Model-Driven Evolution

of Software Architectures

Model-Driven Evolution of Software Architectures

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 27 november 2007 om 12:30 uur

door

Bastiaan Stephan GRAAF

informatica ingenieur
geboren te Den Haag

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr. A. van Deursen, Technische Universiteit Delft, promotor
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft

Prof.dr.ir. A. Verbraeck, Technische Universiteit Delft

Prof.dr. M.G.J. van den Brand, Technische Universiteit Eindhoven
Prof. Dr.rer.nat. R. Koschke, Universitidt Bremen

Dr. L. Somers, Océ en Technische Universiteit Eindhoven

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).

The research described in this thesis was made possible through suppport
of SenterNovem (Moose project) and NWO (Reconstructor project).

IPA Dissertation Series 2007-16

Copyright © 2007 by Bas Graaf

About the cover: The cover shows a fragment of Johannes Vermeer:
‘View on Delft’, Mauritshuis, The Hague (ca. 1661-1664. Oil on canvas)
and a picture taken from the same viewpoint by René van der Krogt in
May 2006.

Printed by Universal Press, Veenendaal

ISBN: 978-90-9022390-2

Preface

At last! Time has come to write the preface to my PhD-thesis. During the
almost five and a half years it took me to arrive at this point, I started to
compare the process of doing a PhD with the running exercises I do in be-
tween two football seasons. I always start very enthusiastic and motivated,
halfway I doubt that I will ever make it and almost regret to have started;
near the end I try hard to put in all remaining energy to make it to the
finish; and afterwards I feel good, happy, and proud about what I've done.
Like I feel now. One big difference is that during my PhD-career I encoun-
tered many people that helped me or that made the whole exercise more
pleasant. Those people deserve to be acknowledged. Well, here it goes.

If crossing the finish line has to be attributed to one person, than that
person has got to be Arie van Deursen. Arie, I am very grateful to you for
‘adopting’ me as a PhD-student. For me the best remedy to overcome seem-
ingly dead ends in my research or when writing articles was a conversation
with you. You have been a truly inspiring teacher! For this and many other
reasons it was a pleasure to work with you.

I want to thank Hans Toetenel and Jan Dietz for talking me into this
excercise in the first place. I am also grateful for Hans’ supervision during
the first phase of my work as a PhD-student.

Of course somebody has to read the result of all that work. For this, my
gratitude goes to the members of the examination committee: Prof. H.d.
Sips, Prof. A. Verbraeck, Prof. M.G.J. van den Brand, Prof. R. Koscke, and
Dr. L. Somers.

I've had the opportunity to work in several research projects: Moose,
Merlin, Ideals and Reconstructor. During all these projects I worked to-
gether with interesting and inspiring people. Thank you all for that! More
in particular, I want to thank Rini van Solingen for all kinds of general
advice on how to succeed as a PhD-student. Also I want to specially thank
Sven Weber as a co-author of one of the publications on which this thesis is
based.

vi Preface

Furthermore, I want to mention all (former) colleagues of the software
engineering department for all the nice lunches, drinks, and diners. In
particular I am grateful to Hylke van Dijk and Marco Lormans. Hylke as a
co-author of two articles on which this thesis is based, and for asking those
nasty questions all the time. With Marco I worked together already since
the beginning of our master-thesis project seven years ago, all that time
as roommates. Most working trips have been quite memorable because of
him. Thanks!

Finally, I want to thank Daan for being patient enough to cope with me
being almost finished for a such a long time and, putting on hold all other
plans; for being impatient enough to apply the right amount of pressure;
and for being my girl-friend all the way.

Bas Graaf
Delft, August 2007

Contents

Preface

List of Figures

Abbreviations

1 Introduction

2

1.1
1.2

1.3
14
1.5

Problem Description: Evolution of Software Architectures

Objectives i i e e
1.2.1 Integrationin Practice
1.2.2 ProductLines
1.2.3 Model-Driven Engineering
Approach
OVerview o it ittt e e e e
Origin of Chapters

Background

2.1
2.2

2.3

Software Evolution
Architecture-Driven Software Development
2.2.1 Software Architecture
2.2.2 Software Architecture Usage
2.2.3 Software Architecture Design
2.2.4 Software Architecture Description
2.2.5 Software Architecture Evaluation
2.2.6 Software Product Lines
Model-Driven Engineering
231 Modelling.
2.3.2 Metamodelling
2.3.3 Model Transformations.
2.3.4 MDE and Other Technological Spaces

vii

» <

ol
(&N
=1
=1

L O © 00 =T =TT =

=

—_
=3

viii Contents

2.4 Model-Driven Evolution of Software Architectures 38
3 Embedded-Software Engineering: The State of the Practice 41
3.1 Introduction, 41
3.2 Methodsand Scope 42
3.3 Embedded-Software Development Context 45
3.4 Requirements Engineering Results 47
3.4.1 Requirements Specification 48
3.4.2 Requirements Management 49
3.5 Software Architecture Results 50
3.5.1 Software Architecture Design 50
3.5.2 Software Architecture Description 51
3.5.3 Software Architecture Evaluation 52
354 Reuse e 53
3.6 Discussion 54
3.7 Outlook e 55
4 Evaluating an Embedded Software Reference Architecture
- Industrial Experience Report - 57
4.1 Introduction, 57
4.2 Overview of the Reference Architecture 59
4.2.1 BusinessDrivers 59
4.2.2 Reference Architecture 60
423 Structure e 61
424 Usage v v v i e e e e e e e e 61
4.3 Evaluation Approach 63
4.3.1 Selection of Evaluation Method 63
43.2 TailoringSAAM 65
4.4 Conducting the Evaluation. 67
441 Preparation 67
4.4.2 Scenarios e e e e e e 67
443 Execution. 68
444 Overall Evaluation 70
4.5 Discussion e e 71
4.5.1 Reference Architecture 71
452 Distributed SAAM 73
4.6 RelatedWork. 75
4.7 Conclusion 76
5 Model-Driven Consistency Checking of Behavioural
Specifications 77
5.1 Introduction 77

5.2 RunningExample 80

Contents

5.3
5.4

5.5

5.6

5.7
5.8

Related Work
Model-Driven Consistency Checking
5.4.1 Enabling Technologies
5.4.2 Behavioural Modelling
5.4.3 Consistency Checking Approach
Generating State Machines
5.5.1 Instantiating a Source Model
5.5.2 Model Transformations
ApplicationtoOcé
5.6.1 Source Model Normalisation.
56.2 Results
Discussion
Conclusions

Model-Driven Conformance Checking of Structural

Specifications

6.1
6.2
6.3

6.4

6.5

6.6

6.7
6.8

Introduction
Running Example
Approach
6.3.1 Conformance Checking System
6.3.2 Model-Driven Conformance Checking
Viewpoints and Metamodels
6.4.1 Component-and-Connector Views
6.4.2 ModuleViews
Mappings and Model Transformations
6.5.1 Model Population
6.5.2 Model Comparison
6.5.3 Model Presentation
Discussion e e
6.6.1 Modelware
6.6.2 Improving the Approach
Relatedwork
Conclusions

Model-driven Migration of Supervisory Machine Control

Architectures

7.1
7.2
7.3

7.4

Introduction
Related Work
Migration Context
7.3.1 Supervisory Machine Control
7.3.2 Running Example: A Wafer Scanner
7.3.3 Concerns for Supervisory Machine Control Systems .
Model-Driven Migration

ix

82
83
83
85
87
88
88
89
94
94
95
98
101

103
103
105
108
108
109
110
111
112
114
114
118
121
121
121
123
125
126

129
129
132
133
133
134
135

8

Contents

7.5 Source Metamodel
7.6 NormalisationRules
7.7 Target Metamodel
7.8 Transformation
7.8.1 The Atlas Transformation Language
7.8.2 Basic Target Model Elements
7.8.3 Concern-Based Transformation Rules
7.8.4 TransformationResults
7.9 Evaluation
7.10 Conclusions and Future Work

Visualisation of Domain-Specific Modelling Languages
Using UML
8.1 Introduction
82 Background,
8.2.1 Software Architecture
8.2.2 Enabling MDE Technologies
8.3 Model-Driven Architectural Views
8.3.1 MDAV Framework
832 MDAV Process
8.4 Using MDAV to Generate Views
8.4.1 Module-UsesView
8.4.2 Component-and-Connector View
8.5 Industrial Application
8.6 Discussion
87 RelatedWork.
8.8 Concluding Remarks

Conclusion

9.1 Contributions
9.2 Integration in Practice (RQ1)
9.3 Software Product Lines (RQ2)
9.4 Model-Driven Engineering (RQ3)
9.5 Support for Evolution of Software Architectures (RQ0)

9.6 Future Work and Recommendations

References

Summary

Samenvatting

Curriculum Vitae

167
167
169
169
171
172
172
173
174
174
177
181
185
186
187

189
190
190
193
194
199
201

205
221
225

229

List of Figures

1.1
1.2
1.3

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8

3.1

3.2

4.1
4.2
4.3
44

5.1
5.2
5.3
54
5.5
5.6

ASML wafer scanner
Software evolutiontasks
Océcopier v i i it e e e e

Complexity vs. size for subsequent revisions of copier software
Fundamental relations between system, model, and meta-
model
Layered MDE modelling stack
Metamodel and conforming model
Conforms torelationin MDE
Model transformation megamodel
A metamodel for simple classmodels
Three-dimensional evolution framework

The decomposition of the embedded-systems-development
PTOCESS . o o v e it e e e e e e e e

Embedded-systems-development stakeholders and other fac-
tors e

Main flowsinacopier.
The reference architecture and derived projects.
SAAM StePS . . o« v v e e e e e e e e e e
SAAMresults L L

Typical development process
Architecture for copier engines
Constraints
Collaborations (simplified)
Statemachines
Flat statemachine

xi

18

xii

List of Figures

5.7 Example scenario: request a copier engine to go to standby
whileitisrunning 96
5.8 Merged state model of ESM (fragment) 97
6.1 Aligning architecture and implementation. 104
6.2 Digital music box reader system 106
6.3 Architecturalviews 107
6.4 Conceptual Conformance Checking System 109
6.5 Generic metamodel element 111
6.6 Metamodels 113
6.7 Reconstructed MADLmodels 117
6.8 Reconstructed CPADLmodels 119
6.9 Merged MADL conformancemodel 119
6.10 Merged CPADL conformance model 120
7.1 Machine control context 133
7.2 Simplified layout of a wafer scanner 134
7.3 Generic two-phased migration approach 137
7.4 Source metamodel 139
7.5 Processwaferrequest. 141
7.6 Unload waferrequest 142
7.7 Normalised process waferrequest. 148
7.8 Normalised unload waferrequest 149
7.9 Module view for the product-line SMC architecture 150
7.10 Target metamodel 151
7.11 Results for unload waferrequest 160
7.12 One of three concurrent state models (made anonymous) . . 164
8.1 MDAV framework 172
8.2 C&C model of CaPiTaLiZe (ACME) 174
83 MADL 175
84 CCADL i i i it 178
8.5 XML metamodel 180
8.6 Task-resource metamodel, model, and UML representation . 184

9.1 Megamodel for model-driven evolution of software architec-

tures. e e 195

Abbreviations

ADL architecture description language

ALMA architecture-level modifiability analysis [Bengtsson et al., 2004]
API application programming interface

AST abstract syntax tree

ATAM Architecture Tradeoff Analysis Method [Clements et al., 2002b]
ATL Atlas Transformation Language [Jouault and Kurtev, 2005]
COTS commercial off-the-shelf

CMM Capability Maturity Model [Humphrey, 1989]

DSAAM Distributed SAAM

DSL domain-specific language

DSML domain-specific modelling language

DTD Document Type Definition

EBNF Extended Backus-Naur form

EMF Eclipse Modeling Framework!

FSM finite state machine

GMF Graphical Editing Framework?

GPL general-purpose language

ITEA Information Technology for European Advancement3

Ihttp:/www.eclipse.org/emf (June 2007)
2http://www.eclipse.org/gmf (June 2007)
3http://www.itea-office.org (June 2007)

xiii

Xiv
MDA
MDE
MDR
MOF
MOOSE
OCL
OMG
QvT
SAAM
SEI
SMC

SPICE

SVG
UML
XMi

XML

XSLT

ABBREVIATIONS

Model Driven Architecture’

model-driven engineering

Metadata Repository?

MetaObject Facility®

Software Engineering MethOdOlogieS for Embedded Systems*
Object Constraint Language®

Object Management Group®

Query/View/Transformation [OMG, 2005]

Software Architecture Analysis Method [Kazman et al., 1996]
Software Engineering Institute’

supervisory machine control

Software Process Improvement and Capability dEtermina-
tion [Emam et al., 1997]

Scalable Vector Graphics®
Unified Modeling Language”
XML Metadata Interchange!®
Extensible Markup Language!!

Extensible Stylesheet Language Transformations!2

Thttp://www.omg.org/mda (June 2007)
thtp://mdr.netbeans.org (June 2007)
Shttp:/www.omg.org/mof (June 2007)
4http://www.mooseproject.org (June 2007)
Shttp://www.omg.org/technology/documents/modeling_spec_catalog. htm#OCL (June 2007)
Shttp:/www.omg.org (June 2007)
Thttp:/www.sei.cmu.edu (June 2007)
8http://www.w3.org/Graphics/SVG (June 2007)
Shttp://www.uml.org (June 2007)
Ohttp://www.omg.org/mda/specs. htm#XMI (June 2007)
Uhttp://www.w3.org/XML (June 2007)
Lhttp://www.w3.org/TR/xslt (June 2007)

Chapter

Introduction?!

Most software that is really used is exposed to many forces that require
it to change, such as changing user requirements or a changing operating
environment. As a result software changes continuously. This process is
called software evolution [Lehman and Belady, 1985].

When changes are required to a software system, the question is
whether they can be implemented within the bounds set by the current
architecture or require a redesign of the architecture.

The former causes types of software evolution referred to as architec-
tural drift and erosion [Perry and Wolf, 1992]. Architectural drift occurs
when the current architecture is not well-understood by the developers in-
volved in making these small-scale changes. As a result their changes are
based on a software architecture that is different from the intended archi-
tecture. Architectural erosion is caused by violations of the architecture.
Both have a negative effect on the maintainability of software.

Eventually architectural drift and erosion make a redesign of the archi-
tecture unavoidable. In this thesis we consider this type of software evolu-
tion, that is, on the level of architecture. Although we discuss the concepts
of software architecture extensively in Chapter 2, for now it suffices to de-
scribe architecture as the high-level or global design of a software system.

To illustrate the need for and implications of architectural changes, con-
sider the following situation at ASML, a company that develops manufac-
turing machines for the semiconductor industry. A new architecture for
the control software of one of ASML’s products, a so-called wafer scanner
(see Figure 1.1 on the following page), is investigated [Van den Nieuwelaar
et al., 2003]. This architecture is based on generic reusable software compo-
nents and enables the (automatic) generation of application-specific parts

IThis chapter is based on: Graaf, Bas. Model-driven evolution of software architectures.
In Proceedings of the 11" European Conference on Software Maintenance and Reengi-
neering (CSMR 2007), pages 357-360. IEEE Computer Society, 2007

1

2 Chapter 1. Introduction

Figure 1.1: ASML wafer scanner

of control components from a declarative specification. As a result, the re-
quired effort for development and maintenance of the control software can
be reduced.

A problem that remains is the migration of existing control components
to this new architecture. A possible approach is to start-over and develop
these components from scratch according to the new architecture. In this
case this means that for each control component a new specification has
to be created. Unfortunately, the knowledge incorporated in the code and
designs of already existing control components will be largely lost this way.
Considering the fact that the current behaviour of these components does
not need to be changed, this constitutes a waste of knowledge and re-
sources, and an unnecessary risk. An alternative solution is to derive the
specifications of these components for the new architecture from their ex-
isting specifications.

The scenario sketched above, which is fully explored in Chapter 7, is
about a changing or evolving software architecture and illustrates some
of the issues we address in this thesis. Many companies are confronted
with similar scenarios. An example in a completely different domain is the
problem of making existing information systems accessible via the World
Wide Web. This typically also requires architectural changes. Many other
scenarios can be mentioned that involve architectural changes for reasons
that include maintainability and functionality.

However, while often required, architectural changes typically come
with a significant risk and are expensive to perform. Moreover, when the
objective of such changes is maintainability improvement, as in the sce-
nario above, their benefits are only experienced later on. This makes such

changes problematic. Therefore, our goal is to support evolution of software
architectures such that risk and costs are reduced.

Considering the described scenario, next to the question of how to mi-
grate existing components, other questions arise, such as how to evalu-
ate that such changes are necessary, and, whether they can be performed
(semi-) automatically.

Another relevant aspect of this scenario is that it deals with a software
architecture based on a platform (i.e., the generic reusable components),
which applies to a whole series of systems (i.e., the different control sys-
tems in a wafer scanner). Such architectures are referred to as product-
line architectures [Clements and Northrop, 2002]. To realise economies of
scale, a trend in industry is to integrate the development of a whole set of
similar products in a single (software) product line. The development of a
software product line is based on a product-line architecture that defines
the commonality and variability between the product-line members (i.e.,
individual products of the product line). In the context of software archi-
tecture evolution, product-line architectures are a complicating factor and,
as we will explain in this thesis, require special attention.

Another complicating factor to achieve our goal of supporting software
architecture evolution is the integration of evolution support in industrial
practice. Industry is reluctant to adopt new software engineering technolo-
gies. An important reason for this is that it tends to have a risk-avoiding
attitude. This problem is also addressed in this thesis.

We will search the solution in the area of model-driven engineering. We
adopt the vision of model-driven engineering (MDE) for the purpose of sup-
porting software evolution. MDE is the term for a new generation of soft-
ware development approaches in which models play a dominant role and in
which (part of) the development steps are performed by (automatic) model
transformations [Bézivin, 2005]. In these approaches software models are
gradually transformed into source code, which typically executes on top of
a software platform.

MDE approaches are enabled by the availability of standards, such as
for modelling and transformations. They have been developed to hide the
behavioural and structural complexity of the platforms underlying software
product lines [Schmidt, 2006]. This corresponds to the envisioned situation
in the scenario we described above. The concept of MDE is further discussed
in Chapter 2.

Our approach is to investigate to what extent software architecture can
be made explicit as models, and whether the existing knowledge, stan-
dards, and tools in the area of MDE can be used for the purpose of software
architecture evolution. Thus, instead of applying model transformations
for the development of software by the generation of source code from more
abstract software models, we apply model transformations to support the

4 Chapter 1. Introduction

evolution of software. This involves different types of software engineer-
ing tasks, such as evaluation and migration. We investigate the extent to
which such tasks can be performed by the use of model transformations.
Additionally, we focus on real-life situations such as the migration of con-
trol components at ASML.

In the remainder of this introduction we describe the problem and for-
mulate the research questions this thesis addresses. Subsequently, we ex-
plain the approach we followed to answer these questions and the scope of
our work. We conclude with an outline of this thesis and an overview of its
contributions.

1.1 Problem Description: Evolution of Software Architec-
tures

In this thesis, we focus on the evolution of software platforms and the sys-
tems they support. More particularly, we address the problem of their evo-
lution on the architectural level.

Perry and Wolf [1992] describe architecture as the ‘load-bearing walls’
of a software system. As such, a software architecture allows some changes
and precludes others, that is, it allows some degree of evolution. Changes
that it allows do not require a migration of the architecture. Changes, how-
ever, that are not supported by the current architecture will require such
a migration. As such, an architecture determines which type of evolution
is cheap (i.e., the type that involves changes that do not require changes to
the architecture) and which type is expensive (i.e., the type that involves
changes that do require changes to the architecture). In fact, a reason for
migrating to a different software architecture is to change this, that is,
making a different type of changes cheap. As an example, in the ASML
scenario sketched above one of the goals was indeed to reduce the effort
required to change the sequence of the manufacturing activities a wafer
scanner performs for the manufacturing of microchips.

When considering software evolution from an architectural perspective,
it needs to be determined if an architecture requires changes, and subse-
quently how to perform those changes. The former requires an architecture
evaluation. The latter requires an approach to migrate a software archi-
tecture, and the corresponding ‘downstream’ development artefacts. In the
case of a complex architecture, or a product line, where an architecture af-
fects multiple systems, it pays off to do this automatically. To do so, an
architecture can be considered as a model that can be manipulated. The
technology to make this happen is offered by MDE. In-line with MDE, we
aim at the development of automated techniques, where possible.

1.1. Problem Description 5

l Evaluation = Conformance Checking |
A

Y

l Documentation S — Migration |

Figure 1.2: Software evolution tasks

As we will see from this thesis, the automatic manipulation of (architec-
tural) models is hampered by industry’s resistance to adoption of state-of-
the-art software engineering technologies. An important reason for this is
that such technologies often have a large impact on current ways of work-
ing, resulting in unacceptable risks (see also Chapter 3). This means that,
in the context of software evolution, we have to take into account, for in-
stance, the informal use of modelling languages in industry [Lange et al.,
2006]. This makes automation particularly difficult. In general, the impact
of solutions (technologies or processes) to current ways of working should
be minimised.

To clarify the scope of our work we distinguish four types of activities
related to evolution of software. We refer to these activities as software
evolution tasks. The tasks we consider are depicted in Figure 1.2 in an
evolutionary software life-cycle and are explained below.

Evaluation In our work the main objective of architecture evaluation is to
determine whether or not proposed changes to a software system require
changes to the current architecture. We consider architecture evaluation as
the starting point of a software architecture evolution cycle. A particular
challenge is the assessment of whether a product-line architecture requires
changes in the face of anticipated changes to the product-line members. Do-
brica and Niemela [2002] give an overview of proposed architecture eval-
uation approaches. However, none of those is explicitly aimed at software
product lines.

Conformance Checking In the case that an evaluation indicates that ar-
chitectural changes are required, it is necessary to determine to what
extent ‘downstream’ development artefacts conform to the (product-line)
architecture. The question is whether development artefacts that are
constrained by the decisions made during the architecting phase do not
violate these decisions. In principle, all design artefact are constrained
by the architecture, such as detailed designs, implementations and even
product-line members.

Krikhaar [1999] and Mens [2000] compare a number of approaches to
check architecture conformance. However, conformance between models at

6 Chapter 1. Introduction

different abstraction levels is not addressed. Moreover, most approaches
dictate the introduction of specific modelling languages, requiring a change
to current ways of working.

Migration A set of consistent development artefacts as determined by the
conformance checking task, reduces the risk of an actual migration of the
architecture and dependent development artefacts. The migration to a
new product-line architecture and associated software platform that bet-
ter supports foreseen requirements, requires the migration of all products
supported by the legacy platform. There is no previous work that consid-
ers software (architecture) migration as a model transformation problem.
Several other work does address the transformation of software systems.
However, they consider single-product architectures [Bosch and Molin,
1999], simple graphs [Fahmy and Holt, 2000b], or the level of source
code [Terekhov and Verhoef, 2000]. The language migration process used
by Terekhov and Verhoef [2000] is particularly interesting. It separates a
migration in three phases that include restructuring of source programs
to enable the (automatic) transformation phase. Although it was used for
source code migration, such a preparatory step is also required for the mi-
gration on the architectural level to take into account industrial modelling
conventions.

