

pairs fluctuates around their average number N [12].

The attraction between different electrons originates from the Coulomb in-

teraction, mediated by phonons (lattice vibrations). The electronic interaction

of a first electron with the inert lattice exerts a retarded, attractive force on a

second electron. To realize a maximum energy reduction through this attractive

interaction, a rearrangement of the electrons in momentum space takes place, at

the cost of an increase in kinetic energy. This leads to a superconducting ground

state which is a coherent superposition of states with different numbers of pairs,

as first described by Bardeen, Cooper and Schieffer (BCS) [13]:

|ψBCS >= Πk(uk + vkc
∗
k↑c
∗
−k↓)|φ0 > . (2.1)

A certain momentum state k has a probability v2
k to be occupied by a pair of

electrons c∗k↑c
∗
−k↓, while the probability for the state to be empty is given by

u2
k = 1 − v2

k. The condensation energy is proportional to
∑
Vklukv

∗
ku
∗
l vl and

explicitly requires that states are partially occupied and have coherent phases,

otherwise ∆ = 0. Therefore, time-reversed electron and hole states in a region

of ∆ around the Fermi level are mixed. The pairs with momenta in this region

contribute most to the condensation energy.

The nature of the BCS ground state has far-reaching consequences for the

excitations of a superconductor. As the electrons are bound in a coherent pair

state, it is impossible to excite a single electron without affecting the complete

condensate. The minimal energy to create an excitation from the superconducting

ground state equals the loss in condensation energy associated with the broken

Cooper pair, ∆. This leads to a spectral energy gap in the quasiparticle density

of states (Fig. 2.3b). However, superconducting order (proportional to the order

parameter ∆) does not necessarily induce a spectral energy gap, for example in

the presence of magnetic impurities which break time-reversal symmetry.

For increasing temperatures more and more Cooper pairs are broken and the

condensation energy decreases. As the critical temperature Tc of the supercon-

ductor is reached, all coherence is lost and the electrons behave independently
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Figure 2.3: The temperature dependence of the spectral energy gap in a superconduc-

tor, measured by photon absorption [10]. For increasing temperatures Cooper pairs are

broken, reducing the strength of the superconducting order. (b) The density of states in

a superconductor [11]. The dashed line represents a bulk BCS superconductor and has

no states below the gap; the spectral gap and the order parameter are identical. How-

ever, if time reversal symmetry is broken (in this case by paramagnetic impurities),

subgap states are formed. Although spectroscopically gapless, the superconducting

order is still present.

with random phases (Fig. 2.3). The effect of breaking Cooper pairs in the region

of around the Fermi level is much stronger as they contribute more strongly to the

formation of the superconducting order. In addition, the ground state as given

by Eq (2.1) explicitly mixes electron and hole states in a region of ∆ around the

Fermi level. This means that the excitations at those momenta also behave as a

mixture of an electron and a hole state and have an effective charge in between

a full negative (electron) charge −e and a positive (hole) charge e.

2.2 Interfaces

A heterostructure by definition consists of different materials, which necessarily

creates interfaces. It is tempting to think of such an interface as a two-dimensional

surface which is merely a boundary between two bulk materials, each with well-

defined electronic properties. The influence of the interface is usually negligible in

comparison with the bulk and is absorbed in some phenomenological properties,

localized at the separating boundary, such as an interface resistance.

For mesoscopic structures however, this intuitively compelling pictures breaks

down. As the structures get smaller the surface to volume ratio becomes increas-

ingly bigger, and the influence of the interfaces and surfaces can dominate the



16 2. Driven mesoscale heterostructures

behavior of the system. Furthermore, the electronic properties do not change

abruptly at the interface, but gradually change over a distance, set by the rele-

vant potentials on each side of the interface. These potentials themselves depend

on the electronic properties. As the physical length of the sample becomes com-

parable to these conversion lengths, it is clear that it hardly makes sense to

artificially separate a bulk region from the interface.

A way to cope with the non homogeneous character is to model the structures

at the microscopic level. The electronic properties become strongly position-

dependent, over length scales which are set by the physical processes involved.

The potentials associated with these processes are obtained in a self-consistent

way, together with the electronic properties.

2.2.1 Length scales

The interactions between an electron and its environment determine its behavior.

Such interactions consist of elastic scattering on impurities and boundaries, and

inelastic electron scattering on other electrons, phonons, or photons. In addition,

the electrons experience the presence of self-consistent fields like a magnetization

M or a superconducting potential ∆. Each of these processes acts on different

properties of the electron system, over a specific length scale.

In the diffusive metals used in this thesis, the most prominent scattering mech-

anism is elastic scattering on impurities. The density of impurities is relatively

high, leading to an elastic mean free path lel of the order of a few tens of nanome-

ters. As lel is still considerably larger than the Fermi wavelength of the electrons

λF = 2π/kF , the electron motion can be described semi-classically as a random

walk between impurities [14]. The average distance L =
√
Dτ an electron travels

in a time τ , is set by the Fermi-velocity and the mean free path lel which de-

termine the diffusion constant D = vf lel/3. As the dimensions of the structures

become smaller, scattering from surfaces and interfaces gains importance and can

put an upper limit to the mean free path. In that case, the exact nature of the

boundary determines whether the electronic momentum is conserved. A rough

boundary on the scale of λF is more likely to randomize the momentum (diffu-

sive scattering) than a smooth one (specular scattering). Inelastic interactions

with electrons, phonons or photons mainly affect the excitation spectrum of the

electrons, which will be treated in Section 2.3. This section only considers the

influence on equilibrium properties such as the density of states and coherence.

Self organized potentials as a magnetization M or a superconducting order ∆

have relatively small energies, and the associated length scales are considerably

larger than lel.
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Figure 2.4: A schematic representation of the conversion of normal electrons into

Cooper pairs at a normal metal - superconductor boundary. An incident normal elec-

tron (red) is retro-reflected as a phase coherent hole (blue). At the same time one

Cooper pair is added to the condensate. This conversion process occurs due to the

presence of the superconducting order parameter and takes place over roughly one

coherence length ξ.

Consider a boundary between a normal metal and a superconductor (Fig. 2.4).

Deep in the normal metal the electrons behave totally uncorrelated without any

energy (spectral) dependence. Inside the superconductor, on the other hand, all

the electrons are nicely ordered as well behaved cooper pairs, phase coherent,

and not disturbed by any perturbation smaller than the gap. In the region near

the interface it is clear the electrons should be a mixture of both. An important

question is what the spatial extent of such an interface is. The superconducting

wave function is not confined to the right hand side of the interface, but will leak

into the normal metal. This superconducting proximity effect can be understood

by looking at a normal wave packet impinging on the NS boundary. In the case of

a perfect transparent interface, it will be converted into a Cooper pair inside the

superconductor due to the presence of the superconducting order parameter ∆.

The second electron of the pair, with opposite spin and momentum, originates

from a hole which is retro-reflected into the normal metal. Hence, the reflected

hole has exact opposite properties of the impinging electron and will retrace

its trajectory [15]. Over a certain length scale this process establishes phase

coherence between time reversed states in the normal metal. At the same time,
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over some distance in the superconductor, there is a penetration of incoherent

electrons until they combine into Cooper pairs.

The characteristic distances for this process can be estimated to first order

by considering an impinging electron with an energy ε and a reflected hole with

energy −ε. Through the dispersion relation for free electrons E = ~2k2/2m, this

leads to a slight shift between the respective wave vector of the electron and

the hole, given to first order by ~2kfδk/2m ≈ ε. As the hole retraces the path

of the electron, this small shift in wave vector will generate a phase difference

of δkdl. As the electron-hole pair diffuses in the normal metal, they gradually

dephase until they are no longer correlated after a typical distance of ξN =√
~D/ε. This coherence length ξN not only depends on the properties of the

normal metal, but also on the energy of the incoming electron (at ε = 0 it

becomes infinite). In the superconductor the interaction with the pair potential

mixes the electron with the hole. This is a process which takes place over a

distance set by the superconducting gap ξS =
√

~D/π∆, the superconducting

coherence length. The effective size of an interface is hence set by the energy scale

of the physical processes involved. If the size of the sample is small compared

to this length scale, the interface affects the complete structure. The previous

discussion only considered the influence of the superconducting order parameter

on the electronic wave functions. However, the coherence of the electrons also

influences the superconducting potential and the two have to be calculated self-

consistently.

2.2.2 Microscopic description

The presence of interfaces implies non-homogeneous electronic wave functions,

but more generally also the potentials and interactions become position depen-

dent. A convenient framework to model such an interacting many-body sys-

tem is the Green function theory. These Green functions reflect the propaga-

tions of electrons in space and time. A Green function Gα,β(r2, t2, r1, t1) =<

ψβ(r2, t2)ψ†α(r1, t1) > is a complex number, representing the correlation between

an electron state ψα created at a time t1 at a position r1 and an electron state

ψβ at a position r2 and a time t2 (inset Fig. 2.5a). The quantum numbers α, β

reflect electronic properties other than space and time, for example the electron

spin.

The short wavelength λF of electrons near the Fermi level means that G

oscillates rapidly as a function of the position difference r = r2− r1. However, as

indicated in the previous Section, the main properties of interest occur at much

lower energy scales and have an accordingly slow spatial dependence (Fig. 2.5a).
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Figure 2.5: The evolution in time and space of a quasiparticle is given by a propaga-

tor G, which represents the probability that a particle ψ†(r1, t1) created at time t1 at

position r1, is to be found at a time t2 at a position r2: ψ(r2, t2). (a) The propagator

has a fast-varying component (proportional to Ef ) due to the wave nature of the elec-

tron and a slow-varying component corresponding to low-energy potentials such as the

superconducting order parameter. In momentum space this corresponds to a sharply

peaked distribution around the Fermi momentum kf (inset). In the quasiclassical ap-

proximation only the slow varying envelope (thick blue line) is taken into account. (b)

Interactions are included by dressing the bare propagator G0 with an infinite number

of interactions, represented by the self-energy Σ. The self-energy itself depends on the

properties of G, the available interactions, and potentials.

In momentum space the Green function is a sharply peaked function around

kF (inset Fig. 2.5a), and can be approximated with a δ function [16, 17]. The

variations due to the slow spatial components is included through the dependence

of G on the mean position R = 1
2
(r1 + r2). A second approximation arises

from the fact that the short elastic mean free path in dirty metals effectively

randomizes the direction of the electronic momentum [18]. The Green functions

G(R, t1, t2) = G(R, kf , t1, t2) are isotropic and do not explicitly depend on the

electronic momentum, reducing the complexity of the equations considerably.

The evaluation of G at kF means that effects due to quantum interference are

ignored, it is referred to as the quasi-classical approximation.

Interactions and many-body effects are included as a perturbation and dress

the (unperturbed) bare propagator G0. The dressed propagator G represents the

evolution of an interacting quasiparticle and is given by a summation over the bare

propagator G0, which encounters an arbitray number of interactions (Fig. 2.5b).

This schematic can be condensed into G = G0ΣG, the Dyson equation. The
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self-energy Σ = Σel−el + Σphonons + Σimp + ... represents the combined effect of

all interactions and depends on the electronic trajectories, given by G. Hence G

and Σ have to be evaluated simultaneously.

Knowledge of the Green function G contains spectral information (e.g. the

local density of states) and allows to calculate the influence of interactions on

the behavior of the fermi sea, or individual levels. Although this covers correla-

tions between normal electrons, for superconductive electrons, also correlations

between electrons and holes have to be taken into account. The Fermi sea is not

a valid starting point for a perturbative theory and it is necessary to introduce a

radically different ground state like the BCS ground state for bulk superconduc-

tors. Therefore an extra propagator is introduced, the anomalous Green function

given by F =< ψ†β(r2, t2)ψ†α(r1, t1) >, which describes the creation (or annihila-

tion) of a Cooper pair [19, 20].

2.2.3 Boundary conditions

The physical size of an interface between two materials is of the order of one or a

few atomic layers. This means that material properties, potentials, and electronic

wave functions change rapidly over length scales smaller than or comparable to

the Fermi wavelength λF . Given the approximations outlined above, the quasi-

classical theory is unable to describe the electronic properties in the direct vicinity

of the interface. To overcome this problem the original Green functions with the

full spatial dependence are used to generate appropriate boundary conditions,

which match the quasi-classical functions on both sides of the interface [22, 23, 21].

Interfaces which are realized experimentally have in general complex prop-

erties, which are in addition difficult to measure. Obtaining a realistic model

which captures the details of the electron wave functions near the interface is

rather impossible, except in some limited systems. One approach to obtain a

workable model is a phenomenological representation with a scattering matrix,

which relates incoming and outgoing wave amplitudes on both sides of the in-

terface (Fig. 2.6). The amplitude for transmission of an electron state ψLα on

the left side of the interface into a state ψRβ on the right side is given by tα,β,

while the amplitudes of the reflected waves are given by rα,β . As the number

of electrons is conserved the probability for transmission or reflection equals one

Σ|tα,β|2 + |rα,β|2 = 1. The dependences of the transmission values on the energy,

momentum or spin of the impinging electrons are in most cases either ignored or

introduced ad hoc.

For a number of simplified model systems, the transmission values can be

approximated theoretically. An important assumption concerns whether energy
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Figure 2.6: The interface between two diffusive metals can be modeled as a scattering

region, characterized by a transimission (t) and reflection (r) coefficients which match

the microscopic Green functions on both sides of the boundary [21].

and momentum are conserved upon transmission through the interface. For a

clean interface the scattering matrix t is expected to be elastic (energy conserva-

tion) and specular (momentum conservation). Furthermore electronic properties

like λF or the density of states are assumed to be unaffected by the presence of

the interface. Under these assumptions the transparency is determined by the

mismatch in Fermi wave vectors and has values which are close to unity. Tunnel

barriers are a limiting case of an interface with transmission values close to zero.

Ideally they consist of a few atomic layers of insulating material, with a certain

band gap Eg. Electrons impinging on this interface have an evanescent tail pene-

trating the insulator, which gives them a small but finite probability to tunnel to

the other side of the barrier. In a Werner-Kramer-Brillouin approximation, this

probability is exponentially dependent on the barrier height eφ and thickness t

[24]. The exponential dependence of the transmission and the large number of

variables make a comparison with experiments difficult. In practice it is absorbed

in an effective tunnel barrier resistance Rn.

2.3 Driven electrons

The electronic properties of a structure are investigated by looking at its re-

sponse to current-driving. The linear response is determined by the resistance

of the structure, which for a normal metal is a backscattering resistance. For

a heterostructure, the resistance not only reflects the properties of the different

materials, but also the influence of conversion processes near the interfaces. For

strong bias, the electrons are driven out of equilibrium. If the structures are

short compared to typical energy relaxation lengths, the non-equilibrium can no
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longer be characterized by an effective temperature. This non-equilibrium in the

normal state is ‘hidden’ in the sense that the resistance does not depend on the

energy distribution of the electrons. For a driven superconductor however, the

electronic properties depend explicitly on the distribution of quasiparticles over

the energies. The response becomes a nonlinear function of the driving, reflecting

the interaction between non-equilibrium quasiparticles and the superconducting

condensate.

2.3.1 Diffusive transport

In normal metals, the resistance is dominated by the backscattering of electrons.

An applied electric field E accelerates electrons until their momentum is random-

ized by scattering on impurities, phonons or boundaries. They acquire an average

drift velocity vd in the direction of the applied field, which is proportional to the

average time they spend between two scattering events. The associated current

is given by the total number of electrons, all moving at an average drift velocity

j = ensvd.

Alternatively, the electric field can be seen as a gradient in the electro-chemical

potential of the electrons ∇µ = eE. This causes a changing electron density near

the Fermi level and a net flow of electrons. In this case the total current is

carried by electrons near the Fermi level only. The current is given by Fick’s

law j = −eDN0∇µ, where N0 is the electron density at the Fermi level and

the diffusion constant D = vf lel/3 is a measure for the mobility of the electrons.

Through j = σE, the Einstein relation between the conductivity and the diffusion

constant is obtained, σ = e2N0D [25].

A ferromagnet is characterized by a spin-dependent density of states N0,↑,↓,

conductivity σ↑,↓, and diffusion constant D↑,↓. The transport can be modeled by

assuming two independent spin-channels, with a spin-dependent chemical poten-

tial µ↑,↓ and quasiparticle current j↑,↓ [26]:

j↑,↓ = σ↑,↓∇µ↑,↓, σ↑,↓ = e2N0,↑,↓D↑,↓. (2.2)

A difference in chemical potential between spin-up and spin-down is relaxed by

spin flip scattering over a length scale λsf . The electrons not only carry a charge

current, but also a net spin current given by jspin = j↑ − j↓ = 1
e
(σ↑ − σ↓)E. The

spin-polarization of the current αF =
j↑−j↓
j↑+j↓

can take on any value between −1

and 1. In a bulk ferromagnet, the gradients ∇µ↑ and ∇µ↓ are equal, leading to

a spin polarization of αF =
σ↑−σ↓
σ↑+σ↓

.

In a superconductor, a dissipationless supercurrent is proportional to a gradi-

ent in the phase of the superconducting order parameter, rather than a gradient
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in particle density. Although the Cooper pairs can carry a charge current without

any resistance, any energy or charge current is effectively blocked. The reason

for this is that a singlet Cooper pair carries no net spin as it consists of a spin-

up and a spin-down electron and no net energy as it is located at the Fermi

level. The only way a superconductor can support an energy or spin current is

by a quasiparticles. The transport equations and the quasiparticle distribution

are disentangled into a part connected to charge transport (in which the Cooper

pairs do participate) and a part connected to energy or transport (in which they

do not directly participate). In addition, the presence of a charge, energy or

spin non-equilibrium in the quasiparticle spectrum will affect the superconduct-

ing ground state in different ways. In the following sections and Chapters 8 and 9

we address this problem in more detail.

2.3.2 Current conversion resistance

Backscattering of electrons in normal, bulk materials gives rise to an electrical

resistance which only depends on the normal resistivity and the geometry of the

structure. The presence of interfaces between different materials in heterostruc-

tures introduces an extra resistance by two different mechanisms. The finite

transparency of the interface results in backscattering of electrons similar to the

normal resistance. Furthermore, the carriers of the current on both sides of the

interface are in general not the same, which gives rise to a current conversion

resistance. The magnitude of this resistance is proportional to the length scale

of the conversion process and the resistivity of the material where the conversion

process takes place. The location of this resistance is not uniquely defined. It can

be thought of as a drop in the Fermi level at the interface, but a picture in which

it extends over the length of the conversion is more appropriate from a physical

point of view.

Fig. 2.7 represents a clean contact between a ferromagnet carrying a spin-

polarized normal current and a superconductor where the current is carried by

spin-neutral (singlet) Cooper pairs. On the ferromagnetic side the spin-polarized

current introduces an overabundance of one type of spin carriers (spin up in

Fig. 2.7), because each electron needs to combine with a spin down electron in

order to form a Cooper pair. The density of spin-up carriers near the interfaces

increases until spin relaxation exactly balances the net accumulation due to the

spin-polarized current. Spin relaxation occurs mainly in the ferromagnet over

a distance λsf =
√
Dτsf , because the ferromagnet has a much higher spin-flip

relaxation rate than the superconductor. The spin accumulation causes a split in

the Fermi levels for spin-up and spin-down in the ferromagnet, and a jump in the
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Figure 2.7: The conversion of a spin-polarized current carried by normal electrons into

a supercurrent carried by the superconducting condensate leads to a current conversion

resistance. Spin accumulation in the ferromagnet relaxes over a length scale λsf which

is inversely proportional to the magnetization M. Analogously charge accumulation

in the superconductor decays over a length scale ξ set by the superconducting order

parameter.

average Fermi level at the interface appears as an interface resistance. Intuitively

the current near the interface is forced to use the more resistive spin-down chan-

nel over a distance comparable to λsf , because only a spin-neutral current can

penetrate into the superconductor. Similarly, normal electrons which are injected

from the ferromagnet into the superconductor are converted into Cooper pairs

over a distance of roughly a coherence length ξ =
√

(~D/2∆), set by the super-

conducting order parameter ∆. In this region close to the interface, normal elec-

trons accumulate which leads to the presence of a net charge in the quasiparticle

spectrum. A dc electric field associated with this charge mode penetrates the

superconductor, leading to a resistance R ∼ ξρ. Hence, two conversion processes

take place near the interface: (1) the conversion of a spin-polarized current into

a spin-neutral current on the ferromagnetic side, (2) the conversion of a normal

current into a supercurrent on the superconducting side. Each of the conversion

processes is associated with the accumulation of the quantity which needs to be

converted (respectively spin and charge), leading to a resistance proportional to

the conversion length and the material specific resistivity. The linear response

to current-transport is an accurate probe of the microscopic electronic properties

near the interface of such a heterostructure.
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2.3.3 Energy absorption, relaxation and non-equilibrium

In thermal equilibrium, only electrons in an energy range of roughly 4kBT around

the Fermi energy are thermally excited. Although this is a random process, it

is possible to quantify the average distribution of the electrons over the different

energy levels. The mean occupation f(ε, T ) of a single electronic state is given

by a Fermi-Dirac distribution fFD(ε, T ) = 1/(exp(ε/kbT ) + 1). It depends only

on the relative energy with respect to the Fermi energy ε = E − Ef and the

temperature T of the system.

In a driven structure, energy is absorbed by the electron system. Quasiparticle

excitations are created and existing quasiparticles gain energy. This results in

a non-equilibrium energy distribution f(ε), which differs from the equilibrium

Fermi-Dirac distribution. For relatively weak driving the distribution function is

quasi-thermal and can be characterized by a local, enhanced temperature T ∗. In

general however, f(ε) can have an arbitrary shape, and the only way to describe

the non-equilibrium is to take into account the full energy dependence. This situ-

ation is often encountered in mesoscale structures, as their size is small compared

to the different energy relaxation lengths. The energy relaxation occurs through

inelastic electron-electron and electron-phonon scattering. Electron-electron in-

teractions allow hot quasiparticles to redistribute their energy amongst the elec-

tron bath. In this process total energy contained within the electronic system

stays constant. Inelastic interactions with phonons or photons provide a way to

lose (or gain) net energy.

Hot quasiparticles in a dc-driven wire

Fig. 2.8 shows a diffusive normal metal wire between two normal reservoirs, bi-

ased at respectively ±eV/2. The contact pads act as equilibrium reservoirs at

the bath temperature Tbath, from which electrons with a well-defined energy dis-

tribution are injected into the wire. The average time it takes for an electron

to diffuse through the wire, τD = L2/D, is determined by the length L of the

wire and its diffusion constant D. For short enough wires, the diffusion time can

be small in comparison to electron-electron or electron-phonon interaction times,

τD � τee, τeph. The absence of effective relaxation leads to a position-dependent

energy distribution, which is a linear interpolation of the electronic distribution

in the reservoirs, f(x, ε) = (x/L)fL + (1 − x/L)fR. The two-step distribution

with excitations extending over an energy range between −eV/2 and eV/2 differs

significantly from a thermal Fermi-Dirac. The only way temperature enters the

problem is through the energy distribution of the reservoirs, set by Tbath.

