
Model-Driven Evolution

of Software Architectures

Model-Driven Evolution of Software Architectures

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 27 november 2007 om 12:30 uur

door

Bastiaan Stephan GRAAF

informatica ingenieur

geboren te Den Haag

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr. A. van Deursen, Technische Universiteit Delft, promotor

Prof.dr.ir. H.J. Sips, Technische Universiteit Delft

Prof.dr.ir. A. Verbraeck, Technische Universiteit Delft

Prof.dr. M.G.J. van den Brand, Technische Universiteit Eindhoven

Prof. Dr.rer.nat. R. Koschke, Universität Bremen

Dr. L. Somers, Océ en Technische Universiteit Eindhoven

The work in this thesis has been carried out under the auspices of the re-

search school IPA (Institute for Programming research and Algorithmics).

The research described in this thesis was made possible through suppport

of SenterNovem (Moose project) and NWO (Reconstructor project).

IPA Dissertation Series 2007-16

Copyright c© 2007 by Bas Graaf

About the cover: The cover shows a fragment of Johannes Vermeer:
‘View on Delft’, Mauritshuis, The Hague (ca. 1661-1664. Oil on canvas)

and a picture taken from the same viewpoint by René van der Krogt in

May 2006.

Printed by Universal Press, Veenendaal

ISBN: 978-90-9022390-2

Preface

At last! Time has come to write the preface to my PhD-thesis. During the

almost five and a half years it took me to arrive at this point, I started to

compare the process of doing a PhD with the running exercises I do in be-

tween two football seasons. I always start very enthusiastic and motivated;

halfway I doubt that I will ever make it and almost regret to have started;

near the end I try hard to put in all remaining energy to make it to the

finish; and afterwards I feel good, happy, and proud about what I’ve done.

Like I feel now. One big difference is that during my PhD-career I encoun-

tered many people that helped me or that made the whole exercise more

pleasant. Those people deserve to be acknowledged. Well, here it goes.

If crossing the finish line has to be attributed to one person, than that

person has got to be Arie van Deursen. Arie, I am very grateful to you for

‘adopting’ me as a PhD-student. For me the best remedy to overcome seem-

ingly dead ends in my research or when writing articles was a conversation

with you. You have been a truly inspiring teacher! For this and many other

reasons it was a pleasure to work with you.

I want to thank Hans Toetenel and Jan Dietz for talking me into this

excercise in the first place. I am also grateful for Hans’ supervision during

the first phase of my work as a PhD-student.

Of course somebody has to read the result of all that work. For this, my

gratitude goes to the members of the examination committee: Prof. H.J.

Sips, Prof. A. Verbraeck, Prof. M.G.J. van den Brand, Prof. R. Koscke, and

Dr. L. Somers.

I’ve had the opportunity to work in several research projects: Moose,

Merlin, Ideals and Reconstructor. During all these projects I worked to-

gether with interesting and inspiring people. Thank you all for that! More

in particular, I want to thank Rini van Solingen for all kinds of general

advice on how to succeed as a PhD-student. Also I want to specially thank

Sven Weber as a co-author of one of the publications on which this thesis is

based.

v

vi Preface

Furthermore, I want to mention all (former) colleagues of the software

engineering department for all the nice lunches, drinks, and diners. In

particular I am grateful to Hylke van Dijk and Marco Lormans. Hylke as a

co-author of two articles on which this thesis is based, and for asking those

nasty questions all the time. With Marco I worked together already since

the beginning of our master-thesis project seven years ago, all that time

as roommates. Most working trips have been quite memorable because of

him. Thanks!

Finally, I want to thank Daan for being patient enough to cope with me

being almost finished for a such a long time and, putting on hold all other

plans; for being impatient enough to apply the right amount of pressure;

and for being my girl-friend all the way.

Bas Graaf

Delft, August 2007

Contents

Preface v

List of Figures x

Abbreviations xiii

1 Introduction 1
1.1 Problem Description: Evolution of Software Architectures . 4

1.2 Objectives . 7

1.2.1 Integration in Practice 7

1.2.2 Product Lines . 7

1.2.3 Model-Driven Engineering 8

1.3 Approach . 9

1.4 Overview . 10

1.5 Origin of Chapters . 13

2 Background 17
2.1 Software Evolution . 17

2.2 Architecture-Driven Software Development 20

2.2.1 Software Architecture 20

2.2.2 Software Architecture Usage 22

2.2.3 Software Architecture Design 23

2.2.4 Software Architecture Description 24

2.2.5 Software Architecture Evaluation 25

2.2.6 Software Product Lines 26

2.3 Model-Driven Engineering . 27

2.3.1 Modelling . 28

2.3.2 Metamodelling . 29

2.3.3 Model Transformations 32

2.3.4 MDE and Other Technological Spaces 37

vii

viii Contents

2.4 Model-Driven Evolution of Software Architectures 38

3 Embedded-Software Engineering: The State of the Practice 41
3.1 Introduction . 41

3.2 Methods and Scope . 42

3.3 Embedded-Software Development Context 45

3.4 Requirements Engineering Results 47

3.4.1 Requirements Specification 48

3.4.2 Requirements Management 49

3.5 Software Architecture Results 50

3.5.1 Software Architecture Design 50

3.5.2 Software Architecture Description 51

3.5.3 Software Architecture Evaluation 52

3.5.4 Reuse . 53

3.6 Discussion . 54

3.7 Outlook . 55

4 Evaluating an Embedded Software Reference Architecture
– Industrial Experience Report – 57
4.1 Introduction . 57

4.2 Overview of the Reference Architecture 59

4.2.1 Business Drivers . 59

4.2.2 Reference Architecture 60

4.2.3 Structure . 61

4.2.4 Usage . 61

4.3 Evaluation Approach . 63

4.3.1 Selection of Evaluation Method 63

4.3.2 Tailoring SAAM . 65

4.4 Conducting the Evaluation . 67

4.4.1 Preparation . 67

4.4.2 Scenarios . 67

4.4.3 Execution . 68

4.4.4 Overall Evaluation . 70

4.5 Discussion . 71

4.5.1 Reference Architecture 71

4.5.2 Distributed SAAM . 73

4.6 Related Work . 75

4.7 Conclusion . 76

5 Model-Driven Consistency Checking of Behavioural
Specifications 77
5.1 Introduction . 77

5.2 Running Example . 80

Contents ix

5.3 Related Work . 82

5.4 Model-Driven Consistency Checking 83

5.4.1 Enabling Technologies 83

5.4.2 Behavioural Modelling 85

5.4.3 Consistency Checking Approach 87

5.5 Generating State Machines 88

5.5.1 Instantiating a Source Model 88

5.5.2 Model Transformations 89

5.6 Application to Océ . 94

5.6.1 Source Model Normalisation 94

5.6.2 Results . 95

5.7 Discussion . 98

5.8 Conclusions . 101

6 Model-Driven Conformance Checking of Structural
Specifications 103
6.1 Introduction . 103

6.2 Running Example . 105

6.3 Approach . 108

6.3.1 Conformance Checking System 108

6.3.2 Model-Driven Conformance Checking 109

6.4 Viewpoints and Metamodels 110

6.4.1 Component-and-Connector Views 111

6.4.2 Module Views . 112

6.5 Mappings and Model Transformations 114

6.5.1 Model Population . 114

6.5.2 Model Comparison . 118

6.5.3 Model Presentation . 121

6.6 Discussion . 121

6.6.1 Modelware . 121

6.6.2 Improving the Approach 123

6.7 Related work . 125

6.8 Conclusions . 126

7 Model-driven Migration of Supervisory Machine Control
Architectures 129
7.1 Introduction . 129

7.2 Related Work . 132

7.3 Migration Context . 133

7.3.1 Supervisory Machine Control 133

7.3.2 Running Example: A Wafer Scanner 134

7.3.3 Concerns for Supervisory Machine Control Systems . 135

7.4 Model-Driven Migration . 136

x Contents

7.5 Source Metamodel . 138

7.6 Normalisation Rules . 143

7.7 Target Metamodel . 147

7.8 Transformation . 151

7.8.1 The Atlas Transformation Language 152

7.8.2 Basic Target Model Elements 153

7.8.3 Concern-Based Transformation Rules 156

7.8.4 Transformation Results 159

7.9 Evaluation . 161

7.10 Conclusions and Future Work 165

8 Visualisation of Domain-Specific Modelling Languages
Using UML 167
8.1 Introduction . 167

8.2 Background . 169

8.2.1 Software Architecture 169

8.2.2 Enabling MDE Technologies 171

8.3 Model-Driven Architectural Views 172

8.3.1 MDAV Framework . 172

8.3.2 MDAV Process . 173

8.4 Using MDAV to Generate Views 174

8.4.1 Module-Uses View . 174

8.4.2 Component-and-Connector View 177

8.5 Industrial Application . 181

8.6 Discussion . 185

8.7 Related Work . 186

8.8 Concluding Remarks . 187

9 Conclusion 189
9.1 Contributions . 190

9.2 Integration in Practice (RQ1) 190

9.3 Software Product Lines (RQ2) 193

9.4 Model-Driven Engineering (RQ3) 194

9.5 Support for Evolution of Software Architectures (RQ0) . . . 199

9.6 Future Work and Recommendations 201

References 205

Summary 221

Samenvatting 225

Curriculum Vitae 229

List of Figures

1.1 ASML wafer scanner . 2

1.2 Software evolution tasks . 5

1.3 Océ copier . 12

2.1 Complexity vs. size for subsequent revisions of copier software 18

2.2 Fundamental relations between system, model, and meta-

model . 28

2.3 Layered MDE modelling stack 30

2.4 Metamodel and conforming model 31

2.5 Conforms to relation in MDE 31

2.6 Model transformation megamodel 33

2.7 A metamodel for simple class models 34

2.8 Three-dimensional evolution framework 38

3.1 The decomposition of the embedded-systems-development

process . 46

3.2 Embedded-systems-development stakeholders and other fac-

tors . 47

4.1 Main flows in a copier. 59

4.2 The reference architecture and derived projects. 62

4.3 SAAM steps . 64

4.4 SAAM results . 69

5.1 Typical development process 78

5.2 Architecture for copier engines 81

5.3 Constraints . 85

5.4 Collaborations (simplified) . 86

5.5 State machines . 86

5.6 Flat state machine . 92

xi

xii List of Figures

5.7 Example scenario: request a copier engine to go to standby

while it is running . 96

5.8 Merged state model of ESM (fragment) 97

6.1 Aligning architecture and implementation 104

6.2 Digital music box reader system 106

6.3 Architectural views . 107

6.4 Conceptual Conformance Checking System 109

6.5 Generic metamodel element 111

6.6 Metamodels . 113

6.7 Reconstructed MADL models 117

6.8 Reconstructed CPADL models 119

6.9 Merged MADL conformance model 119

6.10 Merged CPADL conformance model 120

7.1 Machine control context . 133

7.2 Simplified layout of a wafer scanner 134

7.3 Generic two-phased migration approach 137

7.4 Source metamodel . 139

7.5 Process wafer request . 141

7.6 Unload wafer request . 142

7.7 Normalised process wafer request 148

7.8 Normalised unload wafer request 149

7.9 Module view for the product-line SMC architecture 150

7.10 Target metamodel . 151

7.11 Results for unload wafer request 160

7.12 One of three concurrent state models (made anonymous) . . 164

8.1 MDAV framework . 172

8.2 C&C model of CaPiTaLiZe (ACME) 174

8.3 MADL . 175

8.4 CCADL . 178

8.5 XML metamodel . 180

8.6 Task-resource metamodel, model, and UML representation . 184

9.1 Megamodel for model-driven evolution of software architec-

tures . 195

Abbreviations

ADL architecture description language

ALMA architecture-level modifiability analysis [Bengtsson et al., 2004]

API application programming interface

AST abstract syntax tree

ATAM Architecture Tradeoff Analysis Method [Clements et al., 2002b]

ATL Atlas Transformation Language [Jouault and Kurtev, 2005]

COTS commercial off-the-shelf

CMM Capability Maturity Model [Humphrey, 1989]

DSAAM Distributed SAAM

DSL domain-specific language

DSML domain-specific modelling language

DTD Document Type Definition

EBNF Extended Backus-Naur form

EMF Eclipse Modeling Framework1

FSM finite state machine

GMF Graphical Editing Framework2

GPL general-purpose language

ITEA Information Technology for European Advancement3

1http://www.eclipse.org/emf (June 2007)
2http://www.eclipse.org/gmf (June 2007)
3http://www.itea-office.org (June 2007)

xiii

xiv ABBREVIATIONS

MDA Model Driven Architecture1

MDE model-driven engineering

MDR Metadata Repository2

MOF MetaObject Facility3

MOOSE Software EngineeringMethOdOlogieS for Embedded Systems4

OCL Object Constraint Language5

OMG Object Management Group6

QVT Query/View/Transformation [OMG, 2005]

SAAM Software Architecture Analysis Method [Kazman et al., 1996]

SEI Software Engineering Institute7

SMC supervisory machine control

SPICE Software Process Improvement and Capability dEtermina-

tion [Emam et al., 1997]

SVG Scalable Vector Graphics8

UML Unified Modeling Language9

XMI XMLMetadata Interchange10

XML Extensible Markup Language11

XSLT Extensible Stylesheet Language Transformations12

1http://www.omg.org/mda (June 2007)
2http://mdr.netbeans.org (June 2007)
3http://www.omg.org/mof (June 2007)
4http://www.mooseproject.org (June 2007)
5http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)
6http://www.omg.org (June 2007)
7http://www.sei.cmu.edu (June 2007)
8http://www.w3.org/Graphics/SVG (June 2007)
9http://www.uml.org (June 2007)
10http://www.omg.org/mda/specs.htm#XMI (June 2007)
11http://www.w3.org/XML (June 2007)
12http://www.w3.org/TR/xslt (June 2007)

Chapter1
Introduction1

Most software that is really used is exposed to many forces that require

it to change, such as changing user requirements or a changing operating

environment. As a result software changes continuously. This process is

called software evolution [Lehman and Belady, 1985].

When changes are required to a software system, the question is

whether they can be implemented within the bounds set by the current

architecture or require a redesign of the architecture.

The former causes types of software evolution referred to as architec-

tural drift and erosion [Perry and Wolf, 1992]. Architectural drift occurs

when the current architecture is not well-understood by the developers in-

volved in making these small-scale changes. As a result their changes are

based on a software architecture that is different from the intended archi-

tecture. Architectural erosion is caused by violations of the architecture.

Both have a negative effect on the maintainability of software.

Eventually architectural drift and erosion make a redesign of the archi-

tecture unavoidable. In this thesis we consider this type of software evolu-

tion, that is, on the level of architecture. Although we discuss the concepts

of software architecture extensively in Chapter 2, for now it suffices to de-

scribe architecture as the high-level or global design of a software system.

To illustrate the need for and implications of architectural changes, con-

sider the following situation at ASML, a company that develops manufac-

turing machines for the semiconductor industry. A new architecture for

the control software of one of ASML’s products, a so-called wafer scanner

(see Figure 1.1 on the following page), is investigated [Van den Nieuwelaar

et al., 2003]. This architecture is based on generic reusable software compo-

nents and enables the (automatic) generation of application-specific parts

1This chapter is based on: Graaf, Bas. Model-driven evolution of software architectures.

In Proceedings of the 11th European Conference on Software Maintenance and Reengi-

neering (CSMR 2007), pages 357–360. IEEE Computer Society, 2007

1

2 Chapter 1. Introduction

Figure 1.1: ASML wafer scanner

of control components from a declarative specification. As a result, the re-

quired effort for development and maintenance of the control software can

be reduced.

A problem that remains is the migration of existing control components

to this new architecture. A possible approach is to start-over and develop

these components from scratch according to the new architecture. In this

case this means that for each control component a new specification has

to be created. Unfortunately, the knowledge incorporated in the code and

designs of already existing control components will be largely lost this way.

Considering the fact that the current behaviour of these components does

not need to be changed, this constitutes a waste of knowledge and re-

sources, and an unnecessary risk. An alternative solution is to derive the

specifications of these components for the new architecture from their ex-

isting specifications.

The scenario sketched above, which is fully explored in Chapter 7, is

about a changing or evolving software architecture and illustrates some

of the issues we address in this thesis. Many companies are confronted

with similar scenarios. An example in a completely different domain is the

problem of making existing information systems accessible via the World

Wide Web. This typically also requires architectural changes. Many other

scenarios can be mentioned that involve architectural changes for reasons

that include maintainability and functionality.

However, while often required, architectural changes typically come

with a significant risk and are expensive to perform. Moreover, when the

objective of such changes is maintainability improvement, as in the sce-

nario above, their benefits are only experienced later on. This makes such

3

changes problematic. Therefore, our goal is to support evolution of software

architectures such that risk and costs are reduced.

Considering the described scenario, next to the question of how to mi-

grate existing components, other questions arise, such as how to evalu-

ate that such changes are necessary, and, whether they can be performed

(semi-) automatically.

Another relevant aspect of this scenario is that it deals with a software

architecture based on a platform (i.e., the generic reusable components),

which applies to a whole series of systems (i.e., the different control sys-

tems in a wafer scanner). Such architectures are referred to as product-

line architectures [Clements and Northrop, 2002]. To realise economies of

scale, a trend in industry is to integrate the development of a whole set of

similar products in a single (software) product line. The development of a

software product line is based on a product-line architecture that defines

the commonality and variability between the product-line members (i.e.,

individual products of the product line). In the context of software archi-

tecture evolution, product-line architectures are a complicating factor and,

as we will explain in this thesis, require special attention.

Another complicating factor to achieve our goal of supporting software

architecture evolution is the integration of evolution support in industrial

practice. Industry is reluctant to adopt new software engineering technolo-

gies. An important reason for this is that it tends to have a risk-avoiding

attitude. This problem is also addressed in this thesis.

We will search the solution in the area of model-driven engineering. We

adopt the vision of model-driven engineering (MDE) for the purpose of sup-

porting software evolution. MDE is the term for a new generation of soft-

ware development approaches in which models play a dominant role and in

which (part of) the development steps are performed by (automatic) model

transformations [Bézivin, 2005]. In these approaches software models are

gradually transformed into source code, which typically executes on top of

a software platform.

MDE approaches are enabled by the availability of standards, such as

for modelling and transformations. They have been developed to hide the

behavioural and structural complexity of the platforms underlying software

product lines [Schmidt, 2006]. This corresponds to the envisioned situation

in the scenario we described above. The concept of MDE is further discussed

in Chapter 2.

Our approach is to investigate to what extent software architecture can

be made explicit as models, and whether the existing knowledge, stan-

dards, and tools in the area of MDE can be used for the purpose of software

architecture evolution. Thus, instead of applying model transformations

for the development of software by the generation of source code from more

abstract software models, we apply model transformations to support the

4 Chapter 1. Introduction

evolution of software. This involves different types of software engineer-

ing tasks, such as evaluation and migration. We investigate the extent to

which such tasks can be performed by the use of model transformations.

Additionally, we focus on real-life situations such as the migration of con-

trol components at ASML.

In the remainder of this introduction we describe the problem and for-

mulate the research questions this thesis addresses. Subsequently, we ex-

plain the approach we followed to answer these questions and the scope of

our work. We conclude with an outline of this thesis and an overview of its

contributions.

1.1 Problem Description: Evolution of Software Architec-

tures

In this thesis, we focus on the evolution of software platforms and the sys-

tems they support. More particularly, we address the problem of their evo-

lution on the architectural level.

Perry and Wolf [1992] describe architecture as the ‘load-bearing walls’

of a software system. As such, a software architecture allows some changes

and precludes others, that is, it allows some degree of evolution. Changes

that it allows do not require a migration of the architecture. Changes, how-

ever, that are not supported by the current architecture will require such

a migration. As such, an architecture determines which type of evolution

is cheap (i.e., the type that involves changes that do not require changes to

the architecture) and which type is expensive (i.e., the type that involves

changes that do require changes to the architecture). In fact, a reason for

migrating to a different software architecture is to change this, that is,

making a different type of changes cheap. As an example, in the ASML

scenario sketched above one of the goals was indeed to reduce the effort

required to change the sequence of the manufacturing activities a wafer

scanner performs for the manufacturing of microchips.

When considering software evolution from an architectural perspective,

it needs to be determined if an architecture requires changes, and subse-

quently how to perform those changes. The former requires an architecture

evaluation. The latter requires an approach to migrate a software archi-

tecture, and the corresponding ‘downstream’ development artefacts. In the

case of a complex architecture, or a product line, where an architecture af-

fects multiple systems, it pays off to do this automatically. To do so, an

architecture can be considered as a model that can be manipulated. The

technology to make this happen is offered by MDE. In-line with MDE, we

aim at the development of automated techniques, where possible.

1.1. Problem Description 5

Documentation Migration

Evaluation Conformance Checking

Figure 1.2: Software evolution tasks

As we will see from this thesis, the automatic manipulation of (architec-

tural) models is hampered by industry’s resistance to adoption of state-of-

the-art software engineering technologies. An important reason for this is

that such technologies often have a large impact on current ways of work-

ing, resulting in unacceptable risks (see also Chapter 3). This means that,

in the context of software evolution, we have to take into account, for in-

stance, the informal use of modelling languages in industry [Lange et al.,

2006]. This makes automation particularly difficult. In general, the impact

of solutions (technologies or processes) to current ways of working should

be minimised.

To clarify the scope of our work we distinguish four types of activities

related to evolution of software. We refer to these activities as software

evolution tasks. The tasks we consider are depicted in Figure 1.2 in an

evolutionary software life-cycle and are explained below.

Evaluation In our work the main objective of architecture evaluation is to

determine whether or not proposed changes to a software system require

changes to the current architecture. We consider architecture evaluation as

the starting point of a software architecture evolution cycle. A particular

challenge is the assessment of whether a product-line architecture requires

changes in the face of anticipated changes to the product-line members. Do-

brica and Niemelä [2002] give an overview of proposed architecture eval-

uation approaches. However, none of those is explicitly aimed at software

product lines.

Conformance Checking In the case that an evaluation indicates that ar-

chitectural changes are required, it is necessary to determine to what

extent ‘downstream’ development artefacts conform to the (product-line)

architecture. The question is whether development artefacts that are

constrained by the decisions made during the architecting phase do not

violate these decisions. In principle, all design artefact are constrained

by the architecture, such as detailed designs, implementations and even

product-line members.

Krikhaar [1999] and Mens [2000] compare a number of approaches to

check architecture conformance. However, conformance between models at

6 Chapter 1. Introduction

different abstraction levels is not addressed. Moreover, most approaches

dictate the introduction of specific modelling languages, requiring a change

to current ways of working.

Migration A set of consistent development artefacts as determined by the

conformance checking task, reduces the risk of an actual migration of the

architecture and dependent development artefacts. The migration to a

new product-line architecture and associated software platform that bet-

ter supports foreseen requirements, requires the migration of all products

supported by the legacy platform. There is no previous work that consid-

ers software (architecture) migration as a model transformation problem.

Several other work does address the transformation of software systems.

However, they consider single-product architectures [Bosch and Molin,

1999], simple graphs [Fahmy and Holt, 2000b], or the level of source

code [Terekhov and Verhoef, 2000]. The language migration process used

by Terekhov and Verhoef [2000] is particularly interesting. It separates a

migration in three phases that include restructuring of source programs

to enable the (automatic) transformation phase. Although it was used for

source code migration, such a preparatory step is also required for the mi-

gration on the architectural level to take into account industrial modelling

conventions.

Documentation After a migration of the (product-line) architecture and the

product-line members it supports, documentation needs to be updated.

It is generally accepted that the documentation of software architectures

consists of multiple views [Kruchten, 1995; Hofmeister et al., 2005]. Of-

ten the Unified Modeling Language1 (UML) is used in these views. On

the other hand, specialised architecture description languages (ADLs) (see

Medvidovic and Taylor [1997] for an overview) and MDE support the cre-

ation of models to automate several software engineering tasks, such as

code generation. However, no approach addresses the problem of keeping

documentation and models consistent. With the upcoming of MDE ap-

proaches this becomes a highly relevant problem.

In this thesis, we aim at increasing our understanding of each of these

four software evolution tasks as well as offering support for them.

1http://www.uml.org (June 2007)

1.2. Objectives 7

1.2 Objectives

In the previous section we explained that changes to software architectures

can be required to improve or restore the maintainability of software sys-

tems. However, such evolution involves high risks and costs.

As such, our main research question is:

RQ0 How can the evolution of software architectures be supported?

We will investigate this question in terms of the software evolution

tasks we identified: evaluation, conformance checking, migration, and doc-

umentation. When considering the problem description in Section 1.1, RQ0

raises a number of subquestions that we introduce below.

1.2.1 Integration in Practice

As we will see in this thesis, integration of new software engineering tech-

nologies in industrial practice is difficult. This is due to the risk-avoiding

attitude of industrial companies towards such innovation, resulting in a

preference of proven technologies.

However, also academia’s attitude towards practical industrial problems

hampers application of research results in practice. These problems are

often considered not to be interesting from an academic point of view or are

difficult to investigate because such investigations are very costly and time

consuming. Finally, industry is not always willing to cooperate. The result

is that often software engineering technologies developed by academia are

not (fully) applied in industrial practice. An example is the informal use of

modelling in practice.

This leads to our first subquestion:

RQ1 How to integrate the support for software evolution tasks in practice,

considering the informal use of modelling languages and preference

for proven technologies in industry?

1.2.2 Product Lines

Many companies extended the scope of their software architectures from

single systems to multiple systems to increase reuse and reduce required

development and maintenance effort1.

For our software evolution tasks the use of product line principles is

relevant. One reason is, for instance, that product line architectures are

1For examples, visit the Product Line Hall of Fame: http://www.sei.cmu.edu/productlines/

plp_hof.html (June 2007)

8 Chapter 1. Introduction

defined on a higher level of abstraction than single-product architectures.

Furthermore, the number of stakeholders for a product line also is higher.

This complicates, for instance, evaluations.

This leads to our second subquestion:

RQ2 What is the impact of the use of software product lines and platforms

on the support for software evolution tasks?

1.2.3 Model-Driven Engineering

Software architecture evolution is costly and risky. Therefore, we will in-

vestigate the use of MDE technology for this problem. Automation is one of

the key characteristics of MDE. When applied to the architecture evolution

this may yield cheaper and more reliable results.

Our use of MDE is also motivated by RQ1 and RQ2. The development

of MDE technologies has been driven by industry. This can be seen, for

instance, from the wide-spread use of UML for software design. As such,

support for software evolution tasks based on similar technology might by

itself already improve integration of such support in industrial environ-

ments.

Finally, a strong link exists between MDE and software product lines.

With MDE the generated code typically executes on top of a software plat-

form. At the same time software platforms are the foundation for even the

most basic product lines [Bosch, 2002]. As such, MDE approaches can be

used for the automatic derivation of product-line members [Deelstra et al.,

2003].

For industrial applicability, one specific type of MDE is particular rele-

vant. We focus on MDE technologies based on a set of standards defined

by the Object Management Group1 (OMG) under the name Model Driven

Architecture2 (MDA). The reason for this is that UML is an essential part

of the MDA framework; and UML is the (de facto) standard for modelling

software [Kobryn, 1999] that is most widely applied in industry. We be-

lieve that the practical relevance of our work is increased by restricting

ourselves to this framework (see also RQ1).

Model-driven support at the architectural level for our software evolu-

tion tasks allows for (partial) automation, resulting in improved reliabil-

ity, efficiency (of the development process), and quality (of developed soft-

ware) [Atkinson and Küne, 2003; Selic, 2003].

This leads to our third and final subquestion:

RQ3 To what extent can the support for software evolution tasks be auto-

mated by the use of model-driven engineering?

1http://www.omg.org (June 2007)
2http://www.omg.org/mda (June 2007)

1.3. Approach 9

1.3 Approach

As software engineering is an applied science, our view on software engi-

neering research is that results can only be proven useful by validation in

industrial practice. Furthermore, this type of research is aimed at solv-

ing real problems. Such problems are mainly found in industry (at least

problems in the domain of software engineering).

Therefore, we intend our research to be industry-driven; we adopt the

‘industry-as-laboratory’ approach proposed by Potts [1993]. In this ap-

proach the problems studied are identified by close involvement in indus-

trial projects and results are applied to practical problems; there is an em-

phasis on real case studies.

We accomplish the interactions with industry on which this approach is

based in three ways: a survey, industrial case studies, and close collabora-

tion with software practitioners in industry.

We first perform a survey among more than 35 software practitioners at

eight companies to get an overview of software engineering practices and

specific problems in the (embedded) software industry (see Chapter 3). The

observations made in that survey include the upcoming use of product-line

approaches, the informal use of modelling languages, and the importance

of the evolutionary aspect of software. This survey partially determined

the problems we address in the research described by this thesis.

The exploratory character of our research, the type of research questions

we want to investigate (‘how’ questions), and the low level of control we

have over the (industrial) environment in which software evolution takes

place, make that case studies are a suitable research approach [Yin, 2003].

Furthermore, the use of industrial case studies reduces the risk of scala-

bility problems of the results Kitchenham et al. [1995]. Therefore, we use

case studies to investigate the applicability of model-driven approaches to

the four software evolution tasks we defined.

For each task we propose a separate solution, which we evaluate in a

(industrial) case study. As such, we performed separate case studies for

each of the evolution tasks: evaluation, conformance checking, migration,

and documentation. The case studies we conducted are mainly related to

two industrial systems: copiers developed by Océ and wafer scanners de-

veloped by ASML. As such, by our case studies, we focus on the embedded

software domain. The conclusion in Chapter 9 also reflects on the question

of whether this is relevant from the perspective of our research questions.

Given the exploratory character of our research, we do not define a set

of research propositions to investigate. Instead, we direct our research by

the subquestions outlined in Section 1.2. As discussed by Yin [2003] we

use this direction to guide our analysis of the case studies we perform. We

qualitatively evaluate the solutions we propose by carefully observing and

10 Chapter 1. Introduction

analysing their application in each case study.

For the case study in which we evaluated our approach for the migration

task, we were able to compare our findings with respect to a migration

of the same system conducted manually. The conformance checking tasks

were only executed using our techniques. Therefore, their evaluation is

based on the type and number of inconsistencies found. For the evaluation

and documentation tasks, we evaluate our solutions with respect to the

application of similar approaches in other cases.

Considering our research questions, we specifically focused the evalua-

tion on the extent to which the software evolution tasks can be automated,

the impact of software product lines, and possibilities for reusing (proven)

software technologies and reducing organisational impact.

1.4 Overview

This thesis addresses the problem of managing evolution for complex soft-

ware intensive systems. We studied this problem and its solutions in terms

of software architecture and MDE. The remainder of this thesis is organised

as follows.

Setting the Scene In Chapter 2 we introduce some of the concepts that were
touched upon only briefly in this introduction more thoroughly. In particu-

lar we discuss software architecture and MDE.

Chapter 3 reports on the survey we conducted among several compa-

nies developing embedded software. The survey resulted in a number of

important observations for this thesis:

• Industry rarely develops products from scratch. This observation con-
firms the importance of the evolution and maintenance aspects of soft-

ware development.

• Increasingly, product-line and MDE approaches are applied for the de-
velopment of embedded software.

• Current software engineering technologies are difficult to apply in
practice due to several reasons. One consequence is that such tech-

nologies are applied in a pragmatic way, for instance, modelling lan-

guages and tools are often only used to draw diagrams for the pur-

pose of documentation rather than for the purpose of, for instance,

automatic analyses or code generation.

1.4. Overview 11

The first two observations call for an approach that enables the intro-

duction of product lines in a “bottom-up” manner, meaning that product-

lines come into existence based on existing products and are developed in

an evolutionary, rather than revolutionary (or top-down), way.

The third observation adds the constraint that such an approach takes

into account some of the practical issues that are a reality for software de-

velopment organisations, such as the informal use of modelling languages,

the limited amount of time for doing analysis, and the risk involved in

changing existing ways of working.

The Evaluation Task In Chapter 4 we define a scenario-based approach based
on the Software Architecture Analysis Method (SAAM) [Kazman et al., 1996]

for assessing the quality of an emerging product-line architecture for the

embedded software for copiers developed by Océ (Figure 1.3 on the follow-

ing page). This architecture emerged in a bottom-up manner from a num-

ber of existing products. At some point questions were raised with respect

to the suitability of the product-line to incorporate more existing and future

products as product-line members. Therefore an assessment was initiated

that had to take into account the emergent character and corresponding

low-visibility of the product-line in the organisation. The latter resulted

in a low commitment of several stakeholders to such an assessment. The

results show that a two-phased scenario development step, in which part

of the scenarios are collected separately from the joint evaluation session,

results in a more efficient approach that still yields acceptable assessment

results. Additionally, this chapter identifies the problem of conformance

of the architecture of product-line members to a product-line architecture.

Such conformance is desirable before updating a product-line architecture

or migrating an existing product to incorporate it in the product-line.

The Conformance Checking Task Two chapters deal specifically with confor-
mance checking.

In Chapter 5 we discuss how to use model transformations to combine

scenarios into state-based behavioural models. Compared to the previous

case study, the scenarios are expressed in more detail using UML sequence

diagrams. We applied the transformations to a set of scenarios for a com-

ponent defined by the product-line architecture for the embedded copier

software of Océ. This results in a state transition model. To assess the

extent to which the scenarios are consistent with a state transition model

that is used to generate the source code for that component, we (manu-

ally) investigate the differences between the two state models. As such, we

identified a number of inconsistencies.

12 Chapter 1. Introduction

Figure 1.3: Océ copier

A model-driven approach for automatically determining the confor-

mance of software artefacts is proposed in Chapter 6. A view-based process

for conformance checking is described that does not interfere with the

current way of working of the involved domains (e.g., requirements, archi-

tecture, or implementation) by introducing the concept of a conformance

viewpoint (i.e., a type of view). In the case of architecture conformance

such a viewpoint, specified as a metamodel, defines checkable aspects of

the architecture and implementation, as such bridging the semantic gap

between the two domains. We illustrate how model transformations can

be used to automatically discover inconsistencies between architecture

specifications and implementation.

The Migration Task Once a product-line architecture has been assessed and
the conformance of product-instances with respect to the product-line has

been confirmed, existing products need to be migrated to the new product-

line approach. This requires that instance specific information is extracted

and transformed into a view associated with a viewpoint that was defined

to describe product instances. In Chapter 7 we describe a generic view-

based process for migrating the legacy designs discussed at the start of this

chapter into views that exactly describe a product instance in terms of a

new product-line architecture. For the migration of control architectures

based on finite state machines we define a number of transformation rules

that result in a specification of such an architecture in terms of a product-

line architecture based on task-resource systems. These rules are amenable

for an MDA-type of approach that is partially automated.

1.5. Origin of Chapters 13

Table 1.1: Coverage of research questions in chapters

Question

Chapter
3 4 5 6 7 8

RQ1
√ √ √ √ √ √

RQ2
√ √

RQ3
√ √ √ √

The Documentation Task To decrease the effort required for future evolution
of software products, up-to-date documentation is an important asset [For-

ward and Lethbridge, 2001]. In Chapter 8 we discuss the relation between

the architectural models used for conformance checking and migration, for

instance, and architectural views for documentation. We present a frame-

work in which the involved concepts are related to each other and show

how such a framework can be supported by MDE technologies.

The Research Questions Finally, to conclude, Chapter 9 presents an overview
of our contributions and revisits the research questions raised in Sec-

tion 1.2. Table 1.1 illustrates how these questions are covered by the core

chapters of this thesis. All chapters take into account the practical appli-

cability of the proposed solutions, for instance by the use of two industrial

case studies. Development using product-line principles plays an impor-

tant role in Chapters 4 and 7. Automation using MDE is the dominant

concern in the final four core chapters. In all these cases the experiments

are conducted using the Atlas Transformation Language [Jouault and

Kurtev, 2005] (ATL).

1.5 Origin of Chapters

Except for Chapter 2, the chapters in this thesis appeared before as refer-

eed publications in international journals, and proceedings of conferences

and workshops. Apart from the introduction (substantially extended) and

Chapter 6 (major revision) only minor changes were applied before inclu-

sion in this thesis. The origin of this thesis’s chapters is as follows:

Chapter 1 Graaf, Bas. Model-driven evolution of software architectures. In

Proceedings of the 11th European Conference on Software Main-

tenance and Reengineering (CSMR 2007), pages 357–360. IEEE

Computer Society, 2007

14 Chapter 1. Introduction

Chapter 3 Graaf, Bas, Marco Lormans, and Hans Toetenel. Embedded soft-

ware engineering: The state of the practice. IEEE Software,

20(6):pages 61–69, 2003; and

Graaf, Bas, Marco Lormans, and Hans Toetenel. Software tech-

nologies for embedded systems: An industry inventory. In Pro-

ceedings of the 4th International Conference on Product Focused

Software Process Improvement (PROFES 2002), volume 2559 of

Lecture Notes in Computer Science, pages 453–465. Springer-

Verlag, 2002

Chapter 4 Graaf, Bas, Hylke van Dijk, and Arie van Deursen. Evaluating

an embedded software reference architecture – industrial expe-

rience report. In Proceedings of the 9th European Conference on

Software Maintenance and Reengineering (CSMR 2005), pages

354–363. IEEE Computer Society, 2005

Chapter 5 Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the sys-

tematic conformance check of software artefacts. In Proceedings

of the 2nd European Workshop on Software Architecture (EWSA

2005), volume 3047 of Lecture Notes on Computer Science, pages

203–221. Springer-Verlag, 2005

Chapter 6 Graaf, Bas and Arie van Deursen. Model-driven consistency

checking of behavioural specifications. In Proceedings of the 4th

International Workshop on Model-based Methodologies for Per-

vasive and Embedded Software (MOMPES 2007), pages 115–

126. IEEE Computer Society, 2007a

Chapter 7 Graaf, Bas, Sven Weber, and Arie van Deursen. Model-driven

migration of supervisory machine control architectures. Journal

of Systems and Software, 2007. Doi: 10.1016/j.jss.2007.06.007;

and

Graaf, Bas, Sven Weber, and Arie van Deursen. Migrating su-

pervisory control architectures using model transformations. In

Proceedings of the 10th European Conference on Software Main-

tenance and Reengineering (CSMR 2006), pages 151–160. IEEE

Computer Society, 2006

Chapter 8 Graaf, Bas and Arie van Deursen. Visualisation of domain-

specific modelling languages using UML. In Proceedings of the

14th Annual IEEE International Conference and Workshop on

the Engineering of Computer Based Systems (ECBS 2007), pages

586–595. IEEE Computer Society, 2007c

1.5. Origin of Chapters 15

Furthermore, our research has resulted in the following publications

that are not directly included in this thesis:

• Graaf, Bas and Arie van Deursen. Using MDE for generic compar-
ison of views. In Proceedings of the 4th International Workshop on

Model Design, Verification and Validation (MoDeVVa 2007), pages 57–

66. INRIA, 2007b

• Spanjers, Hans, Maarten ter Huurne, Dan Bendas, Bas Graaf, Marco
Lormans, and Rini van Solingen. Tool support for distributed soft-

ware engineering. In Proceedings of the 1st International Conference

on Global Software Engineering (ICGSE 2006), pages 187–198. IEEE

Computer Society, 2006

• Doyle, Duncan, Hans Geers, Bas Graaf, and Arie van Deursen. Mi-
grating a domain-specific modeling language to MDA technology.

In Proceedings of the 3rd International Workshop on Metamodels,

Schemas, Grammars, and Ontologies for Reverse Engineering (ateM

2006), number 1 / 2006 in Mainzer Informatik-Berichte, pages 47–54.

Johannes Gutenberg-Universität Mainz, 2006

• Cornelissen, Bas, Bas Graaf, and Leon Moonen. Identification of vari-
ation points using dynamic analysis. In Proceedings of the 1st In-

ternational Workshop on Reengineering towards Product Lines (R2PL

2005), pages 9–13. 2005

Chapter2
Background

In this chapter we elaborate on some of the concepts briefly introduced in

Chapter 1. In particular, we discuss software evolution, software archi-

tecture, and model-driven engineering in the light of the research questions

we posed previously.

2.1 Software Evolution

Engineering disciplines are typically based on universal, scientific laws and

principles. Also in the discipline of software engineering a number of such

laws have been discovered. Endres and Rombach [2003] give an overview. A

few of the most widely acknowledged laws were defined by Lehman [1978]

and are concerned with the change of software systems over time: software

evolution. They are based on empirical observations. The first two of these,

so-called, laws of software evolution dynamics are stated in Table 2.1 on

the following page.

The graph in Figure 2.1 on the next page illustrates both laws by plot-

ting a measure for size against a measure for complexity of embedded

copier software developed by Océ. It shows a trend of increasing size and

complexity for the subsequent (i.e., in time) revisions of the software.

Software evolves because of various reasons. The software systems (pro-

grams) referred to in the software evolution laws are, for instance, affected

by changes in the reality reflected in their specification [Lehman, 1980].

Such changes are caused by changes in stakeholder objectives or to the

environment. An example of the former are additional or modified stake-

holder requirements. An example of the latter, in the case of embedded

systems, are changes to hardware. As a response a software system re-

quires adaptive maintenance. Obviously, the usefulness of a software sys-

tem decreases if such maintenance tasks are not performed. Other types

17

18 Chapter 2. Background

Table 2.1: First two Laws of Software Evolution [Lehman, 1978]

I Law of Continuing Change

A large program that is used undergoes continuing change or becomes

progressively less useful. The change process continues until it is

judged more cost-effective to replace the system with a recreated ver-

sion.

II Law of Increasing Complexity

As a large program is continuously changed, its complexity, which re-

flects deteriorating structure, increases unless work is done to maintain

or reduce it.

Figure 2.1: Complexity vs. size for subsequent revisions of copier soft-

ware [Sonnenberg, 2005]

2.1. Software Evolution 19

of maintenance tasks are corrective (removal of bugs) or perfective (opti-

mising performance or maintainability) [Swanson, 1976; IEEE-1219, 1998]

and also cause software to evolve. The first law states that such changes

continue until it becomes more cost-effective to replace a system. However,

development of replacement systems typically will not start from scratch,

and significant parts of the already existing software will be reused. As

such, the software continues to evolve.

Implicitly, the first law is based on the assumption that change becomes

more expensive over the lifetime of a software system by stating that at

some point replacement becomes more cost-effective than making changes.

This is made explicit in the second law. It describes the unfortunate conse-

quence of continual change: software systems become progressively more

complex over time. In this law, complexity does not refer to computational

complexity, but to the effort required to understand the inner workings of

a software system. For a large part this effort depends on the structure of

the software [Lehman, 1978], that is, its components and their relations.

As change requires understanding, a consequence of increased complexity

is that it makes a software system more difficult to change.

There are various explanations of this law of increasing complexity. Al-

though, in theory, it might be possible to make changes to software systems

without deteriorating its structure, practice is different. In industrial soft-

ware projects, the users and customers of a software system are mainly con-

cerned with its operation (e.g., performance, functionality), and not with its

structure. This makes it difficult for the development organisation to jus-

tify longer lead-time of change requests because of structural preservation

and recovery. Moreover, the effects of such efforts are not measurable im-

mediately after changes are made, but are only long-term; they decrease

the effort required for subsequent changes [Lehman, 1978]. Eventually,

as this process of increasing complexity continues, it becomes infeasible

to make even small changes to the software. Then, a system needs to be

replaced.

Van Deursen [2005] proposed two possible strategies to deal with these

laws: 1) postpone the moment at which a system needs to be replaced

as much as possible by applying techniques to manage its ever-increasing

complexity; and 2) apply techniques to restore the original structure or im-

pose a new structure on the software system.

Considering the research questions posed in Chapter 1, we investigate

in this thesis how and by the use of which technologies these two strategies

can be supported. To this end we consider how specifications of software

structure can be evaluated and manipulated. Furthermore, to take into ac-

count the complexity of software systems we investigate to what extent this

can be automated. As an example, techniques to determine the consistency

of different development artefacts, discussed in Chapters 5 and 6, help to

20 Chapter 2. Background

manage complexity; techniques to automate the migration of a software

architecture, discussed in Chapter 7, help to impose a new structure.

We already stated that a software system’s complexity is strongly re-

lated to its structure (see Lehman’s second law, Table 2.1 on page 18). The

subfield of software engineering that studies software structure is called

software architecture. The idea behind software architecture is that com-

plexity can be managed by applying separation of concerns and abstraction.

This is discussed in Section 2.2.

Another way to manage complexity is the use of automation. Model-

driven engineering (MDE) is an approach to software development based on

automation (and abstraction). With MDE applications are generated auto-

matically by means of model transformations that transform abstract soft-

ware models into source code. MDE is discussed in Section 2.3.

In this thesis we employMDE techniques to support the evolution of soft-

ware architectures. We conclude this chapter in Section 2.4 by explaining

that due to a conceptual overlap MDE techniques are particularly suited for

this purpose.

2.2 Architecture-Driven Software Development

2.2.1 Software Architecture

The development of a software system involves a large number of design de-

cisions that eventually lead to an executable specification of its behaviour,

typically in the form of source code. For a long time, it has been realised

(e.g., by Dijkstra [1968], Parnas [1972] and Brooks, Jr [1975]) that, next to

behaviour, it pays off to be also concerned with a software system’s struc-

ture and organisation for reasons of dependability, understandability, and

maintainability. Therefore, for large systems, these design decisions not

only consider the behaviour, but also the structures of the software system.

The key principles on which the design of software architectures is based

are separation of concerns [Dijkstra, 1974] and abstraction.

Because of the complexity of software systems, multiple levels of ab-

straction are necessary to ensure designs remain comprehensible. This

gives rise to several types of design. Usually, at least two levels of de-

sign are distinguished. Detailed design involves the decisions related to,

for instance, data structures and algorithms. At a higher level of abstrac-

tion, design is called software architecture design [Garlan and Shaw, 1993],

which is one of the key topics of this thesis.

It is difficult to capture the notion of software architecture in a single

definition. As an example, the Software Engineering Institute [2006] col-

lected many definitions. Perry and Wolf [1992] provide a model of software

2.2. Architecture-Driven Software Development 21

architecture consisting of elements, form, and rationale. The model dis-

tinguishes between three types of (design) elements: processing, data, and

connecting elements. Form includes the relationships among the elements

of an architecture. Rationale provides the motivation for the decisions that

yield a particular set of elements and form. The three aspects of this model

for software architecture can be found in various definitions for software

architecture used by later research (and practice).

Garlan and Shaw [1993] enumerate a set of issues software architec-

tures are concerned with that includes gross organisation, global control

structure, communication protocols, and assignment of functionality to de-

sign elements.

A more recent definition of software architecture can be found in IEEE-

1471 [2000]:

The fundamental organisation of a system embodied in its components,

their relationships to each other, and to the environment, and the principles

guiding its design and evolution.

This definition not only includes components (elements) and their rela-

tions, but also principles, referring to, for instance, the use of a particular

architectural style (see Section 2.2.3) or the use of particular conventions

during design and maintenance of a software system.

An alternative definition that is frequently used is given by Bass et al.

[2003]:

The software architecture of a program or computing system is the struc-

ture or structures of the system, which comprise software elements, the ex-

ternally visible properties of those elements, and the relationships among

them.

This definition acknowledges the now common understanding that

there is no such thing as the structure of a software system and that differ-

ent types of structures can be used to describe the architecture of a single

system.

Kruchten [1998] states that software architecture encompasses a set of

significant decisions regarding system organisation, selection of elements,

their composition, and selection of an architectural style to guide these de-

cisions. In this definition, architecture is thus considered as a set of deci-

sions, a perspective further explored by Jansen [2005].

In summary, software architecture can be understood in at least two

different ways: 1) as a set of (architectural) design decisions, or 2) as the

structure that is the result of those decisions. In this thesis we opt for

the latter, since we only consider software structures as prescribed by an

architecture specification or as implemented in source code.

Unfortunately, through the use of adjectives like “significant”, “funda-

mental”, “gross”, and “global” the definitions cited above do not completely

clarify which parts of a design are architectural and which parts are not.

22 Chapter 2. Background

Moreover, if a software architecture is a set of architectural design deci-

sions, how do we determine whether a design decision is architectural?

Eden et al. [2006] clarify this by providing a criterion that can be applied

to design statements. The mathematically defined locality criterion states

that a design statement is local if the system to which it applies cannot be

made to violate it by mere expansion. Architecture statements are defined

to belong to the class of non-local statements. For instance, the layered ar-

chitectural style of a software system can be violated by simply expanding

one of the layers with a component that interacts with components in non-

adjacent layers. Hence, decisions regarding style are architectural. Con-

versely, a design pattern cannot be violated by only expanding a system.

Thus, decisions regarding design patterns are not architectural.

Despite the precise definition discussed above, architecture is a relative

concept because of the multiple levels of abstraction at which software de-

sign can be considered. What is architectural depends on, amongst others,

the level of abstraction that is considered [Monroe et al., 1997; Clements

et al., 2002a]: what is considered detailed design from a more abstract level

can be considered architectural from a less abstract level.

From our collaborations with industry it became clear that in practice,

architecture is ‘defined’ differently. There, different sets of decisions are

considered to be architectural, for instance, the earliest (in time) decisions,

the decisions that are most difficult (expensive) to change later on, or sim-

ply the decisions taken by the software architect. Although these sets

might be slightly different, in this thesis we will assume they coincide, tak-

ing the point of view (as stated above) that an architecture is the result of

such decisions.

2.2.2 Software Architecture Usage

So, why is it important to consider software architecture as a separate type

of design? Bass et al. [2003] mention a few reasons. First, it allows to set

apart the global design decisions, that is, those that affect multiple com-

ponents, and hence need to be communicated to all involved developers to

ensure the conceptual integrity [Brooks, Jr, 1975] of the system under de-

velopment.

Second, as design decisions affect software quality attributes, a software

architecture allows for early quality assessment of (to be developed) soft-

ware systems. In fact, the software architecture is the first design artefact

created in a software project that allows for such assessments.

Finally, software architectures enable the reuse of software solutions.

By documenting a software architecture the design decisions it captures

can be transferred to other systems, for instance, when similar quality at-

tribute requirements need to be fulfilled.

2.2. Architecture-Driven Software Development 23

These motivations for considering software architecture design as a sep-

arate phase in the software development process, also illustrates the impor-

tance of software evolution on the architectural level. If software is contin-

uously evolved on lower abstraction levels, phenomena such as architecture

drift and erosion [Perry and Wolf, 1992] (see also Chapter 1), decrease the

possibility of using the software architecture in the ways described. At that

point, restoration of the intended architecture or migration to a new archi-

tecture, again, brings the benefits of conceptual integrity, early assessment

of design decisions, and reuse.

With respect to the preceding discussion on software architecture this

thesis positions software architecture in terms of structure and architec-

tural elements. Moreover, considering the importance of software struc-

ture for software evolution (see Section 2.1), we investigate how to use and

manipulate software architectures for the software evolution tasks we iden-

tified in Section 1.1.

2.2.3 Software Architecture Design

The goal of software architecture design is to define the constraints for sub-

sequent design and implementation activities that result in the develop-

ment of a system that fulfils its functional and other quality goals. As such,

a software architecture is both permissive and restrictive with respect to

the decisions taken in subsequent activities [Perry and Wolf, 1992].

Based on existing design and evaluation methods, Kazman et al. [2006]

formulate three principles that are useful to understand how architectural

constraints are defined: 1) an architecture should be defined in terms of

elements that are coarse enough for human intellectual control and spe-

cific enough for meaningful reasoning, 2) business goals determine quality

attribute requirements, and 3) quality attribute requirements guide the

design and analysis of software architectures.

Similar to other engineering disciplines, the actual design of software

largely remains a creative activity. Consequently, the success of software

projects for a large part depends on the experience and skills of the software

architects. Although software architecture evaluation methods can help

architects to assess the quality offered by the architecture they defined,

such methods can only be applied after it has been designed. We introduce

these methods in Section 2.2.5.

To also provide guidance during the design process itself, the analysis

and codification of experiences by categorising problem types and recording

and generalising successful (by experience) solutions, is of great importance

for software architecture practice. Software architectural styles, sometimes

also referred to as architectural patterns, are such codifications.