Documentation After a migration of the (product-line) architecture and the
product-line members it supports, documentation needs to be updated.
It is generally accepted that the documentation of software architectures
consists of multiple views [Kruchten, 1995; Hofmeister et al., 2005]. Of-
ten the Unified Modeling Language! (UML) is used in these views. On
the other hand, specialised architecture description languages (ADLSs) (see
Medvidovic and Taylor [1997] for an overview) and MDE support the cre-
ation of models to automate several software engineering tasks, such as
code generation. However, no approach addresses the problem of keeping
documentation and models consistent. With the upcoming of MDE ap-
proaches this becomes a highly relevant problem.

In this thesis, we aim at increasing our understanding of each of these
four software evolution tasks as well as offering support for them.

Thttp://www.uml.org (June 2007)

1.2. Objectives 7

1.2 Objectives

In the previous section we explained that changes to software architectures
can be required to improve or restore the maintainability of software sys-
tems. However, such evolution involves high risks and costs.

As such, our main research question is:

RQO How can the evolution of software architectures be supported?

We will investigate this question in terms of the software evolution
tasks we identified: evaluation, conformance checking, migration, and doc-
umentation. When considering the problem description in Section 1.1, RQ0
raises a number of subquestions that we introduce below.

1.2.1 Integration in Practice

As we will see in this thesis, integration of new software engineering tech-
nologies in industrial practice is difficult. This is due to the risk-avoiding
attitude of industrial companies towards such innovation, resulting in a
preference of proven technologies.

However, also academia’s attitude towards practical industrial problems
hampers application of research results in practice. These problems are
often considered not to be interesting from an academic point of view or are
difficult to investigate because such investigations are very costly and time
consuming. Finally, industry is not always willing to cooperate. The result
is that often software engineering technologies developed by academia are
not (fully) applied in industrial practice. An example is the informal use of
modelling in practice.

This leads to our first subquestion:

RQ1 How to integrate the support for software evolution tasks in practice,
considering the informal use of modelling languages and preference
for proven technologies in industry?

1.2.2 Product Lines

Many companies extended the scope of their software architectures from
single systems to multiple systems to increase reuse and reduce required
development and maintenance effort?.

For our software evolution tasks the use of product line principles is
relevant. One reason is, for instance, that product line architectures are

IFor examples, visit the Product Line Hall of Fame: http:/www.sei.cmu.edu/productlines/
plp_hof html (June 2007)

8 Chapter 1. Introduction

defined on a higher level of abstraction than single-product architectures.
Furthermore, the number of stakeholders for a product line also is higher.
This complicates, for instance, evaluations.

This leads to our second subquestion:

RQ2 What is the impact of the use of software product lines and platforms
on the support for software evolution tasks?

1.2.3 Model-Driven Engineering

Software architecture evolution is costly and risky. Therefore, we will in-
vestigate the use of MDE technology for this problem. Automation is one of
the key characteristics of MDE. When applied to the architecture evolution
this may yield cheaper and more reliable results.

Our use of MDE is also motivated by RQI and RQ2. The development
of MDE technologies has been driven by industry. This can be seen, for
instance, from the wide-spread use of UML for software design. As such,
support for software evolution tasks based on similar technology might by
itself already improve integration of such support in industrial environ-
ments.

Finally, a strong link exists between MDE and software product lines.
With MDE the generated code typically executes on top of a software plat-
form. At the same time software platforms are the foundation for even the
most basic product lines [Bosch, 2002]. As such, MDE approaches can be
used for the automatic derivation of product-line members [Deelstra et al.,
2003].

For industrial applicability, one specific type of MDE is particular rele-
vant. We focus on MDE technologies based on a set of standards defined
by the Object Management Group! (OMG) under the name Model Driven
Architecture? (MDA). The reason for this is that UML is an essential part
of the MDA framework; and UML is the (de facto) standard for modelling
software [Kobryn, 1999] that is most widely applied in industry. We be-
lieve that the practical relevance of our work is increased by restricting
ourselves to this framework (see also RQ1).

Model-driven support at the architectural level for our software evolu-
tion tasks allows for (partial) automation, resulting in improved reliabil-
ity, efficiency (of the development process), and quality (of developed soft-
ware) [Atkinson and Kiine, 2003; Selic, 2003].

This leads to our third and final subquestion:

RQ@3 To what extent can the support for software evolution tasks be auto-
mated by the use of model-driven engineering?

Thttp://www.omg.org (June 2007)
2http://www.omg.org/mda (June 2007)

1.3. Approach 9

1.3 Approach

As software engineering is an applied science, our view on software engi-
neering research is that results can only be proven useful by validation in
industrial practice. Furthermore, this type of research is aimed at solv-
ing real problems. Such problems are mainly found in industry (at least
problems in the domain of software engineering).

Therefore, we intend our research to be industry-driven; we adopt the
‘industry-as-laboratory’ approach proposed by Potts [1993]. In this ap-
proach the problems studied are identified by close involvement in indus-
trial projects and results are applied to practical problems; there is an em-
phasis on real case studies.

We accomplish the interactions with industry on which this approach is
based in three ways: a survey, industrial case studies, and close collabora-
tion with software practitioners in industry.

We first perform a survey among more than 35 software practitioners at
eight companies to get an overview of software engineering practices and
specific problems in the (embedded) software industry (see Chapter 3). The
observations made in that survey include the upcoming use of product-line
approaches, the informal use of modelling languages, and the importance
of the evolutionary aspect of software. This survey partially determined
the problems we address in the research described by this thesis.

The exploratory character of our research, the type of research questions
we want to investigate (‘how’ questions), and the low level of control we
have over the (industrial) environment in which software evolution takes
place, make that case studies are a suitable research approach [Yin, 2003].
Furthermore, the use of industrial case studies reduces the risk of scala-
bility problems of the results Kitchenham et al. [1995]. Therefore, we use
case studies to investigate the applicability of model-driven approaches to
the four software evolution tasks we defined.

For each task we propose a separate solution, which we evaluate in a
(industrial) case study. As such, we performed separate case studies for
each of the evolution tasks: evaluation, conformance checking, migration,
and documentation. The case studies we conducted are mainly related to
two industrial systems: copiers developed by Océ and wafer scanners de-
veloped by ASML. As such, by our case studies, we focus on the embedded
software domain. The conclusion in Chapter 9 also reflects on the question
of whether this is relevant from the perspective of our research questions.

Given the exploratory character of our research, we do not define a set
of research propositions to investigate. Instead, we direct our research by
the subquestions outlined in Section 1.2. As discussed by Yin [2003] we
use this direction to guide our analysis of the case studies we perform. We
qualitatively evaluate the solutions we propose by carefully observing and

10 Chapter 1. Introduction

analysing their application in each case study.

For the case study in which we evaluated our approach for the migration
task, we were able to compare our findings with respect to a migration
of the same system conducted manually. The conformance checking tasks
were only executed using our techniques. Therefore, their evaluation is
based on the type and number of inconsistencies found. For the evaluation
and documentation tasks, we evaluate our solutions with respect to the
application of similar approaches in other cases.

Considering our research questions, we specifically focused the evalua-
tion on the extent to which the software evolution tasks can be automated,
the impact of software product lines, and possibilities for reusing (proven)
software technologies and reducing organisational impact.

1.4 Overview

This thesis addresses the problem of managing evolution for complex soft-
ware intensive systems. We studied this problem and its solutions in terms
of software architecture and MDE. The remainder of this thesis is organised
as follows.

Setting the Scene In Chapter 2 we introduce some of the concepts that were
touched upon only briefly in this introduction more thoroughly. In particu-
lar we discuss software architecture and MDE.

Chapter 3 reports on the survey we conducted among several compa-
nies developing embedded software. The survey resulted in a number of
important observations for this thesis:

e Industry rarely develops products from scratch. This observation con-
firms the importance of the evolution and maintenance aspects of soft-
ware development.

e Increasingly, product-line and MDE approaches are applied for the de-
velopment of embedded software.

e Current software engineering technologies are difficult to apply in
practice due to several reasons. One consequence is that such tech-
nologies are applied in a pragmatic way, for instance, modelling lan-
guages and tools are often only used to draw diagrams for the pur-
pose of documentation rather than for the purpose of, for instance,
automatic analyses or code generation.

1.4. Overview 11

The first two observations call for an approach that enables the intro-
duction of product lines in a “bottom-up” manner, meaning that product-
lines come into existence based on existing products and are developed in
an evolutionary, rather than revolutionary (or top-down), way.

The third observation adds the constraint that such an approach takes
into account some of the practical issues that are a reality for software de-
velopment organisations, such as the informal use of modelling languages,
the limited amount of time for doing analysis, and the risk involved in
changing existing ways of working.

The Evaluation Task In Chapter 4 we define a scenario-based approach based
on the Software Architecture Analysis Method (SAAM) [Kazman et al., 1996]
for assessing the quality of an emerging product-line architecture for the
embedded software for copiers developed by Océ (Figure 1.3 on the follow-
ing page). This architecture emerged in a bottom-up manner from a num-
ber of existing products. At some point questions were raised with respect
to the suitability of the product-line to incorporate more existing and future
products as product-line members. Therefore an assessment was initiated
that had to take into account the emergent character and corresponding
low-visibility of the product-line in the organisation. The latter resulted
in a low commitment of several stakeholders to such an assessment. The
results show that a two-phased scenario development step, in which part
of the scenarios are collected separately from the joint evaluation session,
results in a more efficient approach that still yields acceptable assessment
results. Additionally, this chapter identifies the problem of conformance
of the architecture of product-line members to a product-line architecture.
Such conformance is desirable before updating a product-line architecture
or migrating an existing product to incorporate it in the product-line.

The Conformance Checking Task Two chapters deal specifically with confor-
mance checking.

In Chapter 5 we discuss how to use model transformations to combine
scenarios into state-based behavioural models. Compared to the previous
case study, the scenarios are expressed in more detail using UML sequence
diagrams. We applied the transformations to a set of scenarios for a com-
ponent defined by the product-line architecture for the embedded copier
software of Océ. This results in a state transition model. To assess the
extent to which the scenarios are consistent with a state transition model
that is used to generate the source code for that component, we (manu-
ally) investigate the differences between the two state models. As such, we
identified a number of inconsistencies.

12 Chapter 1. Introduction

Figure 1.3: Océ copier

A model-driven approach for automatically determining the confor-
mance of software artefacts is proposed in Chapter 6. A view-based process
for conformance checking is described that does not interfere with the
current way of working of the involved domains (e.g., requirements, archi-
tecture, or implementation) by introducing the concept of a conformance
viewpoint (i.e., a type of view). In the case of architecture conformance
such a viewpoint, specified as a metamodel, defines checkable aspects of
the architecture and implementation, as such bridging the semantic gap
between the two domains. We illustrate how model transformations can
be used to automatically discover inconsistencies between architecture
specifications and implementation.

The Migration Task Once a product-line architecture has been assessed and
the conformance of product-instances with respect to the product-line has
been confirmed, existing products need to be migrated to the new product-
line approach. This requires that instance specific information is extracted
and transformed into a view associated with a viewpoint that was defined
to describe product instances. In Chapter 7 we describe a generic view-
based process for migrating the legacy designs discussed at the start of this
chapter into views that exactly describe a product instance in terms of a
new product-line architecture. For the migration of control architectures
based on finite state machines we define a number of transformation rules
that result in a specification of such an architecture in terms of a product-
line architecture based on task-resource systems. These rules are amenable
for an MDA-type of approach that is partially automated.

1.5. Origin of Chapters 13

Table 1.1: Coverage of research questions in chapters

Chapter | 3 | 4 |5 |6 |7 |8
Question
RQ1 VARARARVARARY,
RQ2 v v
RQ3 VIiVIVIY

The Documentation Task To decrease the effort required for future evolution
of software products, up-to-date documentation is an important asset [For-
ward and Lethbridge, 2001]. In Chapter 8 we discuss the relation between
the architectural models used for conformance checking and migration, for
instance, and architectural views for documentation. We present a frame-
work in which the involved concepts are related to each other and show
how such a framework can be supported by MDE technologies.

The Research Questions Finally, to conclude, Chapter 9 presents an overview
of our contributions and revisits the research questions raised in Sec-
tion 1.2. Table 1.1 illustrates how these questions are covered by the core
chapters of this thesis. All chapters take into account the practical appli-
cability of the proposed solutions, for instance by the use of two industrial
case studies. Development using product-line principles plays an impor-
tant role in Chapters 4 and 7. Automation using MDE is the dominant
concern in the final four core chapters. In all these cases the experiments
are conducted using the Atlas Transformation Language [Jouault and
Kurtev, 2005] (ATL).

1.5 Origin of Chapters

Except for Chapter 2, the chapters in this thesis appeared before as refer-
eed publications in international journals, and proceedings of conferences
and workshops. Apart from the introduction (substantially extended) and
Chapter 6 (major revision) only minor changes were applied before inclu-
sion in this thesis. The origin of this thesis’s chapters is as follows:

Chapter 1 Graaf, Bas. Model-driven evolution of software architectures. In
Proceedings of the 11" European Conference on Software Main-
tenance and Reengineering (CSMR 2007), pages 357-360. IEEE
Computer Society, 2007

14

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 1. Introduction

Graaf, Bas, Marco Lormans, and Hans Toetenel. Embedded soft-
ware engineering: The state of the practice. IEEE Software,
20(6):pages 61-69, 2003; and

Graaf, Bas, Marco Lormans, and Hans Toetenel. Software tech-
nologies for embedded systems: An industry inventory. In Pro-
ceedings of the 4" International Conference on Product Focused
Software Process Improvement (PROFES 2002), volume 2559 of
Lecture Notes in Computer Science, pages 453—465. Springer-
Verlag, 2002

Graaf, Bas, Hylke van Dijk, and Arie van Deursen. Evaluating
an embedded software reference architecture — industrial expe-
rience report. In Proceedings of the 9" European Conference on
Software Maintenance and Reengineering (CSMR 2005), pages
354-363. IEEE Computer Society, 2005

Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the sys-
tematic conformance check of software artefacts. In Proceedings
of the 2"@ European Workshop on Software Architecture (EWSA
2005), volume 3047 of Lecture Notes on Computer Science, pages
203—221. Springer-Verlag, 2005

Graaf, Bas and Arie van Deursen. Model-driven consistency
checking of behavioural specifications. In Proceedings of the 4"
International Workshop on Model-based Methodologies for Per-
vasive and Embedded Software (MOMPES 2007), pages 115—
126. IEEE Computer Society, 2007a

Graaf, Bas, Sven Weber, and Arie van Deursen. Model-driven
migration of supervisory machine control architectures. Journal
of Systems and Software, 2007. Doi: 10.1016/j.jss.2007.06.007;
and

Graaf, Bas, Sven Weber, and Arie van Deursen. Migrating su-
pervisory control architectures using model transformations. In
Proceedings of the 10th European Conference on Software Main-
tenance and Reengineering (CSMR 2006), pages 151-160. IEEE
Computer Society, 2006

Graaf, Bas and Arie van Deursen. Visualisation of domain-
specific modelling languages using UML. In Proceedings of the
14" Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS 2007), pages
586-595. IEEE Computer Society, 2007c

1.5. Origin of Chapters 15

Furthermore, our research has resulted in the following publications
that are not directly included in this thesis:

e Graaf, Bas and Arie van Deursen. Using MDE for generic compar-
ison of views. In Proceedings of the 4'" International Workshop on
Model Design, Verification and Validation (MoDeVVa 2007), pages 57—
66. INRIA, 2007b

e Spanjers, Hans, Maarten ter Huurne, Dan Bendas, Bas Graaf, Marco
Lormans, and Rini van Solingen. Tool support for distributed soft-
ware engineering. In Proceedings of the 15 International Conference
on Global Software Engineering (ICGSE 2006), pages 187-198. IEEE
Computer Society, 2006

e Doyle, Duncan, Hans Geers, Bas Graaf, and Arie van Deursen. Mi-
grating a domain-specific modeling language to MDA technology.
In Proceedings of the 3™ International Workshop on Metamodels,
Schemas, Grammars, and Ontologies for Reverse Engineering (ateM
2006), number 1 /2006 in Mainzer Informatik-Berichte, pages 47-54.
Johannes Gutenberg-Universitat Mainz, 2006

e Cornelissen, Bas, Bas Graaf, and Leon Moonen. Identification of vari-
ation points using dynamic analysis. In Proceedings of the 1% In-
ternational Workshop on Reengineering towards Product Lines (R2PL
2005), pages 9-13. 2005

Chapter 2

Background

In this chapter we elaborate on some of the concepts briefly introduced in
Chapter 1. In particular, we discuss software evolution, software archi-
tecture, and model-driven engineering in the light of the research questions
we posed previously.

2.1 Software Evolution

Engineering disciplines are typically based on universal, scientific laws and
principles. Also in the discipline of software engineering a number of such
laws have been discovered. Endres and Rombach [2003] give an overview. A
few of the most widely acknowledged laws were defined by Lehman [1978]
and are concerned with the change of software systems over time: software
evolution. They are based on empirical observations. The first two of these,
so-called, laws of software evolution dynamics are stated in Table 2.1 on
the following page.

The graph in Figure 2.1 on the next page illustrates both laws by plot-
ting a measure for size against a measure for complexity of embedded
copier software developed by Océ. It shows a trend of increasing size and
complexity for the subsequent (i.e., in time) revisions of the software.

Software evolves because of various reasons. The software systems (pro-
grams) referred to in the software evolution laws are, for instance, affected
by changes in the reality reflected in their specification [Lehman, 1980].
Such changes are caused by changes in stakeholder objectives or to the
environment. An example of the former are additional or modified stake-
holder requirements. An example of the latter, in the case of embedded
systems, are changes to hardware. As a response a software system re-
quires adaptive maintenance. Obviously, the usefulness of a software sys-
tem decreases if such maintenance tasks are not performed. Other types

17

18 Chapter 2. Background

Table 2.1: First two Laws of Software Evolution [Lehman, 1978]

| Law of Continuing Change
A large program that is used undergoes continuing change or becomes
progressively less useful. The change process continues until it is
judged more cost-effective to replace the system with a recreated ver-
sion.

Il Law of Increasing Complexity
As a large program is continuously changed, its complexity, which re-
flects deteriorating structure, increases unless work is done to maintain
or reduce it.

1800
e AN
1600

1500 7

1400

1300

1200

1100
ref.07 4

1000

McCabe's Cyclomatic Number

900

800 T T T T T T T
5000 5500 6000 6500 7000 7500 8000 8500 9000

Lines of Code

Figure 2.1: Complexity vs. size for subsequent revisions of copier soft-
ware [Sonnenberg, 2005]

2.1. Software Evolution 19

of maintenance tasks are corrective (removal of bugs) or perfective (opti-
mising performance or maintainability) [Swanson, 1976; IEEE-1219, 1998]
and also cause software to evolve. The first law states that such changes
continue until it becomes more cost-effective to replace a system. However,
development of replacement systems typically will not start from scratch,
and significant parts of the already existing software will be reused. As
such, the software continues to evolve.

Implicitly, the first law is based on the assumption that change becomes
more expensive over the lifetime of a software system by stating that at
some point replacement becomes more cost-effective than making changes.
This is made explicit in the second law. It describes the unfortunate conse-
quence of continual change: software systems become progressively more
complex over time. In this law, complexity does not refer to computational
complexity, but to the effort required to understand the inner workings of
a software system. For a large part this effort depends on the structure of
the software [Lehman, 1978], that is, its components and their relations.
As change requires understanding, a consequence of increased complexity
is that it makes a software system more difficult to change.

There are various explanations of this law of increasing complexity. Al-
though, in theory, it might be possible to make changes to software systems
without deteriorating its structure, practice is different. In industrial soft-
ware projects, the users and customers of a software system are mainly con-
cerned with its operation (e.g., performance, functionality), and not with its
structure. This makes it difficult for the development organisation to jus-
tify longer lead-time of change requests because of structural preservation
and recovery. Moreover, the effects of such efforts are not measurable im-
mediately after changes are made, but are only long-term; they decrease
the effort required for subsequent changes [Lehman, 1978]. Eventually,
as this process of increasing complexity continues, it becomes infeasible
to make even small changes to the software. Then, a system needs to be
replaced.

Van Deursen [2005] proposed two possible strategies to deal with these
laws: 1) postpone the moment at which a system needs to be replaced
as much as possible by applying techniques to manage its ever-increasing
complexity; and 2) apply techniques to restore the original structure or im-
pose a new structure on the software system.

Considering the research questions posed in Chapter 1, we investigate
in this thesis how and by the use of which technologies these two strategies
can be supported. To this end we consider how specifications of software
structure can be evaluated and manipulated. Furthermore, to take into ac-
count the complexity of software systems we investigate to what extent this
can be automated. As an example, techniques to determine the consistency
of different development artefacts, discussed in Chapters 5 and 6, help to

20 Chapter 2. Background

manage complexity; techniques to automate the migration of a software
architecture, discussed in Chapter 7, help to impose a new structure.

We already stated that a software system’s complexity is strongly re-
lated to its structure (see Lehman’s second law, Table 2.1 on page 18). The
subfield of software engineering that studies software structure is called
software architecture. The idea behind software architecture is that com-
plexity can be managed by applying separation of concerns and abstraction.
This is discussed in Section 2.2.

Another way to manage complexity is the use of automation. Model-
driven engineering (MDE) is an approach to software development based on
automation (and abstraction). With MDE applications are generated auto-
matically by means of model transformations that transform abstract soft-
ware models into source code. MDE is discussed in Section 2.3.

In this thesis we employ MDE techniques to support the evolution of soft-
ware architectures. We conclude this chapter in Section 2.4 by explaining
that due to a conceptual overlap MDE techniques are particularly suited for
this purpose.

2.2 Architecture-Driven Software Development

2.2.1 Software Architecture

The development of a software system involves a large number of design de-
cisions that eventually lead to an executable specification of its behaviour,
typically in the form of source code. For a long time, it has been realised
(e.g., by Dijkstra [1968], Parnas [1972] and Brooks, Jr [1975]) that, next to
behaviour, it pays off to be also concerned with a software system’s struc-
ture and organisation for reasons of dependability, understandability, and
maintainability. Therefore, for large systems, these design decisions not
only consider the behaviour, but also the structures of the software system.
The key principles on which the design of software architectures is based
are separation of concerns [Dijkstra, 1974] and abstraction.

Because of the complexity of software systems, multiple levels of ab-
straction are necessary to ensure designs remain comprehensible. This
gives rise to several types of design. Usually, at least two levels of de-
sign are distinguished. Detailed design involves the decisions related to,
for instance, data structures and algorithms. At a higher level of abstrac-
tion, design is called software architecture design [Garlan and Shaw, 1993],
which is one of the key topics of this thesis.