If inelastic electron-electron scattering is strong τee � τD � τeph, high energy



26 2. Driven mesoscale heterostructures

−eV/2 0 eV/2
0

0.2

0.4

0.6

0.8

1

Energy

f(
ε)

-V/2 V/2f(ε)

Figure 2.8: The electronic energy distribution f(E) in a mesoscopic wire which is

biased with a voltage eV . In the case of strong electron-phonon relaxation, the elec-

trons are in thermal equilibrium (blue). If only inelastic electron-electron scattering

is present, the electrons adopt a quasi-equilibrium distribution with a locally elevated

temperature (green). In the absence of interactions, the distribution function is given

by a two-step distribution function which is an interpolation of the electron distribution

of the reservoirs (red).

electrons redistribute their energy. The electron system reaches a local equi-

librium, characterized by a Fermi-Dirac distribution with a position-dependent

temperature f(x, ε) = fFD(T (x)). The effective temperature profile is parabolic,

the highest temperatures occur in the center of the wire while the ends of the

wire stay at the bath temperature due to the presence of the equilibrium reser-

voirs. The quasiparticle excitations extend over an energy range set by the local

temperature ∆E ≈ 4kT (x). Electronic excitations can acquire energies beyond

eV , in contrast to the case without inelastic scattering. In the presence of strong

electron-phonon scattering τeph � τD, the electrons can relax their energy to the

phonon bath. The electrons acquire a Fermi-Dirac distribution at the bath tem-

perature Tbath. Experimentally these distribution functions can be oberved with

local tunneling probes [27] or by measuring shot noise [28, 29, 30, 31].

Photon absorption in an ac-driven wire

In the presence of an alternating electric field V cos(ωt), energy is absorbed in

quanta set by the photon energy ~ω, similar to photon assisted tunneling [32]

through superconducting junctions. The electrons adopt a staircase distribution
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Figure 2.9: The time-averaged electron distribution in an ac-driven mesoscopic wire.

For slow fields, the electrons follow the electric field instantaneously and have a time-

dependent distribution function similar to the dc case (dashed green line). For higher

frequencies, photon absorption leads to a staircase distribution with energy steps which

match the photon energy ~ω. In this case the electrons can reach excitation energies

beyond the bias voltage [33].

function, consisting of several plateaus with a width of ~ω and extending over an

energy range roughly set by the bias voltage eV . These plateaus disappear due

to thermal excitations at high temperatures (kBT > ~ω) or due to rounding by

strong inelastic scattering (τee, τeph � eV
~ω ).

The irradiation makes the system explicitly dependent on the time. An ap-

proach using a time-dependent Boltzmann equation is valid, if the time scale

associated with the photon-field (τ = 2πω−1) is smaller than the elastic scat-

tering time τel, and the RC-times associated with the sample. However, the

definition of an energy distribution function in the presence of a time-dependent

potential is not trivial. A scalar electric potential V cos(ωt) modulates the en-

ergy levels of the quasiparticles: ε̃ = ε+ cos(ωt). Therefore, even an equilibrium

energy distribution fFD(ε̃, Tbath) appears to be time-dependent, with frequency

components at ε+ n~ω. It is more convenient to use a different gauge, in which

the electric field is represented as a vector-potential A = eV
cω

sin(ωt). The only

time dependence left in f(x, ε, t) is the real dependence of the occupation number

as the field strength is varied.

If the response time of the wire is fast compared to the applied field ωτD � 1,

the electronic energy distribution follows the field variations adiabatically.
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Although the distribution function is very similar to the one in the dc case, energy

is absorbed in quanta of ~ω. Quasiparticles can be excited to energies beyond

the applied voltage n~ω > eV . Only in the limit eV � ~ω, f(x, ε, t) is equal to

the dc distribution function which instantaneously follows the oscillating voltage

V (t). Fig. 2.9 shows the time-averaged distribution function f(x, ε, t). For fast

fields ωτ � 1, the electron system is unable to follow the field oscillations and

the energy distribution function takes on an average value.

The effect of inelastic interactions on the energy distribution is similar to the

dc case. Electron-electron scattering rounds the photon steps in the distribution

function, thus creating a quasi-thermal equilibrium. Inelastic electron-phonon

scattering cools the electron bath, creating a parallel relaxation channel to the

diffusive transport. This means that the response of the electron bath can be fast

for materials with strong electron-phonon interaction, even when diffusion times

are long. It is hence the dominating relaxation mechanism which determines the

frequency cut-off ~ωcut−off ≈ min{τD, τeph}. Electron-electron interactions have

almost no influence on the response time of the system, because no energy is

relaxed.

2.3.4 Nonlinear transport

The superconducting ground state is explicitly dependent on a non-equilibrium

quasiparticle distribution. The most obvious example is the fact that supercon-

ductivity is gradually suppressed if the temperature is raised to Tc. However, a

general non-equilibrium quasiparticle distribution can also influence other aspects

of the superconducting state. Therefore it is convenient to split a non-equilibrium

into an even and an odd part in particle-hole space. The even part, or tempera-

ture mode, has a similar influence as an increase in temperature. The odd part,

or charge mode, describes a situation in which the quasiparticle spectrum con-

tains an overabundance of electron-like (or hole-like) quasiparticles. In that case

the quasiparticle system contains a net electric charge, which is compensated by

a change in the number of Cooper pairs in the condensate. The presence of such

a charge mode is related to the injection of electrons (holes) and leads to the

presence of an electric field in the superconductor.

A microscopic description should not only include both the quasiparticles and

the condensate, but also their interactions. Using the anomalous propagators of

the quasi-classical theory it is possible to keep track of the coherence properties

of the electrons in the superconductor. In addition, a generalized distribution

function h(x, ε, t) is introduced, which can be disentangled into a symmetric

(temperature mode, fL) and an asymmetric part (charge mode, fT ) with re-
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spect to the Fermi level: h = 1− fL − fT . Using a perturbation theory called a

Keldysh contour, one can obtain a set generalized diffusion equations for fL and

fT [34, 35, 36, 37, 38].

We consider a superconducting wire between normal contact pads, analo-

gous to the normal wire in Section 2.3.3. The massive normal electrodes act

as equilibrium reservoirs, from which normal quasiparticles are injected into the

superconductor. At a given bias point, the superconductor is found to exhibit

two metastable ground states, called a global and a bimodal superconducting

state. The two states have a different resistance, electric potential distribution,

superconducting order parameter and distinct contributions of normal and super-

currents. For the global superconducting state, the wire is in one coherent state

and most of the current is carried by Cooper pairs as a supercurrent. Only over a

distance of roughly one coherence length near the interface, normal quasiparticles

injected from the reservoirs penetrate the superconductor. This leads to charge

accumulation and a dc electric field inside the superconductor, with an associ-

ated, relatively small resistance of roughly R ∼ ρξ/A. The bimodal state consists

of two distinct superconducting blobs near the ends of the wire. The center of

the wire stays normal due to a strong temperature mode non-equilibrium, caused

by the electric dissipation of the normal electrons which dominate the transport

in this case.

2.4 Dielectric environment

The previous Section discusses driven electrons in mesoscale structures. However,

such structures are deposited on a support material, which is in most practical

cases a dielectric substrate. Apart from mechanical support, the substrate also

acts as a heat sink for the phonons of the metal films. Furthermore, it interacts

with the electronic system, as the electric fields used to drive the electron system

also penetrate this dielectric substrate.

2.4.1 Phonon relaxation

Energy which is dissipated in the electron system of a mesoscale structure, is

eventually relaxed as phonons in the metallic films. These excess phonons es-

cape to the dielectric substrate within a time scale τesc. Phonons which are

reabsorbed by the electron system before they escape, effectively enhance the

inelastic electron-phonon relaxation times [39]. The escape time τesc is set by an

attempt escape frequency νesc and the phonon-transimissivity Tesc of the metal-

substrate interface. The attempt frequency νesc = cs/2t is to first order given by
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the phonon velocity (the speed of sound cs) divided by the thickness of the film

t.

Alternatively, the film phonons can be modeled as an extra thermal bath

with a temperature T . The number of phonon modes scales with T 2 at low

temperatures, and each phonon carries an average energy comparable to kBT .

This leads to a heat capacity C(T ) and conductance G(T ), which both scale with

the temperature cubed T 3. While the conductance scales with the contact area

of the film, the heat capacity scales with its volume. The relaxation time for the

phonon bath is therefore temperature independent and proportional to the film

thickness τph−subs = C/G ∼ V/A = t.

The transmissivity D of the interface can be modeled by an acoustic mismatch

model [40], where reflection at the interface is due to a mismatch in sound velocity

between the two materials. It also includes the generation of surface waves which

travel at the interface between the two materials. In a diffusive mismatch model

one assumes every phonon scatters at the interface. The diffusive mismatch

model usually overestimates the escape time, while the acoustic mismatch model

underestimates it. However, for solid-solid interfaces their values differ only by

roughly 30 % [41].

In some cases, the dielectric substrate itself does not behave as an equilibrium

bath. An example is given by thin SiNx membranes, which are used for their low

thermal conductance, for example in sensitive detectors. However, in Chapter

6 we show that also more conventional substrates can suffer from effects due to

non-equilibrium phonons.

2.4.2 Two level systems

Electric fields used for driving, are not confined to the metal structures but extend

deep into the dielectrics surrounding the sample. Two level systems (TLS) can be

present in dielectrics, at metal-dielectric interfaces and on different surfaces. The

interaction between the driving field and the dipole moment of these two level

systems leads to dissipation through resonant modes and to phase fluctuations

in the field [42].

The origin of two level systems is most probable to be found in different

atomic configurations of an amorphous material. These configurations have a

slight difference in energy and are coupled by a tunnel element. Through their

dipole moment d0 they affect both the real and imaginary part of the dielectric
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permittivity ε of the host material (for weak fields) [43]:

ε′′

ε
= δ0

TLS tanh

(
~ω

2kBT

)
, (2.3)

ε′

ε
= −δ

0
TLS

π

{
Re

[
Ψ

(
1

2
− ~ω

2jπkBT

)]
− log

εmax
wπkBT

}
. (2.4)

In this equation, δ0 is the loss tangent at zero temperature in a weak electric field,

Ψ is the complex digamma function, and εmax is the maximum energy splitting

of TLS. The imaginary part ε′′ is connected to dissipation (losses), while the

real part ε′ induces changes in the phase of the field. Strong fields saturate the

TLS leading to a decrease in losses given by a factor 1/
√

1 + |E/Ec|2, with Ec a

critical field [44]. The influence on the real part ε′ is small.

If the TLS fluctuates randomly between its different states due to interaction

with the environment, this will also induce a fluctuation in the dielectric permit-

tivity. The presence of TLS hence influences both electric losses and phase noise.

In Section 3.4 and Chapters 4 and 5 of this thesis we analyze how these effects

can be identified and minimized by a careful design for microwave resonators.
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3.1 Introduction

The structures described in this thesis are designed to probe fundamental phys-

ical processes or to have a certain functionality. In order to realize a desired

sample, different materials have to be deposited and patterned in a series of fab-

rication steps. There is a close connection between the design, the fabrication

route, and the physical properties of the final structure. Design choices depend on

requirements for the device, for example a material needs to be a superconductor

with a certain critical temperature Tc or electrical conductivity σ. Additional

constraints are placed by the availability and compatibility of materials, depo-

sition methods, and patterning steps. The measurement environment restricts

the choice further, as only a limited parameter space is accessible. This can be

the available temperature range, the number of electrical wires, and the require-

ments on their filtering; or even the dimensions of the sample holder. In the

end, measurements are done to reveal the physical properties or functionality of

the sample. These measurements are interpreted within a conceptual framework,

which makes certain assumptions and simplifications about the geometry, mate-

rial properties, and physics of the sample. As reality is complex, it is necessary

to asses the validity of such a model system. The following sections illustrate the

connection between a conceptual design, fabrication, measurement, and model

for the devices described in this thesis.

3.2 Superconducting nanowires

In Chapters 8 and 9 we consider electron transport through a superconducting

nanowire between normal (NsN) or ferromagnetic (FsF) contacts. The contacts

serve as equilibrium reservoirs, from which electrons with a well-defined energy

(and spin) distribution f(ε ± eU/2, T, ↑↓) are injected into the wire. The struc-

tures are realized by shadow evaporation through a double layer resist mask

(Fig. 3.1). Using electron beam lithography (EBL), structures with nanoscale

dimensions can be patterned into the resist layer. The two layers have a different

sensitivity, or a different solution is used to develop the exposed areas of each

layer. This allows to create an undercut, which means that the lower layer is

developed more than the upper one. In the following steps material is evapo-

rated through this mask, under different angles. This deposition method is very

directional, therefore the pattern written in the resist mask is projected onto the

substrate at different positions for each angle. The strength of this technique

lies in the fact that it allows to create a structure with multiple materials with

a single mask, without breaking the vacuum during deposition. The interfaces
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(a) (b)

(c) (d)

(e) (f )

Figure 3.1: The fabrication recipe for a superconducting nanowire between normal

pads. (a) A PGMI/PMMA double resist layer is deposited on a Si/SiOx substrate.

(b) After electron beam lithography (EBL), the lower resist layer is developed more

extensively than the upper one leading to an undercut. (c) The Aluminum wire is

deposited normal to the sample. (d) The Copper contacts are evaporated under an

angle of 37◦, which shifts the pattern. (d) The structure after the two evaporation

steps. (e) When the double resist layer is removed, only the metal which sticks to the

substrate is left.
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between the materials can be very clean, and there is no need to pattern the

layers afterwards.

Fig. 3.1 schematically shows the fabrication of an aluminum superconducting

nanowire between normal, copper pads. The normal reservoirs of the sample

are massive to provide an effective thermalization for hot electrons. Although

they consist of an aluminum-copper bilayer they stay normal down to the lowest

temperature measured due to the inverse proximity effect of the copper on the

aluminum. This requires a clean interface between the two metal layers, which

makes the choice for shadow evaporation evident. Although the considerations

above are implemented in the design and fabrication of the structures, measure-

ments still show signs of heating and superconducting proximity effects. Therefore

a careful analysis of the validity of the assumed boundary conditions is necessary,

before interpreting the data (Chapter 8 ). For the FsF structure, relatively thin,

ellipsoid contact pads are chosen to favor a single domain ferromagnetic contact

with little stray fields. To achieve an as uniform spin polarization as possible in

the ferromagnet-superconductor contact, the size of this contact is chosen to be

small. This means that even for moderate driving, the contacts can no longer be

assumed to be in thermal equilibrium (Chapter 9 ) The design of a sample is a

compromise between different requirements. As not all of them are completely

met, it is a necessity to include unwanted effects explicitly in the analysis of the

sample.

3.3 Aluminium Nitride tunnel barriers

A tunnel junction consists of two electrodes with the barrier material in between.

A popular barrier material is amorphous aluminum oxide AlOx, because of a

relatively easy and reliable fabrication route [1]. For highly transparent barriers

however, polycrystalline AlN has superior properties [2]. In this case N2 molecules

have to be broken by a plasma to nitridize the aluminum, which complicates the

fabrication process. A convenient fabrication route is to first deposit the bottom

electrode with a thin (≈ 7 nm) layer of aluminum on top. In a second step, the

Al can be oxidized or nitridized to create the AlOx or AlN barrier, after which

the top electrode is deposited. The deposition of this trilayer is done without

breaking the vacuum to ensure a controllable barrier growth and clean interfaces

between the different layers. In a subsequent step the junction is defined using

EBL and a reactive ion etch. Finally the top wiring is deposited and patterned

to contact the junction.

As seen in Fig. 3.2, a tunnel barrier consists of a thin layer of dielectric (typi-
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Figure 3.2: An Aluminum Nitride tunnel barrier in between Nb electrodes, visualized

by high resolution electron microscopy.

cally a few nm), which is insulating due to the presence of a bandgap. Impinging

electrons have a small probability |T |2 ≈ 10−3 − 10−5 to tunnel through this

layer, as their wavefunction has an evanescent tail which penetrates the potential

barrier. In a WKB approximation, this probability depends exponentially on the

thickness d and the height eφ of the barrier |T | ≈ exp(−αd
√
eφ− ε), with ε the

energy of the electron and α a constant that depends on the effective electron

mass. If specular tunneling is assumed and for small voltages eV � eφ, this gives

rise to a constant normal tunnel resistance Rn which scales with the number of

channels and the transmission per channel |T | [3].

In superconducting tunnel junctions, the presence of the superconducting

gap suppresses single electron tunneling at subgap energies ε < ∆. Higher or-

der electron tunneling is still possible, but small in magnitude as it scales with

|T |4, |T |6, ... The subgap current, which is measured in practice, exceeds the ex-

pected values. The excess current can be attributed to a few mechanisms, such

as subgap states in the superconductor or reflectionless tunneling in which an

electron coherently attempts multiple times to tunnel [4, 5]. Alternatively, it is

known that tunnel barriers are laterally inhomogeneous, in the sense that their

thickness varies over the area of the junction. Therefore a few, highly transmis-

sive spots can dominate the electron transport while the average transmission is

very low. In Chapter 7 we analyze the influence of such a laterally inhomoge-

neous tunnel junction on the electrical and thermal transport through a normal

metal - insulator - superconductor junction.
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3.4 Superconducting resonators

A superconducting resonator consists of a superconducting waveguide, along

which microwave electromagnetic fields can travel [6]. If the length of the su-

perconducting line corresponds to a multiple of a quarter wavelength l = nλ
4

of

the field, it becomes resonant. The shortest resonator is a quarterwave resonator

λ0 = 4l, with an associated resonant frequency f0 = vph/4l. The phase veloc-

ity vph at which the wave travels, is set by the capacitance C and inductance L

of the waveguide vph = 1/
√
LC. The capacitance is determined by the geom-

etry of the waveguide and the dielectric permittivity εr of the substrate. The

inductance consists of a geometric inductance Lg and a kinetic inductance Lk,

whereby L = Lg +Lk. The kinetic inductance is due to kinetic energy of Cooper

pairs which are accelerated (and decelerated) by the electromagnetic field. Hence,

the resonant frequency depends on the geometry of the waveguide, the dielectric

permittivity εr, and the kinetic inductance of the superconductor. Losses are

quantified by a quality factor Q, which corresponds to the number of field cycles

it takes before a signal is completely dissipated. The properties of the resonator

are obtained by measuring the transmission through a feed line, which is capac-

itively coupled to the resonator. At the resonant frequency, the electromagnetic

field is absorbed by the resonator and the majority of the signal is reflected to-

wards the input port of the feed line. This causes a dip in the amplitude of the

transmitted signal and a shift in its phase. Therefore, the resonant frequency

f0 can be measured by either reading out the amplitude or the phase of the sig-

nal. In a superconductor these losses are extremely low leading to quality factors

above a million, as the current is carried by dissipationless Cooper pairs. Only

thermally excited quasiparticles contribute to the loss and their number decays

exponentially at low temperatures, at least theoretically [7, 8]. The number of

quasiparticles fluctuates due to the interaction with the phonon bath, which in-

troduces recombination-generation noise. Another source of losses and noise are

two level systems, which interact with the microwave field through their dipole

moment (Section 2.4.2). They alter both the real and the imaginary part of the

dielectric permittivity, leading to changes in the resonant frequency f0 and the

quality factor Q (for weak fields) [9]:

∆f0

f0

= −
∫
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ε′TLS| ~E|2d~r
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Figure 3.3: Images of different etch recipes for Si, using scanning electron microscopy.

Wet-etching with KOH results in a highly anisotropic etch. (a,b) For resonators aligned

along the 〈011〉 axis the etch is self-limiting and there is no undercut. (c,d) If the res-

onators are aligned along the 〈010〉 axis, the etch is isotropic, resulting in a considerable

undercut. The compressive stress in the NbTiN results in resonators with ‘wobbles’.

(e,f) Bends or narrow lines are better avoided. (g,h) Another possible fabrication route

is a reactive ion etch with SF6/O2, but this degrades the NbTiN film quality.
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with

F =

∫
Vh
εh| ~E|2d~r

2
∫
V
ε| ~E|2d~r

=
weh
we

(3.3)

being a filling factor which reflects the fact that only a fraction F of the field

energy is stored in the volume Vh where the TLS are located. The changes in f0

and Q depend on temperature through the occupation numbers of the two level

states. If these occupation numbers fluctuate, the resonant frequency starts to

fluctuate accordingly:

Sδf0
f0

2

=

∫
Vh
Sε(~r, f, T )| ~E|4d~r

4
(∫

V
ε| ~E|2d~r

)2 , (3.4)

with Sε(~r, f, T ) being the noise spectral density of the fluctuations in ε′TLS. For

strong fields there is a saturation effect of the field on the TLS, which is taken

into account by a heuristic factor Sε = Sε/
√
| ~E(~r)|2 + E2

n,c(f, T ).

Two level systems hence influence the resonant frequency, quality factor, and

the noise of a superconducting resonator, with a strong dependence on the mi-

crowave power and the temperature. In addition their effect depends on their

strength, location, and the field distribution. Therefore an optimized choice of

materials, fabrication route, and geometry can significantly reduce their effect.

We use coplanar waveguide NbTiN quarterwave resonators, as the quality fac-

tor for NbTiN is dominated by the exposed substrate surface. A 50 to 300 nm

NbTiN is DC sputter deposited on a HF-cleaned high resistivity (> 1 kΩcm)

〈100〉-oriented Si wafer, without an additional Ar sputter clean. Patterning is

done by EBL and a reactive ion etch in an SF6/O2 plasma. In order to identify

the location of the TLS, the exposed Si is removed from the gaps of the CPW

with a KOH wet etch. Due to the crystallographic properties of the Si, this etch is

highly anisotropic. If the resonator is oriented along the 〈110〉 axis (Fig. 3.3a,b)

, this etch leads to a gap with 54◦ sidewalls and no undercut. For resonators

oriented along the 〈100〉 (Fig. 3.3c,d), a strong undercut is observed. However,

the compressive stress of the NbTiN film resulted in wobbled edges. Comparing

these different geometries to a reference sample, we identify in Chapters 4 and 5

the exposed substrate in the gaps of the CPW as the dominant source of TLS.

At the same time we demonstrate a reduction in noise and an improvement of

the quality factor, by removing these exposed areas.



3.4 Superconducting resonators 43

Figure 3.4: Experimental reality of the clean room.
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Chapter 4

Minimal resonator loss for circuit

quantum electrodynamics

We report quality factors of up to 500 · 103 in superconducting res-

onators at the single photon levels needed for circuit quantum elec-

trodynamics. This result is achieved by using NbTiN and removing

the dielectric from regions with high electric fields. As demonstrated

by a comparison with Ta, the crucial sources of intensity-dependent

loss are dielectrics on the surface of the metal and substrate.