24 Chapter 2. Background

An architectural style is a set of constraints that is imposed on the archi-

tecture of systems that are based on that style. As such, an architectural

style defines a set of architectures. The constraints defined by a style not

only limit the type of architectural elements and their possible connections,

but also dictate how their semantics should be interpreted [Abowd et al.,

1993]. Shaw and Garlan [1996] and Buschmann et al. [1996], amongst oth-

ers, provide collections of such architectural styles. The definition of archi-

tectural styles provides a shared vocabulary for software architects. Fur-

thermore, it encourages researchers to study the properties of particular

styles in terms of quality attributes. This gives way to architecture design

(and evaluation) approaches that are based on the selection of appropri-

ate styles for the desired quality attributes of a system, such as described

by Klein et al. [1999] and by Bosch [2000].

Each style optimises a distinct set of quality attributes. In practice this

implies the application of multiple architectural styles for the development

of a single software system. As a result, multiple representations of such

an architecture are conceivable; each clarifying a specific style.

2.2.4 Software Architecture Description

To effectively use (e.g., for evaluation or maintenance) the decisions that

comprise a software architecture in non-trivial projects, it is required that

these decisions are documented in a useful way. For the description of soft-

ware architectures we distinguish between approaches based on: 1) archi-

tecture description languages (ADLs) (see Medvidovic and Taylor [1997] for

an overview), and 2) views [IEEE-1471, 2000].

A large number of ADLs have been developed (mainly by the research

community). Typically, such ADLs offer a formal syntax and semantics for

the description of software architectures in terms of runtime components

(computational elements) and connectors (abstractions for component in-

teraction) [Medvidovic and Taylor, 1997]. As such, they allow to create

precise descriptions of one aspect of a software system (i.e., its runtime

structure and behaviour). Because of the formality of such descriptions,

they can be used to automate several software engineering tasks, such as

code generation and verification.

The ‘views approach’ on the other hand allows for more broad descrip-

tions of software architecture. As discussed before, design can be consid-

ered on different levels of abstraction. However, we can also consider de-

sign with different types of abstractions. As such, a particular view might

only consider runtime, which is typically the case with ADLs, or only design

time aspects of a software system. The types of abstraction actually used

can vary and are determined by what is important for a particular software

project.

2.2. Architecture-Driven Software Development 25

Views are based on the idea that a software architecture is too complex

to be described in a single stroke, or by one type of abstraction (that is why

we talked about structures (plural) before). Multiple views are required to

completely describe and document a software architecture. Each of those

views addresses a specific set of concerns [IEEE-1471, 2000]. The guide-

lines for creating views are defined in so-called viewpoints, one for every

type of view. Several sets of those viewpoints have been defined [Kruchten,

1995; Hofmeister et al., 1999; Clements et al., 2002a].

Compared to the ‘ADL approach’ this ‘views approach’ is more adopted by

industry [Kruchten et al., 2006], where a view typically is a document that

consists of some models or diagrams and explaining text, and is less formal

than ADL-type descriptions of software architecture. When comparing the

two approaches, it can be concluded that the ADL-approach as investigated

by the research community focuses on in-depth description of software ar-

chitectures, while the views-approach as used by industry focuses on broad

description of software architectures [Medvidovic et al., 2002].

Finally, we specifically mention the Unified Modeling Language1 (UML).

Although UML was originally intended as a language for object-oriented

modelling of systems, it has been used for architecture development as well

(see, for instance, Chapter 3 and Lange et al. [2006]). To some extent it can

be used as an ADL [Medvidovic et al., 2002]. Furthermore, UML diagrams

are often used in architecture views.

In this thesis, we manipulate different types of architectural views to

support software evolution. In some cases, we also partly demonstrate the

definition of new ADLs. As an example, in Chapter 5 we transform one type

of view into another to check the consistency of behavioural specifications

of software embedded in the copiers developed by Océ.

2.2.5 Software Architecture Evaluation

An important reason for explicitly considering software architecture as a

separate type of design activity or document, is that it constitutes the first

opportunity for the prediction of properties of the system under develop-

ment. We distinguish between two types of properties or qualities of a sys-

tem: operational properties and development (i.e., non-operational) prop-

erties [Bosch, 2000]. The first type includes those properties that can be

measured by observing the system in operation, such as functionality, per-

formance, reliability. Non-operational properties, or development proper-

ties involve the development of the system, such as, maintainability, modi-

fiability, portability, development cost and effort.

1http://www.uml.org (June 2007)

26 Chapter 2. Background

For the prediction of these properties different types of approaches have

been developed [Bosch, 2000]. Approaches based on mathematical mod-

els, such as rate-monotonic analysis [Liu and Layland, 1973] and model

checking [Clarke, Jr. et al., 1999], are best used for analysis of operational

properties of the system. ADLs are also based on such models. On the

other hand, scenario-based approaches such as, the Software Architecture

Analysis Method (SAAM) [Kazman et al., 1996], the Architecture Tradeoff

Analysis Method [Clements et al., 2002b] (ATAM), and architecture-level

modifiability analysis [Bengtsson et al., 2004] (ALMA) (see also Dobrica

and Niemelä [2002] for an overview of scenario-based software architecture

analysis methods), are better suited for the analysis of development prop-

erties. These approaches use scenarios to make quality attribute require-

ments concrete after which the architecture is evaluated for its support

for the identified scenarios. Such approaches can be used, for instance, to

assess the maintainability of a software system.

In Chapter 4 of this thesis we will experiment with such an approach for

the scenario-based evaluation of the maintainability of software embedded

in the copiers developed by Océ.

2.2.6 Software Product Lines

One of the most important promises of the use of architectural principles

for the development of software systems is the potential increase of reuse.

This not only includes reuse of design decisions by capturing best practices

in architectural styles, but also of architectural building blocks by explicitly

defining what such components have to offer and what they rely on (i.e.,

their external visible properties).

The latter use, however, turned out to be problematic in practice be-

cause some degree of variation is typically required [Garlan et al., 1995].

To also account for variation and not only for commonalities, sets of similar

software products can be viewed as software product families or product

lines.

A product line encompasses a whole range of products that have much in

common. By developing such products as a software product line [Clements

and Northrop, 2002] their commonalities and variabilities are made ex-

plicit in a product-line architecture. The development of individual prod-

ucts is reduced to binding the variation points defined in the product-line

architecture to specific instances, that is, if all variability is made explicit

in the product-line architecture.

A software product line involves the development of product-line assets,

such as a product-line architecture, reusable components, and product-line

members. The assets that apply to the product line as a whole are devel-

oped in a process referred to as domain engineering. Product-line members

2.3. Model-Driven Engineering 27

are developed in a process called application engineering.

A product line can be ordered along a maturity scale by considering its

(domain) scope, the extent that commonalities and variability are made

explicit, and binding time of its variation points [Bosch, 2002]. A first step

on this scale is the definition of all commonalities and their implementation

as a (domain-specific) software platform. Product-line members are then

built on top of that platform.

Both the systems that are the subject of our industrial case studies (the

ASML wafer scanners and Océ copiers) are developed using product-line

principles.

2.3 Model-Driven Engineering

To hide the structural and behavioural complexity of software platforms,

approaches to software development have been introduced that are referred

to as model-driven engineering (MDE) [Schmidt, 2006]. With MDE models

are central instead of code. The idea is to develop software by transform-

ing abstract models into more concrete models and eventually into code

that typically runs on top of a software platform. Such transformations

are referred to as model transformations. Because these transformations

are automated, we are particularly interested in MDE technologies for the

support of the software evolution tasks we defined. Furthermore, both MDE

and software architectures are based on abstractions.

Some of the basic ideas behind MDE, that is, development of software

by a series of model transformations and separation of functional speci-

fications from the technical details of a specific platform, are very simi-

lar to that of stepwise refinement proposed by Wirth [1971]. Many top-

ics related to MDE have been extensively studied by the research commu-

nity: software reuse [Krueger, 1992], generative programming [Horowitz

et al., 1985; Cleaveland, 1988; Czarnecki and Eisenecker, 2000], transfor-

mational programming [Partsch and Steinbrüggen, 1983], domain-specific

languages [Van Deursen et al., 2000; Mernik et al., 2005], and environ-

ments and approaches for development of such languages [Klint, 1993; Van

Deursen et al., 1996].

For a large part the development of current MDE approaches, however,

has been driven by industry. Several implementations of the MDE concept

are in use today. Often these are based on proprietary infrastructure that

includes domain-specific (modelling) languages, application frameworks,

code generators, and model repositories (see, e.g., Doyle et al. [2006]).

Additionally, a set of industry standards for MDE has been defined

28 Chapter 2. Background

System

Model

Metamodel

represented by

conforms to

Figure 2.2: Fundamental relations between system, model, and meta-

model [Bézivin, 2005]

by the Object Management Group1 (OMG) under the name Model Driven

Architecture2 (MDA) and numerous tools now support part of these stan-

dards. Other, non-MDA tools are available that also support MDE, such

as Microsoft’s Domain-Specific Language Tools based on the approach

by Greenfield et al. [2004]. It is the availability of these standards, sup-

porting tools, and reusable software platforms that makes that current

MDE approaches generate much more industrial momentum than earlier,

related efforts [Schmidt, 2006].

Only recently, the research community has started investigating the

fundamental principles behind MDE [Bézivin et al., 2007]. The foundations

for MDE are abstraction (modelling) and automation (model transforma-

tions) [Sendall, 2003; Schmidt, 2006]. Modelling and the definition of the

required modelling languages using, so-called, metamodels are based on

the concepts and relations depicted in Figure 2.2. They are fundamental

for MDE and are therefore introduced briefly in the following sections.

2.3.1 Modelling

Seidewitz [2003] defines a model as a set of statements about a system un-

der study. Others have proposed similar definitions that add that a model

has a specific purpose [Bézivin and Gerbé, 2001; OMG, 2007a]. A model

can be used either descriptively to determine properties of a system, or

prescriptively as a specification of a system to be built [Seidewitz, 2003].

The relation between a model and the system under study is referred to as

represented by and was depicted in Figure 2.2.

For MDE approaches to be beneficial the involved models should be eas-

ier to create and understand than the systems they represent, and at the

1http://www.omg.org (June 2007)
2http://www.omg.org/mda (June 2007)

2.3. Model-Driven Engineering 29

same time powerful enough to, for example, generate source code and per-

form assessments [Bézivin, 2005]. This requires that models leave out de-

tails that are irrelevant for their purpose. This simplification (or abstrac-

tion) is the essence of modelling [Bézivin and Gerbé, 2001].

Strictly speaking, source code is also a model [Mens and Van Gorp, 2006]

that, with MDE, is the target of a model transformation. In practice, how-

ever, code and models are often considered to be different types of artefacts.

Typically, in software engineering practice and in particular in the context

of MDE something is considered to be a model if it has a graphical represen-

tation instead of only a textual one as in the case for source code [Mellor

et al., 2003; Bézivin, 2006].

Kleppe et al. [2003] add another element to the definition of a model by

stating that a model is written in a well-defined language. Thus, for the

creation of models modelling languages are required. Basically two types

of such languages exist: general-purpose languages (GPLs) and domain-

specific languages (DSLs). UML is an example of a language in the MDA

framework of the former type. It is applied in many different domains and

for many different purposes. The latter type of languages is often specifi-

cally defined.

In this thesis the software evolution tasks we defined are applied to

models as in the context of MDE. To this end, we not only use UML, but

also (domain-specific) languages we defined ourselves using theMetaObject

Facility1 (MOF), the metamodelling language defined by the OMG.

2.3.2 Metamodelling

With MDE, the modelling languages used to create models are defined by

metamodels. A metamodel is a graph composed of concepts and their re-

lationships. From a usage perspective a metamodel determines which as-

pects of a system will be modelled in a corresponding model [Bézivin, 2006].

A metamodel is a model itself, that is, a model of a language. As such, a

metamodel is, in turn, created using a modelling language. The metamodel

used to define this metamodelling language is referred to as the metameta-

model. This metametamodel is defined reflectively by using the language

it defines itself. This yields a layered structure (architecture) of models as

depicted in Figure 2.3 on the next page that is typical for MDE approaches.

It is based on the two fundamental relations (represented by and conforms to)

and concepts (system and model) of Figure 2.2 . For structures as in Fig-

ure 2.3 on the next page that model MDE concepts, such as system, model,

and metamodel, the term megamodel was introduced [Bézivin et al., 2005;

Favre, 2005b].

1http://www.omg.org/mof (June 2007)

30 Chapter 2. Background

System

Model

Metamodel

Metametamodel

conforms to

conforms to

represented by

conforms to

model world

real world

Figure 2.3: Layered MDE modelling stack

The relation between a model element and a corresponding metamodel

element (i.e., on a higher model level) has to be distinguished from the

instance-of relation that exists between a type and an instance of that type

within the samemodelling level. In practice these are often confused. As an

example, consider Figure 2.4 . The metamodel is a simplified fragment of

the UML metamodel. It defines a modelling language that allows to create

models consisting of objects and classes that can be related to each other by

the instance-of relation. These metamodel elements can be used to create a

model of some application, for instance, to define a Class Person and an in-

stance of that Class: Object joe. Both the relations between Class and Person

and Person and joe are instance-of relations. However, they are of a different

nature. Therefore, Atkinson and Küne [2003] distinguish between a lin-

guistic (between Class and Person) and an ontological (between Person and

joe) instance-of relation. Similarly, Bézivin and Gerbé [2001] uses a differ-

ent term for the linguistic instance-of relation by referring to it as meta.

Note that the conforms to relation depicted in Figure 2.3 effectively sum-

marisesmeta relations between individual model and metamodel elements:

a model conforms to a metamodel if and only if all its model elements have

ameta relation with an element defined in that metamodel [Bézivin, 2006].

Favre [2005a] uses set theory to explain that the conforms to relation

between a model and its metamodel is actually a derived relation as illus-

trated by Figure 2.5 . If we consider a modelling language as the set of

models expressed in that language, the relation between a model and the

modelling language is the element of relation from set theory. When we also

consider the modelling language as the system under study, the modelling

language is, in turn, related to the metamodel by the represented by relation.

2.3. Model-Driven Engineering 31

Class Object

Person joe : Person

instance−of

instance−of

instance−of

class+

instance−of

metamodel

model

instance−of

Figure 2.4: Metamodel and conforming model

Language

Model

Metamodel

represented by

conforms to
element of

Figure 2.5: Conforms to relation in MDE

32 Chapter 2. Background

In the case of MDA, MOF is the metametamodel. MOF defines the

(meta)model elements necessary to define modelling languages, such as,

class, association, and constraint. Metamodelling is similar to data mod-

elling and object modelling. As such, MOF models are similar to entity-

relationship models [Chen, 1976] and, in particular, to UML class models.

Similarly to grammars, MOF is used to define the abstract syntax of

modelling languages, that is, the structure of corresponding models. As

an example, the UML metamodel is now also defined using MOF. Where,

with (context-free) grammars, the abstract syntax defines a set of abstract

syntax trees, a MOF metamodel defines a set of abstract syntax graphs. In

contrast with grammars, MOF cannot be used to define the concrete syntax,

that is, the notation, of a modelling language. In the case of UML, for in-

stance, the notations used in the different diagrams are defined separately.

In Chapter 8, we propose a light-weight solution to this problem.

Several implementations of MOF exist. These allow the definition of

metamodels and the creation of conforming models in the Extensible

Markup Language1 (XML) or as objects in memory. Such implementa-

tions are used, for instance, for the development of model transformation

tools. As an example, the Eclipse Modeling Framework2 (EMF) is a plug-

in for Eclipse3 that is based on MOF. Given a metamodel EMF generates

an implementation of that metamodel (in Java) that can be extended to

develop tools based on that metamodel, such as a model editor.

For a particular MDE approach the metamodelling language can be used

to define a whole class of modelling languages. Having a single metamod-

elling language also enables the development of model transformation lan-

guages and supporting tools.

In several of this thesis’ chapters we created metamodels. In Chapter 6,

for instance, we defined a simple modelling language to represent modu-

larisation constructs, such as class and module; in Chapter 7, we defined a

metamodel for the specification of task-resource models for control compo-

nents in manufacturing machines.

2.3.3 Model Transformations

Model transformations are essential to MDE [Gerber et al., 2002; Sendall,

2003]. A transformation definition describes mappings or transformation

rules to transform elements of a source model into elements of a target

model [Kleppe et al., 2003]. Often model transformation languages use ex-

1http://www.w3.org/XML (June 2007)
2http://www.eclipse.org/emf (June 2007)
3Eclipse is a widely-used, freely-available, open-source integrated development environ-

ment, see http://www.eclipse.org (June 2007)

2.3. Model-Driven Engineering 33

Transformation

TransformationMetamodel

TransformationModel

Metametamodel

MetamodelMetamodel

Model Model

conforms to

conforms to

conforms toconforms to

conforms to

conforms to

source+

target+

represented bysource+
target+

Figure 2.6: Model transformation megamodel

pressions in the Object Constraint Language1 (OCL) to select the elements

in the source model to transform. OCL is a declarative language, originally

developed to specify constraints over UML models.

The MDE pattern or megamodel for model transformations is depicted

in Figure 2.6 [Bézivin et al., 2005]. With MDE a Transformation between a

source and target Model is defined by a transformation language. When

this language is defined by a TransformationModelMetamodel, the transforma-

tion definition is in fact a model itself. This TransformationModel specifies

transformations of source into target models in terms of the Metamodels

they conform to. In correspondence with the metamodelling megamodel in

Figure 2.3 on page 30, all involved metamodels conform to a single Metameta-

model.

A transformation engine (automatically) transforms source models that

conform to the source metamodel into target models that conform to the

target metamodel as described in the transformation definition. As such,

transformation engines require several inputs: source model, source meta-

model, target metamodel, and transformation definition.

Many different types of model transformations and model transfor-

mation languages are conceivable. Sendall [2003]; Czarnecki and Helsen

[2006]; and Mens and Van Gorp [2006] each give a number of properties

of model transformation languages. These include the type and number

of source and target models, horizontal vs. vertical transformations (with

respect to abstraction level), type of notation (e.g., graphical vs. textual),

source-target relationship (new vs. in-place), and many more.

1http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)

34 Chapter 2. Background

Attribute

−name :String

−visibility :String

Operation

−name :String

Class

−name :String

ClassModel classes+

1..*

attributes+ * operations+*

Figure 2.7: A metamodel for simple class models

ATL: a model transformation language In this thesis we mainly use the At-
las Transformation Language [Jouault and Kurtev, 2005] (ATL) to spec-

ify model transformations. Although, ATL is primarily a declarative model

transformation language (based on OCL), it also has imperative features.

An important reasons for using ATL is its implementation in a toolkit that

includes an editor, debugger and transformation engine that is freely avail-

able. Furthermore, this toolkit integrates with EMF and other (UML) tool-

ing. This allows the use of UML models as well as models based on custom

(MOF-based) metamodels. Here, we briefly introduce ATL1 as an example of

a model transformation language.

As illustrative example, we discuss the transformation in Listing 2.1

that adds getters and setters to a simple class model. Figure 2.7 depicts a

metamodel for simple class models. It contains a root element ClassModel

that owns any number of classes. In turn, a Class, owns a number of at-

tributes and operations. Class, Attribute, and Operation all have a name feature.

Additionally, an Attribute also has a feature visibility.

Model transformations are specified in an ATLModule that is composed

of a header, transformation rules and so-called helpers. As in Listing 2.1,

the header specifies the names for the source models (IN), target models

(OUT), and metamodels (CLASSM) that are used in the definition of transfor-

mation rules and helpers.

A declarative transformation rule is called a matched rule in ATL. It

specifies a source and target pattern, indicated by the from and to blocks,

respectively. The source pattern specifies the type of model elements that

are matched by the rule. Optionally, the source pattern may specify a guard

in the form of a Boolean OCL expression that further constraints the set

of elements that are matched. For instance, in the PrivateAttribute rule

(lines 31–40), the source pattern (a_in) specifies that the rule matches ele-

ments of type Attribute for which the private helper evaluates to true.

1Please, consult the ATL User Manual [ATLAS group] for more detailed information

2.3. Model-Driven Engineering 35

1 module ADDGETSET;

2 create OUT : CLASSM from IN : CLASSM;

3

4 helper context CLASSM!Attribute def: isPrivate: Boolean =

5 self.visibility = ’private’;

6

7 rule ClassModel {

8 from cm_in:CLASSM!ClassModel

9 to

10 cm_out:CLASSM!ClassModel (is

11 classes <- cm_in.classes

12)

13 }

14 rule Class {

15 from c_in:CLASSM!Class

16 to

17 c_out:CLASSM!Class (

18 name <- c_in.name,

19 attributes <- c_in.attributes,

20 operations <- c_in.operations

21 ->union(c_in.attributes->select(a|a.isPrivate)->collect(a|

thisModule.resolveTemp(a,’get’)))

22 ->union(c_in.attributes->select(a|a.isPrivate)->collect(a|

thisModule.resolveTemp(a,’set’)))

23)

24 }

25 rule Attribute {

26 from a_in:CLASSM!Attribute (not a_in.private)

27 to

28 a_out:CLASSM!Attribute (

29 name <- a_in.name)

30 }

31 rule PrivateAttribute {

32 from a_in:CLASSM!Attribute (a_in.private)

33 to

34 a_out:CLASSM!Attribute (

35 name <- a_in.name),

36 get:CLASSM!Operation (

37 name <- ’get’+a_in.name),

38 set:CLASSM!Operation (

39 name <- ’set’+a_in.name)

40 }

41 rule Operation {

42 from o_in:CLASSM!Operation

43 to

44 o_out:CLASSM!Operation (

45 name <- o_in.name)

46 }

Listing 2.1: Adding getters and setters

36 Chapter 2. Background

The target pattern of a transformation rule may consist of multiple tar-

get pattern elements. Each element specifies the creation of a model ele-

ment in the target model. A target pattern element specifies the type of

the created element and a set of bindings that specifies how the features

of the created model element will be initialised. The PrivateAttribute rule

creates three elements in the target model by its target pattern elements:

an Attribute (a_out) and two Operations (get and set). Their bindings refer

to the matched source model element (a_in) to initialise the name feature of

the created target model elements.

With ATL, the source model is read-only and the target model is write-

only. To initialise the features of target model elements, the ATL transfor-

mation engine applies a specific value resolution algorithm. When the type

of the expression of a binding is a primitive type (e.g., c_in.name in line 18)

or when its value is another target pattern element of the same rule, it is

simply assigned. When the value is a (set of) source model element(s) it is

first resolved into a target model element (e.g., c_in.attributes in line 19).

Effectively, the target model element created by the rule that matches the

source model element specified in the binding’s expression is assigned.

In the case that the matching rule specifies multiple target pattern ele-

ments the default (i.e., the first) target pattern element is used. When this

is not desirable, ATL offers the resolveTemp operation that can be used to

resolve source model elements using non-default target pattern elements.

To this end, it takes the source model element to be resolved and the name

of the target pattern element as parameters.

As an example, we explain how the operations feature of a target Class

is initialised by the Class rule in lines 20–22. Using standard OCL oper-

ations the expression of the bindings specifies the union of the operations

already present in the matching Class (c_in.operations) and the getters

and setters generated for private Attributes. We specify the getters by

first selecting from all attributes of the matching Class (c_in.attributes)

those that are private using one of OCL’s iterators (->select(a|a.isPrivate

)). Subsequently, for the resulting Attributes we collect the created tar-

get elements using the ’get’ target pattern element of the matching rule

(->collect(a|thisModule.resolveTemp(a,’get’). We specify the created set-

ters similarly.

A helper may be defined in the context of some source metamodel ele-

ment. As such, it effectively adds a feature to such an element. For exam-

ple, the isPrivate helper (lines 4–5) is defined in the context of Attributes.

It evaluates to true for every Attribute for which its visibility feature is set

to the string ’private’. This helper is an example of a so-called attribute

helper. Such helpers do not take parameters and are evaluated only once

for every source model element. Operation helpers, on the other hand, may

take parameters and have to be evaluated upon each call. Finally, by omit-

2.3. Model-Driven Engineering 37

ting the context from the definition of a helper it is defined in the context of

the transformation module as a whole, which is represented by the built-in

thisModule element.

In addition to the (declarative) features explained above, ATL offers a

number of additional features that we only mention briefly. Next to the

simple target pattern elements in Listing 2.1 that generate a single tar-

get model element, iterative target pattern elements that iterate over some

collection can be used to create a whole set of target model elements for a

single matching source model element. ATL also offers imperative features

that make it possible to add imperative instructions to matched rules. Fi-

nally, apart from matched rules, it is possible to define (imperative) rules

that are not matched by source model elements, but that are called explic-

itly. As such, these called rules do not have a source pattern.

2.3.4 MDE and Other Technological Spaces

As discussed above, abstraction and automation are made possible in MDE

by the use of metamodels. However, other solutions exist as well. As an

example, modelling languages can also be defined using grammars or XML

schemas. The layered structure depicted in Figure 2.3 on page 30 can be

recognised when using these alternatives as well, for instance, in the case

of grammars, EBNF is on the metametamodel level, grammars are on the

metamodel level, and programs on the model level.

Such different types of solutions each come with a whole context of con-

cepts, a body of knowledge, required skills, and possibilities. Kurtev et al.

[2002] coined the term technological space for such a context. As such, the

MDE space includes models, metamodels, model transformations, modelling

tools and transformation languages. This space is also referred to as mod-

elware. Similarly, the grammar space, or grammarware [Klint et al., 2005],

includes programs, programming languages, grammars, parsers, and pro-

gram transformation systems (e.g., Van den Brand et al. [2001]; Visser

[2004]). Other recognised technological spaces are based on XML or on-

tologies, for instance.

Specific operations on a particular type of models might be more con-

venient in one technological space than in the other. For this reason it

can be necessary to create a bridge between different technological spaces.

In Chapter 6, for instance, we used a bridge between the modelware and

grammarware technological space to visualise MDA models using a graph

visualisation tool that has a grammar-based input language.

Another bridge that is very important to MDA is XML Metadata Inter-

change1 (XMI). This bridge makes it possible to serialise models based on

1http://www.omg.org/mda/specs.htm#XMI (June 2007)

38 Chapter 2. Background

abstraction level

abstraction type

evolution

Figure 2.8: Three-dimensional evolution framework

MOF metamodels as XML documents. As such, XMI is used to exchange

models between tools, for instance, between modelling and transformation

tools.

In this thesis we mainly use technologies related to MDA, OMG’s so-

lution to MDE. It is a set of standards that includes capabilities for

modelling (e.g., UML), metamodelling (MOF), and model transformations

(Query/View/Transformation [OMG, 2005] (QVT)). The advantage of such

standards is that they make it worthwhile for tool vendors to develop

tools that support MDA technology [Booch et al., 2004], such as ArcStyler1

(Interactive Objects) and Borland Together2 Only when supporting tools

are available an initiative as the MDA can become a success in practice.

Tools that support UML modelling have been available for quite some time,

but now also tools become available supporting metamodelling and model

transformations3.

2.4 Model-Driven Evolution of Software Architectures

In this thesis we investigate the model-driven evolution of software archi-

tectures. We conclude this chapter by explaining in this section why we

think this makes sense.

Firstly, as explained in Section 2.2.4, architectures are often described

using multiple views each addressing a specific set of concerns. For ar-

chitectural views abstraction plays two roles: the level of abstraction, and

the type of abstraction, which refers to the type of the view (i.e., the view-

1http://www.interactive-objects.com/products/arcstyler (September 2007)
2http://www.borland.com/us/products/together/ (September 2007)
3See http://planetmde.org/tools (June 2007) for an overview of MDA and MDE tools.

2.4. Model-Driven Evolution of Software Architectures 39

point [IEEE-1471, 2000]). Such a view is centred around a model. Often

this is a model in a general sense, that is, it is a simplified representa-

tion of the system from a specific perspective. In practice such a model can

be a drawing or sketch that is not based on a defined modelling language.

In this thesis we attempt to consider those models in a more specific MDE

sense, that is, models conforming to a metamodel. Using this perspective

it becomes possible to support our software evolution tasks by model trans-

formations.

By considering software evolution as driven by or the result of model

transformations, we basically add a dimension along which models can be

transformed to the two dimensions identified in Section 2.2.4 (type and

level of abstraction). This results in a three-dimensional framework with

two abstraction axes (one for type and one for level of abstraction) and one

evolution axis. Models are transformed in a development (abstraction level)

direction as well as in an (orthogonal) evolution direction. A third axis

indicates the different types of abstractions (views) used (see Figure 2.8).

Secondly, the use of product-line principles can benefit especially from

MDE approaches [Schmidt, 2006]. Software product lines are typically (at

least) based on a platform [Bosch, 2002], a set of software components com-

mon to all product-line members. MDE approaches are particularly suited

to be applied to generate code for such platforms by application of model

transformations. We also apply these model transformations to support

our evolution tasks in the case of an evolving product line architecture, or

platform.

For these reasons this thesis explores the evolution (discussed in Sec-

tion 2.1) of software architectures (Section 2.2) using model-driven tech-

niques (Section 2.3).

Chapter3
Embedded-Software Engineering:

The State of the Practice1

The embedded-software market has grown very fast the last decade and will

continue to do so in the coming years. The specific properties of embedded

software, such as hardware dependencies, make its development different

from non-embedded software. Therefore we expected very specific software

development technologies to be used in this domain. The inventory we con-

ducted at several embedded-software-development companies in Europe re-

markably shows that this is not true. However the inventory results con-

cerning requirements engineering and architecture design at these compa-

nies do suggest that there is a need for more specifically aimed development

technologies. This chapter presents the inventory results and identifies pos-

sibilities for future research to customise existing and develop new software

development technologies for the embedded-software domain.

3.1 Introduction

Many products today contain software (e.g., mobile telephones, DVD play-

ers, cars, aeroplanes, and medical systems). Because of advancements in

information and communication technology, in the future even more prod-

ucts will likely contain software. The market for these ‘enhanced’ prod-

ucts is forecasted to grow exponentially in the next 10 years [PROGRESS,

2002]. Moreover, these embedded-systems’ complexity is increasing, and

the amount and variety of software in these products are growing. This

creates a big challenge for embedded-software development. In the years

1This chapter was published earlier as: Graaf, Bas, Marco Lormans, and Hans Toetenel.

Embedded software engineering: The state of the practice. IEEE Software, 20(6):pages

61–69, 2003

41

42 Chapter 3. State of the Practice

to come, the key to success will be the ability to successfully develop high-

quality embedded systems and software on time. As the complexity, num-

ber, and diversity of applications increase, more and more companies are

having trouble achieving sufficient product quality and timely delivery. To

optimise the timeliness, productivity, and quality of embedded-software de-

velopment, companies must apply software engineering technologies that

are appropriate for specific situations.

Unfortunately, the many available software development technologies

don’t take into account the specific needs of embedded-systems develop-

ment. This development is fundamentally different from that of non-

embedded systems. Technologies for the development of embedded systems

should address specific constraints such as hard timing constraints, lim-

ited memory and power use, predefined hardware platform technology, and

hardware costs. Existing development technologies don’t address their spe-

cific impact on, or necessary customisation for, the embedded domain. Nor

do these technologies give developers any indication of how to apply them

to specific areas in this domain – for example, automotive systems, telecom-

munications, or consumer electronics. Consequently, tailoring a technology

for a specific use is difficult. Furthermore, the embedded domain is driven

by reliability factors, cost factors, and time to market. So, this embedded

domain needs specifically targeted development technologies.

In industry, the general feeling is that the current practice of embedded-

software development is unsatisfactory. However, changes to the develop-

ment process must be gradual; a direction must be supplied. To achieve

this, we need more insight into the currently available and currently used

methods, tools, and techniques in industry.

To gain such insight, we performed an industrial inventory as part of the

Software Engineering MethOdOlogieS for Embedded Systems1 (MOOSE)

project. MOOSE is part of the Information Technology for European Ad-

vancement2 (ITEA) programme and is aimed at improving software quality

and development productivity for embedded systems. Not only did we gain

an overview of which technologies the MOOSE consortium’s industrial part-

ners use, we also learnt why they use or don’t use certain technologies. In

addition, we gained insight into what currently unavailable technologies

might be helpful in the future.

3.2 Methods and Scope

The inventory involved seven industrial companies and one research insti-

tute in three European countries (see Table 3.1). These companies build a

1http://www.mooseproject.org (June 2007)
2http://www.itea-office.org (June 2007)

3.2. Methods and Scope 43

Table 3.1: Inventoried companies

Company Products

TeamArteche (Spain) Measurement, control, and protec-

tion systems for electrical substa-

tions

Nokia (Finland) Mobile networks and mobile

phones

Solid (Finland) Distributed-data-management so-

lutions

VTT Electronics (Finland) Technology services for busi-

nesses

Philips PDSL (Netherlands) Consumer electronics

ASML (Netherlands) Lithography systems for the semi-

conductor industry

Océ (Netherlands) Document-processing systems

LogicaCMG (Netherlands) Global IT solutions and services

variety of embedded-software products, ranging from consumer electronics

to highly specialised industrial machines. We performed 36 one-hour in-

terviews with software practitioners. The respondents were engineers, re-

searchers, software or system architects, and managers, with varying back-

grounds. To get a fair overview of the companies involved (most of which

are very large), we interviewed at least three respondents at the smaller

companies and five or six at the larger companies. These interviews were

conducted in the period April – October 2002.

We based the interviews on an outline specifying the discussion topics

(see Table 3.2 on the following page). To be as complete as possible, it is

based on a reference process model. Because software process improve-

ment methods have such a (ideal) process model as their core, we used

one of them. We chose the process model of the BOOTSTRAP method [Ku-

vaja et al., 1994] because of its relative emphasis on engineering processes

compared to other process models [Wang et al., 1999], such as those of the

Capability Maturity Model [Humphrey, 1989] (CMM) and Software Process

Improvement and Capability dEtermination [Emam et al., 1997] (SPICE).

BOOTSTRAP’s other advantage for this inventory is that the BOOTSTRAP

Institute developed it with the European software industry in mind.

For every interview we created a report; we consolidated the reports

for a company into one report. We then analysed the company reports

for trends and common practices. Finally, we wrote a comprehensive re-

port that, for confidentiality reasons, is available only toMOOSE consortium

members. That report forms the basis for this discussion.

44 Chapter 3. State of the Practice

Table 3.2: A sample of the interview outline

Here are some discussion topics and questions from the outline we used

for the interviews.

Technology
What are the most important reasons for selecting development technolo-

gies?

• Impact of introducing new technologies (cost, time, and so on).

• Why not use modern/different technologies?

Software life cycle
Software requirements engineering

How are the requirements being gathered?

• What are the different activities?

• What documents are produced?

• What about tool support?

How are the requirements being specified?

• What specification language?

• What about tool support? (Consider cost, complexity, automation, train-

ing, acceptance)

• What notations/diagrams?

• What documents are produced?

• How are documents reviewed?

• What are advantages/disadvantages of followed approaches?

Software architecture design

How is the architecture specified?

• What architecture description language?

• What about tool support? (Consider cost, complexity, automation, train-

ing, acceptance)

• Are design patterns used?

• What notations/diagrams?

• What documents are produced?

• How are documents reviewed?

• What are advantages/disadvantages of followed approaches?

3.3. Embedded-Software Development Context 45

3.3 Embedded-Software Development Context

When considering the embedded-software-development process, you need

to understand the context in which it is applied. After all, most compa-

nies that develop embedded software do not sell it. Although at the time

of writing this is slowly changing in some industries (e.g., consumer elec-

tronics, see Van Genuchten [2007], they primarily sell mobile phones, CD

players, lithography systems, and other products. The software in these

products constitutes only one (important) part. Embedded-software engi-

neering and other processes such as mechanical engineering and electrical

engineering are in fact subprocesses of systems engineering. Coordinating

these subprocesses to develop quality products is one of embedded-system

development’s most challenging aspects. The increasing complexity of sys-

tems makes it impossible to consider these disciplines in isolation.

For instance, when looking at communication between different devel-

opment teams, we noticed that besides vertical communication links along

the lines of the hierarchy of architectures, horizontal communication links

existed. Vertical communication occurs between developers who are re-

sponsible for systems, subsystems, or components at different abstraction

levels (e.g., a system architect communicating with a software architect).

Horizontal communication occurs between developers who are responsible

for these things at the same abstraction level (e.g., a programmer respon-

sible for component A communicating with a programmer responsible for

component B).

Still, we found that systems engineering was mostly hardware driven

– that is, from a mechanical or an electronic viewpoint. In some compa-

nies, software architects weren’t even involved in design decisions at the

system level. Hardware development primarily dominated system devel-

opment because of longer lead times and logistical dependencies on exter-

nal suppliers. Consequently, software development started when hardware

development was already at a stage where changes would be expensive.

Hardware properties then narrowed the solution space for software devel-

opment. This resulted in situations where software inappropriately ful-

filled the role of integrator; that is, problems that should have been solved

in the hardware domain were solved in the software domain. Embedded-

software developers felt that this was becoming a serious problem. So,

in many companies this was changing; software architects were becoming

more involved on the system level.

Depending on the product’s complexity, projects used system require-

ments to design a system architecture containing multidisciplinary or

monodisciplinary subsystems. (A multidisciplinary subsystem will be

implemented by different disciplines; a discipline refers to software, or

mechanics, or electronics, or optics, and so on. A monodisciplinary subsys-

46 Chapter 3. State of the Practice

Figure 3.1: The decomposition of the embedded-systems-development process

tem will be implemented by one discipline.) Next, the projects allocated

system requirements to the architecture’s different elements and refined

the requirements. This process is repeated for each subsystem. Finally,

the projects decomposed the subsystems into monodisciplinary components

that an individual developer or small groups of developers could develop.

The level of detail at which decomposition resulted in monodisciplinary

subsystems varied. In some cases, the first design or decomposition step

immediately resulted in monodisciplinary subsystems and the correspond-

ing requirements. In other cases, subsystems remained multidisciplinary

for several design steps.

This generic embedded-systems-development process resulted in a tree

of requirements and design documents (see Figure 3.1). Each level repre-

sented the system at a specific abstraction level. The more complex the

system, the more evident this concept of abstraction levels was in the de-

velopment process and its resulting artefacts (for example, requirements

documentation).

3.4. Requirements Engineering Results 47

Figure 3.2: Embedded-systems-development stakeholders and other factors

In the process in Figure 3.1 , requirements on different abstraction lev-

els are related to each other by design decisions, which were recorded in

architecture and design documentation. At the system level, these deci-

sions concerned partitioning of the functional and nonfunctional require-

ments over software and hardware components. The criteria used for such

concurrent design (codesign) were mostly implicit and based on system ar-

chitects’ experience.

3.4 Requirements Engineering Results

Typically, embedded-systems development involved many stakeholders.

This was most apparent during requirements engineering. Figure 3.2

depicts our view of the most common stakeholders and other factors.

In requirements engineering’s first phase, the customer determines the

functional and nonfunctional requirements. Depending on the product do-

main, the customer negotiates the requirements via the marketing and

sales area or directly with the developers.

The first phase’s output is the agreed requirements specification, which

is a description of the system that all stakeholders can understand. This

document serves as a contract between the stakeholders and developers. At

this point, we noticed a clear difference between small and large projects.

In small projects, the stakeholder requirements also served as developer

requirements. In large projects, stakeholder requirements were translated

into technically oriented developer requirements.

48 Chapter 3. State of the Practice

Requirements specify what a system does; a design describes how to

realise a system. Software engineering textbooks strictly separate the re-

quirements and the design phases of software development; in practice, this

separation is less obvious. In fact, the small companies often put both the

requirements and design into the system specification. These companies

did not explicitly derive software requirements from the system require-

ments. The development processes in the larger companies did result in

separate requirements and design documents on different abstraction lev-

els. However, in many cases, these companies directly copied information

from a design document into a requirements document for the next ab-

straction level instead of first performing additional requirements analysis.

For instance, a software architecture specification (i.e., a design document)

might list some characteristics of the components that comprise the archi-

tecture. On the next abstraction level a requirements document concerns

only an individual component. Often simply the characteristics mentioned

in the architecture specification are used as the requirements, instead of

elaborating those requirements and adding more detailed requirements.

3.4.1 Requirements Specification

Requirements were usually specified in natural language and processed

with an ordinary word processor. The companies normally used templates

and guidelines to structure the documents. The templates prescribed what

aspects had to be specified. However, not all projects at a company used

these templates, so requirements specifications from different projects

sometimes looked quite different.

Because embedded-software’s nonfunctional properties are typically im-

portant, we expected these templates to reserve a section on nonfunctional

requirements next to functional requirements. This wasn’t always the case.

For example, the requirements specification didn’t always explicitly take

into account real-time requirements. Sometimes a project expressed them

in a separate section in the requirements documents, but often they were

implicit. Requirements specification and design also usually didn’t explic-

itly address other typical embedded-software requirements, such as those

for power consumption and memory use.

Projects that employed diagrams to support requirements used mostly

free-form and box-line diagrams in a style that resembles the Unified Mod-

eling Language1 (UML), data-flow diagrams, or other notations. Project

members primarily used general-purpose drawing tools to draw the dia-

grams. Because of the lack of proper syntax and semantics, other project

members often misinterpreted the diagrams. This was especially true for

1http://www.uml.org (June 2007)

3.4. Requirements Engineering Results 49

project members working in other disciplines that employ a different type

of notation.

UML was not common practice yet, but most companies were at least

considering its possibilities for application in requirements engineering.

Use cases were the most-used UML constructs in this phase. Some projects

used sequence diagrams to realise use cases; others applied class diagrams

for domain modelling. However, the interpretation of UML notations was

not always agreed on during requirements engineering. It wasn’t always

clear, for instance, what objects and messages in UML diagrams denote

when a sequence diagram specifies a use case realisation.

On the lowest levels, projects commonly used pre- and postconditions to

specify software requirements. They specified interfaces as pre- and post-

conditions in natural language, C, or some interface definition language.

Projects rarely used formal specifications. One reason was that formal

specifications were considered difficult to use in complex industrial envi-

ronments and require specialised skills. When projects did use them, com-

munication between project members was difficult because most members

did not completely understand them. This problem worsened as projects

and customers needed to communicate. In one case, however, a project

whose highest priority was safety used the formal notation Z for specifi-

cation.

3.4.2 Requirements Management

When looking at Figures 3.1 on page 46 and 3.2 on page 47, you can imagine

that it’s hard to manage the different requirements from all these different

sources throughout development. This issue was important especially in

large projects.

Another complicating factor was that most projects didn’t start from

scratch. In most cases, companies built a new project on previous projects.

So, these new projects reused requirements specifications (even for devel-

oping a new product line). Consequently, keeping requirements documents

consistent was difficult. To keep all development products and documents

consistent, the projects had to analyse the new features’ impact precisely.

However, the projects frequently didn’t explicitly document relations be-

tween requirements, so impact analysis was quite difficult. This traceabil-

ity is an essential aspect of requirements management. Tracing require-

ments was difficult because the relations (e.g., between requirements and

architectural components) were too complex to specify manually.

Available requirements management tools didn’t seem to solve this

problem, although tailored versions worked in some cases. A general

shortcoming of these tools was that the relations between the require-

ments had no meaning. In particular, tool users could specify the relations

50 Chapter 3. State of the Practice

but not the rationale behind the link.

When projects did document relations between requirements, they used

separate spreadsheets. Some companies were using or experimenting

with more advanced requirements management tools such as RequisitePro

(Rational), RTM (Integrated Chipware), and DOORS (Telelogic). These ex-

periments weren’t always successful. In one case, the tool’s users didn’t

have the right skills, and learning them took too long. Also, the tool han-

dled only the more trivial relations between requirements, design, and test

documents. So, developers couldn’t rely on the tool completely, which is

important when using a tool.

Requirements management also involves release management (manag-

ing features in releases), change management (backwards compatibility),

and configuration management. Some requirements management tools

supported these processes. However, because most companies already had

other tools for this functionality, integration with those tools would have

been preferable.

3.5 Software Architecture Results

Small projects didn’t always consider the explicit development, specifi-

cation, and analysis of the product architecture necessary. Also, owing

to time-to-market pressure, the scheduled deadlines often obstructed the

development of sound architectures. Architects often said they didn’t have

enough time to do things right.

The distinction between detailed design and architecture seemed some-

what arbitrary. During development, the projects interpreted architecture

simply as high-level design. They didn’t make the distinction between ar-

chitectural and other types of design explicit, as, for example, Eden and

Kazman [2003]. There, the locality criterion is introduced to distinguish

architectural design from detailed design. A design statement is said to

be local when it can’t be violated by mere expansion. The application of

a design pattern is an example of a local design statement. Architectural

design is not local. For instance, an architectural style can be violated by

simple expansion.

3.5.1 Software Architecture Design

Designing a product’s or subsystem’s architecture was foremost a creative

activity that was difficult to divide into small, easy-to-take steps. Just as

system requirements formed the basis for system architecture decisions,

system architecture decisions constrained the software architecture.

3.5. Software Architecture Results 51

In some cases, a different organisational unit had designed the system

architecture. So, the architecture was more or less fixed – for instance,

when the hardware architecture was designed first or was already known.

This led to suboptimal (software) architectures. Because software was con-

sidered more flexible and has a shorter lead time, projects used it to fix

hardware architecture flaws, as we mentioned before.

The design process didn’t always explicitly take into account perfor-

mance requirements. In most cases where performance was an issue,

projects just designed the system to be as fast as possible. They didn’t

establish how fast until an implementation was available. Projects that

took performance requirements into account during design did so mostly

through budgeting. For example, they frequently divided a high-level

real-time constraint among several lower-level components. This divi-

sion, however, often was based on the developers’ experience rather than

well-funded calculations. Projects also used this technique for other non-

functional requirements such as for power and memory use.

Projects sometimes considered commercial off-the-shelf (COTS) compo-

nents as black boxes in a design, specifying only the external interfaces.

This was similar to an approach that incorporated hardware drivers into

an object-oriented (OO) design. However, developers of hardware drivers

typically don’t use OO techniques. By considering these drivers as black

boxes and looking only at their interfaces, the designers could nevertheless

include them in an OO design. For the COTS components, the black box

approach wasn’t always successful. In some cases, the projects also had

to consider the components’ bugs, so they couldn’t treat the components as

black boxes.

The software architecture often mirrored the hardware architecture,

which made the impact of changes in hardware easier to determine. Most

cases involving complex systems employed a layered architecture pattern.

These layers made it easier to deal with embedded-systems’ growing com-

plexity.

3.5.2 Software Architecture Description

UML was the most commonly used notation for architectural modelling. On

the higher abstraction levels, the specific meaning of UML notations in the

architecture documentation should be clear to all stakeholders, which was

not always the case. Some projects documented this in a reference archi-

tecture or architecture manual (we discuss these documents in more detail

later).

52 Chapter 3. State of the Practice

IBM’s Rational Rose Technical Developer1 (formerly known as Rational

Rose RealTime) lets developers create executable models and completely

generate source code. A few projects tried this approach. One project com-

pletely generated reusable embedded-software components from Rational

Rose RealTime models. However, most of these projects used these tools

only experimentally.

For creating UML diagrams, respondents frequently mentioned only two

tools: Microsoft Visio and Rational Rose. Projects used these tools mostly

for drawing rather than modelling. This means, for instance, that models

weren’t always syntactically correct and consistent.

Other well-known notations that projects used for architectural mod-

elling were data-flow diagrams, entity-relationship diagrams, flowcharts,

and Hatley-Pirbhai diagrams [Hatley and Pirbhai, 1987] for the represen-

tation of control flow and state-based behaviour. Projects often used di-

agrams based on these notations to clarify textual architectural descrip-

tions in architecture documents. Some projects used more free-form box-

line drawings to document and communicate designs and architectures.

One project used the Koala component model [Van Ommering et al.,

2000] to describe the software architecture. Compared to box-line draw-

ings, the Koala component model’s graphical notation has a more defined

syntax. Koala provides interface and component definition languages based

on C syntax. A Koala architecture diagram specifies the interfaces that a

component provides and requires. This project used Microsoft Visio to draw

the Koala diagrams.

Projects often used pseudocode and pre- and postconditions to specify

interfaces. Although this technique is more structured than natural lan-

guage, the resulting specifications were mostly incomplete, with many im-

plicit assumptions. This not only sometimes led to misunderstandings but

also hampered the use of other techniques such as formal verification.

Some projects referred to a reference architecture or an architecture

user manual. These documents defined the specific notations in architec-

tural documents and explained which architectural concepts to use and

how to specify them.

3.5.3 Software Architecture Evaluation

Most projects did not explicitly address architecture verification during de-

sign; those that did primarily used qualitative techniques. Few projects

used quantitative techniques such as Petri nets or rate monotonic schedul-

ing analysis [Liu and Layland, 1973]. One reason is that quantitative-

analysis tools need detailed information. In practice, projects often used an

1http://www-306.ibm.com/software/awdtools/developer/technical (June 2007)

3.5. Software Architecture Results 53

architecture only as a vehicle for communication among stakeholders.

The most commonly employed qualitative techniques were reviews,

meetings, and checklists. Another qualitative technique employed was

scenario-based analysis. With this technique, a project can consider

whether the proposed architecture supports different scenarios. By us-

ing different types of scenarios (e.g., use scenarios and change scenarios),

a project not only can validate that the architecture supports a certain

functionality but also can verify qualities such as changeability.

The respondents typically felt that formal verification techniques were

inapplicable in an industrial setting. They considered these techniques to

be useful only in limited application areas such as communication protocols

or parts of security-critical systems. The few projects that used Rational

Rose RealTime were able to use simulation to verify and validate architec-

tures.

3.5.4 Reuse

Reuse is often considered one of the most important advantages of develop-

ment using architectural principles. By defining clean, clear interfaces and

adopting a component-based development style, projects should be able to

assemble new applications from reusable components.

In general, reuse was rather ad hoc. Projects reused requirements, de-

sign documents, and code from earlier, similar projects by copying them.

This was because most products were based on previous products.

For highly specialised products, respondents felt that using configurable

components from a component repository was impossible. Another issue

that sometimes prevented reuse was the difficulty of estimating both a

reuse approach’s benefits and the effort to introduce it.

In some cases a project or company explicitly organised reuse. One com-

pany did this in combination with the Koala component model. The com-

pany applied this model together with a proprietary method for developing

product families.

Some companies had adopted a product-line approach to create a prod-

uct line or family architecture. When adopting this approach, the compa-

nies often had to extract the product-line architecture from existing product

architectures and implementations. This is called reverse architecting.

In most cases, hardware platforms served as the basis for defining prod-

uct lines, but sometimes market segments determined product lines. When

a company truly followed a product-line approach, architecture design took

variability into account.

One company used a propriety software development method that en-

abled large-scale, multisite, and incremental software development. This

method defined separate long-term architecture projects and subsystem

54 Chapter 3. State of the Practice

projects. The company used the subsystems in short-term projects to in-

stantiate products.

Another company had a special project that made reusable components

for a certain subsystem of the product architecture. The company used

Rational Rose RealTime to develop these components as executable models.

Some companies practised reuse by developing general platforms on top

of which they developed different products. This strategy is closely related

to product lines, which are often defined per platform.

3.6 Discussion

You might well ask, are these survey results representative of the whole

embedded-software domain? By interviewing several respondents with

different roles in each company, we tried to get a representative under-

standing of that company’s embedded-software-development processes.

The amount of new information gathered during successive interviews de-

creased. So, we concluded we did have a representative understanding for

that company.

With respect to embedded-software development in general, we believe

that the large number of respondents and the companies’ diversity of size,

products, and country of origin make this inventory’s results representa-

tive, for Europe at least. However, whether we can extend these results to

other areas (e.g., the United States) is questionable.

Another point for discussion is that the methods, tools, and techniques

the companies used were rather general software engineering technologies.

We expected that the companies would use more specialised tools in this

domain. Memory, power, and real-time requirements were far less promi-

nent during software development than we expected. That’s because most

general software engineering technologies didn’t have special features for

dealing with these requirements. Tailoring can be a solution to this prob-

lem, but it involves much effort, and the result is often too specific to apply

to other processes. Making software development technologies more flexi-

ble can help make tailoring more attractive. So, flexible software develop-

ment technologies are necessary. Here, with flexible we mean, for instance,

requirements management tools that allow to modify the types and charac-

teristics of the managed requirements, or model transformation tools that

allow to transform models in arbitrary modelling languages, instead of be-

ing restricted to UML.

We noticed a relatively large gap between the inventory’s results and

the available software development technologies. Why isn’t industry using

many of these technologies? During the interviews, respondents mentioned

several reasons. We look at three of them here.