It is difficult to capture the notion of software architecture in a single
definition. As an example, the Software Engineering Institute [2006] col-
lected many definitions. Perry and Wolf [1992] provide a model of software

2.2. Architecture-Driven Software Development 21

architecture consisting of elements, form, and rationale. The model dis-
tinguishes between three types of (design) elements: processing, data, and
connecting elements. Form includes the relationships among the elements
of an architecture. Rationale provides the motivation for the decisions that
yield a particular set of elements and form. The three aspects of this model
for software architecture can be found in various definitions for software
architecture used by later research (and practice).

Garlan and Shaw [1993] enumerate a set of issues software architec-
tures are concerned with that includes gross organisation, global control
structure, communication protocols, and assignment of functionality to de-
sign elements.

A more recent definition of software architecture can be found in IEEE-
1471 [2000]:

The fundamental organisation of a system embodied in its components,
their relationships to each other, and to the environment, and the principles
guiding its design and evolution.

This definition not only includes components (elements) and their rela-
tions, but also principles, referring to, for instance, the use of a particular
architectural style (see Section 2.2.3) or the use of particular conventions
during design and maintenance of a software system.

An alternative definition that is frequently used is given by Bass et al.
[2003]:

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among
them.

This definition acknowledges the now common understanding that
there is no such thing as the structure of a software system and that differ-
ent types of structures can be used to describe the architecture of a single
system.

Kruchten [1998] states that software architecture encompasses a set of
significant decisions regarding system organisation, selection of elements,
their composition, and selection of an architectural style to guide these de-
cisions. In this definition, architecture is thus considered as a set of deci-
sions, a perspective further explored by Jansen [2005].

In summary, software architecture can be understood in at least two
different ways: 1) as a set of (architectural) design decisions, or 2) as the
structure that is the result of those decisions. In this thesis we opt for
the latter, since we only consider software structures as prescribed by an
architecture specification or as implemented in source code.

Unfortunately, through the use of adjectives like “significant”, “funda-
mental”, “gross”, and “global” the definitions cited above do not completely
clarify which parts of a design are architectural and which parts are not.

22 Chapter 2. Background

Moreover, if a software architecture is a set of architectural design deci-
sions, how do we determine whether a design decision is architectural?
Eden et al. [2006] clarify this by providing a criterion that can be applied
to design statements. The mathematically defined locality criterion states
that a design statement is local if the system to which it applies cannot be
made to violate it by mere expansion. Architecture statements are defined
to belong to the class of non-local statements. For instance, the layered ar-
chitectural style of a software system can be violated by simply expanding
one of the layers with a component that interacts with components in non-
adjacent layers. Hence, decisions regarding style are architectural. Con-
versely, a design pattern cannot be violated by only expanding a system.
Thus, decisions regarding design patterns are not architectural.

Despite the precise definition discussed above, architecture is a relative
concept because of the multiple levels of abstraction at which software de-
sign can be considered. What is architectural depends on, amongst others,
the level of abstraction that is considered [Monroe et al., 1997; Clements
et al., 2002a]: what is considered detailed design from a more abstract level
can be considered architectural from a less abstract level.

From our collaborations with industry it became clear that in practice,
architecture is ‘defined’ differently. There, different sets of decisions are
considered to be architectural, for instance, the earliest (in time) decisions,
the decisions that are most difficult (expensive) to change later on, or sim-
ply the decisions taken by the software architect. Although these sets
might be slightly different, in this thesis we will assume they coincide, tak-
ing the point of view (as stated above) that an architecture is the result of
such decisions.

2.2.2 Software Architecture Usage

So, why is it important to consider software architecture as a separate type
of design? Bass et al. [2003] mention a few reasons. First, it allows to set
apart the global design decisions, that is, those that affect multiple com-
ponents, and hence need to be communicated to all involved developers to
ensure the conceptual integrity [Brooks, Jr, 1975] of the system under de-
velopment.

Second, as design decisions affect software quality attributes, a software
architecture allows for early quality assessment of (to be developed) soft-
ware systems. In fact, the software architecture is the first design artefact
created in a software project that allows for such assessments.

Finally, software architectures enable the reuse of software solutions.
By documenting a software architecture the design decisions it captures
can be transferred to other systems, for instance, when similar quality at-
tribute requirements need to be fulfilled.

2.2. Architecture-Driven Software Development 23

These motivations for considering software architecture design as a sep-
arate phase in the software development process, also illustrates the impor-
tance of software evolution on the architectural level. If software is contin-
uously evolved on lower abstraction levels, phenomena such as architecture
drift and erosion [Perry and Wolf, 1992] (see also Chapter 1), decrease the
possibility of using the software architecture in the ways described. At that
point, restoration of the intended architecture or migration to a new archi-
tecture, again, brings the benefits of conceptual integrity, early assessment
of design decisions, and reuse.

With respect to the preceding discussion on software architecture this
thesis positions software architecture in terms of structure and architec-
tural elements. Moreover, considering the importance of software struc-
ture for software evolution (see Section 2.1), we investigate how to use and
manipulate software architectures for the software evolution tasks we iden-
tified in Section 1.1.

2.2.3 Software Architecture Design

The goal of software architecture design is to define the constraints for sub-
sequent design and implementation activities that result in the develop-
ment of a system that fulfils its functional and other quality goals. As such,
a software architecture is both permissive and restrictive with respect to
the decisions taken in subsequent activities [Perry and Wolf, 1992].

Based on existing design and evaluation methods, Kazman et al. [2006]
formulate three principles that are useful to understand how architectural
constraints are defined: 1) an architecture should be defined in terms of
elements that are coarse enough for human intellectual control and spe-
cific enough for meaningful reasoning, 2) business goals determine quality
attribute requirements, and 3) quality attribute requirements guide the
design and analysis of software architectures.

Similar to other engineering disciplines, the actual design of software
largely remains a creative activity. Consequently, the success of software
projects for a large part depends on the experience and skills of the software
architects. Although software architecture evaluation methods can help
architects to assess the quality offered by the architecture they defined,
such methods can only be applied after it has been designed. We introduce
these methods in Section 2.2.5.

To also provide guidance during the design process itself, the analysis
and codification of experiences by categorising problem types and recording
and generalising successful (by experience) solutions, is of great importance
for software architecture practice. Software architectural styles, sometimes
also referred to as architectural patterns, are such codifications.

24 Chapter 2. Background

An architectural style is a set of constraints that is imposed on the archi-
tecture of systems that are based on that style. As such, an architectural
style defines a set of architectures. The constraints defined by a style not
only limit the type of architectural elements and their possible connections,
but also dictate how their semantics should be interpreted [Abowd et al.,
1993]. Shaw and Garlan [1996] and Buschmann et al. [1996], amongst oth-
ers, provide collections of such architectural styles. The definition of archi-
tectural styles provides a shared vocabulary for software architects. Fur-
thermore, it encourages researchers to study the properties of particular
styles in terms of quality attributes. This gives way to architecture design
(and evaluation) approaches that are based on the selection of appropri-
ate styles for the desired quality attributes of a system, such as described
by Klein et al. [1999] and by Bosch [2000].

Each style optimises a distinct set of quality attributes. In practice this
implies the application of multiple architectural styles for the development
of a single software system. As a result, multiple representations of such
an architecture are conceivable; each clarifying a specific style.

2.2.4 Software Architecture Description

To effectively use (e.g., for evaluation or maintenance) the decisions that
comprise a software architecture in non-trivial projects, it is required that
these decisions are documented in a useful way. For the description of soft-
ware architectures we distinguish between approaches based on: 1) archi-
tecture description languages (ADLs) (see Medvidovic and Taylor [1997] for
an overview), and 2) views [IEEE-1471, 2000].

A large number of ADLs have been developed (mainly by the research
community). Typically, such ADLs offer a formal syntax and semantics for
the description of software architectures in terms of runtime components
(computational elements) and connectors (abstractions for component in-
teraction) [Medvidovic and Taylor, 1997]. As such, they allow to create
precise descriptions of one aspect of a software system (i.e., its runtime
structure and behaviour). Because of the formality of such descriptions,
they can be used to automate several software engineering tasks, such as
code generation and verification.

The ‘views approach’ on the other hand allows for more broad descrip-
tions of software architecture. As discussed before, design can be consid-
ered on different levels of abstraction. However, we can also consider de-
sign with different types of abstractions. As such, a particular view might
only consider runtime, which is typically the case with ADLs, or only design
time aspects of a software system. The types of abstraction actually used
can vary and are determined by what is important for a particular software
project.

2.2. Architecture-Driven Software Development 25

Views are based on the idea that a software architecture is too complex
to be described in a single stroke, or by one type of abstraction (that is why
we talked about structures (plural) before). Multiple views are required to
completely describe and document a software architecture. Each of those
views addresses a specific set of concerns [I[EEE-1471, 2000]. The guide-
lines for creating views are defined in so-called viewpoints, one for every
type of view. Several sets of those viewpoints have been defined [Kruchten,
1995; Hofmeister et al., 1999; Clements et al., 2002a].

Compared to the ‘ADL approach’ this ‘views approach’ is more adopted by
industry [Kruchten et al., 2006], where a view typically is a document that
consists of some models or diagrams and explaining text, and is less formal
than ADL-type descriptions of software architecture. When comparing the
two approaches, it can be concluded that the ADL-approach as investigated
by the research community focuses on in-depth description of software ar-
chitectures, while the views-approach as used by industry focuses on broad
description of software architectures [Medvidovic et al., 2002].

Finally, we specifically mention the Unified Modeling Language! (UML).
Although UML was originally intended as a language for object-oriented
modelling of systems, it has been used for architecture development as well
(see, for instance, Chapter 3 and Lange et al. [2006]). To some extent it can
be used as an ADL [Medvidovic et al., 2002]. Furthermore, UML diagrams
are often used in architecture views.

In this thesis, we manipulate different types of architectural views to
support software evolution. In some cases, we also partly demonstrate the
definition of new ADLs. As an example, in Chapter 5 we transform one type
of view into another to check the consistency of behavioural specifications
of software embedded in the copiers developed by Océ.

2.2.5 Software Architecture Evaluation

An important reason for explicitly considering software architecture as a
separate type of design activity or document, is that it constitutes the first
opportunity for the prediction of properties of the system under develop-
ment. We distinguish between two types of properties or qualities of a sys-
tem: operational properties and development (i.e., non-operational) prop-
erties [Bosch, 2000]. The first type includes those properties that can be
measured by observing the system in operation, such as functionality, per-
formance, reliability. Non-operational properties, or development proper-
ties involve the development of the system, such as, maintainability, modi-
fiability, portability, development cost and effort.

Thttp://www.uml.org (June 2007)

26 Chapter 2. Background

For the prediction of these properties different types of approaches have
been developed [Bosch, 2000]. Approaches based on mathematical mod-
els, such as rate-monotonic analysis [Liu and Layland, 1973] and model
checking [Clarke, Jr. et al., 1999], are best used for analysis of operational
properties of the system. ADLs are also based on such models. On the
other hand, scenario-based approaches such as, the Software Architecture
Analysis Method (SAAM) [Kazman et al., 1996], the Architecture Tradeoff
Analysis Method [Clements et al., 2002b] (ATAM), and architecture-level
modifiability analysis [Bengtsson et al., 2004] (ALMA) (see also Dobrica
and Niemela [2002] for an overview of scenario-based software architecture
analysis methods), are better suited for the analysis of development prop-
erties. These approaches use scenarios to make quality attribute require-
ments concrete after which the architecture is evaluated for its support
for the identified scenarios. Such approaches can be used, for instance, to
assess the maintainability of a software system.

In Chapter 4 of this thesis we will experiment with such an approach for
the scenario-based evaluation of the maintainability of software embedded
in the copiers developed by Océ.

2.2.6 Software Product Lines

One of the most important promises of the use of architectural principles
for the development of software systems is the potential increase of reuse.
This not only includes reuse of design decisions by capturing best practices
in architectural styles, but also of architectural building blocks by explicitly
defining what such components have to offer and what they rely on (i.e.,
their external visible properties).

The latter use, however, turned out to be problematic in practice be-
cause some degree of variation is typically required [Garlan et al., 1995].
To also account for variation and not only for commonalities, sets of similar
software products can be viewed as software product families or product
lines.

A product line encompasses a whole range of products that have much in
common. By developing such products as a software product line [Clements
and Northrop, 2002] their commonalities and variabilities are made ex-
plicit in a product-line architecture. The development of individual prod-
ucts is reduced to binding the variation points defined in the product-line
architecture to specific instances, that is, if all variability is made explicit
in the product-line architecture.

A software product line involves the development of product-line assets,
such as a product-line architecture, reusable components, and product-line
members. The assets that apply to the product line as a whole are devel-
oped in a process referred to as domain engineering. Product-line members

2.3. Model-Driven Engineering 27

are developed in a process called application engineering.

A product line can be ordered along a maturity scale by considering its
(domain) scope, the extent that commonalities and variability are made
explicit, and binding time of its variation points [Bosch, 2002]. A first step
on this scale is the definition of all commonalities and their implementation
as a (domain-specific) software platform. Product-line members are then
built on top of that platform.

Both the systems that are the subject of our industrial case studies (the
ASML wafer scanners and Océ copiers) are developed using product-line
principles.

2.3 Model-Driven Engineering

To hide the structural and behavioural complexity of software platforms,
approaches to software development have been introduced that are referred
to as model-driven engineering (MDE) [Schmidt, 2006]. With MDE models
are central instead of code. The idea is to develop software by transform-
ing abstract models into more concrete models and eventually into code
that typically runs on top of a software platform. Such transformations
are referred to as model transformations. Because these transformations
are automated, we are particularly interested in MDE technologies for the
support of the software evolution tasks we defined. Furthermore, both MDE
and software architectures are based on abstractions.

Some of the basic ideas behind MDE, that is, development of software
by a series of model transformations and separation of functional speci-
fications from the technical details of a specific platform, are very simi-
lar to that of stepwise refinement proposed by Wirth [1971]. Many top-
ics related to MDE have been extensively studied by the research commu-
nity: software reuse [Krueger, 1992], generative programming [Horowitz
et al., 1985; Cleaveland, 1988; Czarnecki and Eisenecker, 2000], transfor-
mational programming [Partsch and Steinbriiggen, 1983], domain-specific
languages [Van Deursen et al., 2000; Mernik et al., 2005], and environ-
ments and approaches for development of such languages [Klint, 1993; Van
Deursen et al., 1996].

For a large part the development of current MDE approaches, however,
has been driven by industry. Several implementations of the MDE concept
are in use today. Often these are based on proprietary infrastructure that
includes domain-specific (modelling) languages, application frameworks,
code generators, and model repositories (see, e.g., Doyle et al. [2006]).

Additionally, a set of industry standards for MDE has been defined

28 Chapter 2. Background

Metamodel

conforms to

Model
represented by

System

Figure 2.2: Fundamental relations between system, model, and meta-
model [Bézivin, 2005]

by the Object Management Group! (OMG) under the name Model Driven
Architecture? (MDA) and numerous tools now support part of these stan-
dards. Other, non-MDA tools are available that also support MDE, such
as Microsoft’s Domain-Specific Language Tools based on the approach
by Greenfield et al. [2004]. It is the availability of these standards, sup-
porting tools, and reusable software platforms that makes that current
MDE approaches generate much more industrial momentum than earlier,
related efforts [Schmidt, 2006].

Only recently, the research community has started investigating the
fundamental principles behind MDE [Bézivin et al., 2007]. The foundations
for MDE are abstraction (modelling) and automation (model transforma-
tions) [Sendall, 2003; Schmidt, 2006]. Modelling and the definition of the
required modelling languages using, so-called, metamodels are based on
the concepts and relations depicted in Figure 2.2. They are fundamental
for MDE and are therefore introduced briefly in the following sections.

2.3.1 Modelling

Seidewitz [2003] defines a model as a set of statements about a system un-
der study. Others have proposed similar definitions that add that a model
has a specific purpose [Bézivin and Gerbé, 2001; OMG, 2007a]. A model
can be used either descriptively to determine properties of a system, or
prescriptively as a specification of a system to be built [Seidewitz, 2003].
The relation between a model and the system under study is referred to as
represented by and was depicted in Figure 2.2.

For MDE approaches to be beneficial the involved models should be eas-
ier to create and understand than the systems they represent, and at the

Thttp://www.omg.org (June 2007)
2http://www.omg.org/mda (June 2007)

2.3. Model-Driven Engineering 29

same time powerful enough to, for example, generate source code and per-
form assessments [Bézivin, 2005]. This requires that models leave out de-
tails that are irrelevant for their purpose. This simplification (or abstrac-
tion) is the essence of modelling [Bézivin and Gerbé, 2001].

Strictly speaking, source code is also a model [Mens and Van Gorp, 2006]
that, with MDE, is the target of a model transformation. In practice, how-
ever, code and models are often considered to be different types of artefacts.
Typically, in software engineering practice and in particular in the context
of MDE something is considered to be a model if it has a graphical represen-
tation instead of only a textual one as in the case for source code [Mellor
et al., 2003; Bézivin, 2006].

Kleppe et al. [2003] add another element to the definition of a model by
stating that a model is written in a well-defined language. Thus, for the
creation of models modelling languages are required. Basically two types
of such languages exist: general-purpose languages (GPLs) and domain-
specific languages (DSLs). UML is an example of a language in the MDA
framework of the former type. It is applied in many different domains and
for many different purposes. The latter type of languages is often specifi-
cally defined.

In this thesis the software evolution tasks we defined are applied to
models as in the context of MDE. To this end, we not only use UML, but
also (domain-specific) languages we defined ourselves using the MetaObject
Facility! (MOF), the metamodelling language defined by the OMG.

2.3.2 Metamodelling

With MDE, the modelling languages used to create models are defined by
metamodels. A metamodel is a graph composed of concepts and their re-
lationships. From a usage perspective a metamodel determines which as-
pects of a system will be modelled in a corresponding model [Bézivin, 2006].

A metamodel is a model itself, that is, a model of a language. As such, a
metamodel is, in turn, created using a modelling language. The metamodel
used to define this metamodelling language is referred to as the metameta-
model. This metametamodel is defined reflectively by using the language
it defines itself. This yields a layered structure (architecture) of models as
depicted in Figure 2.3 on the next page that is typical for MDE approaches.
It is based on the two fundamental relations (represented by and conforms to)
and concepts (system and model) of Figure 2.2 . For structures as in Fig-
ure 2.3 on the next page that model MDE concepts, such as system, model,
and metamodel, the term megamodel was introduced [Bézivin et al., 2005;
Favre, 2005b].

Thttp://www.omg.org/mof (June 2007)

30 Chapter 2. Background

conforms to

Metametamodel

conforms to

Metamodel

conforms to

Model

represented by

System

Figure 2.3: Layered MDE modelling stack

model world

real world

The relation between a model element and a corresponding metamodel
element (i.e., on a higher model level) has to be distinguished from the
instance-of relation that exists between a type and an instance of that type
within the same modelling level. In practice these are often confused. As an
example, consider Figure 2.4 . The metamodel is a simplified fragment of
the UML metamodel. It defines a modelling language that allows to create
models consisting of objects and classes that can be related to each other by
the instance-of relation. These metamodel elements can be used to create a
model of some application, for instance, to define a Class Person and an in-
stance of that Class: Object joe. Both the relations between Class and Person
and Person and joe are instance-of relations. However, they are of a different
nature. Therefore, Atkinson and Kiine [2003] distinguish between a lin-
guistic (between Class and Person) and an ontological (between Person and
joe) instance-of relation. Similarly, Bézivin and Gerbé [2001] uses a differ-
ent term for the linguistic instance-of relation by referring to it as meta.
Note that the conforms to relation depicted in Figure 2.3 effectively sum-
marises meta relations between individual model and metamodel elements:
a model conforms to a metamodel if and only if all its model elements have
a meta relation with an element defined in that metamodel [Bézivin, 2006].

Favre [2005a] uses set theory to explain that the conforms to relation
between a model and its metamodel is actually a derived relation as illus-
trated by Figure 2.5 . If we consider a modelling language as the set of
models expressed in that language, the relation between a model and the
modelling language is the element of relation from set theory. When we also
consider the modelling language as the system under study, the modelling
language is, in turn, related to the metamodel by the represented by relation.

2.3. Model-Driven Engineering 31

instance-of
Class Object
Ii) < N\ (?I
+ class !

instance—-of instance—of instance-of

metamodel
model

----- oy o e

instance—of

Figure 2.4: Metamodel and conforming model

represented by

Metamodel

Language

element of

Model

Figure 2.5: Conforms to relation in MDE

conforms to

32 Chapter 2. Background

In the case of MDA, MOF is the metametamodel. MOF defines the
(meta)model elements necessary to define modelling languages, such as,
class, association, and constraint. Metamodelling is similar to data mod-
elling and object modelling. As such, MOF models are similar to entity-
relationship models [Chen, 1976] and, in particular, to UML class models.

Similarly to grammars, MOF is used to define the abstract syntax of
modelling languages, that is, the structure of corresponding models. As
an example, the UML metamodel is now also defined using MOF. Where,
with (context-free) grammars, the abstract syntax defines a set of abstract
syntax trees, a MOF metamodel defines a set of abstract syntax graphs. In
contrast with grammars, MOF cannot be used to define the concrete syntax,
that is, the notation, of a modelling language. In the case of UML, for in-
stance, the notations used in the different diagrams are defined separately.
In Chapter 8, we propose a light-weight solution to this problem.

Several implementations of MOF exist. These allow the definition of
metamodels and the creation of conforming models in the Extensible
Markup Language! (XML) or as objects in memory. Such implementa-
tions are used, for instance, for the development of model transformation
tools. As an example, the Eclipse Modeling Framework? (EMF) is a plug-
in for Eclipse® that is based on MOF. Given a metamodel EMF generates
an implementation of that metamodel (in Java) that can be extended to
develop tools based on that metamodel, such as a model editor.

For a particular MDE approach the metamodelling language can be used
to define a whole class of modelling languages. Having a single metamod-
elling language also enables the development of model transformation lan-
guages and supporting tools.

In several of this thesis’ chapters we created metamodels. In Chapter 6,
for instance, we defined a simple modelling language to represent modu-
larisation constructs, such as class and module; in Chapter 7, we defined a
metamodel for the specification of task-resource models for control compo-
nents in manufacturing machines.

2.3.3 Model Transformations

Model transformations are essential to MDE [Gerber et al., 2002; Sendall,
2003]. A transformation definition describes mappings or transformation
rules to transform elements of a source model into elements of a target
model [Kleppe et al., 2003]. Often model transformation languages use ex-

Thttp://www.w3.org/XML (June 2007)

2http:/www.eclipse.org/emf (June 2007)

3Eclipse is a widely-used, freely-available, open-source integrated development environ-
ment, see http://www.eclipse.org (June 2007)

2.3. Model-Driven Engineering 33

- - - >]Metametamodel <& - - -

I
, conforms to

conforms to | conforms to
|TransformationMetamodeI |

N

1
+ source . conforms to
Metamodel \ Metamodel
| + targe A

I
conforms to | |TransformationModeI | 1 conforms to

M°dﬂ /.'\ Model

+ source 1 represented by + target

Figure 2.6: Model transformation megamodel

pressions in the Object Constraint Language! (OCL) to select the elements
in the source model to transform. OCL is a declarative language, originally
developed to specify constraints over UML models.