This chapter was published as R. Barends, N. Vecruyssen, A. Endo, P. J. de Visser, T. Zijlstra,

T. M. Klapwijk, P. Diener, S. J. C. Yates, and J. J. A. Baselmans Applied Physics Letters 91,

023508 (2010). The main contribution of the present author was in the design of the experiment

and the fabrication of the devices.
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4.1 Introduction

In circuit quantum electrodynamics quantum information processing is done by

coupling the qubit state to a single photon bound to a superconducting resonator

[1]. The lifetime of a single photon with frequency f is defined by: τ = Q/2πf [2],

therefore a high resonator quality factor (Q) is needed to maximize the lifetime.

Presently used resonators, made from Nb or Al, have quality factors on the

order of 104 to 105 [2, 3, 4, 5, 6]. In contrast, superconducting resonators for

astronomical photon detection [7] have shown quality factors in excess of a million

in the many-photon regime. One would like to maintain these high values down to

the single photon level. Therefore, we study the unloaded quality factor of NbTiN

and, for comparison, Ta quarterwave resonators down to the single photon level.

NbTiN has a minimal dielectric layer compared to Nb, Al and Ta [8]. We find

that in the single photon regime the quality factor of NbTiN resonators is so

high that the loss is largely due to the exposed substrate surface. In contrast,

for Ta resonators the metal surface dominates. We show that a further reduction

of the loss in NbTiN resonators is achieved by removing the substrate from the

regions with a high electric field density. This increases the quality factor to half

a million for resonators with a central line width of 6 µm, three times higher than

recently reported for Re [2].

4.2 Power dependence of quality factors in NbTiN

and Ta resonators

We use NbTiN and Ta quarterwave coplanar waveguide resonators which are

capacitively coupled to a feedline [7, 8], see inset Fig. 4.1. This allows extracting

the unloaded quality factor from the feedline transmission. The NbTiN films,

300 and 50 nm thick, are DC sputter deposited on a hydrogen passivated high

resistivity (> 1 kΩcm) 〈100〉-oriented Si wafer. The NbTi target used contains

70 at. % Nb and 30 at. % Ti. Patterning is done by reactive ion etching in an

SF6/O2 plasma. For the 300 nm thick film the critical temperature is Tc = 14.7

K, the low temperature resistivity is ρ = 161 µΩcm and residual resistance ratio

RRR = 0.94. For the 50 nm thick film: Tc = 13.6 K, ρ = 142 µΩcm and

RRR = 0.96. The 150 nm thick Ta film (Tc = 4.43 K, ρ = 8.4 µΩcm and

RRR = 3.0) is sputtered on a similar wafer and patterned in a CF4/O2 plasma.

The devices are cooled to 310 mK using a He-3 sorption cooler and down to 60 mK

using an adiabatic demagnetization refrigerator. The sample space magnetically

is shielded [9]. Measurements have been done using a vector network analyzer,



4.2 Power dependence of quality factors in NbTiN and Ta resonators 47

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
4

10
5

10
6

0.0 0.5 1.0
0

1

2

3

4
<n

photons
>~10

NbTiN
1

0
5
/Q

i

tanh(hf/2kT)

Ta

u
n

lo
a

d
e

d
 q

u
a

lit
y
 f
a
c
to

r 
-
Q

i

applied photon number - <n
photons

>

NbTiN

Ta

Figure 4.1: The unloaded quality factor of NbTiN and Ta quarterwave resonators

versus applied microwave photon number in the resonator. Bath temperatures are 60

mK (closed symbols) and 310 mK (open symbols). Central line width is S = 3 µm

and gap width is W = 2 µm. Frequencies of the resonators used are 3.7 (H), 4.2 (u)

and 6.2 (J) GHz for NbTiN, and 3.2 (�), 4.5 (l) and 5.0 (N) GHz for Ta. The solid

lines are fits using Eq. 4.1. The quality factors of the metal surfaces (dashed), exposed

substrate surface (dotted) and a fixed loss term (dash-dotted) are shown for the 3.7

GHz NbTiN data. The right inset shows the microwave loss in the single photon regime

versus tanh(hf/2kT ). The left inset shows the resonator geometry.

locked to a frequency standard. An isolator is placed in front of the low noise

amplifier.

The unloaded quality factor of NbTiN and Ta resonators is plotted versus

applied photon number [10] in the resonator in Fig. 4.1. The resonators have

resonance frequencies in the 3-6 GHz range, a central line width of S = 3 µm and

a gap width of W = 2 µm. Bath temperatures are 60 mK and 310 mK. In the

many-photon regime, quality factors between 0.8·106 and 1.5·106 are observed for

both materials. In addition, in this regime the 60 mK and 310 mK data overlap.
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With decreasing applied photon number the quality factors decrease. For NbTiN

resonators, a weak intensity dependence is observed and quality factors decrease

to ∼ 250·103 at 60 mK in the single photon regime. On the other hand, Ta quality

factors degrade quickly, decreasing to ∼ 40 ·103. Interestingly, an inflection point

is visible in the NbTiN data around 〈nphotons〉 = 102−103, whereas Ta data show

a plateau at low intensities. Additionally, at low intensities a temperature and

frequency dependence develops for both materials. At 310 mK (open symbols)

the quality factors are increased, for resonators with lower frequencies the increase

is larger.

4.3 Two level systems

Previously, we have shown that NbTiN resonators contain fewer dipole two-level

systems (TLS) than Ta, by measurements of the resonator frequency temper-

ature dependence [8]. Dipole TLS are configurational defects with dipole mo-

ment p which reside in amorphous dielectrics [11], such as native oxides. Di-

electric loss at low temperatures (kT < hf) arises from resonant absorption:

1/Q ∝ tanh(hf/2kT )/
√

1 + E2/E2
s [11, 12]. The factor tanh(hf/2kT ) reflects

the thermal population difference between the lower and upper level. With

increasing intensity TLS are excited, lowering the loss. The saturation field

Es = ~/p
√
T1T2 is controlled by the dipole moment and relaxation times T1

and T2.

The microwave loss of our resonators in the single photon regime scales with

tanh(hf/2kT ), see the inset of Fig. 4.1, consistent with resonant absorption

from TLS. This also explains the frequency dependence which develops at 310

mK. Moreover, different resonators made from the same material follow the same

trend, indicating that the loss is very comparable over the whole chip. In addition,

the slope for Ta is steeper than for NbTiN, consistent with a larger TLS density

for Ta, compared to NbTiN resonators.

In order to identify the location of these TLS and quantify the influence of

their saturation on the quality factor, we calculate the effect of a hypothetical

thin dielectric layer with thickness t → 0 containing TLS. Dielectric loss in a

quarterwave resonator due to dipole TLS is given by [2, 13]:

1

QTLS

=
tanh

(
hf

2kT

)
QTLS,0

1
2
ε0εh

t
Vh

| ~E(~r)|2√
1+| ~E(~r)|2/E2

s

d~r

1
4
CV 2

r l
(4.1)

with Vr the standing wave voltage inside the resonator, l its length and C the

capacitance per unit length. The dielectric loss of the layer is 1/QTLS,0 =
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Figure 4.2: (a) the charge distribution (red denotes a positive charge, blue a negative

and green a neutral one), electric fields (red arrows) and magnetic fields (blue arrows)

in the coplanar waveguide geometry. (b) The power dependence using Eq. 4.1 for a

TLS distribution placed on the exposed substrate surface, top metal surface, substrate-

metal (sub-met) interface and etched metal edges. Q0 = 106, and at low intensity each

surface is assumed to limit the Q to 300 · 103. (c) The normalized contribution to loss

of the dielectric layers versus central line width S, for W = 2 µm (solid) and W = 2
3S

(dashed).

Nπp2/3ε0εh, with N the TLS density of states and Vh and εh the volume and

relative permittivity of the dielectric layer hosting the TLS.

The electric fields for our resonator geometry are calculated by using the

potential matrix P to find the charge density q: V = Pq [2, 14]. The substrate

is included using the method of partial image charges. The potential matrix

elements are given by Pij = Pji = − (ln |ri − rj|+K ln |r∗i − rj|) /2πε0 for i 6= j,

and Pii = − (ln a+K ln[|ri − r∗i |+ a]) /2πε0, with ri the location of the i-th

element, r∗i the location of the i-th element mirrored in the plane of the substrate

surface, a its radius, K = (1− εs)/(1 + εs) and εs the relative permittivity of the

substrate. The electric fields and magnetic fields are shown in Fig. 4.2a.

We place this hypothetical layer on either the exposed substrate surface, top

metal surface, etched metal edges or at the substrate-metal interface. Inter-

estingly, when the dielectric layer is placed on any of the metal surfaces, its

contribution to the loss is two orders of magnitude larger than when placed on
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Table 4.1: The quality factor of the dielectric layer containing TLS, its saturation

field and the additional loss factor for the superconducting metals and for their Si

substrates, used for fitting the data in Fig. 4.1, using Eq. 4.1 and 1/Q = 1/Q0 +

1/QTLS,met(Es,met) + 1/QTLS,sub(Es,sub). Calculations have been done for εh = 1 and

t→ 0.
material Q0 (106) QTLS,0/εht (1/nm) Es (kV/m)

NbTiN 0.9-1.3 330-450 0.05

Ta 1.7-3 70-90 0.1-2

Si (NbTiN) 13-16 5

Si (Ta) 1.1-1.9 2

the exposed substrate (Fig. 4.2c). This is due to the high electric fields near the

metal. In addition, a dielectric placed near the metal leads to a much stronger

power dependence than when located on the substrate (Fig. 4.2b). We use this

to distinguish between surfaces. Furthermore, the quality factor increases with

central line width, irrespective of the location of the dielectric.

In Fig. 4.1, we show that the power dependence of the quality factor arises

from the superposition of loss (solid lines) from TLS (Eq. 4.1) located at the

metal surfaces (dashed line) as well as at the exposed substrate surface (dot-

ted line) [15]. Interestingly, for NbTiN resonators the exposed substrate, to-

gether with the metal surfaces, is a significant contributor to the microwave loss.

This superposition of loss closely describes the observed point of inflection at

〈nphotons〉 = 102 − 103 as well.

The saturation fields of NbTiN are on the order of 50 V/m, see Table 4.1,

similar to values for Re and Al [2]. For Ta we find a large spread in the saturation

fields. The dielectric loss of NbTiN is clearly smaller than that of Ta. The

substrate surface values are consistent with SiOx. The saturation field is Es ∼
2 − 5 kV/m; comparable to measurements on vitreous silica [16]. Moreover, a

value of Es ∼ 2− 3 kV/m has been reported for SiO2 also by Martinis et al. [12].

The quality factor of the Si surface layer, assuming t = 3 nm and εh = 4, lies

around 15-200, which is on the order of the value of ∼ 200 reported for SiO2 [12].

At high intensity the quality factors are temperature independent, suggesting loss

other than due to TLS. We include an intensity-independent fitting term 1/Q0

to account for this loss. We suspect that we reach the level of the intrinsic loss

of the superconductor. For Ta, relaxation times saturate for T/Tc < 0.2 [17],

suggesting that the quasiparticle density becomes temperature independent. At

T/Tc = 0.2 we estimate Q ∼ 106 based on Mattis-Bardeen, on the order of values

found for Q0.
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4.4 Enhanced quality factors by an optimized

device geometry

The data in Fig. 4.1 and the analysis provide a clear guide towards improving

the quality factor. Ta suffers from significant microwave loss due to dipole TLS

in its metal surface. We believe that the presence of a native oxide is the reason

why resonators made of Nb, Ta, Al, or deposited on top of SiO2, consistently

show low quality factors in the single photon regime [2, 3, 4, 5, 6]. In this respect

NbTiN is different, because the metal atoms are bound to nitrogen. Moreover,

resonators with S = 3 µm and W = 2 µm have quality factors around 250 · 103,

nearly a doubling compared to Re on Si resonators which have quality factors

around 150 · 103 (loaded, with Qc > Qi) and are wider (S = 5 µm and W = 2

µm) [2]. Nevertheless, the NbTiN resonator quality factor is significantly limited

by the exposed and oxidized Si surface. Therefore NbTiN has a clean surface

compared to Si, as the metal surface influences the loss much stronger than the

exposed substrate (Fig. 4.2c).

With NbTiN shown to be a superior superconductor, we have redesigned

our resonators to have fewer dielectrics. We have made 50 nm thick NbTiN

resonators, fully straight, which are aligned along the 〈110〉 axis of the 〈100〉-
oriented HF-cleaned Si wafer. Using KOH wet etching, grooves of 0.9 µm deep

are etched in the gaps along the full length of the resonators, see the inset of

Fig. 4.3; this removes the substrate surface from the region with the highest

electric field density (black lines in Fig. 4.2a).

The NbTiN resonators with grooves etched in the gaps have significantly

higher quality factors, see Fig. 4.3. In the single photon regime, the quality

factor has improved from a value of 250 · 103 for the standard design to an

intensity-independent plateau value of 350 · 103 for the etched resonators, for

S = 3 µm and W = 2 µm. Moreover, this increase is a clear indication that

the Si surface was the limiting factor also for another reason: the decrease of

dielectric has lead to a decrease in the capacitance C in Eq. 4.1. Therefore, if

the metal surfaces would dominate the losses, the quality factors would decrease.

The intensity-independent plateau points towards a single surface dominating

loss. With the Si removed, the loss at the single photon level is dominated by

the metal surfaces. Determining which surface is complicated by the similarity

in dependence on intensity and width (Fig. 4.2). In the many-photon regime the

loss is more due to the exposed substrate surface, indicated by the higher quality

factors for etched resonators and the high saturation field values. Finally, when

increasing the width to S = 6 µm and W = 2 µm, the quality factor improves to
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Figure 4.3: The unloaded quality factor versus applied photon number of NbTiN

quarterwave resonators with the standard geometry and S = 3 µm and W = 2 µm (J)

(6.2 GHz), and with grooves etched in the exposed Si substrate with S = 3 µm and

W = 2 µm (F) (4.7 GHz) and S = 6 µm and W = 2 µm at frequencies of 4.2 (�), 4.4

(l) and 5.2 GHz (N). Bath temperature is 60 mK. The left inset is a scanning electron

microscope image from the standard coplanar waveguide design, the right inset shows

the etched grooves near the open end of the resonator (S = 3 µm in both images). The

cross section of the etched resonators is outlined in Fig. 4.2a.

around 450 ·103. This 30 % increase is consistent with our calculation (Fig. 4.2b)

and shows that further increases can be obtained by widening the resonator.

With quality factors as high as 470 ·103, we estimate single photon lifetimes of

18 µs at 4.2 GHz, one order of magnitude longer than decoherence times measured

for superconducting qubits [18, 19]. These long lifetimes make superconducting

resonators, as shown in Fig. 4.3, appealing building blocks for a quantum proces-

sor, as they can be used as quantum memory elements [20] and for a quantum

bus for long-range qubit-qubit coupling [21, 22]. Interestingly, the resonators

with grooves also have less frequency noise [23].
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4.5 Conclusions

To conclude, we have found NbTiN resonators to have a higher quality factor

in the single photon regime than any of the previously studied superconductors,

indicating it has a minimal lossy dielectric layer. The losses arise largely due

to a surface distribution of two-level systems on the exposed Si substrate. By

removing the substrate from the region with highest electric fields the quality

factor is increased further, showing that using NbTiN resonators and removing

dielectrics is a straightforward route to high quality factors in the single photon

regime.
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Chapter 5

Reduced frequency noise in

superconducting resonators

We report a reduction of the frequency noise in coplanar waveguide

superconducting resonators. The reduction of 7 dB is achieved by re-

moving the exposed dielectric substrate surface from the region with

high electric fields and by using NbTiN. In a model-analysis the sur-

face of NbTiN is found to be a negligible source of noise, experi-

mentally supported by a comparison with NbTiN on SiOx resonators.

The reduction is additive to decreasing the noise by widening the

resonators.

This chapter was published as R. Barends, N. Vecruyssen, A. Endo, P. J. de Visser, T. Zijlstra,

T. M. Klapwijk, and J. J. A. Baselmans Applied Physics Letters 97, 033507 (2010). The main

contribution of the present author was in the design of the experiment and the fabrication of

the devices.
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5.1 Introduction

The development of large and sensitive imaging arrays for far infrared astronom-

ical instrumentation is rapidly progressing with microwave kinetic inductance

detectors [1]. Arrays have already been taken to ground-based telescopes [2, 3],

and readout using frequency domain multiplexing has been demonstrated [4].

The frequency noise in these superconducting resonators is two to three orders of

magnitude above the fundamental limit of generation-recombination noise. The

noise has been conjectured to arise from dipole two-level systems (TLS) in surface

dielectrics [5], which is supported by recent experiments: The surface has been

shown to be a dominant source of noise, by measurements on the width scaling

by Gao et al. [6]. Moreover, we have shown that introducing dielectrics by cov-

ering the resonators with SiOx leads to an increase in the noise [7]. Noroozian

et al. showed that the noise arises predominantly from the capacitive portion of

the resonator by using a lumped element capacitor [8]. Noise reduction can be

achieved by widening the resonator, in essence decreasing the surface to volume

ratio [6, 8, 9]. However, the practically limiting source of noise remains to be

identified and reduced.

In this chapter we show that the noise can be decreased by minimizing the

dielectrics in the resonator itself. The lowest noise is achieved by using NbTiN

deposited on top of a hydrogen passivated substrate as well as by removing the

substrate from the region with the largest electric fields. The combination of

removing the substrate and widening the resonator leads to a reduction of 9 dB

for our first-generation resonators.

5.2 Frequency noise due to two level systems

Dipole TLS are known to influence the temperature dependent permittivity ε [10],

and consequently the resonance frequency. The superposition of permittivity and

complex conductivity (σ1 − iσ2) controls the resonance frequency [7, 11]

δf0

f0

=
αβ

4

δσ2

σ2

− F

2

δε

ε
(5.1)

with α the kinetic inductance fraction and β = 1 for the thick film and β = 2 for

the thin film limit. The filling factor F [11] takes into account the location of the

dielectric and weighs its contribution to the frequency by the electric field energy

inside our resonator geometry. It is defined by F = 1
2
ε0εh

t
Vh
| ~E(~r)|2d~r/1

4
CV 2

r l,

with C the capacitance per unit length, Vr the standing wave voltage, l the
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Figure 5.1: (a) The coplanar waveguide with the top metal surface, the exposed

substrate, the substrate-metal interface and the etched metal edges outlined. (b) A

scanning electron microscope image from the standard resonator design. (c) The etched

grooves near the open end of the resonator, its cross section is outlined in (a) (dashed).

The central line width is S = 3 µm in both images.

length of the resonator, and εh the relative permittivity and Vh the volume of the

dielectric hosting the TLS.

Similarly, dipole TLS cause frequency noise through the time-varying permit-

tivity ε(~r, t) [5]. Consequently, the power spectral density of the permittivity

Sε = 2ε20F{〈εh(t)εh(t− τ)〉} translates to frequency noise [6],

Sf0
f 2

0

=
1
4

2 t
Vh
Sε| ~E(~r)|4d~r

(1
4
CV 2

r l)
2

(5.2)

with Sf0/f
2
0 the normalized frequency noise.

5.3 Indentifying the location of two level sys-

tems

In order to identify the contribution of the various surfaces to noise we calculate

the effect of a hypothetical surface layer with thickness t → 0 containing dipole

TLS. The electric fields in the coplanar waveguide geometry are calculated using

the potential matrix to find the charge density. The approach is detailed in Ref.

[12]. We adopt the assumption by Gao et al. [6] that the noise spectral density
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follows: Sε = ε20κ/
√
|E|2 + Es

2, with Es the saturation electric field strength,

following the saturation of microwave loss due to TLS at high intensities [10].

The hypothetical layer is placed along each of the outlined surfaces in Fig. 5.1a,

the exposed substrate surface, the top metal surface, the etched metal edges and

the substrate-metal interface. The results are shown in Fig. 5.2a-b. Importantly,

the contribution to the frequency noise is about two orders of magnitude larger

when the layer is placed on surfaces adjacent to the metal than when placed on

the exposed substrate. This is due to the high electric fields close to the metal.

Moreover, we find that the noise follows Sf0/f
2
0 ∝ 1/P 0.5

int in the relevant power

range, with Pint the internal resonator power [13]. In addition, when widening

the resonator geometry the noise decreases. We have also calculated the influ-

ence of a metal surface dielectric with finite thickness t on the noise as well as

the frequency shift, i.e. Eq. 5.1 and Eq. 5.2. We find that for the noise, only

the first few nanometers matter, whereas the full volume influences the frequency

shift. This is consistent with our previous experiments, where we showed that

frequency deviations arise from the bulk of the dielectric while noise arises pre-

dominantly at surfaces and interfaces [7]. The difference arises from the surface

layer being weighed by | ~E(~r)|4 for the noise and | ~E(~r)|2 for the frequency shift.

Interestingly, the power and width dependence is very similar for each of the

surfaces, and identification of the dominant noise source can be done only by

removing or altering a specific surface.

5.4 Two level systems in NbTiN resonators

In order to identify and reduce the dominant noise source, we have fabricated

a series of devices aimed at addressing a specific surface, see Fig. 5.1. We use

NbTiN quarterwave coplanar waveguide resonators [1, 7] with varying geometry

or composition. Resonance frequencies lie between 3-5 GHz. As a reference a 300

nm NbTiN film is DC sputtered on an HF-cleaned high resistivity (> 1 kΩcm)

〈100〉-oriented Si wafer. Patterning is done using SF6/O2 reactive ion etching.

The critical temperature is Tc=14.8 K, the low temperature resistivity is ρ=170

µΩcm and the residual resistance ratio is 0.94. To identify the importance of

using hydrogen passivated Si, a 300 nm NbTiN film has been deposited on the

native oxide of Si (Tc = 15.5 K, ρ = 84 µΩcm and RRR = 1.0). We have also

removed the exposed substrate surface from the region with large electric fields:

fully straight, 50 nm thick, NbTiN resonators are made on Si, aligned along the

〈110〉 axis of the Si substrate (Tc = 13.6 K, ρ = 142 µΩcm and RRR = 0.96).

Using KOH wet etching, 0.9 µm deep grooves (dashed lines in Fig. 5.1a) are
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Figure 5.2: (a) The power dependence of the normalized contribution to noise using

Eq. 5.2, for a TLS distribution placed on the exposed substrate surface, top metal

surface, substrate-metal (sub-met) interface and etched metal edges (Es = 5 kV/m,

see Ref. [12]). (b) The normalized contribution to noise of the dielectric layers versus

central line width S, for W = 2 µm (solid) and W = 2
3S (dashed). (c) The normalized

contribution to noise and frequency shift for a dielectric layer with finite thickness on

top of the metal. Calculations are done for εh = 1.

etched in the gaps along the full length of the resonators. As a reference for the

latter sample as well as to clarify the influence of the metal edges, a straight, 50

nm thick NbTiN resonator is made where the Si substrate is not removed.