3.7. Outlook 55

The first reason is compliance with legacy. As we mentioned before,

most projects didn’t start from scratch. Developers always have to deal

with this legacy, which means that the technology used in current projects

should at least be compatible with the technology used in previous prod-

ucts. Also, companies can often use previous products’ components in new

products with few or no adaptations. This contradicts the top-down ap-

proach in Figure 3.1 on page 46. Unlike with that approach, components

at a detailed level are available from the start, before the new product’s

architecture is even defined. This would suggest a bottom-up approach.

However, because most available software development approaches are top-

down, they don’t address this issue.

Another reason is maturity. Most development methods are defined at a

conceptual level; how to deploy and use them is unclear. When methods are

past this conceptual stage and even have tool implementations, the tools’

maturity can still prevent industry from using them. This was the case for

some requirements management tools. Some respondents said that these

tools weren’t suited for managing the complex dependencies between re-

quirements and other development artefacts, such as design and test doc-

umentation. Also, integrating these tools with existing solutions for other

problems such as configuration management and change management was

not straightforward.

The third reason is complexity. Complex development technologies re-

quire highly skilled software engineers to apply them. But the development

process also involves stakeholders who aren’t software practitioners. For

instance, as we mentioned before, project team members might use archi-

tecture specifications to communicate with (external) stakeholders. These

stakeholders often do not understand complex technology such as formal

architecture description languages (ADLs). Still, formal specifications are

sometimes necessary – for example, in safety-critical systems. To make

such highly complex technologies more applicable in industry, these tech-

nologies should integrate with more accepted and easy-to-understand tech-

nologies. Such a strategy will hide complexity.

3.7 Outlook

In the remainder of this thesis we take into account the aforementioned

reasons for industry’s reluctance of adopting state-of-the-art software de-

velopment technologies. This implies that we, were possible, make use of

existing standards and technologies that already have been successfully

applied in industrial practice.

Moreover, we have seen that software development in practice seldom

starts from scratch. As such, technologies to support software maintenance

56 Chapter 3. State of the Practice

deserve at least as much attention as those that support software develop-

ment. Therefore, we focus on software evolution and how related software

engineering tasks can be supported. To this end, we use and combine ex-

isting software engineering technologies as much as possible.

The trend we observed that software development is moving towards

larger scale and more structured reuse by the use of software product-line

approaches is a final important consideration in the remainder of this the-

sis.

Chapter4
Evaluating an Embedded Software

Reference Architecture

– Industrial Experience Report –1

In this chapter, we discuss experiences gained during evaluation of the

maintainability of a software reference architecture in use at Océ, one of the

world’s leading copier manufacturers. The evaluation is conducted using an

approach based on the Software Architecture Analysis Method. The chapter

proposes a variant of this method that helps to reduce the organisational

impact of architecture evaluations. Second, we analyse the implications

of evaluating reference architectures as opposed to single-product architec-

tures. Furthermore, we share our experience of conducting the evaluation,

draw lessons for practitioners, and propose new research topics.

4.1 Introduction

In industry new products are rarely developed from scratch. Most products

are based on previous generations of similar products. Therefore, the capa-

bility of reusing large parts of earlier development efforts when developing

new products can increase the development efficiency of companies tremen-

dously [Jacobson et al., 1997]. However, currently many companies have no

structured approach for reuse, as the inventory conducted among several

companies developing embedded software confirmed (see Chapter 3).

1This chapter was published earlier as: Graaf, Bas, Hylke van Dijk, and Arie van

Deursen. Evaluating an embedded software reference architecture – industrial expe-

rience report. In Proceedings of the 9th European Conference on Software Maintenance

and Reengineering (CSMR 2005), pages 354–363. IEEE Computer Society, 2005

57

58 Chapter 4. Evaluation

One strategy to arrive at structured reuse, is to adopt architectural con-

cepts, including product-line approaches, during the software development

process. Architecture-based development increases development efficiency

and makes software systems more easy to maintain and evolve. It does so

by increasing the conceptual integrity [Brooks, Jr, 1975] of software sys-

tems and by providing a common software infrastructure which makes it

easier to understand systems and to integrate new components. A product-

line architecture extends these ideas beyond single-product developments

to a whole generation of products and thus enables the reuse of components

in new product-line members.

At Océ, one of the world’s leading copier manufacturers, every couple of

years a new product generation is launched, comprising a family of sim-

ilar products. To make development and maintenance of these genera-

tions more effective and efficient Océ decided to define a reference archi-

tecture for a part of the embedded software in its products. It establishes a

common software infrastructure for different generations, thus facilitating

reuse across generation boundaries.

Since this reference architecture will potentially impact all embed-

ded software to be developed at Océ, the architecture team at Océ de-

cided to conduct an evaluation of the quality of this reference archi-

tecture, using an approach based on the Software Architecture Analysis

Method (SAAM) [Kazman et al., 1996; Clements et al., 2002b] which was

developed at the Software Engineering Institute1 (SEI). In this chapter we

report on this evaluation.

The contributions of this chapter are threefold. First, we propose a vari-

ant of SAAM that reduces the organisational impact of architecture evalu-

ations. Second, we analyse the implications of evaluating reference archi-

tectures as opposed to product architectures. Last but not least, we share

our experience with conducting an evaluation of a real-life reference archi-

tecture that is actually used in industry. The lessons learnt are useful for

practitioners, and lead to new research questions related to architecture

evaluation.

In order to protect Océ’s interests, we cannot discuss Océ-sensitive de-

tails of the reference architecture. Instead, we will discuss a modified ver-

sion. We believe that the architectural issues and the evaluation method

are not materially affected by these changes.

This chapter is organised as follows. In Section 4.2 we summarise the

content and context of the embedded software reference architecture for

copier engines (hereafter referred to as ‘the reference architecture’). In

Section 4.3, we describe why we selected SAAM to conduct the evaluation

and why Océ’s situation required some modifications to it. In Section 4.4

1http://www.sei.cmu.edu (June 2007)

4.2. Overview of the Reference Architecture 59

we explain how the actual evaluation was carried out and how practical

problems were solved. Then, in Section 4.5 we reflect on the evaluation

and identify future work. We conclude with a discussion of related work

and a summary of the chapter’s contributions.

4.2 Overview of the Reference Architecture

The reference architecture addresses the engine software for Océ document

processing systems (copiers). A copier engine is the part of the system that

handles either the scanning or the printing of documents. Figure 4.1 illus-

trates the workings of a copier. A scanner engine extracts an image from

the original sheet, whereas a printer engine reproduces the image data on

blank sheets. The reference architecture describes an abstract engine that

can potentially be used for any Océ copier.

Controller

Scanner Printer

image data & info

original

sheets

blank

sheets

printed

sheets

original

sheets

print data
network

scanned data

Figure 4.1: Main flows in a copier.

4.2.1 Business Drivers

Océ’s reference architecture serves several purposes, of which the most im-

portant are:

Knowledge base It provides common terminology for software architects
that is applicable to several products. The shared terminology to-

gether with the regular meetings dedicated to development of the ref-

erence architecture enable architects to share experiences more effi-

ciently.

60 Chapter 4. Evaluation

Starting point Its documentation can be used by new projects as a start-
ing point for Océ’s iterative development process. This greatly re-

duces the effort required for designing an engine architecture for a

new product.

Reuse It describes the generic structure and behaviour of the engine soft-
ware components. This makes integrating existing software compo-

nents that are compliant to the reference architecture easier, and thus

increases the reuse potential of those components. This not only in-

cludes binary components, but also designs, requirements and other

software artefacts.

In fact the three points above are all related to reuse (i.e., of knowledge, doc-

umentation, and other software products). Therefore, the reference archi-

tecture should make it possible to eventually speed up the development

(fast prototyping) and maintenance of products significantly.

4.2.2 Reference Architecture

The reference architecture defines the fundamental elements, relations be-

tween these elements, and properties of other, product-specific elements of

Océ’s copier engine software. It is used to derive a software architecture for

engines incorporated in a specific series of Océ printers. From this software

architecture, individual engines can be configured to be integrated in Océ’s

products. In this way the reference architecture defines a family of copier

engines.

Deelstra et al. [2005] give a classification of product families with re-

spect to level of reuse. We use this classification and the accompanying ter-

minology to position the reference architecture. Four (ordered) levels are

identified: 1) standardised infrastructure, 2) platform, 3) software prod-

uct line, and 4) configurable product family. These levels denote to which

extent the commonalities between related products in the product family

are exploited. Océ’s reference architecture can be positioned as a platform,

since it provides reusable components that are developed by a separate

reuse group (see Section 4.2.4). Furthermore, it defines a standardised

infrastructure by prescribing how components should interact and what

functional components should look like. Additionally, it offers a platform

that realises common functionality, such as error handling and scheduling.

As all business drivers of the reference architecture are related to reuse,

Océ is particularly interested in investigating whether it is possible and

worthwhile to raise the current reuse level of the reference architecture to

that of a product line. However, in order to qualify as a product-line archi-

tecture, it must define the functional variability between different engines.

4.2. Overview of the Reference Architecture 61

Table 4.1: Views used in in the reference architecture’s documentation

View

Persp.
Static Dynamic

Conceptual System context, stake-

holders, key require-

ments, external inter-

faces

Use cases, user visible

states, configurations, vari-

ants

Logical System components

and dependencies,

subsystem decompo-

sition, persistent data,

internal interfaces

Behaviour, component

connection and discon-

nection, startup, key algo-

rithms.

Physical Files, directories, code,

build rules

Threads, tasks, schedul-

ing, interrupts.

4.2.3 Structure

The reference architecture is extensively documented using text illustrated

with Unified Modeling Language1 (UML) diagrams in more than 500 pages.

The documentation is structured according to the Architecture MetaModel

(AMM) developed by Atos Origin [Dinther et al., 2001]. AMM builds upon

the Siemens four-views model [Soni et al., 1995] and Kruchten’s 4+1 View

Model [Kruchten, 1995]. It is organised around three types of views: con-

ceptual, logical, and physical views. For each type of view, a static and a

dynamic perspective is offered. This gives rise to six views, as illustrated

in Table 4.1.

The documentation includes one overview document of approximately

50 pages, and a dozen documents describing the architecture for specific

concerns, such as status control, software downloading, data persistence,

and diagnostics. Each of these documents is organised according to AMM.

The views are illustrated with diagrams expressed in UML-RT, a real-time

extension of UML widely used at Océ [Dohmen and Somers, 2003]. In par-

ticular, many use cases are elaborated in sequence diagrams.

4.2.4 Usage

Currently the use of the reference architecture is voluntary. However, ar-

chitects who want to use it for their project are supposed to first partic-

ipate in the dedicated meetings for some months to get the same shared

understanding of the reference architecture as the other participating ar-

1http://www.uml.org (June 2007)

62 Chapter 4. Evaluation

p1 p3 p4p2 Reference architecture evolution

P
ro

d
u
c
t d

e
v
e

lo
p

m
e

n
t

Figure 4.2: The reference architecture and derived projects.

chitects. This ensures that the reference architecture is more than a pile

of documents. These meetings are very important as they provide a com-

munication platform which is essential for meeting the initial objectives

(Section 4.2.1).

In agreement with these objectives, there is a logical link between the

reference architecture group and the group that develops reusable software

components for the engine software. In the current situation, only the

reusable components refer to the reference architecture’s documentation,

which means that this documentation itself does not show what compo-

nents can be used to implement the different elements of the architecture.

The actual usage of the reference architecture leads to refinements and

additions. Figure 4.2 depicts this interplay between usage and evolution.

The horizontal line represents the evolution of the reference architecture.

Each pi represents a project in which an engine is developed for a series of

Océ copiers. A project can ‘join’ the reference architecture for some time,

contribute to its development, and benefit from modifications made to it.

This is indicated by the oblique lines for projects p1, p2, and p4. After a

while, such projects may decide to ‘leave’ the reference architecture, and

continue on their own using a fixed version (the lines become vertical).

Other projects (p3) may decide to use a fixed version right from the start,

extracting just whatever is necessary from that version of the reference

architecture.

The reference architecture came into existence based on the documen-

tation and experience of several previous projects. In fact, it was developed

largely in parallel with one specific project. As such it can currently be

understood as the common denominator of several product specific archi-

tectures.

As said using the reference architecture is voluntary and it is not yet

known to all potential stakeholders. Therefore we can say that it is cur-

4.3. Evaluation Approach 63

rently in an emerging phase. As such, besides confirmation that the refer-

ence architecture is suitable for its intended purpose, now and in the future,

another result of its evaluation is the increased awareness of the potential

benefits of the reference architecture with other development teams within

Océ.

4.3 Evaluation Approach

The initial question that triggered this work was “How good is the refer-

ence architecture?” Additionally another important and related question

was asked: “Does this reference architecture have a reason to exist?” The

development team mainly wanted to get confirmation that the reference

architecture is useful and that it is of good quality.

We first define what the terms ‘quality’ and ‘good’ mean in this context.

As ‘good’ is always relative to particular requirements, the first step is to

determine these requirements for the reference architecture, which were

unknown since their definition was neglected during development.

As the reference architecture is intended to be used for several years

and product generations, it is essential that it supports future changes to

its environment and new product requirements. This is the main type of

quality under consideration in the evaluation. Furthermore, in view of the

fact that the objectives of this architecture as presented in Section 4.2 are

centred around reuse, the impact that future changes will have on the reuse

potential it offers, is essential. In the rest of this chapter we will use the

term maintainability to refer to the type of quality required for a reference

architecture described above.

Thus, the central question is: “How well is the reference architecture

prepared for the future?” As this future is not always known at the time

of evaluation, the selected method must explicitly address specification of

possible extensions.

4.3.1 Selection of Evaluation Method

A literature overview of architecture evaluation methods [Dobrica and

Niemelä, 2002] was used to select an appropriate approach to answer

the central question above. Besides addressing maintainability as we de-

scribed it in the previous paragraphs, Océ further required the method

to be lightweight and well-documented. The method must have a low or-

ganisational impact because, as the reference architecture is still in an

emerging phase, its evaluation must not affect other processes at Océ.

Additionally, the method must be executable without additional training.

This requires that a clear procedure for doing an evaluation based on the

64 Chapter 4. Evaluation

Describe

Architecture Scenarios

Develop

Classify / prioritise

scenarios

Individually evaluate

indirect scenarios

Assess scenario

interaction

Create overall

evaluation

Figure 4.3: SAAM steps [Clements et al., 2002b].

selected method is available. These constraints imply the exclusion of

many of the inventoried methods because these either focus on a different

quality attribute or lack sufficient detail, e.g. many methods are defined

and explained in only one published article.

The best-suited methods described in the inventory seem to be SAAM and

its successor, the Architecture Tradeoff Analysis Method [Clements et al.,

2002b] (ATAM). Both address maintainability and are extensively docu-

mented. Although ATAM is likely to produce more objective and accurate

results, it also seems more difficult to apply for inexperienced assessors.

The use of attribute-based architecture styles and their associated qual-

ity attribute characterisations for analysis of architectural decisions is not

straightforward. Also the identification of sensitivity and trade-off points

and the generation of a utility tree requires more effort and experience.

Due to Océ’s requirements with respect to the need for training (no need)

and organisational impact (low) of the method, SAAM was selected.

In a SAAM evaluation, scenarios are developed to assess a software

architecture’s support for maintainability. The scenarios are used to ex-

press the required type of maintainability and thus SAAM can also be used

to evaluate the type of maintainability we described previously. The devel-

oped scenarios represent possible future changes to the software system.

An important aspect of SAAM is that it involves all stakeholders of a soft-

ware architecture in a joint evaluation session, which results in a better

appreciation and a more widely shared understanding of the software

architecture.

4.3. Evaluation Approach 65

Figure 4.3 shows the different phases of SAAM. A SAAM evaluation ses-

sion starts with scenario development and description of the architecture.

These are iterative activities. New scenarios can make it necessary to de-

scribe the architecture further, so that the architects can analyse them,

while describing aspects of the architecture forces to think about possible

scenarios addressing these aspects.

Next, the scenarios are prioritised and classified. Scenarios that can be

realised without making changes to the current architecture are classified

as direct. Scenarios that do require changes to the current architecture

are classified as indirect. The indirect scenarios are evaluated for their im-

pact. Furthermore, the scenario interaction is determined. Two scenarios

interact when they require changes to the same architectural component.

Information on scenario interaction is indicative of the quality of the de-

composition.

Finally, the classification, prioritisation, analysis of the individual sce-

narios, and the scenario interaction are used to create an overall evalua-

tion.

A SAAM evaluation session typically takes two days and involves an ex-

ternal evaluation team of three to four people. A session also involves sys-

tem architects and other stakeholders. The type of stakeholders involved

is very diverse: architects, developers, maintainers, integrators, managers,

customers, end users, and so on.

4.3.2 Tailoring SAAM

SAAM has been selected as the evaluation method, yet it had to be tailored

to Océ’s situation. The current situation at Océ makes it necessary to mod-

ify SAAM for two reasons: 1) the organisational impact of SAAM and 2) the

level of abstraction of the reference architecture.

In the situation of Océ the impact of gathering all potential stakeholders

(as indicated in Table 4.2 on the next page), was considered too large. The

main reason was that the stakeholders of a software architecture typically

include some of the important members of an organisation that usually

have very busy schedules. For the reference architecture this is especially

true as it is the development group’s ambition to make it a reference archi-

tecture that will impact development of many of Océ’s copiers for years.

Furthermore, the scope of a reference architecture is larger than that of a

single-product architecture and therefore, next to a group of direct stake-

holders a large group of indirect stakeholders (as indicated in Table 4.2 on

the following page) exist, which makes the complete group of people with

an interest in a reference architecture much larger.

66 Chapter 4. Evaluation

The increased number of stakeholders made it impossible to find a date

that suited all stakeholders and undesirable to take one or two full days of

each stakeholders’ time.

Besides the number of stakeholders the fact that we are studying a ref-

erence architecture also has an impact on the evaluation. It affects the

level of abstraction; a reference architecture is more abstract than a single-

product architecture.

The characteristics of the situation as found at Océ that we discussed

above have several implications for the evaluation. Below we will discuss

how these issues lead to modifications to the typical SAAM process as de-

scribed by Kazman et al. [1996].

Table 4.2: Reference architecture stakeholders.

Stakeholder Interest

Architects Reference architecture architects

Users Product architects

Management Sponsors and decision makers

Potential users Product architects not using the reference archi-

tecture

Reuse group Provider of compliant components

Indirect Stakeholders of products based on the reference

architecture

The proposed tailored version is a distributed implementation of SAAM,

called Distributed SAAM (DSAAM), that implements parts of the SAAM ac-

tivities off-line, separately from the joint session. For instance, in prepara-

tion to the evaluation session, stakeholders are consulted individually. The

joint SAAM session itself involves only participants fully aware of and well-

informed on the reference architecture. The advantage of this approach is

that the organisational impact is much smaller. Off-line consultation of in-

dividual stakeholders takes less time than a joint SAAM session. Addition-

ally these consultations can be scheduled fitting the stakeholders’ agenda’s.

Of course this approach increases the effort required by the assessors in-

volved in these preparations. However, because we tried to minimise or-

ganisational impact, we aimed at reducing the required stakeholder effort.

An additional advantage is that smaller gatherings potentially induce

less ambiguity, leading to a more efficient joint session. Therefore the ac-

tual DSAAM evaluation session lasts half a day instead of the usual two

days. This further decreases the organisational impact of the evaluation.

4.4. Conducting the Evaluation 67

4.4 Conducting the Evaluation

The evaluation consisted of roughly three phases. First, the joint DSAAM

session had to be prepared. Second, the DSAAM evaluation session itself was

executed. And finally an overall evaluation of the reference architecture

was created. Three architects involved in the development of the reference

architecture and two external observers participated in the joint session.

One of the architects played the role of evaluation leader and prepared,

chaired, and evaluated the joint session of DSAAM. For each SAAM step in

Figure 4.3 on page 64, we explain below how it was included in the different

phases of the DSAAM assessment.

4.4.1 Preparation

In preparation to the execution of the joint DSAAM session the available

documentation (on the reference architecture and on SAAM) was distributed

among the participants. The reference architecture’s documentation was

especially useful for the external observers as it explains the architecture

and the applied architectural mechanisms. The documents on SAAM were

only used by the evaluation leader.

The step ‘develop scenarios’ was carried out in two stages. During the

preparation phase, the evaluation leader consulted stakeholders off-line.

This resulted in an initial set of high-level scenarios representing possible

futures from a stakeholder’s perspective. The set of stakeholders included

the sponsor of the reference architecture, members of the software reuse

group, and hardware and domain experts. Unfortunately, the marketing

and maintenance groups were not consulted, which limited the view on

the road maps for Océ copier machines. The scenarios were related to ei-

ther existing products or foreseen products. Whether the reference archi-

tecture was based on these products is irrelevant. The evaluation leader

then added more detail to these scenarios according to a template for sce-

narios based on Bass et al. [2003].

4.4.2 Scenarios

In total sixteen scenarios were developed off-line. The majority of the sce-

narios aimed at reducing material costs, for example by sharing resources,

using low-power designs, or offloading or re-mapping functionality. One

scenario, for instance, aimed at moving functionality from the engine soft-

ware to the main controller, another subsystem of a copier.

A second kind of scenarios was developed to reduce development costs.

For instance, introduction of code generation for controllers of sensors and

actuators based on mathematical models of those hardware devices. These

68 Chapter 4. Evaluation

scenarios were especially targeted at interactions which go beyond the do-

main level, such as communications with the mechatronics, testing, and

manufacturing groups.

Finally, a minor source of scenarios involved an upgrade of the func-

tionality, such as colour and wide-format printing. An example scenario is

depicted in Table 4.3 in a format described by Bass et al. [2003].

Table 4.3: An example scenario.

Stimulus Reduce power consumption by turning off

parts of the copier machine during low-power

mode

Response Solve in engine specific projects

Source Electronics department

Environment Engine development time

Stimulated arte-

fact

Reference architecture documentation

Response mea-

sure

Reuse percentage remains on same level

4.4.3 Execution

In the joint session each architect represented a product as a user of the

reference architecture. Additionally, all architects played the role of asses-

sor. As some of the participants had no experience in SAAM evaluations and

to explain the steps of the DSAAM process, the session started with a brief

introduction of the process. For the process observers also the role of the

reference architecture in the organisation of Océ was explained.

The step ‘describe the architecture’ was largely omitted during the

DSAAM session, since the DSAAM session only involved people that are

well-informed with respect to the reference architecture and extensive

documentation was already available.

The second part of the step ‘develop scenarios’ was done during the

DSAAM session. This involved only architects of products on which the ref-

erence architecture was based. Apparently, the scenarios contributed by

the stakeholders consulted prior to the joint session are representative for

what may change in the future, as soliciting for extra scenarios gave no

results. As such, the scenarios gathered and elaborated by the evaluation

leader were used.

Scenarios were classified, prioritised, and evaluated as in SAAM, that

is, during the session itself. The scenarios were classified and evaluated

one by one, bypassing prioritisation (Figure 4.3 on page 64). Figure 4.4

4.4. Conducting the Evaluation 69

gives an impression of the final result of the SAAM session. Scenarios were

classified in directly and indirectly supported scenarios.

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

floatingconcrete low impact high impact

1

Direct scenarios Indirect scenarios

3

2

P
ri
o

ri
ty

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

description

characterisation

scenario ID

Figure 4.4: SAAM results

In general, first the impact of a scenario on a specific product was evalu-

ated, and then its impact on the reference architecture. Classification and

evaluation required a different attitude because we were evaluating a ref-

erence architecture instead of a product architecture. The difficulty lied in

the fact that while scenarios are concrete, representing future functional-

ity, or the quality of actual products, the reference architecture is abstract.

The question:“What is the impact on the reference architecture?” needed to

be answered consistently for all scenarios. Therefore we defined two types

of direct scenarios:

1. Scenarios that are supported by the reference architecture as is and

for which it provides concrete guidelines on how to realise them in

product instantiations, and

2. Scenarios that can be realised by systems based on the reference

architecture, but for which it does not (yet) provide detailed informa-

tion on how to realize them (floating).

The class of floating scenarios calls for a cookbook with recipes that de-

scribe solutions for variation points in the reference architecture. Cookbook

recipes describe how the reference architecture can be used to realize a spe-

cific (floating) scenario. For example, it might be necessary to describe what

70 Chapter 4. Evaluation

kind of components need to be defined or how some of the already defined

components should cooperate to implement the desired behaviour. This in-

formation can be included in the reference architecture in a separate docu-

ment without affecting the existing documentation. By realising scenarios

this way the scope of reuse is extended and the reference architecture’s

classification moves from platform towards product line (see Section 4.2.2).

An example of such a cookbook recipe was the description of how to real-

ize sharing of hardware resources within an engine. The recipes were just

new reference architecture documents. In fact, some of the existing doc-

uments already were such recipes, such as the document describing how

function component should look like, without actually defining concrete

function components. These documents had a different nature than the

other documents that describe specific components of the reference archi-

tecture, like a scheduler. Figure 4.4 on the previous page shows that most

of the scenarios fall in this category of direct scenarios.

The indirect scenarios were, as usual in SAAM, partitioned in two sub-

sets: a subset with low impact and a subset with high impact. Overall this

assessment session did not discover many design flaws. The architects

spent most of their time on the single high impact, high priority scenario

(multiple sheet paths).

The indirect scenario interaction was considered very briefly as only a

few indirect scenarios were discovered. It was concluded that those did not

interact.

4.4.4 Overall Evaluation

This final stage of the assessment involved the overall evaluation, which

resulted in a set of strong and weak points. The set of strong points in-

cludes the aforementioned use of the reference architecture and its flexibil-

ity; most of the evaluated scenarios are directly supported.

The set of weak points includes a design flaw that prevents support for

multiple sheet paths, which is required for duplex printing, for instance.

Additionally, the reference architecture seemed incomplete as it missed

several cookbook recipes. For example, recipes for sharing hardware re-

sources and reusing engine parts amongst different engines in a single

copier are currently not included. Another weakness was that variation

points were not explicit in the documentation. Related to this issue is a

missing structure for documenting an instantiation of the reference archi-

tecture, an engine generation, with respect to its documentation. It was not

clear how conformance to and deviations from the reference architecture

should be specified by projects that develop such an instantiation. Nev-

ertheless, this is important for the maintainability of the reference archi-

tecture and its instantiations.

4.5. Discussion 71

4.5 Discussion

Below we both discuss the implications of evaluating a reference archi-

tecture and using a distributed SAAM approach and we indicate where these

lead to suggestions for future work and research questions.

4.5.1 Reference Architecture

Reuse Level In Section 4.2.2 we positioned the reference architecture as a
platform. Furthermore its business drivers were all related to reuse (Sec-

tion 4.2.1). Therefore the positioning raised two questions: is the position-

ing of the reference architecture correct for the current situation, and for

the future? If correct, the current reuse positioning as a platform should be

supported by links between the documentation of the reference architecture

and the documentation of instantiated products. In view of the reuse posi-

tioning, we expect a considerable reduction in the effort of documenting a

product instantiation compared to a single-product architecture approach.

A prerequisite for this conjecture is that there must be a systematic way

of documenting product instantiations with respect to the reference archi-

tecture. It is unclear whether such a systematic documentation process

exists.

Research question Can we define and deploy a systematic pro-
cess for documenting product architectures with respect to a ref-

erence architecture?

In order to find out if product instances are documented with respect

to their reference architecture in a systematic way reuse metrics are re-

quired [Poulin, 1997] to determine how much of the reference architecture

documentation is reused in the product instance documentation. As an ex-

ample of such a reuse metric, consider two indicative figures: the relative

size and a normalised cohesion factor. The size factor calculates the lines

of documentation of a product instantiation relative to the size of the refer-

ence architecture’s documentation. The cohesion factor takes the number

of references from the documentation of a concrete product to the reference

architecture’s documentation that handle variation points, normalised with

the total number of references from the product instantiation documenta-

tion to the reference architecture’s documentation. A low relative size and

high cohesion factor indicate a high reuse factor and thus a systematic ap-

proach for reusing the reference architecture in product instantiations.

Future work Define a metric to position a reference architecture
with respect to scope of reuse.

72 Chapter 4. Evaluation

With respect to the future reuse positioning of the reference architecture

we would expect, looking at its reuse-oriented business drivers, that Océ

aims to increase its reuse scope. This objective is supported by the identifi-

cation of various direct floating scenarios, which will be implemented by the

development team in a cookbook (Figure 4.4 on page 69). This implies that

Océ indeed foresees that the reuse positioning of the reference architecture

is raised from platform to software product line in the near future.

Updates Maintainability was the central quality aspect in the evaluation.
One aspect of maintainability is the possibility to update the reference

architecture with developments that take place in a product instantiation:

during the oblique lines in Figure 4.2 on page 62. In order to successfully

implement a proposed update two issues need to be considered: confor-

mance and permissiveness.

Conformance is the extent to which the product architecture and refer-

ence architecture match. One must specify the update in agreement with

the existing reference architecture. This is necessary, for example, to pre-

vent specification of updates to components that do not exist at all in the

reference architecture. The architecture of a product may undergo small

changes during its development. Consequently, there may be a discrepancy

between the product architecture and the reference architecture. The dis-

crepancy may obstruct the transfer of architectural fragments, e.g., a cook-

book recipe, from the reference architecture to the product architecture.

But it may also obstruct the update of the reference architecture itself.

To detect these architectural discrepancies and suggest possible repairs,

one could check the conformance by first using reverse engineering tech-

niques to raise the level of abstraction of concrete product architectures

and then compare the result with the reference architecture [Van Deursen

et al., 2004]. Chapters 5 and ch:ewsa2005 investigate how to assess confor-

mance of architecture specifications automatically.

Future work Develop a technique to measure the conformance
of a product architecture with respect to the reference architecture

on which it is based in order to assess the possibility to trans-

fer fragments from a product architecture to the reference archi-

tecture.

The bare fact that a product has an architecture that conforms with the

reference architecture does not ensure by itself that a proposed update will

be successful. The reference architecture also has to be permissive with

respect to the update. The reference architecture must provide the flexi-

bility to incorporate the proposed update. An update might violate some

of the design decisions taken earlier; whether this is the case is in prac-

tice generally hard to assess. One reason for this is that design decisions

4.5. Discussion 73

are not completely documented. Most times only the structural effect of a

design decision is documented. Documenting other aspects of design de-

cisions, such as their rationale and effect with respect to (non)-functional

requirements is often neglected.

Research question How can we document design decisions ex-
plicitly and how can we then use them to assess an architecture’s

permissiveness with respect to a proposed update?

Use of Reference Architectures Besides its technical use as a starting point for
product specific software architectures, the reference architecture served

according to its objectives as a discussion platform for the software archi-

tects of different products. In that sense the reference architecture indeed

is an efficient way to exchange experiences among product teams.

Another use of the reference architecture appeared during discussions

in the DSAAM evaluation. It acts as a stable platform for negotiations

amongst different domains: the mechatronics, manufacturing, and soft-

ware reuse groups at Océ. By introducing a generic and more stable archi-

tecture for the engine software of Océ copiers the development group tries

to prevent that software is automatically considered to be the means to

solve problems during engine integration. As such defining an embedded

software reference architecture helps creating a better balance between the

different disciplines involved in engine development. This is a typical prob-

lem in the embedded software domain as was also observed in the inventory

described in Chapter 3.

In the evaluation we conducted, the usage of the reference architecture

was not addressed explicitly. Considering the specific use of reference ar-

chitectures described above, it seems useful to do so, especially in the case

of embedded systems.

Research questionHow can we include the usage of a reference
architecture in an evaluation?

4.5.2 Distributed SAAM

The main concern of scenario-based evaluation methods is whether the cov-

erage and scope is broad enough to be conclusive about the findings of the

evaluation. SAAM overcomes this by organising a general two-day gather-

ing, which is moderated by experienced assessors. In DSAAM we had to take

alternative measures.

In view of the two questions above, the number of direct stakeholders

of the reference architecture is limited (see Table 4.2 on page 66), although

74 Chapter 4. Evaluation

many indirect stakeholders can be identified. These two groups of stake-

holders seem to have different interests.

Raising the scope of reuse of the reference architecture directly concerns

the architects of compatible products as its users and architects. It implies

that the reference architecture not only should identify variation points

but also explicitly give alternatives. The cookbook of the previous section

provides these.

Scenarios that describe future development of existing and foreseen

products are the concern of the stakeholders of those products. The devel-

opment of these scenarios is the responsibility of these stakeholders, which

are not necessarily also direct stakeholders of the reference architecture.

On the other hand the resulting scenarios are input to DSAAM session, thus

indirectly they are.

One measure we took to include indirect stakeholders in the evaluation

was to split the process of developing the set of scenarios in two stages: an

off-line stage with the indirect stakeholders, and a DSAAM stage with the

direct stakeholders. The scenarios provided by the indirect stakeholders

were product specific. Evaluating the impact on the reference architecture

was not their concern, but that of the direct stakeholders. Furthermore

the direct stakeholders are the only ones capable of doing so. Therefore

because only the indirect stakeholders were excluded from the joint session,

the scope of the DSAAM session was not affected by the lack of stakeholder

interaction during evaluation.

However, this also prevented indirect stakeholders to interfere or inter-

act during scenario prioritisation. During the DSAAM session, the architects

concentrated on the most likely scenarios, from the perspective of an archi-

tect. Although scenarios were prioritised with respect to their impact, there

was no clear rationale for this ranking. Hence DSAAM’s scope was still at

risk due to the possibility of a wrong scenario prioritisation.

In order to validate DSAAM’s scope we recommend to organise indirect

stakeholder involvement after the joint session. During this feedback

phase stakeholders might be consulted in small sessions or individual in-

terviews, in the same way as we did in preparation to the session. This

time the indirect stakeholders can comment on the scenarios prioritisa-

tion and verify whether the evaluation covered all relevant aspects of the

architecture. This preserves the small impact on the organisation offered

by DSAAM. During the feedback phase, indirect stakeholders may conclude

that some likely scenarios have not been evaluated thoroughly enough.

Thus the feedback phase may yield newly developed scenarios. This new

set of scenarios has to be evaluated in a new DSAAM session.

Future work Extend DSAAM with an off-line feedback phase af-
ter the joint session for indirect stakeholders.

4.6. Related Work 75

Use of Documentation During the assessment we were somewhat surprised

that the actual documentation of the reference architecture was not used at

all during the session. This means that the architecture assessed is the one

that is in the team members’ heads, and not the documented architecture.

The corresponding risk is that the team may have different architectures

in their minds, that the documented architecture is inadequate, and that

architects not participating may have different perspectives. Thus we have:

Research questionHow can we involve the architecture as doc-
umented explicitly in the assessment process?

Solution directions will require explicit, analysable representations of

both the architecture and the scenarios used in the assessment. An inter-

esting research topic is whether information retrieval techniques can be

used to analyse the relationship between these two representations.

4.6 Related Work

An overview of SAAM and ATAM, as well as references to many other

methods for evaluating software architectures can be found in the book

by Clements et al. [2002b].

Gallagher [2000] discusses the application of ATAM to a reference archi-

tecture. Unfortunately, he hardly discusses any issues specific to the eval-

uation of reference architectures (such as the different role of scenarios).

The reference architecture is more or less evaluated as a single-product

software architecture with specific business drivers.

Since the boundary between product line architectures and reference

architectures is not always distinct (Section 4.2), another area of relevant

related work is the field of product line evaluation. Lutz and Gannod [2003]

discuss the architectural analysis of a product line architecture. The au-

thors present a three-phased approach consisting of architecture recovery,

scenario-based assessment, andmodel checking of safety-critical behaviour.

Here a software architecture needed to be recovered from an existing prod-

uct, which is then evaluated in order to see whether this type of product is

amenable to a product-line-development approach.

Of particular interest are evaluation methods focusing onmaintainabil-

ity. The architecture-level modifiability analysis [Bengtsson et al., 2004]

(ALMA) method integrates a number of different scenario-based approaches

for assessing architecture maintainability.

76 Chapter 4. Evaluation

4.7 Conclusion

In this chapter we reported the evaluation of an embedded software refer-

ence architecture using a tailored SAAM-based approach. The objective of

the assessment was to assess the maintainability of the architecture. Main-

tainability involved two aspects, raising the scope of reuse from a platform

to a product line and facilitating anticipated extensions of derived products

and future products.

The evaluation of the reference architecture was based on a distributed

SAAM (DSAAM) method, involving three phases: a preparation phase in

which indirect stakeholders are consulted individually to collect scenar-

ios, a joint evaluation session with only architects and observers, and an

evaluation phase.

Assessing a reference architecture is different from assessing a product

architecture. In an ordinary SAAM session, evaluated scenarios are cate-

gorised in directly and indirectly supported scenarios. We subdivided the

set of directly supported scenarios into those with evidence of being sup-

ported by the reference architecture and those without evidence. The latter

class typically consist of scenarios for which solutions are available in one

of the products, but these have not been documented yet. In the DSAAM

session we defined a cookbook to cover these scenarios.

The experience provided valuable insights for industry as well as for

academia. In retrospect we argued that DSAAM is a suitable approach for

the given situation, assessing the maintainability of a maturing reference

architecture. Both the coverage of DSAAM and the quality of its conclusions

are tenable. Note that reference and product-line architectures enable effi-

cient reuse, a key business driver in many organisations. The concepts on

which this type of architectures are based are maturing. Therefore it is ex-

pected that more and more companies will adopt a product-line approach,

possibly involving reference architectures.

Océ gained insight in the positioning and status of the reference archi-

tecture in their organisation, its current position, and its future position.

Océ also gained confidence in its maintainability.

We gained insight in the process of assessing a reference architecture.

For instance, scenarios are typically evaluated based on a product instance

and the results are abstracted to the reference architecture. This evokes

all kinds of questions related to topics such as conformance checking and

documenting design decisions, as discussed in Section 4.5.

Chapter5
Model-Driven Consistency Checking

of Behavioural Specifications1

For the development of software intensive systems different types of be-

havioural specifications are used. Although such specifications should be

consistent with respect to each other, this is not always the case in prac-

tice. Maintainability problems are the result. In this chapter we propose

a technique for assessing the consistency between two types behavioural

specifications: scenarios and state machines. The technique is based on

the generation of state machines from scenarios. We specify the required

mapping using model transformations. The use of technologies related to

the Model Driven Architecture enables easy integration with widely adopted

(UML) tools. We applied our technique to assess the consistency between the

behavioural specifications for the embedded software of copiers developed

by Océ. Finally, we evaluate the approach and discuss its generalisability

and wider applicability.

5.1 Introduction

System understanding is a prerequisite for modifying a software intensive

system [Lehman and Belady, 1985]. As such the (typical) absence of up-to-

date design documentation hampers successful software maintenance and

evolution. In this chapter we address this problem for the documentation

of a system’s behaviour. We focus on ensuring the consistency between

two types of behavioural specifications: interaction-based and state-based

1This chapter was published earlier as: Graaf, Bas and Arie van Deursen. Model-driven

consistency checking of behavioural specifications. In Proceedings of the 4th International

Workshop on Model-based Methodologies for Pervasive and Embedded Software (MOM-

PES 2007), pages 115–126. IEEE Computer Society, 2007a

77

78 Chapter 5. Model-Driven Conformance Checking

Requirements

Use cases

Architecture

Scenarios

State machines

Components

Integrator

Architect

Problems

Maintenance

Mistakes

Shortcuts

Inconsistencies

Stakeholders
Product

Tools/Developers

Developers

Figure 5.1: Typical development process

behavioural models. The use of such specifications is illustrated by the

development process depicted in Figure 5.1. It is based on the well-known

V-model [Bröhl and Dröschel, 1995] and the starting point of our research.

On the left branch of the ‘V’ analysis activities take place. Based on Re-

quirements, the high-level Architecture is defined. This architecture identifies

the main components of the system and assigns responsibilities. In paral-

lel requirements are made more concrete by Use cases that specify typical

interactions a user may have with the system. One distinctive property

of use cases is that the system is considered to be a black box [Jacobson,

1992]. These use cases are the first interaction-based behavioural models.

Based on the use cases a set of Scenarios is defined that specifies the

interactions of the system’s components in terms of exchanged messages.

Typically, every use case results in one (normal behaviour) or more (includ-

ing exceptional behaviour) scenarios. These scenarios are also interaction-

based behavioural models, but now the system is considered to be a white-

box; they show the interactions between the components defined by the

architecture.

Eventually, the architecture’s components need to be implemented. This

requires a complete behavioural specification. Scenarios are, however, not

intended to provide such a specification for an individual component. First,

the specification of a component’s behaviour is scattered across multiple

scenarios. Second, they are usually only defined for the components’ most

typical and important behaviours. Therefore, a complete state-based be-

havioural model, a State machine, is created for each component based on

the set of scenarios. This state machine is used to implement or gener-

5.1. Introduction 79

ate the component. Finally, on the right-hand side of the ‘V’, the different

components are integrated into a complete product.

Such a software development process, where state-based component de-

sign is based on the specification of a set of use cases, is advocated by

many component-based, object-oriented, and real-time software develop-

ment methods [D’Souza and Wills, 1998; Kruchten, 1998; Jacobson et al.,

1999; Selic et al., 1994]. As such, many software development organisations

deploy similar development processes.

As software evolves it is often the case that changes are made to ‘down-

stream’ software development artefacts (such as designs) without propa-

gating the changes to the corresponding ‘upstream’ software development

artefacts (such as requirements). This can be the result of change requests,

but also of design flaws that are only discovered on a more detailed level.

Other inconsistencies are simply introduced by misinterpretations of ‘up-

stream’ development artefacts.

In this chapter we focus on inconsistencies between interaction-based

behavioural models and state-based behavioural models. Inconsistencies

between these models can be particularly important because they decom-

pose behaviour along different dimensions. Interaction-based models are

decomposed according to the different use cases, that is, they are require-

ments-driven. State-based models, on the other hand, are decomposed

according to the different components that were identified during archi-

tecture design, that is, they are architecture-driven. This makes it hard to

discover inconsistencies [Amyot and Eberlein, 2003; Bontemps et al., 2005].

Furthermore, when different development groups are responsible for the

development of the different architectural components, and these groups

individually resolve inconsistencies in different ways, this may obviously

lead to problems during integration and maintenance.

In industrial practice behavioural models are often specified using the

Unified Modeling Language1 (UML). Moreover, tools are available that,

based on UML, are capable of generating source code from such models.

Considering such a model-based infrastructure, we believe it makes sense

to view consistency checking of behavioural specifications as a model trans-

formation problem. In this chapter we investigate what the advantages and

disadvantages are of using model transformation technology to discover in-

consistencies between interaction-based and state-based behavioural mod-

els. Furthermore, we aim to minimise the impact of our approach on ex-

isting development processes, for instance, in terms of the languages and

tools used.

In Section 5.2 we introduce the industrial case that motivated this chap-

ter: an embedded software control component developed by Océ, a large

1http://www.uml.org (June 2007)

80 Chapter 5. Model-Driven Conformance Checking

copier manufacturer. At Océ an important copier subsystem is developed

using a process corresponding to Figure 5.1 on page 78. Moreover, the com-

ponents for this subsystem are generated from state machine models. As

such, debugging, for instance, is performed on the level of state machines.

As a result inconsistencies between scenarios and state machines become

even more likely, making it a concern for Océ. Other work on the relation

between scenarios and state machines is discussed in Section 5.3. The en-

abling technologies for our approach, as well as, the relevant part of the

underlying UML specification, and our process for consistency checking are

discussed in Section 5.4. In Section 5.5 we customise an existing mapping

between scenarios and state machines based on Whittle and Schumann

[2000] for specification as model transformations and consistency checking.

The application of our approach to the Océ case requires that the sce-

narios as found in Océ’s architecture documentation are normalised into a

form suited for the model transformations of our approach. After normali-

sation and application of our approach we identified several inconsistencies

in the behavioural specifications that could lead to integration and mainte-

nance problems. This is discussed in Section 5.6. Finally, we reflect on our

approach in Section 5.7 and conclude with an overview of the contributions

of this chapter and opportunities for future work in Section 5.8.

5.2 Running Example

Our motivation for investigating the consistency between interaction- and

state-based behavioural models comes from a product-line architecture for

software in copiers developed by Océ. We use this architecture as our run-

ning example and case study, and for that reason briefly explain it first.

At Océ a reference architecture for copier engines is developed. In a

copier both the scanning and printing subsystems are referred to as an

engine. The reference architecture describes an abstract engine that can

be instantiated for (potentially) any Océ copier.

As a running example we use one of the reference architecture’s compo-

nents: the Engine Status Manager (ESM). This component is responsible

for handling status requests and status updates in the engine. ESM and

the other main components of the reference architecture are depicted in

Figure 5.2 .

In a copier engine ESM communicates with two types of components:

status control Clients, and Functions. Clients request engine state transitions.

Requests by the external status control client (Controller) are translated by

the EAI (Engine Adapter Interface) component. To perform status requests

of Clients, ESM controls the status of individual Function components. Func-

tions, in turn, recursively control the status of their composing Functions.

5.2. Running Example 81

Figure 5.2: Architecture for copier engines

For the development of ESM and other components, a process is used

similar to the process outlined in Section 5.1. For this Océ relies on a model-

driven approach based on UML [Dohmen and Somers, 2003]. Architects

specify use case realisations using UML sequence diagrams. Based on these

diagrams, for every component a UML statechart diagram is created. Using

special tooling1, the source code for the engine components (e.g., ESM) is

largely generated based on those statechart diagrams. For Océ’s developers

these statechart diagrams actually are the implementation.

One of the reasons for introducing a (automated) model-driven devel-

opment approach was to overcome consistency problems with respect to

state machine models and source code [Dohmen and Somers, 2003]. By

automatically generating source code from state machines this problem is

effectively moved ‘upwards’ to the consistency between scenarios and state

machines.

For ESM, each use case addresses a specific engine state transition. A

use case is accompanied by a UML sequence diagram. As an example, con-

sider the diagram in Figure 5.7(a) on page 96. It depicts the interaction

that occurs when a copier engine is requested to go to standby, while it is

running. At Océ these sequence diagrams are purely used for communi-

cation purposes, rather than as input for automatic processing (e.g., model

transformations, or code generation). Because of this, they are not always

complete and precise. Furthermore, proprietary (non-UML) constructs are

used. As an example, in these sequence diagrams the lifeline of the ESM

component is decorated with the name of its (high-level) state at that point

of the interaction.

To ensure successful evolution and maintenance of the reference archi-

tecture and the components it defines, a means to assess the consistency

between the involved behavioural specifications is essential. It is this chal-

lenge we address in this chapter.

1IBM Rational Rose Technical Developer - http://www.ibm.com/software/awdtools/

developer/technical (June 2007)

82 Chapter 5. Model-Driven Conformance Checking

5.3 Related Work

Several formal approaches have been proposed that address problems

similar to ours. Lam and Padget [2003] translate UML statecharts into π-
calculus to determine behavioural equivalence using bisimulation. Schäfer

et al. [2001] present a tool that uses model checking to verify state ma-

chines against collaboration diagrams. The use of such tools and ap-

proaches requires complete, precise and integrated interaction- and state-

based behavioural models. This implies, for instance, that sending and

reception of messages in scenarios are explicitly linked to events and ef-

fects in state machines. In our case, for the sequence diagrams, this is

problematic. They are created early in the development process and not

intended to be complete or precise.

To take this into account, we generate a state machine from a set of

input scenarios, that, subsequently, is compared to the state machine that

was created by the developers.

Many approaches have been defined for synthesis of state-based models

from scenario-based models. Amyot and Eberlein [2003], and Liang et al.

[2006] both evaluate over twenty of them. Evaluation criteria include lan-

guages, means to define scenario relationships and state model type. Our

industrial case gives us the requirements with respect to these criteria for

a synthesis approach.

Instead of using a more powerful scenario language such as live se-

quence charts [Damm and Harel, 2001], we limit ourselves to UML sequence

diagrams augmented with decorations, as dictated by our industrial case

study. The decorations with state information can be interpreted as condi-

tions from which inter-scenario relationships can be derived. Finally, with

respect to state model type, we consider approaches that result in state

models for individual components (instead of global state models). Con-

sidering Liang et al. [2006] one approach best meets these requirements,

namely the one proposed by Whittle and Schumann [2000].

Whittle and Schumann [2000] present an algorithm to map UML se-

quence diagrams to UML statecharts. In this mapping the messages in a

scenario are first annotated with pre- and postconditions on state variables,

referred to as a domain theory. The mapping is based on the assumption

that a message only affects a state variable if its pre- or postcondition ex-

plicitly specifies it does; the domain theory does not need to be complete.

Thus, this so-called frame axiom1, together with the pre- and postcondi-

tions, results in a pair of state vectors for each message (before and after).

1The name derives from a common technique used by animated cartoon makers called

framing where the currently moving parts of the cartoon are superimposed on the

‘frame’, which depicts the background of the scene, which does not change (http://en.

wikipedia.org/wiki/Frame_problem (June 2007)).

5.4. Model-Driven Consistency Checking 83

For every scenario it is checked whether the message ordering is consistent

with the domain theory. If not, either one can be reconsidered. Then, for

each scenario a ‘flat’ state machine is generated for every component. Mes-

sages towards a component result in an event that triggers a transition;

messages directed away from a component result in an action that is exe-

cuted upon a transition. Loops are identified by detecting states that have

unifiable state vectors. Two states vectors are unifiable if they do not spec-

ify different values for the same state variable. Subsequently, the ‘flat’ state

machines generated for a component from different scenarios are merged

by merging similar states. Two states are similar if their state vector is

identical and they have at least one incoming transition with the same la-

bel. Hierarchy is added to the resulting statecharts by a user provided

subset and (partial) ordering of the state variables.

Van der Aalst et al. [2004] present an approach for the discovery of

(business) process models from event logs. Instead of state models, they

use Petri nets as process models. Where they only rely on event (message)

sequence to merge different workflow instances (scenarios), we rely on state

variables as well.

Most work in this area focuses on the synthesis algorithm, whereas the

integration in industrial practice remains implicit. In fact, many of the

approaches are not supported by a tool or validated in industrial practice.

Their application in practice only becomes realistic when they integrate

with existing tools and standards used in industry. Therefore, we focus in

this chapter on UML sequence diagrams as a notation for scenarios, and on

UML state machines.

5.4 Model-Driven Consistency Checking

In this section we outline our approach for consistency checking of be-

havioural specifications, but, first, we introduce the technologies that en-

able our model-driven approach and the underlying structure of the in-

volved behavioural models.

5.4.1 Enabling Technologies

Our approach takes advantage of the standards that are widely used in

industry, such as UML and XMLMetadata Interchange1 (XMI), enabling easy

integration with the tools used in industrial practice. XMI provides a means

to serialise UML models to be manipulated, for instance, using Extensible

Stylesheet Language Transformations2 (XSLT). However, the XMI format

1http://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.w3.org/TR/xslt (June 2007)

84 Chapter 5. Model-Driven Conformance Checking

is very verbose, making it a tedious and error prone task to develop such

transformations [Van Dijk et al., 2005].

Model Driven Architecture1 (MDA) developed by the Object Management

Group2 (OMG) offers, among others, a solution to this problem. MDA is OMG’s

incarnation of model-driven engineering (MDE). With MDE, software devel-

opment largely consists of a series of model transformations mapping a

source to a target model. Essential to MDE are models, their associated

metamodels, and model transformations. In the case of MDA, metamodels

are defined using the MetaObject Facility3 (MOF). The UML metamodel is

only one example of such metamodels. Finally, model transformation lan-

guages are used to define transformations.

We use the Atlas Transformation Language [Jouault and Kurtev, 2005]

(ATL)4 to specify and implement the mapping between scenarios and state

machines. ATL is used to develop model transformations that are exe-

cuted by a transformation engine. With ATL, transformations are defined

in transformation modules that consist of transformation rules and helper

operations. The transformation rules match model elements in a source

model and create elements in a target model. To this end the rules define

constraints on metamodel elements in a syntax similar to that of the Object

Constraint Language5 (OCL). A helper is defined in the context of a meta-

model element, to which it effectively adds a feature. Helpers can be used

in rules, and optionally take parameters.