The MDE pattern or megamodel for model transformations is depicted
in Figure 2.6 [Bézivin et al., 2005]. With MDE a Transformation between a
source and target Model is defined by a transformation language. When
this language is defined by a TransformationModelMetamodel, the transforma-
tion definition is in fact a model itself. This TransformationModel specifies
transformations of source into target models in terms of the Metamodels
they conform to. In correspondence with the metamodelling megamodel in
Figure 2.3 on page 30, all involved metamodels conform to a single Metameta-
model.

A transformation engine (automatically) transforms source models that
conform to the source metamodel into target models that conform to the
target metamodel as described in the transformation definition. As such,
transformation engines require several inputs: source model, source meta-
model, target metamodel, and transformation definition.

Many different types of model transformations and model transfor-
mation languages are conceivable. Sendall [2003]; Czarnecki and Helsen
[2006]; and Mens and Van Gorp [2006] each give a number of properties
of model transformation languages. These include the type and number
of source and target models, horizontal vs. vertical transformations (with
respect to abstraction level), type of notation (e.g., graphical vs. textual),
source-target relationship (new vs. in-place), and many more.

Thttp://www.omg.org/technology/documents/modeling_spec_catalog. htm#OCL (June 2007)

34 Chapter 2. Background

ClassModel +al Class

Q> _name :String
1.*

+ attributes I* * I+ operations

Attribute Operation
—name :String —-name :String
—visibility :String

Figure 2.7: A metamodel for simple class models

ATL: a model transformation language In this thesis we mainly use the At-
las Transformation Language [Jouault and Kurtev, 2005] (ATL) to spec-
ify model transformations. Although, ATL is primarily a declarative model
transformation language (based on OCL), it also has imperative features.
An important reasons for using ATL is its implementation in a toolkit that
includes an editor, debugger and transformation engine that is freely avail-
able. Furthermore, this toolkit integrates with EMF and other (UML) tool-
ing. This allows the use of UML models as well as models based on custom
(MOF-based) metamodels. Here, we briefly introduce ATL! as an example of
a model transformation language.

As illustrative example, we discuss the transformation in Listing 2.1
that adds getters and setters to a simple class model. Figure 2.7 depicts a
metamodel for simple class models. It contains a root element ClassModel
that owns any number of classes. In turn, a Class, owns a number of at-
tributes and operations. Class, Attribute, and Operation all have a name feature.
Additionally, an Attribute also has a feature visibility.

Model transformations are specified in an ATL Module that is composed
of a header, transformation rules and so-called helpers. As in Listing 2.1,
the header specifies the names for the source models (1n), target models
(out), and metamodels (crassm) that are used in the definition of transfor-
mation rules and helpers.

A declarative transformation rule is called a matched rule in ATL. It
specifies a source and target pattern, indicated by the £rom and to blocks,
respectively. The source pattern specifies the type of model elements that
are matched by the rule. Optionally, the source pattern may specify a guard
in the form of a Boolean OCL expression that further constraints the set
of elements that are matched. For instance, in the privateattribute rule
(lines 31-40), the source pattern (a_in) specifies that the rule matches ele-
ments of type attribute for which the private helper evaluates to true.

IPlease, consult the ATL User Manual [ATLAS group] for more detailed information

2.3. Model-Driven Engineering

35

1module ADDGETSET;

2 create OUT : CLASSM from IN : CLASSM;

3

4+ helper context CLASSM!Attribute def: isPrivate: Boolean =

5 self.visibility = ’private’;

6

7rule ClassModel {

8 from cm_in:CLASSM!ClassModel
9 to

10 cm_out :CLASSM!ClassModel (is
11 classes <- cm_in.classes

13 }
14 rule Class {
15 from c_in:CLASSM!Class

16 to

17 c_out:CLASSM!Class (

18 name <- c_in.name,

19 attributes <- c_in.attributes,

20 operations <- c_in.operations

21 —>union(c_in.attributes—->select (ala.isPrivate)->collect (a|
thisModule.resolveTemp(a,’'get’)))

22 ->union(c_in.attributes->select (ala.isPrivate)->collect (a|

thisModule.resolveTemp(a,’set’)))
23)
24 }
25 rule Attribute {
26 from a_in:CLASSM!Attribute (not a_in.private)

27 to
28 a_out:CLASSM!Attribute (
29 name <- a_in.name)

30 }
31 rule PrivateAttribute {
32 from a_in:CLASSM!Attribute (a_in.private)

33 to

34 a_out:CLASSM!Attribute (

35 name <- a_in.name),

36 get :CLASSM!Operation (

37 name <- ’‘get’+a_in.name),
38 set :CLASSM!Operation (

39 name <- ’‘set’+a_in.name)

40 }
41 rule Operation {
42 from o_in:CLASSM!Operation

43 to
44 o_out :CLASSM!Operation (
45 name <- o_in.name)

Listing 2.1: Adding getters and setters

36 Chapter 2. Background

The target pattern of a transformation rule may consist of multiple tar-
get pattern elements. Each element specifies the creation of a model ele-
ment in the target model. A target pattern element specifies the type of
the created element and a set of bindings that specifies how the features
of the created model element will be initialised. The privateattribute rule
creates three elements in the target model by its target pattern elements:
an Attribute (a_out) and two Operations (get and set). Their bindings refer
to the matched source model element (a_in) to initialise the name feature of
the created target model elements.

With ATL, the source model is read-only and the target model is write-
only. To initialise the features of target model elements, the ATL transfor-
mation engine applies a specific value resolution algorithm. When the type
of the expression of a binding is a primitive type (e.g., c_in.name in line 18)
or when its value is another target pattern element of the same rule, it is
simply assigned. When the value is a (set of) source model element(s) it is
first resolved into a target model element (e.g., c_in.attributes in line 19).
Effectively, the target model element created by the rule that matches the
source model element specified in the binding’s expression is assigned.

In the case that the matching rule specifies multiple target pattern ele-
ments the default (i.e., the first) target pattern element is used. When this
is not desirable, ATL offers the resolveTemp operation that can be used to
resolve source model elements using non-default target pattern elements.
To this end, it takes the source model element to be resolved and the name
of the target pattern element as parameters.

As an example, we explain how the operations feature of a target Class
is initialised by the class rule in lines 20-22. Using standard OCL oper-
ations the expression of the bindings specifies the union of the operations
already present in the matching Class (c_in.operations) and the getters
and setters generated for private Attributes. We specify the getters by
first selecting from all attributes of the matching Class (c_in.attributes)
those that are private using one of OCL’s iterators (->select (ala.isPrivate
)). Subsequently, for the resulting Attributes we collect the created tar-
get elements using the ' get’ target pattern element of the matching rule
(—>collect (althisModule.resolveTemp (a,’get’) We specify the created set-
ters similarly.

A helper may be defined in the context of some source metamodel ele-
ment. As such, it effectively adds a feature to such an element. For exam-
ple, the isprivate helper (lines 4-5) is defined in the context of Attributes.
It evaluates to true for every Attribute for which its visibility feature is set
to the string 'private’. This helper is an example of a so-called attribute
helper. Such helpers do not take parameters and are evaluated only once
for every source model element. Operation helpers, on the other hand, may
take parameters and have to be evaluated upon each call. Finally, by omit-

2.3. Model-Driven Engineering 37

ting the context from the definition of a helper it is defined in the context of
the transformation module as a whole, which is represented by the built-in
thisModule element.

In addition to the (declarative) features explained above, ATL offers a
number of additional features that we only mention briefly. Next to the
simple target pattern elements in Listing 2.1 that generate a single tar-
get model element, iterative target pattern elements that iterate over some
collection can be used to create a whole set of target model elements for a
single matching source model element. ATL also offers imperative features
that make it possible to add imperative instructions to matched rules. Fi-
nally, apart from matched rules, it is possible to define (imperative) rules
that are not matched by source model elements, but that are called explic-
itly. As such, these called rules do not have a source pattern.

2.3.4 MDE and Other Technological Spaces

As discussed above, abstraction and automation are made possible in MDE
by the use of metamodels. However, other solutions exist as well. As an
example, modelling languages can also be defined using grammars or XML
schemas. The layered structure depicted in Figure 2.3 on page 30 can be
recognised when using these alternatives as well, for instance, in the case
of grammars, EBNF is on the metametamodel level, grammars are on the
metamodel level, and programs on the model level.

Such different types of solutions each come with a whole context of con-
cepts, a body of knowledge, required skills, and possibilities. Kurtev et al.
[2002] coined the term technological space for such a context. As such, the
MDE space includes models, metamodels, model transformations, modelling
tools and transformation languages. This space is also referred to as mod-
elware. Similarly, the grammar space, or grammarware [Klint et al., 2005],
includes programs, programming languages, grammars, parsers, and pro-
gram transformation systems (e.g., Van den Brand et al. [2001]; Visser
[2004]). Other recognised technological spaces are based on XML or on-
tologies, for instance.

Specific operations on a particular type of models might be more con-
venient in one technological space than in the other. For this reason it
can be necessary to create a bridge between different technological spaces.
In Chapter 6, for instance, we used a bridge between the modelware and
grammarware technological space to visualise MDA models using a graph
visualisation tool that has a grammar-based input language.

Another bridge that is very important to MDA is XML Metadata Inter-
change! (XMI). This bridge makes it possible to serialise models based on

Thttp://www.omg.org/mda/specs.htm#XMI (June 2007)

38 Chapter 2. Background

abstraction level

evolution

abstraction type

Figure 2.8: Three-dimensional evolution framework

MOF metamodels as XML documents. As such, XMI is used to exchange
models between tools, for instance, between modelling and transformation
tools.

In this thesis we mainly use technologies related to MDA, OMG’s so-
lution to MDE. It is a set of standards that includes capabilities for
modelling (e.g., UML), metamodelling (MOF), and model transformations
(Query/View/Transformation [OMG, 2005] (QVT)). The advantage of such
standards is that they make it worthwhile for tool vendors to develop
tools that support MDA technology [Booch et al., 2004], such as ArcStyler!
(Interactive Objects) and Borland Together? Only when supporting tools
are available an initiative as the MDA can become a success in practice.
Tools that support UML modelling have been available for quite some time,
but now also tools become available supporting metamodelling and model

transformations3.

2.4 Model-Driven Evolution of Software Architectures

In this thesis we investigate the model-driven evolution of software archi-
tectures. We conclude this chapter by explaining in this section why we
think this makes sense.

Firstly, as explained in Section 2.2.4, architectures are often described
using multiple views each addressing a specific set of concerns. For ar-
chitectural views abstraction plays two roles: the level of abstraction, and
the type of abstraction, which refers to the type of the view (i.e., the view-

Thttp://www.interactive-objects.com/products/arcstyler (September 2007)
2http://www.borland.com/us/products/together/ (September 2007)
3See http:/planetmde.org/tools (June 2007) for an overview of MDA and MDE tools.

2.4. Model-Driven Evolution of Software Architectures 39

point [TIEEE-1471, 2000]). Such a view is centred around a model. Often
this is a model in a general sense, that is, it is a simplified representa-
tion of the system from a specific perspective. In practice such a model can
be a drawing or sketch that is not based on a defined modelling language.
In this thesis we attempt to consider those models in a more specific MDE
sense, that is, models conforming to a metamodel. Using this perspective
it becomes possible to support our software evolution tasks by model trans-
formations.

By considering software evolution as driven by or the result of model
transformations, we basically add a dimension along which models can be
transformed to the two dimensions identified in Section 2.2.4 (type and
level of abstraction). This results in a three-dimensional framework with
two abstraction axes (one for type and one for level of abstraction) and one
evolution axis. Models are transformed in a development (abstraction level)
direction as well as in an (orthogonal) evolution direction. A third axis
indicates the different types of abstractions (views) used (see Figure 2.8).

Secondly, the use of product-line principles can benefit especially from
MDE approaches [Schmidt, 2006]. Software product lines are typically (at
least) based on a platform [Bosch, 2002], a set of software components com-
mon to all product-line members. MDE approaches are particularly suited
to be applied to generate code for such platforms by application of model
transformations. We also apply these model transformations to support
our evolution tasks in the case of an evolving product line architecture, or
platform.

For these reasons this thesis explores the evolution (discussed in Sec-
tion 2.1) of software architectures (Section 2.2) using model-driven tech-
niques (Section 2.3).

Chapter

Embedded-Software Engineering:
The State of the Practice?

The embedded-software market has grown very fast the last decade and will
continue to do so in the coming years. The specific properties of embedded
software, such as hardware dependencies, make its development different
from non-embedded software. Therefore we expected very specific software
development technologies to be used in this domain. The inventory we con-
ducted at several embedded-software-development companies in Europe re-
markably shows that this is not true. However the inventory results con-
cerning requirements engineering and architecture design at these compa-
nies do suggest that there is a need for more specifically aimed development
technologies. This chapter presents the inventory results and identifies pos-
sibilities for future research to customise existing and develop new software
development technologies for the embedded-software domain.

3.1 Introduction

Many products today contain software (e.g., mobile telephones, DVD play-
ers, cars, aeroplanes, and medical systems). Because of advancements in
information and communication technology, in the future even more prod-
ucts will likely contain software. The market for these ‘enhanced’ prod-
ucts is forecasted to grow exponentially in the next 10 years [PROGRESS,
2002]. Moreover, these embedded-systems’ complexity is increasing, and
the amount and variety of software in these products are growing. This
creates a big challenge for embedded-software development. In the years

IThis chapter was published earlier as: Graaf, Bas, Marco Lormans, and Hans Toetenel.
Embedded software engineering: The state of the practice. IEEE Software, 20(6):pages
61-69, 2003

41

42 Chapter 3. State of the Practice

to come, the key to success will be the ability to successfully develop high-
quality embedded systems and software on time. As the complexity, num-
ber, and diversity of applications increase, more and more companies are
having trouble achieving sufficient product quality and timely delivery. To
optimise the timeliness, productivity, and quality of embedded-software de-
velopment, companies must apply software engineering technologies that
are appropriate for specific situations.

Unfortunately, the many available software development technologies
don’t take into account the specific needs of embedded-systems develop-
ment. This development is fundamentally different from that of non-
embedded systems. Technologies for the development of embedded systems
should address specific constraints such as hard timing constraints, lim-
ited memory and power use, predefined hardware platform technology, and
hardware costs. Existing development technologies don’t address their spe-
cific impact on, or necessary customisation for, the embedded domain. Nor
do these technologies give developers any indication of how to apply them
to specific areas in this domain — for example, automotive systems, telecom-
munications, or consumer electronics. Consequently, tailoring a technology
for a specific use is difficult. Furthermore, the embedded domain is driven
by reliability factors, cost factors, and time to market. So, this embedded
domain needs specifically targeted development technologies.

In industry, the general feeling is that the current practice of embedded-
software development is unsatisfactory. However, changes to the develop-
ment process must be gradual; a direction must be supplied. To achieve
this, we need more insight into the currently available and currently used
methods, tools, and techniques in industry.

To gain such insight, we performed an industrial inventory as part of the
Software Engineering MethOdOlogieS for Embedded Systems! (MOOSE)
project. MOOSE is part of the Information Technology for European Ad-
vancement? (ITEA) programme and is aimed at improving software quality
and development productivity for embedded systems. Not only did we gain
an overview of which technologies the MOOSE consortium’s industrial part-
ners use, we also learnt why they use or don’t use certain technologies. In
addition, we gained insight into what currently unavailable technologies
might be helpful in the future.

3.2 Methods and Scope

The inventory involved seven industrial companies and one research insti-
tute in three European countries (see Table 3.1). These companies build a

Thttp://www.mooseproject.org (June 2007)
2http://www.itea-office.org (June 2007)

3.2. Methods and Scope 43

Table 3.1: Inventoried companies

Company Products

TeamArteche (Spain) Measurement, control, and protec-
tion systems for electrical substa-
tions

Nokia (Finland) Mobile networks and mobile
phones

Solid (Finland) Distributed-data-management so-
lutions

VTT Electronics (Finland) Technology services for busi-
nesses

Philips PDSL (Netherlands) Consumer electronics

ASML (Netherlands) Lithography systems for the semi-
conductor industry

Océ (Netherlands) Document-processing systems

LogicaCMG (Netherlands) Gilobal IT solutions and services

variety of embedded-software products, ranging from consumer electronics
to highly specialised industrial machines. We performed 36 one-hour in-
terviews with software practitioners. The respondents were engineers, re-
searchers, software or system architects, and managers, with varying back-
grounds. To get a fair overview of the companies involved (most of which
are very large), we interviewed at least three respondents at the smaller
companies and five or six at the larger companies. These interviews were
conducted in the period April — October 2002.

We based the interviews on an outline specifying the discussion topics
(see Table 3.2 on the following page). To be as complete as possible, it is
based on a reference process model. Because software process improve-
ment methods have such a (ideal) process model as their core, we used
one of them. We chose the process model of the BOOTSTRAP method [Ku-
vaja et al., 1994] because of its relative emphasis on engineering processes
compared to other process models [Wang et al., 1999], such as those of the
Capability Maturity Model [Humphrey, 1989] (CMM) and Software Process
Improvement and Capability dEtermination [Emam et al., 1997] (SPICE).
BOOTSTRAP’s other advantage for this inventory is that the BOOTSTRAP
Institute developed it with the European software industry in mind.

For every interview we created a report; we consolidated the reports
for a company into one report. We then analysed the company reports
for trends and common practices. Finally, we wrote a comprehensive re-
port that, for confidentiality reasons, is available only to MOOSE consortium
members. That report forms the basis for this discussion.

44 Chapter 3. State of the Practice

Table 3.2: A sample of the interview outline

Here are some discussion topics and questions from the outline we used
for the interviews.

Technology
What are the most important reasons for selecting development technolo-
gies?

e Impact of introducing new technologies (cost, time, and so on).
o Why not use modern/different technologies?

Software life cycle
Software requirements engineering
How are the requirements being gathered?

e What are the different activities?
e What documents are produced?
e What about tool support?

How are the requirements being specified?

What specification language?

What about tool support? (Consider cost, complexity, automation, train-
ing, acceptance)

What notations/diagrams?

What documents are produced?

How are documents reviewed?

What are advantages/disadvantages of followed approaches?

Software architecture design
How is the architecture specified?

e What architecture description language?

e What about tool support? (Consider cost, complexity, automation, train-
ing, acceptance)

e Are design patterns used?

e What notations/diagrams?

e What documents are produced?

e How are documents reviewed?

e What are advantages/disadvantages of followed approaches?

3.3. Embedded-Software Development Context 45

3.3 Embedded-Software Development Context

When considering the embedded-software-development process, you need
to understand the context in which it is applied. After all, most compa-
nies that develop embedded software do not sell it. Although at the time
of writing this is slowly changing in some industries (e.g., consumer elec-
tronics, see Van Genuchten [2007], they primarily sell mobile phones, CD
players, lithography systems, and other products. The software in these
products constitutes only one (important) part. Embedded-software engi-
neering and other processes such as mechanical engineering and electrical
engineering are in fact subprocesses of systems engineering. Coordinating
these subprocesses to develop quality products is one of embedded-system
development’s most challenging aspects. The increasing complexity of sys-
tems makes it impossible to consider these disciplines in isolation.

For instance, when looking at communication between different devel-
opment teams, we noticed that besides vertical communication links along
the lines of the hierarchy of architectures, horizontal communication links
existed. Vertical communication occurs between developers who are re-
sponsible for systems, subsystems, or components at different abstraction
levels (e.g., a system architect communicating with a software architect).
Horizontal communication occurs between developers who are responsible
for these things at the same abstraction level (e.g., a programmer respon-
sible for component A communicating with a programmer responsible for
component B).

Still, we found that systems engineering was mostly hardware driven
— that is, from a mechanical or an electronic viewpoint. In some compa-
nies, software architects weren’t even involved in design decisions at the
system level. Hardware development primarily dominated system devel-
opment because of longer lead times and logistical dependencies on exter-
nal suppliers. Consequently, software development started when hardware
development was already at a stage where changes would be expensive.
Hardware properties then narrowed the solution space for software devel-
opment. This resulted in situations where software inappropriately ful-
filled the role of integrator; that is, problems that should have been solved
in the hardware domain were solved in the software domain. Embedded-
software developers felt that this was becoming a serious problem. So,
in many companies this was changing; software architects were becoming
more involved on the system level.

Depending on the product’s complexity, projects used system require-
ments to design a system architecture containing multidisciplinary or
monodisciplinary subsystems. (A multidisciplinary subsystem will be
implemented by different disciplines; a discipline refers to software, or
mechanics, or electronics, or optics, and so on. A monodisciplinary subsys-

46 Chapter 3. State of the Practice

Requirements

v Architecture design System
Architecture
\‘\\ Requirements analysis
. .
/ I
Vs v N
Requirements Requirements Requirements
v ' Subsystem
Architecture Architecture Architecture
/ T
= S
7 T~
5 Y £
Requirements Requirements Requirements
1 ' A ! Component
Architecture Architecture Architecture

Figure 3.1: The decomposition of the embedded-systems-development process

tem will be implemented by one discipline.) Next, the projects allocated
system requirements to the architecture’s different elements and refined
the requirements. This process is repeated for each subsystem. Finally,
the projects decomposed the subsystems into monodisciplinary components
that an individual developer or small groups of developers could develop.
The level of detail at which decomposition resulted in monodisciplinary
subsystems varied. In some cases, the first design or decomposition step
immediately resulted in monodisciplinary subsystems and the correspond-
ing requirements. In other cases, subsystems remained multidisciplinary
for several design steps.

This generic embedded-systems-development process resulted in a tree
of requirements and design documents (see Figure 3.1). Each level repre-
sented the system at a specific abstraction level. The more complex the
system, the more evident this concept of abstraction levels was in the de-
velopment process and its resulting artefacts (for example, requirements
documentation).

3.4. Requirements Engineering Results 47

Stakeholders Customers/users

i

Manufacturing Marketing Maintainance
AN
Suppliers - | s i 4
. X Requirements
Standards . engineering
— g
Legacy systems - | _— i
Regulators + Stakeholder

requirements

Context

Figure 3.2: Embedded-systems-development stakeholders and other factors

In the process in Figure 3.1, requirements on different abstraction lev-
els are related to each other by design decisions, which were recorded in
architecture and design documentation. At the system level, these deci-
sions concerned partitioning of the functional and nonfunctional require-
ments over software and hardware components. The criteria used for such
concurrent design (codesign) were mostly implicit and based on system ar-
chitects’ experience.