The frequency noise is measured using a homodyne detection scheme based

on quadrature mixing [1, 13, 7]. The samples are cooled to a temperature of 310

mK using a He-3 sorption cooler placed in a 4.2 K liquid He cryostat. The sample

stage is magnetically shielded with a superconducting shield. We use a low noise

high electron mobility transistor amplifier with a noise temperature of 4 K [14].

The temperature dependence of the resonance frequency is shown in Fig. 5.3.

For the NbTiN on SiOx resonator we find a clear nonmonotonicity. The super-

position (Eq. 5.1) of the complex conductivity and logarithmically temperature

dependent permittivity describes the data. The logarithmic dependence is con-

sistent with resonant interaction of TLS with the electric fields at kT > hf [10]:

δε/ε = − ln (T/T0) 2Np2/ε with N the TLS density of states, p the dipole moment
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Figure 5.3: The temperature dependence of the fractional resonance frequency. The

solid lines are fits using Eq. 5.1, using Mattis-Bardeen. The NbTiN on SiOx data follow

a superposition of a logarithmically temperature dependent permittivity (dashed line)

and Mattis-Bardeen (Eq. 5.1). We choose T0 = 350 mK.

and T0 an arbitrary reference temperature. The temperature dependence of the

other resonators follows Mattis-Bardeen [15], provided a broadening parameter

[16] of Γ = 15− 20 µeV is included in the density of states [17].

The frequency noise spectra are shown in Fig. 5.4. The inset shows the de-

pendence on the internal resonator power Pint. The noise spectra follow Sf0/f
2
0 ∝

1/f 0.3−0.6, until a roll-off frequency on the order of 10 kHz. This roll-off arises

from the resonator-specific response time, set by the loaded quality factor and

resonator frequency. The NbTiN on SiOx resonator has the highest frequency

noise, at Pint = −30 dBm: Sf0/f
2
0 (1 kHz) = −195 dBc/Hz. This is 3 dB

noisier than the standard, 300 nm thick, NbTiN resonator which has a noise

level of −198 dBc/Hz. The noise remains at −198 dBc/Hz when decreasing the

metal thickness by a factor of 6 (8 dB), from 300 nm to 50 nm. Clearly, the

noise is decreased with 7 dB for the resonator with grooves in the gaps, hav-

ing Sf0/f
2
0 (1 kHz) = −205 dBc/Hz. Moreover, the noise is reduced over the
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Figure 5.4: The normalized frequency noise spectra of NbTiN, NbTiN on SiOx and

NbTiN with grooves etched in the gaps. The widths are S = 3 µm, W = 2 µm except

for the wide resonator with grooves: S = 6 µm, W = 2. The bath temperature is 310

mK and the internal resonator power is Pint ≈ −30 dBm. The inset shows the power

dependence, see Fig. 5.3 for the legend. Dashed lines are fits to the spectral shape and

power dependence.

whole range of spectral frequency and internal resonator power. For the wider

resonator with S = 6 µm the noise is 2 dB lower at −207 dBc/Hz. We find that

the frequency noise follows Sf0/f
2
0 ∝ 1/P 0.4−0.6

int , up to powers of Pint ∼ −25 dBm.

The data and analysis show that NbTiN is a clean material and point towards

SiOx as the dominant source of noise. First, the exposed Si surface dominates the

noise as its removal decreases the noise considerably. Second, when placing SiOx

below or on top of NbTiN the noise increases (Fig. 5.4 and Ref. [7]). Third, the

analysis in Fig. 5.2 indicates that the NbTiN surface is clean compared to that

of Si, as the metal surfaces influence the noise more strongly than the exposed

substrate. In addition, the monotonic temperature dependence of the resonance

frequency down to 350 mK indicates that NbTiN has a minimal dielectric layer,

in contrast to Nb, Ta and Al [7] as well as NbTiN on SiOx. Moreover, the metal

edges are not dominant, as the noise level is independent of the thickness of the
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metal. Finally, the removal of dielectrics from the gaps leads to a decrease in

the capacitance C in Eq. 5.2. Hence, if the metal surfaces dominate, the noise

would increase. Quantitatively, we estimate κ(1 kHz) ≈ 5 · 10−27 1/Hz for SiOx,

assuming t = 3 nm. Importantly, the noise reduction is significant: it is 7 dB

below our standard NbTiN on Si resonators and 11 dB below the lowest values

reported for coplanar waveguide resonators by Gao et al. [5]. In addition, the

noise is 2 dB lower when widening to S = 6 µm, which is consistent with our

calculation (1.9 dB, see Fig. 5.2b) and shows that further improvements can be

obtained by widening the resonator.

5.5 Optimized geometry for minimal frequency

noise

A particular approach to remove the substrate was followed in Ref. [18] using Al

on Si resonators. By etching the substrate isotropically, the noise was reduced

to a level of Sf0/f
2
0 (1 kHz) = −189 dBc/Hz at maximum power. Due to the

undercut the influence of the exposed substrate surface as well the substrate-

metal interface on the noise could not be distinguished.

The data in Fig. 5.4 provide a clear guide to low noise superconducting res-

onators, by using NbTiN and removing the exposed substrate surface from the

region with the largest electric fields. Importantly, we show that both the re-

moval of dielectrics as well as the widening of the resonator leads to a significant

decrease of the noise. Hence, both approaches can be considered to be additive

to decreasing the noise. Our approach can be implemented for lumped element

resonators [19, 8] as well: by using a 〈100〉-oriented Si wafer and aligning the fin-

gers and edges of the interdigitated capacitor along the two perpendicular 〈110〉
axes, grooves can be etched with a minimal amount of undercut. Interestingly,

our resonators with grooves etched in the gaps also have higher quality factors at

high internal power levels as well as at the single microwave photon levels needed

for circuit quantum electrodynamics [12].

5.6 Conclusion

To conclude, we have reduced the frequency noise by using NbTiN and removing

the substrate from the region with the highest electric fields. This indicates

that the exposed Si substrate surface is the main source of the noise, hence the

contribution to noise from the NbTiN surface is not dominant. The followed
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approach is a straightforward route to low frequency noise in superconducting

resonators.
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Chapter 6

Substrate-dependent quasiparticle

recombination time in superconducting

resonators

We demonstrate an increased quasiparticle recombination time in su-

perconducting resonators on a SiNx membrane, compared to identical

resonators on a SiNx/Si wafer. An interpretation is given using a ther-

mal model of the membrane. Using an array of tunnel junctions to

cool or heat the membrane, we show that the resonators on the mem-

branes are extremely sensitive to small changes of the phonon tem-

perature, which renders them excellent phonon thermometers with a

noise level equivalent to 5 µK/
√
Hz. The experimental set-up is in

principle an ideal platform to study the interplay of the quasiparticle

and phonon populations in superconductors.

This chapter was published as N. Vercruyssen, R. Barends, T. M. Klapwijk, J. T. Muhonen,

M. Meschke, and J. P. Pekola Applied Physics Letters 99, 062509 (2011).
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6.1 Introduction

Superconducting devices for space astronomy and quantum computation are op-

erated at temperatures below 300 mK. At those low temperatures it is usually

assumed that the electronic system of the superconductor reaches the tempera-

ture of the environment, leading to a low density of quasiparticles - low enough

to minimize loss and the recombination rate, and to maximize the coherence time

in qubits. In practice it has been found that the quasiparticle density is higher

than what can be expected based on the temperature alone [1]. In addition, in

many experiments the recombination rate is influenced by the interaction with

the phonons, as has been analyzed early on in the context of laser-pulse experi-

ments by Rothwarf and Taylor [2]. We report on the development of a platform

to study the interplay between phonons and electrons, which enables a compar-

ison of resonators on different support structures as well as a possibility to add

phonons (heating) or remove phonons (cooling) from the material interacting

with the resonator.

6.2 Samples

A SiNx membrane [3] of thickness 100 nm and macroscopic area of 1x1 mm2 is

equipped with two Al quarterwave superconducting resonators (light square in

Fig. 6.1a with resonators (yellow), schematic cross section in Fig. 6.1c). Four

resonators are located on the full SiNx/Si wafer, consisting of 100 nm SiNx on

200 µm Si. The resonators are patterned by electron beam lithography (EBL)

and a chlorine reactive ion etch, after sputter deposition of a 100 nm thick Al

film.

The samples are measured in a He-3 sorption fridge with a base temperature

of 300 mK. Measurements on all six resonators are performed simultaneously

with a single feed line, to which the resonators are capacitively coupled. The

transmission S21 is measured with a signal generator, a low noise cold amplifier,

a quadrature mixer, and an analog to digital converter [4]. Through the kinetic

inductance of the superconducting condensate, the resonant frequency f0 of each

resonator depends on the Cooper pair density and hence on variations in the

number of quasiparticles δnqp, (kT � ∆):

δf

f0

= −αβ
4

1

π

1

2N0

√
hf∆/2

δnqp = Rδnqp, (6.1)

where α is the fraction of the kinetic inductance to the total inductance, β a

geometric factor characteristic for the superconducting surface resistance, ∆ the
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Figure 6.1: (a) Six Al superconducting resonators, of which four are located on the

SiNx/Si wafer and two on a 100 nm thick, 1x1 mm2 SiNx membrane. Four L shaped Cu

slabs thermalize the membrane to four junction arrays, each consisting out of 20 SINIS

tunnel junctions (b). (c) Schematic cross section of the device layout. (d) Thermal

circuit diagram, CAl and Csubs are the respective heat capacities of the Al film and the

substrate. Gel and Gph are the electronic and phononic heat conductances.

superconducting gap, and R the responsivity [4]. The phase θ of S21 is a direct

measure for the number of quasiparticles through the relation δθ = −4Ql
δf
f0

=

−4QlRδnqp, with Ql the loaded quality factor.

6.3 Relaxation times

The inset of Fig. 6.2 shows the real time phase response of the different resonators

after optical excitation with a 1.9 eV GaAsP light emitting diode (LED). For

small excitations the response is linear and can be characterized by a single
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exponential decay time τR. As shown in the figure the values of τR are an order

of magnitude higher for the resonators on the membrane than for the ones on

the SiNx/Si wafer. In addition their dependence on temperature is strikingly

different. The relaxation time of the resonators on the membranes increases with

increasing temperature, where the resonators on the SiNx/Si show the opposite

temperature dependence.

In previous work [5, 6] relaxation times have been successfully explained in

terms of quasiparticle recombination, which predicts a rate proportional to the

quasiparticle density and which decreases exponentially at low temperatures [7]:

τrec =
τ0√
π

(
kT

2∆

)5/2
√
Tc
T

exp (∆/kT ) . (6.2)

The data on the wafer show a similar tendency, although for a typical scattering

time for Al of 480 nsec (dashed line Fig. 6.2) the observed times are too long

and decay much more slowly with temperature. In this temperature range a

similar deviation has been reported recently by De Visser et al. [1], who found

a discrepancy between relaxation times inferred from generation-recombination

noise measurements and those obtained with the technique used here. Further-

more Barends et al found [5] a similarly strong difference between Al resonators

on silicon or on sapphire. It suggests that in using the LED technique at these

temperatures the measured τR is influenced by the substrate phonons.

For the resonators on the membrane, the magnitude as well as the tempera-

ture dependence, make it unlikely that the relaxation is limited by quasiparticle

recombination. Enhanced relaxation times can be attributed to reabsorption of

2∆-phonons emitted during recombination, as described by Rothwarf and Taylor

[2]. If the time τesc for a phonon to escape from the superconducting film ex-

ceeds the time τpb to break a Cooper pair, the quasiparticle recombination time

becomes longer and given by τR = τrec (1 + τpb/τesc). As τesc and τpb are only

weakly temperature dependent, the exponential increase of τR at low tempera-

tures is preserved. To understand the observed opposite temperature dependence,

we propose a thermal description of the resonator and the membrane, qualita-

tively sketched in Fig. 6.1d. The theoretically expected recombination time

is much shorter than the relaxation times measured. Therefore we assume that

the phonons in the membrane and the quasiparticles in the resonator are each in

equilibrium at their respective temperatures. The relaxation time of the system,

membrane and resonators thermally coupled to the support structure, is then

given by the ratio of the total thermal capacitance to the thermal conductance:

τR = Cth

Gth
.
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Figure 6.2: Relaxation times of resonators on the membrane and on the SiNx/Si wafer,

the full (blue) and dashed (magenta) lines correspond to a thermal model. The dashed

(black) line shows τrec after Ref. 7 with τ0 = 480 ns. The relaxation of the resonators

after an optical pulse is seen in the real time phase response of the resonators, at a

bath temperature of 315 mK (inset).

The heat capacity is dominated by the electronic capacity CAl of the Al film,

taken from Phillips [8], which is at the given temperatures three orders of magni-

tude larger than the one of the Al and SiNx crystal-lattices. Relaxation happens

through two parallel channels: the electronic conductance Gel of the Al feed line

and the phononic conductance Gph of the membrane. Given the total cross sec-

tion S = 8 µm2, length L = 150 µm and diffusion constant D of the feed line, we

define Gel = DCAlS/A. To facilitate the calculation of the thermal conductance

of the membrane we assume a circular geometry. We find Gph = 2πd
ln(r)

κm, with

r = 1.35, the ratio of the membrane radius to the part covered with Al. The

heat conductance κm = 4T 2.1 mW/K2 was measured from a similar membrane

with the techniques described by Leivo and Pekola [9]. The result is given by

τR = CAl

Gel+Gph
, and shown as a full blue line in Fig. 6.2. The only adjustable

parameter is the diffusivity D = 130 cm2/s, in agreement with resistivity mea-

surements of comparable films. Despite the simplicity of the model, the correct

magnitude and temperature dependence of τR is retrieved, implying that the ther-
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mal response of the membrane is the limiting factor in the measurements shown

in Fig. 6.2.

We apply an analogous, thermal analysis to the relaxation times measured on

the wafer. The heat capacity of the P-doped Si wafer consists of an electronic and

a lattice component [10], and dominates over the electronic heat capacity of the Al

film, as the wafer is much thicker. Relaxation occurs through the quasiparticles

of the Al bondwires, and by phonons escaping through the interface between

the wafer and the (cold) sample holder. The electronic contribution Gel of the

bondwires is modeled as above, for the phononic contribution Gph a Kapitza

resistance is used. The resulting relaxation times τR = CAl+CSi

Gel+Gph
(dashed magenta

line in Fig. 6.2) show the thermal model is consistent with the measured data.

6.4 Cooling of the resonator

The above discussion indicates that the phonons of the substrate play a role in the

quasiparticle relaxation time of superconducting resonators, both on the mem-

brane as on the SiNx/Si wafer, though in different strengths. A distinction will

have to be made between nonequilibrium phonons in the superconductor itself and

phonons in the substrate. In a preliminary attempt we have included in the design

the possibility to raise or lower the temperature of the membrane phonons, using

an array of superconductor-insulator-normal metal-insulator-superconductor (SI-

NIS) tunnel junctions [11]. We demonstrate that the response of the resonators

is very sensitive to heating and cooling of the phonons.

Four arrays of 20 Al/AlOx/Cu/AlOx/Al SINIS tunnel junctions each (Fig. 6.1b)

are deposited using shadow evaporation through a double resist layer, patterned

by EBL. A 20 nm thick Al layer is oxidized in situ for 5 min in a pure oxygen

atmosphere at a pressure of 4.6 mbar to create the tunnel barrier, and covered

with a 50 nm Cu top layer. Four massive L-shaped Cu slabs are located on the

membrane (orange in Figs. 6.1a and 6.1b) to thermalize the membrane phonons

to electrons of the junction.

Using a battery-powered current bias we measure the current voltage charac-

teristic (IV) of the junction array. Due to fast electron-electron interactions the

Cu electrons are assumed to be in quasi-equilibrium with a temperature TN . The

current is then given by

2eRnI =

∫
dEN (E) [fN (E + eV/2, TN)− fN (E − eV/2, TN)] , (6.3)

where Rn is the normal state resistance, fN the superconducting density of states,

and fN the occupation number of the normal metal electrons. Due to the super-
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Figure 6.3: The temperature difference of the superconducting resonator versus the

bias currents of the junction array, at three different bath temperatures. The inset

shows the real time phase response θ of the resonator to two different biases, modulated

with a 20 Hz square wave.

conducting gap, only electrons with an energy higher than E > ∆ − eV/2 can

tunnel out of the normal metal. At low voltages eV < 2∆ this results in cooling

of the normal metal electrons. At higher voltages pair breaking becomes possible

with heating as a result. The temperature TN can be obtained from the measured

IV using Eq. 6.3, with Rn = 18.3 Ω and ∆ = 205 µeV .

Fig. 6.3 shows the temperature of the resonator on the membrane as a

function of the bias current applied to the junctions, at three different bath

temperatures. Cooling and heating of the resonator is clearly observed, with

a maximum cooling of 0.6 mK (corresponding to 10 mK at the junction, at a

voltage V ≈ 0.25 mV [12]). The fact that we observe quasiparticle cooling of

the resonators indicates that the membrane phonons mediate the cooling of the

junction.

The temperature of the resonator is inferred from the phase response (inset

Fig. 6.3), using δθ = −4QlRδnqp and nqp = 2Na (0)
√

2πkT∆e−∆/kT . The high

quality factors Ql ≈ 104 − 106 make these resonators extremely sensitive, as can
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be seen from the accuracy with which temperature differences smaller than a mK

can be measured. To quantify this we calculate which temperature difference

generates a signal equal to the system noise: S∆T = SNoise. For phase read out

this is equivalent to dθ
dT

∆T = ∆θNoise. At an integration time of one second this

gives an equivalent temperature difference of ∆T < 5 µK. This demonstrates

the potential of resonators as sensitive thermometers, suitable for time resolved

measurements, analogous to recent results for detection of phonons generated by

cosmic rays [13].

6.5 Conclusions

In conclusion, we experimentally studied the interplay between phonon and quasi-

particle nonequilibrium in a superconducting resonator. We have demonstrated

that the relaxation times of resonators on a SiNx membrane are an order of mag-

nitude higher than the ones on the SiNx/Si wafer. We have also shown that the

response of the resonators is very sensitive to the phonon bath of the membrane,

of which we electronically changed the temperature. Ideally, it should also be

possible to include SIS tunnel junctions to generate not just a thermal phonon dis-

tribution but also preferentially 2∆-phonons from recombination [14]. This work

has been supported by EPSRC grant EP/F040784/1 and the European Commu-

nitys FP7 Programme under Grant Agreements No. 228464 (MICROKELVIN,

Capacities Specific Programme).
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Chapter 7

Possibility of enhanced cooling by using

uniform AlN tunnel barriers

We study the influence of the lateral uniformity of a tunnel barrier on

the cooling performance of superconducting microrefrigerators. Even

small variations in transparency deteriorate the cooling efficiency, pri-

marily at low temperatures. We demonstrate reproducible fabrication

of Nb based superconducting junctions, using highly transparent AlN

barriers (RnA ≈10 Ωµm2). We observe signatures of a strong non-

equilibrium distribution of the electrons in the normal island, due to

the high current densities. We develop a theoretical framework to

include the effect on the thermal behavior of the junction, which al-

lows us to estimate the barrier uniformity based on our experimental

results.

77



78 7. Possibility of enhanced cooling by using uniform AlN tunnel barriers

7.1 Introduction

Microrefrigeration based on normal-metal superconductor tunnel junctions (NIS)

has developed into a mature field over the last decades [1, 2, 3]. A standing

question in these junctions is the origin of subgap currents and its influence on

the cooling performance of the junction. Possible causes for these subgap currents

are subgap states in the superconductor [4], environment-assisted tunneling [5],

and Andreev reflections [6].

To increase the cooling power at relatively high temperatures, highly trans-

parent junctions are favorable [7]. However, commonly used AlOx tunnel barriers

are known to be laterally inhomogeneous, possibly due to the presence of defects

or variations in the thickness of the barrier [8, 9, 10]. Although the average

junction transparencies D ≈ 10−4 is low, the presence of small regions with a

transparency close to D ≈ 1 leads to Andreev reflection, a second order tun-

neling process proportional to D2, which deteriorates the cooling power of the

junction. In superconductor insulator superconductor junctions, a sharp decrease

in barrier quality is observed for highly transparent junctions (with a resistance

are product below RnA ≤ 15 Ωµm2) [11].Therefore it might be advantageous to

use the more uniform AlN as a barrier material [12].

In this chapter we study the influence of a real tunnel barrier on the charge

and energy transport in NIS junctions. We include variations of the barrier

width using a distribution of transparencies ρ(D). We demonstrate that even

for relatively thick tunnel barriers the presence of small variations in barrier

thickness can suppress any cooling effect. The reason for this is the exponential

dependence of the transparency on the barrier thickness. In highly transparent

barriers these variations are most visible. We therefore address experimentally

high-current-density Nb-based tunnel junctions, with AlN as barrier material.

We study both planar and stacked junction configurations. The planar geometry

gives the most reproducible results and allows us to assess the intrinsic quality of

the barrier. The stacked configuration is technologically more challenging, and

gives less reproducible results. In samples which show a good quality we obtain

similar results to the planar junctions. Due to the reduced volume, we observe

signatures of a strong non-equilibrium electron distribution of the normal island.

7.2 Influence of uniformity

The working principle of solid-state refrigerators (Fig. 7.1) is based on the fact

that electrons not only carry charge, but also energy. This can result in a net

energy current which cools one region, while heating another. In a biased normal
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Figure 7.1: Schematic representation of the working principle of a SINIS microrefrig-

erator. Due to the spectral energy gap of the superconductor, only hot electrons can

tunnel out of the normal island, effectively cooling it. The use of a double NIS junction

enhances the efficiency of the cooler.

metal superconductor tunnel junction the voltage is assumed to drop over the

barrier, and the charge current arises due to elastic tunneling of quasiparticles.

The tunneling rate is proportional to the transmissivity D of the barrier and to

the density of quasiparticle states (dos) in the electrodes. The presence of a gap ∆

in the dos Ns(E) = Re(|E|/
√
E2 −∆2) of the superconductor inhibits tunneling

at energies E < ∆, while tunneling at energies just above the gap E ≥ ∆ is

enhanced. The net charge current flowing through the barrier is determined by

the difference in occupation numbers fn,s of the normal and superconducting

electrodes, and is nonlinear due to the energy dependence of Ns:

I(V ) =
1

Rne2

∫ ∞
−∞

Ns(E)[fn(E − eV )− f s(E)]dE, (7.1)

where the combined effect of the density of states and the transmissivity is ab-

sorbed in the normal state resistance Rn. In equilibrium the occupation num-

bers fn,s are given by a Fermi distribution characterized by a temperature T :
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f(E, T ) = 1/(1 + exp(E/kBT )) with kB the Boltzmann constant. Every electron

tunneling from the normal metal carries a net energy of E − eV , resulting in a

net heat flow from the normal metal:

Q̇(V ) =
1

Rne2

∫ ∞
−∞

(E − eV )Ns(E)[fn(E − eV )− f s(E)]dE. (7.2)

At voltages eV ≤ ∆ only ‘hot’ electrons with an energy higher than the Fermi

energy can tunnel into the superconducting electrode, effectively cooling the nor-

mal metal. Note that both the dissipated power P = IV and the net extracted

heat Q̇(V ) are injected into the superconductor. The cooling power increases for

increasing bias voltage, until the voltage is big enough to ‘break’ Cooper pairs

eV > ∆ and the normal metal starts to heat.