The ATL transformation engine can be used with XMI serialisations of

models and metamodels defined using the MOF. For the sequence diagrams

and state machines in this chapter we used the MOF-UMLmetamodel avail-

able from the OMG [OMG, 2007a]. To create the associated models, a UML

modelling tool supporting XMI export can be used (we used Poseidon for

UML6 for this purpose).

Once the source model and metamodel, target metamodel, and trans-

formation module are defined and located, the ATL transformation engine

generates the target model in its serialised form, which, in turn, can be

imported into a UMLmodelling tool for visualisation, or can serve as source

model for another (model) transformation.

1http://www.omg.org/mda (June 2007)
2http://www.omg.org (June 2007)
3http://www.omg.org/mof (June 2007)
4For a more detailed introduction to ATL, please refer to Section 2.3.3.
5http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)
6http://www.gentleware.com (June 2007)

5.4. Model-Driven Consistency Checking 85

ModelElement

+ name:Name

Constraint

+ body:BooleanExpression

constrainedElement+ * {ordered}

constraint+ *

Figure 5.3: Constraints

5.4.2 Behavioural Modelling

For the creation of interaction-based and state-based behavioural models

we use UML sequence and statechart diagrams. The underlying structure

of these diagrams is described by the Collaborations and State Machines

subpackages of the UML metamodel. Because our transformation rules are

defined on the metamodel level, we introduce these package briefly. Al-

though we discuss only simplified versions of these packages, the imple-

mentation of our technique and our case study are based on the complete

UML metamodel (version 1.4 [OMG, 2007a]).

In general the UML metamodel allows every model element to be asso-

ciated with an ordered set of constraints as can be seen from Figure 5.3.

Note that every model element in UML is a specialisation of ModelElement.

We use this to add pre- and postcondition to messages and state invariants

to states. To distinguish between preconditions, postconditions, and other

constraints that might be used in the model we use stereotypes.

Source: Collaborations The Collaboration package and some other UML el-
ements are depicted in Figure 5.4 on the following page. In the context

of a Collaboration the communication patterns performed by Objects are rep-

resented by a set of Messages that is partially ordered by the predecessor

relation. For each message, sender and receiver Objects are specified. The

cause of a Message is a CallAction (dispatchAction) that is associated with an

Operation. In turn, this Operation is part of the Class that is the classifier of

the Object that receives the Message. Finally, a Class optionally contains

Attributes that have a type.

Target: State Machines Using the (target) metamodel in Figure 5.5 on the
next page, UML state machines can be constructed that model behaviour as

a traversal of a graph of state nodes interconnected by transition arcs.

A state node, or StateVertex, is the target or source of any number of Tran-

sitions and can be of different types. A State represents a situation in which

86 Chapter 5. Model-Driven Conformance Checking

Collaboration

ObjectMessage

CallAction

−actualArgument:in t

Class

+ isActive:Boolean

*

dispatchAction+
classifier+

predecessor

*

sender+

receiver+

ownedElement+
**

Operation

Attribute

operations+ *

operation+

type+

attributes+*

Figure 5.4: Collaborations (simplified)

StateMachine

State

0..1

top+

CompositeState SimpleState

StateVertex

Pseudostate

+kind:PseudostateKind

Transition

outgoing+

*source+

incoming+

*target+

Action

+script:ActionExpression

effect+0..1

Event

*

trigger+0..1

0..1

transitions+
*

container+

0..1

subvertex+
*

Figure 5.5: State machines

5.4. Model-Driven Consistency Checking 87

some invariants (over state variables) hold. The metamodel defines the

following types of States. A CompositeState contains (owns) a number of sub-

states (subvertex). A SimpleState is a State without any sub-states.

Next to state nodes that describe a distinct situation, the metamodel

also offers a type of StateVertex to models transient nodes: Pseudostate. Only

one Pseudostate type (PseudostateKind) is relevant for the state models in this

chapter: the initial Pseudostate. An initial Pseudostate is the default node of

a CompositeState. It has only one outgoing Transition leading to the default

State of a CompositeState.

Nodes in a state machine are connected by Transitions that model the

transition from one State (source) to another (target). A Transition is fired by

a CallEvent (trigger). The effect of a Transition specifies an CallAction to be ex-

ecuted upon its firing. Finally, a StateMachine is defined in the context of a

Class and consists of a set of Transitions and one top State that is a Composite-

State (in the UML specification this is specified as an OCL well-formedness

rule, which we do not show).

5.4.3 Consistency Checking Approach

As said, the set of scenarios is not expected to be complete or precise. For

instance, when comparing the set of scenarios and the state machines cre-

ated by the developers it is unclear whether a scenario specifies universal

or existential behaviour [Damm and Harel, 2001]. However, if we are to

generate a state machine for a set of scenarios we have to take a position

with respect to the meaning of those scenarios. The generation of scenarios

is based on the approach by Whittle and Schumann [2000]. To this end,

we interpret Océ’s scenarios in principle as universal: if the start condi-

tion of a scenario is satisfied the system behaves exactly as specified by

that scenario. We consider the start condition of a scenario to be the first

condition specified as decoration and occurrence of the first message. As

such, the scenario in Figure 5.7(a) on page 96 specifies exactly what hap-

pens when ESM receives the message m_SetUnit(standby) while it is in state

running. However, when during execution of a scenario the start condition

of another scenario is satisfied, execution continues according to that sce-

nario. For instance, in the case of Figure 5.7(a) on page 96, while ESM is

stopping, execution could continue according to the scenario that performs

the request of ESM going back to running while it was stopping.

In our approach we use model transformations for the generation of a

state machine from a set of scenarios. The specification of those transfor-

mations is discussed in Section 5.5. To include all required information,

the source model has to comply to a set of modelling conventions. When

considering an arbitrary industrial case (e.g., Océ’s reference architecture),

the models used typically do not comply to those conventions. Therefore,

88 Chapter 5. Model-Driven Conformance Checking

we first require models to be normalised. This is discussed in Section 5.6.1.

Finally, the generated state machine is compared to the state machine

that was already developed based on the same set of scenarios, the imple-

mentation state machine. Because the sequence diagrams are created early

on in the development process, it is not expected that they are exactly cov-

ered by the state machines. Therefore, mismatches are expected between

the generated and implementation state machine with respect to transition

labels and order. This makes automating the comparison step particularly

difficult. For now we manually compare the generated and implementation

state machine and mainly focus on inconsistencies with respect to top-level

states and transitions.

As such, we use three steps to check the consistency between be-

havioural specifications: normalise, transform, and compare. In the cur-

rent approach only the transformation is automatic. Furthermore, the

normalisation step is context-specific as it depends on the type of input

models.

5.5 Generating State Machines

Given the source and target metamodels discussed in the previous section,

we now describe how to instantiate source models, as well as the mapping

between source and target models, expressed as ATL model transforma-

tions. We published all (executable) ATL transformations that we imple-

mented, as well as (normalised) source and target (meta)models for the

ATM example of Whittle and Schumann [2000] in the ATL transformations

repository1.

5.5.1 Instantiating a Source Model

Our approach based on model transformations and UML requires that all

necessary information is encoded in a UML model. Whittle and Schumann

[2000] requires the following information for its mapping: scenarios, a do-

main theory, a set of state variables, and an ordered subset of that set.

The set of scenarios is specified as sequence diagrams. The types of

the interacting Objects (components) are specified in a class model. The

Class that corresponds to the component of interest is marked active. All

Operations involved in the relevant scenarios are also specified. The pre-

and postconditions of a domain theory are applied to these Operations as

stereotyped Constraints. These Constraints have the form state variable

= value. We currently do not allow pre- and postconditions in the domain

1http://www.eclipse.org/gmt/atl/atlTransformations/UMLSD2STMD

5.5. Generating State Machines 89

theory that refer to formal parameters of the operations involved, as this

would require interpretation of these conditions. If necessary, such con-

straints can be added directly to the Messages that specify an actual pa-

rameter in the sequence diagrams.

The active Class contains an Attribute for each state variable. The sub-

set of state variables used for introducing hierarchy is encoded by setting

the visibility of all state variables included in the subset to public and the

others to private. Finally, the order of the state variable Attributes on the

Class represents the prioritisation of state variables (the top one having

the highest priority). This priority indicates the order in which the state

variables are used to partition the set of states by assigning these states to

CompositeStates according to the value assigned to the state variable.

5.5.2 Model Transformations

Our transformations generate a state machine for the component that is

represented by the active Class in the source model. A scenario speci-

fies one particular path through the state machine for that component, on

which it proceeds to the next state upon each communication. We refer to

the state machine that only describes that path as a ‘flat’ state machine.

We tailored the approach in Whittle and Schumann [2000] (see Sec-

tion 5.3) to account for the type of input in the Océ case, for our model-

driven strategy, and for our goal: consistency checking. For this reason

we introduce fewer abstractions, making detecting and resolving inconsis-

tencies more convenient. Our mapping consists of four separate steps: 1)

apply the domain theory, 2) generate flat state machines, 3) merge flat state

machines, and 4) introduce hierarchy into the merged state machine.

We formalised our mapping from scenarios to state machines as four ATL

model transformations that correspond to the four steps of our mapping.

Every consecutive transformation uses the target model of the previous

transformation as its source model.

Together, these transformations are specified in less than 700 lines of

ATL code. Before these transformations can be applied to the Océ case, a

normalisation step is required, which is discussed in Section 5.6.1.

Apply Domain Theory This step is specific to our approach. Unlike Whittle
and Schumann [2000], but in accordance with UML, we distinguish be-

tween pre- and postconditions on the Operations of a Class and those on

the CallActions associated with Messages in a sequence diagram. This has

two advantages. First, it allows for simple pre- and postconditions to be

specified only once (i.e., on a Class’ Operations). Second, it circumvents the

90 Chapter 5. Model-Driven Conformance Checking

rule ConstrainedCallAction {

from ca_in:UML!CallAction

to ca_out:UML!CallAction(

operation <- ca_in.operation,

constraint <- ca_in.operation.constraint->union(ca_in.constraint)

)

}

Listing 5.1: Applying constraints to CallActions

need to evaluate conditions that refer to formal parameters of an Opera-

tion.

When we apply the domain theory to a set of scenarios, we simply attach

the pre- and postconditions on the Operations of a Class to corresponding

Messages to or from instances of that Class.

The ATL specification of this mapping is straightforward. The Con-

straints on an Operation are copied to Messages via their associated

CallAction. To this end, the rule in Listing 5.1 matches all CallActions. For

each it generates a CallAction, ca_out, in the target model and initialises

its constraint feature with the constraints applied to the Operation associ-

ated with the matching CallAction. Note that the constraints are added to

the constraints already applied to the matched CallAction (using the union

operation).

The result is a set of sequence diagrams in which Constraints are ap-

plied to Messages based on the pre- and postconditions of a domain theory

on Operations. See Figure 5.7(b) on page 96 for an example.

Sequence Diagrams→ Flat State Machines The next step of our approach is to
generate a flat state machine for every scenario in which the component

of interest plays a role. In this step we map every communication to a

Transition and a target State. The source State of this transition is the tar-

get State corresponding to the previous communication of the component

in the scenario. As in the approach by Whittle and Schumann [2000] our

strategy is as follows: if the involved communication was the receipt of a

Message, we say the Transition was triggered by that Message. If the in-

volved communication was the sending of a Message, we say the effect of

the Transition was sending that Message.

Based on the pre- and postconditions applied to the Messages in the sce-

narios by the previous step, we calculate the state vector for each State. For

this we ‘propagate’ pre- and postconditions through the sequence diagram

by application of the frame axiom. The result is a set of flat StateMachines,

in which state vectors are applied to States as a set of Constraints over

state variables.

5.5. Generating State Machines 91

rule EffectTransition {

from m:UML!Message (m.sender.isActive)

to t_effect: UML!Transition(

effect <- ca,

target <- trgt,

source <- ...),

ae:UML!ActionExpression (...),

ca:UML!CallAction (...),

trgt:UML!SimpleState (

name <- ae.body+’_sent’,

constraint <- m.stateVector)

}

helper context UML!Message def: stateVector : Set(UML!Constraint) =

let stateVectorPrev:Set(UML!Constraint) = ... in

let pres:Set(UML!Constraint) = ... in

let posts:Set(UML!Constraint) = ... in

let sv:Set(UML!Constraint) =

thisModule.frame(stateVectorPrev,thisModule.frame(pres,posts)) in

if thisModule.unifiable(stateVectorPrev,pres) then

sv

else

sv.debug(’INCONSISTENCY DETECTED!’)

endif

;

helper def: frame(frame:Set(UML!Constraint), framed:Set(UML!

Constraint)): Set(UML!Constraint) =

frame->iterate(c; cs:Set(UML!Constraint)=framed |

if cs->exists(e|e.stateVariable=c.stateVariable) then

cs

else

cs->including(c)

endif)

;

Listing 5.2: Mapping Messages to (effect) Transitions

As an example, the EffectTransition rule in Listing 5.2 matches all

Messages in the source model sent by the component of interest. The target

pattern specifies that for each such Message (m) among others, a Transition

(t_effect) and a SimpleState (trgt) are created in the target model. The

effect and target features of the Transition element are simply initialised to

the CallAction (ca) and SimpleState created in the same rule. The source of

the Transition is initialised to the target of the Transition that corresponds

to the previous Message (not shown).

The constraint feature of the generated SimpleState element is ini-

tialised to the set of constraints (state invariants) that hold after the

Message that matched the rule. This is determined by the stateVector

helper. For this it applies the frame axiom (specified in the frame helper)

92 Chapter 5. Model-Driven Conformance Checking

Figure 5.6: Flat state machine

subsequently to the postconditions of the current Message (’posts’), the

preconditions of the current Message (pres), and the state vector after

the previous Message (stateVectorPrev). As such conditions propagate in

‘forward’ direction (i.e., downwards in a sequence diagram).

Additionally the stateVector helper notifies the user if an inconsistency

is detected between the state vector after the previous Message and the

preconditions for the current Message (these sets of Constraints should be

unifiable).

The frame helper simply iterates over the Constraints in the frame ar-

gument and adds every constraint involving a state variable that is not

referred to in framed to that set.

Unlike Whittle and Schumann [2000], we do not apply unification of

state vectors at this stage. The declarative style of our ATL specifications

results in an infinite recursion: to complete a state vector we need to know

whether it can be unified with other state vectors. To determine this we

have to consider state vectors in ‘forward’ as well as in ‘backward’ direction.

However, to determine the state vectors in ‘forward’ direction, we, in turn,

have to consider state vectors in ‘backward’ direction because of the frame

axiom strategy.

Application of this step yields a set of flat state machines for a compo-

nent. As an example, consider Figure 5.6. It depicts the flat state machine

corresponding to the sequence diagram in Figure 5.7(b) on page 96. Note

that the example only involves a single state variable and that the names

of the States are derived from the particular Message that was sent or re-

ceived by the component.

5.5. Generating State Machines 93

rule MergedSimpleState {

from s_in:UML!SimpleState (

thisModule.mergedStates->includes(s_in))

to s_out:UML!SimpleState(

name<-s_in.name,

constraint <- s_in.constraint)

}

helper def: mergedStates: Set(UML!StateVertex) =

thisModule.allSimpleStates->union(thisModule.allPseudostates)

->iterate(s; mss:Set(UML!StateVertex)=Set{} |

if mss->exists(e|(e.mergeable(s)) then

mss

else

mss->including(s)

endif)

;

helper context UML!StateVertex def: mergeable(s:UML!StateVertex):

Boolean =

thisModule.unifiable(self.constraint,s.constraint) and self.name=s.

name

;

helper def: unifiable(cset1:Set(UML!Constraint),cset2:Set(UML!

Constraint)): Boolean =

let sharedSVs:Set(UML!Attribute) = cset1->collect(c|c.stateVariable

)->select(a|cset2->collect(c|c.stateVariable)->includes(a)) in

sharedSVs->forAll(a|cset1->select(c|c.stateVariable=a)=

cset2->select(c|c.stateVariable=a))

;

Listing 5.3: Merging SimpleStates

Merging Flat State Machines In this step we merge the flat state machines.
We merge every set of states with unifiable state vectors and at least one

identical incoming transition (in terms of effect or trigger).

Merging of states is done by the rule and helpers in Listing 5.3. The rule

matches all states selected by the mergedStates helper that iteratively se-

lects one SimpleState from every group of equal SimpleStates in the source

model. A call to the mergeable helper results in true when the receiving

StateVertex and the parameter StateVertex 1) (s) are unifiable, and 2) have

the same name (i.e., the incoming transitions had the same trigger or ef-

fect). The unifiable helper evaluates to true for two sets of Constraints

that do not specify different values for the same state variable, meaning

that the constraint that refers to a particular state variable that is also

referred to in the other set, is actually included in that set.

Transitions are matched by another rule (not shown). To discard redun-

dant Transitions, it only matches one Transition of the Transitions between

any two sets of SimpleStates that are merged.

94 Chapter 5. Model-Driven Conformance Checking

Introducing Hierarchy As suggested by Whittle and Schumann [2000], we use
an ordered subset of the set of state variables to add hierarchy by means

of CompositeStates. These state variables define a hierarchy of Composite-

States. For instance, the state variable with the highest priority results in

CompositeStates in the top level CompositeState: one for each value of that

state variable’s domain (provided that it occurs in one of the simple states’

state invariants). For each of the resulting CompositeStates, the second-

highest priority state variable, in turn, results in CompositeStates for each

value of that state variable’s domain that occurs in combination with the

corresponding value of the higher-priority state variable.

The problem of specifying this mapping with ATL is that there is not

always a matching source model element to create a CompositeState for.

Therefore, we use an ATL called rule (CompositeState). A called rule is an

imperative rule that is not matched by a source model element. Instead,

it is explicitly called and can have parameters. The CompositeState called

rule in Listing 5.4 creates a CompositeState for a given set of Constraints

(cset). These Constraints (i.e., state invariants) are determined by the

compositeStateConstraintSetsAt helper that takes a set of Constraints that

represents the current CompositeState and determines the sets of Con-

straints that correspond to the CompositeStates at that level. For each of

those sets a CompositeState is created. This called rule is used to initialise

the subvertex feature in the rule that matches the top CompositeState of

the merged StateMachine, as well as (recursively) in the CompositeState

rule itself. The do clause in the CompositeState rule returns the created

CompositeState.

5.6 Application to Océ

In this section we first explain what additional work has to be done to apply

our approach to the Océ case. Subsequently we give an overview of the

results obtained by application of our approach.

5.6.1 Source Model Normalisation

In the case of Océ, neither a domain theory, nor a set of state variables

were available. To overcome this, we normalise Océ’s sequence diagrams.

In particular, we interpret the decorations on object lifelines as pre- and

postconditions on a single state variable of a suitable enumeration type:

state. The message preceding a state decoration apparently resulted in

the component moving to the indicated state. Hence, we (manually) attach

a corresponding postcondition to the message (e.g., esm.state=starting). A

message succeeding a state decoration apparently requires the component

5.6. Application to Océ 95

rule TopCompositeState {

from cs_in:UML!CompositeState

using {

sm:UML!StateMachine=thisModule.allStateMachines->select(sm|sm.top

=cs_in);

}

to cs_out:UML!CompositeState (

name <- cs_in.name,

subvertex <- sm.simpleStateStatesAt(Set{})

->union(sm.compositeStateConstraintSetsAt(Set{})

->collect(cs|thisModule.CompositeState(sm,cs))))

}

rule CompositeState (sm:UML!StateMachine, cset:Set(UML!Constraint))

{

to cs:UML!CompositeState(

subvertex <- sm.simpleStateStatesAt(cset)->union(sm.

compositeStateConstraintSeqsAt(cset)->collect(cs|thisModule.

CompositeState(sm,cs))))

do{cs;}

}

Listing 5.4: Adding hierarchy to state machine

to be in the indicated state. Hence, we attach a corresponding precondition

to the message. Figure 5.7 on the next page shows an example. Finally,

we add a (public) attribute, state, to the class corresponding to the ESM

component.

5.6.2 Results

A fragment of the result of application of the transformation steps to Océ’s

ESM component, is depicted in Figure 5.8 on page 97. The dashed line

indicates the path through the state machine that is traversed when ESM

is requested to go to standby while it is running. This path corresponds to

the scenario depicted in Figure 5.7 on the next page.

We compared this derived state machine with the implementation state

machine, from which Océ generates code. There are many inconsisten-

cies with respect to low-level states and transitions. In the implementa-

tion state machine low-level states are not only decomposed further, the

sequence of states and transitions is also different in many cases. This

is not surprising considering the fact that the sequence diagrams of the

source model from which we derived a state machine, constitute the first

behavioural model that is created for the ESM component, while, in the

implementation state machine, low-level transitions and states often cor-

respond to a single method call in the generated code. If we restrict the

96 Chapter 5. Model-Driven Conformance Checking

acm:ACMesm:ESMaFunction :Function

 .set_Unit (standby)

 .m_UnitStatus (stopping)

 .m_Stop ()

 .m_StopDone ()

 .m_UnitStatus (standby)

standby

stopping

running

(a) Sequence diagram with decorated lifeline

<<precondition>>{esm.state=standby}

<<postcondition>>{esm.state=standby}

<<precondition>>{esm.state=stopping}

<<precondition>>{esm.state=running}

<<postcondition>>{esm.state=stopping}
acm:ACMesm:ESMaFunction :Function

 .set_Unit (standby)

 .m_UnitStatus (stopping)

 .m_Stop ()

 .m_StopDone ()

 .m_UnitStatus (standby)

(b) Normalised sequence diagram

Figure 5.7: Example scenario: request a copier engine to go to standby while it is

running

5.6. Application to Océ 97

Figure 5.8: Merged state model of ESM (fragment)

comparison step to the top-level states, however, the implementation state

machine largely conforms to the derived state machine. Although we can-

not show the implementation state machine, we were able to make several

other interesting observations:

• Several transitions between top-level composite states are missing in
the derived state machine. This indicates that not all scenarios have

been specified in a sequence diagram.

• Some top-level composite states in the derived state machine were
modelled as low-level (sub) composite states in the implementation

state machine. This merely indicates changes to the decomposition of

states, and does not necessarily result in different behaviour.

• In the derived state machine, sometimes extra paths exist between
two composite states. This indicates that specific sequences of events

and actions that occur in different scenarios are not specified consis-

tently. This was the case, for instance, when two versions of a scenario

existed: one for normal behaviour, and one for exceptional behaviour.

For two such versions the first interactions should typically be iden-

tical (until some exception occurs), but in practice this was not the

case.

• The derived state machine contains a number of unconditional transi-

98 Chapter 5. Model-Driven Conformance Checking

tions that form a loop, resulting in non-deterministic behaviour. This

had the same cause as the previous observation.

As a response to these observations Océ has two options. The first is to add

missing use cases and scenarios, and to refactor alternative sequence dia-

grams to remove inconsistencies in event and action sequences. Here, care

must be taken, as suchmodifications affect the state machines of other com-

ponents that play a role in the involved scenarios as well. The alternative

option is to only remove behavioural inconsistencies in the implementation

state machine. This also requires careful analysis, since different develop-

ment groups, responsible for different components, might do so differently,

resulting in integration and maintainability problems.

5.7 Discussion

Generalisability of the approach To a large extent our approach is generic.

Although, the normalised source model in the Océ case only contains a

single state variable, we also applied our transformation step to the ATM

example in Whittle and Schumann [2000]1. This example involves three

state variables. By application of our approach (in both cases) we detected

several inconsistencies.

We applied our approach successfully to both the ATM example of

Whittle and Schumann [2000] and Océ’s reference architecture. Our ap-

proach is generic with respect to input models that comply to the model

conventions as outlined in Section 5.5.1. As such, we require a (manual)

normalisation step that is context specific; it depends on the modelling

conventions in use at a particular company.

Our modelling conventions are most restrictive with respect to the type

of pre- and postconditions used in the domain theory. As we do not evaluate

these conditions, we require them to be of the form stateVariable=value.

In some cases the conditions for an Operation refer to a formal parame-

ter. Our approach can still be applied if the Messages associated with that

Operation in the sequence diagrams specify a corresponding actual param-

eter. Then, we (manually) apply the condition directly to the Message in

the sequence diagram and substitute the formal parameter for the actual

parameter. More complicated conditions require full interpretation of OCL

expressions.

Of course, pre- and postconditions have to be available for our approach

to produce more than only flat state machines. In the case of Océ, we de-

1Images of the (normalised) source model, as well as all (intermediate) target models for

the ATM example can be downloaded from the ATL transformations repository (http://

www.eclipse.org/gmt/atl/atlTransformations/UMLSD2STMD)

5.7. Discussion 99

rived pre- and postconditions from decorations in the sequence diagrams.

In general, pre- and postconditions are not always obvious from design doc-

umentation. In such situations these might have to be derived indirectly

from documentation or reverse engineered from source code.

The introduction of pre- and postconditions effectively is a normalisa-

tion to the UML standard used by Océ and our tools (version 1.4 [OMG,

2007a]). For the current UML (version 2.1.1) this is not necessary, as such

lifeline decorations became part of the specification (the corresponding

metamodel element is called StateInvariant [OMG, 2007b, page 500]).

To support this, only minor modifications to our ATL transformations are

required.

Scalability of the approach Our approach constitutes a first step towards fully

automated consistency checking.

In the Océ case study, the source model for the transformation step of

our approach includes 10 sequence diagrams that contain 62 messages. The

resulting integrated, hierarchical state machine, of which a fragment was

depicted in Figure 5.8 on page 97, contains 23 transitions between 14 com-

posite states containing in total 47 simple states.

Our approach is a first step to fully automated consistency checking

of behavioural specifications. For now, we rely on manual inspection of

the resulting state machine for actual evaluation of the consistency. As

such, the scalability is currently not limited by the transformation steps (in

the Océ case they each take less than 10 seconds), but by the comparison

step. For cases were the number of states is limited and developers have

knowledge on the system, this is a feasible approach. For ESM, which is a

medium-sized component (approximately 10 KLOC), this turned out not to

be a problem.

Fully automatic consistency checking could be done by relying on nam-

ing. An example of such an approach is discussed by Van Dijk et al. [2005].

It checks the consistency between the underlying XMI representations of

UMLmodels. However, in this case, the names of messages in the scenarios

did not precisely correspond to the names of transition effects and events

in the implementation state machine. Although they are easily matched by

a human, this hampers full automation.

The use of graph matching techniques is another possibility of check-

ing the consistency of two state machines. Also using such techniques the

problem of matching node and edge labels remains.

Also for automatic approaches, however, the generation of a state ma-

chine from a set of scenarios, as discussed in this chapter, is likely to be a

first step.

100 Chapter 5. Model-Driven Conformance Checking

Applicability of the approach Our approach can be applied to iteratively de-

velop behavioural specifications.

We generated a state machine with the purpose of checking the consis-

tency between different behavioural specifications. However, our approach

might have other applications as well. A generated state machine could

also be used for other types of analyses, such as model checking or perfor-

mance analysis.

Next to analysis purposes, our approach is particularly interesting for

forward engineering, especially in the context of model-driven development

approaches as in the case of Océ. Using our transformations based on UML,

developers can easily generate different views on the behaviour of a soft-

ware system or component. Furthermore, the generation not only provides

insight in the consistency of the sequence diagrams with respect to each

other, it also provides developers with a first candidate state machine that

can be refined. As such, our technique can be applied iteratively to develop

complete behavioural specifications of components: (1) specify the interac-

tions of an initial set of use cases as scenarios, (2) generate a state ma-

chine, (3) refactor scenarios to remove inconsistencies in event and action

sequences, and add missing scenarios, (4) go to step 2.

The main reason to choose for a model-driven approach based on UML

for our consistency check, is the integration with Océ’s development pro-

cess. It circumvents the need to extract information from the MDA domain

to another domain, such as the grammarware or the Extensible Markup

Language1 (XML) domain. Unfortunately, despite the availability of stan-

dards, currently available tools for (meta)modelling and transformations do

not integrate well, hampering actual integration of our approach in prac-

tice. For a large part this is due to the abundance of possible combinations

of XMI, UML, and MOF versions, as well as vendor specific implementations

of those standards. Other problems occur due to different capabilities of

modelling tools. As an example, we used Poseidon for UML to create source

models because its metamodel is available from the developer’s website.

However, the UML models we generate do not contain layout information.

Unfortunately, Poseidon is not capable of displaying UML models that do

not contain layout information. As a consequence we had to use another

tool for visualisation. From a large set of tools we tried, only Borland’s

Together2 is capable of generating a layout for a UML model. However, the

XMI representations used by this tool are not compatible with those gen-

erated by the ATL engine. As a workaround we developed a minimal XSLT

transformation that maps the XMI ‘flavour’ generated by the ATL engine

to that of Together. An alternative is to generate the layout information

required by Poseidon using a model transformation.

1http://www.w3.org/XML (June 2007)

5.8. Conclusions 101

UML vs. MOF The use of UML in a limited domain makes transformation
definitions unnecessary complex

The genericity and resulting complexity of the UML metamodel result

in, sometimes, inconvenient navigation through source and target models

to select a certain element. An open question is whether tree traversal

strategies as present in Stratego1 or the JJTraveller [Van Deursen and

Visser, 2004] library could help to alleviate this navigation problem. Also,

often relations are defined as n :m while in a specific case 1 : 1 would suffice.

The result is that sets have to be converted to sequences of which the first

element has to be selected. This is required very frequently, resulting in

unnecessary complex ATL code.

In cases, where only limited parts of the UMLmetamodel are used, an al-

ternative could be considered. Instead of using the UMLmetamodel, custom

MOF-based metamodels could be used, for instance, for scenarios and state

machines. These metamodels could be much simpler, resulting in simpler

transformation definitions. The price to pay is that in order to establish a

connection with actual UML models (e.g., as used by Océ), a mapping be-

tween such custom metamodels and the UMLmetamodel must be specified.

In Chapter 8 we discuss how to make such a mapping for domain-specific

modelling languages (DSMLs).

5.8 Conclusions

In this chapter we explored the use of model transformations to check the

consistency between behavioural specifications. For this we presented an

approach that consists of normalisation, transformation, and comparison

steps. We consider the following to be the main contributions of this chap-

ter:

• A specification of the mapping between scenarios and state machines
using model transformations that is made available via the ATL trans-

formations repository. An advantage of such a specification is that it

can be executed by the ATL transformation engine. Furthermore, it

is completely based on UML, making integration in industrial practice

easier.

• Modelling conventions for encoding the information required for the
transformation step in a single UML model. Additionally, as an exam-

ple, we discussed the required normalisation step for Océ’s reference

architecture.

1http://www.stratego-language.org

102 Chapter 5. Model-Driven Conformance Checking

• Validation of the proposed approach by application to an industrial
system, demonstrating that even small industrial specifications (con-

sisting of just 10 scenarios) contain inconsistencies, which are effec-

tively identified by our approach.

Finally, the proposed approach can be applied for other purposes than

consistency checking as well, such as forward engineering and early be-

havioural analysis based on the generated state machine.

Currently we are extending our work with additional case studies. Fur-

thermore, we investigate the possibilities to do consistency checking auto-

matically, again by the use of MDA model transformation technologies.

Chapter6
Model-Driven Conformance Check-

ing of Structural Specifications1

Nowadays, industry is confronted with rapidly evolving systems. In order to

effectively reuse design artefacts such as requirements, architectural views

and analysis results, as well as the code base, it is important to have a

consistent overview in each phase of the development process. In this chapter

we propose a conformance checking system based on views to evaluate the

conformance of an implementation with respect to its architecture. We map

our approach onto technology for model-driven engineering. An academic

case study illustrates application of our framework.

6.1 Introduction

The current trend in embedded systems is product families rather than

single products. Today’s customers are appealed to products that have a

sense of uniqueness, products that are compatible but slightly different

than those of their friends. The answer from industry is to develop flexible

product lines. The extent to which the evolution of software is enabled by

such product-line approaches is largely determined by the amount and ease

of reuse of existing artefacts.

The maintenance phase of a product has always been significant and

will increasingly be so [Lientz et al., 1978; Pigoski, 1996]. The growth of the

complexity of systems is one reason [Lehman and Belady, 1985], the trend

towards product families is another reason. From the survey in Chapter 3

1This chapter is based on: Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the sys-

tematic conformance check of software artefacts. In Proceedings of the 2nd European

Workshop on Software Architecture (EWSA 2005), volume 3047 of Lecture Notes on Com-

puter Science, pages 203–221. Springer-Verlag, 2005

103

104 Chapter 6. Conformance Checking II

Design Space

alignment
Implementation

alignment
Architecture

Figure 6.1: Aligning architecture and implementation

we learnt that new products are rarely developed from scratch and that

reuse of existing development artefacts is typically ad hoc. These obser-

vations triggered our research in the field of conformance checking as a

second step in enhancing the functionality of a product or adapting it to a

changed environment (see Figure 1.2 on page 5). In our view a consistent

set of software development artefacts is a prerequisite for successful reuse.

Conformance checking is required to determine this consistency.

In general, conformance checking could be applied to all related arte-

facts produced in different phases of the software development process. In

this chapter we focus on the conformance between software architectural

views and the corresponding implementation.

An architectural view is a description of a software architecture that

addresses a specific set of concerns. The guidelines for the creation of such

views are described by associated viewpoints [IEEE-1471, 2000]. Views are

developed during the architecture phase to specify constraints over design

elements and relations [Perry and Wolf, 1992] for the subsequent product

implementation, that is, the design space of Figure 6.1.

To check whether an implementation does not violate the constraints

imposed by a view, views need to be created (reconstructed) from imple-

mentations [Van Deursen et al., 2004] to determine (predicate) the prop-

erties of the actual implementation from an architectural perspective, for

instance, to determine how implementation units are related to each other.

The constraints that an architecture specification defines effectively deter-

mine the bounds of the design space in which the implementation has to

be realised. Figure 6.1 illustrates that the implementation in this case vi-

olates some of the architectural constraints and thus does not completely

fall within the permitted design space. These violations can be resolved by

either updating the architecture or the implementation.

Here, a technical and a conceptual problem arise. First the languages

used in implementation (programming languages) and architectural views

6.2. Running Example 105

(modelling languages) differ. Second, the semantic gap between the ele-

ments and relations used in architectural views and the programming lan-

guage constructs available to implement them makes it difficult to recon-

struct an architectural view from an implementation. Therefore, for check-

ing the conformance of an implementation with respect to an architecture,

we propose to define a common conformance viewpoint at an intermediate

level of abstraction. When architectural and implementation views are as-

sociated with a common viewpoint and use the same modelling language

(i.e., metamodel) the identification of discrepancies between the intended

and implemented architecture becomes possible.

We address the problem of conformance checking by means of a confor-

mance checking system (CCS), describing the necessary steps. In order to

be practically applicable in industry, it is required that such a framework

builds on proven technology, and that its application is non-intrusive.

In this chapter we propose and experiment with a conformance check

system (CCS) that facilitates conformance checks through the definition of

a design-space conformance viewpoint bridging the semantic gap between

the implementation and architecture. Such a viewpoint is to be derived

from the involved architectural viewpoint in such a way that views as-

sociated with this viewpoint can both be extracted from the implementa-

tion and the architecture. We map the CCS to technology for model-driven

engineering (MDE) [Bézivin, 2005], and apply it in an academic case study.

Our experiments illustrate the definition of conformance viewpoints, com-

paring associated views, and visualisation of discrepancies between the

intended (specified) architecture and the implemented (predicated) archi-

tecture.

This chapter is organised as follows. Our running example is intro-

duced in Section 6.2. In Section 6.3 we present our CCS and explain what

needs to be done to map it to MDE. Subsequently, we discuss the mapping

of viewpoints to metamodels in Section 6.4 and the mappings and model

transformations for conformance checking in Section 6.5. In Section 6.6 we

discuss our CCS, the applied technology, and related work. We conclude in

Section 6.8 with an overview of our contributions.

6.2 Running Example

The running example in this chapter is the development of an academic

system: a digital music box (DMB) that reads data from a paper disc (the

record). The disc contains a plotted spiral track of pulse-width modulated

data bits. It rotates with a constant speed. The system tracks the spi-

ral, reads the data bits, and then maps those bits to symbols. A string

of symbols will be fed to an output device that transforms the string into

106 Chapter 6. Conformance Checking II

audible music. Here, we focus on the process of reading the record and gen-

erating the symbol stream. A hardware view of this system is depicted in

Figure 6.2. The system is composed of a traditional turn table and a set

of simple light sensors that can be moved axially by a motor. The control

is implemented in Java and distributed between a simple micro controller

and a PC.

M

Motor
control

Symbol
map

Track
Sensor

Data
Sensor

Figure 6.2: Digital music box reader system

The software architecture documentation consists of a set of views. Two

of them are depicted in Figure 6.3 . Their governing viewpoints will be

explained in more detail later.

Figure 6.3(a) depicts the system as a set of communicating processes.

This view uses stereotyped [OMG, 2007a] Unified Modeling Language1

(UML) objects to represent components (processes) and stereotypes links

to represent connectors (messages, and shared data). Here, the trackmotor

process controls the speed of the motor that moves the sensors over the ro-

tating disc (axially). The track process controls the Track Sensor and uses,

via a Message connector, the trackmotor process to keep the Data Sensor po-

sitioned over the spiral track. The read process uses the Data Sensor to

read the disc. Via a SharedData connector the output process plays the read

bits on some output device. Finally, it was foreseen that the read and track

processes needed to communicate via a Message connector, for instance to

communicate the status of the read process.

The planned organisation of implementation units (modules) is given

by the module-uses view depicted in Figure 6.3(b) . Here, modules are rep-

resented by stereotyped UML classes and uses relations by dependencies.

Furthermore, a layering is represented using the package structure. Here,

the lower layers are closer to the hardware (e.g., motors and sensors), while

the upper layers are closer to the user.

1http://www.uml.org (June 2007)

6.2. Running Example 107

< < Process > >

output

< < Process > >

read

< < SharedData > >

< < Process > >

track

< < Process > >

trackmotor

< < Message > >

< < Message > >

(a) Communicating-processes

appLayer

< < module > >

PlayerControl

funcLayer

< < module > >

DiskReader

< < module > >

ArmControl

hwLayer

< < module > >

DataSensor

< < module > >

SpeedSensor

< < module > >

TransMotor

< < module > >

TrackSensor

< < use > >

< < use > >
< < use > >

< < use > >

< < use > >
< < use > > < < use > >

(b)Module-uses

Figure 6.3: Architectural views

108 Chapter 6. Conformance Checking II

6.3 Approach

6.3.1 Conformance Checking System

Our conformance checking system (CCS) is based on the idea not to compare

architecture and implementation directly, but to derive views from imple-

mentation and architecture governed by a shared viewpoint expressed in

the same language. This overcomes both the conceptual and technological

problems mentioned in Section 6.1. As such, a conformance check between

implementation and architecture that does not require changes to current

ways of working (e.g., with respect to languages and views used) requires

the definition of a common viewpoint. The semantics of such a “design-

space conformance viewpoint” must be compatible with that of both archi-

tectural and implementation views. Thus, a mapping between the design-

space conformance view the architecture and implementation must exist.

Our approach is based on the work presented by Van Deursen et al. [2004]

and Murphy et al. [1995] on architecture reconstruction.

In this chapter we consider the architectural view as leading. As in the

approach by Murphy et al. [1995] there are three important situations for

any element or relation in the implementation: convergence, divergence,

and absence. A convergence indicates elements or relations in the im-

plementation that have a corresponding element or relation in the archi-

tecture. A divergence only exists in the implementation and an absence

only exists in the architecture. The result of a conformance check is a set

of entities and relations that are attributed according to the three types

above; the significance of mismatches (divergences and absences) found de-

pends in general on the involved design decisions. Therefore, discovery of

mismatches should serve as a trigger to investigate further if they are al-

lowed and possibly documented elsewhere. If not, they are considered to be

discrepancies that reduce the conceptual integrity [Brooks, Jr, 1975] of a

system and may result in unexpected dependencies, reducing the system’s

maintainability.

The conformance checking system (CCS) outlined in Figure 6.4 is based

on the process for architecture reconstruction presented by Van Deursen

et al. [2004]. Using architecture and implementation artefacts, views are

populated that are associated with a design-space conformance viewpoint.

The conformance viewpoint is defined such that its distance to both the

architectural and implementation viewpoints is minimised. Furthermore,

it enables to attribute elements and relation with their conformance status

in a subsequent comparison of the derived conformance views. For this a

set of comparison rules is specified. Finally, a presentation filter visualises

the comparison results.

6.3. Approach 109

Comparison

rules

Comparison

View

Population

Presentation Visual

Conformance

viewpoint

View

Population

Architecture Implementation

Figure 6.4: Conceptual Conformance Checking System

6.3.2 Model-Driven Conformance Checking

In the following sections we discuss how our CCS can be mapped to an

MDE type of approach. Although, several types of technologies are avail-

able to do so, we will use technologies related to the Model Driven Archi-

tecture1 (MDA). Alternatively, we could have used technologies based on

the Extensible Markup Language2 (XML) or on grammars. In fact, in ear-

lier work we used XML technologies [Van Dijk et al., 2005]. There, we made

the observation that specifications of models and transformations in XML

tend to be verbose, and hence, difficult to maintain.

Using model transformation the XML syntax remains hidden. Moreover,

we chose MDA because of the availability of languages and tools to manipu-

late architectural models specified using UML.

Key toMDE are models and (automatic) model transformations. As such,

we confine our conformance check for an architectural view to its primary

presentation. Here, we assume that this primary presentation consists of

UML diagrams. Using model transformations we can then manipulate the

underlying UMLmodel in order to check the conformance of the correspond-

ing implementation. To this end, we assume that viewpoints prescribe the

modelling language to be used for the primary presentation of associated

views.

InMDE, modelling languages are specified by metamodels. In the case of

the architectural views that are the subject of our conformance check this

typically is a subset of the UMLmetamodel. For the conformance viewpoints

we derive these metamodels from the viewpoint descriptions.

1http://www.omg.org/mda (June 2007)
2http://www.w3.org/XML (June 2007)

110 Chapter 6. Conformance Checking II

In general, with MDE abstract models are transformed to more concrete

models (and eventually into code). In our case we also transform models in

the opposite direction to obtain a conformance models from the implemen-

tation.

In accordance with the MDA we use the MetaObject Facility1 (MOF) for

metamodelling and UML for modelling. For specifying the required model

transformations we used the Atlas Transformation Language [Jouault and

Kurtev, 2005] (ATL).

As such, we intend to check the conformance of an architectural model

with respect to its corresponding implementation using MDA model trans-

formations. Consequently, it is required to obtain an MDA type of model of

the implementation.

Here, we use the concept of a technological space coined by Kurtev et al.

[2002] and described as a working context with a set of associated concepts,

body of knowledge, required skills, tools, and possibilities. MDA is one such

technological space, based on MOF and model transformations. The MDA

technological space can be referred to as modelware. Other technological

spaces are the grammarware (based on grammars) and the XML technolog-

ical space. Here, we refer to the translation of one technological space to

another as projection or bridging. In particular, from the perspective of the

target of such a projection we call it injection, and from the perspective of

the source we call it extraction.

We, thus, obtain a model representation of the implementation by in-

jecting it in a model based on an appropriate metamodel.

6.4 Viewpoints and Metamodels

The architectural views used to document a software architecture are as-

sociated with viewpoints. Several sets of architectural viewpoints have

been defined. To attain a good coverage of the difficulties and possibili-

ties of determining architectural conformance, we consider views from the

two principal categories of views described in literature [Kruchten, 1995;

Hofmeister et al., 1999; Clements et al., 2002a]: component-and-connector

views and module views. As discussed in the previous section we derive a

conformance metamodel for each of those viewpoints. In fact, these meta-

models each specify an architecture description language (ADL).

Viewpoints define the restriction on the elements and relations to be

used in their primary presentation. In our case we assume that diagrams

are UML diagrams, and, thus, based on (a subset of) the UML metamodel.

We derive its conformance metamodel from the restrictions it specifies. It

1http://www.omg.org/mof (June 2007)

6.4. Viewpoints and Metamodels 111

ViewPart

−name:String

−conformance:Conformance

< < dataType enumeration > >

Conformance

−convergent:in t

−divergent:in t

−absent:in t

Figure 6.5: Generic metamodel element

is these elements and relations for which we want to establish conformance

as convergent, divergent or absent.

First, we define a generic model element for conformance models in Fig-

ure 6.5. To avoid confusion, we refer to it as ViewPart. It includes a con-

formance attribute: an enumeration data type of convergent, divergent, ab-

sent. In the following we specialise ViewPart for concrete model elements

for which we want to determine conformance in metamodels for particular

viewpoints.

6.4.1 Component-and-Connector Views

Component-and-connector (C&C) views mainly address the question: how

does the system work? The box-and-line diagrams created early during

software design, usually are included in C&C type of views. C&C views

are runtime views addressing concerns such as concurrency and flow of

data. Most ADLs that have been defined are aimed at this type of views

(see Medvidovic and Taylor [1997] for an overview). ADL models define the

structure of a system in terms of runtime components and their interactions

(connectors). Architectural components are loci of computation and state.

Architectural connectors are loci of interaction [Shaw et al., 1995]. Both

are architectural abstractions of elements that consume resources, either

processing time or memory. As such, a complete C&C view is an abstraction

a system’s structure at runtime.

An example of a C&C view was depicted in Figure 6.3(a) on page 107.

It shows concurrently executing components as communicating processes.

The components interact through different types of connectors.

For the definition of a conformance metamodel for a C&C view we adhere

to the terminology of ADLs (see, e.g., Garlan et al. [2000]). We refer to

the ADL described in Figure 6.6(a) on page 113 as CPADL (Communicating-

Processes ADL). The metamodel states that a System consists of sets of

components and connectors. Each Component and Connector can interact with

its environment through associated interfaces. In case of a component the

interface is called a Port, whereas in case of connector we call it a Role.

In order to establish interaction between two components over a connec-

tor we can attach component ports to connector roles, with the limitation

112 Chapter 6. Conformance Checking II

that such an Attachment is only allowed if the component interacts using the

port as interface and according to the expectations described by the con-

nector role, that is, port and role need to be compatible [Allen and Garlan,

1994]. All attachments together determine the configuration of the System.

Note that although an Attachment is a relation, we define it as a ‘first-class’

model element (a ViewPart) to allow marking its conformance in a CPADL

model.

For several elements we added specialisations for the specification of

more specific communicating-processes views: OutputPort, InputPort, SinkRole,

SourceRole, Process, SharedData, and Message.

Finally, the model elements for which we want to establish the confor-

mance are defined as specialisations of the generic metamodel elements of

Figure 6.5 on the preceding page.

6.4.2 Module Views

In order to arrive at a system functioning as described by the C&C views,

views are developed driving the actual implementation of software and

hardware. Those views that capture the structural organisation of the im-

plementation units are known as the set of module views and mainly ad-

dress the question: how is the system developed? These views are used to

divide the work among developers and development teams. Additionally,

module views can be used to assess non-operational qualities of a system,

such as modifiability. Figure 6.3(b) on page 107 displays a module view for

the DMB system. It depicts the decomposition of the software implementa-

tion units (modules), their use dependencies, and layering.

Modules are supposedly coherent units of functionality that are even-

tually assigned to development teams. Dependency relations between the

modules of a development view are important. Several types of them ex-

ists, such as uses, allowed-to-use, and shares-data-with relations. Here, we

focus on use dependencies.

The corresponding conformance metamodel is depicted in Figure 6.6(b) .

Here, an Implementation consists of a set of modules and uses dependencies. A

Module has a set of uses dependencies. In turn a Uses relation is associated

with another Module. Finally, a Module consist of a set of classes. We added

the concept of Class to simplify the reconstruction of a module-uses model

from source code. Alternatively, we could have used separate metamodels

for the result of the extraction step (classes and calls relations) on the one

hand, and of the abstraction step (modules and uses relations) on the other.

Again, the model elements for which we want to check conformance are

specialisations of relevant elements from Figure 6.5 on the previous page.

We refer to the language defined by this metamodel as MADL (Module ADL).

6.4. Viewpoints and Metamodels 113

ComponentConnector

Process

Port

InputPort OutputPort

Role

SourceRole SinkRole

Message

SharedData

System

Attachment

ports+
*

roles+ * role+
attachment+

port+

attachment+
configuration+ *

connectors+

*
components+ *

ViewPart

(from Conformance)

−name:String

−conformance:Conformance

(a) CPADL metamodel

Module Uses

*uses+

Class

Implementation

−name:String

classes+*
calls+

*
*

uses+ *

fieldAccess

+

*

ViewPart

(from Conformance)

−name:String

−conformance:Conformance

uses+*modules+*

(b) MADL metamodel

Figure 6.6: Metamodels

114 Chapter 6. Conformance Checking II

6.5 Mappings and Model Transformations

The model transformations involved in our CCS cover three phases: model

population, conformance checking, and presentation. We discuss the trans-

formations involved in each phase below.

6.5.1 Model Population

Model population involves injection of source artefacts into a model repre-

sentation, which, subsequently is transformed in extraction and abstrac-

tion steps into a model that conforms to one of the defined conformance

metamodels.

Injection

For the architectural UML models, injection is not required; they already

are in the modelware technological space and, thus, can serve as source

models in model transformations. To this end, UML tools can serialise the

UML models to XML Metadata Interchange1 (XMI) format, which, in turn,

can be used by transformation tools.

In the case of the implementation, we first compiled a representation of

the abstract syntax tree (AST) of the Java source code in JavaML [Badros,

2000], an XML based representation of Java source code. Similar technol-

ogy is available for many other programming languages [Al-Ekram and

Kontogiannis, 2005]. Then, we injected this XML document into a model

representation conforming to a generic metamodel for XML. We could reuse

both this injection and the XML metamodel, as they were already available

from ATL’s metamodel and transformation repositories2.

Extraction and Abstraction

In extraction and abstraction steps the obtained implementation (XML-

JavaML) model and the architectural (UML) model are each transformed

into a model conform one of the conformance metamodels we defined.

Here, module and C&C views require a different approach. This is

mainly due to the different relations between both types of architectural

views on the one hand and the implementation on the other. The relation

between module views and the implementation is a refinement relation,

as these views are an abstraction of the implementation units that are

to be (have been) delivered (cf. the relation between a class diagram and

1http://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.eclipse.org/gmt/am3/zoos/atlanticZoo and http://www.eclipse.org/m2m/atl/

atlTransformations (June 2007)

6.5. Mappings and Model Transformations 115

the corresponding object-oriented source code). The relation between C&C

views and the implementation can be more complicated; these views are

an abstraction of the systems structure at runtime and not of the im-

plementation itself (cf. the relation between collaborating objects in a

UML collaboration diagram and the source code that caused these objects

to be instantiated). This makes reconstruction of those views a greater

challenge.

Module Views For the population of a MADL model we have to identify mod-
ules and uses relations.

Typically, implementation-level modularisation constructs do not match

one-to-one with the architecture-level modules. Developers typically have

reasons to further refine the provided decomposition of the development

views during implementation. In our approach we assume that the decom-

position is recorded, for instance, through annotations.

A simple, yet sufficient, method is to add comments to the implemen-

tation with @module(...) clauses. These clauses associate a Java class (or

other implementation unit) with a module of the architectural uses view.

Alternatively, packages can be used to represent modules in an implemen-

tation. In this case, however, we already used packages to represent archi-

tectural layering.

Next to modules, a uses view defines uses relations [Clements et al.,

2002a]. The notion of use has conflicting interpretations [Stevens, 2001].

In order to determine the existence or possibly inexistence of a particular

uses relation, we start with the definition given by Clements et al. [2002a]:

“Unit A is said to use unit B if A’s correctness depends on a correct imple-

mentation of B being present.” As our approach cannot guarantee that a

module is correctly implemented, we take a pragmatic position by mapping

the architectural uses relation to a checkable tuple: a link plus an action

that effectuates the link. The link is a reference from a class that belongs

to the ‘using’ module to the class that belongs to the ‘used’ module. The ac-

tion can be anything from a function call to an attribute access. In fact, our

interpretation captures calls and shares-data-with dependency relations,

which are different specialisations of the depends-on relation.

We use the lifting operation described by Fahmy and Holt [2000b] to

transform links, actions, and @module annotations to create uses relations

in a target model.

First we recover classes and their dependencies from the JavaML repre-

sentation of the AST. Using simple ATL expressions we select the XML Ele-

ments that represent a class and for each create a Class in the MADL target

model. To instantiate corresponding calls and fieldAccess dependencies in

the target model, we select all their child Elements representing method

116 Chapter 6. Conformance Checking II

invocations and field accesses targeted at classes we also implemented.