3.4 Requirements Engineering Results

Typically, embedded-systems development involved many stakeholders.
This was most apparent during requirements engineering. Figure 3.2
depicts our view of the most common stakeholders and other factors.

In requirements engineering’s first phase, the customer determines the
functional and nonfunctional requirements. Depending on the product do-
main, the customer negotiates the requirements via the marketing and
sales area or directly with the developers.

The first phase’s output is the agreed requirements specification, which
is a description of the system that all stakeholders can understand. This
document serves as a contract between the stakeholders and developers. At
this point, we noticed a clear difference between small and large projects.
In small projects, the stakeholder requirements also served as developer
requirements. In large projects, stakeholder requirements were translated
into technically oriented developer requirements.

48 Chapter 3. State of the Practice

Requirements specify what a system does; a design describes how to
realise a system. Software engineering textbooks strictly separate the re-
quirements and the design phases of software development; in practice, this
separation is less obvious. In fact, the small companies often put both the
requirements and design into the system specification. These companies
did not explicitly derive software requirements from the system require-
ments. The development processes in the larger companies did result in
separate requirements and design documents on different abstraction lev-
els. However, in many cases, these companies directly copied information
from a design document into a requirements document for the next ab-
straction level instead of first performing additional requirements analysis.
For instance, a software architecture specification (i.e., a design document)
might list some characteristics of the components that comprise the archi-
tecture. On the next abstraction level a requirements document concerns
only an individual component. Often simply the characteristics mentioned
in the architecture specification are used as the requirements, instead of
elaborating those requirements and adding more detailed requirements.

3.41 Requirements Specification

Requirements were usually specified in natural language and processed
with an ordinary word processor. The companies normally used templates
and guidelines to structure the documents. The templates prescribed what
aspects had to be specified. However, not all projects at a company used
these templates, so requirements specifications from different projects
sometimes looked quite different.

Because embedded-software’s nonfunctional properties are typically im-
portant, we expected these templates to reserve a section on nonfunctional
requirements next to functional requirements. This wasn’t always the case.
For example, the requirements specification didn’t always explicitly take
into account real-time requirements. Sometimes a project expressed them
in a separate section in the requirements documents, but often they were
implicit. Requirements specification and design also usually didn’t explic-
itly address other typical embedded-software requirements, such as those
for power consumption and memory use.

Projects that employed diagrams to support requirements used mostly
free-form and box-line diagrams in a style that resembles the Unified Mod-
eling Language! (UML), data-flow diagrams, or other notations. Project
members primarily used general-purpose drawing tools to draw the dia-
grams. Because of the lack of proper syntax and semantics, other project
members often misinterpreted the diagrams. This was especially true for

Thttp://www.uml.org (June 2007)

3.4. Requirements Engineering Results 49

project members working in other disciplines that employ a different type
of notation.

UML was not common practice yet, but most companies were at least
considering its possibilities for application in requirements engineering.
Use cases were the most-used UML constructs in this phase. Some projects
used sequence diagrams to realise use cases; others applied class diagrams
for domain modelling. However, the interpretation of UML notations was
not always agreed on during requirements engineering. It wasn’t always
clear, for instance, what objects and messages in UML diagrams denote
when a sequence diagram specifies a use case realisation.

On the lowest levels, projects commonly used pre- and postconditions to
specify software requirements. They specified interfaces as pre- and post-
conditions in natural language, C, or some interface definition language.

Projects rarely used formal specifications. One reason was that formal
specifications were considered difficult to use in complex industrial envi-
ronments and require specialised skills. When projects did use them, com-
munication between project members was difficult because most members
did not completely understand them. This problem worsened as projects
and customers needed to communicate. In one case, however, a project
whose highest priority was safety used the formal notation Z for specifi-
cation.

3.42 Requirements Management

When looking at Figures 3.1 on page 46 and 3.2 on page 47, you can imagine
that it’s hard to manage the different requirements from all these different
sources throughout development. This issue was important especially in
large projects.

Another complicating factor was that most projects didn’t start from
scratch. In most cases, companies built a new project on previous projects.
So, these new projects reused requirements specifications (even for devel-
oping a new product line). Consequently, keeping requirements documents
consistent was difficult. To keep all development products and documents
consistent, the projects had to analyse the new features’ impact precisely.
However, the projects frequently didn’t explicitly document relations be-
tween requirements, so impact analysis was quite difficult. This traceabil-
ity is an essential aspect of requirements management. Tracing require-
ments was difficult because the relations (e.g., between requirements and
architectural components) were too complex to specify manually.

Available requirements management tools didn’t seem to solve this
problem, although tailored versions worked in some cases. A general
shortcoming of these tools was that the relations between the require-
ments had no meaning. In particular, tool users could specify the relations

50 Chapter 3. State of the Practice

but not the rationale behind the link.

When projects did document relations between requirements, they used
separate spreadsheets. Some companies were using or experimenting
with more advanced requirements management tools such as RequisitePro
(Rational), RTM (Integrated Chipware), and DOORS (Telelogic). These ex-
periments weren’t always successful. In one case, the tool’s users didn’t
have the right skills, and learning them took too long. Also, the tool han-
dled only the more trivial relations between requirements, design, and test
documents. So, developers couldn’t rely on the tool completely, which is
important when using a tool.

Requirements management also involves release management (manag-
ing features in releases), change management (backwards compatibility),
and configuration management. Some requirements management tools
supported these processes. However, because most companies already had
other tools for this functionality, integration with those tools would have
been preferable.

3.5 Software Architecture Results

Small projects didn’t always consider the explicit development, specifi-
cation, and analysis of the product architecture necessary. Also, owing
to time-to-market pressure, the scheduled deadlines often obstructed the
development of sound architectures. Architects often said they didn’t have
enough time to do things right.

The distinction between detailed design and architecture seemed some-
what arbitrary. During development, the projects interpreted architecture
simply as high-level design. They didn’t make the distinction between ar-
chitectural and other types of design explicit, as, for example, Eden and
Kazman [2003]. There, the locality criterion is introduced to distinguish
architectural design from detailed design. A design statement is said to
be local when it can’t be violated by mere expansion. The application of
a design pattern is an example of a local design statement. Architectural
design is not local. For instance, an architectural style can be violated by
simple expansion.

3.5.1 Software Architecture Design

Designing a product’s or subsystem’s architecture was foremost a creative
activity that was difficult to divide into small, easy-to-take steps. Just as
system requirements formed the basis for system architecture decisions,
system architecture decisions constrained the software architecture.

3.5. Software Architecture Results 51

In some cases, a different organisational unit had designed the system
architecture. So, the architecture was more or less fixed — for instance,
when the hardware architecture was designed first or was already known.
This led to suboptimal (software) architectures. Because software was con-
sidered more flexible and has a shorter lead time, projects used it to fix
hardware architecture flaws, as we mentioned before.

The design process didn’t always explicitly take into account perfor-
mance requirements. In most cases where performance was an issue,
projects just designed the system to be as fast as possible. They didn’t
establish how fast until an implementation was available. Projects that
took performance requirements into account during design did so mostly
through budgeting. For example, they frequently divided a high-level
real-time constraint among several lower-level components. This divi-
sion, however, often was based on the developers’ experience rather than
well-funded calculations. Projects also used this technique for other non-
functional requirements such as for power and memory use.

Projects sometimes considered commercial off-the-shelf (COTS) compo-
nents as black boxes in a design, specifying only the external interfaces.
This was similar to an approach that incorporated hardware drivers into
an object-oriented (00) design. However, developers of hardware drivers
typically don’t use 00 techniques. By considering these drivers as black
boxes and looking only at their interfaces, the designers could nevertheless
include them in an 00 design. For the COTS components, the black box
approach wasn’t always successful. In some cases, the projects also had
to consider the components’ bugs, so they couldn’t treat the components as
black boxes.

The software architecture often mirrored the hardware architecture,
which made the impact of changes in hardware easier to determine. Most
cases involving complex systems employed a layered architecture pattern.
These layers made it easier to deal with embedded-systems’ growing com-
plexity.

3.5.2 Software Architecture Description

UML was the most commonly used notation for architectural modelling. On
the higher abstraction levels, the specific meaning of UML notations in the
architecture documentation should be clear to all stakeholders, which was
not always the case. Some projects documented this in a reference archi-
tecture or architecture manual (we discuss these documents in more detail
later).

52 Chapter 3. State of the Practice

IBM’s Rational Rose Technical Developer! (formerly known as Rational
Rose RealTime) lets developers create executable models and completely
generate source code. A few projects tried this approach. One project com-
pletely generated reusable embedded-software components from Rational
Rose RealTime models. However, most of these projects used these tools
only experimentally.

For creating UML diagrams, respondents frequently mentioned only two
tools: Microsoft Visio and Rational Rose. Projects used these tools mostly
for drawing rather than modelling. This means, for instance, that models
weren’t always syntactically correct and consistent.

Other well-known notations that projects used for architectural mod-
elling were data-flow diagrams, entity-relationship diagrams, flowcharts,
and Hatley-Pirbhai diagrams [Hatley and Pirbhai, 1987] for the represen-
tation of control flow and state-based behaviour. Projects often used di-
agrams based on these notations to clarify textual architectural descrip-
tions in architecture documents. Some projects used more free-form box-
line drawings to document and communicate designs and architectures.

One project used the Koala component model [Van Ommering et al.,
2000] to describe the software architecture. Compared to box-line draw-
ings, the Koala component model’s graphical notation has a more defined
syntax. Koala provides interface and component definition languages based
on C syntax. A Koala architecture diagram specifies the interfaces that a
component provides and requires. This project used Microsoft Visio to draw
the Koala diagrams.

Projects often used pseudocode and pre- and postconditions to specify
interfaces. Although this technique is more structured than natural lan-
guage, the resulting specifications were mostly incomplete, with many im-
plicit assumptions. This not only sometimes led to misunderstandings but
also hampered the use of other techniques such as formal verification.

Some projects referred to a reference architecture or an architecture
user manual. These documents defined the specific notations in architec-
tural documents and explained which architectural concepts to use and
how to specify them.

3.5.3 Software Architecture Evaluation

Most projects did not explicitly address architecture verification during de-
sign; those that did primarily used qualitative techniques. Few projects
used quantitative techniques such as Petri nets or rate monotonic schedul-
ing analysis [Liu and Layland, 1973]. One reason is that quantitative-
analysis tools need detailed information. In practice, projects often used an

Thttp:/www-306.ibm.com/software/awdtools/developer/technical (June 2007)

3.5. Software Architecture Results 53

architecture only as a vehicle for communication among stakeholders.

The most commonly employed qualitative techniques were reviews,
meetings, and checklists. Another qualitative technique employed was
scenario-based analysis. With this technique, a project can consider
whether the proposed architecture supports different scenarios. By us-
ing different types of scenarios (e.g., use scenarios and change scenarios),
a project not only can validate that the architecture supports a certain
functionality but also can verify qualities such as changeability.

The respondents typically felt that formal verification techniques were
inapplicable in an industrial setting. They considered these techniques to
be useful only in limited application areas such as communication protocols
or parts of security-critical systems. The few projects that used Rational
Rose RealTime were able to use simulation to verify and validate architec-
tures.

3.5.4 Reuse

Reuse is often considered one of the most important advantages of develop-
ment using architectural principles. By defining clean, clear interfaces and
adopting a component-based development style, projects should be able to
assemble new applications from reusable components.

In general, reuse was rather ad hoc. Projects reused requirements, de-
sign documents, and code from earlier, similar projects by copying them.
This was because most products were based on previous products.

For highly specialised products, respondents felt that using configurable
components from a component repository was impossible. Another issue
that sometimes prevented reuse was the difficulty of estimating both a
reuse approach’s benefits and the effort to introduce it.

In some cases a project or company explicitly organised reuse. One com-
pany did this in combination with the Koala component model. The com-
pany applied this model together with a proprietary method for developing
product families.

Some companies had adopted a product-line approach to create a prod-
uct line or family architecture. When adopting this approach, the compa-
nies often had to extract the product-line architecture from existing product
architectures and implementations. This is called reverse architecting.

In most cases, hardware platforms served as the basis for defining prod-
uct lines, but sometimes market segments determined product lines. When
a company truly followed a product-line approach, architecture design took
variability into account.

One company used a propriety software development method that en-
abled large-scale, multisite, and incremental software development. This
method defined separate long-term architecture projects and subsystem

54 Chapter 3. State of the Practice

projects. The company used the subsystems in short-term projects to in-
stantiate products.

Another company had a special project that made reusable components
for a certain subsystem of the product architecture. The company used
Rational Rose RealTime to develop these components as executable models.

Some companies practised reuse by developing general platforms on top
of which they developed different products. This strategy is closely related
to product lines, which are often defined per platform.

3.6 Discussion

You might well ask, are these survey results representative of the whole
embedded-software domain? By interviewing several respondents with
different roles in each company, we tried to get a representative under-
standing of that company’s embedded-software-development processes.
The amount of new information gathered during successive interviews de-
creased. So, we concluded we did have a representative understanding for
that company.

With respect to embedded-software development in general, we believe
that the large number of respondents and the companies’ diversity of size,
products, and country of origin make this inventory’s results representa-
tive, for Europe at least. However, whether we can extend these results to
other areas (e.g., the United States) is questionable.

Another point for discussion is that the methods, tools, and techniques
the companies used were rather general software engineering technologies.
We expected that the companies would use more specialised tools in this
domain. Memory, power, and real-time requirements were far less promi-
nent during software development than we expected. That’s because most
general software engineering technologies didn’t have special features for
dealing with these requirements. Tailoring can be a solution to this prob-
lem, but it involves much effort, and the result is often too specific to apply
to other processes. Making software development technologies more flexi-
ble can help make tailoring more attractive. So, flexible software develop-
ment technologies are necessary. Here, with flexible we mean, for instance,
requirements management tools that allow to modify the types and charac-
teristics of the managed requirements, or model transformation tools that
allow to transform models in arbitrary modelling languages, instead of be-
ing restricted to UML.

We noticed a relatively large gap between the inventory’s results and
the available software development technologies. Why isn’t industry using
many of these technologies? During the interviews, respondents mentioned
several reasons. We look at three of them here.

3.7. Outlook 55

The first reason is compliance with legacy. As we mentioned before,
most projects didn’t start from scratch. Developers always have to deal
with this legacy, which means that the technology used in current projects
should at least be compatible with the technology used in previous prod-
ucts. Also, companies can often use previous products’ components in new
products with few or no adaptations. This contradicts the top-down ap-
proach in Figure 3.1 on page 46. Unlike with that approach, components
at a detailed level are available from the start, before the new product’s
architecture is even defined. This would suggest a bottom-up approach.
However, because most available software development approaches are top-
down, they don’t address this issue.

Another reason is maturity. Most development methods are defined at a
conceptual level; how to deploy and use them is unclear. When methods are
past this conceptual stage and even have tool implementations, the tools’
maturity can still prevent industry from using them. This was the case for
some requirements management tools. Some respondents said that these
tools weren’t suited for managing the complex dependencies between re-
quirements and other development artefacts, such as design and test doc-
umentation. Also, integrating these tools with existing solutions for other
problems such as configuration management and change management was
not straightforward.

The third reason is complexity. Complex development technologies re-
quire highly skilled software engineers to apply them. But the development
process also involves stakeholders who aren’t software practitioners. For
instance, as we mentioned before, project team members might use archi-
tecture specifications to communicate with (external) stakeholders. These
stakeholders often do not understand complex technology such as formal
architecture description languages (ADLs). Still, formal specifications are
sometimes necessary — for example, in safety-critical systems. To make
such highly complex technologies more applicable in industry, these tech-
nologies should integrate with more accepted and easy-to-understand tech-
nologies. Such a strategy will hide complexity.

3.7 Outlook

In the remainder of this thesis we take into account the aforementioned
reasons for industry’s reluctance of adopting state-of-the-art software de-
velopment technologies. This implies that we, were possible, make use of
existing standards and technologies that already have been successfully
applied in industrial practice.

Moreover, we have seen that software development in practice seldom
starts from scratch. As such, technologies to support software maintenance

56 Chapter 3. State of the Practice

deserve at least as much attention as those that support software develop-
ment. Therefore, we focus on software evolution and how related software
engineering tasks can be supported. To this end, we use and combine ex-
isting software engineering technologies as much as possible.

The trend we observed that software development is moving towards
larger scale and more structured reuse by the use of software product-line
approaches is a final important consideration in the remainder of this the-
sis.

Chapter

Evaluating an Embedded Software
Reference Architecture
— Industrial Experience Report !

In this chapter, we discuss experiences gained during evaluation of the
maintainability of a software reference architecture in use at Océ, one of the
world’s leading copier manufacturers. The evaluation is conducted using an
approach based on the Software Architecture Analysis Method. The chapter
proposes a variant of this method that helps to reduce the organisational
impact of architecture evaluations. Second, we analyse the implications
of evaluating reference architectures as opposed to single-product architec-
tures. Furthermore, we share our experience of conducting the evaluation,
draw lessons for practitioners, and propose new research topics.

4.1 Introduction

In industry new products are rarely developed from scratch. Most products
are based on previous generations of similar products. Therefore, the capa-
bility of reusing large parts of earlier development efforts when developing
new products can increase the development efficiency of companies tremen-
dously [Jacobson et al., 1997]. However, currently many companies have no
structured approach for reuse, as the inventory conducted among several
companies developing embedded software confirmed (see Chapter 3).

IThis chapter was published earlier as: Graaf, Bas, Hylke van Dijk, and Arie van
Deursen. Evaluating an embedded software reference architecture — industrial expe-
rience report. In Proceedings of the 9" European Conference on Software Maintenance
and Reengineering (CSMR 2005), pages 354-363. IEEE Computer Society, 2005

57

58 Chapter 4. Evaluation

One strategy to arrive at structured reuse, is to adopt architectural con-
cepts, including product-line approaches, during the software development
process. Architecture-based development increases development efficiency
and makes software systems more easy to maintain and evolve. It does so
by increasing the conceptual integrity [Brooks, Jr, 1975] of software sys-
tems and by providing a common software infrastructure which makes it
easier to understand systems and to integrate new components. A product-
line architecture extends these ideas beyond single-product developments
to a whole generation of products and thus enables the reuse of components
in new product-line members.

At Océ, one of the world’s leading copier manufacturers, every couple of
years a new product generation is launched, comprising a family of sim-
ilar products. To make development and maintenance of these genera-
tions more effective and efficient Océ decided to define a reference archi-
tecture for a part of the embedded software in its products. It establishes a
common software infrastructure for different generations, thus facilitating
reuse across generation boundaries.

Since this reference architecture will potentially impact all embed-
ded software to be developed at Océ, the architecture team at Océ de-
cided to conduct an evaluation of the quality of this reference archi-
tecture, using an approach based on the Software Architecture Analysis
Method (SAAM) [Kazman et al., 1996; Clements et al., 2002b] which was
developed at the Software Engineering Institute! (SEI). In this chapter we
report on this evaluation.

The contributions of this chapter are threefold. First, we propose a vari-
ant of SAAM that reduces the organisational impact of architecture evalu-
ations. Second, we analyse the implications of evaluating reference archi-
tectures as opposed to product architectures. Last but not least, we share
our experience with conducting an evaluation of a real-life reference archi-
tecture that is actually used in industry. The lessons learnt are useful for
practitioners, and lead to new research questions related to architecture
evaluation.

In order to protect Océ’s interests, we cannot discuss Océ-sensitive de-
tails of the reference architecture. Instead, we will discuss a modified ver-
sion. We believe that the architectural issues and the evaluation method
are not materially affected by these changes.

This chapter is organised as follows. In Section 4.2 we summarise the
content and context of the embedded software reference architecture for
copier engines (hereafter referred to as ‘the reference architecture’). In
Section 4.3, we describe why we selected SAAM to conduct the evaluation
and why Océ’s situation required some modifications to it. In Section 4.4

Thttp://www.sei.cmu.edu (June 2007)

4.2. Overview of the Reference Architecture 59

we explain how the actual evaluation was carried out and how practical
problems were solved. Then, in Section 4.5 we reflect on the evaluation
and identify future work. We conclude with a discussion of related work
and a summary of the chapter’s contributions.

4.2 Overview of the Reference Architecture

The reference architecture addresses the engine software for Océ document
processing systems (copiers). A copier engine is the part of the system that
handles either the scanning or the printing of documents. Figure 4.1 illus-
trates the workings of a copier. A scanner engine extracts an image from
the original sheet, whereas a printer engine reproduces the image data on
blank sheets. The reference architecture describes an abstract engine that
can potentially be used for any Océ copier.

- network >
print data\ ﬁned data

Controller
/vage data & in?b\
Scannger rinter
original —] & printed
sheets sheets
original b/ar(k
sheets sheets

Figure 4.1: Main flows in a copier.

4.2.1 Business Drivers

Océ’s reference architecture serves several purposes, of which the most im-
portant are:

Knowledge base It provides common terminology for software architects
that is applicable to several products. The shared terminology to-
gether with the regular meetings dedicated to development of the ref-
erence architecture enable architects to share experiences more effi-
ciently.

60 Chapter 4. Evaluation

Starting point Its documentation can be used by new projects as a start-
ing point for Océ’s iterative development process. This greatly re-
duces the effort required for designing an engine architecture for a
new product.

Reuse It describes the generic structure and behaviour of the engine soft-
ware components. This makes integrating existing software compo-
nents that are compliant to the reference architecture easier, and thus
increases the reuse potential of those components. This not only in-
cludes binary components, but also designs, requirements and other
software artefacts.

In fact the three points above are all related to reuse (i.e., of knowledge, doc-
umentation, and other software products). Therefore, the reference archi-
tecture should make it possible to eventually speed up the development
(fast prototyping) and maintenance of products significantly.

4.2.2 Reference Architecture

The reference architecture defines the fundamental elements, relations be-
tween these elements, and properties of other, product-specific elements of
Océ’s copier engine software. It is used to derive a software architecture for
engines incorporated in a specific series of Océ printers. From this software
architecture, individual engines can be configured to be integrated in Océ’s
products. In this way the reference architecture defines a family of copier
engines.

Deelstra et al. [2005] give a classification of product families with re-
spect to level of reuse. We use this classification and the accompanying ter-
minology to position the reference architecture. Four (ordered) levels are
identified: 1) standardised infrastructure, 2) platform, 3) software prod-
uct line, and 4) configurable product family. These levels denote to which
extent the commonalities between related products in the product family
are exploited. Océ’s reference architecture can be positioned as a platform,
since it provides reusable components that are developed by a separate
reuse group (see Section 4.2.4). Furthermore, it defines a standardised
infrastructure by prescribing how components should interact and what
functional components should look like. Additionally, it offers a platform
that realises common functionality, such as error handling and scheduling.

As all business drivers of the reference architecture are related to reuse,
Océ is particularly interested in investigating whether it is possible and
worthwhile to raise the current reuse level of the reference architecture to
that of a product line. However, in order to qualify as a product-line archi-
tecture, it must define the functional variability between different engines.