Based on Eq. (7.2) it seems that a higher tranmissivity D automatically leads

to a higher cooling power due to a reduced resistance Rn. For high transparencies

however, higher order tunneling processes proportional to Dn become important.

In contrast to quasiparticle tunneling which cools the normal metal for eV < ∆,

these higher order contributions heat the normal metal even at low voltages. This

can be understood from Andreev reflection, a second order process in which a

normal electron is retroreflected as a hole, while one Cooper pair is added to the

superconductor. The Cooper pair is injected exactly at the Fermi energy of the

superconductor, and no energy is transferred. In the normal metal, an electron

with energy E− eV is extracted and a hole with energy E+ eV is added giving a

total added heat of 2eV . To gain qualitative insight in this process we calculate

the charge and heat current for barriers with anarbitrary transparency using the

the approach of Blonder, Tinkham and Klapwijk [13]:

ID(V ) =
1

Rne

∫ ∞
−∞

dE

(1− a− b)[fn(E − eV )− f s(E)] + a[fn(E − eV )− fn(E + eV )]

Q̇D(V ) =
1

Rne

∫ ∞
−∞

dE(E − eV )

{(1− a− b)[fn(E − eV )− f s(E)] + a[fn(E − eV )− fn(E + eV )]} . (7.3)

The respective probabilities a(E,D) and b(E,D) for reflection and transmission

through the tunnel barrier depend explicitly on the transmissivity of the bar-

rier. The first term in Eq. (7.3) is proportional to 1 − a − b, and represents the

(heat) current associated with first order quasiparticle tunneling. The second

term, proportional to a, is associated with the second order tunneling processes

(Andreev reflection). In the limit of low transparencies D � 1 the factor propor-

tional to a(E,D) disappears, while 1 + a − b becomes proportional to the BCS
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density of states 1 + a − b = DNs(E) and Eqs. (7.1- 7.2) are obtained. In this

regime the (energy) current and thus the cooling power does scale linearly with

the transparency of the junction.

For higher transparencies Andreev reflection becomes more probable and will

eventually dominate the transport. Even if only a small fraction of the charge cur-

rent is carried by Andreev reflections, the associated heat current can completely

suppress cooling. This stems from the fact that the efficiency of quasiparticle

cooling is around 20% at best, while the heating through Andreev reflections

is 100% effective. This means there is an optimum transparency at which the

cooling power is maximized. For increasing bath temperatures this optimum

transparency is higher, as the quasiparticle currents are strongly temperature

dependent, while the Andreev contribution is not.

In principle one could design a tunnel junction with a transparency near the

optimum cooling power. In practice it has become clear that amorphous AlOx

barriers are laterally inhomogeneous. This is not surprising as small variations

of the thickness or potential of the barriers result in exponentially big variations

of the transparency. In addition, the tunnel barriers have a thickness of only a

few atomic layers, which means that the presence of defects or impurities can

easily deteriorate the uniformity of the transmission. We take this into account

by using a distribution of transparencies ρ(D). The total current and voltage can

be calculated by integrating Eq. (7.3) over the distribution of transparencies:

I(V ) =

∫ 1

0

ID(V )ρ(D)dD (7.4)

Q̇(V ) =

∫ 1

0

Q̇D(V )ρ(D)dD (7.5)

While quasiparticle tunneling is determined by the average transparency

< Dρ(D) > of the barrier, the second order contribution < D2ρ(D) > is domi-

nated by the highest transparencies. This indicates that a tunnel barrier with a

more uniform transparency, though having the same average transparency as a

nonuniform barrier, will suffer much less from heating due to Andreev reflections.

To quantify this effect we adopt two different distributions of transparencies.

The first is a universal distribution introduced by Schep et al. [14], valid for a

short scattering region, and was used succesfully to explain the current voltage

characteristics of leaky superconducting junctions [15]:

ρ(D) =
2π

~
1

D3/2(1−D)1/2
. (7.6)

The resulting current voltage characteristic and cooling power for a NIS junction

is given by the full black lines in Fig. 7.2. This distribution can only be used in
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Figure 7.2: Charge and energy (inset) current as a function of applied voltage. The

influence of Andreev reflections on the heat current is much more severe than on the

charge current.

the limit of very thin tunnel junctions, a regime we wish not to consider as no

cooling is observed.Therefore we assume an alternative, Gaussian distribution for

the thickness of the tunnel junction:

ρ(t) = 1/
√

2π exp(−(t− t0)2/2σ2) +
1

2

[
1− erf(

t0√
2σ

)

]
δ(t) (t ≥ 0) (7.7)

For small variations σ � t0 one can obtain an analytic expression for the average

probability for first and second order tunneling:

< Dρ(D) >= exp

(
−α√ϕt0[1−

α
√
ϕ

2
(
σ

t0
)2]

)
= D(t0) · exp

(
1

2
ϕ(
ασ

t0
)2

)
(7.8)

< D2ρ(D) >= exp

(
−2α
√
ϕt0[1− α√ϕ(

σ

t0
)2]

)
= D(t0)2 · exp

(
2ϕ(

ασ

t0
)2

)
,(7.9)

where we used ρ(D)dD = ρ(t)dt. This results indicates that the barrier can

be described with an effective thickness t∗ which is somewhat thinner than the

average thickness. For the second order processes the thickness is however reduced

much more severely than for first order tunneling. The average probability for

Andreev reflection is enhanced much stronger in the presence of a non-uniform

barrier, compared to quasiparticle tunneling. For arbitrary values of σ, t0 we

calculate the energy and charge currents using Eqs. (7.5) and (7.7).

The effect on the charge and energy transport through the junction is plotted

in Fig. 7.2 for different values of σ/t0. It can clearly be seen that while the
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influence on the IV is quite limited for small σ, the cooling efficiency deteriorates

fast. The above discussion neglects the (inverse) proximity effect of the junction.

A similar calculation for dirty metals will give qualitatively the same results,

though Andreev reflections are enhanced even more in this case due to coherent

backscattering near the interface [16, 17, 7].

7.3 Influence of high current densities on the

cooling power

In equilibrium the electron occupation numbers of the normal island fn(E) are

given by a Fermi function, and are completely determined by a single temperature

T . When the junction is biased, quasiparticles are extracted from the normal

island (Fig. 7.1) at a rate Γ(E) and the distribution function fn(E) is modified.

Inelastic scattering processes redistribute the energy among the quasiparticles,

and tend to restore equilibrium at a timescale τ(E).

The deviation from equilibrium is characterized by the ratio between the

injection rate Γ(E) and the relaxation rate 1/τ(E) at a certain energy level. We

use a kinetic rate equation to describe the competition between these different

processes [18, 19, 20]:

df(E)

dt
+ IT (E, f(E)) = Icolle−e(E, f(E)) + Icolle−ph(E, f(E)), (7.10)

where the spectral injection rate from quasiparticle tunneling IT is given by the

integrand Eq. (7.3). Icolle,e and Icolle,ph are respectively the electron-electron and

electron-phonon inelastic collision integrals, which give the energy dependent

rates at which electrons are scattered into a certain energy level. The distribution

function in the normal island is the result of a detailed balance between the

different terms of Eq. (7.10):

fn(E) =
qp+f

s
+ + qp−f

s
− + a+f

n
++ + a−f

n
−− + Icolle,e (E, {fn}) + Icolle,ph(E, {fn})

qp+ + qp− + a+ + a−
,

(7.11)

where we used short notations qp± for qp = 1− a(E ± eV,D)− b(E ± eV,D), a±
for a(E ± eV,D), and fn,s++,−− for fn,s(E ± 2eV ).

To gain insight in Eq. (7.11) we consider some limiting cases. (1) In the case

of strong injection (or weak interactions, Γτ � 1) the collision terms can be

neglected. If second order processes are also neglected qp reduces to DNs and
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Figure 7.3: (a) The electron distribution function of the normal island for strong

(Γτ = 0), intermediate (Γτ ≈ 1), and weak (Γτ =∞) electron-phonon interaction. (b)

The effect of the non-equilibrium electron distribution function on the current voltage

characteristic.

Eq. (7.11) can be solved exactly:

fn(E) =
Ns(E + eV ) · f s(E + eV ) +Ns(E − eV ) · f s(E − eV )

Ns(E + eV ) +Ns(E − eV )
. (7.12)

The quasiparticles distribution function is the average of the distribution func-

tions of the superconducting banks, weighted by their density of states. The

injection from one bank is exactly balanced by the extraction of the other bank

at every energy level. (2) For very strong electron-phonon interaction (Γτ � 1)
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Figure 7.4: (a) SEM picture of a typical device after the definition of the junctions.

(b) The current voltage characteristics of six nominally identical junctions

the quasiparticle system stays at the bath temperature. The energy which is ex-

tracted or injected from the normal island is compensated by an energy current

from the phonons. (3) For strong electron-electron interaction their is no net

energy flow into the quasiparticle system. The energy is however redistributed

and the quasiparticles adopt a Fermi distribution with a temperature Tn different

from the bath temperature. This is referred to as a quasi-thermal distribution.

For arbitrary situations it is necessary to solve Eq. (7.11) numerically. As

the injection current depends on the electron occupation numbers of the normal

island fn, this has to be done self-consistently. We adopt a relaxation time ap-

proximation for the electron-phonon interaction kernel, in which the electrons

relax to the bath temperature on a timescale τ : Icolleph = (fn − fn0 )/τ . The results

are shown in Fig. 7.3, for a junction biased at 2eV = 1.4∆. When the injection

rate is increased compared to the relaxation rate, one observes a depletion of cer-

tain electron levels while others are populated with excess quasiparticles. This

leads to a deficiency in the current through the junction, compared to the equi-

librium case. Peaks in the differential conductance show the onset of (multiple)

Andreev reflection at 2eV = ∆/n and quasiparticle tunneling at 2eV = 2∆.

The high current densities might also heat the superconducting electrodes,

suppressing the cooling power. This effect has been addressed both theoretically

[21] and experimentally [22], and we will not consider it here. The use of normal

quasiparticle traps could mitigate the problem [23].

7.4 Planar junctions

Fig. 7.4 shows a typical sample layout. The devices are fabricated using electron

beam lithography (EBL) and sputter deposition. First a 20 nm thick Al layer is
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Figure 7.5: The current (a) and differential (b) resistance as a function of the voltage

of a single planar NIS junction with a nominal area A = 4µm2, and resistance of

Rn = 7.4Ω. The simulations is based on a non-uniform barrier with a relative variance

of σ/t = 0.23.

sputter deposited through a PMMA lift-off mask, after which it is exposed for 24

min. to the afterglow regime of a N-plasma for nitridation [12]. A 100 nm thick

Nb layer finishes the trilayer. After lift-off the junctions are patterned by EBL

of a SAL resist mask, and a SF6/O2 reactive ion etch (RIE). Subsequently a 250

nm thick SiO2 self-aligned layer is sputtered prior to the deposition of the 400

nm thick Nb topwire. The definition of the topwire is again done using EBL and

a SF6/O2 RIE.
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We fabricated junctions with areas ranging from 1 to 25 µm2. The different

junctions show a reproducible resitance area product of RnA ≈ 12 Ωµm2. We

measure the current voltage characteristic of the junctions using a four probe

configuration, while simultaneously measuring the differential resistance with a

standard lockin technique. Fig. 7.4b shows the current voltage characteristics of

six nominally identical junctions, proving the reproducibility of the fabrication.

A detailed look at the current and differential conductance of the junction

shows a subgap current which is higher than expected (Fig. 7.5). The grey line

represents a junction with only first order quasiparticle tunneling, and a thermal

distribution at the bath temperature. This model clearly underestimates the zero

bias conductance of the junction, while at higher biases there is a current deficit.

This indicates that part of the current is carried by second order processes. The

full black line shows a simulation with a variable thickness according to Eq. (7.7)

with σ/t0 = 0.23, and agrees reasonably well with the data. The dashed black

line corresponds to the contribution of second order tunneling. Given a typical

barrier thickness of 1.5 to 2 nm (inferred from high resolution transmission elec-

tron microscopy measurements Chapter 3 ), this corresponds to a variance of the

thickness of one or two atomic layers. This supports a picture of a polycrystalline

AlN barrier, consisting of different areas with slightly different thicknesses [12].

7.5 Stacked junctions

To fabricate stacked junctions we use a similar fabrication recipe as for the planar

junctions. However we start with the deposition of stack consisting of Nb(100

nm)/Al(5 nm)/AlN/Al(20(nm)/AlN/Nb(200 nm). To define the junctions we

tried two different recipes. In the first case we anodize the thin Al layer after

etching the upper Nb layer (SNAP,[24, 25, 26]). In the second case we use Ar

milling to etch through the Al/AlN/Al/AlN layers, followed by a short anodiza-

tion step. We found the latter recipe gave more consistent results, though both

recipes did not give the same reproducibility obtained for the planar junctions.

The RnA values for these junctions show big variations, in addition the IVs are

very different for different area junctions. The subgap current scales with the

square root of the junction size, we therefore suspect that the edges of the junc-

tions are poorly defined.

Fig. 7.6 shows the current and differential resistance of a well-behaving double

barrier junction. At double the gap voltage, a kink in the current is observed,

and a corresponding peak in the differential conductance. These were absent

for the planar junctions, and we attribute them to a non-equilibrium electron
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Figure 7.6: Current (a) and differential resistance (b) of a stacked double barrier

junction. The high subgap conductance is due to higher order processes (grey dotted

line), while the sharp peak at the gap voltage is due to a strong non equilibrium of the

normal island.

distribution. This is due to the volume of the normal island, which is severely

reduced with respect to the planar junction geometry. We take this into account

using Eq. (7.10), where we use only electron phonon interaction with a relaxation

time of τ = 3 ns. The result is shown by the full black lines, while the dashed,

black and the full, grey line show the respective contributions from first and

second order tunneling.
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7.6 Conclusions

In conclusion, we addressed both experimentally and theoretically the influence

of non-uniform barriers on the thermal and charge transport of NIS microre-

frigerators. We demonstrate that even for highly resistive tunnel barriers, small

variations in the barrier thickness can have a decisive influence on the cooling

performance. We fabricated highly transparent AlN barriers reproducibly in pla-

nar geometries. The high current densities involved necessitate an analysis in

terms of a non thermal electron distribution functions. Based on the experimen-

tal results we show that the thickness variations of the AlN barriers are of the

order of one atomic layer.
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[2] F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola,

Opportunities for mesoscopics in thermometry and refrigeration: Physics

and applications, Rev. Mod. Phys. 78, 217 (2006).

[3] P. J. Lowell, G. C. O’Neil, J. M. Underwood, and J. N. Ullom, Macroscale

refrigeration by nanoscale electron transport, Appl. Phys. Lett. 102, 082601

(2013).
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Chapter 8

Evanescent states and non-equilibrium

in driven superconducting nanowires

We study the non linear response of current-transport in a supercon-

ducting diffusive nanowire between normal reservoirs. We demon-

strate theoretically and experimentally the existence of two different

superconducting states appearing when the wire is driven out of equi-

librium by an applied bias, called global and bimodal superconducting

state. The different states are identified by using two probe measure-

ments of the wire, and measurements of the local density of states with

tunneling probes. The analysis is performed within the framework of

the quasiclassical kinetic equations for diffusive superconductors.

This chapter was published as N. Vercruyssen, T. G. H. Verhagen, M. G. Flokstra, J. P.Pekola,

and T. M. Klapwijk, Physical Review B 85, 224503 (2012).
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8.1 Introduction

Superconducting nanowires are often part of objects to study the Josephson-

effects in graphene, carbon nanotubes or semiconducting nanowires. In addition

in many cases superconducting nanowires themselves are used to study their

response to radiation. In most cases the electron back-scattering resistance is as-

sumed to be located at the interfaces and in the normal metal part. An interesting

question is to what extent the superconducting mesoscopic or (nano)wires them-

selves contribute to the resistance of a device due to the conversion from normal

current to supercurrent and vice versa. For superconducting nanowires between

superconducting contacts a common assumption is that the applied power leads

to dissipation and to an increased temperature varying over the wire length [1].

In quite a few experiments with a nanowire between normal or superconduct-

ing pads, a parabolic temperature profile T (x) is assumed to control the local

superconducting properties [2, 3, 4]. The definition of a temperature however

requires that the electrons are in local equilibrium, a condition not easily met

for wires of mesoscopic length scales. In the case of a biased normal wire [5]

the diffusion time, τD = L2/D, with L the wire length and D the diffusion con-

stant, can be much shorter than the inelastic relaxation time τin. In this case

the electron distribution is highly non-thermal and given by a two step function

f(E, x) = (1−x)f0(E−eV/2)+xf0(E+eV/2), with f0(E, T ) = 1/(exp(E/kT )+1)

a Fermi-Dirac distribution, V the applied bias, k Boltzmann’s constant, E the

energy of the electrons measured from the Fermi energy, T the bath temperature

and x the coordinate along the wire. A general, non-thermal (or non-equilibrium)

electron distribution in a superconductor influences almost all aspects of that su-

perconductor. It affects the local Cooper pair density and the current-carrying

capacity, but it can also produce a voltage-drop in the superconductor, i.e. a

DC resistance of the superconductor. To discuss the various contributions it is

advantageous to separate the non-equilibrium distribution function, f(E), into

an energy (or longitudinal) mode, fL, acting primarily on the amplitude of the

superconducting gap, and a charge (or transverse) mode, fT , which lead to a

shift in the pair chemical potential µcp [6]. The latter mode fT describes an im-

balance between electron and holes in the excitation-spectrum, leading to a net

charge Q∗ in the (decaying) excitations. This contribution can be dominant in

experiments probing electrical transport in superconducting heterostructures at

subpgap energies.

In this paper we report on an experimental and theoretical study of nonlinear

electrical transport in a well-defined model system [7, 8], in which a supercon-

ducting wire is connected to two large normal contact pads (Fig. 8.1). The normal
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Figure 8.1: A superconducting Al nanowire connected to two massive normal reser-

voirs, consisting of the same Al, covered by a normal metal Cu layer: (a) SEM-picture,

(c) AFM-picture, (d, e) schematic representation. The thin Al of the pads is driven

normal by the inverse proximity effect of the thick normal Cu. Normal tunneling probes

are attached for local measurements (b).

electrodes induce evanescent subgap states in the superconducting wire. In ad-

dition they act as equilibrium electron reservoirs to fill and empty the states in

the superconducting wire. When a bias eV is applied, evanescent electrons and

holes are injected from the reservoirs into the superconducting wire, and the re-

sulting non-equilibrium distribution function consists of both an energy mode fL
and a charge mode fT . The well defined boundary conditions and simplicity of

this system make it a natural choice to study the superconducting state in the

presence of a general non-equilibrium.

We address these microscopic properties of the wire experimentally using two

point measurements of the nanowire, which are a sensitive probe for the resis-

tive properties originating in fT . Measurements with tunneling probes allow

to measure the local density of states and the different chemical potentials in-

volved. We demonstrate that two distinct metastable superconducting states

exist when the wire is driven (Fig. 8.2). The first superconducting state extends
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over the complete length of the wire, and has been reported in the linear regime

by Boogaard et al [9]. The second state exists only under driving, and consists

of two, geometrically separated superconducting domains, both at the ends of

the wire. We show that the superconductivity nucleates in the vicinity of the

normal reservoirs, because the local electron distribution is closer to the equilib-

rium state. The existence of metastable states has been identified in previous

work using phenomenological models [10, 11], based on a normal resistive do-

main. We analyze these states using the quasiclassical Green’s functions, and

show how the energy mode controls the existence of these states, whereas the

charge mode controls the resistance. Hence, the full non-linear response is found

to be the result of a complex interplay between both the charge and the energy

mode non-equilibrium.

8.2 Theoretical framework

We consider a model system consisting of a superconducting one dimensional dif-

fusive wire connected to two normal, equilibrium reservoirs (Fig. 8.1d). Electrons

are injected into and extracted from the superconducting wire by the reservoirs

with equilibrium Fermi distributions f0(E ± eV, T ), with relative Fermi-levels

determined by the applied voltage V . Within the wire the electrons are dis-

tributed over the energies with a position and energy dependent non-equilibrium

distribution function f(E, x) determined by a diffusion equation. In addition the

electronic states concerned are decaying states, evanescent modes, as their energy

is smaller than the energy gap (eV ≤ 2∆). Therefore it is necessary to include the

interplay between these short-lived states and the superconducting condensate,

which goes beyond a two-fluid description, in which a sharp distinction between

long-living quasiparticle states and the condensate is assumed. Such an analysis

is performed using the quasiclassical Green’s functions theory for superconduc-

tivity, which treats the electronic properties of the excitations and the condensate

on the same footing [12]:

Ǧ =

(
ĜR ĜK

0 ĜA

)
, ĜR =

(
G F1

F2 G†

)
. (8.1)

The retarded (advanced) functions ĜR(A) consist of normal and anomalous prop-

agators G and F , which describe the single electron spectrum and the coherence

between electrons respectively. The occupation numbers of the electronic excita-

tions are contained in the Keldysh component ĜK .
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In general these Green’s functions are dependent on the time, energy, position

and momentum of the particle: G = G(E, t, r, p). However typical variations oc-

cur on a much slower length scale than the Fermi wavelength. The Green’s

functions are sharply peaked around the Fermi momentum p = pF , and a con-

siderable simplification can be obtained by integrating G over all momenta. A

second simplification arises from the short mean free path in dirty superconduct-

ing films, which averages out any dependence on the momentum direction. The

resulting equations were obtained by Usadel [13] and they only contain what is

called the quasiclassical Green’s functions, g(E, x, t) and f(E, x, t). Our experi-

mental observations indicate that relevant solutions are stationary, so in addition

we neglect all time dependences in the equations. This choice is partially sup-

ported by theoretical work of Snyman et al [14] who demonstrate for a simplified

system that the solutions for a DC bias are always stationary. To parametrize

g(E, x) and f(E, x) we use a complex pairing angle θ(E, x) describing correlation

between electrons and holes, and a complex phase χ: g = cos(θ), f1,2 = sin (θ)e±iχ

[15]. The normalization condition g2 + f †1f2 = 1 is automatically fulfilled, while

the variations of θ(E, x) and χ(E, x) are determined by the following diffusion

equations:

~D
{
∇2θ − sin θ cos θ (∇χ)2}

= −i2E sin θ − cos θ
(
∆e−iχ + ∆∗eiχ

)
,

~D∇
{

sin2 θ (∇χ)
}

= i sin θ
(
∆e−iχ −∆∗eiχ

)
, (8.2)

with D the normal state diffusion constant. The first equation describes how

the presence of a local superconducting order parameter ∆(x) generates pair

correlations θ(E, x), which allows to calculate the local density of states (dos)

N(E, x) = Re cos(θ). The second equation relates the phase gradient of the gap

to the presence of supercurrents.