Because JavaML discards comments, we use a simple Perl-script to re-

trieve @module clauses and generate an XML-document consisting of <pair

class=’’...’’module=’’...’’\> elements. The projection of this document

as XML model serves as additional source model to a transformation that

creates modules that are composed of the classes created by the previous

transformation. A final (refining) model transformation lifts the field access

and call dependencies to the level of modules as Uses relations.

Next to the Java source code, the architectural uses view of Figure 6.3(b)

on page 107 was another input for our CCS, representing the ’as-designed’

architecture. Population of a MADL model from this UML model is straight-

forward because of the use of stereotypes to denote modules and uses rela-

tions.

The result (for implementation and architecture) is represented as a

directed graph as shown in Figure 6.7 . Here, boxes represent modules, and

arrows represent uses dependencies. It can be seen that the model derived

from the implementation consists of two unconnected subgraphs. In fact,

one subgraph corresponds to the part of the implementation deployed on

the PC, the other to the part deployed on the micro controller. Obviously,

no direct method invocations and field accesses are possible between those

parts.

C&C Views Components, ports, connectors, and roles are architectural con-
cepts that may or may not have explicit counterparts in the development

views or implementation. The implementation is not merely a refinement

of these architectural elements as in the case of development views. This

makes the mapping between the architectural C&C views and implementa-

tion constructs indirect and more difficult.

The main concern of the C&C view in Figure 6.3(a) on page 107 is con-

currency. For such a view the components correspond to implementation

mechanisms for concurrency and parallelism, such as processes, threads

and tasks. For example in the case of a system implemented in Java, these

components correspond to threads. Similarly, connectors, in that case, are

abstractions of the mechanisms that allow these threads to interact, for in-

stance inter-process-communication mechanisms, remote-procedure calls,

or shared-data.

Creating a C&C view from static sources is very application specific; it

depends on conventions for implementing, for instance, concurrency and

communication mechanisms. In this case we want to reconstruct a CPADL

model representing a set of communicating processes. As said, in Java

this type of components corresponds to threads. Java threads are classes

with a main-method or classes that extend the Java Thread class. In this

6.5. Mappings and Model Transformations 117

PlayerControl

DiskReader ArmControl

SpeedSensorDataSensor TrackSensor TransMotor

(a) Architecture

Play

TrackSensor

OutputControl

NotePlayerDiscReader

DataSensor

ArmControl

TransMotor

PlayerControl

(b) Implementation

Figure 6.7: Reconstructed MADL models

case we also assume that such classes are instantiated only once. There-

fore, the first transformation step identifies these classes in the JavaML

model. For each we create a Process component in the CPADL target

model. Note that because in this case there exists a one-to-one mapping

between an implementation construct (Java thread) and the components in

a communicating-processes view, it is not necessary to rely on annotations

as for the module view.

In addition, we search in the first transformation step for two types

of interactions: message passing and shared-data. These types of connec-

tors were implemented using method invocations and Java streams, respec-

tively.

For identification of the relevant method invocations we largely reuse

the ATL expressions for the population of the MADL model. Only now we

just consider method invocations between identified threads. For each dis-

tinct method invocation between two threads we create a Message connec-

tor, and, on the side of the source of the message, an OutputPort for the

involved component and a SinkRole for the connector; at the ‘target side’ we

create an InputPort and a SourceRole. Finally, we create Attachments for those

ports and roles.

118 Chapter 6. Conformance Checking II

The Java platform for the micro controller offers a special type of

(buffered) stream class for which we create a SharedData connector in the

CPADL target model. By identifying each thread that reads from or writes

to an instance of that class we identify Ports (input or output), Roles (source

or sink), and Attachments.

Identification of Message connectors in the transformation explained

above, results in a separate connector instance for each distinct method in-

vocation between two threads. In general, connectors describe a complete

protocol for the interactions allowed between two components. Therefore,

using another model transformation, we abstract all Message connectors

between two components into a single connector representing the allowed

message-based interaction between those components.

The resulting graph is given in Figure 6.8(b) . We represent components

by rectangles and connectors by ellipses. Attachments are represented by

edges and their arrowheads indicate the ‘direction’ of the involved ports

and roles.

The architectural input was the C&C view of Figure 6.3(a) on page 107.

To turn this view into a CPADL model, we map each stereotyped Object to a

Process in the CPADL target model. Each Link is mapped to an appropriate

Connector depending on the applied stereotype. Ports, Roles, and Attachments

are created where necessary. Note that we cannot distinguish between in-

or output ports or source or sink connectors here, as no direction is pro-

vided. The CPADL model populated from the architecture is given in Fig-

ure 6.8(a) .

6.5.2 Model Comparison

The comparison transformations have two source models (derived from

implementation and from architecture) and generate an attributed target

model, containing the elements of the source models attributed with one of

the following labels: convergent, divergent, or absent.

Module Views For each module in both source models it is checked whether
it is a convergent, divergent or absent module. This is simply done using

name matching.

A uses relation in the implementation source model is considered con-

vergent if a uses relation exists between two modules in the architecture

source model that correspond with the two modules involved in that uses

relation in the implementation source model. The result is visualised in

Figure 6.9 . Convergent, divergent, and absent entities are represented by

solid, dashed, and dotted lines respectively.

6.5. Mappings and Model Transformations 119

read

Message

SharedData
output

track

Message
trackmotor

(a) Architecture

OutputControl

ArmControl Message

TransMotor

DiscReader

SharedDataPlay

PlayerControl

Message

Message

Message

(b) Implementation

Figure 6.8: Reconstructed CPADL models

Play

TrackSensor

OutputControl

NotePlayerDiscReader

DataSensor

ArmControl

TransMotorSpeedSensor

PlayerControl

DiskReader

Figure 6.9: Merged MADL conformance model

120 Chapter 6. Conformance Checking II

OutputControl

ArmControl Message

Message

TransMotor

DiscReader

SharedDataPlay

PlayerControl

Message

Message

Message

Figure 6.10: Merged CPADL conformance model

Note that we determine manually which mismatches actually involve

discrepancies. Partly, the identified mismatches originate from naming,

e.g. DiskReader and DiscReader. One entity has not been implemented:

the SpeedSensor. A divergent uses relation emerges between PlayerControl

and TransMotor. In fact, this relation violates the intended layering.

C&C view Comparing the generated CPADL models results in the identifi-

cation of convergences, divergences, and absences as shown in Figure 6.10.

Comparing the C&C runtime views of Figure 6.8 on the preceding page in-

volves merging the namespaces. Especially in the case of a C&C view this

is necessary, as the names in the source code from which we reconstruct

the C&C view are derived from the module views and therefore often do

not match those in the C&C view. To remedy this we allow the user of

our transformation to provide a mapping between the two involved name

spaces. Again, we use XML to make this possible. In this case the mapping

consists of

<map name="CC">

<mapping src="DiscReader" arch="read"/>

<mapping src="OutputControl" arch="output"/>

<mapping src="ArmControl" arch="track"/>

<mapping src="TransMotor" arch="trackmotor"/>

</map>

As can be seen in Figure 6.10, the PlayerControl component is a diver-

gence. Consultation with the architect revealed that it was intended as a

connector between the read and track components. However, in the im-

plementation it included handling user interaction for which it required a

separate thread.

6.6. Discussion 121

6.5.3 Model Presentation

The final step in our CCS is the presentation of the generated conformance

models. As the defined MADL and CPADL metamodel only define the struc-

ture (abstract syntax) of the associated models and not their graphical no-

tation (concrete syntax) additional transformations are necessary to a lan-

guage that has an associated graphical notation.

We used the graph description language DOT1 to visualise the result.

Although DOT is a textual (grammar-based) language, a MOF-based meta-

model is also available, allowing processing using ATL. We defined transfor-

mations from CPADL and MADL to the DOT metamodel. Finally, the textual

representation of the generated DOTmodels was extracted by a special type

of transformation. This transformation queries a DOT source model and

generates corresponding DOT code as output. The result can be visualised

using dot. Examples were depicted in Figures 6.7 to 6.10 on pages 117–120.

6.6 Discussion

Below we address a number of issues related to the use of MDE for our

CCS. Subsequently, we discuss a number of potential improvements of the

approach.

6.6.1 Modelware

Model Population In our experiment we implemented the population of con-

formance models via XML. We used existing bridges from grammarware

to XML (JavaML) and from XML to the modelware technological space (the

injector for XML data). The drawback of using these bridges, is that sub-

sequent transformations that populate the MADL and CPADL models are

specified in terms of XML metamodel elements (e.g., Node, Element, At-

tribute), rather than elements specific for Java (e.g., Class, Method, Field).

This makes specifying these transformations prone to errors. A helper op-

eration to manipulate a class, for instance, is specified in the context of XML

elements that represent classes. Instead of using the type system, it has to

be checked explicitly that an XML element indeed represents a class.

By construction of an ATL library of helper operations related to the XML

model representation of Java (e.g., an operation to collect all XML elements

that represent a method invocation for an XML element that represents

a class) we could raise the abstraction level somewhat. However, ideally,

we would like to use a representation based on a ‘real’ Java metamodel.

In fact, such a metamodel is currently available from the ATL metamodel

1http://www.graphviz.org (June 2007)

122 Chapter 6. Conformance Checking II

repository. The problem remains to populate a model conform this meta-

model based on a set of Java source files. A solution to this problem could

be a transformation that transforms XML models (based on JavaML) into

models based on the Java metamodel. This would allow to specify the model

extraction at the desired level of abstraction. In general, such a transfor-

mation would also be useful for other software evolution tasks that involve

Java source code and might be solved in the modelware technological space

(e.g., architecture reconstruction, program understanding, metric calcula-

tions).

Modelware Management With the application of model transformations to
more and more complicated and diverse problems (see, e.g., Chapters 5,

7, and 8 of this thesis), managing the involved model artefacts becomes an

issue.

Although we did not discuss all of them, the approach presented in this

chapter already involved seven different metamodels, 11 different trans-

formations, and over 20 source, target, and intermediate (generated) mod-

els. In addition, the complete solution involved several transformations

executed outside the modelware space using tools such as sed, Perl, and

java2xml (for transformation of a Java program text into a JavaML repre-

sentation). Currently, we manage all these artefacts using the Java build

tool Ant1, for which the ATL development tools provide special tasks to ex-

ecute transformations, save and load (meta)models, and apply projectors.

Using Ant, we completely automated our approach, including compilation

of an XML representation for Java source code, execution of various model

transformations, and generation of PostScript output for DOT graphs.

Modelware Reuse Fortunately, not all of the modelware artefacts mentioned
above have to be developed from scratch. We reused and adapted metamod-

els from ATL’s metamodel repository (e.g., metamodels for DOT and XML).

Also projectors were reused (e.g., the XML injector, and the DOT to text ex-

tractor).

Still specification of all remaining metamodels and model transforma-

tions takes considerable effort. However, transformations defined for the

model transformation phase for injection of Java source code into a model

representation can be reused for conformance checking of other views, as

well as for different types of applications that involve the manipulation of

programs.

The metamodels and transformations used in the comparison and pre-

sentation phases are specific to a particular viewpoint. On the other hand

these metamodels are easily extended for other viewpoints, for instance, by

1http://ant.apache.org/ (June 2007)

6.6. Discussion 123

addition of additional types of connectors or dependency relations. If such

additions do not require a specific approach for comparison and presenta-

tion, the transformations we specified can still be applied.

6.6.2 Improving the Approach

Generalisation The use of ATL makes our approach specific to the MDA tech-

nological space. This means that we require source models to conform to

a MOF-based metamodel and to be serialised with XMI. In principle this

makes our approach compatible with most UML tools (via XMI). However, in

practice additional transformations are often required to exchange source

and target models between modelling, visualisation and transformation

tools (see also Sections 5.7 and 7.9).

The specification of model population transformations is dependent on

the applied (programming and modelling) style (e.g., usage of patterns and

coding conventions). The required complexity of transformation rules also

depends on the programming style. For instance, the use of getter and

setter methods circumvents the need to look for direct field access.

To generalise the comparison step of our approach we considered the

definition of a complete generic metamodel for (conformance) views. Such a

metamodel would define additional ViewParts (see Figure 6.5 on page 111)

such as Element, ConnectingElement, and Relation. These ViewParts can

then be specialised by metamodels for particular viewpoints. For example,

in the CPADL metamodel a Connector would be a ConnectingElement, and

an Attachment a Relation. All this would make sense when it is possible to

specify transformations for comparison and presentation in terms of those

generic ViewParts. These transformations can then be used for arbitrary

conformance models. The problem with this approach is that it is not possi-

ble to also define generic relations betweenmetamodel elements that can be

specialised by a concrete metamodel. So although it is possible to develop a

transformation to always present a ConnectingElement as an ellipse, such

a transformation cannot also instantiate its relations in a generic way.

We can overcome this problem by the use of higher-order transforma-

tions. These are transformations that have another transformation as

source or target model. For ATL this is made possible by the availability of

a metamodel for model-based representation of ATL transformations and

corresponding projectors. Such a higher-order transformation would take

the metamodel involved in the conformance check as source model and

produce a model of the transformations for comparison and presentation of

the associated models. This appears to be feasible considering the fact that

the transformations we implemented for those steps are quite similar.

This approach is investigated in Graaf and van Deursen [2007b], where

we provide a more extensive generic metamodel, as discussed above. Based

124 Chapter 6. Conformance Checking II

on this (abstract) metamodel we define concrete metamodels for particular

views. The higher-order transformation generates helpers and transfor-

mation rules for concrete instances of the abstract metamodel elements in

a particular view’s metamodel. The resulting ATL transformation is ap-

plied to models conforming to the concrete metamodel to check their con-

formance.

Here, a trade-off can be identified. Addition of extra details in a generic

metamodel (e.g., relations between metamodel elements), allows more

transformation code to be reused, for instance, for visualisation of confor-

mance models with DOT. On the other hand, this prevents to make the

conformance check and visualisations specific for a particular metamodel.

For instance, we visualised connecting elements using ellipses and other

elements using boxes. In a different situation it might be necessary to

visualise different types of connecting elements (message or shared data)

differently.

Identifying Discrepancies In the module view example several mismatches
occurred due to naming (e.g., DiskReader vs. DiscReader). This can be

solved by allowing a user to supply a mapping between name spaces in

a similar way as was done in the case of the C&C view. For determining

whether other mismatches are discrepancies, design decisions have to be

considered.

In general, defining what is a mismatch depends on the type of views

involved and the intentions of the architects. We did, for instance, not

report mismatches for attachments related to different port types when a

port in the model derived from the implementation is a specialisation of a

corresponding port in the model derived from the architectural view.

Static conformance checking of runtime views Although C&C views describe a
system at runtime, we only used static information for our conformance

check. As a result, we cannot always be sure that, for instance, two iden-

tified attachments connect the same component and connector instances.

It would be interesting to also consider dynamic information. This raises

questions such as how to inject that information into models, and what type

of metamodels are suitable for that. One possibility would be to use traces

to instantiate message sequence chart type of models, as is done by Cor-

nelissen et al. [2007].

Introducing annotations Although we required our approach to be non-
intrusive, we did introduce the use of annotations to register more detailed

decompositions than prescribed by the module view. Assuming that the

module views indeed drive the implementation activities, the advent of

6.7. Related work 125

integrated development environments makes dealing with such annota-

tions straightforward. Eclipse1 could, for instance, be easily changed such

that this information is requested from the programmer in the wizard for

defining a new class. Furthermore, although we use Java 1.4, in version

1.5 annotations have become an integral part of the Java language. Sub-

sequently, this information could be included in the header of the template

used by the wizard to create classes.

6.7 Related work

Krikhaar [1999] and Mens [2000] independently compared a number of

approaches to check architecture conformance. However, conformance be-

tween models at different abstraction levels is not addressed. Moreover,

most approaches dictate the introduction of specific modelling languages,

requiring a change to current ways of working.

They both mention Murphy et al. [1995] that introduces software re-

flexion models. In that work a high-level model is combined with a source

model and a user provided mapping between the two to generate a so-called

reflexion model. This model indicates where source model and high-level

model agree. Although our merged conformance model is clearly based on

their reflexion model, they only indicate conformance for relations. Their

approach is more suited for cases when the semantic gap between archi-

tecture and implementation is very large.

Our approach extends the generic process for architecture reconstruc-

tion proposed by Van Deursen et al. [2004]. Their process is based on

several industrial case studies and includes separate steps for data gath-

ering, knowledge inference, and information interpretation. We extended

this process for conformance checking by addition of a comparison step.

Furthermore, we make architectural viewpoints concrete by the definition

of metamodels.

Han et al. [2003] discuss the steps required for the reconstruction of

web applications. Although their approach is not automated, their uses

relation is closer to the definition of Clements et al. [2002b] than the one we

implemented. Next to uses relationships based on method calling they also

consider such relationships based on another type of logical interface, HTTP

request parameters. Furthermore, they introduce the ’knows’ relation, a

weaker type of uses. The latter we could easily introduce by generating

’knows’ relationships between elements that own a link (i.e., reference) to

each other that is not effectuated (i.e., by a method call).

1Eclipse is a widely-used, open-source integrated development environment, see http:

//www.eclipse.org (June 2007)

126 Chapter 6. Conformance Checking II

An alternative to checking conformance after development, would in-

volve the use of MDE to generate source code or extend the implementation

language with architectural constructs as was done in ArchJava [Aldrich

et al., 2002]. Such approaches directly connect architecture to implemen-

tation, improving consistency. However, this requires at least a change in

the way of working of the implementation phase, for instance the use of a

new language. This poses a barrier for implementing such an approach in

practical settings.

6.8 Conclusions

In this chapter we propose a conformance checking system (CCS) to sys-

tematically determine discrepancies between an intended architecture and

the realised architecture. Illuminating these differences is a preparatory

step for architecture migration in which previously developed artefacts are

reused for reasons of efficiency. Our the conformance checking system

(CCS) is non-intrusive. It coordinates the interaction between the archi-

tecture and the implementation domain of expertise, while regarding them

autonomously. It uses readily available, possibly tailored, technology for

the actual implementation of CCS. As such, the main contributions of this

chapter are:

• a generic process for conformance checking of architectural views;

• extensible metamodels for C&C and module viewpoints, including
mappings from implementation and architectural artefacts; and

• a demonstration of how to combine different types of technologies
(inside and outside the modelware technological space) into an in-

tegrated approach, while reusing several existing metamodels and

transformations

Although our approach is largely automated, checking the conformance

for particular type of views might require a specific approach. Still, the

CCS provides a generic process based on a common design-space viewpoint.

The CCS relies on a clear definition of associated metamodel and the map-

pings from the architectural and implementation artefacts to this common

metamodel.

The design-space metamodel (e.g., Figure 6.6 on page 113) captures

checkable concepts, which are the consensus between verifying abstract

properties of the architecture and emerging properties of the implemen-

tation. Possible discrepancies between the two are revealed as mismatches

between the derived conformance models and the impact of a mismatch.

6.8. Conclusions 127

We gave examples of conformance metamodels for the two principal cate-

gories of views and the mappings from architecture and implementation

artefacts. In our case study we used and configured MDE technology.

Although the results are promising we encountered intriguing research

questions, such as to what extent we can further generalise the approach

(i.e., the involved metamodels and transformations). Here, higher-order

transformations and the use of reflection are two possibilities we will in-

vestigate in the future.

To get a better understanding of the scalability of the approach we in-

tend to apply the proposed approach on an industrial case. An interesting

possibility is the application of this approach for checking the conformance

of the behavioural specifications discussed in Chapter 5 of this thesis. For

this we have to investigate whether our approach can be applied to auto-

mate the manual comparison step, in which the state machine we generate

from a set of scenarios are compared to the state machine used for code

generation.

Chapter7
Model-driven Migration of Supervi-

sory Machine Control Architectures1

Supervisory machine control is the high-level control in advanced manu-

facturing machines that is responsible for the coordination of manufactur-

ing activities. Traditionally, the design of such control systems is based on

finite state machines. An alternative, more flexible approach is based on

task-resource models. This chapter describes an approach for the migra-

tion of supervisory machine control architectures towards this alternative

approach. We propose a generic migration approach based on model trans-

formations that includes normalisation of legacy architectures before their

actual transformation. To this end, we identify a number of key concerns for

supervisory machine control and a corresponding normalised design idiom.

As such, our migration approach constitutes a series of model transforma-

tions, for which we define transformation rules. We illustrate the applicabil-

ity of this model-driven approach by migrating (part of) the supervisory con-

trol architecture of an advanced manufacturing machine: a wafer scanner

developed by ASML. This migration, towards a product-line architecture,

includes a change in architectural paradigm from finite state machines to

task-resource systems.

7.1 Introduction

As software intensive systems evolve they tend to become increasingly com-

plex [Lehman and Belady, 1985]. Furthermore, the architecture documen-

tation and its corresponding implementation tend to follow asynchronous

1This chapter was published earlier as: Graaf, Bas, Sven Weber, and Arie van Deursen.

Model-driven migration of supervisory machine control architectures. Journal of Systems

and Software, 2007. Doi: 10.1016/j.jss.2007.06.007

129

130 Chapter 7. Model-Driven Migration

evolutionary paths. Consequently, the conformance between the archi-

tecture specification and software implementation decreases as a software

system evolves [Bril et al., 2005].

In practice, increased complexity and loss of conformance between the

architecture as intended and the architecture as implemented make a sys-

tem more difficult to change [Perry and Wolf, 1992]. This results in an

increase of both development and maintenance effort. The involved ef-

fort can, for instance, be reduced by the separation of concerns, the use of

product-line architectures, model-driven development and automatic code

generation.

In this chapter we consider the migration of supervisory machine

control (SMC) architectures towards a product-line approach that, amongst

others, supports model-driven development and code generation. In prac-

tice, adopting such techniques requires architectural changes. When

migrating towards a product line, such a migration needs to be applied re-

peatedly to migrate different product versions into product-line members.

Therefore, ideally, one would like to make such a migration reproducible by

automatically transforming one architecture into another. In this chapter

we investigate how this can be done using model transformations. De-

veloping a model-driven migration approach is particularly beneficial in a

setting where product migration is not a one-off exercise.

In an advanced manufacturing machine, supervisory control [Ramadge

and Wonham, 1987; Gohari and Wonham, 2003] is responsible for the co-

ordination of the (discrete) high-level machine behaviour. This requires,

amongst others, interpretation of manufacturing requests, synchronisa-

tion, scheduling, conditional execution, and exploitation of concurrency

with respect to the resulting manufacturing activities [Sabuncuoglu and

Bayiz, 2000; Buttazzo, 2002; Reveliotis, 2005]. For advanced manufactur-

ing machines, the control systems have an indicative order of magnitude of

10 SMC components, each encompassing 104 - 105 lines of code.

This chapter was motivated by the prototype migration of the SMC archi-

tecture of a wafer scanner as developed by ASML, a manufacturer of equip-

ment for the semiconductor industry. We use this wafer scanner as a run-

ning example to illustrate the migration of a legacy architecture, based on

finite state machines (FSMs), to a new architecture that is based on task-

resource systems (TRSs). This migration is spurred by the fact that a TRS-

based SMC architecture, as opposed to an FSM-based one, is declarative,

separates concerns, and supports run-time dependent decisions [Van den

Nieuwelaar, 2004]. As a result, the maintainability and flexibility of the

migrated software systems is improved.

We consider the start and end point of the migration as different archi-

tectural views [IEEE-1471, 2000]. We refer to these views as the source

and target view respectively. An important element of an architectural

7.1. Introduction 131

view is its primary presentation [Clements et al., 2002a], which typically

contains one or more diagram(s). In this chapter we focus on the models

and their governing metamodels underlying those diagrams. In our mi-

gration approach we use these models to consolidate and reuse as much

existing design knowledge as possible. As such, we consider migration to

constitute a series of model transformations, which we implemented using

Model Driven Architecture1 (MDA). It should be noted that we only consider

the actual migration approach; the paradigms for the migration start point

and end point are prescribed by our industrial case.

In order to define a reproducible mapping and perform the migration,

we define practical transformation rules in terms of patterns associated

with the source and target metamodels. These transformation rules are

practical in the sense that they are based on an actual migration as per-

formed manually by an expert. Based on this migration, we have formu-

lated generic, concern-based transformation rules. These rules are defined

using a model transformation language making our approach automated.

Due to practical reasons, which are mainly associated with the informal use

of modelling languages in industry (see Chapter 3 and Lange et al. [2006]),

we first normalise the legacy models before applying our model transfor-

mations.

Although we focus on the migration of the SMC architecture of a partic-

ular manufacturing system, the ASML wafer scanner, the contributions of

this chapter are applicable to similar (paradigm) migrations of supervisory

control components in general. The presented industrial results serve as a

proof a concept, additional migrations have to be performed before the re-

sults can be properly quantified. The experiences as outlined in this chap-

ter are, to a lesser extent, relevant for all software architecture migrations

that can be seen as model transformation problems.

The remainder of this chapter is structured as follows. Section 7.2 dis-

cusses related work. In Section 7.3 we introduce SMC, concerns specific

to SMC systems, and our running example. A generic migration approach,

which we use for the migration between the introduced architectural para-

digms, is presented in Section 7.4. The source paradigm of the migration

and the normalisation of its associated views are discussed in Sections 7.5

and 7.6. The target paradigm and our transformation rules are treated in

Sections 7.7 and 7.8. We illustrate each step of the migration by means of a

running example. Section 7.9 reflects on the migration results. Finally, we

conclude in Section 7.10 with a summary of contributions and an overview

of future work.

1http://www.omg.org/mda (June 2007)

132 Chapter 7. Model-Driven Migration

7.2 Related Work

The process that we propose considers migration as a mapping from a

source to a target view. This approach is inspired by the approach for archi-

tecture reconstruction as described by Van Deursen et al. [2004]. There,

architecture reconstruction is considered to be a mapping from a source

view that is extracted from code to an architectural target view.

Our process can also be seen as the application of the MDA to software

migration rather than to software development. In the MDA, software de-

velopment is conceived as a series of transformations from source models

to target models. As such, in both processes, model transformations are ap-

plied but in our case an essential normalisation step is added to the original

MDA framework.

Fahmy and Holt [2000a,b] discuss several types of generic architecture

transformations that can be viewed as graph transformations. In this

chapter we consider domain-specific transformations on architectural mod-

els that are more complex than typed graphs; next to typed nodes, our

models also include attributes on nodes and edges. Moreover, their trans-

formations are intended for small, evolutionary changes to a software

architecture, whereas the transformations as discussed in this chapter are

driven by the migration to a different architectural paradigm.

Bosch and Molin [1999] use architecture transformations during archi-

tecture design to realise the non-functional quality requirements of a sys-

tem. Of the transformation types they identify, the application of an archi-

tectural style is closest to our work. To some extent, changing the architec-

tural paradigm from FSMs to TRSs, as considered in this chapter, could be

understood as such a transformation. In our case, however, this transfor-

mation also results in a product-line architecture.

In other work, transformations are applied to the migration of software

at the level of source code. Baxter et al. [2004] present a toolkit that uses

generalised compiler technology for this purpose. Gray et al. [2004] use

this toolkit for model-driven program transformations where vertical and

horizontal transformations are identified. Here, vertical transformations

concern the creation of software artefacts from artefacts at different ab-

straction levels (translation). Application of the MDA typically involves

vertical transformations, whereas they investigate its applicability to hori-

zontal transformations. The architecture migration we discuss can also be

considered a horizontal transformation. However, where they focus on the

source code, we consider migration at the design level.

7.3. Migration Context 133

supervisory controllers

requests

activities triggers

results

mechatronic subsystems

user

regulative controllers

transducers

Figure 7.1: Machine control context

7.3 Migration Context

In this section we first define the SMC context. Next, we introduce the moti-

vating case and running example for this chapter: a typical wafer scanner

as produced, for instance, by ASML. In this setting we briefly discuss the

key concerns for SMC systems in general. These concerns need to be ad-

dressed during architecture migration. As such, they form the basis for the

design of our normalisation and transformation rules.

7.3.1 Supervisory Machine Control

The machine control context is clarified in Figure 7.1. From a supervisory

perspective, (sub)frames, transducers and associated regulative controllers

form mechatronic subsystems that execute manufacturing activities to add value

to products. The recipe- and customer-dependent routing of multi-product

flows, with varying optimisation criteria, constitutes one of the key (super-

visory) control issues. Moreover, advanced manufacturing machines must

respond correctly and reproducibly to manufacturing requests, run-time events

and results. Consequently, to interpret manufacturing requests and to en-

sure feasible machine behaviour, a supervisory machine control component is

required to coordinate the execution of manufacturing activities [Ramadge

and Wonham, 1987; Sabuncuoglu and Bayiz, 2000; Van den Nieuwelaar,

2004].

In practice, a high-level manufacturing request is translated into valid

low-level machine behaviour using multiple, consecutive control-layers.

This is supported by recursive application of the control context from

Figure 7.1: manufacturing activities of one level become manufacturing

requests for the next level until the level of the mechatronic subsystems.

134 Chapter 7. Model-Driven Migration

@Measure

@Expose

x

Figure 7.2: Simplified layout of a wafer scanner

7.3.2 Running Example: A Wafer Scanner

In this chapter we consider the ASML wafer scanner as a representative

example of an advanced manufacturing machine. Wafer scanners are used

in the semiconductor industry and perform the most critical step in the

manufacturing process of integrated circuits (ICs). Figure 7.2 illustrates a

scanner and its subsystems.

A neighbouring machine, the track (TR), performs pre-processing steps

and delivers silicon wafers to the pre-alignment system (PA), where the

wafer orientation and alignment are determined and adjusted. Next, the

load robot (LR) transports the wafer to one of the two wafer stages (WS:0

or WS:1). Here, the wafer characteristics are measured. After measure-

ment, the wafer stages are swapped and the measured wafer is exposed.

During exposure, a laser projects an image of the required IC pattern onto

the wafer’s surface through a demagnification lens. A wafer is exposed in a

scanning fashion, similar to the process used in a photo-copier. Eventually,

the wafer comes to hold hundreds of small copies (i.e., dies) of this pattern.

After exposure, the stages swap back and the unload robot (UR) trans-

ports the exposed wafer to the discharge unit (DU) where it is buffered.

Next, the wafer is picked up by the track again to undergo various post-

processing steps. Now, the wafer is ready for another exposure if needed;

the process is re-entrant. With each passing, another layer is added to each

die. Once the wafer has been fully processed and inspected, it is diced into

individual dies that are packaged to form ICs such as microprocessors.

For the SMC component of the wafer scanner depicted in Figure 7.2, we

can identify the ‘process wafer w’ manufacturing request, which supports

concurrent measuring and exposing of two wafers. To perform this request

manufacturing activities such as ‘load wafer w onto wafer stage WS:0’ and

‘unload wafer w from wafer stage WS:1’ are executed. For instance, after a

7.3. Migration Context 135

wafer has been exposed, and the stages have swapped, the wafer must be

unloaded from its stage. In turn, these activities are requests for a lower-

level SMC component. In this chapter we will use the ‘process wafer’ and

‘unload wafer’ requests as illustrative examples.

7.3.3 Concerns for Supervisory Machine Control Systems

In advanced manufacturing machines, multiple manufacturing activities -

and sequences hereof - may fulfil a particular request and, in turn, multi-

ple mechatronic subsystems may be available to perform a particular activ-

ity. That is, multiple alternatives exist that require the selection of a spe-

cific subset of both manufacturing activities and mechatronic subsystems

to fulfil a given manufacturing request. For instance, when considering

Figure 7.2 , removing a wafer from DU can be done using either UR or LR.

For supervisory control of advanced manufacturing machines in general,

the following key concerns are identified.

The execution of an activity on a selected subsystem implies a specific

physical state transition of that subsystem. The selected sequence of ac-

tivities for a subsystem requires matching end states and begin states of

consecutive state transitions. When these states do not match, an addi-

tional transition, a setup, has to be executed between consecutive activi-

ties. For instance, when UR is idle at PA, a rotation has to be performed

before a wafer can be unloaded. In SMC, these sequence-dependent setups

are common.

Intuitively, controlled usage of mechatronic subsystems is another im-

portant concern. The control system generally checks the availability of a

subsystem that is required for a manufacturing activity. Once available,

the subsystem should be effectively claimed for the given activity. When

an activity has been (co)performed by claimed mechatronic subsystem(s),

all should be unclaimed or released. In our wafer scanner example, the

unloading of a wafer requires both UR and, for instance, WS:0.

In order to take full advantage of installed capacity, concurrent execu-

tion of activities is done where possible. In practice, activities can be ex-

ecuted concurrently unless this is explicitly prohibited by precedence (se-

quence) relations betweenmanufacturing activities or usage of the required

mechatronic subsystems. In our wafer scanner example, one wafer can be

measured and prepared for exposure while another wafer is being exposed.

Synchronous execution is another common concern. This not only refers

to synchronisation of activities such that they are executed one after the

other (e.g., load a wafer before processing it). It also applies to synchro-

nisation of specific subsystem state transitions related to two activities.

For instance, physical space is often limited, resulting in multiple mecha-

tronic subsystems that simultaneously operate within a confined space.

136 Chapter 7. Model-Driven Migration

This results in so-called hazardous areas in which subsystems can collide

and state transitions must be induced synchronously to ensure safety (e.g.,

swapping WS:0 and WS:1).

Finally, conditional execution of manufacturing activities needs to be

supported. That is, depending on certain conditions in a machine, differ-

ent execution paths for a manufacturing request might be activated, each

consisting of consecutive manufacturing activities. An example of such a

condition in our wafer scanner example is the presence of another wafer on

the wafer stage at the measure-side.

During migration, sequence-dependent setups, subsystem usage, con-

current execution, synchronous execution and conditional execution are

concerns that need to be addressed. To this end, we defined concern-based

transformation rules that map these concerns from the legacy to the new

architecture.

7.4 Model-Driven Migration

Ideally, the migration of software architectures is complete, reproducible,

reliable and automated. We consider the start and end point of the mi-

gration as different architectural views, referred to as the source and tar-

get view respectively. This is similar to the approach for architecture re-

construction as described by Van Deursen et al. [2004]. An architecture

view is associated with a viewpoint [IEEE-1471, 2000], that, amongst oth-

ers, specifies a metamodel for models underlying the primary presenta-

tion [Clements et al., 2002a] of that view. In this chapter we focus on those

models.

For the migration of source models into target models we propose the

migration approach as shown in Figure 7.3 . It uses a two-step process that

includes a normalisation and transformation step.

Models and their specifications are often incomplete and have a ten-

dency to become inconsistent and ambiguous over time. This makes di-

rectly translating a source model into a target model inherently difficult.

This is amplified further by tool limitations and the generally informal

use of modelling paradigms and languages in industry (see Chapter 3 and

Lange et al. [2006]). Combined with incomplete or generic metamodels

(e.g., the Unified Modeling Language1 (UML) metamodel), or no explicit

metamodels at all, a multitude of models becomes conceivable that all have

the same intended meaning.

In fact, an analysis of how SMC concerns are addressed in the source

models for our migration, revealed a large variation in the used idiom. This

1http://www.uml.org (June 2007)

7.4. Model-Driven Migration 137

Source

viewpoint

Canonical

source viewpoint

Target

viewpoint

Target

view

Normalised

source view

specifies

transform

Transformation

rules

target

specifies

specifies

Source

view

normalise

specifies

source

Figure 7.3: Generic two-phased migration approach

makes it infeasible to specify generic corresponding transformation rules.

As such, we introduce an intermediate normalisation step that uses a set of

normalisation rules to obtain a normalised source model. The normalisa-

tion rules are defined as mappings from the source metamodel to the nor-

malised source metamodel. This normalised metamodel describes a subset

of the models described by the source metamodel. Next, a set of transfor-

mation rules can be applied to transform a normalised source model into

the target model. These transformation rules are defined as mappings from

the normalised source metamodel to the target metamodel.

In all, we see migration as a series of automated model transforma-

tions that are defined on metamodels to transform a source model into a

target model using a distinct normalisation step. This approach is generic

in the sense that it can be applied to any conforming source and target

model without loss of generality. To actually implement this approach we

require (normalised) source and target metamodels, normalisation rules,

and transformation rules.

Although the approach is generic, our industrial case imposes some

practical restrictions on the enabling technologies. Spurred by the fact that

the existing architecture documentation contained source models (partly)

in UML statecharts, we decided to implement the different steps of our

migration approach using MDA technologies. In the MDA vision, software

development is considered to be a series of model transformations. Simi-

larly, we consider software migration as a series of model transformations.

Starting from UML, technologies compatible with MDA offer convenient and

off-the-shelf means to define and manipulate models. Furthermore, the

MetaObject Facility1 (MOF) can be used for the definition of metamodels.

1http://www.omg.org/mof (June 2007)

138 Chapter 7. Model-Driven Migration

Finally, various model transformation languages are available to define

transformations.

We defined all transformations in the Atlas Transformation Lan-

guage [Jouault and Kurtev, 2005] (ATL). An advantage of ATL is its syntax,

which is similar to that of the Object Constraint Language1 (OCL). This

allows people that have been working with the UML metamodel to under-

stand and create transformation rules with relative ease. The actual ATL

transformation engine relies on two implementations of MOF: the Eclipse

Modeling Framework2 (EMF) and the Metadata Repository3 (MDR). The ATL

transformation engine can be used in combination with MOF-based models

and metamodels serialised with XML Metadata Interchange4 (XMI). As our

source metamodel we used the MOF-UML metamodel available from the

Object Management Group5 (OMG) [OMG, 2007a]. To create source models,

we can simply use a UML modelling tool that supports XMI export. For the

target metamodel we also used EMF as it allows for automatic generation

of a primitive, tree-based editor for any arbitrary metamodel. This editor

can then be used to inspect the results of our transformations.

7.5 Source Metamodel

In this chapter, we consider FSMs as the given starting point for the mi-

gration. The use of FSMs as a paradigm for supervisory control has been

proposed by, for instance, Ramadge and Wonham [1987]. Here, the set of

possible machine behaviours is considered to form a language. A discrete

supervisory FSM is synthesised that restricts this language by disabling

a subset of events to enforce valid machine behaviour. This requires the

behaviour in all possible states for all requests to be specified explicitly

using (un)conditional state transitions with associated triggers (events),

and effects or state actions (manufacturing activities). When using this

paradigm, concurrent execution is the result of independent parts of con-

currently executing state machines that can optionally share events to syn-

chronise. Consequently, multiple FSMs are used per controller (typically

one for each type of request).

Our source models are specified using UML statechart diagrams. The

relevant part of the metamodel is shown in Figure 7.4 . Apart from this

metamodel, the UML specification also provides a large number of well-

formedness rules, specified in OCL, of which a few are mentioned below.

1http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)
2http://www.eclipse.org/emf (June 2007)
3http://mdr.netbeans.org (June 2007)
4http://www.omg.org/mda/specs.htm#XMI (June 2007)
5http://www.omg.org (June 2007)

7.5. Source Metamodel 139

StateMachine

State

0..1

top+

CompositeState

+ isConcurrent :Boolean

SimpleState FinalState

StateVertex

Pseudostate

+ kind :PseudostateKind

Transition

outgoing+

*source+

incoming+

*target+

Action

+ script :ActionExpression

effect+0..10..1
entry+

0..1

exit+

0..1

0..1

Event

0..1

transitions+

*

container+

0..1

subvertex+
*

Guard

+ expression :BooleanExpression

guard+

0..1

*

trigger+0..1

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 7.4: Source metamodel (excerpt from OMG [2007a])

Using this metamodel, UML state machines can be constructed that model

behaviour as a traversal of a graph of state nodes interconnected by tran-

sition arcs.

In Figure 7.4 a state node, or StateVertex, is the target or source of any

number of Transitions and can be of different types. A State represents a

situation in which some invariant over state variables holds. In addition,

an optional entry or exit Action is executed when the state is entered or exited.

The metamodel defines different types of States. A CompositeState contains

(owns) a number of substates (subvertex). If a CompositeState is concurrent

(isConcurrent) it contains at least two composite substates that execute in

parallel. A SimpleState is a State without any substates. Execution of an

enclosing CompositeState ends when a FinalState is entered.

Next to state nodes that describe a distinct situation, the metamodel

also offers a type of StateVertex that models a transient node of a state

graph: a Pseudostate. It allows modelling of more complex (conditional)

transition paths. Three types of pseudo-states (PseudostateKind) are rele-

vant for the state models in this chapter: initial, choice, and junction. An

initial Pseudostate is the default node of a CompositeState. A choice Pseu-

140 Chapter 7. Model-Driven Migration

dostate is used to create a dynamic conditional branch that depends on the

action on its incoming transitions. Alternative paths may be joined using a

junction Pseudostate.

Nodes in a state machine are connected by transitions that model the

Transition from one State (source) to another (target). A Transition is fired

by an Event (trigger). A Transition without such an explicit trigger is fired

by an implicit completion Event that is generated upon completion of all

activities in the currently active State. A Guard is a Boolean expression at-

tached to a Transition that disables or enables its firing upon occurrence of

its trigger (depending on whether it evaluates to true or to false). The effect

of a Transition specifies an Action to be executed upon its firing. Note that,

although there might be a causal relationship between actions and events

(e.g., a call event generated by a call action), UML does not allow to make

such a relationship explicit without the use of OCL. Finally, a StateMachine

consists of a set of transitions and a top State that is a CompositeState.

As an example of how this metamodel is used in practice, consider the

state machines in Figure 7.5 and 7.6 on page 142, which correspond to

the process wafer and unload wafer requests as introduced in Section 7.3.2.

Such state machines are the source models for the migration. Note that

our example requests were adopted from two distinct supervisory control

components with an indicative order of magnitude of 10 requests, 10-102

states, and 102-103 transitions. Although we use actual manufacturing

requests as running examples, we do not depict or discuss these requests

in full detail for reasons of confidentiality.

From the number of choice pseudo-states and guarded transitions it be-

comes clear that conditional execution is the dominant concern in the pro-

cess wafer request in Figure 7.5 . In other words, the activated path is

dependent on conditional synchronisation (e.g., wafer@measure) with other,

concurrently executing requests.

Figure 7.6 on page 142 illustrates that after the actual transfer of the

wafer (TRANSFER_FINISHED) the alternative completion sequences of subsequent

activities, which are associated with the UR_moved and WS_moved events,

are specified exhaustively. Furthermore, observe the use of two distinct

resource usage patterns for WS and UR in our unload wafer request: for

WS only an available Event (WS available) and release Action (release WS)

are specified, for UR also a claim Action (claim UR) has been specified.

Note that for reasons of simplicity, we choose not to include resource

usage and setups in the specification of the process wafer request. Even

from our example requests it becomes clear that, in practice, concerns are

addressed using a multitude of idioms and constructs. This is the main

reason for the introduction of our normalisation step.

7.5. Source Metamodel 141

UNLOADING

entry / unload_wafer

WAIT_MEASURE_CLEARED SWAPPING

entry / swap

WAIT_WAFER_PREPAREDWAIT_WAFER_MEASURED

WAIT_WAFER_MEASURED_PREPARED

EXPOSING

entry / expose

SWAPPING

entry / swap

PREPARINGMEASURING

MEASURE_AND_PREPARE

entry / prepare, measure

WAIT_MEASURE_CLEARED

COMBINED_LOADING_UNLOADING

entry / load_while_unload

LOADING

entry / load_Wafer

WAIT_WAFER_ARRIVED

exit / get_prealignment_and_measurement_data

arrived

[else]

[wafer@measure]

[exposed_wafer@measure][else]

measure_cleared

loaded

loaded

prepared measured

measured

prepared

/ measure_cleared

exposed

[wafer@measure]

[else]

[next_wafer2process]

[else]

[exposed_wafer@measure]

[next_wafer2process]

prepared measured

preparedmeasured

[else]

<trigger> [else]/ <effect>

<name>

measure_cleared
swapped

/ measure_cleared

Figure 7.5: Process wafer request

142 Chapter 7. Model-Driven Migration

FINISHED

exit / report done

FINISH_UR_WS_MOVED

entry / check RCB comm.

WAIT_UR_MOVED

exit / release UR

WAIT_WS_MOVED

exit / release WS

WAIT_FOR_UR_OR_WS_MOVED

entry / UR move to rotate, WS finish exchange

TRANSFER_FINISHED

START_TRANSFER

entry / start transfer W2U

CLAIM_UR

entry / claim UR

READY_TO_CLAIM_UR START_TO_CLAIM_UR

CHECK_RCB

entry / check RCB comm.

IDLE do_unload

WS available

[UR ready]

transfer_finished

[else]

UR_moved WS_moved

[combined_load]

[RCB ok]

[UR not ready]

WS_moved UR_moved

Figure 7.6: Unload wafer request

7.6. Normalisation Rules 143

7.6 Normalisation Rules

UML, as a generic modelling language, lacks constructs to support its appli-

cation in the domain of SMC systems. This makes that, when using ‘plain’

UML, various design idioms are available for handling SMC concerns. For in-

stance, guards (e.g., ‘subsystem is available’) were often modelled as events

(e.g., ‘subsystem becomes available’) although these are fundamentally dif-

ferent. Similarly, manufacturing activities can be specified as actions on

state transitions or as actions in separate states. This idiom diversity is fu-

elled further by tool limitations. For instance, tools that support a specific

UML version, do not necessarily support all of its constructs.

To define architecture transformations, we need source models in a nor-

malised form. These normalised models are associated with a metamodel

that adds constraints to the legacy source metamodel and augments it with

SMC-specific constructs. These constraints and additional model elements

are used in well-formedness rules that prescribe how to specify SMC-specific

concerns. For this, UML allows attaching constraints to model elements us-

ing OCL, and for the definition of additional model elements by stereotypes.

Together, these enable the definition of a suitable UML-SMC profile for the

normalised source metamodel. Example diagrams that conform to this pro-

file are shown in Figures 7.7 on page 148 and 7.8 on page 149.

Normalised source models have to comply to a set of well-formedness

rules. Most importantly, concerns have to be specified in a uniform way.

We have defined a standardised idiom for the concerns as identified in Sec-

tion 7.3.3. We introduce this idiom by example of Figures 7.7 on page 148

and 7.8 on page 149. Normalisation involves modifying source models to re-

move any violation of these well-formedness rules. Note that, due to the di-

versity of the idioms used in the source models, normalisation is performed

manually in our case study.

Table 7.1 on the following page lists the stereotypes that we define as

part of the SMC profile. Next to stereotypes, the profile also defines a num-

ber of constraints. Listing 7.1 on the next page lists some of these con-

straints, specified in OCL as invariants over the UML metamodel (C1-C4).

We merely use the constraints indicated by the def keyword to define ex-

tra properties on the elements mentioned in their context. This simplifies

the specification of other constraints. Application of these stereotypes and

constraints is discussed below.

Intuitively, the normalisation is context dependent and requires (some)

domain knowledge. Moreover, the normalisation rules not only depend on

the specific source paradigm but also on the modelling conventions as en-

countered in the specific (industrial) migration context. Therefore, we illus-

trate the normalisation step by defining the used context-specific normali-

sation rules for our case study.

144 Chapter 7. Model-Driven Migration

Table 7.1: SMC profile stereotypes

Stereotype baseClass description

≪wait≫ State wait for resource state

≪claim≫ Action claim resource action

≪release≫ Action release resources action

≪available≫ Guard resource available guard

≪available≫ Event resource becomes available event

context Action def:

-- an action is a release action if a stereotype named ’release’ is

applied to it

let isRelease : Boolean = self.stereotype->exists(s|s.name=’release

’)

context State def:

-- a state is a wait state if a stereotype named ’wait’ is applied

to it

let isWait : Boolean = self.stereotype->exists(s|s.name=’wait’)

context Event def:

-- an event is an available event if a stereotype named ’available’

is applied to it

let isRelease : Boolean = self.stereotype->exists(s|s.name=’release

’)

-- C1: all release Actions are state exit actions

context Action inv:

isRelease implies State.allInstances->exists(s|s.exit=self))

-- C2: a wait state has at least one outgoing transition triggered

by an available event

context State inv:

isWait implies outgoing->exists(t|t.trigger.isAvailable))

-- C3: state entry actions are actions that execute manufacturing

activities (i.e., without stereotype)

context State inv:

entry.stereotype->isEmpty

-- C4: all state nodes have no more than two incoming and outgoing

transitions

context StateVertex inv:

outgoing->size() <= 2 and incoming->size() <= 2

Listing 7.1: Some well-formedness rules of the SMC profile, in OCL

7.6. Normalisation Rules 145

Subsystem setups In the source model, subsystem state consistency is en-
sured by specifying setup transitions for every possible subsystem state at

design-time. In practice, this is not done exhaustively. Instead, domain-

knowledge is used to limit the number of setup related alternative transi-

tions. Although subsystem setups can be performed automatically using

the TRS paradigm and, thus, do not need to be specified explicitly, we do

preserve them during the normalisation step. This in fact ensures that the

migrated control system mimics the behaviour of the legacy control system

exactly. When reconsidering Figure 7.6 on page 142 and 7.8 on page 149,

the move to rotate Action is in fact a resource setup.

For the normalised source model we do not use a specific idiom for setup

activities; setups are modelled as any other manufacturing activity. If we

would be less concerned with exact preservation of behaviour, setup activ-

ities could be simply removed during normalisation. In that case, domain

knowledge is required to distinguish between setup activities and manu-

facturing activities.

Subsystem usage The pattern to address the ‘subsystem usage’ concern is
best understood from one of the orthogonal regions in the composite state

in Figure 7.8 on page 149. Before a manufacturing activity (e.g., finish ex-

change) that requires a certain subsystem (WS) is executed, a choice pseudo-

state is entered. Then, if the required resource is available ([WS available]),

it is claimed (claim WS) by the transition towards the state in which the

manufacturing activity is executed (FINISH). Otherwise, a state (WAIT_FOR_WS)

is entered that is only left when an event occurs indicating the resource

has become available (WS available). The resource is claimed (claim WS) on

the transition triggered by that event. Once the manufacturing activity is

performed, claimed resources are released again by a release action that is

executed when exiting the state (release). This pattern can easily be gener-

alised.

We use the stereotypes defined by the SMC profile (Table 7.1) to distin-

guish between Actions, Guards, Events, and States related to the use of

subsystems and those related to the execution of manufacturing activities

(to which no stereotypes are applied). Normalisation introduces stereo-

types for specific model elements that are related to the subsystem usage

concern. Furthermore, from Figure 7.6 on page 142, and its normalised

counterpart in Figure 7.8 on page 149, it can be seen that additional model

elements are introduced to complete the pattern described above. Note that

in Figures 7.7 on page 148 and 7.8 on page 149 stereotypes are displayed

only for states: this is a limitation of the UML tool we are using (i.e., ’Posei-

don for UML’).

146 Chapter 7. Model-Driven Migration

Application of the stereotypes to source models requires domain knowl-

edge to recognise the subsystem usage concern. This becomes apparent

when reconsidering Figure 7.8 on page 149. Here, WAIT_FOR_WS is a state

in which the system waits for a subsystem to become available. This is

intuitively different from the WAIT_WAFER_MEASURED states in Figure 7.7 on

page 148, where the intention is to specify that the system waits for a man-

ufacturing activity to be completed. The≪wait≫ stereotype is only applied
to the former state.

For normalisation of source models we require that resource usage pat-

terns are made complete. In Figure 7.6 on page 142, for instance, only a

release action is specified for WS. In Listing 7.1 on page 144 C1, C2, and C3

are related to the subsystem usage pattern. C1 specifies that a≪release≫
Action only occurs as a state exit Action. C2 states that at least one of the

outgoing Transitions for a ≪wait≫ State is triggered by an ≪available≫
Event. Finally, to conform to constraint C3, all Actions related to manufac-

turing activities are moved to States as entry Actions. An example of this is

the report done (entry) Action in Figure 7.6 on page 142 that was normalised

to an exit Action (Figure 7.8 on page 149).

Synchronous execution Synchronisation between subsequent manufacturing

activities in the source models is simply achieved by their order in the state

machine. Furthermore, synchronisation between subsystem state transi-

tions is not modelled at this level. As such, no specific idiom is used to

specify this concern. In general, however, we have to take this concern

into account while normalising the patterns associated with other concerns.

While inserting and moving activities we have to make sure that we do not

change their order in the normalised source model.