4.2. Overview of the Reference Architecture

Table 4.1: Views used in in the reference architecture’s documentation

61

. Persp. Static Dynamic

View

Conceptual System context, stake- | Use cases, user visible
holders, key require- states, configurations, vari-
ments, external inter- ants
faces

Logical System components Behaviour, component
and dependencies, connection and discon-
subsystem decompo- nection, startup, key algo-
sition, persistent data, | rithms.
internal interfaces

Physical Files, directories, code, | Threads, tasks, schedul-
build rules ing, interrupts.

4.2.3 Structure

The reference architecture is extensively documented using text illustrated
with Unified Modeling Language! (UML) diagrams in more than 500 pages.
The documentation is structured according to the Architecture MetaModel
(AMM) developed by Atos Origin [Dinther et al., 2001]. AMM builds upon
the Siemens four-views model [Soni et al., 1995] and Kruchten’s 4+1 View
Model [Kruchten, 1995]. It is organised around three types of views: con-
ceptual, logical, and physical views. For each type of view, a static and a
dynamic perspective is offered. This gives rise to six views, as illustrated
in Table 4.1.

The documentation includes one overview document of approximately
50 pages, and a dozen documents describing the architecture for specific
concerns, such as status control, software downloading, data persistence,
and diagnostics. Each of these documents is organised according to AMM.
The views are illustrated with diagrams expressed in UML-RT, a real-time
extension of UML widely used at Océ [Dohmen and Somers, 2003]. In par-
ticular, many use cases are elaborated in sequence diagrams.

4.24 Usage

Currently the use of the reference architecture is voluntary. However, ar-
chitects who want to use it for their project are supposed to first partic-
ipate in the dedicated meetings for some months to get the same shared
understanding of the reference architecture as the other participating ar-

Thttp://www.uml.org (June 2007)

62 Chapter 4. Evaluation

cp1p2 - P3 . P4 Reference architecture evolution

jawdojanap jonpoid

Figure 4.2: The reference architecture and derived projects.

chitects. This ensures that the reference architecture is more than a pile
of documents. These meetings are very important as they provide a com-
munication platform which is essential for meeting the initial objectives
(Section 4.2.1).

In agreement with these objectives, there is a logical link between the
reference architecture group and the group that develops reusable software
components for the engine software. In the current situation, only the
reusable components refer to the reference architecture’s documentation,
which means that this documentation itself does not show what compo-
nents can be used to implement the different elements of the architecture.

The actual usage of the reference architecture leads to refinements and
additions. Figure 4.2 depicts this interplay between usage and evolution.
The horizontal line represents the evolution of the reference architecture.
Each pi represents a project in which an engine is developed for a series of
Océ copiers. A project can join’ the reference architecture for some time,
contribute to its development, and benefit from modifications made to it.
This is indicated by the oblique lines for projects p1, p2, and p4. After a
while, such projects may decide to ‘leave’ the reference architecture, and
continue on their own using a fixed version (the lines become vertical).
Other projects (p3) may decide to use a fixed version right from the start,
extracting just whatever is necessary from that version of the reference
architecture.

The reference architecture came into existence based on the documen-
tation and experience of several previous projects. In fact, it was developed
largely in parallel with one specific project. As such it can currently be
understood as the common denominator of several product specific archi-
tectures.

As said using the reference architecture is voluntary and it is not yet
known to all potential stakeholders. Therefore we can say that it is cur-

4.3. Evaluation Approach 63

rently in an emerging phase. As such, besides confirmation that the refer-
ence architecture is suitable for its intended purpose, now and in the future,
another result of its evaluation is the increased awareness of the potential
benefits of the reference architecture with other development teams within
Océ.

4.3 Evaluation Approach

The initial question that triggered this work was “How good is the refer-
ence architecture?” Additionally another important and related question
was asked: “Does this reference architecture have a reason to exist?” The
development team mainly wanted to get confirmation that the reference
architecture is useful and that it is of good quality.

We first define what the terms ‘quality’ and ‘good’ mean in this context.
As ‘good’ is always relative to particular requirements, the first step is to
determine these requirements for the reference architecture, which were
unknown since their definition was neglected during development.

As the reference architecture is intended to be used for several years
and product generations, it is essential that it supports future changes to
its environment and new product requirements. This is the main type of
quality under consideration in the evaluation. Furthermore, in view of the
fact that the objectives of this architecture as presented in Section 4.2 are
centred around reuse, the impact that future changes will have on the reuse
potential it offers, is essential. In the rest of this chapter we will use the
term maintainability to refer to the type of quality required for a reference
architecture described above.

Thus, the central question is: “How well is the reference architecture
prepared for the future?” As this future is not always known at the time
of evaluation, the selected method must explicitly address specification of
possible extensions.

4.3.1 Selection of Evaluation Method

A literature overview of architecture evaluation methods [Dobrica and
Niemeld, 2002] was used to select an appropriate approach to answer
the central question above. Besides addressing maintainability as we de-
scribed it in the previous paragraphs, Océ further required the method
to be lightweight and well-documented. The method must have a low or-
ganisational impact because, as the reference architecture is still in an
emerging phase, its evaluation must not affect other processes at Océ.
Additionally, the method must be executable without additional training.
This requires that a clear procedure for doing an evaluation based on the

64 Chapter 4. Evaluation

Describe Develop
-
Architecture Scenarios

Classify / prioritise

scenarios \

Individually evaluate Create overall
indirect scenarios evaluation

Assess scenario
interaction

Figure 4.3: SAAM steps [Clements et al., 2002b].

selected method is available. These constraints imply the exclusion of
many of the inventoried methods because these either focus on a different
quality attribute or lack sufficient detail, e.g. many methods are defined
and explained in only one published article.

The best-suited methods described in the inventory seem to be SAAM and
its successor, the Architecture Tradeoff Analysis Method [Clements et al.,
2002b] (ATAM). Both address maintainability and are extensively docu-
mented. Although ATAM is likely to produce more objective and accurate
results, it also seems more difficult to apply for inexperienced assessors.
The use of attribute-based architecture styles and their associated qual-
ity attribute characterisations for analysis of architectural decisions is not
straightforward. Also the identification of sensitivity and trade-off points
and the generation of a utility tree requires more effort and experience.
Due to Océ’s requirements with respect to the need for training (no need)
and organisational impact (low) of the method, SAAM was selected.

In a SAAM evaluation, scenarios are developed to assess a software
architecture’s support for maintainability. The scenarios are used to ex-
press the required type of maintainability and thus SAAM can also be used
to evaluate the type of maintainability we described previously. The devel-
oped scenarios represent possible future changes to the software system.
An important aspect of SAAM is that it involves all stakeholders of a soft-
ware architecture in a joint evaluation session, which results in a better
appreciation and a more widely shared understanding of the software
architecture.

4.3. Evaluation Approach 65

Figure 4.3 shows the different phases of SAAM. A SAAM evaluation ses-
sion starts with scenario development and description of the architecture.
These are iterative activities. New scenarios can make it necessary to de-
scribe the architecture further, so that the architects can analyse them,
while describing aspects of the architecture forces to think about possible
scenarios addressing these aspects.

Next, the scenarios are prioritised and classified. Scenarios that can be
realised without making changes to the current architecture are classified
as direct. Scenarios that do require changes to the current architecture
are classified as indirect. The indirect scenarios are evaluated for their im-
pact. Furthermore, the scenario interaction is determined. Two scenarios
interact when they require changes to the same architectural component.
Information on scenario interaction is indicative of the quality of the de-
composition.

Finally, the classification, prioritisation, analysis of the individual sce-
narios, and the scenario interaction are used to create an overall evalua-
tion.

A SAAM evaluation session typically takes two days and involves an ex-
ternal evaluation team of three to four people. A session also involves sys-
tem architects and other stakeholders. The type of stakeholders involved
is very diverse: architects, developers, maintainers, integrators, managers,
customers, end users, and so on.

4.3.2 Tailoring SAAM

SAAM has been selected as the evaluation method, yet it had to be tailored
to Océ’s situation. The current situation at Océ makes it necessary to mod-
ify SAAM for two reasons: 1) the organisational impact of SAAM and 2) the
level of abstraction of the reference architecture.

In the situation of Océ the impact of gathering all potential stakeholders
(as indicated in Table 4.2 on the next page), was considered too large. The
main reason was that the stakeholders of a software architecture typically
include some of the important members of an organisation that usually
have very busy schedules. For the reference architecture this is especially
true as it is the development group’s ambition to make it a reference archi-
tecture that will impact development of many of Océ’s copiers for years.
Furthermore, the scope of a reference architecture is larger than that of a
single-product architecture and therefore, next to a group of direct stake-
holders a large group of indirect stakeholders (as indicated in Table 4.2 on
the following page) exist, which makes the complete group of people with
an interest in a reference architecture much larger.

66 Chapter 4. Evaluation

The increased number of stakeholders made it impossible to find a date
that suited all stakeholders and undesirable to take one or two full days of
each stakeholders’ time.

Besides the number of stakeholders the fact that we are studying a ref-
erence architecture also has an impact on the evaluation. It affects the
level of abstraction; a reference architecture is more abstract than a single-
product architecture.

The characteristics of the situation as found at Océ that we discussed
above have several implications for the evaluation. Below we will discuss
how these issues lead to modifications to the typical SAAM process as de-
scribed by Kazman et al. [1996].

Table 4.2: Reference architecture stakeholders.

Stakeholder Interest

Architects Reference architecture architects

Users Product architects

Management Sponsors and decision makers

Potential users Product architects not using the reference archi-
tecture

Reuse group Provider of compliant components

Indirect Stakeholders of products based on the reference
architecture

The proposed tailored version is a distributed implementation of SAAM,
called Distributed SAAM (DSAAM), that implements parts of the SAAM ac-
tivities off-line, separately from the joint session. For instance, in prepara-
tion to the evaluation session, stakeholders are consulted individually. The
joint SAAM session itself involves only participants fully aware of and well-
informed on the reference architecture. The advantage of this approach is
that the organisational impact is much smaller. Off-line consultation of in-
dividual stakeholders takes less time than a joint SAAM session. Addition-
ally these consultations can be scheduled fitting the stakeholders’ agenda’s.
Of course this approach increases the effort required by the assessors in-
volved in these preparations. However, because we tried to minimise or-
ganisational impact, we aimed at reducing the required stakeholder effort.

An additional advantage is that smaller gatherings potentially induce
less ambiguity, leading to a more efficient joint session. Therefore the ac-
tual DSAAM evaluation session lasts half a day instead of the usual two
days. This further decreases the organisational impact of the evaluation.

4.4. Conducting the Evaluation 67

4.4 Conducting the Evaluation

The evaluation consisted of roughly three phases. First, the joint DSAAM
session had to be prepared. Second, the DSAAM evaluation session itself was
executed. And finally an overall evaluation of the reference architecture
was created. Three architects involved in the development of the reference
architecture and two external observers participated in the joint session.
One of the architects played the role of evaluation leader and prepared,
chaired, and evaluated the joint session of DSAAM. For each SAAM step in
Figure 4.3 on page 64, we explain below how it was included in the different
phases of the DSAAM assessment.

4.41 Preparation

In preparation to the execution of the joint DSAAM session the available
documentation (on the reference architecture and on SAAM) was distributed
among the participants. The reference architecture’s documentation was
especially useful for the external observers as it explains the architecture
and the applied architectural mechanisms. The documents on SAAM were
only used by the evaluation leader.

The step ‘develop scenarios’ was carried out in two stages. During the
preparation phase, the evaluation leader consulted stakeholders off-line.
This resulted in an initial set of high-level scenarios representing possible
futures from a stakeholder’s perspective. The set of stakeholders included
the sponsor of the reference architecture, members of the software reuse
group, and hardware and domain experts. Unfortunately, the marketing
and maintenance groups were not consulted, which limited the view on
the road maps for Océ copier machines. The scenarios were related to ei-
ther existing products or foreseen products. Whether the reference archi-
tecture was based on these products is irrelevant. The evaluation leader
then added more detail to these scenarios according to a template for sce-
narios based on Bass et al. [2003].

4.4.2 Scenarios

In total sixteen scenarios were developed off-line. The majority of the sce-
narios aimed at reducing material costs, for example by sharing resources,
using low-power designs, or offloading or re-mapping functionality. One
scenario, for instance, aimed at moving functionality from the engine soft-
ware to the main controller, another subsystem of a copier.

A second kind of scenarios was developed to reduce development costs.
For instance, introduction of code generation for controllers of sensors and
actuators based on mathematical models of those hardware devices. These

68 Chapter 4. Evaluation

scenarios were especially targeted at interactions which go beyond the do-
main level, such as communications with the mechatronics, testing, and
manufacturing groups.

Finally, a minor source of scenarios involved an upgrade of the func-
tionality, such as colour and wide-format printing. An example scenario is
depicted in Table 4.3 in a format described by Bass et al. [2003].

Table 4.3: An example scenario.

Stimulus Reduce power consumption by turning off
parts of the copier machine during low-power
mode

Response Solve in engine specific projects

Source Electronics department

Environment Engine development time

Stimulated arte- Reference architecture documentation

fact

Response mea- Reuse percentage remains on same level

sure

4.4.3 Execution

In the joint session each architect represented a product as a user of the
reference architecture. Additionally, all architects played the role of asses-
sor. As some of the participants had no experience in SAAM evaluations and
to explain the steps of the DSAAM process, the session started with a brief
introduction of the process. For the process observers also the role of the
reference architecture in the organisation of Océ was explained.

The step ‘describe the architecture’ was largely omitted during the
DSAAM session, since the DSAAM session only involved people that are
well-informed with respect to the reference architecture and extensive
documentation was already available.

The second part of the step ‘develop scenarios’ was done during the
DSAAM session. This involved only architects of products on which the ref-
erence architecture was based. Apparently, the scenarios contributed by
the stakeholders consulted prior to the joint session are representative for
what may change in the future, as soliciting for extra scenarios gave no
results. As such, the scenarios gathered and elaborated by the evaluation
leader were used.

Scenarios were classified, prioritised, and evaluated as in SAAM, that
is, during the session itself. The scenarios were classified and evaluated
one by one, bypassing prioritisation (Figure 4.3 on page 64). Figure 4.4

4.4. Conducting the Evaluation 69

gives an impression of the final result of the SAAM session. Scenarios were
classified in directly and indirectly supported scenarios.

Direct scenarios Indirect scenarios
concrete floating low impact high impact
scenario ID scenario ID scenario ID
1 description 5 description
- scenario ID -
characterisation - characterisation
description
characterisation
2 scenario ID scenario ID scenario ID
= - L
_g 2 descrlpuo_n) it descrlptlo_n }
o characterisation characterisation
scenario ID
description
characterisation
scenario ID scenario ID
3 . description
scenario ID P
P characterisation
description
characterisation

Figure 4.4: SAAM results

In general, first the impact of a scenario on a specific product was evalu-
ated, and then its impact on the reference architecture. Classification and
evaluation required a different attitude because we were evaluating a ref-
erence architecture instead of a product architecture. The difficulty lied in
the fact that while scenarios are concrete, representing future functional-
ity, or the quality of actual products, the reference architecture is abstract.
The question:“What is the impact on the reference architecture?” needed to
be answered consistently for all scenarios. Therefore we defined two types
of direct scenarios:

1. Scenarios that are supported by the reference architecture as is and
for which it provides concrete guidelines on how to realise them in
product instantiations, and

2. Scenarios that can be realised by systems based on the reference
architecture, but for which it does not (yet) provide detailed informa-
tion on how to realize them (floating).

The class of floating scenarios calls for a cookbook with recipes that de-
scribe solutions for variation points in the reference architecture. Cookbook
recipes describe how the reference architecture can be used to realize a spe-
cific (floating) scenario. For example, it might be necessary to describe what

70 Chapter 4. Evaluation

kind of components need to be defined or how some of the already defined
components should cooperate to implement the desired behaviour. This in-
formation can be included in the reference architecture in a separate docu-
ment without affecting the existing documentation. By realising scenarios
this way the scope of reuse is extended and the reference architecture’s
classification moves from platform towards product line (see Section 4.2.2).
An example of such a cookbook recipe was the description of how to real-
ize sharing of hardware resources within an engine. The recipes were just
new reference architecture documents. In fact, some of the existing doc-
uments already were such recipes, such as the document describing how
function component should look like, without actually defining concrete
function components. These documents had a different nature than the
other documents that describe specific components of the reference archi-
tecture, like a scheduler. Figure 4.4 on the previous page shows that most
of the scenarios fall in this category of direct scenarios.

The indirect scenarios were, as usual in SAAM, partitioned in two sub-
sets: a subset with low impact and a subset with high impact. Overall this
assessment session did not discover many design flaws. The architects
spent most of their time on the single high impact, high priority scenario
(multiple sheet paths).

The indirect scenario interaction was considered very briefly as only a
few indirect scenarios were discovered. It was concluded that those did not
interact.

4.4.4 Overall Evaluation

This final stage of the assessment involved the overall evaluation, which
resulted in a set of strong and weak points. The set of strong points in-
cludes the aforementioned use of the reference architecture and its flexibil-
ity; most of the evaluated scenarios are directly supported.

The set of weak points includes a design flaw that prevents support for
multiple sheet paths, which is required for duplex printing, for instance.
Additionally, the reference architecture seemed incomplete as it missed
several cookbook recipes. For example, recipes for sharing hardware re-
sources and reusing engine parts amongst different engines in a single
copier are currently not included. Another weakness was that variation
points were not explicit in the documentation. Related to this issue is a
missing structure for documenting an instantiation of the reference archi-
tecture, an engine generation, with respect to its documentation. It was not
clear how conformance to and deviations from the reference architecture
should be specified by projects that develop such an instantiation. Nev-
ertheless, this is important for the maintainability of the reference archi-
tecture and its instantiations.

4.5. Discussion 71

4.5 Discussion

Below we both discuss the implications of evaluating a reference archi-
tecture and using a distributed SAAM approach and we indicate where these
lead to suggestions for future work and research questions.

4.5.1 Reference Architecture

Reuse Level In Section 4.2.2 we positioned the reference architecture as a
platform. Furthermore its business drivers were all related to reuse (Sec-
tion 4.2.1). Therefore the positioning raised two questions: is the position-
ing of the reference architecture correct for the current situation, and for
the future? If correct, the current reuse positioning as a platform should be
supported by links between the documentation of the reference architecture
and the documentation of instantiated products. In view of the reuse posi-
tioning, we expect a considerable reduction in the effort of documenting a
product instantiation compared to a single-product architecture approach.
A prerequisite for this conjecture is that there must be a systematic way
of documenting product instantiations with respect to the reference archi-
tecture. It is unclear whether such a systematic documentation process
exists.

Research question Can we define and deploy a systematic pro-
cess for documenting product architectures with respect to a ref-
erence architecture?

In order to find out if product instances are documented with respect
to their reference architecture in a systematic way reuse metrics are re-
quired [Poulin, 1997] to determine how much of the reference architecture
documentation is reused in the product instance documentation. As an ex-
ample of such a reuse metric, consider two indicative figures: the relative
size and a normalised cohesion factor. The size factor calculates the lines
of documentation of a product instantiation relative to the size of the refer-
ence architecture’s documentation. The cohesion factor takes the number
of references from the documentation of a concrete product to the reference
architecture’s documentation that handle variation points, normalised with
the total number of references from the product instantiation documenta-
tion to the reference architecture’s documentation. A low relative size and
high cohesion factor indicate a high reuse factor and thus a systematic ap-
proach for reusing the reference architecture in product instantiations.

Future work Define a metric to position a reference architecture
with respect to scope of reuse.

72 Chapter 4. Evaluation

With respect to the future reuse positioning of the reference architecture
we would expect, looking at its reuse-oriented business drivers, that Océ
aims to increase its reuse scope. This objective is supported by the identifi-
cation of various direct floating scenarios, which will be implemented by the
development team in a cookbook (Figure 4.4 on page 69). This implies that
Océ indeed foresees that the reuse positioning of the reference architecture
is raised from platform to software product line in the near future.

Updates Maintainability was the central quality aspect in the evaluation.
One aspect of maintainability is the possibility to update the reference
architecture with developments that take place in a product instantiation:
during the oblique lines in Figure 4.2 on page 62. In order to successfully
implement a proposed update two issues need to be considered: confor-
mance and permissiveness.

Conformance is the extent to which the product architecture and refer-
ence architecture match. One must specify the update in agreement with
the existing reference architecture. This is necessary, for example, to pre-
vent specification of updates to components that do not exist at all in the
reference architecture. The architecture of a product may undergo small
changes during its development. Consequently, there may be a discrepancy
between the product architecture and the reference architecture. The dis-
crepancy may obstruct the transfer of architectural fragments, e.g., a cook-
book recipe, from the reference architecture to the product architecture.
But it may also obstruct the update of the reference architecture itself.

To detect these architectural discrepancies and suggest possible repairs,
one could check the conformance by first using reverse engineering tech-
niques to raise the level of abstraction of concrete product architectures
and then compare the result with the reference architecture [Van Deursen
et al., 2004]. Chapters 5 and ch:ewsa2005 investigate how to assess confor-
mance of architecture specifications automatically.

Future work Develop a technique to measure the conformance
of a product architecture with respect to the reference architecture
on which it is based in order to assess the possibility to trans-
fer fragments from a product architecture to the reference archi-
tecture.

The bare fact that a product has an architecture that conforms with the
reference architecture does not ensure by itself that a proposed update will
be successful. The reference architecture also has to be permissive with
respect to the update. The reference architecture must provide the flexi-
bility to incorporate the proposed update. An update might violate some
of the design decisions taken earlier; whether this is the case is in prac-
tice generally hard to assess. One reason for this is that design decisions

4.5. Discussion 73

are not completely documented. Most times only the structural effect of a
design decision is documented. Documenting other aspects of design de-
cisions, such as their rationale and effect with respect to (non)-functional
requirements is often neglected.

Research question How can we document design decisions ex-
plicitly and how can we then use them to assess an architecture’s
permissiveness with respect to a proposed update?

Use of Reference Architectures Besides its technical use as a starting point for
product specific software architectures, the reference architecture served
according to its objectives as a discussion platform for the software archi-
tects of different products. In that sense the reference architecture indeed
is an efficient way to exchange experiences among product teams.

Another use of the reference architecture appeared during discussions
in the DSAAM evaluation. It acts as a stable platform for negotiations
amongst different domains: the mechatronics, manufacturing, and soft-
ware reuse groups at Océ. By introducing a generic and more stable archi-
tecture for the engine software of Océ copiers the development group tries
to prevent that software is automatically considered to be the means to
solve problems during engine integration. As such defining an embedded
software reference architecture helps creating a better balance between the
different disciplines involved in engine development. This is a typical prob-
lem in the embedded software domain as was also observed in the inventory
described in Chapter 3.

In the evaluation we conducted, the usage of the reference architecture
was not addressed explicitly. Considering the specific use of reference ar-
chitectures described above, it seems useful to do so, especially in the case
of embedded systems.