A convenient description of a non-equilibrium superconductor is obtained by

introducing a generalized distribution function h(E), defined as GK = GRh(E)−
h(E)GA. To disentangle the influence of the distribution function on the am-

plitude and the phase of the order parameter, h(E) is split in the even part

(energy mode) in particle-hole space fL(E, x), and the odd part (charge mode)

fT (E, x). The total electron distribution functions f(E, x) is then obtained from

2f(E, x) = 1− fL(E, x)− fT (E, x). The presence of a charge mode is related to

the presence of a charge Q∗ integrated over all excitations, and the consequence

of inhomogeneity in the superconducting system, leading to conversion of quasi-

particle current to supercurrent. Charge imbalance has been studied thoroughly
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at temperatures close to Tc, i.e. for long lived quasiparticle excitations [16, 17].

However, the concept of charge imbalance also applies to short-lived evanescent

states [18], for small injection voltages and at low temperatures [19, 20].

Conservation of energy E and charge Q result in two coupled diffusion equa-

tions for fL and fT :

~D∇JE = 0, ~D∇JQ = 2RLfL + 2RTfT , (8.3)

with

JE = ΠL∇fL + ΠX∇fT + jεfT ,

JQ = ΠT∇fT − ΠX∇fL + jεfL

ΠL,T = 1 + | cos θ|2 ∓ | sin θ|2 cosh(2χ2),

ΠX = −| sin θ|2 sinh(2χ2),

jε = 2Im(sin2 θ∇χ),

RL,T = Re(sin θ(∆e−iχ ∓∆∗eiχ)), (8.4)

where ΠL,T,X are generalized diffusion constants, jε is the spectral supercurrent

and RL,T determine the magnitude of the source term on the right hand side of

Eq. (8.3). The energy current is dominated by the diffusion of the energy mode fL.

Our Al wires are relatively short which means we can neglect inelastic processes,

as the inelastic electron-electron and electron-phonon interaction lengths are of

the order of 10 µm at a temperature of 1 K [21]. For long wires or materials with

a strong electron-phonon interaction this is not necessarily true. However, this

case has been recently assessed by Serbyn and Skvortsov [22], using the time-

dependent Ginzburg-Landau equations. The stronger electron-phonon coupling

of Nb results in a inelastic mean free path of roughly 0.1 µm [23]. The charge

current consists partly of a normal current driven by a gradient of the charge

mode, In = ΠT∇fT , and partly of a supercurrent related to a gradient of the

phase Is = fLjε. Conversion of a normal current into a supercurrent implies a

change of ∇fT , and is proportional to RT ≈ ∆ in Eq. (8.3).

The position dependent potential in the superconductor eφ(x) is obtained by

integrating the charge of the quasiparticle excitations over all energies:

eφ(x) =

∫ ∞
−∞

N(E)fST (E, x)dE (8.5)

In order to conserve charge neutrality, the presence of the net charge in the

excitations is compensated by a shift in the pair chemical potential δµcp(x). This

means that the static electric field E = ∇φ which drives the normal current
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In, does not influence the condensate, since it is exactly balanced by δµcp(x) =

−eφ(x). If this were not the case, the Cooper pairs would accelerate.

The retarded and kinetic equations (8.2, 8.3) are completed with the self

consistency relation for ∆(x):

∆(x) =
N0Veff

4i

∫ ~ωD

−~ωD

dE(
sin θeiχ − sin θ∗eiχ

∗)
fL −

(
sin θeiχ − sin θ∗eiχ

∗)
fT . (8.6)

The charge mode is directly related to the observed potential drop over the su-

perconductor through Eq. (8.5), the energy mode fL only appears implicitly in

the gap Eq. (8.6).

8.3 Possible solutions

In this section we present the numerical solutions of Eqs. (8.2 - 8.6) for the model

system shown in Fig. 8.1. The wire can be considered to be one dimensional,

as the width and thickness are smaller than the dirty superconducting coherence

length w, t ≤ ξ =
√

~D
2∆0

. The normal equilibrium reservoirs act as boundary

conditions, both for the superconducting pairing-angles θ = ∇χ = 0 and the

distribution functions fL,T . Temperature enters the problem only through the

boundary conditions for fL and fT , while all non-equilibrium processes in the wire

itself are contained in the distribution functions. After an initial guess for ∆(x),

the superconducting angles θ and χ are calculated from the retarded equations

(8.2). Subsequently the kinetic equations (8.3) can be solved to obtain fL and fT .

Finally the value of ∆(x) is updated using Eq. (8.6), and this process is repeated

until all values converge. We find two distinct superconducting solutions for the

problem: (a) one global superconducting state (Fig. 8.2a) and (b) a bimodal

superconducting state separated by a normal valley (Fig. 8.2b).

8.3.1 One global superconducting state

The first solution is characterized by one coherent superconducting state which

extends over the full length of the wire, though the strength of the superconduct-

ing gap, ∆, is suppressed at the edge of the wire by the presence of the normal

reservoirs (Fig. 8.2a). Though fully superconducting, the wire has a finite resis-

tance due to the conversion of a normal current into a supercurrent, as shown by

the position-dependent voltage V . Normal electrons which are injected from the

metallic reservoirs, decay into Cooper pairs over roughly one coherence length ξ.
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One Global Superconducting State Bimodal Superconducting State(a) (b)

Figure 8.2: (a) The complete wire is in a single superconducting state with order

parameter ∆(x). However near the normal reservoirs the condensate carries only a

small fraction Js of the current as a supercurrent, which results in a resistance and a

voltage drop at the ends of the wire, over roughly a coherence length. At the lowest

temperatures a small proximity effect can occur at the connection of the bilayer reser-

voirs to the wire (schematically illustrated by dotted black lines). (b) Two distinct

superconducting domains at the ends of the wire are separated by a normal region in

the centre of the wire. Due to the small supercurrent, the voltage profile is almost

equal to the normal state.

The excess charge Q∗ associated with the charge mode fT of these evanescent

quasiparticle states results in the presence of an electric field in the superconduc-

tor, and hence a potential drop over the same length the supercurrent increases.

These processes correlate with the picture of electrons being injected at energies

E ≈ eV , leading to a two-step distribution fL, as shown previously by Keizer et

al [7]. While the charge mode non-equilibrium fT relaxes over a length scale of ξ,

because of interaction with the condensate, the energy mode fL remains constant

over the length of the wire due to the absence of inelastic interactions (Fig. 8.3a).

For increasing voltages there is hardly any change in the profiles of ∆, φ, Js,n, fL,T ,

until the wire switches to the normal state. For example there is no gradual ex-
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One Global Superconducting State Bimodal Superconducting State(a) (b)
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Figure 8.3: The even mode fL and odd mode fT of the non-equilibrium distribution

function f(E, x). (a) For the global superconducting state, a two step distribution is

present through the full wire, while the charge mode is only present at the edges. (b)

A strong, non-thermal energy mode non-equilibrium fL suppresses superconductivity

at the centre of the wire.

pansion of the voltage-carrying parts at the end of the wires, as one would guess

qualitatively. A careful analysis [7] indicates that the energy mode fL triggers this

transition, while the current is still far below the critical pair breaking current

Ic0.

In performing these numerical calculations we assumed that the reservoirs

are fully normal down to the lowest temperatures. The dashed lines in Fig. 8.2a

however show a schematic picture of a situation where the reservoirs are proxim-

itized by the wire, which in fact is a situation we encounter in the experiments.

The conversion and voltage drop occurs primarily in the contact pads, and the

measured resistance is largely a spreading resistance of the contact pad. We will

show experimentally that the latter contribution can be quenched by the bias

and by a magnetic field.
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8.3.2 Bimodal superconducting state

A second solution was inspired by our experimental results. It consists of two

separate superconducting domains located at each end of the wire (Fig. 8.2b). A

strong energy mode fL suppresses superconductivity in the middle of the wire,

while the presence of the cold reservoirs near the ends of the wire favors locally

the emergence of a gap.

Modeling this state is complicated, as the presence of two superconducting

regions gives potentially rise to time-dependent processes. We can however avoid

this complication by assuming that the centre of the wire is fully normal. In

that case it is possible to proceed numerically by splitting the wire in two half-

wires and treat them independently, using θ = ∇χ = 0 as boundary conditions.

While the distributions at the end of the wire are again given by the equilib-

rium reservoirs, in the middle of the wire we match the distribution functions fL
and fT and their derivatives. The occupation of electronic states with energies

E + eV,E − eV are coupled by the applied voltage, while previously they were

independent. In addition the superconducting potential mixes particle and hole

states, and one retrieves relatively complex solutions for fL,T (E, x) (Fig. 8.3b).

At the centre of the wire the energy mode non-equilibrium is close to a thermal

one, but at an elevated temperature similar to a parabolic temperature profile.

The remaining structure is in essence due to energy-conserving Andreev reflection

processes, similar to the electron distribution in a SNS structure [24].

The emerging superconducting blobs at the end of the wire are relatively

small, both in magnitude |∆| ≈ |∆0|/2 and in size LS ≈ 4ξ. Due to their limited

size only a tiny fraction of the total current is converted into a supercurrent,

and the voltage profile is almost identical to the normal state. While the local

microscopic properties at the end of the wire show a strong superconducting

signature, the global properties of the wire are hardly influenced. This is true

for the current (which is almost completely normal) and the voltage profile, but

also for the density of states and the distribution functions. Apart from some

small modifications, the distribution function in the wire is given by a two-step

function. The non-equilibrium energy mode fL is the strongest in the centre of

the wire, and is the main reason why the superconducting state nucleates near

the equilibrium reservoirs. The influence of fT is limited as the condensate carries

almost no (super)current.
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8.4 Sample design, fabrication and characteri-

zation

Figure 8.1a shows a typical superconducting Al nanowire contacted by two mas-

sive normal reservoirs, consisting of the same thin Al layer covered by a thick Cu

layer. For reasonably clean interfaces the inverse proximity effect of the thick Cu

drives the Al normal down to the lowest temperatures. The massive volume of the

contacts guarantees that they act as equilibrium reservoirs from which electrons

are injected into the wire. When a bias is applied however, the temperature of

the reservoirs electron distribution function f0(E, T ) might for increasing voltage

deviate from the bath temperature according to [25]:

T 2 = T 2
0 + b2V 2, (8.7)

b2 =
1

πL

R�
Rwire

ln

(
r0

r1

)
, (8.8)

where L is the Lorenz number, R� the sheet resistance of the contact, and r0

and r1 respectively the electron-electron and electron-phonon inelastic mean free

path. The temperature increase can be considerable, and the most obvious way

of decreasing it is to minimize the ratio R�/Rwire by using thick reservoirs, which

we have implemented in our sample design.

The samples are realized by three angle shadow evaporation through a sus-

pended resist mask (PMMA/LOR double layer), in a system with a base pressure

of 0.5 - 1.5 x 10−7 mbar. The parameters of the different samples are summarized

in Table 8.1. First 50 - 90 nm of 99.999% purity Al is deposited through a slit

in the suspended mask to create the superconducting wire and the thin bottom

layer of the pads. Evaporation of a thick (200 - 500 nm) copper layers under an

angle, which avoids deposition through the slit, completes the normal bilayers

forming the reservoirs. The time between the two steps is kept to a minimum

(< 10 min) to ensure a clean and transparent interface. Subsequently the Al is

oxidized during 5 minutes in a pure O2 atmosphere with a pressure of 4.6 mbar to

create an AlOx tunnel barrier of RnA ≈ 300 Ωµm2. The Cu probes are deposited

during the last evaporation step under a second angle. The size of the wires is

measured using scanning electron microscopy. The thickness was obtained from

a quartz crystal monitor used during the deposition of the Al film, and calibrated

by atomic force microscopy.
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# L w t Rn ρ D Tc ξ Rs

# (µm) (nm) (nm) (Ω) (µΩcm) (cm2s−1) (K) (nm) (Ω)

1a 1.4 100 90 2.8 1.8 98 1.23 131 1.0

1b 2.0 100 90 4.5 2.0 87 1.23 124 0.81

2 3.0 200 50 3.7 1.23 143 1.35* 152 0.7

3a 2.0 100 50 6.2 1.54 115 1.35 135 1.7

3b 4.0 100 50 13.3 1.66 106 1.35 131 1.7

4 1.5 100 50 5.1 1.70 104 1.35* 129 1.7

5 2.0 100 50 4.8 1.20 147 1.35* 154 1.5

Table 8.1: Overview of the properties of the different samples: L - length, w - width,

t - thickness, Rn - normal state resistance, ρ - resistivity, D - diffusion constant, ξ =√
~D/2∆ - coherence length, Tc - critical temperature, Rs - low temperture resistance

in the superconducting state. For samples indicated with an asterisk, there is no

measurement available for Tc. We assumed the same value for Tc as for sample 3 which

was fabricated under the same conditions.

8.4.1 Linear response of the nanowire

Figure 8.6a shows a typical current voltage curve (IV). The linear regime extends

up to a critical current designated by Ic1. This initial slope has been measured as

a function of temperature with an AC technique leading to the results shown in

Fig. 8.4. We used a bias current I12 of 1 µA modulated at 342 Hz (terminals labels

are shown in Fig. 8.1b). The two point resistance of this 1.4 µm long wire (sample

1a) as a function of temperature displays a well-defined pattern (open squares).

The spreading resistance of the contact pads adds a small but finite contribution

of approximately 20 mΩ to the measured two point resistance. Clearly, at high

temperatures the wire is normal and has a resistance Rn. When the temperature

is decreased below Tc = 1.05 K the resistance of the wire drops considerably as

it becomes superconducting. This critical temperature is depressed compared to

the intrinsic critical temperature of the aluminum due to the proximity-effect, as

discussed by Boogaard et al [9]. For intermediate temperatures (500-800 mK) the

resistance appears to saturate at a value Rs ≈ 1 Ω. As we will analyze further,

this is the result of a normal current penetrating into the wire over roughly one

coherence length ξ, yielding a Rs ≈ 2ρξ/A, with A the crosssection.

Further lowering of the temperatures leads to a further drop in resistance to

almost zero, suggesting that the bilayer contacts are becoming superconducting,

due to a low transparency of the interface between the Al and Cu layers. To check

this hypothesis we measured the resistance of identical Al/Cu bilayer strips down

to the lowest temperatures, and find that they stay normal. Instead we attribute
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Figure 8.4: (a) The two probe resistance versus temperature of a 1.4 µm long wire

(sample 1a). Due to the proximity effect of the wire on the normal reservoirs, the

resistance becomes negligible at low temperatures. This weak proximity effect can be

suppressed by applying a small bias current (b) or small magnetic field (c) (sample 4,

200 mK). This ’corrected’ wire resistance is constant down to the lowest temperatures

(green squares of panel a). A model (dashed line) with rigid normal boundary con-

ditions for the pairing angle θ = 0 slightly overestimates the observations. A weaker

boundary condition (full line), in which θ decays gradually to zero over a characteristic

length a shows excellent agreement with the experiment.

the vanishing resistance due to the proximity effect by the nanowire on the contact

point between the normal reservoir and the superconducting wire itself. The

superconductivity gradually spreads out into the bilayer, leading to a normal-

superconducting boundary which moves from the nanowire into the contact pads

(Fig. 8.2a). Consequently, the current conversion resistance in the wire itself

becomes gradually less relevant. As the cross-section for the conversion moves

into the contacts it becomes larger, reducing its resistive contribution. Hence,

only a part of the spreading resistance (≈ 20 mΩ) is measured.

This observed pattern changes if we measure the resistance for a small DC

bias current, larger than Ic1. Then superconductivity in the weakly proximitized



106 8. Evanescent states and non-equilibrium in driven superconducting wires

region in the pads is suppressed, and the differential resistance stays constant

down to the lowest temperatures (blue triangles Fig. 8.4a). To further test this

hypothesis we measured the IV of the wire while we apply a small magnetic

field of 7 mT, parallel to the pads but perpendicular to the wire (Fig. 8.4b).

The vanishing resistance at zero bias is no longer observed, while the differential

resistance at higher biases is identical to the one without magnetic field. This

indicates that such a small field does not influence the properties of the wire, and

only quenches the weakly proximitized region in the pads. Only at a much higher

field B ≈ 100 mT we observe a change in the differential resistance of the wire

(Fig. 8.4c).

The dashed gray line in Fig. 8.4 shows the calculated two point resistance.

The bulk critical temperature Tc0 = 1.23 K was the only free parameter in the

fit, while the diffusion constant D = 98 cm2/s was obtained through the relation

D = ρ/N0e
2. The resistivity ρ is deduced from the normal state resistance Rn,

using N0 = 2.2 · 1047 J−1m−3 for the density of states at the Fermi level [26].

The superconducting coherence length is obtained from ξ =
√

~D
2∆

. Although the

numerical calculation agrees quite well with the data (for I > Ic1), the model

overestimates the residual resistance at low temperatures. This indicates that

the assumption of completely normal contact pads is too rigid, as also observed

by Boogaard et al [9]. To include the geometric out-diffusion of coherent electrons

into the normal pads, we adjust the boundary conditions at the ends of the wire

to: ∇θ = −θ/a, which indicates the dilution of superconductivity into the normal

pads over a characteristic length scale a. With a ≈ 18 nm (full line in Fig. 8.4)

we find excellent agreement with the observations. The key parameters are listed

in Table 8.1 for the different samples. It demonstrates that the linear response

of the wires is well understood, but that the boundary conditions are a sensitive

part of the problem even for the thick and wide contact pads used. However for

bias currents I ≥ Ic1 the system is in a well defined state, which can be connected

to the theoretical predictions.

8.4.2 Characterization of the tunnel probe

To measure locally the density of states, the electrostatic potential eφ(x) and

the chemical potential of the condensate µcp we use a normal tunneling probe.

The current flowing from a normal tunnel probe contacted to a non-equilibrium

superconductor at a position x is given by:

IT (V, x) =
1

eRn

∫ ∞
−∞

Re{cos(θ(E, x))}{fST (E, x)− fNT (E + eV )}dE, (8.9)



8.4 Sample design, fabrication and characterization 107

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00

0.25

0.50

0.75

1.00

1.25

1.50

 without Rs
 with Rs
 model

 

R
n d

I/d
V

Probe Voltage (mV)

Figure 8.5: The differential conductance of the local tunnel probe as a function of

applied voltage (magenta triangles). Good agreement between experiment and theory

(full line) is obtained when the series resistance of the set-up is included (blue squares).

with θ(E, x) the pairing angle, fST (E, x) the charge mode non-equilibrium dis-

tribution in the superconductor, and fNT = 1 − f0(E + eV ) − f0(−E + eV ) the

distribution function in the normal probe. Using Eq. (8.5) we can rewrite this

to:

IT (x) =
1

eRn

{eφ(x) +

∫ ∞
−∞

N(E, x)fNT dE}. (8.10)

The tunnel current consists of two contributions, the first one does not depend

on the applied voltage, but is completely determined by the charge imbalance

in the superconductor, leading to the local electrostatic potential φ(x). The

second contribution is given by the convolution of the local dos N(E, x) of the

superconductor and the distribution function fNT (E + eV ) in the normal metal.

At low temperatures the differential conductance of the tunnel contact is a di-

rect measure for the density of states in the superconductor. The condensate

chemical potential of the superconductor can be obtained from N(E, x), which

is symmetric around E = µcp.

Figure 8.5 shows a typical measurement of the differential resistance for a

tunnel probe located at a distance of 320 nm = 2.4ξ from the normal reservoir

of a 4 µm long wire. The nanowire is biased just above Ic1, to ensure it is in a

well defined state. The bias current needed to drive the probe is typically four
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orders of magnitude smaller than the bias current of the nanowire, due to the

high normal resistance of the tunnel junction (RT = 43 kΩ). Hence it is safe to

assume that the properties of the nanowire are not influenced by the measurement

of the probe. One recognizes the coherence peaks at the gap voltage, however the

subgap dos is increased in comparison to the BCS values due to the presence of the

normal banks, and the driving of the nanowire. The simulated local dos, for the

set of parameters, is in good agreement with the data, but near the gap voltage

a small discrepancy exists. We attribute this to a series resistance in the wiring

of the tunnel probe and can correct our data for this contribution. We obtain

a good agreement between the data and the theory using a series resistance of

RS = 1.2 kΩ, which is the estimated wiring resistance of the experimental set-up.

8.5 Two-state analysis and discussion

We have realized and studied a total of 7 samples with parameters shown in

Table 8.1. All displayed similar behavior. The non linear current voltage charac-

teristic of a typical sample is shown in Fig. 8.6a, with two clearly distinguished

branches. Before discussing the details we first indicate the various signatures for

processes, which dominate the various regimes. Increasing the current from zero

bias we pass Ic1 the current at which the proximitization in the banks is quenched

as discussed in Section IV.A. Beyond Ic1 until Ic2, we claim that the wire remains

in the global superconducting state, characterized by a low and almost constant

differential resistance Rs (Fig. 8.6b). This resistance reflects the conversion of a

normal current into a supercurrent and is located at the edges of the wire. At

the current I = Ic2 the wire switches into the normal state, leading to an abrupt

switch of both the voltage and the differential resistance, followed by a constant

differential resistance equal to the normal state resistance.

Decreasing the current from the normal state, a kink in the measured voltage

signals a more subtle transition at I = Ic3. The measured voltage shows a small

deficit with respect to its normal state value (black dashed line) suggesting the

nucleation of superconductivity. We claim that superconductivity nucleates here

at the ends of the wires close to the contact pads in agreement with Fig. 8.2b.

The sudden transition at I = Ic4 is due to the transition from the bimodal to the

global superconducting state.

A first experimental indication to support this interpretation is provided by

Fig. 8.6c, which compares local measurements with measurements over the full

wire. It shows the two-point resistance of the wire V12/I12 (squares) as a function

of bias current I12, together with the apparent resistance V13/I12 (triangles) at
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Figure 8.6: The voltage V12 (a) and differential resistance (b) of a 4 µm long wire (3b)

as a function of bias current I12, measured at 200 mK. We define four different regimes

with boundaries labeled Ic1 − Ic4, each characterized by a nearly constant differential

resistance. The critical currents Ic2 and Ic4 are defined as the currents where the wire

switches between the two hysteretic voltage branches. Ic1 and Ic3 are the transition

points between the two different states of one branch. (c) The apparent resistance of

the complete wire V12/I12, and of the edge of the wire V13/I12 as measured with a

voltage probe, multiplied by two for the ease of comparison.
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the ends of the wire (see inset for the probe-position and terminal labels). The

probe voltage is multiplied by two for comparison, as a similar contribution is

present at the other edge of the wire. For the lower branch, the assumed global

superconducting state, one observes that the voltage drop V13 over the end of the

wire is almost identical to half of the complete voltage drop over the wire-length,

a direct proof that this resistance is located at the ends of the wire.