Concurrent execution In the original source models, concurrency was often

modelled using States, including Actions that start two or more manufac-

turing activities and separate transition paths for all possible completion

sequences, which are enabled by (external) completion Events. As an ex-

ample, consider state MEASURE_AND_PREPARE and associated completions events

prepared and measured in Figure 7.5 on page 141. Because those events can

only be associated with their corresponding manufacturing activities using

naming conventions, such an approach complicates the determination of

the scope of concurrent execution. Therefore, we require that concurrency

is modelled using a concurrent CompositeState containing (orthogonal) re-

gions. This implies that during normalisation, manufacturing activities

are mapped to CompositeStates when they are started in a single State

node and alternative completion sequences are specified exhaustively. Fig-

ure 7.8 on page 149 contains an example of concurrent execution, where

7.7. Target Metamodel 147

two resource usage patterns are executed in parallel.

Conditional execution The idiom for conditional execution is more compli-

cated. First, we require it to be specified using a choice Pseudostate with

two outgoing Transitions. One specifies some condition as a Guard; the

other specifies [else] as a Guard. Furthermore, we require ‘proper’ nesting

of conditional activation paths in a state machine. This means that we re-

quire pairs of corresponding, alternative paths through the state machine

to be merged one at a time (using junction Pseudostates), and in reverse or-

der. Figure 7.7 on the following page contains several (nested) examples of

this pattern (choice and junction Pseudostates are depicted using diamonds

and the smaller black circles, respectively).

Without this requirement for proper nesting, finding the set of States,

and thus Actions, which are enabled when some Guard evaluates to true

would become rather complicated. For the transformation of our source

models to target models, finding this set of states is a necessary step. ‘Non-

proper’ nesting occurs, for instance, in the bottom-half of the process wafer

request in Figure 7.5 on page 141. This results in replication of the ac-

tivities performed on each path during normalisation. The three Compos-

iteStates in the bottom-half of Figure 7.7 on the following page illustrate

this replication. Part of this particular normalisation step is covered by

constraint C4, which states that a path through a state machine can only

split in two paths and that no more than two paths can be joined in a single

state node. Because the OCL constraint to express proper nesting is rather

lengthy, we did not include it here.

7.7 Target Metamodel

We consider TRS as the given paradigm for the end-point of the migra-

tion. This end-point is based on a research prototype [Van den Nieuwelaar,

2004]. Using the TRS paradigm, a manufacturing request is translated

into valid machine behaviour in two phases. First, upon arrival of a man-

ufacturing request, a scheduling problem in the context of that request is

instantiated during a planning phase. For this, the request is interpreted

through rules that operate on capabilities (resource types) and behaviours

(task types). Here, a manufacturing activity corresponds to a task and a

mechatronic subsystem to a resource. The first phase results in a hierar-

chical digraph that consists of tasks and their (precedence) relations. Nodes

in this graph can be composite to either denote a set of tasks that all need

to be executed or to denote a set of tasks of which only one will be exe-

cuted based on some condition. Second, a scheduling phase constructively

assigns tasks in this digraph to specific resources over time [Viennot, 1986;

148 Chapter 7. Model-Driven Migration

UNLOADING

entry / unload

SWAPPING

entry / swap

WAIT_MEASURE_CLEARED

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

EXPOSING

entry / expose

SWAPPING

entry / swap

MEASURE_AND_PREPARE

MEASURING

entry / measure

/ measured

PREPARING

entry / prepare

/ prepared

COMBINED_LOADING_UNLOADING

entry / load_while_unload

LOADING

entry / load_wafer

WAIT_MEASURE_CLEARED

COMBINED_LOADING_UNLOADING

entry / load_while_unload

LOADING

entry / load_wafer

WAIT_WAFER_ARRIVED

entry / get_prealignment_and_measurement_data

arrived

[else]

[wafer@measure]

[exposed_wafer@measure]

[else]

@measure_cleared

[else]

[wafer@measure]

/ @measure_cleared

[wafer@measure]

[exposed_wafer@measure]

[else]

[next_wafer2process]

[else]

[else]

[next_wafer2process]
[else]

measure_cleared
/ @measure_cleared

Figure 7.7: Normalised process wafer request

7.7. Target Metamodel 149

REPORT

entry / report done

CHECK_RCB

entry / check RCB comm.

Concurrent_State

<< wait >>

WAIT_FOR_WS

FINISH

entry / finish_exchange

exit / release

[WS available]/ claim WS

[else]

WS available/ claim WS

/ WS_moved

<< wait >>

WAIT_FOR_UR

MOVE

entry / move UR to rotate

exit / release

[UR available]/ claim UR

[else]

UR available / claim UR

/ UR_moved

<< wait >>

WAIT_FOR_WS

<< wait >>

WAIT_FOR_UR

TRANSFER

entry / transfer_W2U

exit / release

CHECK_RCB

entry / check RCB comm.

[UR available]/ claim UR

[else]

[WS available]/ claim WS

[else]

WS available/ claim WS

UR available / claim UR

/ transfer_finished

[else]
[combined_load]

[RCB ok]

Figure 7.8: Normalised unload wafer request

150 Chapter 7. Model-Driven Migration

Figure 7.9: Module view for the product-line SMC architecture

Van den Nieuwelaar, 2004]. This results in a fully timed, coordinated TRS

that can be dispatched for execution.

The end-point for our migration is a product-line architecture, of which

Figure 7.9 displays the module view. In this architecture, the decisional re-

sponsibilities are assigned to three generic and reusable components: Plan-

ner, Scheduler, and Dispatcher. This product-line architecture offers variabil-

ity with respect to tasks and resources and can be instantiated for a specific

controller by implementing System definition and Subsystem interfacemodules.

These modules define the specific system under control and implement the

interfacing with lower-level components. The System definition module is

amenable for code generation, allowing for a reduction of software develop-

ment time and effort.

In order to define our target models, we introduce a governing target

metamodel as depicted in Figure 7.10 . There, the system definition from

Figure 7.9 is represented by the SystemDefinition, which serves as a root el-

ement. This system definition consists of a static and dynamic part. The

static part defines the available Behaviours, Resources and Capabilities of the

system under control. These are used to model types of manufacturing

activities, subsystems, and types of subsystems. In addition, to address

the subsystem usage concern, it defines which capabilities are required by

which behaviour. Furthermore, the corresponding beginState and endState

are specified in CapabilityUsage. These states are, for instance, used to de-

termine sequence dependent setups.

The dynamic part of Figure 7.10 represents the rules for uniquely map-

ping a manufacturing Request to SimpleTasks, which are of a specific Be-

haviour, and assigning Resources that fulfil a required Capability. Every Task

7.8. Transformation 151

Behaviour

+ name :EString

CapabilityUsage

+ beginState :EInt

+ endState :EInt

requires+ *

Capability

+ name :EString

capability+

Resource

+ name :EString

fulfils+

SystemDefinition

behaviours+

1..*

capabilities+

*

resources+

*

Task

+ id :EString

Static Dynamic

OrTask

+ condition :EString
AndTask

Request

+ name :EString
requests+

1..*

SimpleTask

behaviour+

tasks+

1..*

predecessors+

*

tasks+
* iftrue+

iffalse+

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 7.10: Target metamodel

includes a set of (direct) predecessors, that is, other Tasks that need to be

executed before it can be dispatched. This relation is used to (dis)allow con-

currency and imply synchronisation; in principle all tasks are executed in

parallel, unless prevented by the predecessor relation. Conditional execu-

tion can be specified using OrTasks, that contain two Tasks (iftrue and iffalse)

that may be composite. The evaluation of its condition determines which one

will be dispatched. Finally, to cluster Tasks that all need to be performed,

an AndTask can be used.

7.8 Transformation

Our transformation rules are defined as mappings from a normalised

source metamodel (i.e., our UML profile) to a TRS metamodel. We used

MOF to define the target metamodel rather than tailoring the UML using

yet another profile. In this section we first introduce the transformation

language that was used to define the transformation step of our migration

approach.

For the definition of our transformations we used the following strategy.

First, we indicate how elements in the normalised source metamodel are

related to the primary elements of the target metamodel. Second, for each

152 Chapter 7. Model-Driven Migration

rule Tasks {

from s:UML!SimpleState (

s.isTaskState and not thisModule.behaviourStates->includes(s))

to t: TRS!SimpleTask (

behaviour <- thisModule.resolveTemp(s.behaviourState,’b’),

predecessors <- s.getPredecessors)

}

Listing 7.2: ATL example

of the identified SMC concerns we define and tailor transformation rules

to relate the corresponding patterns in the normalised source model and

the target model. These rules are described reasoning backwards, meaning

that for each of the elements of the target metamodel we explain for what

source model patterns they will be created.

In all, application of these transformation rules to a source model that

conforms to our SMC profile, results in a target model that defines the Sys-

tem definitionmodule for a particular SMC component (i.e., an instance of the

architecture depicted in Figure 7.9 on page 150).

Next, we first introduce ATL. Then we discuss rules that generate the

elements of the ‘basic’ types of the target metamodel in Figure 7.10 on

the preceding page: SystemDefinition, Behaviour, Capability, Resource,

Request, and SimpleTask. Subsequently, we describe rules to create the

elements and relations related to the concerns as previously described in

Section 7.3.3. Finally, we discuss the results of the application of these

rules to our example requests.

7.8.1 The Atlas Transformation Language

All transformation rules are implemented using ATL. As an example, con-

sider the ATL fragment in Listing 7.2. An ATL transformation module con-

sists of rules that contain a from clause, specifying a source pattern (s), and

a to clause specifying a target pattern (t). The source pattern consists of

a source type (UML!SimpleState) and an optional guard, which is a Boolean

expression specified in OCL. The target pattern consists of a set of elements

that each specify a target type (TRS!SimpleTask) and an associated set of

bindings. A binding refers to a feature of the type (e.g., predecessors) and

specifies an expression that is used to initialise the feature. The source

and target types in the transformation rules in this chapter refer to the

source and target metamodels in Figures 7.4 on page 139 and 7.10 on the

previous page. As such, the rule in Listing 7.2 matches SimpleStates that

conform to some constraints expressed by the guard. This rule generates a

SimpleTask for which it specifies a set of bindings.

7.8. Transformation 153

For every element in the source model that matches the source pattern

of a rule, the elements specified by the target pattern are created in the tar-

get model. Note that in ATL, the source model is read-only and the target

model is write-only. This can also be seen from Listing 7.2 , where only the

source model is navigated to initialise the features referred to in the bind-

ings of the target pattern. Therefore, a specific value-resolution algorithm

is used to initialise features: if the expression of a binding refers to another

target element (created by the same rule) it is simply assigned, if it refers

to a source element it is resolved by application of the rule that matches

that source element and taking the default (first) target element.

For cases where the required target element is not the default element

of another rule, ATL offers the ‘resolveTemp’ construct, a so-called helper

operation. It takes a source model element and a reference to a specific

target element of the matching rule as input parameters. In Listing 7.2 , for

example, this is done in the binding of the behaviour feature. In this case s.

behaviourState evaluates to a SimpleState that is matched by another rule

with multiple target elements, of which the ‘b’ target element is selected

to bind to that feature.

Helpers are typically defined in the context of a metamodel element and

effectively add a feature or operation to instances of that element (cf. the

use of OCL definition constraints in Listing 7.1 on page 144). Alternatively,

a helper can be defined without any context. Then, the default context of

the complete transformation module, represented by the thisModule ele-

ment, applies. The resolveTemp helper is also defined in this default con-

text.

7.8.2 Basic Target Model Elements

SimpleTask and Behaviour SimpleTasks correspond to manufacturing activi-
ties, and Behaviours correspond to types of manufacturing activities in SMC

systems. Therefore, to create SimpleTasks and Behaviours in the target

model we need to identify Actions corresponding to manufacturing activi-

ties in the source model.

According to the UML SMC profile, an Action that corresponds to a man-

ufacturing activity has no stereotype and is executed as a State entry Ac-

tion (see C3 in Listing 7.1 on page 144). For every such Action, a Simple-

Task needs to be created. This is specified by the rule in Listing 7.3 on

the next page. It contains a guard that uses the behaviourStates helper to

only match SimpleStates that map to a Behaviour. Note that in the speci-

fication, we do not map Actions to SimpleTasks, but instead we map the

SimpleStates in which they are executed to SimpleTasks. This does not af-

fect our migration results since Actions corresponding to SimpleTasks are

always State entry Actions (by constraint C3 of the SMC profile).

154 Chapter 7. Model-Driven Migration

rule Behaviours {

from s: UML!SimpleState (

thisModule.behaviourStates->includes(s))

to t: TRS!SimpleTask (

behaviour <- b,

predecessors <- s.getPredecessors),

b: TRS!Behaviour (

name <- s.entry.script.body,

requires <- s.incoming->collect(i|i.source)->iterate(s; ss:Set(

UML!SimpleState) = Set {}|ss->union(s.getResourceClaims)))

}

Listing 7.3: Rule for tasks and behaviours

In the source model, the executed behaviour is specified in the Action’s

script attribute. Therefore, Actions with identical script attributes effec-

tively define an Action type and should be mapped to the same Behaviour.

To implement this, the behaviourStates helper first selects the set of Sim-

pleStates corresponding to a SimpleTask (i.e., all SimpleStates with entry

Actions without stereotype) and subsequently determines the set of Actions

with unique Behaviours. For all Actions in this set, a SimpleTask and a

Behaviour are created by the behaviour rule. Additionally, we have imple-

mented a rule that creates a SimpleTask for all other SimpleStates with

such entry actions.

For (Simple)Tasks, the predecessors attribute has to be set to the set of

direct predecessor tasks. Furthermore, a Behaviour’s requires attribute is

set to a CapabilityUsage element. This is discussed in Section 7.8.3 for the

related synchronous execution and subsystem usage concerns.

Resource and Capability To create Resources and Capabilities we identify
mechatronic subsystems in the source models. However, in the FSM

paradigm, subsystems are not modelled explicitly. Hence, the source

model does not contain elements that directly correspond to Resources and

Capabilities. We can, however, take advantage of the fact that in the FSM

paradigm, subsystems are explicitly claimed. We create Resources in the

target model based on Actions that claim a specific subsystem, that is,

Actions to which the≪claim≫ stereotype has been applied. Furthermore,
for every resource we simply create a separate Capability (Resource type).

In the specification of the involved transformation rules (not shown) we

had to take into account that Capabilities can be claimed multiple times

during a single request. This results in multiple Actions claiming the same

Capability. Because we do not want to create a separate Capability for each

of the Actions claiming the same capability, we defined a helper similar to

the behaviourStates helper.

7.8. Transformation 155

SystemDefinition and Request The SystemDefinition root element in a target
model contains all required elements that define the domain specific part of

an SMC controller. As such, this element corresponds to a complete source

model.

A Request encompasses rules that determine how that particular man-

ufacturing request, such as our unload wafer from Figure 7.6 on page 142,

is planned. Planning rules involve a set of Tasks and corresponding prede-

cessor relations. Additionally, a Task can be an AndTask or an OrTask. In

the source model, a complete state machine is used to specify how a manu-

facturing request is to be executed. So, we create a Request element in the

target model for every StateMachine in the source model.

Listing 7.4 on the next page shows the ATL specification of this mapping.

The Request rule generates a Request element for every StateMachine in

the source model. This Request contains tasks which are created by other

rules. As will be explained later, States or Guards in the source model may

map to Tasks in the target model. Because the tasks in our target model

may be composite in which case they own other tasks, we should take care

not to select all model elements in the complete state machine that map

to a Task. Instead, for a Request we discard all States or Guards inside a

CompositeState other than the top, and on paths that are only conditionally

enabled (i.e., by a transition’s guard). To this end, we defined two additional

generic helpers. First, rootOfSubTree takes a set of states as argument and

recursively selects the ‘first’ state of that set (i.e., the one without incoming

transitions from other states in the set). Second, getTaskModelElements is

applied to that ‘first’ State to collect all model elements that map to a Task.

In essence, this helper takes a set of states and traverses this set as a

state ‘tree’ starting from the State (or Guard) it is applied to, and bypassing

CompositeStates and conditional paths. During this traversal it collects all

model elements it encounters that map to a Task (i.e., Guards or States).

The SystemDefinition rule generates a SystemDefinition element that

corresponds to the complete source model. The behaviours, resources and

capability features of the SystemDefinition element are bound to the re-

sult of other rules. In particular for behaviours and resources we had to

use the resolveTemp helper as these are not created by the default target

elements of the involved rules. In this case, the relevant source model el-

ements are selected by two helpers that are defined in the context of the

transformationmodule itself: behaviourStates gives all the source model el-

ements (SimpleStates) that map to a Behaviour, and resourceActions gives

all the source model elements (≪claim≫ Actions) that map to a Resource.
The requestfeature is bound to the elements created by the Request rule for

all StateMachines in the source model.

156 Chapter 7. Model-Driven Migration

rule Request {

from sm: UML!StateMachine

to rq: TRS!Request (

tasks <- thisModule.rootOfSubTree(sm.top.subvertex,sm.top.

subvertex->asSequence()->first()).getTaskModelElements(sm.top.

subvertex))

}

rule SystemDefinition {

from sm: UML!Model

to sd: TRS!SystemDefinition (

behaviours <- thisModule.behaviourStates->collect(e|thisModule.

resolveTemp(e,’b’)),

resources <- thisModule.claimActions->collect(e|thisModule.

resolveTemp(e,’r’)),

capabilities <- thisModule.claimActions,

requests <- UML!StateMachine->allInstances())

}

Listing 7.4: Rule for SystemDefinition and Requests

7.8.3 Concern-Based Transformation Rules

Resource usage To address the resource usage concern we need to relate
Behaviours to the Resources and Capabilities (resource types) they require.

In the target metamodel, CapabilityUsage elements are used to this end.

However, we cannot derive the CapabilityUsage elements in the target

model directly, since our source models only contain dynamic information.

Consequently, we will have to derive them indirectly instead.

For each subsystem usage pattern, as described in Section 7.6 we con-

clude that the subsystems claimed at that point are required for the cor-

responding manufacturing activity. These are all the subsystems that are

claimed after the previous release action. In the target model, Capabili-

tyUsage elements are then defined connecting the corresponding Behaviour

and Capabilities. For our unload wafer request, for instance, this results

in the definition of a CapabilityUsage element relating the transfer W2U be-

haviour to the WS capability.

The from clause of the rule in Listing 7.5 matches all ≪wait≫ States,
using the isWait attribute helper. The to clause of this rule creates a

CapabilityUsage element in the target model. The resolveTemp helper is

used to set the capability attribute to the target of the rule that matches

the ≪claim≫ Action involved in the resource usage pattern. Next, a Be-
haviour is linked to CapabilityUsage elements by its requires feature. List-

ing 7.3 on page 154 shows that this is done by first selecting all States

directly preceding the State in which an Action that corresponds to the Be-

haviour is executed. On each of these predecessor States, we iteratively

7.8. Transformation 157

rule ResourceUsage {

from s:UML!SimpleState (s.isWait)

to cu: TRS!CapabilityUsage (

capability <- thisModule.claimActions->select(a|a.script.body=s.

outgoing->select(t|t.effect.isClaim).effect.script.body))

}

Listing 7.5: Rule for resource usage pattern

call the getResourceClaims helper that recursively finds all≪wait≫ States
by backwards traversal of the state machine until a ≪release≫ Action is
encountered. A ≪release≫ Action releases all claimed subsystems. The

≪wait≫ States in the returned set match the ResourceUsage rule and the
Behaviour is linked by its requires attribute to the corresponding Capabil-

ityUsage elements.

Resource setups In the target model, setups are automatically inserted by
the generic (solving) part of the product-line architecture. This is done at

run-time, based on mismatching beginState and endState attributes of the

CapabilityUsage element. To some extent, these could be derived from the

explicitly specified setups in the source model.

In this chapter, however, we do not define a corresponding transforma-

tion rule as it depends heavily on domain knowledge. Using our transfor-

mations, setups will explicitly end up in the target model as just another

task and behaviour. As said, this ensures that the migrated control system

mimics the behaviour of the legacy control system exactly, thus resulting

in a validated and acceptable baseline.

Synchronous execution The target model defines precedence relations be-

tween those Tasks that require synchronisation (within the same Request).

In principle, these relations follow from the execution order of the manufac-

turing activities and the corresponding Actions within a normalised state

machine. In addition, (virtual) resources can be used for external synchro-

nisation.

For synchronisation within a Request, predecessor relations are created

for every task by searching for its set of (direct) predecessor tasks. For

this we have defined two helpers that both operate on the elements that

match rules that create Tasks. The first helper is depicted in Listing 7.6 on

the following page and is defined on StateVertex whereas the second one

is defined on Guard. For each Task, one of these getPredecessors helpers

is invoked on its corresponding StateVertex or Guard. These helpers de-

termine whether the current element (self) corresponds to a task. If so,

this element is returned. Otherwise, the helper is recursively applied to

158 Chapter 7. Model-Driven Migration

helper context UML!StateVertex def: getPredecessors:Set(UML!

ModelElement) =

if self.incoming->isEmpty() then

Set{}

else if self.isOrTaskStateJoin then

self.getFork.outgoing->collect(e|e.guard)->select(e|e.

isOrTaskGuard)

else if self.incoming->collect(e|e.guard)->select(e|not e.

oclIsUndefined())->exists(e|e.isOrTaskGuard or if e.oppositeGuard.

oclIsUndefined() then false else e.oppositeGuard.isOrTaskGuard

endif) then

Set{}

else if self.incoming->collect(e|e.source)->select(e|e.isTaskState)

->isEmpty() then

self.incoming->collect(e|e.source.getPredecessors)->flatten()

else

self.incoming->collect(e|e.source)->select(e|e.isTaskState)

endif endif endif endif;

Listing 7.6: Collect predecessors on StateVertex

the finite set of all direct preceding modelling elements that may map to a

task.

Concurrent execution The normalised pattern for concurrency, as discussed

in Section 7.6, is a CompositeState with orthogonal regions. To address the

concurrent execution concern we need to identify instances of such patterns

in the source model.

We defined a transformation rule that creates an AndTask for every con-

current CompositeState in the source model except for the top Composite-

State of the StateMachine. Basically, the predecessors relation is the mech-

anism used in the target model to (dis)allow concurrency: if two tasks are

not related by the transitive closure of the predecessors relation, they can

execute concurrently. Now, these potentially concurrent tasks are executed

as soon as execution of their predecessors has finished and the required

resources are available. In turn, this also implies that a task can have mul-

tiple (concurrent) predecessors. Collecting predecessor tasks was already

discussed in the previous paragraph.

Conditional Execution As discussed in Section 7.6, the normalised source

model uses a state with two outgoing guarded transitions to specify con-

ditional execution. Every two alternative conditional branches in a source

model are mapped to an OrTask in the target model. This OrTask contains

two subtasks (iftrue and iffalse), which may be composite and represent the

two conditionally executed branches following a State with two outgoing

7.8. Transformation 159

rule ConditionalExecution {

from g:UML!Guard (g.isOrTaskGuard)

to t: TRS!OrTask(

condition <- g.expression.body,

iftrue <- at_true,

iffalse <- at_false,

predecessors <- g.getPredecessors),

at_true: TRS!AndTask(

tasks <- g.transition.target.getTaskModelElements(g.

guardedTaskStates))

at_false: TRS!AndTask(

tasks <- g.oppositeGuard.transition.target.getTaskModelElements(g

.oppositeGuard.guardedTaskStates)

}

Listing 7.7: Rule for conditional execution patterns

guarded Transitions. Subsequently, for the creation of those subtasks, we

need to find all model elements that map to a task in each of the branches.

The specification of this transformation rule is depicted in Listing 7.7.

This rule matches one of the Guards (not the else) for every conditional exe-

cution pattern, determined by the isOrTaskGuard helper. It creates an And-

Task for each of the two branches using the getTaskModelElements helper.

The set of States that this helper uses to determine the scope in which it

has to select all ModelElements that map to a Task is calculated by the

guardedTaskStates helper. This helper selects all States ‘guarded’ by some

guard. To this end, it calculates the difference between the path through

the state machine that starts from the target of the conditional transition

and the corresponding alternative transition path.

7.8.4 Transformation Results

In total, we needed approximately 300 lines of ATL code to implement all the

necessary transformation rules and helpers for the transformation step of

our migration approach. Once the source model, source metamodel, target

metamodel, and transformation module are defined and located, the ATL

transformation engine generates the target model (e.g., a system definition)

in its serialised form. The results as obtained for the normalised unload

wafer request are depicted in Figure 7.11 on the following page.

Figure 7.11(a) on the next page shows a screen capture of the created

TRS target model, inspected using the tree-based editor that was generated

for our TRS metamodel by the EMF plugin. There, TRS model elements are

shown in a tree structure to indicate containment. Furthermore, it can be

seen that we are dealing with an SMC component that accepts a Request

160 Chapter 7. Model-Driven Migration

(a) TRS target model

<<UR>>
move UR to rotate

check RCB comm.

report done

check RCB comm.

<<UR ,WS>>
transfer W2U

<<WS>>
finish exchange

[not(combined_load)]

[combined_load]

(b) Activity Diagram

Figure 7.11: Results for unload wafer request

unload_wafer. The selected element under the Properties tab in the bottom

part reveals that “SimpleTask check RCB comm.” can only be dispatched after

its predecessor “OrTask combined_load” has been executed.

The consequence of using a custom metamodel is that we only have the

basic generated editor to visualise and document our transformation re-

sults. Again, we turned to model transformations to solve this problem. As

there is no suitable graphical representation for complete TRS models yet,

we defined a transformation that maps a TRSmodel to UML Activity Graphs

for the dynamic part (one for each request) and a UML Class model for the

static part. The result of this transformation can easily be displayed using

UML tools. Figure 7.11(b) on this page, for instance, shows the dynamic

part of our unload wafer request displayed as an UML Activity Graph.

Note that, we merely use UML notation to represent part of the task re-

source model. As such, the semantics are not identical to that of UML activ-

ity graphs, but only similar. We represent Tasks as Activities stereotyped

with the resource they require. The transition represent predecessor re-

lationships (in reverse direction). For AndTasks we use fork Pseudostates

(represented by the horizontal black bar). A complete AndTask is thus rep-

7.9. Evaluation 161

resented by the subgraph that starts with a fork and ends when the two

concurrent paths are joined. OrTasks are represented using choice Pseu-

dostates (represented by a diamond with two outgoing arrows). Similar to

the AndTask a complete OrTask is thus represented by the subgraph that

starts with a choice Pseudostate and ends when the two conditional paths

are joined. For convenience we did not explicitly represented the join of the

two concurrent paths (i.e., using another horizontal bar); they are joined in

the same node (the diamond with three incoming arrows) as the conditional

paths.

7.9 Evaluation

Applicability Application of our generic, model-driven migration approach
requires that the source view and target view can be defined using a meta-

model. When this is possible, the actual migration from source to target

constitutes a series of model transformations.

In practice, models are only made as complete and accurate as is de-

manded by their application. However, these demands become more strin-

gent when these models are used as input for automated processing such

as model transformations. As a result, the context-specific normalisation

step is crucial to the applicability of our migration approach in industrial

contexts where (source) models are typically used for communication and

documentation purposes only.

MOF-based metamodels only provide the abstract syntax for conform-

ing models and do not define how to visualise them (concrete syntax). In

fact this is a drawback of using a custom metamodel: no model editors and

viewers are available, apart from the basic editor as generated by the EMF

plugin. In this chapter we again turned to model transformations to docu-

ment and visualise our results. The use of model transformations provides

an elegant and flexible way of generating architecture documentation that

can easily be tailored to meet specific documentation requirements of a mi-

gration context. This is further discussed in Chapter 8.

It turned out that a model-driven migration approach based on MDA

is useful for rapid (incremental) development of normalisation rules and

transformation rules. That is, results can easily be visualised and docu-

mented given the wide variety of available tools.

Scalability With respect to the scalability of our approach we can safely
state that our experiments are of the same order of magnitude as full-

fledged component migrations for real-world wafer scanner applications.

More concretely, the two requests that were migrated as a proof of concept

162 Chapter 7. Model-Driven Migration

account for approximately 10-20% of the source code for our SMC compo-

nents. The application of our transformation rules to the two representa-

tive examples presented in this chapter requires less than 10 seconds to

complete on a 1.7 GHz notebook. Furthermore, we expect the execution

time to be linear with respect to the number of requests. More important

for the execution time is the nesting depth of conditional paths. For our

industrial case we have not encountered requests with deeper nesting than

our example requests.

Effectiveness Our model-driven approach requires that implicit design de-
cisions and design knowledge is consolidated and made explicit for the def-

inition of metamodels and transformation rules. As such, the application

of our approach to the SMC components of our case study increased the

general understanding of concerns and the associated implications (and

difficulties) surrounding the architecture migration of SMC systems. More-

over, the need for experts on both the domain and the target paradigm was

confined to the definition of the normalisation and transformation rules.

The effectiveness of both the MDA approach and our model-driven mi-

gration approach depends partially on the ability of modelling, transforma-

tion and code generation tools to cooperate. As such, standards involved

with the MDA, such as MOF, UML, and particularly XMI, play an important

role. In practice, the availability of different versions of these specifica-

tions made it difficult to setup an appropriate tool chain. For instance, we

could not use the latest version of our UMLmodelling tool (i.e., ’Poseidon for

UML’) because the UML metamodel it uses, was incompatible with the ATL

transformation engine. Although we took the liberty of selecting tools that

were able to cooperate, we still needed to implement some additional trans-

formations using Extensible Stylesheet Language Transformations1 (XSLT)

to overcome some incompatibilities between the various tools. In industry

it will not always be possible to select a specific set of tools for the migra-

tion given practical considerations such as licensing, support, and training

costs.

Apart from tool support, the required human intervention during the

normalisation step also determines the effectiveness of our migration ap-

proach. The complexity of the normalisation step depends on the num-

ber of constraints that the restricted source metamodel adds to the legacy

source metamodel (if present). Here, a trade-off applies: fewer constraints

make the transformation, which is typically automated, more complex be-

cause more specification alternatives have to be covered. For instance, if

we would allow Actions corresponding to manufacturing activities to occur

as Actions on Transitions, searching for predecessors would become much

1http://www.w3.org/TR/xslt (June 2007)

7.9. Evaluation 163

more complicated. On the other hand, the normalisation step requires less

effort in that case.

In our case, the target metamodel specifies the domain-specific part of

a product-line. We believe that model transformations are particularly ap-

plicable as a migration approach for the recurring migration of individual

product-line members. In general, a model-based migration approach is

beneficial in situations where a number of similar artefacts need to be mi-

grated. Such a setting provides sufficient return on investment for the

definition of metamodels, normalisation rules, and transformation rules.

More specifically, when considering the previously mentioned trade-off,

a larger number of artefacts that need to be migrated justifies a higher

investment in the definition of transformation rules, allowing for a less in-

volved normalisation step. As another example of this trade-off, consider

our assumption of proper nesting. It implies that alternative branches in

a state machine are joined two at a time and in reverse order. One could

relax this assumption (constraint) and implement a more intricate trans-

formation rule to handle this relaxation.

Extensibility Currently, our transformation rules do not handle synchroni-
sation across different requests. This could prove to be a limitation for the

large scale application of our transformation rules. To this end, we would

have to (at least) extend our profile to include a special type of Event to

denote external events for such inter-request dependencies.

The overall extensibility of our migration approach is demonstrated by

using source models with two distinct origins for our experiments. In the

case of the unload wafer request we used the available architecture docu-

mentation of the involved SMC component. This documentation contained

UML statechart diagrams for the component’s requests, including our ex-

ample request.

However, for the SMC component that performs the process wafer re-

quest, documentation was not available. We had to reconstruct the source

model from the source code. For this we took advantage of the fact that this

component was based on a proprietary library for FSMs. Using this library,

the component implemented three concurrent state machines that covered

the behaviour of all requests and combinations hereof. Figure 7.12 on the

next page depicts one of the component’s three state machines.

This particular state machine illustrates the typical result of an evolv-

ing software architecture: two legacy state-based components were aug-

mented with a new supervisor. This supervisor was obtained by taking the

product of the two legacy state-machines and adding two choice pseudo-

states (i.e., s1 and s11) to allow for different activation paths, based on

legacy request combinations.

164 Chapter 7. Model-Driven Migration

s
0

s
1

t0
t1

t2
t5
4

t3

t5
5

s
2 t4

s
3

t5

s
4

t7
s
5

t8

s
6

t9

s
7

t1
0

s
8

t1
1

s
9

t1
2

t6
6

s
2
2

t4
7

s
2
3

t4
8

t6
t7
3

t7
4t1
7

t7
0

t1
6

t6
9

t5
3

t1
3

t1
4
t1
5
t5
7

t7
5

s
1
0

t1
8

t7
7

s
1
1

t7
6

t8
1

s
2
4 t5
1
t8
0

t2
7
t7
2

t1
9

t2
0

t5
8

t5
6

s
1
2

t2
1

s
1
3 t2
2

s
1
4

t2
3

s
1
5

t2
4

s
1
6

t2
5

t3
8

t3
9

t7
8

s
1
9

t3
7

t7
9

t8
4

t3
1

t8
2

s
1
7

t3
2

t3
3

t6
1

s
1
8

t3
4

t3
5

t2
8

t2
9

t3
0
t5
9

t2
6
t7
1

t8
5

t3
6
t8
3

t6
2

s
2
0

t4
2

t4
3

s
2
1

t4
4

t4
0

t4
1

t6
0

t4
5

t6
3

t4
6

t6
4

t5
0

t6
8

t4
9

t6
7

t5
2

t6
5

Figure 7.12: One of three concurrent state models (made anonymous)

7.10. Conclusions and Future Work 165

We extracted the process wafer request state machine from the three

implemented concurrent state machines and the corresponding source code

by isolating state transition paths and combining them into a request state

model. The resulting extracted source models were used as the input for

our normalisation step. In fact, such an extraction step in which we isolate

request state machines (i.e., to obtain models to be normalised) can be seen

as an extension of the ‘front-end’ of our approach.

The ‘back-end’ of our approach can be extended as well by steps that

further process the result of our model transformations. We already men-

tioned the generation of documentation. Another possible extension is the

generation of source code to actually generate the System Definition mod-

ule of the product-line architecture (Figure 7.9 on page 150). Both can be

specified using model transformations.

Note that we did not yet consider the domain specific interface modules

of the product-line architecture. However, this only constitutes a minor

hurdle since we can simply encapsulate the existing source code bodies for

each behavior (preserving interface functionality and behavior).

7.10 Conclusions and Future Work

In this chapter we formulated the migration of SMC systems as a model

transformation problem. The starting point is an SMC architecture based

on FSMs; the end point is a product-line SMC architecture based on TRSs.

Our approach supports the generic migration of the product-line members.

We demonstrated that the development framework for the MDA can

be successfully applied in a migration context as well: migration can be

seen as a series of model transformations. We proposed a generic two-

phased, model-driven migration approach that uses distinct normalisation

and transformation steps to derive the modules required to instantiate the

TRS product-line architecture for a particular (sub)system. The normalisa-

tion step is crucial in overcoming semi-formal, incomplete and ambiguous

specifications as well as tool and language limitations. This normalisa-

tion step requires domain knowledge and manual effort, but makes our

approach suited for industrial application.

A trade-off has been identified between the inherent complexity of auto-

mated transformations and the required manual effort during normalisa-

tion. Based on SMC-specific concerns and a normalised source metamodel,

we have defined and implemented a set of generic transformation rules that

support a migration towards TRS-based product-line architectures. The ap-

plicability of these rules has been illustrated for a real-world industrial

case. Since our transformation rules operate on normalisations, they can

be applied to FSM-TRSmigrations of SMC systems without loss of generality.

166 Chapter 7. Model-Driven Migration

The industrial case that motivated this chapter imposes not only the

source and target paradigms but places practical constraints on the en-

abling technologies as well. Starting from UML, we selected technologies

compatible with the MDA to setup a convenient tool-chain that supports

the definition and manipulation of models. Using this tool chain, several

requests from different SMC components have been migrated as a proof of

concept. The experiences we gained from this exercise indicate that the ap-

plication of model transformations not only increases the understandability

of such a migration, but also reduces the need for domain experts.

As such, the main contributions of this chapter are:

• The illustrated applicability of the MDA approach to architecture mi-
grations. To this end, we introduced a vital normalisation step that

enables migrations in an industrial setting.

• A practical view on the use of metamodels and profiles for migrations
in general and, more specifically, on the normalisation, and transfor-

mation of SMC source models.

• The specification of a set of model transformation rules, an SMC UML
profile, and a TRS metamodel that can be applied to FSM-TRS migra-

tions of SMC architectures.

We are in the process of extending our work along the following lines.

First, we want to further investigate the extraction of source models for

our transformation directly from source code. This may also enable (par-

tial) formalisation and automation of our normalisation step. Second, at

the other end of the migration, we want to extend our approach with code

generation from TRS models for the application-specific modules of the TRS

product-line architecture, again using technologies related to theMDA. This

would provide for a full-fledged model-driven migration approach: from

legacy code to new code through a series of model transformations.

Chapter8
Visualisation of Domain-Specific

Modelling Languages Using UML1

Currently, general-purpose modelling tools are often only used to draw dia-

grams for the purpose of documentation. The introduction of model-driven

software development approaches involves the definition of domain-specific

modelling languages that allow code generation. Although graphical rep-

resentations of the involved models are important for documentation, the

development of required visualisations and editors is cumbersome. In this

chapter we propose to extend the typical model-driven approach with the

automatic generation of diagrams for documentation. We illustrate the

approach using the Model Driven Architecture in the domains of software

architecture and control systems.

8.1 Introduction

Model-driven engineering refers to software development approaches in

which models are considered the primary development artefacts [Bézivin,

2005] (instead of source code). In these approaches software models are

gradually transformed (automatically) into source code by means of model

transformations. Additionally, such models are used for other (automated)

software engineering tasks, such as performance analysis.

Typically, model-driven engineering (MDE) approaches are based on

modelling languages that offer abstractions focused on a particular domain.

Such languages are referred to as domain-specific modelling languages

1This chapter was published earlier as: Graaf, Bas and Arie van Deursen. Visualisation

of domain-specific modelling languages using UML. In Proceedings of the 14th Annual

IEEE International Conference and Workshop on the Engineering of Computer Based

Systems (ECBS 2007), pages 586–595. IEEE Computer Society, 2007c

167

168 Chapter 8. Visualisation of DSMLs

(DSMLs). From DSML models code is generated for a particular software

platform. DSMLs have been developed for various types of domains, such

as software engineering (e.g., software architecture [Medvidovic and Tay-

lor, 1997]) and application domains (e.g., insurance products [Doyle et al.,

2006]).

In general, the use of DSMLs has clear advantages over the use of

general-purpose languages (GPLs) [Van Deursen and Klint, 1998]. More in

particular, in the context of MDE, our experience in industrial case studies

(see Chapters 5 and 7) indicates that the use of a GPL, such as the Unified

Modeling Language1 (UML), leads to (unnecessary) complex model trans-

formations, for instance to generate code. As such, the introduction of MDE

typically requires the development of DSMLs.

Although mechanisms are available to define and implement the ab-

stract syntax of DSMLs, such as the MetaObject Facility2 (MOF) and the

Eclipse Modeling Framework3 (EMF), not much support is available for the

definition of their graphical notation (concrete syntax). As a result devel-

opment of adequate graphical editors and visualisations requires consider-

able effort.

For some software engineering tasks, such editors are not required. For

instance, developers can use a textual syntax for the creation of models

that can subsequently be processed by model transformation tools. How-

ever, other tasks, such as documentation, do require some form of graphical

representation. It is this problem that motivates this chapter.

The basic idea of this chapter is simple: when devising a new DSML we

try to leverage existing visual notations and modelling tools. We propose

to expand the typical MDE process in which abstract models are gradually

transformed into code, with (partial) generation of documentation. To this

end we combine the use of DSMLs for code generation and other automated

software engineering tasks, with the use of UML for documentation. The ap-

proach uses model transformations to specify the mapping between DSMLs

and UML. The diagrams corresponding to the resulting UML models, as

visualised by off-the-shelf UML tools, are used in the documentation. To

investigate the arguments for and against this idea, we study how

• this approach works for various architectural views;

• UML can be used as the target language for visualising these views;
and

• model transformations can be used to specify and automate the map-
ping.

1http://www.uml.org (June 2007)
2http://www.omg.org/mof (June 2007)
3http://www.eclipse.org/emf (June 2007)

8.2. Background 169

In practice, the extra effort required for the development of graphical ed-

itors can hamper the introduction of MDE. Consider the following scenario.

A software development organisation decides to introduce MDE. Currently,

the developers use UML. However, as in many other organisations, they

only use UML modelling tools for drawing diagrams [Lange et al., 2006].

These diagrams are important for the communication with other stake-

holders, as they constitute an essential part of the documentation. The

introduction of MDE involves the definition of DSMLs from which code will

be generated. Furthermore, as the developers are comfortable with using

a textual syntax for these DSMLs, no graphical editors are developed. The

result is that they now have to create DSML models for code generation

as well as UML diagrams for documentation. Considering the current use

of UML, as investigated by Lange et al. [2006], and the upcoming of MDE

approaches, such as the Model Driven Architecture1 (MDA), this is not an

unlikely scenario.

We investigate the feasibility of our approach in the domain of software

architecture. In Section 8.2 we introduce the languages specific to this do-

main, and the standard documentation approach. Our approach for the

model-driven documentation of software architecture, MDAV, is presented

in Section 8.3 and we report on a small case study in Section 8.4. The ap-

proach is easily applied to other domains as well. An additional (industrial)

case study involving a different type of models is presented in Section 8.5.

We discuss the benefits and limitations of the approach in Section 8.6. After

discussing some related work in Section 8.7, we conclude with an overview

of our contributions and opportunities for future work in Section 8.8.

8.2 Background

In this section we introduce modelling and documentation in the domain

of software architecture. Furthermore, we discuss some of the technologies

that enable our approach.

8.2.1 Software Architecture

Modelling Several notations have been developed to specify architectural

models. These architecture description languages (ADLs) (see Medvidovic

and Taylor [1997] for an overview) mostly consider an architecture to be a

configuration of runtime components and connectors.

Due to their formal syntax and semantics ADLs enable automatic code

generation and analysis. Despite these benefits, and although ADLs have

1http://www.omg.org/mda (June 2007)

170 Chapter 8. Visualisation of DSMLs

received much attention from the architecture research community, they

have not been applied much in industry [Kruchten et al., 2006].

Although UML is aimed at object-oriented modelling, it allows practi-

tioners to address a wide range of issues [Medvidovic et al., 2002]. There-

fore, and because of the availability of supporting (graphical) modelling

tools, it is often used in practice to describe software architectures (e.g., see

Chapter 3 and Lange et al. [2006]).

A drawback of using UML for this purpose is the semantic mismatch

between architectural concepts and UML’s concepts, which are aimed at

object-oriented design. This results in compromises between completeness

and legibility [Garlan et al., 2002]. Furthermore, for automatic process-

ing of models (e.g., for code generation) the complexity of UML results in

complex model transformations (see Chapters 5 and 7).

Documentation Because in industrial practice a software architecture is too

complex to describe in a single stroke, different views are used for its doc-

umentation. Different types of views have been defined to address specific

concerns. The two most prominent categories of views are module views

and component-and-connector (C&C) views [Clements et al., 2002a].

A module view addresses the question of how a system is developed; it

defines the most important implementation units (modules) and their rela-

tions. Module views are used, for instance, to evaluate the maintainability

of a system as implied by its architecture.

A component-and-connector (C&C) view, on the other hand, addresses

the question of how a system works. It describes a system in terms of

runtime components and connectors. A component is an abstraction of a

computational element; a connector is an abstraction of the way compo-

nents interact. As such, a C&C view is more suited for analysis of runtime

properties, such as performance.

More specific types of views are defined by imposing restrictions on the

type of elements and relations allowed in a view. In a module-uses view, for

instance, only ‘uses’ relations are allowed.

In the terminology of IEEE Std 1471-2000 [IEEE-1471, 2000], a view

conforms to a viewpoint that “specifies the conventions for using and con-

structing a view”. A viewpoint addresses a set of stakeholder concerns. A

number of viewpoint sets is available from literature, such as [Clements

et al., 2002a]. Furthermore, in practice also custom viewpoints are defined.

Typically, a viewpoint definition prescribes a modelling language or nota-

tion that enables the specification of an architectural model that addresses

the concerns of the viewpoint. As an example, a C&C viewpoint might refer

to a particular ADL. In summary, a viewpoint defines a type of views and a

view is a particular representation of a particular system.

8.2. Background 171

In practice the architectural model for a view is primarily used as a fig-

ure or diagram (the view’s primary presentation [Clements et al., 2002a]) in

a document that describes the view. Because of their wide-acceptance and

available tool support often UML diagrams are used for this (see Chapter 3).

8.2.2 Enabling MDE Technologies

Our approach for model-driven documentation is based on model transfor-

mations. This requires capabilities for (meta)modelling, model transforma-

tion, and model interchange.

For the definition of metamodels we use the MetaObject Facility1 (MOF)

and its implementation as an Eclipse plugin: the Eclipse Modeling Frame-

work2 (EMF).

The EMF plugin generates an implementation for a metamodel as a set

of Java classes that offers an interface that allows developers to manip-

ulate conforming models. These models can be serialised to a document

in the Extensible Markup Language3 (XML) using XML Metadata Inter-

change4 (XMI). Additionally, a simple tree-based editor is generated that

can be used as an Eclipse plugin for the creation and inspection of associ-

ated models. As an example consider the screenshot of such an editor in

Figure 8.3(b) on page 175. This editor is also capable of validating a model

against its metamodel.

The Atlas Transformation Language [Jouault and Kurtev, 2005] (ATL) is

based on EMF. We use it to define model transformations that are executed

by a transformation engine. In ATL, transformations are defined in mod-

ules that consist of declarative transformation rules and helper operations.

Using a syntax similar to that of the Object Constraint Language5 (OCL),

the transformation rules match model elements in a source model and cre-

ate elements in a target model. A helper is defined in the context of a

metamodel element, to which it effectively adds a feature.

For their input, model transformation tools typically use XMI serialisa-

tions of MOF-based (meta)models. In the case of UML, these models can

simply be created and visualised using standard UML tooling.

1http://www.omg.org/mof (June 2007)
2http://www.eclipse.org/emf (June 2007)
3http://www.w3.org/XML (June 2007)
4http://www.omg.org/mda/specs.htm#XMI (June 2007)
5http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)

172 Chapter 8. Visualisation of DSMLs

Architecture

Viewpoint

View

Model

UML Diagram

Metamodel

System

Architectural Description

Concern

* *

*

*

*

*

used for:

documentation

communication

assessments

used for:

analysis

code generation

model transformations

UML Model

*

conformsTo

conformsTo

Figure 8.1: MDAV framework

8.3 Model-Driven Architectural Views

To take advantage of the power of DSMLs for code generation and other

automated software engineering tasks and that of UML for documenta-

tion, we explicitly distinguish architectural documentation and architec-

tural models. We make this concrete by revisiting the conceptual model of

the industry standard for description of software architectures (IEEE Std

1471-2000 [IEEE-1471, 2000]). The result, the Model-Driven Architectural

Views (MDAV) framework, is displayed in Figure 8.1.

8.3.1 MDAV Framework

In Figure 8.1, for the development of a software System, an Architecture is

defined that includes the most important design decisions. These are made

concrete in an Architectural Description that consists ofModels on the one hand,

and architectural Views on the other. In the spirit of MDE, models conform

to a Metamodel and are used for several (automated) tasks such as, anal-

ysis and code generation. Views on the other hand conform to a Viewpoint

and are primarily used for communication purposes. Both metamodels and

viewpoints are developed to address a certain set of Concerns. A viewpoint

prescribes the language to be used to model the architecture. A metamodel

specifies the abstract syntax of this language. A view includes diagrams in

its primary presentation that represent the associated architectural mod-

els.

8.3. Model-Driven Architectural Views 173

To allow the use of custom defined DSMLs without the need to specifically

develop corresponding graphical representations and editors, we use UML

Diagrams. To this end, we map DSML Models to UML Models that are visualised

as UML diagrams for inclusion in view documentation with standard UML

tooling. Thus, in MDAV the connection between views and models is made

through (UML) diagrams. Thanks to this connection, views can be (partly)

generated from the same models as the source code; they become model

driven.

8.3.2 MDAV Process

In summary, compared to the conceptual model as described by IEEE Std

1471-2000, we add the concept of a diagram that allows to relate a view to

a model. Furthermore, in-line with MDE, we explicitly added a metamodel

as a description of the modelling language used in a view. Application of

the corresponding approach involves three steps: definition of 1) a suitable

metamodel, 2) means to create corresponding models, and 3) a mapping to

UML.

A suitable metamodel for a particular viewpoint can be defined from

scratch or based on an existing ADL that addresses the relevant concern. In

the former case, we use a description of the viewpoint (e.g., from Clements

et al. [2002a]) and create corresponding elements and relations in the meta-

model. In the latter case, we base the metamodel on the ADL’s grammar (or

other language specification mechanism). Given the typically modest size

and simple syntax of ADLs and using appropriate tooling, corresponding

metamodels are easily created.

A means to create models associated with the defined metamodel is also

required. Depending on the complexity of the associated metamodel differ-

ent alternatives are suitable, of which we give examples in Section 8.4.

We specify and implement the mapping between the prescribed meta-

model and UML using a model transformation language. For several ADLs

mappings to UML already exist, that we can specify as model transforma-

tions. This allows us to automatically transform an architectural (ADL)

model to a UML Model. As such, ADL Models and UML Diagrams can evolve

simultaneously.

Although the corresponding UML diagram might not exactly represent

the architectural model (e.g., because the latter uses concepts that do not

correspond to any UML concept), it is typically complete enough for many

communication purposes. This can be concluded by considering the wide-

spread use of UML for architectural documentation in industrial practice

(e.g., see Chapter 3 and Lange et al. [2006]). Moreover, in the case of a

semantic mismatch, we use stereotypes to indicate the type of ADL element

a specific UML element represents.

174 Chapter 8. Visualisation of DSMLs

Figure 8.2: C&C model of CaPiTaLiZe (ACME)

8.4 Using MDAV to Generate Views

We applied MDAV to two architectural viewpoints: we defined an appropri-

ate metamodel (i.e., a modelling ‘language’), means to create and manipu-

late associated models, and a mapping to UML,

We use the CaPiTaLiZe system, often used in software architecture

literature [Allen and Garlan, 1997], as a running example. CaPiTaLiZe

transforms a character stream by capitalising alternate characters. A C&C

model of CaPiTaLiZe defined using an ADL (ACME [Garlan et al., 2000]) is

visualised in Figure 8.2. CaPiTaLiZe is designed as a pipe-and-filter sys-

tem, with separate components for splitting a stream of characters in two

streams (split), (un)capitalising characters (upper, lower), and merging two

streams of characters (merge).

The diagram of CaPiTaLiZe’s module view is depicted in Figure 8.3(c)

. In this UML class diagram we represent architectural modules with

UML Packages and use-relations with UML Dependencies, as suggested

by Clements et al. [2002a].

8.4.1 Module-Uses View

Metamodel Module-uses views are based on a special type of dependency
relation: the uses relation. As such, these views only contain one type of

element and one type of relation [Clements et al., 2002a].

Although UML is well-suited and therefore also typically used in the

primary presentation of module views, we developed a small custom

metamodel to illustrate MDAV. This MADL metamodel is specified in Fig-

ure 8.3(a) using the MOF. In addition to a Module element and use relation

it defines an Implementation to consist of a set of modules that may use

other modules. Note that this metamodel is different than the MADL meta-

model in Figure 6.6(b) on page 113. Although both are used to address the

same concerns, their purpose is different (documentation vs. conformance

checking). For that reason, the use-relation is modelled by the latter as a

first-class modelling element (to allow specifying its conformance).

8.4. Using MDAV to Generate Views 175

Module

−name :String

System

−name :String

modules+

*

use+
*

(a) MADL metamodel

(b) MADL model of CaPiTaLiZe in EMF edi-

tor

Split MergeUpper Lower

Driver

Config IOlib

(c) MADL diagram (UML)

Figure 8.3: MADL

176 Chapter 8. Visualisation of DSMLs

rule Package {

from m:MADL!Module

to p:UML!Package (

name <- m.name,

clientDependency <- ds),

ds: distinct UML!Dependency foreach (um in m.use)(

client <- m,

supplier <- um)

}

Listing 8.1: Mapping MADL Modules to UML Packages (ATL)

Model creation Using MOF, in principle, only the abstract syntax is defined.