Research question How can we include the usage of a reference
architecture in an evaluation?

45.2 Distributed SAAM

The main concern of scenario-based evaluation methods is whether the cov-
erage and scope is broad enough to be conclusive about the findings of the
evaluation. SAAM overcomes this by organising a general two-day gather-
ing, which is moderated by experienced assessors. In DSAAM we had to take
alternative measures.

In view of the two questions above, the number of direct stakeholders
of the reference architecture is limited (see Table 4.2 on page 66), although

74 Chapter 4. Evaluation

many indirect stakeholders can be identified. These two groups of stake-
holders seem to have different interests.

Raising the scope of reuse of the reference architecture directly concerns
the architects of compatible products as its users and architects. It implies
that the reference architecture not only should identify variation points
but also explicitly give alternatives. The cookbook of the previous section
provides these.

Scenarios that describe future development of existing and foreseen
products are the concern of the stakeholders of those products. The devel-
opment of these scenarios is the responsibility of these stakeholders, which
are not necessarily also direct stakeholders of the reference architecture.
On the other hand the resulting scenarios are input to DSAAM session, thus
indirectly they are.

One measure we took to include indirect stakeholders in the evaluation
was to split the process of developing the set of scenarios in two stages: an
off-line stage with the indirect stakeholders, and a DSAAM stage with the
direct stakeholders. The scenarios provided by the indirect stakeholders
were product specific. Evaluating the impact on the reference architecture
was not their concern, but that of the direct stakeholders. Furthermore
the direct stakeholders are the only ones capable of doing so. Therefore
because only the indirect stakeholders were excluded from the joint session,
the scope of the DSAAM session was not affected by the lack of stakeholder
interaction during evaluation.

However, this also prevented indirect stakeholders to interfere or inter-
act during scenario prioritisation. During the DSAAM session, the architects
concentrated on the most likely scenarios, from the perspective of an archi-
tect. Although scenarios were prioritised with respect to their impact, there
was no clear rationale for this ranking. Hence DSAAM’s scope was still at
risk due to the possibility of a wrong scenario prioritisation.

In order to validate DSAAM’s scope we recommend to organise indirect
stakeholder involvement after the joint session. During this feedback
phase stakeholders might be consulted in small sessions or individual in-
terviews, in the same way as we did in preparation to the session. This
time the indirect stakeholders can comment on the scenarios prioritisa-
tion and verify whether the evaluation covered all relevant aspects of the
architecture. This preserves the small impact on the organisation offered
by DSAAM. During the feedback phase, indirect stakeholders may conclude
that some likely scenarios have not been evaluated thoroughly enough.
Thus the feedback phase may yield newly developed scenarios. This new
set of scenarios has to be evaluated in a new DSAAM session.

Future work Extend DSAAM with an off-line feedback phase af-
ter the joint session for indirect stakeholders.

4.6. Related Work 75

Use of Documentation During the assessment we were somewhat surprised
that the actual documentation of the reference architecture was not used at
all during the session. This means that the architecture assessed is the one
that is in the team members’ heads, and not the documented architecture.
The corresponding risk is that the team may have different architectures
in their minds, that the documented architecture is inadequate, and that
architects not participating may have different perspectives. Thus we have:

Research question How can we involve the architecture as doc-
umented explicitly in the assessment process?

Solution directions will require explicit, analysable representations of
both the architecture and the scenarios used in the assessment. An inter-
esting research topic is whether information retrieval techniques can be
used to analyse the relationship between these two representations.

4.6 Related Work

An overview of SAAM and ATAM, as well as references to many other
methods for evaluating software architectures can be found in the book
by Clements et al. [2002b].

Gallagher [2000] discusses the application of ATAM to a reference archi-
tecture. Unfortunately, he hardly discusses any issues specific to the eval-
uation of reference architectures (such as the different role of scenarios).
The reference architecture is more or less evaluated as a single-product
software architecture with specific business drivers.

Since the boundary between product line architectures and reference
architectures is not always distinct (Section 4.2), another area of relevant
related work is the field of product line evaluation. Lutz and Gannod [2003]
discuss the architectural analysis of a product line architecture. The au-
thors present a three-phased approach consisting of architecture recovery,
scenario-based assessment, and model checking of safety-critical behaviour.
Here a software architecture needed to be recovered from an existing prod-
uct, which is then evaluated in order to see whether this type of product is
amenable to a product-line-development approach.

Of particular interest are evaluation methods focusing on maintainabil-
ity. The architecture-level modifiability analysis [Bengtsson et al., 2004]
(ALMA) method integrates a number of different scenario-based approaches
for assessing architecture maintainability.

76 Chapter 4. Evaluation

4.7 Conclusion

In this chapter we reported the evaluation of an embedded software refer-
ence architecture using a tailored SAAM-based approach. The objective of
the assessment was to assess the maintainability of the architecture. Main-
tainability involved two aspects, raising the scope of reuse from a platform
to a product line and facilitating anticipated extensions of derived products
and future products.

The evaluation of the reference architecture was based on a distributed
SAAM (DSAAM) method, involving three phases: a preparation phase in
which indirect stakeholders are consulted individually to collect scenar-
ios, a joint evaluation session with only architects and observers, and an
evaluation phase.

Assessing a reference architecture is different from assessing a product
architecture. In an ordinary SAAM session, evaluated scenarios are cate-
gorised in directly and indirectly supported scenarios. We subdivided the
set of directly supported scenarios into those with evidence of being sup-
ported by the reference architecture and those without evidence. The latter
class typically consist of scenarios for which solutions are available in one
of the products, but these have not been documented yet. In the DSAAM
session we defined a cookbook to cover these scenarios.

The experience provided valuable insights for industry as well as for
academia. In retrospect we argued that DSAAM is a suitable approach for
the given situation, assessing the maintainability of a maturing reference
architecture. Both the coverage of DSAAM and the quality of its conclusions
are tenable. Note that reference and product-line architectures enable effi-
cient reuse, a key business driver in many organisations. The concepts on
which this type of architectures are based are maturing. Therefore it is ex-
pected that more and more companies will adopt a product-line approach,
possibly involving reference architectures.

Océ gained insight in the positioning and status of the reference archi-
tecture in their organisation, its current position, and its future position.
Océ also gained confidence in its maintainability.

We gained insight in the process of assessing a reference architecture.
For instance, scenarios are typically evaluated based on a product instance
and the results are abstracted to the reference architecture. This evokes
all kinds of questions related to topics such as conformance checking and
documenting design decisions, as discussed in Section 4.5.

Chapter

Model-Driven Consistency Checking
of Behavioural Specifications!

For the development of software intensive systems different types of be-
havioural specifications are used. Although such specifications should be
consistent with respect to each other, this is not always the case in prac-
tice. Maintainability problems are the result. In this chapter we propose
a technique for assessing the consistency between two types behavioural
specifications: scenarios and state machines. The technique is based on
the generation of state machines from scenarios. We specify the required
mapping using model transformations. The use of technologies related to
the Model Driven Architecture enables easy integration with widely adopted
(UML) tools. We applied our technique to assess the consistency between the
behavioural specifications for the embedded software of copiers developed
by Océ. Finally, we evaluate the approach and discuss its generalisability
and wider applicability.

5.1 Introduction

System understanding is a prerequisite for modifying a software intensive
system [Lehman and Belady, 1985]. As such the (typical) absence of up-to-
date design documentation hampers successful software maintenance and
evolution. In this chapter we address this problem for the documentation
of a system’s behaviour. We focus on ensuring the consistency between
two types of behavioural specifications: interaction-based and state-based

IThis chapter was published earlier as: Graaf, Bas and Arie van Deursen. Model-driven
consistency checking of behavioural specifications. In Proceedings of the 4" International
Workshop on Model-based Methodologies for Pervasive and Embedded Software (MOM-
PES 2007), pages 115-126. IEEE Computer Society, 2007a

77

78 Chapter 5. Model-Driven Conformance Checking

(]
%
¢ olders

Figure 5.1: Typical development process

behavioural models. The use of such specifications is illustrated by the
development process depicted in Figure 5.1. It is based on the well-known
V-model [Bréhl and Dréschel, 1995] and the starting point of our research.

On the left branch of the ‘V’ analysis activities take place. Based on Re-
quirements, the high-level Architecture is defined. This architecture identifies
the main components of the system and assigns responsibilities. In paral-
lel requirements are made more concrete by Use cases that specify typical
interactions a user may have with the system. One distinctive property
of use cases is that the system is considered to be a black box [Jacobson,
1992]. These use cases are the first interaction-based behavioural models.

Based on the use cases a set of Scenarios is defined that specifies the
interactions of the system’s components in terms of exchanged messages.
Typically, every use case results in one (normal behaviour) or more (includ-
ing exceptional behaviour) scenarios. These scenarios are also interaction-
based behavioural models, but now the system is considered to be a white-
box; they show the interactions between the components defined by the
architecture.

Eventually, the architecture’s components need to be implemented. This
requires a complete behavioural specification. Scenarios are, however, not
intended to provide such a specification for an individual component. First,
the specification of a component’s behaviour is scattered across multiple
scenarios. Second, they are usually only defined for the components’ most
typical and important behaviours. Therefore, a complete state-based be-
havioural model, a State machine, is created for each component based on
the set of scenarios. This state machine is used to implement or gener-

5.1. Introduction 79

ate the component. Finally, on the right-hand side of the V’, the different
components are integrated into a complete product.

Such a software development process, where state-based component de-
sign is based on the specification of a set of use cases, is advocated by
many component-based, object-oriented, and real-time software develop-
ment methods [D’Souza and Wills, 1998; Kruchten, 1998; Jacobson et al.,
1999; Selic et al., 1994]. As such, many software development organisations
deploy similar development processes.

As software evolves it is often the case that changes are made to ‘down-
stream’ software development artefacts (such as designs) without propa-
gating the changes to the corresponding ‘upstream’ software development
artefacts (such as requirements). This can be the result of change requests,
but also of design flaws that are only discovered on a more detailed level.
Other inconsistencies are simply introduced by misinterpretations of ‘up-
stream’ development artefacts.

In this chapter we focus on inconsistencies between interaction-based
behavioural models and state-based behavioural models. Inconsistencies
between these models can be particularly important because they decom-
pose behaviour along different dimensions. Interaction-based models are
decomposed according to the different use cases, that is, they are require-
ments-driven. State-based models, on the other hand, are decomposed
according to the different components that were identified during archi-
tecture design, that is, they are architecture-driven. This makes it hard to
discover inconsistencies [Amyot and Eberlein, 2003; Bontemps et al., 2005].
Furthermore, when different development groups are responsible for the
development of the different architectural components, and these groups
individually resolve inconsistencies in different ways, this may obviously
lead to problems during integration and maintenance.

In industrial practice behavioural models are often specified using the
Unified Modeling Language! (UML). Moreover, tools are available that,
based on UML, are capable of generating source code from such models.
Considering such a model-based infrastructure, we believe it makes sense
to view consistency checking of behavioural specifications as a model trans-
formation problem. In this chapter we investigate what the advantages and
disadvantages are of using model transformation technology to discover in-
consistencies between interaction-based and state-based behavioural mod-
els. Furthermore, we aim to minimise the impact of our approach on ex-
isting development processes, for instance, in terms of the languages and
tools used.

In Section 5.2 we introduce the industrial case that motivated this chap-
ter: an embedded software control component developed by Océ, a large

Thttp://www.uml.org (June 2007)

80 Chapter 5. Model-Driven Conformance Checking

copier manufacturer. At Océ an important copier subsystem is developed
using a process corresponding to Figure 5.1 on page 78. Moreover, the com-
ponents for this subsystem are generated from state machine models. As
such, debugging, for instance, is performed on the level of state machines.
As a result inconsistencies between scenarios and state machines become
even more likely, making it a concern for Océ. Other work on the relation
between scenarios and state machines is discussed in Section 5.3. The en-
abling technologies for our approach, as well as, the relevant part of the
underlying UML specification, and our process for consistency checking are
discussed in Section 5.4. In Section 5.5 we customise an existing mapping
between scenarios and state machines based on Whittle and Schumann
[2000] for specification as model transformations and consistency checking.

The application of our approach to the Océ case requires that the sce-
narios as found in Océ’s architecture documentation are normalised into a
form suited for the model transformations of our approach. After normali-
sation and application of our approach we identified several inconsistencies
in the behavioural specifications that could lead to integration and mainte-
nance problems. This is discussed in Section 5.6. Finally, we reflect on our
approach in Section 5.7 and conclude with an overview of the contributions
of this chapter and opportunities for future work in Section 5.8.

5.2 Running Example

Our motivation for investigating the consistency between interaction- and
state-based behavioural models comes from a product-line architecture for
software in copiers developed by Océ. We use this architecture as our run-
ning example and case study, and for that reason briefly explain it first.

At Océ a reference architecture for copier engines is developed. In a
copier both the scanning and printing subsystems are referred to as an
engine. The reference architecture describes an abstract engine that can
be instantiated for (potentially) any Océ copier.

As a running example we use one of the reference architecture’s compo-
nents: the Engine Status Manager (ESM). This component is responsible
for handling status requests and status updates in the engine. ESM and
the other main components of the reference architecture are depicted in
Figure 5.2 ..

In a copier engine ESM communicates with two types of components:
status control Clients, and Functions. Clients request engine state transitions.
Requests by the external status control client (Controller) are translated by
the EAl (Engine Adapter Interface) component. To perform status requests
of Clients, ESM controls the status of individual Function components. Func-
tions, in turn, recursively control the status of their composing Functions.

5.2. Running Example 81

Copier Engine
JAN
I [
[aam [Em]

| |
EAI | ESM F ewm
|

| Function \!

Figure 5.2: Architecture for copier engines

Controller'—

R -

For the development of ESM and other components, a process is used
similar to the process outlined in Section 5.1. For this Océ relies on a model-
driven approach based on UML [Dohmen and Somers, 2003]. Architects
specify use case realisations using UML sequence diagrams. Based on these
diagrams, for every component a UML statechart diagram is created. Using
special tooling!, the source code for the engine components (e.g., ESM) is
largely generated based on those statechart diagrams. For Océ’s developers
these statechart diagrams actually are the implementation.

One of the reasons for introducing a (automated) model-driven devel-
opment approach was to overcome consistency problems with respect to
state machine models and source code [Dohmen and Somers, 2003]. By
automatically generating source code from state machines this problem is
effectively moved ‘upwards’ to the consistency between scenarios and state
machines.

For ESM, each use case addresses a specific engine state transition. A
use case is accompanied by a UML sequence diagram. As an example, con-
sider the diagram in Figure 5.7(a) on page 96. It depicts the interaction
that occurs when a copier engine is requested to go to standby, while it is
running. At Océ these sequence diagrams are purely used for communi-
cation purposes, rather than as input for automatic processing (e.g., model
transformations, or code generation). Because of this, they are not always
complete and precise. Furthermore, proprietary (non-UML) constructs are
used. As an example, in these sequence diagrams the lifeline of the ESM
component is decorated with the name of its (high-level) state at that point
of the interaction.

To ensure successful evolution and maintenance of the reference archi-
tecture and the components it defines, a means to assess the consistency
between the involved behavioural specifications is essential. It is this chal-
lenge we address in this chapter.

IIBM Rational Rose Technical Developer - http:/www.ibm.com/software/awdtools/
developer/technical (June 2007)

82 Chapter 5. Model-Driven Conformance Checking

5.3 Related Work

Several formal approaches have been proposed that address problems
similar to ours. Lam and Padget [2003] translate UML statecharts into 7-
calculus to determine behavioural equivalence using bisimulation. Schifer
et al. [2001] present a tool that uses model checking to verify state ma-
chines against collaboration diagrams. The use of such tools and ap-
proaches requires complete, precise and integrated interaction- and state-
based behavioural models. This implies, for instance, that sending and
reception of messages in scenarios are explicitly linked to events and ef-
fects in state machines. In our case, for the sequence diagrams, this is
problematic. They are created early in the development process and not
intended to be complete or precise.

To take this into account, we generate a state machine from a set of
input scenarios, that, subsequently, is compared to the state machine that
was created by the developers.

Many approaches have been defined for synthesis of state-based models
from scenario-based models. Amyot and Eberlein [2003], and Liang et al.
[2006] both evaluate over twenty of them. Evaluation criteria include lan-
guages, means to define scenario relationships and state model type. Our
industrial case gives us the requirements with respect to these criteria for
a synthesis approach.

Instead of using a more powerful scenario language such as live se-
quence charts [Damm and Harel, 2001], we limit ourselves to UML sequence
diagrams augmented with decorations, as dictated by our industrial case
study. The decorations with state information can be interpreted as condi-
tions from which inter-scenario relationships can be derived. Finally, with
respect to state model type, we consider approaches that result in state
models for individual components (instead of global state models). Con-
sidering Liang et al. [2006] one approach best meets these requirements,
namely the one proposed by Whittle and Schumann [2000].

Whittle and Schumann [2000] present an algorithm to map UML se-
quence diagrams to UML statecharts. In this mapping the messages in a
scenario are first annotated with pre- and postconditions on state variables,
referred to as a domain theory. The mapping is based on the assumption
that a message only affects a state variable if its pre- or postcondition ex-
plicitly specifies it does; the domain theory does not need to be complete.
Thus, this so-called frame axiom!, together with the pre- and postcondi-
tions, results in a pair of state vectors for each message (before and after).

IThe name derives from a common technique used by animated cartoon makers called
framing where the currently moving parts of the cartoon are superimposed on the
‘frame’, which depicts the background of the scene, which does not change (http:/en.
wikipedia.org/wiki/Frame_problem (June 2007)).

5.4. Model-Driven Consistency Checking 83

For every scenario it is checked whether the message ordering is consistent
with the domain theory. If not, either one can be reconsidered. Then, for
each scenario a ‘flat’ state machine is generated for every component. Mes-
sages towards a component result in an event that triggers a transition;
messages directed away from a component result in an action that is exe-
cuted upon a transition. Loops are identified by detecting states that have
unifiable state vectors. Two states vectors are unifiable if they do not spec-
ify different values for the same state variable. Subsequently, the ‘flat’ state
machines generated for a component from different scenarios are merged
by merging similar states. Two states are similar if their state vector is
identical and they have at least one incoming transition with the same la-
bel. Hierarchy is added to the resulting statecharts by a user provided
subset and (partial) ordering of the state variables.

Van der Aalst et al. [2004] present an approach for the discovery of
(business) process models from event logs. Instead of state models, they
use Petri nets as process models. Where they only rely on event (message)
sequence to merge different workflow instances (scenarios), we rely on state
variables as well.

Most work in this area focuses on the synthesis algorithm, whereas the
integration in industrial practice remains implicit. In fact, many of the
approaches are not supported by a tool or validated in industrial practice.
Their application in practice only becomes realistic when they integrate
with existing tools and standards used in industry. Therefore, we focus in
this chapter on UML sequence diagrams as a notation for scenarios, and on
UML state machines.

5.4 Model-Driven Consistency Checking

In this section we outline our approach for consistency checking of be-
havioural specifications, but, first, we introduce the technologies that en-
able our model-driven approach and the underlying structure of the in-
volved behavioural models.

5.4.1 Enabling Technologies

Our approach takes advantage of the standards that are widely used in
industry, such as UML and XML Metadata Interchange! (XMI), enabling easy
integration with the tools used in industrial practice. XMI provides a means
to serialise UML models to be manipulated, for instance, using Extensible
Stylesheet Language Transformations? (XSLT). However, the XMI format

Thttp://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.w3.org/TR/xslt (June 2007)

84 Chapter 5. Model-Driven Conformance Checking

is very verbose, making it a tedious and error prone task to develop such
transformations [Van Dijk et al., 2005].

Model Driven Architecture! (MDA) developed by the Object Management
Group? (OMG) offers, among others, a solution to this problem. MDA is OMG’s
incarnation of model-driven engineering (MDE). With MDE, software devel-
opment largely consists of a series of model transformations mapping a
source to a target model. Essential to MDE are models, their associated
metamodels, and model transformations. In the case of MDA, metamodels
are defined using the MetaObject Facility? (MOF). The UML metamodel is
only one example of such metamodels. Finally, model transformation lan-
guages are used to define transformations.

We use the Atlas Transformation Language [Jouault and Kurtev, 2005]
(ATL)* to specify and implement the mapping between scenarios and state
machines. ATL is used to develop model transformations that are exe-
cuted by a transformation engine. With ATL, transformations are defined
in transformation modules that consist of transformation rules and helper
operations. The transformation rules match model elements in a source
model and create elements in a target model. To this end the rules define
constraints on metamodel elements in a syntax similar to that of the Object
Constraint Language® (OCL). A helper is defined in the context of a meta-
model element, to which it effectively adds a feature. Helpers can be used
in rules, and optionally take parameters.

The ATL transformation engine can be used with XMI serialisations of
models and metamodels defined using the MOF. For the sequence diagrams
and state machines in this chapter we used the MOF-UML metamodel avail-
able from the OMG [OMG, 2007a]. To create the associated models, a UML
modelling tool supporting XMI export can be used (we used Poseidon for
UMLS for this purpose).

Once the source model and metamodel, target metamodel, and trans-
formation module are defined and located, the ATL transformation engine
generates the target model in its serialised form, which, in turn, can be
imported into a UML modelling tool for visualisation, or can serve as source
model for another (model) transformation.

Ihttp:/www.omg.org/mda (June 2007)

2http://www.omg.org (June 2007)

Shttp://www.omg.org/mof (June 2007)

4For a more detailed introduction to ATL, please refer to Section 2.3.3.
S5http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)
Shttp:/www.gentleware.com (June 2007)

5.4. Model-Driven Consistency Checking 85

ModelElement

+name:Name

+ constrainedElement |* {ordered}

+ constraint | *

Constraint

+body:BooleanExpression

Figure 5.3: Constraints

5.4.2 Behavioural Modelling

For the creation of interaction-based and state-based behavioural models
we use UML sequence and statechart diagrams. The underlying structure
of these diagrams is described by the Collaborations and State Machines
subpackages of the UML metamodel. Because our transformation rules are
defined on the metamodel level, we introduce these package briefly. Al-
though we discuss only simplified versions of these packages, the imple-
mentation of our technique and our case study are based on the complete
UML metamodel (version 1.4 [OMG, 2007a]).

In general the UML metamodel allows every model element to be asso-
ciated with an ordered set of constraints as can be seen from Figure 5.3.
Note that every model element in UML is a specialisation of ModelElement.
We use this to add pre- and postcondition to messages and state invariants
to states. To distinguish between preconditions, postconditions, and other
constraints that might be used in the model we use stereotypes.

Source: Collaborations The Collaboration package and some other UML el-
ements are depicted in Figure 5.4 on the following page. In the context
of a Collaboration the communication patterns performed by Objects are rep-
resented by a set of Messages that is partially ordered by the predecessor
relation. For each message, sender and receiver Objects are specified. The
cause of a Message is a CallAction (dispatchAction) that is associated with an
Operation. In turn, this Operation is part of the Class that is the classifier of
the Object that receives the Message. Finally, a Class optionally contains
Attributes that have a type.