In contrast, in the normal state, the voltages V12 and V13 are, as expected,

proportional to their respective lengths along the wire, V = ρL/A. Upon de-

creasing the bias below Ic3, where we assume the bimodal state exists, one ob-

serves over the full length of the wire a decreasing resistance for decreasing bias,

signaling the growing strength of superconductivity somewhere. The measured

resistance over the end of the wire, however, increases compared to the normal

state V13/I12 ≥ Rn. Though counter-intuitive this is consistent with the general

non-equilibrium present in the superconductor. In the following we make a de-

tailed analysis of both superconducting states, and place the experimental results

in the context of the theoretical model.

8.5.1 Global superconducting state

Figure 8.7 shows two-point measurements of the lower branch of a 1.4 µm long

nanowire (Sample 1a) at three different bath temperatures. In view of the anal-

ysis shown Section 8.4.1 we assume that the resistance of the wire is primarily

determined by the charge mode of the distribution function fT (E, x), which de-

pends on the position dependent density of states and the order parameter ∆(x).

The weak dependence of the differential resistance on the current indicates that

the superconducting properties of the wire hardly change with increasing bias

(open symbols). Though numerical simulations (filled symbols Fig. 8.7) show

the same qualitative behavior, the simulations seem to overestimate the bias cur-

rent at which the differential resistance begins to increase. Hence the observed

switching current Ic2 is also slightly lower than predicted. Ignoring this small

discrepancy, the simulated data show good agreement with the experiment over

the complete temperature range (inset Fig. 8.7). At the same time the observed

values for the critical current (or critical voltage) are much smaller than what

one would expect for a pair-breaking current, experimentally [27, 28], as well

as theoretically [29, 30]. This demonstrates that the non-equilibrium processes

should be taken into account in evaluating the parameters. The remaining devi-

ations between theory and experiment suggest, most likely, that the temperature

of the reservoirs deviate from the bath temperature for higher driving currents,

as expected from Eq. (8.8).



8.5 Two-state analysis and discussion 111

Figure 8.7: Two probe voltage (a) and differential resistance (b) as a function of

bias current, for a 1.4 µm wire, at three different bath temperatures. Open symbols:

experimental data. Filled symbols: numerical simulations. The critical current as a

function of temperature (inset).

Figure 8.8a shows the differential conductance dI13/dV13 of a tunnel probe,

located at a distance of 320 nm (=2.4 ξ) from the normal reservoir of a 4 µm long

wire (Sample 3b). The wire is biased at a fixed current I12 with a corresponding

voltage V12. At the same time the probe current I13 is varied while measuring the

probe voltage V13 (Fig. 8.1b). The evolution of the local dos for increasing bias is

shown on the right side in Fig. 8.8a. The conductance at zero bias Vp = 0 increases

slightly for increasing bias, while the coherence peaks get further smeared out.

The dependences are however weak, and even right before the switching current

Ic2 the dos is hardly affected by the drive current. These observations are in

close agreement with the theoretical predictions and confirm the idea that the
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superconducting state remains globally stable. For increasing bias the resistance

remains located at the ends of the wire and the dos does not change either.

Unfortunately, we have not been able to directly measure fL(x). Nevertheless

we believe that this energy-mode non-equilibrium triggers the transition at Ic2 as

analyzed by Keizer et al [7].

8.5.2 Bimodal superconducting state

The continuous transition, with decreasing bias, from the normal into a supercon-

ducting state at Ic3 (Fig. 8.6) indicates that the emerging superconducting state

is initially very close to the normal state. For lower bias currents the absolute

resistance gradually decreases (Fig. 8.6c), which suggests that an increasing frac-

tion of the current is carried by the emerging condensate (Fig. 8.2b). A similar

picture is observed for the local density of states, plotted in Fig. 8.8b for different

bias currents I12 of the nanowire. Below Ic3 a gradually increasing gap is found,

unambiguously showing the emergence of superconducting order. Close to Ic3 the

dos at the position of the probe evolves in a continuous way from a flat spectrum

into a spectrum with a gap. However at Ic4 one observes an abrupt transition to

a situation with a stronger gap. The abruptness indicates that it is a transition

from two distinct superconducting states, which directly proofs that at least two

microscopically distinct superconducting states exist. Though the simulations

for the local dos agree well at currents close to Ic4, they do not account in detail

for the gradual evolution between the normal and superconducting state at Ic3.

At this point we assume that the reservoirs start to heat up, and can no longer

be treated as equilibrium reservoirs with T = T0. Overall, the model supports

the picture of the emergence of the superconducting state quite nicely, with the

strongest non-equilibrium in the wire occurring at Ic4, with the reservoirs most

closely to equilibrium at T = T0.

The electro-chemical potential of the superconducting condensate, µcp, is de-

termined from the minimum of the measured dos µcp = eV |min(dos). It is found

that at this probe-position µcp is equal to the electrostatic potential V1 of the

adjacent reservoir. Measurements with a probe in the middle of the wire show

that, in the same bias regime, the voltage is equal for both sides of the wire,

which means that the state is symmetric, and a similar superconducting region

should exists near the other reservoir at a potential V2. If these two regions

were part of one global superconducting state, there would be a voltage drop

∆V = V1 − V2 over the superconducting potential µcp of this state, and a super-

conducting phase-slip process should occur. However, according to the Josephson

relation 2eV = ∂χ/∂t it would be at a frequency ν ≈ 8~/∆, which is too high



8.5 Two-state analysis and discussion 113

(a)

(b)

Probe

Probe

Figure 8.8: The local density of states for (a) the global superconducting state and

(b) the bimodal state, for different bias currents I12 of the nanowire, measured at 200

mK. For the global superconducting state the gap is only weakly dependent on the

bias current, while for the bimodal state one observes a dos gradually changing from a

normal into a superconducting state.
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compared to the energy-gap.

The fact that the two-point resistance is so close to Rn, the gradual increase

of the dos at the position of the probe, and the electro-chemical potential of the

condensate demonstrate that two separate superconducting regions emerge at the

edges of the wire. The physical reason is the energy mode non-equilibrium, as

discussed by Keizer et al [7] for the lower branch, but similarly for this upper

branch. At the bias Ic4 the wire is still largely normal and fE is given by the

two step distribution-function. In the middle of the wire the width of the step is

several times bigger than the superconducting gap. Through relation Eq. (8.6) it

is seen that this suppresses fully the nucleation of a gap, while the cold equilibrium

reservoirs favor the emergence of a gap at the edges of the wire. Simply put, the

ends are cold where the centre of the wire is hot.Therefore we conclude that

the results are most easily understood as due to two distinct superconducting

domains, separated by a normal central region, what we have called the bimodal

state.

Finally, we discuss the voltage V13 measured by the probe when the wire

is biased into the bimodal state (triangles Fig. 8.6c). Close to Tc the voltage

measured by such a normal probe is equal to the electrochemical potential of the

quasiparticle bath [17]. At low temperatures [16] and for short-lived quasiparticles

[18] it is impossible to define a quasiparticle bath with a well-defined chemical

potential, however the measured voltage is still related to the local electrostatic

potential eφ (using Eq. 8.10):

eφ = −
∫ ∞
∞

N(E)fNT (E + eV )dE. (8.11)

For a relatively small charge imbalance eφ(x)� ∆, the measured voltage equals

the local electrostatic potential eφ(x) divided by the local dos in the supercon-

ductor at zero energy: V ≈ φ/N(0). Hence the voltage measured with the tunnel

probe can be larger than the local potential eφ(x).

8.6 Conclusion

We have analyzed a well-defined model-system of a superconducting wire between

two massive normal contact pads. We demonstrate that this NSN system, when

driven by a current, has two distinct metastable superconducting states.

For low bias we find a global superconducting state with most of the resistance

occurring as a current-conversion resistance at the ends of the superconducting

wires where normal current enters. Although resistive we demonstrate that the
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whole wire including the edges continues to be in one coherent superconduct-

ing state. This state does hardly change for increasing current, until the wire

switches abruptly to the full normal state at a current, which is much lower than

the critical pair-breaking current. On a microscopic level the distribution function

changes considerably and is strongly different from the commonly used parabolic

temperature profile. A numerical analysis based on the non-equilibrium quasi-

classical Green’s functions shows that the switching current is determined by the

non-equilibrium electron distributions, in good agreement with the experimental

results.

For high bias, decreasing the current from a fully normal state, we find that

the superconducting state emerges as two decoupled domains at the ends of the

wire. The vicinity of the cool equilibrium reservoirs favors the nucleation of the

superconducting state at these ends, while strong non-equilibrium at the center

of the wire continues to suppress the superconductivity. Upon further lowering

of the bias current the two domains grow in strength until the wire switches

back to the low resistive, globally superconducting state. We speculate, that the

transition from one state to the other, is triggered by a condition in which the

Josephson coupling energy between the two domains exceeds the thermal energy

at that bias point.

This work is also relevant for normal metal-superconductor-normal metal mix-

ing devices, called hot-electron bolometer (HEB) mixers [31]. In most practical

cases the superconducting material is thin NbN and gold (Au) normal pads are

used as antenna. Under the condition that no radiation is applied to an HEB,

the present analysis is helpful to understand the observed current-voltage char-

acteristics, which are analogous to the one shown in Fig. 8.6a [32] The resistive

properties for low bias and temperature will be dominated by the conversion re-

sistance at the interfaces (controlled by fT ). This regime will extend to a critical

current, analogous to Ic2 reported here, but with a value which may depend on

the electron-phonon relaxation which is present in a material like NbN, but is

negligible in our experiment with Al. Beyond this critical value the device is

most likely either fully in the normal state (beyond Ic3 as identified here), or in

the bimodal state (for lower biases between Ic3 and Ic4). The stronger electron-

electron and electron-phonon interaction in NbN as compared to Al, will bring

the longitudinal non-equilibrium, fL, closer to a local thermal profile. In case ra-

diation is applied to an HEB an overall increase in electron temperature occurs,

which brings the superconductor close to its transition point where thermally

activated phase slip events contribute to the resistivity. Hence, for a full under-

standing of the HEB mixers one needs to take into account two contributions

to the observed resistance: first the static conversion resistance inside the super-
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conductor near the interface between the normal metal and the superconductor,

described here, dominating for the unexposed devices, and second the resistance

due to time-dependent phase-slip events occurring at electron temperatures close

to the critical temperature of the superconductor, which dominates under actual

mixer operation [4].
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Chapter 9

Spin-dependent current conversion in a

superconducting wire

We have measured two probe transport properties of superconduct-

ing aluminum wires between ferromagnetic cobalt pads. We observe

a resistance, which is due to the conversion of a spin polarized current

into a supercurrent and depends on the orientation of the magneti-

zation of the cobalt pads. Compared to the normal state the spin

dependence of the conversion resistance is strongly enhanced, even

though the resistance of the wire is reduced. A similar dependence

is seen in the critical current of the wires. The spin dependence of

the superconducting state makes it possible to investigate induced

magnetism in these Al wires, for example using local ferromagnetic

tunneling probes.
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9.1 Superconducting proximity effect in ferro-

magnets

Superconductivity and ferromagnetism are two different, electronic phases ex-

hibiting long range order, which are seemingly incompatible. In a superconductor,

electrons of opposite spin and momentum condense to form spin-neutral (singlet)

Cooper pairs. In contrast, the electron spins in a ferromagnet align due to an

effective exchange interaction. The magnetic exchange field h induces a Zeeman

splitting between the energy bands of spin-up and spin-down electrons, which

results in a spin dependent shift in the electronic wave vectors kF↑,−kF↓ at the

Fermi-level. This means that in the presence of an exchange field, Cooper pairs

acquire a net momentum δk = kF↑ − kF↓ which causes the phase of the pairs to

oscillate in space. Dephasing between spin-up and spin-down electrons results in

a suppression of the pair amplitude.

However, already in 1964 a state was proposed in which superconductivity

and ferromagnetism could coexist [1, 2, 3]. In this state the magnetization would

rotate over a length scale which is small compared to the superconducting coher-

ence length ξ. Therefore the Cooper pairs sample different magnetic domains and

do not suffer from the paramagnetic pair breaking. Experimentally, this state has

not been observed until today. Ferromagnet superconductor hybrid structures in

contrast, allow to study the coexistence of both states in a controlled environ-

ment. The spatial oscillation of the pairing amplitude has been observed in SFS

trilayers, where the thickness of the sandwiched ferromagnet was varied. Both a

predicted sign change in the supercurrent as a nonmonotonic dependence of the

superconducting critical temperature have been confirmed experimentally [4, 5].

The discovery of a long range proximity effect in ferromagnetic wires [6, 7]

revived the idea of spin triplet superconductivity [8], inspired by a model for

superfluid He3 [9]. These triplet Cooper pairs consist of electrons with a par-

allel spin which do not suffer from dephasing in an exchange field. To survive

in a disordered environment, it is required that their wave function is even in

space, but odd in frequency [10]. In 2006, strong indications for the existence

of odd triplet superconductivity were given by the observation of long range su-

percurrents through the 100 % spin-polarized half metal CrO2 by Keizer et al

[11].

Initially the generation of the triplet components was attributed to the pres-

ence of a rotating magnetization, such as can be found in a magnetic domain wall.

However it became clear that the interface between the ferromagnet and the su-

perconductor can play a major role [12, 13]. It can contain spin active scatterers,
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Figure 9.1: The magnetization of a superconductor-ferromagnet bilayer [16]. The

induced magnetization in the superconductor can be paramagnetic or diamagnetic,

depending on the microscopic properties of the interface [17].

or break time reversal symmetry. The triplet component can be generated near

the interface, in the ferromagnet (weak magnetization) or in the superconductor

(strong ferromagnet). Experimentally, reproducible control over the generation of

a triplet supercurrent has been achieved by the inclusion of a misaligned Co layer

in a SFS multilayer stack [14]. More recently, the use of the helical ferromagnet

Holmium serves as a generator of triplet superconductivity [15].

9.2 Induced magnetism in superconductors

The theoretical and experimental efforts to understand the superconducting prox-

imity effect in a ferromagnet, have led to a variety of unanticipated effects and rich

physics. The inverse effect, an induced magnetization in a superconductor by the

proximity of a ferromagnet, has been proposed theoretically but has hardly been

studied experimentally. Theoretically, a superconductor can acquire a magneti-

zation which is parallel or anti-parallel to the one of the ferromagnet, depending

on the transparency of the interface [16, 17]. An open question is how the inverse

proximity effect would be affected by the presence of triplet pair correlations,

e.g. on the density of states or (spin dependent) Andreev reflection. Experimen-

tally, the effect of a ferromagnet on a superconductor is mainly studied from a

perspective in which the main focus lies on spin injection in evanescent or long-

lived quasi-particle states [18, 19] or crossed Andreev reflection and entanglement

[20, 21]. Only in a recent paper, an induced magnetization in a superconductor

is explicitly assessed by use of the polar Kerr effect [22].

In this experiment we focus on the influence of ferromagnetic Co contacts

on the superconducting properties of Al nanowires (Fig. 9.2). Our main interest
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Figure 9.2: A superconducting Al nanowire connected to two ferromagnetic pads.

SEM pictures of two different designs (a) and (b). Schematic model of the structure

(c) and the current conversion process (d).

is the interaction between the ferromagnetic and superconducting ground state,

rather than the injection of long-lived quasiparticles. Therefore we use samples

with a clean interface, and measure at low temperatures and voltages, kBT, eV �
∆. We demonstrate that the two-point resistance of the Al wire is a sensitive

probe for the conversion processes near the interface, from a normal spin-polarized

current into a supercurrent.

In addition, the different geometry of the Co contacts allows us to change their

relative magnetization by applying a parallel magnetic field. We demonstrate that

the linear two-point resistance of the superconducting wires depends strongly

on the local spin polarization of the Co contacts. Although the resistance of

the superconducting wires is much smaller than in the normal state, this spin

dependent contact resistance is much bigger in the superconducting case, even in

absolute numbers.

We observe a similar behavior in the magnetic field dependence of the critical

current. A higher resistance results in a lower critical current, as both the dissi-

pation as the bias voltage for a fixed current scale with R(H). At slightly larger

fields we observe a strong enhancement of the critical current. This effect has

been observed before in various superconducting wires, and has been attributed

both to suppression of spin flip scattering [23, 24].
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Figure 9.3: The current voltage characteristic of samples 2a-2c, measured at a bath

temperature of 300 mK. (inset) At low temperature, the longer wires (800 & 1800

nm) have the same current conversion resistance (symbols: data, lines: model). The

shortest wire (400 nm) does not become superconducting.

9.3 Current conversion resistance and nonlinear

response

Figs. 9.2a and 9.2b show the two sample geometries measured. They consist

of a 100 nm wide Al superconducting wire, contacted by two elliptic Co ferro-

magnetic pads. The structures are realized using shadow evaporation through a

PMMA/PGMI double resist layer, at a base pressure of 1x10−7 mbar. First 20

nm Al is evaporated under an angle of 30◦ to create the superconducting wire.

In a second step a 35 nm Co layer is deposited under an angle of -30◦ to form

the contacts. The time between the two depositions is kept to a minimum (circa

10 min) to ensure a clean interface. The samples measured are fabricated in two

runs (1 and 2), the properties are listed in Table 9.1.

The resistance of three wires with a length between 400 and 1800 nm is shown

as a function of temperature in the inset of Fig. 9.3. The onset of superconductiv-

ity is observed as a steep drop in the resistance, as the temperature is decreased

below 1.4 K for the 1800 nm wire and 1.1 K for the 800 nm wire. In the shortest,

400 nm long wire no transition is measured. All of the three wires keep a finite
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# L A Rn ρ Tc ξ Rs

(µm) (nm2) (Ω) (µΩcm) (K) (nm) (Ω)

1a 1.0 100 x 20 25 4.42 - 80 12

1b 2.0 100 x 20 40 3.61 - 88 11

2a 0.4 100 x 20 8 2.87 <0.3 99 8.75

2b 0.8 100 x 20 14 2.75 1.2 101 8.5

2c 1.8 100 x 20 28 2.77 1.4 101 8

Table 9.1: Overview of the properties of the different samples: L - length, A - crossec-

tion (w x t - width times thickness), Rn - normal state resistance, ρ-resistivity, Tc -

critical temperature, ξ =
√
~D/2∆ - coherence length, Rs - low temperature resistance

in the superconducting state.

resistance down to the lowest temperature. This resistance has two contribu-

tions: (a) a contact resistance Rc located in the contact pads and (b) a current

conversion resistance Rs in the superconducting wire. The value of the contact

resistance Rc can be estimated as Rc ≈ 2 x 1.5Ω from the length dependence

of the normal resistance Rn = ρL/A + Rc. The remaining resistance Rs is due

to current conversion processes in the superconducting wire, near the interfaces

with the ferromagnetic contacts. In the superconductor, only a fraction of the

current in the superconductor is carried by evanescent normal electrons, which

can carry spin. These states, and thus the spin current in a superconductor,

decay exponentially on a length scale of a superconducting coherence length ξ

as the normal current is converted into a supercurrent. This conversion process

results in a dc electric field in the superconductor, and hence a resistance.[25, 26]

The conversion of a spin polarized current into an almost spinless current on the

other hand occurs mainly in the ferromagnet, as the spin flip length in our Co

pads is much shorter than in the Al wire. This leads to a spin accumulation at

the interface, and a potential drop ∆µ.

The response of the nanowires to driving with a current bias is shown in

Fig. 9.3, measured at 300 mK when the wire is in the superconducting state. For

increasing current, the resistance of the wire is relatively constant until the wire

switches abruptly to the normal state at a critical current Ic. This current is well

below the pair breaking current expected for these wires. In the previous chap-

ter, we discussed how Ic can be suppressed, because the injection of evanescent

quasiparticle states creates a non-thermal non-equilibrium throughout the driven

nanowire. In this case however, the reduction of Ic is considerably larger. This

might indicate an influence of the spin-polarization of the reservoirs, although

heating effects in the reservoirs can not be excluded in this particular geometry.
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leads to spin accumulation in the ferromagnet, and to charge accumulation in the

superconductor (b). Both processes contribute to the total current conversion resistance

but in our structures the potential drop in the superconducting wire is dominant.

9.4 Model for spin transport in superconduc-

tors

To include spin effects into the model used in Refs. [25] and [26], we model the

sample as depicted in Fig. 9.2c. Given the short elastic mean free path le we

assume the transport is diffusive, and adopt a two channel (spin-up and spin-

down) model [27]. We divide the structure in three different diffusive regions

(Fig. 9.2d), and match the spin dependent currents and potentials at the inter-

faces between them. The transport properties in the ferromagnet (region I) are

determined by a spin dependent conductivity σ↑,↓, which relate the current of

each spin channel to its spin specific potential: j↑,↓ = σ↑,↓∇µ↑,↓. An imbalance

between spin-up and spin-down electrons relaxes through spin flip processes over

a length λsf =
√
Dτsf :

D
∂2(µ↑ − µ↓)

∂x2
=
µ↑ − µ↓
τsf

, (9.1)

with D the spin averaged diffusion constant, and τsf the spin relaxation time.The

second region consists of the edge of the Al wire, and is driven normal by the

presence of the overlapping ferromagnetic pad. The superconducting wire (region

III) is described using the Usadel equations for dirty superconductors [28, 29],

with spin dependent distribution functions [30]. We assume our Al wires are one

dimensional, and short enough to ignore inelastic relaxation [31].

The resulting currents and potentials are schematically drawn in Fig. 9.4.

Deep in the ferromagnet the current is fully normal and has a spin polarization
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αF = σ↑−σ↓
σ↑+σ↓ . In contrast, almost all current in the superconductor is carried

by spinless singlet Cooper pairs as a supercurrent. This means two conversion

processes are taking place; a change in spin current and a conversion from a

normal into a supercurrent. The conversion of a normal current into a supercur-

rent requires the presence of a superconducting gap ∆ and can only happen in

the superconducting wire itself (region III). The conversion occurs over roughly

a coherence length ξ and leads to dc electric field in the superconducting wire

Rs ≈ ξρ/A, with ρ the resistivity and A the crosssection of the wire. The spin cur-

rent in the superconductor is carried by the small normal fraction of the current

and is proportional to exp(ξ/L).