Although XMI offers an off-the-shelf mapping to XML, it is not intended to

be used directly by software developers [Grose et al., 2002].

For simple metamodels, such as our MADL, we propose to use the editor

generated by EMF for the creation and inspection of models. Figure 8.3(b)

on the preceding page shows a screenshot of this editor while editing the

MADL model for the CaPiTaLiZe system. The top part shows the modules

that are defined for this system, while the Properties pane is used to inspect

the properties of those modules. This screenshot shows, for instance, that

Module Split uses Module Config and Module IOlib.

UML mapping The mapping to UML is based on one of the mappings sug-

gested in [Clements et al., 2002a]. We map Modules to UML Packages and

the uses relation to UML Dependencies. We specified this mapping using

ATL. A fragment is depicted in Listing 8.1.

In an ATL transformation rule a from clause specifies a pattern that is

matched by elements of the source model. For each match the target pat-

terns in the to clause are instantiated in the target model. In this case,

the Package rule creates a Package (p) and a set of Dependencies (ds) for

each Module (m) in the source model. Using the distinct ... foreach con-

struct a Dependency is created for every Module that is used by the Module

that matched the rule (m.use). For both target elements a set of bindings

is specified to initialise their features. The clientDependency feature of the

created Package (p), for instance, is initialised with the set of Dependencies

created by this rule as well (ds).

The result of applying this transformation to the MADL model of the

CaPiTaLiZe system (Figure 8.3(b) on the preceding page), is visualised us-

ing a UML tool (Figure 8.3(c) on the previous page).

8.4. Using MDAV to Generate Views 177

8.4.2 Component-and-Connector View

Metamodel For C&C views, we define a metamodel for a simple ADL similar
to ACME [Garlan et al., 2000], an ADL interchange language that covers the

most constructs in a wide range of ADLs.

Consider the metamodel for the ADL (CCADL) in Figure 8.4(a) on the fol-

lowing page. Using CCADL the architecture of a System consists of a Style, a

set of Components, and a set of Connectors. A component owns a set of Ports

via which it interacts with its environment. Similarly a connector owns a

set of Roles that define what behaviour is expected from the participants

in the interaction the connector represents. By attaching conforming roles

and ports, configurations of components and connectors can be created. Fi-

nally, the style defines the types of components (ComponentType), connectors

(ConnectorType), roles (RoleType), and ports (PortType). The main difference

with the CPADL metamodel depicted in Figure 6.6(a) on page 113 is that

component, connector, role, and port types are defined on the model level

instead of on the metamodel level.

Model creation Again, a straightforward approach to create CCADL models

is to use the editor generated by EMF. Figure 8.4(b) on the following page

displays a screenshot of this editor, while editing the CaPiTaLiZe CCADL

model. When considering the complexity of the CCADL metamodel (com-

pared to the MADL metamodel), it becomes clear that editing models using

this editor is inconvenient. Using this editor it is not possible, for instance,

to immediately determine the component and connector types and under-

stand their configuration.

As an alternative, we propose to use a simple XML Document Type

Definition (DTD) or schema that allows to describe associated models as

simple as possible. A fragment of an XML document conforming to such a

DTD describing the same CaPiTaLiZe system is depicted in Listing 8.2 on

page 179. Note that the DTD we defined allows to separately specify the

configuration of components and connectors as a set of attachments.

If we use simple XML documents to specify systems in CCADL, we sepa-

rately need to populate a model conforming to the CCADL metamodel. Sev-

eral approaches can be used to populate a model.

One possibility is to develop a so-called injector, a program that parses

a file and uses the application programming interface (API) generated by

EMF to instantiate a corresponding model. In general, an injector is used

to bridge two different domains, in this case the XML and modelware (MOF)

domains. In the context of MDE such domains are also referred to as Tech-

nological Spaces [Kurtev et al., 2002].

178 Chapter 8. Visualisation of DSMLs

Component

−name :String

Role

−name :String

Port

−name :String

Connector

−name :String

System

−name :String

ComponentType

−name :String

PortType

−name :String

ConnectorType

−name :String

Style

−name :String

RoleType

−name :String

roleTypes+ *

portTypes+ * componentTypes+*

connectorTypes+*

style+

ports+ *

roles+*

port+0..1

role+ 0..1

connectors+
*

components+
*

type+

type+

(a) CCADL metamodel

(b) CCADL model of CaPiTaLiZe in

EMF editor

output

input

<< filter >>

lower

<< filter >>

upper

<< filter >>

split

<< pipe >> << pipe >>

<< filter >>

merge

<< pipe >><< pipe >>

(c) CCADL diagram

(UML)

Figure 8.4: CCADL

8.4. Using MDAV to Generate Views 179

...

<System name="Capitalize">

<Style name="pf">

<ComponentType name="Filter"/>

<PortType name="filterOut"/>

...

</Style>

<Component name="split" type="Filter">

<Port name="in_split" type="filterIn"/>

<Port name="out_split" type="filterOut"/>

</Component>

...

<Connector name="split_upper" type="Pipe">

<Role name="sink_splitu" type="pipeIn"/>

<Role name="source_upper" type="pipeOut"/>

</Connector>

...

<Configuration>

<Attach port="out_split" role="sink_splitu"/>

...

</Configuration>

</System>

Listing 8.2: C&C model of CaPiTaLiZe (XML)

As an alternative, we reuse the XML injector, and XML metamodel (see

Figure 8.5 on the following page) provided by the ATL project1. Based on

an XML document this injector instantiates a model that conforms to the

XML metamodel. Subsequently, we transform this model into a model that

conforms to the CCADL metamodel using ATL model transformations. The

latter approach requires the smallest effort because it reuses existing in-

jectors and metamodels, and only requires us to specify a transformation

that maps the XML metamodel to our CCADL metamodel.

The transformation to instantiate a CCADL model based on an (injected)

XML source model is straightforward. Listing 8.3 on the next page con-

tains a fragment of this transformation. The rule matches all XML elements

named ’Component’. For each it creates a Component in the CCADL model.

The type and name features are initialised using two helpers, getType and

getName. They navigate the XML model to extract the desired information.

For the type feature this is another XML Element that, in turn, matches

a rule that creates ComponentTypes. The other elements of the CCADL

metamodel are instantiated by similar rules.

1http://www.eclipse.org/m2m/atl (June 2007)

180 Chapter 8. Visualisation of DSMLs

Root

Attribute ElementText

Node

−name :String

−value :String

parent+

children+

*

Figure 8.5: XML metamodel

rule Component {

from el:XML!Element(

el.name=’Component’)

to c:CCADL!Component(

type <- el.getType,

ports <- el.children->select(e|e.name=’Port’),

name <- el.getName)

}

Listing 8.3: Mapping XML Elements to CCADL Components (ATL)

UML mapping The UML representation of components and connectors is

based on the strategies for modelling software architecture with UML de-

scribed by Garlan et al. [2002]. In Figure 8.4(c) on page 178 component

and connector types are depicted as stereotypes, components as classes,

and connectors as associations. Of the roles and ports we only explicitly

show ports that are not connected to a role. These are represented by

the input and output interfaces (depending on the type of port), depicted

here as small circles connected to the representation of their containing

component.

Listing 8.4 shows two rules of the corresponding ATL model transfor-

mation. The Association rule instantiates an Association (asoc) for each

Connector (conn) in the source model. As our UML tool did not support

stereotypes on Associations, we initialise the name feature to mimic one. Al-

though not very elegant, this is acceptable when considering the goal of our

transformation: generation of diagrams for documentation. In UML an As-

sociation has a connection feature that is a set of AssociationEnds. In our

case, these represent the Roles of a Connector. For simplicity we assumed

a Connector has exactly two Roles. The connection feature is initialised to

the result of the rule that matches the roles of the Connector. Roles are

matched by the AssociationEnd rule that creates an AssociationEnd (aend)

for every matched Role (r). The isNaviagable feature is initialised depend-

ing on whether the matched Role is of type pipeOut (true) or not (false). As

8.5. Industrial Application 181

rule Association {

from conn:CCADL!Connector

to asoc:UML!Association(

name <- ’<<’ + conn.type.name + ’>>’,

connection <-conn.roles)

}

rule AssociationEnd {

from r:CCADL!Role

to aend:UML!AssociationEnd(

isNavigable <- r.type.name=’pipeOut’,

participant <-

CCADL!Component->allInstances()->select(c|c.ports->includes(r.port))

)

}

Listing 8.4: Mapping CCADL Connectors to UML Associations (ATL)

such, we control the direction of the Association for representation of the

Connector.

Depending on the exact concerns the associated viewpoint addresses,

alternative mappings to UML can be implemented similarly, such as a map-

ping that explicitly shows ports and roles.

8.5 Industrial Application

In this section we discuss a case study in which we applied MDAV to an

architectural view in use for a class of control systems. Before discussing

the three steps of our approach, we briefly introduce the case study.

ASML, a large manufacturer of equipment for the semi-conductor in-

dustry, studies the migration to a new architecture for supervisory machine

control (SMC) components. In an advanced manufacturing machine, such as

the wafer-scanners developed by ASML, an SMC component is responsible

for the coordination of manufacturing activities in order to perform man-

ufacturing requests. In a layered control architecture, an SMC component

receives manufacturing requests from components in a higher layer, and

coordinates the execution of manufacturing activities by components in a

lower layer. Traditionally, the design for SMC systems is based on state

transition models. The new approach [Van den Nieuwelaar, 2004] is based

on task-resource models.

Metamodel Using the task-resource approach, SMC systems consist for a
large part of generic, reusable components defined by a product-line archi-

tecture. The remaining application-specific components are generated

182 Chapter 8. Visualisation of DSMLs

based on a model of an SMC system in terms of tasks and resources. The

associated metamodel is shown in Figure 8.6(a) on page 184.

Task-resource models consist of a static and a dynamic part. The static

part models the controlled System by specifying the Behaviours (manufactur-

ing activities) it can perform, the Capabilities this requires, and the Resources

(subsystems) it controls to offer those capabilities. The dynamic part mod-

els the manufacturing requests the component can perform in terms of

(simple, conditional, or compound) Tasks that are of a specific Behaviour.

Precedence relations between tasks are used to specify restrictions on exe-

cution order.

Based on the metamodel, tools can be developed for the generation of

source code, model validation, and other software engineering tasks that

can be automated. We used it, for instance, as the target of a model trans-

formation that automates the migration of SMC components from a state-

based to a task-resource-based architecture (see Chapter 7).

Model creation In this case, task-resource models were obtained by the au-
tomatic migration of legacy SMC models (based on state machines) to mod-

els based on the task-resource architecture. As such, a means to create

task-resource models directly was not yet required. When SMC systems are

developed based on the task-resource approach from scratch, such means

would be required. In that case, one of the alternatives presented in the

previous section can be used.

An example of a generated task-resource model (as result of the au-

tomated migration) inspected using the EMF editor is depicted in Fig-

ure 8.6(b) on page 184. This editor was generated based on the metamodel

we defined (Figure 8.6(a) on page 184). Apart from this editor there was no

(more advanced) editor available for these models.

UML mapping For the documentation of SMC systems based on the task-

resource architecture we defined a viewpoint. Due to the lack of a con-

venient editor to visualise task-resource models and to take advantage of

available tooling and experience, the viewpoint prescribes that such mod-

els are depicted using UML diagrams. As such, the alignment of the task-

resource view documentation with the task-resource models from which

code can be generated, involved a mapping of the corresponding metamodel

to UML.

For the documentation of a conforming view, separate diagrams are

used for the static part and for each of the possible requests of the dy-

namic part. For the former, a UML Class Diagram is used in which a Class

with appropriate Stereotype is used to represent a Behaviour, Capability,

or Resource. For the latter, UML Activity Diagrams (one for each request)

8.5. Industrial Application 183

rule ActionState {

from st:TRS!SimpleTask

to state:UML!ActionState (

name <- st.behaviour.name,

stereotype <- stype),

stype: distinct UML!Stereotype foreach (s in st.sTypes)(

name <- s,

baseClass <- ’ActionState’),

...

}

Listing 8.5: Mapping TRS SimpleTasks to UML ActionStates (ATL)

are used that effectively represent tasks and their precedence relations as

task graphs. We used ATL to define corresponding mappings from the task-

resource metamodel to UML class models for the static part, and to UML

activity graphs for the dynamic part. A UML tool visualises these models as

a UML Class Diagram, and a UML Activity Diagram, respectively.

As an example, the rule in Listing 8.5 maps a SimpleTask to the element

that represented an activity in a UML Activity Diagram: ActionState. The

name feature of the generated ActionState (state) is initialised using the

name of the behaviour associated with the SimpleTask (st) that matched

the rule. The rule also creates a set of Stereotypes (stype). In that tar-

get element the sTypes helper determines the resources required by the

behaviour associated with the matched SimpleTask. This set is used to

generate a set of ActionState Stereotypes used to initialise the stereotype

feature of the generated ActionState.

Application of the transformation we defined to the model partly de-

picted in Figure 8.6(b) on the following page, results in a class model and

an activity graph for each request. One of those is visualised as an Activity

Diagram in Figure 8.6(c) on the next page. Tasks are represented by Activ-

ities, required resources by Stereotypes on Activities, precedence relations

between Tasks by the order of the Activities, fork bars were used to indicate

tasks that can be executed concurrently (i.e., tasks without precedence re-

lations), and conditional Tasks (OrTasks) were mapped to choice nodes. As

such, to complete the migration, models as the one depicted in Figure 8.6(b)

on the following page are used for model-based generation of source code,

while diagrams as the one in Figure 8.6(c) on the next page are used for

view-based documentation. Using model transformations the diagrams for

this documentation are generated automatically.

184 Chapter 8. Visualisation of DSMLs

Behaviour

+ name :EString

CapabilityUsage

+ beginState :EInt

+ endState :EInt

requires+ *

Capability

+ name :EString

capability+

Resource

+ name :EString

fulfils+

SystemDefinition

behaviours+

1..*

capabilities+

*

resources+

*

Task

+ id :EString

Static Dynamic

OrTask

+ condition :EString
AndTask

Request

+ name :EString
requests+

1..*

SimpleTask

behaviour+

tasks+

1..*

predecessors+

*

tasks+
* iftrue+

iffalse+

Created with Poseidon for UML Community Edition. Not for Commercial Use.
(a) Task-resource metamodel

(b) Task-resource model

<<UR>>
move UR to rotate

check RCB comm.

report done

check RCB comm.

<<UR ,WS>>
transfer W2U

<<WS>>
finish exchange

[not(combined_load)]

[combined_load]

(c) Task-resource dia-

gram (UML)

Figure 8.6: Task-resource metamodel, model, and UML representation

8.6. Discussion 185

8.6 Discussion

Our approach has several benefits. It reduces the effort required for the

introduction of MDE approaches by circumventing the need to specifically

develop graphical editors for the visualisation of DSML models. Further-

more it allows to introduce an MDE approach gradually; UML diagrams can

continue to be used for documentation purposes. As such, in the case of

software architecture, it facilitates the integration of ADLs and supporting

tools in industrial development processes.

As presented here the approach usesMDA technology for model transfor-

mations and metamodelling. The underlying ideas are applicable to other

MDE approaches as well: either by using the available transformation and

metamodelling technologies for that MDE approach, or by implementing a

bridge to MDA. We gave an example of the latter in Section 8.4.2 for XML.

Of course, the diagrams that are generated automatically using our ap-

proach, only constitute a minor part of the complete documentation. Ar-

chitectural views, for instance, typically also document (some of) the ratio-

nale and trade-offs that underlie design decisions [Clements et al., 2002a].

In fact, an architectural view can be seen as ‘diagrams + explaining text’.

Although the ‘explaining text’ is not automatically updated using our ap-

proach, it does provide a starting point for doing so (i.e., the newly gener-

ated diagram).

Whether a mapping to UML is feasible, depends on the type of models

involved and the documentation requirements. A potential risk of our use

of UML, is that the UML semantics might not match with the semantics

of the represented (DSML) model elements, resulting in ambiguities. In

these cases appropriate stereotypes should be introduced. As an example,

consider the stereotypes in Figure 8.4(c) on page 178. These stereotypes

are included in the ATL mappings we defined.

In the case that the semantic gap between the involved metamodel and

UML is too large to be solved with stereotypes, instead of UML, more generic

graph languages such as dot1 and GXL2 could be used as target of the map-

ping.

The effort required for specification of the mappings to UML is mainly

determined by the complexity and size of the DSML metamodel. Typically,

these are relatively small (e.g., compared to UML). Furthermore, such map-

pings can be either specifically developed (as in the case of task-resource

models) or reused (as in the case of ADLs). In the latter case they only need

to be specified as a model transformation.

1dot - Language used by Graphviz (Graph Visualisation Software), see http://www.

graphviz.org (June 2007)
2GXL - Graph eXchange Language, see http://www.gupro.de/GXL (June 2007)

186 Chapter 8. Visualisation of DSMLs

Our approach focuses on visualisation of DSML models. It does not offer

visual editing for models conforming to complex metamodels. When that

is required, editors have to be developed specifically. Technology to partly

generate such editors is provided in the Eclipse Graphical Editing Frame-

work1 (GMF) using EMF. Based on the specification of a concrete syntax

and the abstract syntax specified by a metamodel this plugin can gener-

ate an editor. However, in the case that only visualisation is required, our

approach offers a lightweight alternative.

Another alternative is to simply manually create documentation instead

of automatically as in our approach. In that case the diagrams correspond-

ing to some software models are created (drawn) manually using modelling

or more generic tools. Obviously, consistency becomes an issue with such

an approach.

8.7 Related Work

Fondement and Baar [2005] present an approach to specify (graphical) con-

crete syntax by extending metamodels. Based on this approach tools could

be developed to (partly) generate corresponding editors. Instead, we take

advantage of existing UML tools.

Medvidovic et al. [2002] investigate the use of UML in the domain of

software architecture. More in particular, they investigate how modelling

constructs used in ADLs (i.e., a type of DSML) can be represented using UML.

They consider two approaches for using UML to model software architec-

tures: (1) use UML ‘as-is’, and (2) use UML’s extension mechanisms. They

conclude that UML has a number of limitations when used to model soft-

ware architectures. The lack of architectural modelling constructs makes

it necessary to adopt specific interpretations of UML model elements or to

rely on OCL to constrain the use of model constructs. In this chapter we

investigated a third strategy that is based on the definition of metamodels

for ADLs and their mapping to UML using model transformations.

Five strategies for representing architectural structure in UML are de-

scribed by Garlan et al. [2002]. They conclude that there is no single best

way to do this. Furthermore, they identify a trade-off between complete-

ness and legibility: strategies that assign different UMLmodel elements for

each ADL construct (completeness) tend to be very verbose and hence poorly

readable (legibility). One of their recommendations to solve this, is to con-

tinue to use ADLs but to provide mappings to object-oriented notations. In

the current chapter we specified such mappings using model transforma-

tions, which makes them automated.

1http://www.eclipse.org/gmf (June 2007)

8.8. Concluding Remarks 187

Where we propose to use MOF for the definition of DSMLs, Dashofy et al.

[2005] use XML for the definition of ADLs. It provides generic high-level

XML schemas that can be extended for development of ADLs. They leverage

the available tool support for XML. As we use MOF, we leverage available

UML and MOF tools as well. This enables, for instance, the specification of

transformations on a higher level of abstraction by a model transformation

language.

8.8 Concluding Remarks

In this chapter we proposed to combine DSML models and UML diagrams

for model-driven software documentation. WhereMDE approaches typically

aim to use DSML models to automatically create source code, our approach

complements MDE with the (partial) creation of documentation.

The main motivation for our approach is the observation that although

DSMLs have clear advantages over general-purpose modelling languages,

it requires considerable effort to develop graphical editors and represen-

tations. In particular, the definition and implementation of their concrete

syntax or notation is much more involved than that of their abstract syn-

tax, which is supported by technologies, such as MOF and EMF. This is a

problem, as graphical representations of models are an essential part of

software documentation.

Our approach uses model transformations to (automatically) map DSML

models to UMLmodels. These UMLmodels are easily visualised as UML dia-

grams using available modelling tools. While the DSML models can be used

for code generation and other automated software engineering tasks, these

diagrams are used in the documentation. As such, our approach allows to

optimise both completeness (by the ADL model) and legibility (by the UML

diagram) of architecture descriptions. Furthermore, part of the documen-

tation can be automatically updated as the software system evolves.

Application of our approach requires the definition of a DSMLmetamodel

using MOF and mappings to UML using model transformations. This needs

to be done once for each DSML used. Furthermore, a means to create asso-

ciated models is required. We gave several examples for this. Compared to

the development of a complete graphical editor for the defined metamodel,

our approach is more lightweight.

We evaluated our approach in the domain of software architecture, for

which we defined MDAV. It refines the industry standard for architecture

documentation (IEEE Std 1471-2000) by linking architectural views (docu-

mentation) to architectural models using model transformations and UML.

MDAV is easily generalised to other domains. As an example, we discussed

an industrial application in the domain of control systems.

188 Chapter 8. Visualisation of DSMLs

Currently we are investigating how the proposed model transforma-

tions can best be integrated with existing tooling and development pro-

cesses. Another problem we are investigating is the (automatic) derivation

of metamodels (e.g., based on MOF) from grammars (e.g., based on EBNF). A

solution to this problem increases the effectiveness of our approach when

applied to existing DSMLs that are not based on MDA technology.

Chapter9
Conclusion

The goal of this thesis is to investigate techniques that reduce the risks

and costs involved in the evolution of software architectures. To structure

this problem we introduced four software evolution tasks to be investigated

further: evaluation, conformance checking, migration, and documentation.

As a conclusion, in this chapter we revisit the research questions we

raised in the introduction of this thesis using our experiences and observa-

tions as discussed in the previous chapters. The main question was:

RQ0 How can the evolution of software architectures be supported?

Below we address this question by first discussing the subquestions we

raised:

RQ1 How to integrate the support for software evolution tasks in practice,

considering the informal use of modelling languages and preference

for proven technologies in industry?

RQ2 What is the impact of the use of software product lines and platforms

on the support for software evolution tasks?

RQ3 To what extent can the support for software evolution tasks be auto-

mated by the use of model-driven engineering?

Where the chapters of this thesis are mainly set up according to the

software evolution tasks introduced in Chapter 1, the outline of this con-

clusion is based on our research questions. After a list of our contributions,

the results for each of them are discussed in a separate section below. We

conclude with a final list of recommendations and future work.

189

190 Chapter 9. Conclusion

9.1 Contributions

In the process of finding answers to our research questions, we surveyed

the current state of the practice of software engineering in industry and

developed solutions that support the software evolution tasks we defined.

Together with the answers to our research questions, these are the main

contributions of this thesis:

• an overview of the software engineering technologies used in industry
for the development of embedded software (see Chapter 3);

• an approach for the evaluation of product-line architectures (see
Chapter 4);

• a model-driven approach for checking the conformance between state-
based and interaction-based behavioural models (see Chapter 5);

• a model-driven and view-based approach for automatically check-
ing the conformance between implementation and architecture (see

Chapter 6);

• a model-driven approach for the migration of supervisory machine
control architectures (see Chapter 7); and

• a model-driven approach for simultaneous evolution of models and
documentation based on views, the Unified Modeling Language1

(UML), and the Model Driven Architecture2 (MDA) (see Chapter 8)

One of the distinguishing characteristics of our work lies in the fact that

we take into account several advances in software development practices,

that is, software product lines and model-driven engineering (MDE). At the

same time we consider the impact and application of these approaches in

terms of software evolution, which takes up most (up to 90%) of the time, ef-

fort, and money of software development projects and organisations [Lientz

et al., 1978; Pigoski, 1996]. Furthermore, we explicitly ensured that the

methods and techniques we proposed are amenable to be integrated in in-

dustrial development practices.

9.2 Integration in Practice (RQ1)

An important observation from the survey we reported on in Chapter 3 is

the gap between software engineering technologies actually used in indus-

try and those developed by the research community. To reduce this gap,

1http://www.uml.org (June 2007)
2http://www.omg.org/mda (June 2007)

9.2. Integration in Practice (RQ1) 191

we continuously considered industrial integration as an important aspect

of the solutions we proposed. In particular we aimed at reducing the or-

ganisational impact of our solutions and addressed the adoption of MDA

standards.

Reducing Organisational Impact Instead of defining new languages and meth-
ods, we used existing industrial standards as much as possible (i.e, those

related to the MDA) and took into account current industrial practices, such

as the informal use of modelling. In general, we aimed at using and ex-

tending (similar) technologies as already used in practice. Additionally, we

tried to minimise the resources required to apply our solutions.

We did not advocate the use of new languages if not strictly necessary.

In the cases where we did define new languages, these are used along-

side (Chapter 6) or are mapped to (Chapters 7 and 8) languages already

used (i.e., UML). Moreover, for their definition we used the MetaObject

Facility1 (MOF), the metamodelling language of MDA. The advantage is

that MOF uses well-known object-oriented concepts to define modelling lan-

guages. Furthermore, MOF is supported by an increasing number of tools

and open-source implementations are available (e.g., the Eclipse Modeling

Framework2 (EMF)).

Although UML is a well-defined language (at least syntactically), even

in organisations where UML is used, models are often very informal. Such

models, are more used as illustrative diagrams than precise software spec-

ifications. To account for the informal use of modelling languages in gen-

eral, and in particular that of UML, our solutions for conformance checking

(Chapter 5) and migration (Chapter 7) involve a specific normalisation step.

Such a step is necessary because our aim to automate these tasks by means

of model transformations, requires that input models strictly conform to a

metamodel.

Currently, the normalisation step is essential for the application of our

model-driven solutions for the software evolution tasks in industry. The

main reason is that at present modelling in industry can be characterised

as immature [Kleppe et al., 2003], which we also observed during our sur-

vey (see Chapter 3). However, when the use of MDE technologies in general,

and the associated standards in particular becomes more wide-spread, we

expect that the modelling maturity level in industry will rise. As models

become more precise, the need for normalisation is reduced.

To increase the potential for integration in practice it is important

that a software engineering technique does not require a software devel-

opment organisation to change much of its current way of working and

1http://www.omg.org/mof (June 2007)
2http://www.eclipse.org/emf (June 2007)

192 Chapter 9. Conclusion

that the organisational impact in terms of resources of the technique is

minimal. Therefore, in Chapter 4 we reduced the number of stakeholders

involved in the evaluation approach as much as possible. Furthermore,

by reducing the involvement per stakeholder, the organisational impact is

minimised. The resulting architecture evaluation process is named Dis-

tributed SAAM (DSAAM) and is based on the Software Architecture Analysis

Method (SAAM), which is extensively documented [Kazman et al., 1994,

1996; Clements et al., 2002b]). With stakeholder involvement reduced,

DSAAM still produced valuable results.

Adoption of MDA Standards Our proposal to generate UML-based documen-
tation from domain-specific language (DSL) models in Chapter 8 en-

ables the adoption of MDE approaches. It is expected that in the fu-

ture MDE approaches will be more based on domain-specific modelling

languages (DSMLs) than on UML [Booch et al., 2004; Bézivin et al., 2005].

This requires a considerable shift from the current wide-spread use of UML.

Additionally, the implementation of tool support for DSMLs requires signif-

icant effort, for instance, to implement model editors and visualisations.

This becomes even more problematic when an MDE approach requires mul-

tiple DSMLs to completely specify and subsequently generate applications.

In such cases, a mapping to UML can be used, while moving to complete

support for those DSMLs with respect to modelling and visualisation tools.

The use ofMDA technology, most notably of UML,MOF and XMLMetadata

Interchange1 (XMI), throughout the chapters of this thesis further supports

the integration of our solutions in practice. The use of these standards

takes advantage of existing tooling and skills of present-day software prac-

titioners. However, although their use is an improvement, the level of in-

teroperability as promised by these standards is not achieved. Without in-

vestigating the underlying reasons, this was also observed by Lundell et al.

[2006]. Among the reasons we encountered during our research are in-

correct and incomplete implementation of standards by tool vendors (espe-

cially of UML), and the use of different versions of UML, MOF, XMI, and com-

binations thereof. The consequence is that additional transformations are

required on model serialisations before they can be exchanged between dif-

ferent tools. Because of the low-level modifications required in such cases

Extensible Markup Language2 (XML) processing tools, such as Extensible

Stylesheet Language Transformations3 (XSLT), can be used for this.

1http://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.w3.org/XML (June 2007)
3http://www.w3.org/TR/xslt (June 2007)

9.3. Software Product Lines (RQ2) 193

9.3 Software Product Lines (RQ2)

In Chapter 3 we signalled a trend towards approaches that allow a more

structured form of reuse compared to the ad hoc type of reuse that is typ-

ical in industry. In this context product lines and MDE are two important

developments. We observed that different companies are organising their

software development such that their products are developed as part of a

software product line.

The impact of a product-line architecture on our software evolution

tasks is two-fold:

• The use of software product lines makes the tasks more complicated
because the corresponding product-line architectures are more ab-

stract, apply to multiple products, and, hence, involve a larger number

of stakeholders; their scope is larger with respect to the products and

stakeholders involved.

• On the other hand, the use of an architecture that applies to a whole
set of products improves the return on investment for solutions that

apply to all these product-line members.

Scope of Software Product Lines In Chapter 4 we discuss how the use of
product-line principles makes software architecture evaluations more com-

plex. The findings of such an evaluation are more based on indirect evi-

dence, as scenarios are identified for product-line members and not for the

product line as a whole. Furthermore, a product-line architecture has a

much wider scope than a single-product architecture, thereby increasing

the number of stakeholders. Our approach takes into account both these

effects.

We refined the typical classification of scenarios as either direct (i.e.,

scenarios that do not require changes to the current architecture) or in-

direct (i.e., scenarios that do require changes to the current architecture)

by distinguishing between two types of direct scenarios: concrete scenarios

and floating scenarios. The former are explicitly supported by the product-

line architecture, while the latter are not explicitly supported, but not pre-

vented by it as well (remember that a software architecture is both permis-

sive and restrictive with respect to the implementations it allows).

The number of scenarios that will be characterised as floating in a

product-line architecture evaluation depends on its maturity. By the matu-

rity scale proposed by Bosch [2002], Océ’s product-line architecture can be

characterised as a platform. This means that commonalities are identified

and separated out as a platform, but that the variabilities are not made

explicit. This results in a larger number of floating scenarios. However,

194 Chapter 9. Conclusion

if the maturity is raised by the identification of variabilities and their ex-

plicit specification in a product-line architecture, a larger number of direct

scenarios can be classified as concrete. Thus, a more mature product-line

allows a more complete evaluation.

A drawback of scenario-based architecture evaluation approaches is

their high organisational impact caused by the involvement of the archi-

tecture’s stakeholders in a joint evaluation session, which can take up to

several days. In the case of a product-line architecture this problem is

particularly important. Such architectures have a larger scope resulting in

an increased number of stakeholders. Therefore, we restricted the number

of stakeholders involved in the joint evaluation session and consulted other

stakeholders separately. This significantly reduced the organisational

impact of the evaluation.

Increased Return on Investment As we have seen in this thesis, the use of MDE
approaches requires considerable effort for the definition of metamodels,

and transformation and normalisation rules. For evolution tasks that are

carried out on a regular basis, this effort might be justified. Evaluation or

conformance checking are examples of tasks that are carried out repeatedly

at different points in time. A particular migration, however, is typically

carried out only once. The improved reliability of an automatic migration

based onMDE is possibly not sufficient to motivate the extra effort required.

The use of product lines allows to justify the required effort also in the

case of a migration, as this effort is split over each of the product-line mem-

bers. As such, the increased return on investment for product-line assets,

such as architecture designs and implementations of architectural compo-

nents, also applies to the model transformations and metamodels devel-

oped for the automation of particular software engineering tasks. As an

example, in the case of the migration discussed in Chapter 7 for which we

defined an approach that is domain specific to some extent, we could reuse

the concerns we identified, their corresponding patterns, metamodels, and

transformation rules.

9.4 Model-Driven Engineering (RQ3)

Our goal was to reduce the risks and costs of architecture evolution. To this

end, we aimed at automating our solutions using MDE techniques. Automa-

tion is made possible by considering the involved models (in architectural

views) as models in the MDE sense, that is, specified using a well-defined

(at least syntactically) modelling language. WithMDE, modelling languages

are defined using metamodels. As such, this requires the creation or reuse

9.4. Model-Driven Engineering (RQ3) 195

Generation Rules

Generation

Metametamodel

Metamodel

Target

Metametamodel Metametamodel

Evolution TransformationNormalisation

Transformation RulesNormalisation Rules

Metamodel Metamodel Metamodel

Target ModelSource ModelSource

conforms to conforms to

conforms to

source+ target+ source+ target+

represented by
represented by

source+ target
source

target+

conforms to conforms to
conforms to

source+ target+

conforms to

conforms to

source+
target+

represented by

Source Space MDE Space Target Space

Figure 9.1: Megamodel for model-driven evolution of software architectures

of suitable metamodels. In particular, we employed MDA standards and

their supporting tools.

In terms of the effort required for the application of MDE, the automa-

tion of a software evolution task involves a trade-off between two aspects:

the process of (partly) automating the task, and the subsequent execution

of the (partly) automated task. The former determines the costs of following

a model-driven approach, while the latter relates to the resulting benefit.

We explain all aspects of the deployment of MDE techniques for the soft-

ware evolution tasks by means of the generic framework in Figure 9.1. In

Section 2.3.2 and Figure 2.6 on page 33 we referred to such a framework as

a megamodel.

A Megamodel for Model-Driven Evolution of Software Architectures The different
MDE solutions for the software evolution tasks we defined and discussed

in this thesis lead to the generic megamodel for model-driven evolution of

software architectures depicted in Figure 9.1. This megamodel illustrates

the artefacts and their relationships involved in the model-driven support

of a software evolution task. We revised and extended the two-phased mi-

gration process of Figure 7.3 on page 137 such that the processes we applied

in the other chapters fit the resulting evolution megamodel as well.

196 Chapter 9. Conclusion

The megamodel involves three technological spaces (see Section 2.3.4): a

Source Space, which contains the Source artefacts for a particular evolution

task; an MDE Space (i.e., modelware), in which we apply model transfor-

mations to support a software evolution task; and a Target Space, in which

the Target artefacts are generated. Depending on the evolution context, the

Source and Target may also be in the MDE space. Other possibilities in-

clude, the XML and grammarware spaces.

The Evolution Transformation is carried out in the MDE Space and trans-

forms a Source Model into a Target Model. It is specified (i.e., represented by)

a set of Transformation Rules in the MDE Space. This implies that these rules

are defined using a model transformation language. This Evolution Trans-

formation is specific to the task at hand. The Transformation Rules are

specified in terms of a source and a target Metamodel associated with the

source and target model of the transformation.

As can be seen from this thesis, often no model is available that is suit-

able to serve as source of the Evolution Transformation. In such cases an

additional step is required. Normalisation is the execution of a set of Normal-

isation Rules with the aim of populating a Source Model in the MDE Space

suitable for further transformation using model transformations.

Finally, in the Generation step the Target for the particular evolution task

is created according to a set of Generation Rules. The target of the Generation

step is in a specific Target Space, for instance, the grammarware or XML

space.

All involved model-level artefacts (see Figure 2.3 on page 30), that is,

the Source, Source Model, Target Model, and Target conform to a Metamodel.

It depends on the type of technological space what kind of Metamodel is

used, such as a grammar, MOF metamodel, or XML schema. In turn, these

metamodels conform to the governing Metametamodel for that technological

space, for instance, MOF in the case of the MDA space.

Normalisation The normalisation step we introduced in several cases is not

always fully automated. It is this normalisation step that allows to auto-

mate subsequent steps. Normalisation is for a large part context depen-

dent. The amount of normalisation required depends on the type of source

artefacts, the modelling maturity level, modelling conventions, the scope of

the source language, and the transformation rules.

When the Source Space of the software evolution task is not the same

as the MDE Space, normalisation at least includes a bridge between that

Source Space and the particular MDE Space (e.g., MDA). In some cases nor-

malisation involves not more than that bridge. If the source is based on a

well-defined language the bridge can be fully automated.

9.4. Model-Driven Engineering (RQ3) 197

Normalisation in Chapter 6 was slightly more involved. Here, after the

bridge between the grammarware and MDA spaces, for which we reused

existing grammarware to XML and XML to MDA bridges, also some abstrac-

tion steps were required. We specified these abstraction steps using model

transformations. Hence, this normalisation step was also fully automated.

In other cases normalisation is more difficult and requires replacement

of custom annotations (see Chapter 5), the application of a UML profile,

or the application of standard idioms for particular concerns (see Chap-

ter 7). These cases involve manual effort for normalisation that requires

domain knowledge. As an example, consider the use of UML, a general-

purpose language (GPL), in Chapter 7. UML allows to express a particu-

lar concern using a multitude of different idioms. Therefore, additional

constraints and modelling conventions are required to reduce the com-

plexity of model transformations. Otherwise such transformations have

to take into account too many possible idioms for a particular concern, as

we illustrated in Chapter 7. As a solution we identified the relevant con-

cerns in the domain of supervisory machine control (SMC) systems. For

each concern, we defined a single corresponding design idiom, which con-

forms strictly to a corresponding metamodel. We defined a UML-SMC profile,

which consists of stereotypes and well-formedness rules in the Object Con-

straint Language1 (OCL) corresponding to these design idioms. Normal-

isation involves applying stereotypes to appropriate model elements and

modifying the source model in such a way that concerns are consistently

addressed by their corresponding design idiom without violating any of the

well-formedness rules of the profile.

For complex normalisations, we identified a trade-off between complex

transformation rules to account for a large idiom of possible input patterns,

or a more extensive normalisation procedure to account for a large number

of restrictions on the source models (i.e., to limit the size of the source lan-

guage).

So, even in cases where the source of an evolution task is a valid UML

model (i.e., a model that conforms to the UML metamodel), normalisation

can be required to restrict the number of possible source idioms resulting in

a less complex evolution transformation. This was necessary in Chapter 7

and to a lesser extent also in Chapter 5.

The need for restricting UML like this, raises the question whether the

use of a DSML defined using MOF in such cases wouldn’t be more appropri-

ate. This is a matter of ongoing debate between two schools of thought in

theMDE community [France and Rumpe, 2007]. One argues in favour of the

use of an extensible general-purpose modelling language, while the other

promotes the definition of DSMLs. In current practice, however, the lack of

1http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)

198 Chapter 9. Conclusion

sufficient tool support for the definition of DSMLs and the wide-spread use

of UML are for companies often sufficient reasons for using UML.

Evolution Transformation Except for evaluation, our solutions for the soft-

ware evolutions tasks were at least partly automated by specifying them

as model transformations in the Atlas Transformation Language [Jouault

and Kurtev, 2005] (ATL). In our solution for the conformance checking tasks

in Chapter 6, we had two source models. In general, we specified the differ-

ent steps of an evolution task in separate model transformations. Typically,

multiple of such transformations are required.

Now that MDE approaches that involve the definition and application

of model transformations get more in use, companies might want to recon-

sider their use of UML. In our research we experienced that the use of UML

results in complicated definitions of model transformations. The reasons

for this are the aforementioned size of the UML metamodel, as well as its

complexity and the fact that most UMLmodelling tools only partially imple-

ment the UML specification or, even worse, incorrectly. The former relates to

the trade-off we identified between the number of source model restrictions

involved in the normalisation procedure and the complexity of subsequent

model transformations.

Because the current state of modelling in industry is such that lan-

guages as UML are only used informally and free-form box-and-line dia-

grams are also often used, the application of model-driven approaches in in-

dustrial contexts typically requires the definition of metamodels. Of course,

transformation rules also need to be specified. The extent to which the ef-

fort that this requires is justified depends on the particular context. As

discussed above in the case of product lines the return on investment for

this effort is increased. Here, the use of standards for modelling, meta-

modelling, and model transformations, offers a very strong benefit. They

enable, for instance, the creation of repositories to share these MDE arte-

facts among different projects, product lines, and companies. In fact, we

contributed the model transformations we defined in Chapter 5 for the

generation of a state model from a set of scenarios to such a repository1.

In other cases, we reused metamodels (e.g., metamodels for DOT and XML)

and transformations (e.g., DOT to text) available from repositories ourselves

as well.

Generation The final (code) generation step is well-studied in the MDE lit-

erature. For that reason, we decided not to focus on this step in this thesis,

directing our attention to the normalisation and transformation steps in-

stead. Nevertheless, after the execution of the evolution transformation(s),

1http://www.eclipse.org/gmt/atl/atlTransformations (June 2007)

9.5. Support for Evolution of Software Architectures (RQ0) 199

typically, some output needs to be generated, possibly in a different techno-

logical space. The result can be, for instance, source code, diagrams, or an

XML representation of the target model. Examples of such generation steps

in this thesis include the following:

• In Chapter 5 generation encompasses serialising the result of the evo-
lution transformation using XMI into XML with the aim of loading the

target model in a UML modelling tool for visualisation. Essentially,

the XMI standard provides the necessary generation rules in this case,

and acts as a bridge between the MDA and XML space.

• In Chapter 6 we generate DOT code in the grammarware space from
the target model. The generation rules include rules to map the tar-

get model of the evolution transformation to a (MOF-based) DOTmodel

and rules to generate DOT source code from that DOT model. We de-

fined the former ourselves, and reused the latter from a repository of

model transformations.

• Finally, in Chapter 8, the goal of the evolution task is to visualise
DSMLmodels as UML diagrams to be included in documentation. Here,

the generation step is the transformation of a UML model in some

graphical format, such as Scalable Vector Graphics1 (SVG) (in the XML

space) or PostScript (in the grammarware space).

9.5 Support for Evolution of Software Architectures (RQ0)

Having looked at the three subquestions, we return to the main question,

how to support the evolution of software architectures. We first revisit the

four software evolution tasks, and then discuss the scope of the industrial

case studies we conducted.

Software Evolution Tasks By validating the research results by means of in-
dustrial case studies, an evaluation of the applicability of our techniques in

to the software evolution tasks in industrial practice was obtained.

For evaluations, in contrast with other approaches (e.g., Gallagher

[2000]; Olumofin and Mišlić [2006]), DSAAM specifically takes into account

the difference in scope (i.e., with respect to products and stakeholders)

between single-product architectures and product-line architectures. In

fact, Océ used the results of our evaluation to decide to continue with the

development (evolution) of their reference (product-line) architecture.

1http://www.w3.org/Graphics/SVG (June 2007)

200 Chapter 9. Conclusion

We discussed two approaches for conformance checking. One is fully

automatic, while the other requires a manual comparison. We applied the

latter in Chapter 5 to the embedded software for copiers developed by Océ

and a small ATM example. In both applications we detected inconsistencies

that would have been difficult to detect without our support. Although the

actual comparison is manual, it is made possible by our automatic mapping

between two types of architectural models, which we specified using model

transformations. In Chapter 6 we focused on also automating the actual

comparison step.

For the migration task our automatic, model-driven solution offers clear

benefits with respect to the alternative, a manual migration. The need for

domain experts is reduced and the necessary definition of a suitable meta-

model increases the understanding of the migration itself and the target

architecture. Finally, because the defined transformation and normalisa-

tion rules are generic, they can be reused for the migration of other SMC

components. This was illustrated by the migration of a second SMC compo-

nent, for which we only had to define a few extra transformation rules to

include features of the target architecture that were not relevant in the first

case. Here, the use of product-line principles for the development of these

SMC components, justifies the effort required for applying a model-driven

migration approach.

Our solution for the documentation task offers an alternative for devel-

oping a complete (graphical) notation and corresponding editor for a DSML.

Although it might not always be possible to define a suitable mapping to

UML due to the semantic gap between UML and the DSML, our solution has

the benefit of being more light-weight. As such, our approach is particu-

larly suited for situations where graphical editing of DSML models is not

(yet) required, for example, when a company is gradually migrating from

UML to full DSML support.

Our results demonstrate the applicability of model-driven solutions to

specific software evolution tasks. For the software evolution tasks we con-

sidered, we proposed solutions that take into account product-line archi-

tectures (opposed to single-product architectures), aim to reduce organisa-

tional impact, or are model-driven. Furthermore, we extend and use tech-

nologies that have already proven their applicability in practice, such as

SAAM and MOF.

Embedded Software Although our solutions were investigated in the context
of concrete (industrial) problems, our evaluations show that they can be

applied (to some extent) to our software evolution tasks for a broader class

of systems. In the introduction we also raised the question whether our

results only apply to the evolution of embedded software. To answer this

9.6. Future Work and Recommendations 201

question we have to decide whether a software system’s ‘embeddedness’ is

relevant from the perspective of the software evolution tasks we identified.

Our work applies to a special type of software in terms of the case stud-

ies we conducted; all were in the domain of embedded software. A com-

mon perception is that developing embedded software is different from de-

veloping other kinds of software because of some specific characteristics:

embedded software has a dedicated function, and is embedded in, and re-

active and logically connected to a physical system composed of hardware

(e.g., mechanical, electronic, or optical components) and software. These

characteristics make that embedded software has some specific properties

that make developing embedded software different from a technical point

of view. As an example, in many cases real-time constraints play an im-

portant role, as well as size of memory footprints. Furthermore, embedded

software often needs to comply to safety constraints (in the case it controls

a physical system that might cause physical damage).

So, indeed embedded software has many specific characteristics. How-

ever, most important for software evolution, the topic of our research, is the

fact that this type of software is embedded in a physical system. Although

we cannot conclude from this that software evolution is different for embed-

ded systems, it does make evolution unavoidable. In fact, the two software

evolution laws discussed in Section 2.1 only apply to a special class of sys-

tems. Lehman [1980] defines this class of, so-called, E-type systems, as

the class of systems of which the specification includes a model of the ‘real’

world. The embedded systems such as those studied in our case studies are

prototypical examples of E-type systems. Therefore, we conjecture that our

results are valid for E-type systems in general, and not just for embedded

systems.

9.6 Future Work and Recommendations

In this thesis we investigated how to support four different software evo-

lution tasks. To this end, we defined solutions that are model-driven and

take into account the use of product lines. To enable industry to integrate

our solutions in their development processes, we minimised their organi-

sational impact by reusing proven technologies and standards as much as

possible and limiting the required additional effort. In most cases we inter-

preted the software evolution tasks as model transformation problems and

provided suitable transformation rules, which can be executed automati-

cally.

In the chapters of this thesis we raised many issues to be investigated

further that include, supporting software evolution tasks in other techno-

logical spaces, development of hybrid approaches, and management and

202 Chapter 9. Conclusion

evolution of modelware artefacts. To conclude we briefly revisit them be-

low.

We primarily used MDA model transformations in ATL to support soft-

ware evolution tasks. Similar support can also be developed in other

technological spaces. In the grammarware space, for instance, also for-

malisms and tools are available for the definition of languages and trans-

formations, such as the ASF+SDF Meta-Environment [Klint, 1993] and

Stratego/XT [Visser, 2004]. As the processes we defined for the support

of the different evolution tasks are technology independent, our work

provides the starting point for developing similar support by using and

combining other technologies. This raises interesting research questions

with respect to which technological space is best suited for development of

support for a specific evolution task and how to better combine languages

and transformations defined in different technological spaces.

Assuming that source code remains in the grammarware and software

models remain in the modelware technological spaces, this combination of

artefacts from different technological spaces is unavoidable for most so-

lutions for software evolution tasks. Unfortunately, the required bridges

currently need to be specifically developed, at least partially. The problem

with the bridges we used is that they are defined on the metamodel level.

For such bridges to be generic and reusable they should be defined on the

metametamodel level. In fact, for MDA to XML such a bridge is already

available in the form of XMI. A similar bridge between grammarware and

MDA is essential for combining these two technological spaces. This bridge

would map EBNF to MOF such that EBNF grammars can be automatically

transformed in corresponding MOF metamodels and vice versa, as well as

the programs and models conforming to those grammars and metamodels.

Our experience shows that for automatic support of a particular soft-

ware evolution task multiple model transformations are required. Each

model transformation involves its own transformation rules, source and

target models, and corresponding metamodels. Moreover, often the support

of evolution tasks also involves operations outside the MDA space, such as

XSLT transformations in the XML space, or sed and Perl scripts. This makes

that the management of all the involved artefact and transformations steps

requires special attention. Although this problem was not the focus of our

research, in one case we used a build tool (Ant) to solve this problem. How-

ever, with this approach, the required configuration files also tend to get

very complex. As such, this problem calls for additional support, which

requires additional research.

Means for the management of modelware artefacts are essential for suc-

cessful application of our solutions in industry. Similar to other software

development artefacts this modelware is also expected to evolve. Inter-

esting possibilities to minimise the required evolution of such artefacts by

9.6. Future Work and Recommendations 203

raising their generality, are higher-order transformations. Such transfor-

mations that have another transformation as source or target model, can

be used for the conformance checking task, for instance, to generate confor-

mance checking transformations from the metamodels associated with the

involved models. This requires that there is a metamodel for the transfor-

mation language, which is the case for ATL.

Finally, for further investigation of the issues discussed above, indus-

trial case studies should play an essential role as they did in this thesis.

The focus on real industrial problems enabled us to discover and investi-

gate difficulties that are inherent to industrial practice. As an example, the

need for normalisation, which plays a prominent role in this thesis, could

not have been investigated without such case studies.

Bibliography

Abowd, Gregory, Robert Allen, and David Garlan. Using style to under-

stand descriptions of softwar architecture. ACM SIGSOFT Software En-

gineering Notes, 18(5):pages 9–20, 1993.

Al-Ekram, Raihan and Kostas Kontogiannis. An XML-based framework

for language neutral program representation and generic analysis. In

Proceedings of the 9th European Conference on Software Maintenance and

Reengineering (CSMR 2005), pages 42–51. IEEE Computer Society, 2005.

Aldrich, Jonathan, Craig Chambers, and David Notkin. Archjava: Connect-

ing software architecture to implementation. In Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002), pages

187–197. IEEE Computer Society, 2002.

Allen, Robert and David Garlan. Formalizing architectural connection. In

Proceedings of the 16th International Conference on Software Engineer-

ing. (ICSE 1994), pages 71–80. IEEE Computer Society, 1994.

Allen, Robert and David Garlan. A formal basis for architectural con-

nection. ACM Transactions on Software Engineering and Methodology

(TOSEM), 6(3):pages 213–249, 1997.

Amyot, Daniel and Armin Eberlein. An evaluation of scenario notations

and construction approaches for telecommunication systems develop-

ment. Telecommunication Systems, 24(1):pages 61–94, 2003.

Atkinson, Colin and Thomas Küne. Model-driven development: A meta-

modeling foundation. IEEE Software, 20(5):pages 36–41, 2003.

ATLAS group. ATL User Manual. LINA & INRIA, Nantes, 2006. http:

//www.eclipse.org/m2m/atl/doc/ATL_User_Manual[v0.7].pdf.

Badros, Greg J. Javaml: a markup language for java source code. Computer

Networks, 33(1–6):pages 159–177, 2000.

205

206 BIBLIOGRAPHY

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in

Practice. Addison-Wesley, 2nd edition, 2003.

Baxter, Ira D., Christopher Pidgeon, and Michael Mehlich. DMS: Program

transformations for practical scalable software evolution. In Proceed-

ings of the 26th International Conference on Software Engineering (ICSE

2004), pages 625–634. IEEE Computer Society, 2004.

Bengtsson, PerOlof, Nico Lassing, Jan Bosch, and Hans van Vliet.

Architecture-level modifiability analysis (ALMA). Journal of Systems

and Software, 69(1–2):pages 129–147, 2004.

Bézivin, Jean. On the unification power of models. Software and Systems

Modelling, 4(2):pages 171–188, 2005.

Bézivin, Jean. Model driven engineering: An emerging technical space. In

Generative and Transformational Techniques in Software Engineering,

International Summer School, (GTTSE 2005), volume 4143 of Lecture

Notes in Computer Science, pages 36–64. Springer-Verlag, 2006.

Bézivin, Jean, Mikäel Barbero, and Frédérique Jouault. On the applica-

bility scope of model driven engineering. In Proceedings of the 4th Inter-

national Workshop on Model-based Methodologies for Pervasive and Em-

bedded Software (MOMPES 2007), pages 3–7. IEEE Computer Society,

2007.

Bézivin, Jean and Olivier Gerbé. Towards a precise definition of the

OMG/MDA framework. In Proceedings of the 16th Annual International

Conference on Automated Software Engineering (ASE 2001), pages 273–

280. IEEE Computer Society, 2001.

Bézivin, Jean, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.

Modeling in the large and modeling in the small. InModel Driven Archi-

tecture: European MDA Workshops, volume 3599 of Lecture Notes in

Computer Science, pages 33–46. Springer-Verlag, 2005.

Bontemps, Yves, Patrick Heymans, and Pierre-Yves Schobbens. From live

sequence charts to state machines and back: A guided tour. IEEE Trans-

actions on Software Engineering, 31(12):pages 999–1014, 2005.

Booch, Grady, Alan Brown, Sridhar Iyengar, James Rumbaugh, and Bran

Selic. An MDA manifesto. In Frankel, David S. and John Parodi, editors,

The MDAJournal: Model Driven Architecture Straight from the Masters,

chapter 11. Meghan-Kiffer Press, 2004.

BIBLIOGRAPHY 207

Bosch, Jan. Design & Use of Software Architectures: Adopting and evolving

a product-line approach. Addison-Wesley, 2000.

Bosch, Jan. Maturity and evolution in software product lines: Approaches,

artefacts and organization. In Proceedings of the 2nd International Con-

ference on Software Product Lines (SPLC 2), volume 2379 of Lecture Notes

in Computer Science, pages 257–271. Springer-Verlag, 2002.

Bosch, Jan and Peter Molin. Software architecture design: evaluation and

transformation. In Proceedings of the IEEE Conference and Workshop on

Engineering of Computer-Based Systems (ECBS’99), pages 4–10. IEEE

CS, 1999.

Bril, R.J., R.L. Krikhaar, and A. Postma. Architectural support in indus-

try: a reflection using C-POSH. Journal of software maintenance and

evolution: research and practice, 17:pages 3–25, 2005.

Bröhl, A.P. and W. Dröschel. Das V-Modell. Der Standard für die Soft-

wareentwicklung mit Praxisleitfaden. Oldenbourg-Verlag, München, 2nd

edition, 1995.

Brooks, Frederick P., Jr. The Mythical Man-Month. Addison-Wesley, 1975.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal. Pattern-oriented software architecture:a system of patterns.

John Wiley & Sons, 1996.

Buttazzo, G.C. Hard real-time computing systems: predictable scheduling

algorithms and applications. Kluwer Academic Publishers, 2002.

Chen, Peter Pin-Shan. The entity-relationship model – toward a unified

view of data. ACM Transactions Database Systems, 1(1):pages 9–36,

1976.

Clarke, Edmund M., Jr., Orna Grumberg, and Doran A. Peled. Model

Checking. MIT Press, 1999.

Cleaveland, J. Craig. Building application generators. IEEE Software,

5(4):pages 25–33, 1988.

Clements, Paul, Felix Bachmann, Len Bass, David Garlan, James Ivers,

Reed Little, Robert Nord, and Judith Stafford. Documenting Software

Architectures:Views and Beyond. Addison-Wesley, 2002a.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Ar-

chitectures. Addison-Wesley, 2002b.

208 BIBLIOGRAPHY

Clements, Paul and Linda Northrop. Software Product Lines: Practices and

Patterns. Addison-Wesley, 2002.

Cornelissen, Bas, Bas Graaf, and Leon Moonen. Identification of variation

points using dynamic analysis. In Proceedings of the 1st International

Workshop on Reengineering towards Product Lines (R2PL 2005), pages

9–13. 2005.

Cornelissen, Bas, Arie van Deursen, Leon Moonen, and Andy Zaidman. Vi-

sualizing testsuites to aid in software understanding. In Proceedings of

the 11th European Conference on Software Maintenance and Reengineer-

ing (CSMR 2007), pages 213–222. IEEE Computer Society, 2007.

Czarnecki, K. and S. Helsen. Feature-based survey of model transformation

approaches. IBM Systems Journal, 45(3):pages 621–645, 2006.

Czarnecki, Krzysztof and Ulrich W. Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.

Damm, Werner and David Harel. LSCs: Breathing life into message se-

quence charts. Formal Methods in System Design, 19:pages 45–80, 2001.

Dashofy, Eric M., André van der Hoek, and Richard N. Taylor. A compre-

hensive approach for the development of modular software architecture

description languages. ACM Transactions on Software Engineering and

Methodology, 14(2):pages 199–245, 2005.

Deelstra, Sybren, Marco Sinnema, and Jan Bosch. Product derivation in

software product families: a case study. Journal of Systems and Software,

74(2):pages 173–194, 2005.

Deelstra, Sybren, Marco Sinnema, Jilles van Gurp, and Jan Bosch. Model

driven architecture as approach to manage variability in software prod-

uct families. In Proceedings of the Workshop on Model Driven Archi-

tecture: Foundations and Applications (MDAFA 2003), number TR-CTIT-

03-27 in CTIT Technical Report, pages 109–114. University of Twente,

2003.

Dijkstra, Edsger W. The structure of the "THE"-multiprogramming system.

Communications of the ACM, 11(5):pages 341–346, 1968.

Dijkstra, Edsger W. On the role of scientific thought. Published in Dijkstra

[1982], 1974. EWD447.

Dijkstra, Edsger W. Selected writings on computing: a personal perspective.

Springer-Verlag, 1982.

BIBLIOGRAPHY 209

Dinther, Y. van, W. Schijfs, F. van den Berk, and K. Rijnierse. Architec-

tural modeling: Introducing the Architecture MetaModel. In Landelijk

Architectuur Congres. SERC, Utrecht, The Netherlands, 2001.

Dobrica, L. and E. Niemelä. A survey on software architecture analysis

methods. IEEE Transactions on Software Engineering, 28(7):pages 638–

653, 2002.

Dohmen, L. A. J. and L. J Somers. Experiences and lessons learned using

UML-RT to develop embedded printer software. In Proceedings of the 4th

International Conference on Product Focused Software Process Improve-

ment (PROFES2002), volume 2559 of Lecture Notes in Computer Science,

pages 475–484. Springer-Verlag, 2003.

Doyle, Duncan, Hans Geers, Bas Graaf, and Arie van Deursen. Migrating

a domain-specific modeling language to MDA technology. In Proceed-

ings of the 3rd International Workshop on Metamodels, Schemas, Gram-

mars, and Ontologies for Reverse Engineering (ateM 2006), number 1 /

2006 in Mainzer Informatik-Berichte, pages 47–54. Johannes Gutenberg-

Universität Mainz, 2006.

D’Souza, Desmond Francis and Alan Cameron Wills. Objects, Components,

and Frameworks with UML : The Catalysis Approach. Addison-Wesley,

1998.

Eden, A.H., Y. Hirshfeld, and R. Kazman. Abstraction classes in software

design. IEE Proceedings Software, 153(4):pages 163–182, 2006.

Eden, Amnon H. and Rick Kazman. Architecture, design, implementation.

In Proceedings of the 25th International Conference on Software Engineer-

ing (ICSE 2003), pages 149–159. IEEE Computer Society, 2003.

Emam, Khaled El, Jean-Normand Drouin, and Walcelio Melo. The Theory

and Practice of Software Process Improvement and Capability Determi-

nation. IEEE Computer Society, 1997.

Endres, Albert and Dieter Rombach. A Handbook of Software and Systems

Engineering. Addison Wesley, 2003.

Fahmy, Hoda and Richard C. Holt. Software architecture transformations.

In Proceedings of the 16th International Conference on Software Mainte-

nance (ICSM 2000), pages 88–96. IEEE Computer Society, 2000a.

Fahmy, Hoda and Richard C. Holt. Using graph rewriting to specify soft-

ware architectural transformations. In Proceedings of 15th IEEE Interna-

tional Conference on Automated Software Engineering (ASE 2000), pages

187–196. IEEE Computer Society, 2000b.

210 BIBLIOGRAPHY

Favre, Jean-Marie. Foundations of meta-pyramids: Languages vs. meta-

models – Episode II: Story of Thotus the Baboon. In Language Engineer-

ing for Model-Driven Software Development, number 04101 in Dagstuhl

Seminar Proceedings. Internationales Begegnungs- und Forschungszen-

trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005a.

Favre, Jean-Marie. Foundations of model (driven) (reverse) engineering :

Models – Episode I: Stories of The Fidus Papyrus and of The Solarus. In

Language Engineering for Model-Driven Software Development, number

04101 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-

many, 2005b.

Fondement, Frédéric and Thomas Baar. Making metamodels aware of con-

crete syntax. In Proceedings of the 1st European Conference on Model

Driven Architecture - Foundations and Applications (ECMDA-FA 2005),

volume 3748 of Lecture Notes in Computer Science, pages 190–204.

Springer-Verlag, 2005.

Forward, Andrew and Timothy C. Lethbridge. The relevance of software

documentation, tools and technologies: a survey. In Proceedings of the

2002 ACM symposium on Document engineering (DocEng 2002), pages

26–33. ACM Press, 2001.

France, Robert and Bernhard Rumpe. Model-driven development of com-

plex software: A research roadmap. In Future of Software Engineering

(FoSE 2007), pages 37–54. IEEE Computer Society, 2007.

Gallagher, Brian P. Using the architecture tradeoff analysis method to eval-

uate a reference architecture: A case study. Technical Report CMU/SEI-

2000-TN-007, Carnegie Mellon University, Software Engineering Insti-

tute, 2000.

Garlan, David, Robert Allen, and John Ockerbloom. Architectural mis-

match or why it’s hard to build systems out of existing parts. In Proceed-

ings of the 17th International Conference on Software Engineering (ICSE

1995), pages 179–185. ACM Press, 1995.

Garlan, David, Shang-Wen Cheng, and Andrew J. Kompanek. Reconcil-

ing the needs of architectural description with object-modeling notations.

Science of Computer Programming, 44:pages 23–49, 2002.

Garlan, David, Robert T. Monroe, and David Wile. ACME: architectural

description of component-based systems. In Foundations of component-

based systems, pages 47–67. Cambridge University Press, 2000.

BIBLIOGRAPHY 211

Garlan, David and Mary Shaw. An introduction to software architecture.

In Advances in Software Engineering and Knowledge Engineering, vol-

ume 2, pages 1–39. World Scientific Publishing Company, 1993.

Gerber, Anna, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew

Wood. Transformation: The missing link of MDA. In Proceedings of the

1st International Conference on Graph Transformation (ICGT 2002), vol-

ume 2505 of Lecture Notes in Computer Science, pages 90–105. Springer-

Verlag, 2002.

Gohari, P. andW.M.Wonham. Reduced supervisors for timed discrete-event

systems. IEEE Transactions on Automatic Control, 48(7):pages 1187–

1198, 2003.

Graaf, Bas. Model-driven evolution of software architectures. In Pro-

ceedings of the 11th European Conference on Software Maintenance and

Reengineering (CSMR 2007), pages 357–360. IEEE Computer Society,

2007.

Graaf, Bas, Marco Lormans, and Hans Toetenel. Software technologies

for embedded systems: An industry inventory. In Proceedings of the 4th

International Conference on Product Focused Software Process Improve-

ment (PROFES 2002), volume 2559 of Lecture Notes in Computer Science,

pages 453–465. Springer-Verlag, 2002.

Graaf, Bas, Marco Lormans, and Hans Toetenel. Embedded software en-

gineering: The state of the practice. IEEE Software, 20(6):pages 61–69,

2003.

Graaf, Bas and Arie van Deursen. Model-driven consistency checking of

behavioural specifications. In Proceedings of the 4th International Work-

shop on Model-based Methodologies for Pervasive and Embedded Soft-

ware (MOMPES 2007), pages 115–126. IEEE Computer Society, 2007a.

Graaf, Bas and Arie van Deursen. Using MDE for generic comparison of

views. In Proceedings of the 4th International Workshop on Model De-

sign, Verification and Validation (MoDeVVa 2007), pages 57–66. INRIA,

2007b.

Graaf, Bas and Arie van Deursen. Visualisation of domain-specific mod-

elling languages using UML. In Proceedings of the 14th Annual IEEE

International Conference and Workshop on the Engineering of Computer

Based Systems (ECBS 2007), pages 586–595. IEEE Computer Society,

2007c.

212 BIBLIOGRAPHY

Graaf, Bas, Hylke van Dijk, and Arie van Deursen. Evaluating an em-

bedded software reference architecture – industrial experience report.

In Proceedings of the 9th European Conference on Software Maintenance

and Reengineering (CSMR 2005), pages 354–363. IEEE Computer Soci-

ety, 2005.

Graaf, Bas, Sven Weber, and Arie van Deursen. Migrating supervisory

control architectures using model transformations. In Proceedings of the

10th European Conference on Software Maintenance and Reengineering

(CSMR 2006), pages 151–160. IEEE Computer Society, 2006.

Graaf, Bas, Sven Weber, and Arie van Deursen. Model-driven migration

of supervisory machine control architectures. Journal of Systems and

Software, 2007. Doi: 10.1016/j.jss.2007.06.007.

Gray, Jeff, Jing Zhang, Suman Roychoudhury, Hui Wu, Rajesh Sudarsan,

Aniruddha, Sandeep Neema, Feng Shi, and Ted Bapty. Model-driven

program transformation of a large avionics framework. In Proceedings of

the 3rd International Conference on Generative Programming and Com-

ponent Engineering (GPCE 2004), pages 361–378. Springer-Verlag, 2004.

Greenfield, Jack, Keith Short, Steve Cook, and Stuart Kent. Software Fac-

tories: Assembling Applications with Patterns, Models, Frameworks, and

Tools. John Wiley & Sons, 2004.

Grose, Timothy J., Gary C. Doney, and PhD. Stephan A.Brodsky. Mastering

XMI. Java programming with XMI, XML, and UML. John Wiley & Sons,

2002.

Han, Minmin, Christine Hofmeister, and Robert L. Nord. Reconstructing

software architecture for J2EE web applications. In Proceedings of the

10th Working Conference on Reverse Engineering (WCRE 2003), pages

67–78. IEEE Computer Society, 2003.

Hatley, Derek J. and Imtiaz A. Pirbhai. Strategies for Real-Time System

Specification. Dorset House Publishing, 1987.

Hofmeister, C., R. Nord, and D. Soni. Applied Software Architecture.

Addison-Wesley, 1999.

Hofmeister, Christine, Philipe Kruchten, Robert L. Nord, Henk Obbink,

Alexander Ran, and Pierre America. Generalizing a model of software

architecture design from five industrial approaches. In Proceedings of

the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA

2005), pages 77–88. IEEE Computer Society, 2005.

BIBLIOGRAPHY 213

Horowitz, Ellis, Alfons Kemper, and Balaji Narasimhan. A survey of appli-

cation generators. IEEE Software, 2(1):pages 40–54, 1985.

Humphrey, Watts S. Managing the software process. Addison-Wesley, 1989.

IEEE-1219. IEEE standard for software maintenance. IEEE Std 1219–

1998, 1998.

IEEE-1471. IEEE recommended practice for architectural description of

software intensive systems. IEEE Std 1471–2000, 2000.

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven

Approach. Addison-Wesley, 1992.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software

Development Process. Addison-Wesley, 1999.

Jacobson, Ivar, Martin Griss, and Patrick Jonsson. Software Reuse: Archi-

tecture, Process and Organization for Business Success. Addison-Wesley,

1997.

Jansen, Anton. Software architecture as a set of architectural design deci-

sions. In Proceedings of the 5th Working IEEE/IFIP Conference on Soft-

ware Architecture (WICSA 2005), pages 109–120. IEEE Computer Soci-

ety, 2005.

Jouault, Frédéric and Ivan Kurtev. Transforming models with ATL. In Pro-

ceedings of the Model Transformations in Practice Workshop at MoDELS

2005. 2005.

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements. Scenario-

based analysis of software architecture. IEEE Software, 13(6):pages 47–

55, 1996.

Kazman, Rick, Len Bass, and Mark Klein. The essential components of

software architecture design and analysis. Journal of Systems and Soft-

ware, 79(8):pages 1207–1216, 2006.

Kazman, Rick, Len Bass, Mike Webb, and Gregory Abowd. SAAM: A

method for analyzing the properties of software architectures. In Pro-

ceedings of the 16th International Conference on Software Engineering.

ICSE 1994, pages 81–90. IEEE Computer Society, 1994.

Kitchenham, Barbara, Lesley Pickard, and Shari Lawrence Pfleeger. Case

studies for method and tool evaluation. IEEE Software, 12(4):pages 52–

62, 1995.

214 BIBLIOGRAPHY

Klein, Mark H., Rick Kazman, Len Bass, Jeromy Carrierea, Mario

Barbacci, and Howard Lipson. Attribute-based architecture styles. In

Proceedings of the 1st Working IFIP Conference on Software Architecture

(WICSA 2001), pages 225–243. 1999.

Kleppe, Anneke, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison Wesley, 2003.

Klint, Paul. A meta-environment for generating programming environ-

ments. ACM Transactions on Software Engineering, 2(2):pages 176–201,

1993.

Klint, Paul, Ralf Lämmel, and Chris Verhoef. Towards an engineering

discipline for grammarware. Transactions on Software Engineering and

Methodology, 14(3):pages 331–380, 2005.

Kobryn, Cris. UML 2001: a standardization odyssey. Communications of

the ACM, 42(10):pages 29–37, 1999.

Krikhaar, René L. Software architecture Reconstruction. Ph.D. thesis, Uni-

versiteit van Amsterdam, 1999.

Kruchten, Philipe, Henk Obbink, and Judith Stafford. The past, present,

and future of software architecture. IEEE Software, 23(2):pages 22–30,

2006.

Kruchten, Philippe B. The 4+1 view model of architecture. IEEE Software,

12(6):pages 42–50, 1995.

Kruchten, Phillipe. The Rational Unified Process. Addison-Wesley, 1998.

Krueger, Charles W. Software reuse. ACM Computing Surveys, 24(2):pages

131–183, 1992.

Kurtev, Ivan, Jean Bézivin, and Mehmet Aksit. Technological spaces:

an initial appraisal. In Confederated International Conferences CoopIS,

DOA, and ODBASE 2002, Industrial Track. Springer-Verlag, 2002.

Kuvaja, Pasi, Jouni Similä, Lech Krzanik, Adriana Bicego, Samuli

Saukkonen, and Günter Koch. Software Process Assessment and Im-

provement: The BOOTSTRAP Approach. Blackwell Publishers, 1994.

Lam, Vitus S.W. and Julian Padget. Analyzing equivalences of UML stat-

echart diagrams by structural congruence and open bisimulations. In

Proceedings of the 2003 IEEE Symposia on Human Centric Computing

Languages and Environments (HCC 2003), pages 137–144. IEEE Com-

puter Society, 2003.

BIBLIOGRAPHY 215

Lange, Christian F.J., Michel R.V. Chaudron, and Johan Muskens. In prac-

tice: UML software architecture and design description. IEEE Software,

23(2):pages 40–46, 2006.

Lehman, M. M. Laws of program evolution - rules and tools for program-

ming management. In Proceedings of the Infotech State of the Art Confer-

ence, Why Software Projects Fail?, pages 11/1 – 11/25. 1978. Reprinted as

Chapter 12 in [Lehman and Belady, 1985].

Lehman, M. M. and L. A. Belady, editors. Program evolution: processes of

software change. Academic Press, 1985.

Lehman, Meir M. Programs, life cycles, and laws of software evolution.

IEEE Proceedings, 68(9):pages 1060–1076, 1980.

Liang, Hongzhi, Juergen Dingel, and Zinovy Diskin. A comparative survey

of scenario-based to state-based model synthesis approaches. In Proceed-

ings of the 5th International Workshop on Scenarios and State Machines:

Models, Algorithms and Tools (SCESM 2006), pages 5–11. ACM, 2006.

Lientz, B. P., E. B. Swanson, and G. E. Tompkins. Characteristics of appli-

cation software maintenance. Communications of the ACM, 21(6):pages

466–471, 1978.

Liu, C.L. and James W. Layland. Scheduling algorithms for multiprogram-

ming in a hard real-time environment. Journal of the Association for

Computing Machinery, 20(1):pages 46–61, 1973.

Lundell, Björn, Brian Lings, Anna Persson, and Anders Mattsson. UML

model interchange in heterogeneous tool environments: An analysis of

adoptions of XMI 2. In Proceedings of the 9th International Conference

on Model Driven Engineering Languages and Systems (MoDELS 2006),

number 4199 in Lecture Notes in Computer Science, pages 619–630.

Springer-Verlag, 2006.

Lutz, Robyn R. and Gerald C. Gannod. Analysis of a software product line

architecture: an experience report. The Journal of Systems and Software,

66(3):pages 253–267, 2003.

Medvidovic, Nenad, David S. Rosenblum, David F. Redmiles, and Jason E.

Robbins. Modeling Software Architectures in the Unified Modeling Lan-

guage. ACM Transactions on Software Engineering and Methodology,

11(1):pages 2–57, 2002.

Medvidovic, Nenad and Richard N. Taylor. A framework for classifying

and comparing architecture description languages. In ESEC ’97/FSE-5:

216 BIBLIOGRAPHY

Proceedings of the 6th European conference held jointly with the 5th ACM

SIGSOFT international symposium on Foundations of software engineer-

ing, pages 60–76. Springer-Verlag, 1997.

Mellor, Stephen J., Anthony M. Clark, and Takao Futagami. Guest editors’

introduction: Model-driven development. IEEE Software, 20(5):pages

14–18, 2003.

Mens, Kim. Automating Architectural Conformance Checking by means of

Logic Meta Programming. Ph.D. thesis, Vrije Universiteit Brussel, 2000.

Mens, Tom and Pieter van Gorp. A taxonomy of model transformation.

Electronic Notes in Theoretical Computer Science, 152:pages 125–142,

2006.

Mernik, Marjan, Jan Heering, and Anthony M. Sloane. When and

how to develop domain-specific languages. ACM Computing Surveys,

37(4):pages 316–344, 2005.

Monroe, R.T., A. Kompanek, and D. Melton, R.; Garlan. Architectural

styles, design patterns, and objects. IEEE Software, 14(1):pages 43–52,

1997.

Murphy, Gail C., David Notkin, and Kevin Sullivan. Software reflexion

models: bridging the gap between source and high-level models. In

SIGSOFT ’95: Proceedings of the 3rd ACM SIGSOFT symposium on

Foundations of software engineering, pages 18–28. ACM Press, 1995.

Olumofin, Femi G. and Vojislav B. Mišlić. Extending the ATAM archi-

tecture evaluation to product line architectures. In Proceedings of the 5th

Working IEEE/IFIP Conference on Software Architecture (WICSA 2005),

pages 45–56. IEEE Computer Society, 2006.

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification. Final Adopted Specification. http://www.omg.org/docs/ptc/

05-11-01.pdf, 2005.

OMG. OMG Unified Modeling Language Specification, Version 1.4. http:

//www.omg.org/docs/formal/01-09-67.pdf, 2007a.

OMG. Unified Modeling Language: Superstructure, version 2.1.1. http:

//www.omg.org/docs/formal/07-02-05.pdf, 2007b.

Parnas, D.L. On the criteria to be used in decomposing systems into mod-

ules. Communications of the ACM, 15(12):pages 1053–1058, 1972.

BIBLIOGRAPHY 217

Partsch, H. and R. Steinbrüggen. Program transformation systems. ACM

Computing Surveys, 15(3):pages 199–236, 1983.

Perry, Dewayne E. and Alexander L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software Engineering Notes,

17(4):pages 40–52, 1992.

Pigoski, Thomas M. Practical Software Maintenance: Best Practices for

Managing Your Software Investment. John Wiley & Sons, 1996.

Potts, Colin. Software engineering research revisited. IEEE Software,

10(5):pages 19–28, 1993.

Poulin, J. S. Measuring Software Reuse: Principles, Practices, and Eco-

nomic Models. Addison-Wesley, 1997.

Ramadge, P.J. and W.M. Wonham. Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, 25(1):pages

206–230, 1987.

Reveliotis, Spyros A. Real-Time Management of Resource Allocation Sys-

tems. A Discrete Event Systems Approach, volume 79 of International Se-

ries in Operations Research & Management Science. Springer-Verlag,

2005.

Sabuncuoglu, I. and M. Bayiz. Analysis of reactive scheduling problems

in a job-shop environment. European Journal of operational research,

126:pages 567–586, 2000.

Schäfer, Timm, Alexander Knapp, and StephanMerz. Model checking UML

state machines and collaborations. Electronic Notes in Theoretical Com-

puter Science, 55(3):pages 357–369, 2001.

Schmidt, Douglas C. Model-driven engineering. IEEE Computer,

39(2):pages 25–31, 2006.

Seidewitz, Ed. What models mean. IEEE Software, 20(5):pages 26–32,

2003.

Selic, Bran. The pragmatics of model-driven development. IEEE Software,

20(5):pages 14–25, 2003.

Selic, Bran, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented

Modeling. John Wiley & Sons, 1994.

Sendall, Shane. Model transformation: The heart and soul of model-driven

software development. IEEE Software, 20(5):pages 42–45, 2003.

218 BIBLIOGRAPHY

Shaw, Mary, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.

Young, and Gregory Zelesnik. Abstarctions for software architecture

and tools to support them. IEEE Transactions on Software Engineering,

21(4):pages 314–335, 1995.

Shaw, Mary and David Garlan. Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall, 1996.

Software Engineering Institute. Published software architecture defi-

nitions. http://www.sei.cmu.edu/architecture/published_definitions.html,

2006.

Soni, D., R. L. Nord, and C. Hofmeister. Software architecture in indus-

trial applications. In Proceedings of the 17th International Conference on

Software Engineering (ICSE 1995). ACM Press, 1995.

Sonnenberg, C. J. Improving software maintainability: A case study. Mas-

ter’s thesis, Technische Universiteit Eindhoven, 2005.

Spanjers, Hans, Maarten ter Huurne, Dan Bendas, Bas Graaf, Marco

Lormans, and Rini van Solingen. Tool support for distributed software

engineering. In Proceedings of the 1st International Conference on Global

Software Engineering (ICGSE 2006), pages 187–198. IEEE Computer So-

ciety, 2006.

Stevens, Perdita. On associations in the Unified Modelling Language. In

Proceedings of the 4th International Conference on the Unified Modeling

Language, Modeling Languages, Concepts, and Tools (≪UML≫ 2001),

volume 2185 of Lecture Notes in Computer Science. 2001.

Swanson, E. Burton. The dimensions of maintenance. In Proceedings 2nd

International Conference on Software Engineering (ICSE 1976), pages

492–497. IEEE Computer Society, 1976.

Terekhov, Andrey A. and Chris Verhoef. The realities of language conver-

sions. IEEE Software, 17(6):pages 111–124, 2000.

PROGRESS. Embedded systems roadmap 2002: Vision on the technology

for the future of PROGRESS. Technical report, Technology Foundation

(STW), 2002. http://www.stw.nl/Programmas/Progress/ESroadmap.htm.

Van den Brand, M.G.J., A. van Deursen, J. Heering, H.A. de Jong,

M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder,

J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF meta-environment:

A component-based language development environment. In Proceed-

ings of the 10th International Conference on Compiler Construction (CC

BIBLIOGRAPHY 219

2001), volume 2027 of Lecture Notes in Computer Science, pages 365–370.

Springer-Verlag, 2001.

Van den Nieuwelaar, N.J.M. Supervisory Machine Control by Predictive-

Reactive Scheduling. Ph.D. thesis, Technische Universiteit Eindhoven,

2004.

Van den Nieuwelaar, N.J.M., J.M. van de Mortel-Fronczak, and J.E. Rooda.

Design of supervisory machine control. In Glover, Keith and Jan

Maciejowski, editors, Proceedings of the European Control Conference

ECC 2003. 2003.

Van der Aalst, Wil, Ton Weijters, and Laura Maruster. Workflow min-

ing: Discovering process models from event logs. IEEE Transactions on

Knowledge and Data Engineering, 16(9):pages 1128–1142, 2004.

Van Deursen, A., C. Hofmeister, R. Koschke, L. Moonen, and C. Riva.

Symphony: View-driven software architecture reconstruction. In Pro-

ceedings of the 4th Working IEEE/IFIP Conference on Software Archi-

tecture (WICSA 4), pages 122–134. IEEE Computer Society, 2004.

Van Deursen, Arie. De software-evolutieparadox. http://homepages.cwi.nl/

~arie/intreerede/, 2005. Inaugural lecture Delft University of Technology.

Van Deursen, Arie, Jan Heering, and Paul Klint, editors. Language Proto-

typing: An Algebraic Specification Approach, volume 5 of AMAST Series

in Computing. World Scientific Publishing Co., 1996.

Van Deursen, Arie and Paul Klint. Little languages: Little maintenance?

Journal of Software Maintenance: Research and Practice, 10(2):pages 75–

92, 1998.

Van Deursen, Arie, Paul Klint, and Joost Visser. Domain-specific lan-

guages: An annotated bibliography. ACM SIGPLAN Notices, 35(6):pages

26–36, 2000.

Van Deursen, Arie and Joost Visser. Source model analysis using the JJ-

Traveler visitor combinator framework. Software: Practice and Experi-

ence, 34(14):pages 1345–1379, 2004.

Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the systematic con-

formance check of software artefacts. In Proceedings of the 2nd European

Workshop on Software Architecture (EWSA 2005), volume 3047 of Lecture

Notes on Computer Science, pages 203–221. Springer-Verlag, 2005.

Van Genuchten, Michiel. The impact of software growth on the electronics

industry. IEEE Computer, 40(1):pages 106–108, 2007.

220 BIBLIOGRAPHY

Van Ommering, Rob, Frank van der Linden, Jeff Kramer, and Jeff Magee.

The Koala component model for consumer electronics software. IEEE

Computer, 33(3):pages 78–85, 2000.

Viennot, Gérard Xavier. Heaps of pieces, I: Basic definitions and combina-

torial lemmas. In Proceedings of the Colloque de combinatoire énuméra-

tive (UQAM 1985), Montreal, Canada, volume 1234 of Lecture Notes in

Mathematics, pages 321–350. Springer-Verlag, 1986.

Visser, Eelco. Program transformation with stratego/xt: Rules, strategies,

tools, and systems in stratego/xt 0.9. In Domain-Specific Program Gen-

eration, number 3016 in Lecture Notes in Computer Science, pages 216–

238. Springer-Verlag, 2004.

Wang, Yingxu, Graham King, HakanWickberg, and Alec Dorling. What the

software industry says about the practices modelled in current software

process models? In Proceedings of the 25th EUROMICRO Conference,

volume 2, pages 162–168. IEEE Computer Society, 1999.

Whittle, Jon and Johann Schumann. Generating statechart designs from

scenarios. In Proceedings of the 22nd International Conference on Soft-

ware Engineering (ICSE 2000), pages 314–323. IEEE Computer Society,

2000.

Wirth, Niklaus. Program development by stepwise refinement. Communi-

cations of the ACM, 14(4):pages 221–227, 1971.

Yin, Robert K. Case Study Research: Design and Methods. Sage Publica-

tions, 2003.

Summary

Two well-known software engineering laws state that 1) software has to

be changed constantly in response to new user requirements or a changed

environment, that is, software evolves continuously and 2) software that

is changed, becomes more complicated. The consequence of this trend of

increasing complexity is that the maintainability of software systems de-

creases over time: it becomes more and more difficult to make changes.

The complexity of a software system is for a large part determined by its

structure, often referred to as architecture. This thesis focuses on the evolu-

tion of software architectures. This type of evolution, while common, comes

with a considerable risk and cost. Our aim is to reduce this risk and cost.

Two obvious strategies to remedy the problem of reduced maintainabil-

ity of software systems are: 1) apply techniques to manage the increasing

complexity, or 2) apply techniques to reduce the complexity. Automation

and abstraction are two basic software engineering techniques to support

these strategies. In this thesis we investigated the applicability of tech-

nologies for a new approach of software development, based on automation

and abstraction, to support the evolution of software architectures. This

new approach is referred to as model-driven software development.

The main research question addressed in this work is: How can evo-

lution of software architecture be supported? We clarified the scope of our

work by defining three related subquestions that deal with integration of

evolution support in industrial practice, the implication of the use of prod-

uct line principles on the evolution support, and the automation of evolu-

tion support using model-driven software development techniques.

To get a better understanding of the use software engineering technolo-

gies for different types of tasks in industry, we started by conducting a

survey. In this survey we asked software practitioners of eight software de-

velopment organisations about the software engineering technologies they

use. We also paid attention to the situation in which certain technologies

are applied and potential problems. The trends we observed during this

survey include: the use of product-line approaches, the informal use of mod-

221

222 Summary

elling and the importance of the evolutionary aspect of software (i.e., soft-

ware is seldom developed from scratch). Partly the results of this survey

motivated the aforementioned research questions.

Then, by case studies at Océ and ASML, we investigated how the evolu-

tion of software architectures can be supported. In particular we considered

four types of software engineering tasks related to software evolution

Evaluation A first step when performing changes to a software system,
is the evaluation of whether these changes can be realised within the

current architecture. Here, we mainly investigated how such an eval-

uation can be conducted in the context of a software product line.

Conformance checking When an architecture has to be changed it is
useful to know to extent to which it is consistent with other devel-

opment artefacts. We focused on how model-driven software develop-

ment technologies can be applied to answer that question.

Migration We investigated how an actual migration can be partly auto-
mated by the use of model transformations.

Documentation A disadvantage of the application of domain-specific lan-
guages for model-driven software development is that the definition

of a (graphical) notation requires considerable effort. We investigated

how model transformations can be deployed to map such languages to

UML notation.

We studied each of these tasks separately in a case study.

The informal use of modelling in industry makes it necessary to intro-

duce a normalisation step to enable the integration of evolution support in

industrial practice. This thesis includes several examples of how to imple-

ment this step, which is typically context specific. Additionally by the use

of several standards in the area of model-driven software development we

further improve the potential integration of our results in practice.

In several chapters we address the impact of the use of product-line

principles for the development of software systems on the software evo-

lution support we introduce. Although the increased scope of software

product-lines makes such support more difficult to develop, at the same

time the return on investment (e.g., for the use of a model-driven approach)

is much improved.

The model-driven support for the evolution tasks that we present in

this thesis follows a similar three-step pattern. A set of source models is

first ’preprocessed’ into a form suitable for model transformations. This

preprocessing includes a normalisation step as well as a translation into

Summary 223

a representation based on the same technology as the model transforma-

tions. Then, model transformations are applied that are defined in a model

transformation language. These transformations do the actual work such

as conformance checking (i.e., using two source models) or migration. Fi-

nally, the resulting target models are postprocessed into the desired target

form. This might be a graphical representation or some representation in-

tended for further processing.

Samenvatting

Twee bekende wetten in de software-engineering zeggen dat: 1) software

voortdurend moet worden aangepast aan nieuwe en gewijzigde omgevings-

en gebruikerseisen; met andere woorden software evolueert continu en 2)

software die gewijzigd wordt, wordt steeds ingewikkelder. Het gevolg van

deze toenemende complexiteit is dat de onderhoudbaarheid van software-

systemen afneemt met de tijd: het wordt steeds moeilijker veranderingen

aan te brengen. Voor een groot deel wordt de complexiteit van een softwa-

resysteem bepaald door zijn structuur, ook wel architectuur genoemd. De

focus in dit proefschrift is op de evolutie van softwarearchitecturen. Hoe-

wel dit soort evolutie vaak voorkomt, is ze risicovol en kostbaar. Ons doel

is het risico en de kosten die gepaard gaan met de evolutie van softwarear-

chitecturen te verminderen.

Voor het probleem dat de onderhoudbaarheid van softwaresystemen af-

neemt bestaan twee voor de hand liggende oplossingsstrategieën: 1) het

gebruik van technieken om de toenemende complexiteit te beheersen en 2)

het gebruik van technieken om de complexiteit te verminderen. Automati-

sering en abstractie zijn twee bekende software-engineeringtechnieken die

voor deze twee strategieën ingezet kunnen worden. In dit proefschrift heb-

ben we onderzocht hoe technieken voor een nieuwe aanpak voor software

ontwikkeling, die gebaseerd is op automatisering en abstractie, toegepast

kunnen worden voor de evolutie van softwarearchitecturen. Deze nieuwe

aanpak wordt modelgedreven softwareontwikkeling genoemd.

De hoofdonderzoeksvraag die we behandelen is: Hoe kan de evolutie van

softwarearchitecturen worden ondersteund?. Een drietal gerelateerde sub-

vragen bakenen ons onderzoek verder af. Deze subvragen gaan over de

integratie van potentiële evolutieondersteuning in de industriële praktijk,

de gevolgen van het gebruik van productlijnen op de evolutieondersteuning

en de automatisering van de evolutieondersteuning door middel van model-

gedreven softwareontwikkeltechnologieën.

Om beter te begrijpen welke softwareontwikkeltechnologieën op welke

manier worden ingezet voor verschillende soorten taken, zijn we begon-

225

226 Samenvatting

nen met een enquête. In deze enquête hebben we mensen in verschillende

rollen bij een achttal organisaties in de software-industrie gevraagd naar

de ontwikkeltechnologieën die ze gebruiken. Belangrijke aandachtspunten

hierbij waren ook de situatie waarin gebruik wordt gemaakt van een be-

paalde technologie en de problemen die daarbij optreden. Enkele trends

die we tijdens de enquête hebben opgemerkt zijn: het toenemende gebruik

van productlijnen, de informele wijze van modelleren en het belang van het

evolutionaire aspect van software (softwaresystemen worden zelden vanuit

het niets ontwikkeld). Deels hebben de resultaten van deze enquête geleid

tot eerder genoemde onderzoeksvragen.

Vervolgens hebben we met behulp van casestudy’s bij Océ en ASML on-

derzocht hoe de evolutie van softwarearchitectuur ondersteund kan wor-

den. We hebben ons hierbij gericht op vier typen softwareontwikkeltaken

die te maken hebben met software-evolutie

Evaluatie Een eerste stap bij wijzigingen is het vaststellen of zij binnen
de huidige architectuur gerealiseerd kunnen worden. Hier hebben we

vooral onderzocht hoe zo’n evaluatie in de context van een productlijn

gemaakt kan worden.

Consistentie Wanneer de architectuur moet worden aangepast is het nut-
tig te weten in welke mate deze consistent is met andere ontwikke-

lartefacten. Wij hebben ons geconcentreerd op de mogelijkheden van

modelgedreven softwareontwikkeltechnieken voor het vinden van een

antwoord op die vraag.

Migratie Wij hebben onderzocht hoe een daadwerkelijke migratie gedeel-
telijk geautomatiseerd kan worden met behulp van modeltransforma-

ties.

Documentatie De toepassing van domeinspecifieke talen voor modelge-
dreven softwareontwikkeling heeft als nadeel dat de ontwikkeling van

een (grafische) notatie veel inspanning vergt. Wij hebben onderzocht

hoe model transformaties kunnen worden ingezet om zulke talen af

te beelden op de UML notatie.

We hebben elk van deze taken bestudeerd in een aparte casestudy.

De informele wijze van modelleren in de industrie maakt het noodzake-

lijk een normalisatiestap te introduceren om de integratie van evolutieon-

dersteuning in de industriële praktijk mogelijk te maken. Dit proefschrift

bevat verscheidene voorbeelden van hoe deze stap, die contextafhankelijk

is, te realiseren. Verder verbeteren we de integreerbaarheid van onze re-

sultaten in de praktijk door het gebruik van een aantal standaarden op het

gebied van modelgedreven softwareontwikkeling.

Samenvatting 227

In meerdere hoofdstukken komen we terug op de invloed van het ge-

bruik van productlijnen voor de ontwikkeling van softwaresystemen op de

evolutieondersteuning die we ontwikkelen. Alhoewel de grotere reikwijdte

van productlijnen dit moeilijker maakt, nemen de mogelijkheden de nood-

zakelijke investeringen (bv. voor het gebruik van een modelgedreven aan-

pak) terug te verdienen eveneens toe.

De modelgedreven ondersteuning voor de software-evolutietaken die we

in dit proefschrift presenteren volgt een vergelijkbaar driestappenpatroon.

Een verzameling bronmodellen wordt eerst zodanig geprepareerd dat de

modellen een formaat krijgen dat geschikt is om te transformeren met mo-

deltransformaties. De preparatiestap omvat een normalisatie en een ver-

taling naar een representatie die gebaseerd is op dezelfde technologie als

de toe te passen modeltransformaties. Vervolgens worden deze transfor-

maties, die gedefinieerd worden in een modeltransformatietaal, toegepast.

Deze transformaties doen het eigenlijke werk, zoals het controleren van

consistentie (dus met twee bronmodellen) of een migratie. Tenslotte wordt

het resultaat nog bewerkt om het in een gewenst formaat te brengen. Dit

kan bijvoorbeeld een grafische representatie zijn of een tijdelijke represen-

tatie bedoeld voor verdere bewerking.

Curriculum Vitae

Bas Graaf was born in The Hague on Friday the 13th of January in 1978.

There, he graduated gymnasium (high school) in 1996 at CSG Overvoorde.

Subsequently he enrolled in the computer science program at Delft Univer-

sity of Technology. After specialising in software engineering he received

his master’s degree in 2002. He wrote his master’s thesis on component-

based software development and the Unified Modeling Language under su-

pervision of Dr. P.G. Kluit and Prof.dr.ir. J.L.G. Dietz.

In 2002 he started his Ph.D. research at the software technology de-

partment of Delft University of Technology. During this research under

supervision of Prof.dr. A. van Deursen he investigated the applicability of

model-driven software development technologies to support software evo-

lution.

229

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: the-

oretical and experimental aspects.

Faculty of Mathematics and Natu-

ral Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of In-

dustrial Systems. Faculty of Math-

ematics and Computer Science and

Faculty of Mechanical Engineering,

TU/e. 2002-02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Sys-

tems. Faculty of Natural Sciences,

Mathematics and Computer Sci-

ence, UvA. 2002-03

S.P. Luttik. Choice Quantifica-

tion in Process Algebra. Faculty

of Natural Sciences, Mathematics,

and Computer Science, UvA. 2002-

04

R.J. Willemen. School Timetable
Construction: Algorithms and

Complexity. Faculty of Mathemat-

ics and Computer Science, TU/e.

2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-

time and Parametric Systems. Fac-

ulty of Science, Mathematics and

Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathemat-

ics and Natural Sciences, UL. 2002-

07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in

Model Checking of Timed and Hy-

brid Systems. Faculty of Science,

Mathematics and Computer Sci-

ence, KUN. 2002-08

R. van Stee. On-line Scheduling
and Bin Packing. Faculty of Math-

ematics and Natural Sciences, UL.

2002-09

D. Tauritz. Adaptive Informa-

tion Filtering: Concepts and Algo-

rithms. Faculty of Mathematics

and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty

of Natural Sciences, Mathematics,

and Computer Science, UvA. 2002-

11

J.I. den Hartog. Probabilistic

Extensions of Semantical Models.

Faculty of Sciences, Division of

Mathematics and Computer Sci-

ence, VUA. 2002-12

L. Moonen. Exploring Software
Systems. Faculty of Natural Sci-

ences, Mathematics, and Computer

Science, UvA. 2002-13

J.I. van Hemert. Applying Evolu-
tionary Computation to Constraint

Satisfaction and Data Mining. Fac-

ulty of Mathematics and Natural

Sciences, UL. 2002-14

S. Andova. Probabilistic Process
Algebra. Faculty of Mathematics

and Computer Science, TU/e. 2002-

15

Y.S. Usenko. Linearization in

µCRL. Faculty of Mathematics and
Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2003-01

M. de Jonge. To Reuse or To

Be Reused: Techniques for com-

ponent composition and construc-

tion. Faculty of Natural Sciences,

Mathematics, and Computer Sci-

ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Represen-

tations. Faculty of Natural Sci-

ences, Mathematics, and Computer

Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and

Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras

with Data and Timing. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2003-05

S.V. Nedea. Analysis and Simu-
lations of Catalytic Reactions. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2003-06

M.E.M. Lijding. Real-time

Scheduling of Tertiary Storage.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2003-07

H.P. Benz. Casual Multime-

dia Process Annotation – CoMPAs.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2003-08

D. Distefano. On Modelchecking
the Dynamics of Object-based Soft-

ware: a Foundational Approach.

Faculty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2003-09

M.H. ter Beek. Team Automata
– A Formal Approach to the Mod-

eling of Collaboration Between Sys-

tem Components. Faculty of Math-

ematics and Natural Sciences, UL.

2003-10

D.J.P. Leijen. The λ Abroad –
A Functional Approach to Software

Components. Faculty of Mathe-

matics and Computer Science, UU.

2003-11

W.P.A.J. Michiels. Performance

Ratios for the Differencing Method.

Faculty of Mathematics and Com-

puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs

and Terms and Their Use in Inter-

active Theorem Proving. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2004-02

P. Frisco. Theory of Molecular

Computing – Splicing and Mem-

brane systems. Faculty of Mathe-

matics and Natural Sciences, UL.

2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and

Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization

and Browsing for Home Environ-

ments. Faculty of Mathematics and

Computer Science and Faculty of

Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specifi-

cation Formats. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical For-

malization and Applications. Fac-

ulty of Science, Mathematics and

Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous

Agents in Bargaining Games: An

Evolutionary Investigation of Fun-

damentals, Strategies, and Busi-

ness Applications. Faculty of Tech-

nology Management, TU/e. 2004-

08

N. Goga. Control and Selection
Techniques for the Automated Test-

ing of Reactive Systems. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2004-09

M. Niqui. Formalising Exact

Arithmetic: Representations, Algo-

rithms and Proofs. Faculty of Sci-

ence, Mathematics and Computer

Science, RU. 2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Com-

puter Science, UU. 2004-11

I.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Naviga-

tion. Faculty of Mathematics and

Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Condition-

ally Guaranteed Budgets. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2004-13

J. Pang. Formal Verification of

Distributed Systems. Faculty of

Sciences, Division of Mathematics

and Computer Science, VUA. 2004-

14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Tech-

nology Management, TU/e. 2004-

15

E.O. Dijk. Indoor Ultrasonic Po-
sition Estimation Using a Single

Base Station. Faculty of Math-

ematics and Computer Science,

TU/e. 2004-16

S.M. Orzan. On Distributed Ver-
ification and Verified Distribution.

Faculty of Sciences, Division of

Mathematics and Computer Sci-

ence, VUA. 2004-17

M.M. Schrage. Proxima - A

Presentation-oriented Editor for

Structured Documents. Faculty of

Mathematics and Computer Sci-

ence, UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Qual-

ity Attributes for Component-Based

Software Architectures. Faculty of

Mathematics and Computer Sci-

ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process
Algebra. Faculty of Mathematics

and Computer Science, TU/e. 2004-

20

N.J.M. van den Nieuwelaar.
Supervisory Machine Control by

Predictive-Reactive Scheduling.

Faculty of Mechanical Engineering,

TU/e. 2004-21

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -

Theory and Tool Support- . Fac-

ulty of Mathematics and Natural

Sciences, UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty

of Biomedical Engineering, TU/e.

2005-02

C.N. Chong. Experiments in

Rights Control - Expression and

Enforcement. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-

ulty of Mathematics and Comput-

ing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applica-

tions. Faculty of Mathematics and

Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-

proach to Developing Future-Proof

System Architectures. Faculty of

Mathematics and Computing Sci-

ences, TU/e. 2005-06

G. Lenzini. Integration of Anal-
ysis Techniques in Security and

Fault-Tolerance. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2005-08

T. Wolle. Computational Aspects
of Treewidth - Lower Bounds and

Network Reliability. Faculty of Sci-

ence, UU. 2005-09

O. Tveretina. Decision Proce-

dures for Equality Logic with Un-

interpreted Functions. Faculty of

Mathematics and Computer Sci-

ence, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-

ronments. Faculty of Biomedical

Engineering, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classi-

fication and Symbolic Regression.

Faculty of Mathematics and Natu-

ral Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,

UU. 2005-13

G.F. Frehse. Compositional Ver-
ification of Hybrid Systems using

Simulation Relations. Faculty of

Science, Mathematics and Com-

puter Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analy-
sis of Probabilistic Systems. Fac-

ulty of Mathematics and Computer

Science, TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Pro-

cesses with Replication. Faculty

of Mathematics and Natural Sci-

ences, UL. 2005-17

P. Zoeteweij. Composing Con-

straint Solvers. Faculty of Natural

Sciences, Mathematics, and Com-

puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing

and Rewriting. Faculty of Natural

Sciences, Mathematics, and Com-

puter Science, UvA. 2005-19

M.Valero Espada. Modal Ab-

straction and Replication of Pro-

cesses with Data. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through

Haskell. Faculty of Science, UU.

2005-21

Y.W. Law. Key management and
link-layer security of wireless sen-

sor networks: energy-efficient at-

tack and defense. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Fac-

ulty of Science, UU. 2006-01

R.J. Corin. Analysis Models for
Security Protocols. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-

tems. Faculty of Science, UU. 2006-

03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and

Analysis of Hybrid Systems. Fac-

ulty of Mathematics and Computer

Science and Faculty of Mechanical

Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-

port and Compositionality. Faculty

of Mathematics and Natural Sci-

ences, UL. 2006-05

M. Hendriks. Model Checking

Timed Automata - Techniques and

Applications. Faculty of Science,

Mathematics and Computer Sci-

ence, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,

VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of

JML programs. Faculty of Sci-

ence, Mathematics and Computer

Science, RU. 2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty

of Biomedical Engineering, TU/e.

2006-09

S.G.R. Nijssen. Mining Struc-

tured Data. Faculty of Mathemat-

ics and Natural Sciences, UL. 2006-

10

G. Russello. Separation and

Adaptation of Concerns in a Shared

Data Space. Faculty of Mathemat-

ics and Computer Science, TU/e.

2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.

Faculty of Science, Mathematics

and Computer Science, RU. 2006-

12

B. Badban. Verification tech-

niques for Extensions of Equality

Logic. Faculty of Sciences, Division

of Mathematics and Computer Sci-

ence, VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardiza-

tion. Faculty of Mathematics and

Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of

Electrical Engineering, Mathemat-

ics & Computer Science, UT. 2006-

15

M.E. Warnier. Language Based
Security for Java and JML. Faculty

of Science, Mathematics and Com-

puter Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-

trical Engineering, Mathematics &

Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty

of Science, Mathematics and Com-

puter Science, RU. 2006-18

L.C.M. van Gool. Formalising

Interface Specifications. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2006-19

C.J.F. Cremers. Scyther - Se-

mantics and Verification of Security

Protocols. Faculty of Mathematics

and Computer Science, TU/e. 2006-

20

J.V. Guillen Scholten. Mobile

Channels for Exogenous Coordina-

tion of Distributed Systems: Se-

mantics, Implementation and Com-

position. Faculty of Mathematics

and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty

of Natural Sciences, Mathematics,

and Computer Science, UvA. 2007-

01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for

streaming DSP applications. Fac-

ulty of Electrical Engineering,

Mathematics & Computer Science,

UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-

normalities in Locally Autonomous

Distributed Systems. Faculty of

Mathematics and Computing Sci-

ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-

bra. Faculty of Natural Sciences,

Mathematics, and Computer Sci-

ence, UvA. 2007-04

L. Brandán Briones. Theories

for Model-based Testing: Real-time

and Coverage. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-

ence, Mathematics and Computer

Science, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty

of Mathematics and Computer Sci-

ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transi-
tion Systems and Markov Chains.

Faculty of Mathematics and Com-

puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-

ematics and Computer Science, RU.

2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development

Processes. Faculty of Electrical

Engineering, Mathematics & Com-

puter Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing

Systems. Faculty of Mechanical

Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:

Analysing and Optimising System

Behaviour in Time. Faculty of Sci-

ences, Division of Mathematics and

Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A

Series of Empirical Studies about

the UML. Faculty of Mathematics

and Computer Science, TU/e. 2007-

14

T. van der Storm. Component-
based Configuration, Integration

and Delivery. Faculty of Natural

Sciences, Mathematics, and Com-

puter Science, UvA. 2007-15

B.S. Graaf. Model-Driven Evo-

lution of Software Architectures.

Faculty of Electrical Engineering,

Mathematics, and Computer Sci-

ence, TU Delft. 2007-16