This means we can apply the analysis of Refs. [25] and [26] to the tempera-

ture dependence of the zero bias resistance of the different wires. The resistance

which follows from this analysis is consistent with the measurements. However,

the used superconducting critical temperature Tc0 differs from wire to wire, while

they were fabricated in the same batch. This is also apparent from the resis-

tance versus temperature characteristic, where one would expect that the differ-

ent curves would overlap below the superconducting transition. The change in

spin current Js = j↑ − j↓ leads to spin accumulation near the interface between

the different regions, over a material specific spin relaxation length λsf . For the

Co pads this length (λsf ≈ 5-50 nm) is much shorter than for the Al wire (λsf ≈
1 µm). Therefore the major part of the spin current conversion occurs in the

ferromagnet, leading to an extra resistance:

Rconv =
α2
F (RsA)−1

(1− α2
F )σfλ

−1
sf + (RspinA)−1

Rs, (9.2)

The fact that the ‘total’ resistance of the superconductor is very low, while the

‘spin’ resistance is high means an increase in spin accumulation at the interface.

In addition a long spin flip length λsf or higher spin polarization αF will also give

rise to an increased spin conversion resistance.

In linear response this leads to a decoupled total current J and spin current

Jspin in the superconductor:

J = j↑ + j↓ =
µ↑ + µ↓
Rs

, Rs ≈
ξρ

A
,

Jspin = j↑ + j↓ =
µ↑ − µ↓
Rspin

, Rspin ≈
exp(ξ/L)ρ

A
. (9.3)
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Figure 9.5: (a) The normal state resistance shows hysteretic switching in a parallel

magnetic field. (b) The spin dependence of the resistance in the superconducting

(lower) state correlates with the one in the normal (upper) state, but is much stronger.

9.5 Magnetic field dependence and spin switch-

ing

To study spin-polarized transport in the superconducting state of the Al nanowires,

we measure the dependence of the conversion resistanceRs and the critical current

Ic on the relative spin orientation of the Co contacts (parallel or anti-parallel).

Because of the difference in width, the pads have different coercive fields. In a

parallel magnetic field, the wider contact pad will switch its magnetization first,

creating a situation in which the Co pads are oriented anti-parallel. If the field is

increased further, the more narrow pad will also switch and the magnetizations

are again parallel.

Fig. 9.5a shows the magnetic field dependence of the normal resistance Rn

of the Al wires at 4.2 K. Abrupt changes in Rn are observed for each of the

samples, indicating switches in the magnetization of the Co contacts. The size

of the switching effect is roughly ∆Rn = R↑↑ − R↑↓ ≈ 10 mΩ and seems not to

depend on the length of the wire, while one expects an inverse or even exponential

dependence:

∆Rn ∼ 1/L, L� λsf

∆Rn ∼ exp(−L/λsf ), L� λsf (9.4)

Possibly this discrepancy is related to magnetoresistance effects in the ferromag-
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observed, similar to the effects observed in the two-point resistance. At intermediate

fields the critical current is enhanced, before superconductivity is suppressed at high

fields.

netic contact pads (changes in magnetic domains at the interface). In principle

these can be excluded by performing nonlocal spin detection, but in this sample

geometry such a measurement is not possible.

In the superconducting state we observe a similar dependence of the con-

version resistance Rs on magnetic field. Fig. 9.5b compares the magnetic field

dependence of Rn and Rs of wire 2b. Although the resistance changes ∆R are

much bigger in the superconducting state, the transitions are less abrupt than in

the normal state. In addition there is a relatively large asymmetry in the resis-

tance at positive and negative magnetic fields, which is much less pronounced in

the normal state.

The magnetic field dependence of the critical current is shown in Fig. 9.6. We

distinguish three different effects : (a) at relatively low magnetic fields (0-500

mT), the critical current changes abruptly (b) at intermediate fields we observe

an enhancement of Ic, and (c) at high magnetic fields the critical current is

suppressed. The suppression at high fields can be understood as depairing of

the Cooper pairs due to a paramagnetic field effect. The upper critical fields

measured are of the order of a few Tesla, which is in agreement with our film

properties. An enhancement of the critical current has been observed in previous

measurements on thin Al wires and is attributed to the presence of spin flip

scatterers at the surface [23, 24].
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9.6 Conclusions and recommendations

We studied the current conversion resistance of a ferromagnet-superconductor in-

terface. We found the resistance to be dependent on the local polarization of the

ferromagnetic pads, and the effect is strongly enhanced in the superconducting

state compared to the normal state. The same dependencies are observed in the

critical current of the wires. At intermediate fields we observe an enhancement

of the critical current, an effect which we do not observe in the resistance. This

indicates the nature of the effect is different from charge imbalance relaxation

in the superconductor. The consistent behavior of the two probe resistance, to-

gether with the spin dependence of the superconducting state, proves this system

is promising to improve the understanding of induced magnetism in supercon-

ductors. Therefore it would be attractive to measure the magnetization and the

density of states of the wires locally with respectively ferromagnetic and normal

tunneling probes in a future experiment.
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Summary

In this thesis we study the electronic properties of driven heterostructures. We

focus on small, hybrid devices because they offer a unique playground to look

at the fundamental properties of solids. They consist of different materials with

distinct electronic phases which depend on interactions between electrons and

between electrons and the atomic lattice. Electrons in a normal metal behave as

free, independent particles, scattering on lattice vibrations, impurities or defects

in the atomic structures of the solid. In a superconductor, electrons attract each

other and form a collective state of bound Cooper pairs. This leads to a wealth

of intriguing phenomena such as infinite electrical conductivity, perfect magnetic

screening, and macroscopic coherence. In a ferromagnet, the electron spins align

due to the presence of an exchange interaction and the material acquires a net

magnetization.

Mesoscale devices are big enough for the emergence of such a collective macro-

scopic states as superconductivity or ferromagnetism. At the same time they are

small compared to relevant physical length scales and therefore depend on the

microscopic properties of the sample. The influence of interfaces and surfaces

becomes increasingly more important and the intuitive picture in which different

materials with bulk properties are connected by interfaces breaks down. Instead

the structure has to be considered as one whole with electronic properties which

change gradually on a microscopic level. Near interfaces, ordered electron states

compete and interfere, leading to unanticipated phenomena and rich physics. On

both sides of the interfaces, currents are carried by different charged carriers.

In a superconductor for example, a dissipationless current is carried by Cooper

pairs while in a ferromagnet a spin-polarized current is carried by normal elec-

trons. Current conversion processes near the interface lead to a resistance, spin

or charge imbalance, and relaxation. Due to their small size, the samples are

easily driven out of equilibrium. Even weak electric fields can heat the electron

system considerably. This leads to nonlinear behavior because collective states

such as superconductivity are affected by an electronic non-equilibrium and at

the same time drastically alter the thermal transport.
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The samples are deposited on a dielectric substrate. Although the electronic

transport occurs in the metal structures only, the dielectric environment has a

twofold influence. The electrical energy which is dissipated in the structures is

relaxed through the substrate. Hence the electro-thermal behavior of a device

can be dominated by the coupling to the substrate and its properties. In addition

the driving fields extend beyond the metallic components and interact with the

dielectrics.

Reality is complex and the conceptual framework to interpret experiments

necessarily includes considerable simplifications. Luckily, the fabrication of the

devices leads to certain limitations but also to an enormous freedom to explore a

variety of geometries, materials and techniques. This gives us the opportunity to

engineer model systems, which enhance the physical processes or properties. How-

ever, in every experiment it is necessary to assess the validity of the conceptual

framework used.

In Chapters 4, 5, and 6 of this thesis we study the influence of the substrate

on the properties of driven superconducting resonators. They consist of coplanar

waveguides along which gigahertz electromagnetic fields can travel. When the

length L of the superconducting line matches the wavelength λ of the signal,

the system becomes resonant. The associated resonant frequency f0 = λ/vph
probes the properties of the superconducting state because of its dependence on

the phase velocity vph. The losses in superconducting resonators are extremely

low; a signal can bounce back and forth around a million times before it is

dissipated. This makes superconducting resonators extremely sensitive. However,

the electromagnetic fields extend beyond the superconducting waveguide and

penetrate into the dielectric substrate, the vacuum, and the interfaces between

them. Interactions of the fields with dipole moments of two level systems (TLS)

lead to increased losses and fluctuations in the phase of the field. The origin of the

two level systems is most probably the presence of different atomic configurations

in amorphous dielectrics. By carefully engineering the dielectric environment of

the resonators, we severely reduce the influence of TLS. This leads to lower losses

(Chapter 4)) and reduce phase noise (Chapter 5 ) in NbTiN resonators. At the

same time we identify pieces of bare Si substrate in between the superconducting

lines as the region with TLS that dominates the behavior of the resonators.

Because of their excellent sensitivity, superconducting resonators are used as

radiation detectors. Photons with energies above the superconducting gap break

Cooper pairs into excess quasiparticles. After excitation, the excess quasiparticles

recombine over a typical timescale τrec. Their energy is converted into vibrations

of the atomic lattice (phonons). If the generated phonons quickly escape into

the substrate, this leads to an effective cooling of the resonator. In practice
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however, the hot phonons can transfer their energy again to the electron system

by breaking Cooper pairs before they escape to the substrate. In Chapter 6 we

demonstrate how this retrapping effect leads to a tenfold enhanced recombination

time for resonators on a thin dielectric SiNx membrane. In addition we use

microrefrigerators based on normal metal superconductor tunnel junctions to heat

or cool the phonon temperature of the membrane, while we use the resonator as

a sensitive thermometer.

Microrefrigeration in normal metal superconducting tunnel junctions (NIS)

is based on the presence of an energy gap ∆ in the density of states of the

superconductor. Therefore, is impossible for ‘cold’ electrons with a low energy

to tunnel from the normal metal into the superconductor, while ‘hot’ electrons

can. By extracting only hot electrons from the normal region, the electron bath

is cooled. In Chapter 6 arrays of 22 parallel Al/AlOx/Cu/AlOx/Al junctions

are used to cool a SiNx membrane with Aluminum superconducting resonators.

Because only the electrons of the Cu island are cooled, we use large Cu cooling fins

to thermalize the membrane phonons to the cold Cu electron bath. Subsequently

the electron bath of the resonator is cooled because of the thermal coupling to

the phonons in Aluminum thin film. As we pointed out, this change in electron

temperature of the resonator can be conveniently measured as a change in its

resonance frequency. To increase the cooling power of NIS microrefrigerators

it would be favorable to move to more transparent tunnel barriers. However,

commonly used AlOx barriers are laterally inhomogeneous, which degrades the

cooling performance. In Chapter 7 we analyze theoretically and experimentally

the influence of the uniformity of highly transparent barriers on the charge and

energy transport. We demonstrate that AlN barriers have only small lateral

variations, comparable to a variance in the barrier thickness of roughly one atomic

layer. Furthermore, the high current densities lead to a strong, non-thermal

electron distribution in the normal island of stacked Nb(Al)/AlN/Al/AlN/Nb

tunnel structures.

In Chapter 8 we focus on the interplay between electronic non-equilibrium

and the superconducting properties in a driven Aluminum nanowire. Normal

electrons are injected into the superconducting wire from two massive Cu reser-

voirs. We demonstrate that this system has two distinct superconducting states

under current-driving, which we call a global and a bimodal state. For low bias

we find a global superconducting state with most of the resistance occurring as

a current-conversion resistance at the ends of the superconducting wires where

normal current enters. Although resistive we demonstrate that the whole wire

including the edges continues to be in one coherent superconducting state. This

state hardly changes for increasing current, until it switches abruptly to the nor-
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mal state. On a microscopic level the distribution function changes considerably

and is strongly different from the commonly used parabolic temperature profile.

For high bias, decreasing the current from a fully normal state, we find that the

superconducting state emerges as two decoupled domains at the ends of the wire.

The vicinity of the cool equilibrium reservoirs favors the nucleation of the super-

conducting state at these ends, while strong non-equilibrium at the center of the

wire continues to suppress the superconductivity. Upon further lowering of the

bias current, the two domains grow in strength until the wire switches back to

the low resistive, globally superconducting state.

In Chapter 9 we study, in a similar system, the inverse proximity effect of

a strong ferromagnet on a superconductor. The presence of the ferromagnet

locally suppresses superconductivity, but might also induce a magnetization in

the superconductor which depends on the nature of the interface. We explore

experimentally how a spin-polarized current from ferromagnetic contacts alters

the state of a superconducting nanowire. We measure a spin dependence of the

two-point resistance of the wire, which is associated with the conversion of a

spin-polarized normal current into a supercurrent. In addition we observe similar

dependencies in the critical current of the wires. The consistent behavior of the

two-probe resistance, together with the spin dependence of the superconducting

state, proves this system is promising to improve the understanding of induced

magnetism in superconductors. Therefore it would be advantageous to measure

the magnetization and the density of states of the wires locally with respectively

ferromagnetic and normal tunneling probes.

Nathan Vercruyssen

Delft, May 2013



Samenvatting

In deze thesis bestuderen we de eigenschappen van elektronen in vaste stoffen.

Daartoe beschouwen we elektronentransport in kleine, hybride structuren. Deze

laatste bestaan uit verschillende materialen, met verschillende atoomroosters, in-

teracties en daarom ook verschillende elektronische grondtoestanden. Elektronen

in een normaal metaal gedragen zich als vrije, individuele deeltjes die botsen op

roostertrillingen, onzuiverheden en defecten in het materiaal. In een supergelei-

der vormen de elektronen een collectieve, macroscopische toestand van gebonden

Cooperparen. Dit leidt tot exotische materiaaleigenschappen zoals het totaal

verdwijnen van elektrische weerstand, maar ook een perfecte afscherming van

magnetische velden. In een ferromagneet ontstaat er een spontaan magneetveld

doordat de spins van de elektronen uitlijnen.

Mesoscopische structuren zijn groot genoeg voor het ontstaan van dergelijke

spontaan geordende elektronische toestanden zoals supergeleiding of ferromag-

netisme. Tezelfdertijd zijn de structuren klein ten opzichte van relevante fysische

lengteschalen, waardoor de structuur als één geheel beschouwd moet worden in

plaats van een aaneenschakeling van aparte entiteiten. Microscopische processen

worden zichtbaar en de grens- en oppervlakken van de materialen domineren het

gedrag. Competitie en interferentie tussen de elektronische toestanden van ver-

schillende materialen in een hybride structuur, leidt tot onverwachte fenomenen

en nieuwe fysische inzichten. Zo wordt aan een supergeleidend-ferromagnetisch

contact een weerstandsloze superstroom omgezet in een spin-gepolarizeerde nor-

male stroom. Deze omzetting gebeurd over een lengteschaal die afhangt van

de microscopische fysische processen en leidt tot een extra conversieweerstand.

Het kleine volume van de structuren zorgt ervoor dat de elektronen gemakke-

lijk uit thermisch evenwicht gebracht worden. Zo kan zelfs een klein elektrisch

stroompje een grote temperatuursverandering teweegbrengen. Het elektronische

en thermische transport hangt af van de elektronische grondtoestand, maar deze

grondtoestand is op zijn beurt afhankelijk is van de temperatuur, wat leidt tot

niet-lineair gedrag.

De structuren worden steeds op een substraat gedeponeerd. Hoewel het elek-
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tronentransport uitsluitend in de metalen, geleidende structuren plaastvindt, oe-

fent de diëlektrische omgeving een tweevoudige invloed uit. Ten eerste wordt de

energie die vrijkomt door elektrische dissipatie uiteindelijk afgevoerd door het

substraat. Daarnaast strekken de elektromagnetische velden zich ver uit, wat

leidt tot interactie met de diëlektrica.

De realiteit is complex en elk conceptueel kader waarbinnen experimenten

gëınterpreteerd worden bevat beduidende vereenvoudigingen. Gelukkig bestaat

er een enorme vrijheid in het ontwerp en de fabricage van de experimentele struc-

turen om verschillende geometrieën, materialen en technieken te combineren.

Desondanks is het steeds noodzakelijk om het gebruikte conceptuele kader, met

zijn vereenvoudigingen, te toetsen aan de waarnemingen.

In Hoofdstukken 4, 5 en 6 van deze thesis bestuderen we de invloed van het

substraat op de eigenschappen van supergeleidende resonatoren. Deze laatste

bestaan uit golfgeleiders voor elektromagnetische straling met frequenties in het

gigahertz gebied. Waneer de lengte van zulke supergeleidende lijnen overeenkomt

met de golflengte λ van het signaal, wordt de lijn resonant. De overeenkomstige

frequentie f0 = λvph hangt af van de fasesnelheid vph en is daardoor afhankelijk

van de eigenschappen van de supergeleider. Ze zijn ook erg gevoelig, omdat

het gebruik van een supergeleider erg lage verliezen met zich meebrengt; een

elektronisch signaal kan wel een miljoen keer heen en weer reizen in de resonator

voor het gedissipeerd wordt. De elektromagnetische golven strekken zich echter

uit tot ver buiten de supergeleider; ze doorkruisen het vacuum, het substraat

en de grensvlakken in de omgeving. Interacties met dipoolmomenten van het

diëlektricum leiden tot een toename van elektronische verliezen en ruis. Door een

zorgvuldig ontwerp en fabricage van het diëlektricum rond de resonatoren, slagen

we erin om zowel de verliezen (Hoofdstuk 4 ) als de ruis (Hoofdstuk 5 ) gevoelig

te verminderen. Tezelfdertijd identificeren we het aan de lucht blootgestelde

substraat tussen de resonerende lijnen als de dominante bron ervan.

Dankzij hun goede gevoeligheid worden supergeleidende resonatoren gebruikt

als stralingsdetector. Lichtdeeltjes (fotonen) met een voldoende hoge energie

kunnen Cooperparen breken en crëeren zo vrije quasideeltjes. Dit bëınvloedt

de resonantiefrequentie van de resonator wat nauwkeurig gemeten kan worden.

Deze quasideeltjes recombineren echter terug tot Cooperparen in een random

proces over een tijdspanne τrec. Daarbij wordt er energie van de quasideeltjes

omgezet in roostertrillingen (fononen). Als deze fononen van de supergeleidende

film ontsnappen naar het substraat wordt deze energie effectief afgevoerd. In de

praktijk breken deze ‘warme’ fononen echter dikwijls opnieuw een Cooperpaar

vooraleer ze ontsnappen. In Hoofdstuk 6 tonen we aan hoe dit effect de recom-

binatie tijd gevoelig verhoogd in resonatoren op een dun membraan. Bovendien
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gebruiken we microscopische koelers om de temperatuur van deze fononen artifi-

cieel te verhogen of te verlagen.

Deze koeling maakt geen gebruik van gassen of vloeistoffen, maar is volledige

op vastestoffysica gebaseerd. We gebruiken de verschillende eigenschappen van

supergeleiders en normale metalen om door middel van een elektrische stroom

ook een thermische stroom te genereren. Deze laatste voert warmte van het

normale metaal naar de supergeleider. In Hoofdstuk 6 worden 22 van dergeli-

jke vastestofkoelers gebruikt om een membraan met daarop de supergeleidende

resonatoren af te koelen. Om grotere temperatuursverschillen te bekomen zou

het nuttig zijn om krachtigere koelers te ontwerpen, die een grotere stroom kun-

nen voeren. De meeste koelers zijn echter gebaseerd op aluminiumoxide, een

materiaal dat door zijn inhomogeniteit problematisch is bij grote stroomdichthe-

den. Daarom onderzoeken we experimenteel en theoretisch hoe een meer uniform

materiaal als aluminiumnitride het koelvermogen zou kunnen verbeteren. We

bekijken ook hoe zulke grote thermische stromen het elektronische systeem ver

uit evenwicht kunnen brengen.

In Hoofdstuk 8 beschouwen we de interactie tussen een elektronisch niet even-

wicht en de supergeleidende eigenschappen van een aluminium draadje. Daar-

toe injecteren we ‘hete’ elektronen vanuit massieve koperen reservoirs in de su-

pergeleidende nanodraad. Wanneer we dit doen, observeren we twee verschil-

lende supergeleidende toestanden: een globale en een bimodale toestand. Voor

relatief kleine stromen is de draad in de globale supergeleidende toestand, met

een elektrische weerstand die veroorzaakt wordt door de omzetting van een nor-

male stroom naar een superstroom. Dit proces vindt plaats in de supergeleider,

die daardoor toch een weerstand krijgt. Voor grote stromen ontstaat er een sterk

niet-evenwicht in de draad, doordat de energie van de gëınjecteerde elektronen

steeds groter wordt. Daardoor verdwijnt de globale supergeleidende toestand

abrupt en wordt de draad normaal. Wanneer de stroom vervolgens weer kleiner

gemaakt wordt, ontstaan er twee kleine supergeleidende eilandjes aan de uitein-

des van de draad, dit is de bimodale toestand. Ze ontstaan in de buurt van de

normale reservoirs omdat deze relatief koud zijn, waar het midden van de draad

sterk opgewarmd wordt door dissipatie. Wanneer de stroom verder vermindert,

groeien de supergeleidende eilandjes tot ze elkaar raken. Op dat moment neemt

de draad weer de globale toestand aan.

In Hoofdstuk 9 bekijken we in een gelijkaardig systeem de invloed van fer-

romagnetische reservoirs op een supergeleidende draad. De aanwezigheid van

een ferromagnetisch materiaal onderdrukt supergeleiding, maar kan tegelijkertijd

ook magnetische eigenschappen induceren in de supergeleider. We meten we op

welke manier de weerstand van een supergeleidend draadje afhangt van de mag-
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netische polarisatie van de reservoirs. We observeren een effect dat groter is dan

wanneer de draad normaal is. Deze spinafhankelijkheid observeren we ook in de

stroom, waarbij het draadje van de supergeleidende toestand overgaat naar de

normale toestand (kritische stroom). Het consistente gedrag van weerstand en

kritische stroom in combinatie met de spinafhankelijkheid maken deze geometrie

aantrekkelijk voor verdere experimenten om magnetisme in supergeleiders te be-

grijpen. Daartoe zou een extra ferromagnetisch of normaal draadje nodig zijn om

lokaal de eigenschappen van de supergeleidende draad te meten.

Nathan Vercruyssen

Delft, Mei 2013
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a 1x1 mm2 sample. Pieter, if one day there is a quiz on dutch and vegetables,

we should subscribe. Alibey, thanks for letting me win in ping-pong and for

your friendship. Jaime, thanks for joining a ‘small’ bicycle tour, although with

relaxing frisbee at the beach. Thanks to Cosmonanorunners Akira, Alessandro,

Rik, Dorine, Bastian, and Cristina for enduring running with me. Dav́ıd, we

will run a marathon together! Thanks to Dàvid for cycling with me and the

many coffees in the morning. Also thanks to Dennis, Mihai, Morris, Pieter-Jan,

Jochem, students and former group members. Marc, if you join the group, it will

be my turn to visit Delft for enjoying Belgian beers together. Thanks to Yuan,

for the honor of being his paranymph. Akira, discussing physics with you always

inspires me with the friday afternoon club as a climax! In short, I feel grateful

to have been part of this enthusiast group!

Finally, this work would have been impossible without the unconditional sup-

port from friends and family, and the love of the most caring person during all

of these years, Valérie. Thank you.