Target: State Machines Using the (target) metamodel in Figure 5.5 on the
next page, UML state machines can be constructed that model behaviour as
a traversal of a graph of state nodes interconnected by transition arcs.

A state node, or StateVertex, is the target or source of any number of Tran-
sitions and can be of different types. A State represents a situation in which

86 Chapter 5. Model-Driven Conformance Checking

operation
CallAction *+op

Operation

+ operations *

—actualArgument:int

dispatchAction
* + sender + classifier

" 1 obi ti Class
essage g jec

+isActive:Boolean
. + receiver

* type
predecessor + ownedElement

Collaboration

Figure 5.4: Collaborations (simplified)

0..1
StateMachine =
0..1 + transitions
StateVertex +incoming Transition

+tgrget *

+ outgoing
+ spurce *

* JAN H-top
+|subvertex

0..1 \¢ effect
Pseudostate Action
+kind:PseudostateKind +script:ActionExpression
0..1 [1
CompositeState| | SimpleState |
+ container

Figure 5.5: State machines

5.4. Model-Driven Consistency Checking 87

some invariants (over state variables) hold. The metamodel defines the
following types of States. A CompositeState contains (owns) a number of sub-
states (subvertex). A SimpleState is a State without any sub-states.

Next to state nodes that describe a distinct situation, the metamodel
also offers a type of StateVertex to models transient nodes: Pseudostate. Only
one Pseudostate type (PseudostateKind) is relevant for the state models in this
chapter: the initial Pseudostate. An initial Pseudostate is the default node of
a CompositeState. It has only one outgoing Transition leading to the default
State of a CompositeState.

Nodes in a state machine are connected by Transitions that model the
transition from one State (source) to another (target). A Transition is fired by
a CallEvent (trigger). The effect of a Transition specifies an CallAction to be ex-
ecuted upon its firing. Finally, a StateMachine is defined in the context of a
Class and consists of a set of Transitions and one top State that is a Composite-
State (in the UML specification this is specified as an OCL well-formedness
rule, which we do not show).

5.4.3 Consistency Checking Approach

As said, the set of scenarios is not expected to be complete or precise. For
instance, when comparing the set of scenarios and the state machines cre-
ated by the developers it is unclear whether a scenario specifies universal
or existential behaviour [Damm and Harel, 2001]. However, if we are to
generate a state machine for a set of scenarios we have to take a position
with respect to the meaning of those scenarios. The generation of scenarios
is based on the approach by Whittle and Schumann [2000]. To this end,
we interpret Océ’s scenarios in principle as universal: if the start condi-
tion of a scenario is satisfied the system behaves exactly as specified by
that scenario. We consider the start condition of a scenario to be the first
condition specified as decoration and occurrence of the first message. As
such, the scenario in Figure 5.7(a) on page 96 specifies exactly what hap-
pens when EsM receives the message m_SetUnit(standby) while it is in state
running. However, when during execution of a scenario the start condition
of another scenario is satisfied, execution continues according to that sce-
nario. For instance, in the case of Figure 5.7(a) on page 96, while Esm is
stopping, execution could continue according to the scenario that performs
the request of ESM going back to running while it was stopping.

In our approach we use model transformations for the generation of a
state machine from a set of scenarios. The specification of those transfor-
mations is discussed in Section 5.5. To include all required information,
the source model has to comply to a set of modelling conventions. When
considering an arbitrary industrial case (e.g., Océ’s reference architecture),
the models used typically do not comply to those conventions. Therefore,

88 Chapter 5. Model-Driven Conformance Checking

we first require models to be normalised. This is discussed in Section 5.6.1.

Finally, the generated state machine is compared to the state machine
that was already developed based on the same set of scenarios, the imple-
mentation state machine. Because the sequence diagrams are created early
on in the development process, it is not expected that they are exactly cov-
ered by the state machines. Therefore, mismatches are expected between
the generated and implementation state machine with respect to transition
labels and order. This makes automating the comparison step particularly
difficult. For now we manually compare the generated and implementation
state machine and mainly focus on inconsistencies with respect to top-level
states and transitions.

As such, we use three steps to check the consistency between be-
havioural specifications: normalise, transform, and compare. In the cur-
rent approach only the transformation is automatic. Furthermore, the
normalisation step is context-specific as it depends on the type of input
models.

5.5 Generating State Machines

Given the source and target metamodels discussed in the previous section,
we now describe how to instantiate source models, as well as the mapping
between source and target models, expressed as ATL model transforma-
tions. We published all (executable) ATL transformations that we imple-
mented, as well as (normalised) source and target (meta)models for the
ATM example of Whittle and Schumann [2000] in the ATL transformations
repositoryl.

5.5.1 Instantiating a Source Model

Our approach based on model transformations and UML requires that all
necessary information is encoded in a UML model. Whittle and Schumann
[2000] requires the following information for its mapping: scenarios, a do-
main theory, a set of state variables, and an ordered subset of that set.
The set of scenarios is specified as sequence diagrams. The types of
the interacting Objects (components) are specified in a class model. The
Class that corresponds to the component of interest is marked active. All
Operations involved in the relevant scenarios are also specified. The pre-
and postconditions of a domain theory are applied to these Operations as
stereotyped Constraints. These Constraints have the form state variable
= value. We currently do not allow pre- and postconditions in the domain

Thttp://www.eclipse.org/gmt/atl/atlTransformations/UMLSD2STMD

5.5. Generating State Machines 89

theory that refer to formal parameters of the operations involved, as this
would require interpretation of these conditions. If necessary, such con-
straints can be added directly to the Messages that specify an actual pa-
rameter in the sequence diagrams.

The active Class contains an Attribute for each state variable. The sub-
set of state variables used for introducing hierarchy is encoded by setting
the visibility of all state variables included in the subset to public and the
others to private. Finally, the order of the state variable Attributes on the
Class represents the prioritisation of state variables (the top one having
the highest priority). This priority indicates the order in which the state
variables are used to partition the set of states by assigning these states to
CompositeStates according to the value assigned to the state variable.

5.5.2 Model Transformations

Our transformations generate a state machine for the component that is
represented by the active Class in the source model. A scenario speci-
fies one particular path through the state machine for that component, on
which it proceeds to the next state upon each communication. We refer to
the state machine that only describes that path as a ‘flat’ state machine.

We tailored the approach in Whittle and Schumann [2000] (see Sec-
tion 5.3) to account for the type of input in the Océ case, for our model-
driven strategy, and for our goal: consistency checking. For this reason
we introduce fewer abstractions, making detecting and resolving inconsis-
tencies more convenient. Our mapping consists of four separate steps: 1)
apply the domain theory, 2) generate flat state machines, 3) merge flat state
machines, and 4) introduce hierarchy into the merged state machine.

We formalised our mapping from scenarios to state machines as four ATL
model transformations that correspond to the four steps of our mapping.
Every consecutive transformation uses the target model of the previous
transformation as its source model.

Together, these transformations are specified in less than 700 lines of
ATL code. Before these transformations can be applied to the Océ case, a
normalisation step is required, which is discussed in Section 5.6.1.

Apply Domain Theory This step is specific to our approach. Unlike Whittle
and Schumann [2000], but in accordance with UML, we distinguish be-
tween pre- and postconditions on the Operations of a Class and those on
the CallActions associated with Messages in a sequence diagram. This has
two advantages. First, it allows for simple pre- and postconditions to be
specified only once (i.e., on a Class’ Operations). Second, it circumvents the

90 Chapter 5. Model-Driven Conformance Checking

rule ConstrainedCallAction {
from ca_in:UML!CallAction
to ca_out:UML!CallAction (
operation <- ca_in.operation,
constraint <- ca_in.operation.constraint->union(ca_in.constraint)

)

Listing 5.1: Applying constraints to CallActions

need to evaluate conditions that refer to formal parameters of an Opera-
tion.

When we apply the domain theory to a set of scenarios, we simply attach
the pre- and postconditions on the Operations of a Class to corresponding
Messages to or from instances of that Class.

The ATL specification of this mapping is straightforward. The Con-
straints on an Operation are copied to Messages via their associated
CallAction. To this end, the rule in Listing 5.1 matches all CallActions. For
each it generates a CallAction, ca_out, in the target model and initialises
its constraint feature with the constraints applied to the Operation associ-
ated with the matching CallAction. Note that the constraints are added to
the constraints already applied to the matched CallAction (using the union
operation).

The result is a set of sequence diagrams in which Constraints are ap-
plied to Messages based on the pre- and postconditions of a domain theory
on Operations. See Figure 5.7(b) on page 96 for an example.

Sequence Diagrams — Flat State Machines The next step of our approach is to
generate a flat state machine for every scenario in which the component
of interest plays a role. In this step we map every communication to a
Transition and a target State. The source State of this transition is the tar-
get State corresponding to the previous communication of the component
in the scenario. As in the approach by Whittle and Schumann [2000] our
strategy is as follows: if the involved communication was the receipt of a
Message, we say the Transition was triggered by that Message. If the in-
volved communication was the sending of a Message, we say the effect of
the Transition was sending that Message.

Based on the pre- and postconditions applied to the Messages in the sce-
narios by the previous step, we calculate the state vector for each State. For
this we ‘propagate’ pre- and postconditions through the sequence diagram
by application of the frame axiom. The result is a set of flat StateMachines,
in which state vectors are applied to States as a set of Constraints over
state variables.

5.5. Generating State Machines 91

rule EffectTransition {
from m:UML!Message (m.sender.isActive)
to t_effect: UML!Transition (
effect <- ca,
target <- trgt,
source <— ...),
ae:UML!ActionExpression (...),
ca:UML!CallAction (...),
trgt:UML!SimpleState (
name <- ae.body+’_sent’,
constraint <- m.stateVector)

}
helper context UML!Message def: stateVector : Set (UML!Constraint) =

let stateVectorPrev:Set (UML!Constraint) = ... in
let pres:Set (UML!Constraint) = ... in
let posts:Set (UML!Constraint) = ... in
let sv:Set (UML!Constraint) =
thisModule. frame (stateVectorPrev,thisModule. frame (pres,posts)) in
if thisModule.unifiable(stateVectorPrev,pres) then
sV
else
sv.debug (' INCONSISTENCY DETECTED!’)
endif

4
helper def: frame (frame:Set (UML!Constraint), framed:Set (UML!
Constraint)): Set (UML!Constraint) =
frame->iterate (c; cs:Set (UML!Constraint)=framed |
if cs->exists(ele.stateVariable=c.stateVariable) then
cs
else
cs—->including (c)
endif)

Listing 5.2: Mapping Messages to (effect) Transitions

As an example, the EffectTransition rule in Listing 5.2 matches all
Messages in the source model sent by the component of interest. The target
pattern specifies that for each such Message (n) among others, a Transition
(t_effect) and a SimpleState (trgt) are created in the target model. The
effect and target features of the Transition element are simply initialised to
the CallAction (ca) and SimpleState created in the same rule. The source of
the Transition is initialised to the target of the Transition that corresponds
to the previous Message (not shown).

The constraint feature of the generated SimpleState element is ini-
tialised to the set of constraints (state invariants) that hold after the
Message that matched the rule. This is determined by the statevector
helper. For this it applies the frame axiom (specified in the frame helper)

92 Chapter 5. Model-Driven Conformance Checking

defaulq (m_SetUnit(standby)_receivecﬂ {esm.state=stopping}
‘A‘\ N - . =stopping
: m_SetUnit(standby) \l//m,UnitStatus(stoppmg)

: (m_UnitStatus(stopping)_senﬂ
! C) 77 {esm.state=stopping}
X /m_Stop

- - 4 {esm.state=stopping}

—
m_StopDone_received
- {esm.state=standby}

m_StopDone
-
/m_UnitStatus(standby)
(m_UnitStatus(standby)_senq {esm.state=standby}

{esm.state=running}

Figure 5.6: Flat state machine

subsequently to the postconditions of the current Message (' posts’), the
preconditions of the current Message (pres), and the state vector after
the previous Message (statevectorprev). As such conditions propagate in
‘forward’ direction (i.e., downwards in a sequence diagram).

Additionally the statevector helper notifies the user if an inconsistency
is detected between the state vector after the previous Message and the
preconditions for the current Message (these sets of Constraints should be
unifiable).

The frame helper simply iterates over the Constraints in the frame ar-
gument and adds every constraint involving a state variable that is not
referred to in framed to that set.

Unlike Whittle and Schumann [2000], we do not apply unification of
state vectors at this stage. The declarative style of our ATL specifications
results in an infinite recursion: to complete a state vector we need to know
whether it can be unified with other state vectors. To determine this we
have to consider state vectors in ‘forward’ as well as in ‘backward’ direction.
However, to determine the state vectors in ‘forward’ direction, we, in turn,
have to consider state vectors in ‘backward’ direction because of the frame
axiom strategy.

Application of this step yields a set of flat state machines for a compo-
nent. As an example, consider Figure 5.6. It depicts the flat state machine
corresponding to the sequence diagram in Figure 5.7(b) on page 96. Note
that the example only involves a single state variable and that the names
of the States are derived from the particular Message that was sent or re-
ceived by the component.

5.5. Generating State Machines 93

rule MergedSimpleState {
from s_in:UML!SimpleState (
thisModule.mergedStates—>includes (s_1in))
to s_out:UML!SimpleState (
name<-s_in.name,
constraint <- s_in.constraint)
}
helper def: mergedStates: Set (UML!StateVertex) =
thisModule.allSimpleStates->union (thisModule.allPseudostates)
->iterate(s; mss:Set (UML!StateVertex)=Set{} |
if mss->exists (el (e.mergeable(s)) then
mss
else
mss—>including (s)
endif)
;
helper context UML!StateVertex def: mergeable(s:UML!StateVertex):
Boolean =
thisModule.unifiable (self.constraint,s.constraint) and self.name=s.
name

helper def: unifiable(csetl:Set (UML!Constraint),cset2:Set (UML!
Constraint)): Boolean =
let sharedSVs:Set (UML!Attribute) = csetl->collect (c|c.stateVariable
) —>select (a|cset2->collect (c|c.stateVariable)->includes(a)) in
sharedSVs—->forAll (a|csetl->select (c|c.stateVariable=a)=
cset2->select (clc.stateVariable=a))

Listing 5.3: Merging SimpleStates

Merging Flat State Machines In this step we merge the flat state machines.
We merge every set of states with unifiable state vectors and at least one
identical incoming transition (in terms of effect or trigger).

Merging of states is done by the rule and helpers in Listing 5.3. The rule
matches all states selected by the mergedstates helper that iteratively se-
lects one SimpleState from every group of equal SimpleStates in the source
model. A call to the mergeable helper results in true when the receiving
StateVertex and the parameter StateVertex 1) (s) are unifiable, and 2) have
the same name (i.e., the incoming transitions had the same trigger or ef-
fect). The unifiable helper evaluates to true for two sets of Constraints
that do not specify different values for the same state variable, meaning
that the constraint that refers to a particular state variable that is also
referred to in the other set, is actually included in that set.

Transitions are matched by another rule (not shown). To discard redun-
dant Transitions, it only matches one Transition of the Transitions between
any two sets of SimpleStates that are merged.

94 Chapter 5. Model-Driven Conformance Checking

Introducing Hierarchy As suggested by Whittle and Schumann [2000], we use
an ordered subset of the set of state variables to add hierarchy by means
of CompositeStates. These state variables define a hierarchy of Composite-
States. For instance, the state variable with the highest priority results in
CompositeStates in the top level CompositeState: one for each value of that
state variable’s domain (provided that it occurs in one of the simple states’
state invariants). For each of the resulting CompositeStates, the second-
highest priority state variable, in turn, results in CompositeStates for each
value of that state variable’s domain that occurs in combination with the
corresponding value of the higher-priority state variable.

The problem of specifying this mapping with ATL is that there is not
always a matching source model element to create a CompositeState for.
Therefore, we use an ATL called rule (compositestate). A called rule is an
imperative rule that is not matched by a source model element. Instead,
it is explicitly called and can have parameters. The compositestate called
rule in Listing 5.4 creates a CompositeState for a given set of Constraints
(cset). These Constraints (i.e., state invariants) are determined by the
compositeStateConstraintSetsat helper that takes a set of Constraints that
represents the current CompositeState and determines the sets of Con-
straints that correspond to the CompositeStates at that level. For each of
those sets a CompositeState is created. This called rule is used to initialise
the subvertex feature in the rule that matches the top CompositeState of
the merged StateMachine, as well as (recursively) in the compositestate
rule itself. The do clause in the compositestate rule returns the created
CompositeState.

5.6 Application to Océ

In this section we first explain what additional work has to be done to apply
our approach to the Océ case. Subsequently we give an overview of the
results obtained by application of our approach.

5.6.1 Source Model Normalisation

In the case of Océ, neither a domain theory, nor a set of state variables
were available. To overcome this, we normalise Océ’s sequence diagrams.
In particular, we interpret the decorations on object lifelines as pre- and
postconditions on a single state variable of a suitable enumeration type:
state. The message preceding a state decoration apparently resulted in
the component moving to the indicated state. Hence, we (manually) attach
a corresponding postcondition to the message (e.g., esm.state=starting). A
message succeeding a state decoration apparently requires the component

5.6. Application to Océ 95

rule TopCompositeState {
from cs_in:UML!CompositeState

using {
sm:UML!StateMachine=thisModule.allStateMachines->select (sm|sm.top
=cs_in);

}
to cs_out:UML!CompositeState (
name <- cs_in.name,
subvertex <- sm.simpleStateStatesAt (Set{})
—>union (sm.compositeStateConstraintSetsAt (Set{})
—>collect (cs|thisModule.CompositeState (sm,cs))))
}
rule CompositeState (sm:UML!StateMachine, cset:Set (UML!Constraint))
{
to cs:UML!CompositeState (
subvertex <- sm.simpleStateStatesAt (cset)->union (sm.
compositeStateConstraintSeqgsAt (cset)->collect (cs|thisModule.
CompositeState (sm,cs))))
do{cs; }
}

Listing 5.4: Adding hierarchy to state machine

to be in the indicated state. Hence, we attach a corresponding precondition
to the message. Figure 5.7 on the next page shows an example. Finally,
we add a (public) attribute, state, to the class corresponding to the ESM
component.

5.6.2 Results

A fragment of the result of application of the transformation steps to Océ’s
ESM component, is depicted in Figure 5.8 on page 97. The dashed line
indicates the path through the state machine that is traversed when ESM
is requested to go to standby while it is running. This path corresponds to
the scenario depicted in Figure 5.7 on the next page.

We compared this derived state machine with the implementation state
machine, from which Océ generates code. There are many inconsisten-
cies with respect to low-level states and transitions. In the implementa-
tion state machine low-level states are not only decomposed further, the
sequence of states and transitions is also different in many cases. This
is not surprising considering the fact that the sequence diagrams of the
source model from which we derived a state machine, constitute the first
behavioural model that is created for the ESM component, while, in the
implementation state machine, low-level transitions and states often cor-
respond to a single method call in the generated code. If we restrict the

96 Chapter 5. Model-Driven Conformance Checking

esm:ESM |

! set_Unit (standby)

1

1

1

1

1

1

1 stoppin
!
1

1

1

1

1

aFunction :Function |

i

I;

m_UnitStatus (stopping)

i m Sl

1 m_StopDone (
1 1

1

1 standby
1

1

1

1

1
1
m_Stop () :
1
|
1 m_UnitStatus (standby)
1
1

(a) Sequence diagram with decorated lifeline

<<precondition>>{esm.state=running}

aFunction :Function | | esm:ESM| - ;
<<postcondition>>{esm.state=stopping}

:/ set_Unit (standby ¥

<<precondition>>{esm.state=stopping}

\ h \ <<postcondition>>{esm.state=standby}
1 1 1
' m_StopDone (‘-E ! X
' 'm_UnitStatus (standby) - — — - | <<precondition>>{esm.state=standby
L ~]

1 1

1 1

‘M._, _____________ O B‘

(b) Normalised sequence diagram

Figure 5.7: Example scenario: request a copier engine to go to standby while it is
running

5.6. Application to Océ 97

esm.state=standbry

| m_WarmingUpDDne_received]

r_SetUiniticlle) |)

‘»lf Fm_UnitStatus{standind
| m_LlnitStatus(standb\,j_sent\I
| J

Jm_UnitStatus({standing

. [m-StopDone_received | [M-ReponError_sent j

m_5to :|I'_;|.0ne| J ;)

esm.state=running m_lSetUnit(nning)

esm.state=stopping

!l Sm Stop
m_LlnitStatus-.(stopping)_sem j
: J
:/P Sm_Unitstatus)stopping)
m_SetUniI(sIandbv}_recei\rEd1 :
LRy VT | m_Star‘tDUne_recemEd]

.f{_SetUnit(stantbe) J
| T

m_UnitStatusirunning)_sent]

Jm_UnitStatus{rinning)

Figure 5.8: Merged state model of ESM (fragment)

comparison step to the top-level states, however, the implementation state
machine largely conforms to the derived state machine. Although we can-
not show the implementation state machine, we were able to make several
other interesting observations:

e Several transitions between top-level composite states are missing in
the derived state machine. This indicates that not all scenarios have
been specified in a sequence diagram.

e Some top-level composite states in the derived state machine were
modelled as low-level (sub) composite states in the implementation
state machine. This merely indicates changes to the decomposition of
states, and does not necessarily result in different behaviour.

e In the derived state machine, sometimes extra paths exist between
two composite states. This indicates that specific sequences of events
and actions that occur in different scenarios are not specified consis-
tently. This was the case, for instance, when two versions of a scenario
existed: one for normal behaviour, and one for exceptional behaviour.
For two such versions the first interactions should typically be iden-
tical (until some exception occurs), but in practice this was not the
case.

e The derived state machine contains a number of unconditional transi-

98 Chapter 5. Model-Driven Conformance Checking

tions that form a loop, resulting in non-deterministic behaviour. This
had the same cause as the previous observation.

As a response to these observations Océ has two options. The first is to add
missing use cases and scenarios, and to refactor alternative sequence dia-
grams to remove inconsistencies in event and action sequences. Here, care
must be taken, as such modifications affect the state machines of other com-
ponents that play a role in the involved scenarios as well. The alternative
option is to only remove behavioural inconsistencies in the implementation
state machine. This also requires careful analysis, since different develop-
ment groups, responsible for different components, might do so differently,
resulting in integration and maintainability problems.

5.7 Discussion

Generalisability of the approach 7o a large extent our approach is generic.

Although, the normalised source model in the Océ case only contains a
single state variable, we also applied our transformation step to the ATM
example in Whittle and Schumann [2000]!. This example involves three
state variables. By application of our approach (in both cases) we detected
several inconsistencies.

We applied our approach successfully to both the ATM example of
Whittle and Schumann [2000] and Océ’s reference architecture. Our ap-
proach is generic with respect to input models that comply to the model
conventions as outlined in Section 5.5.1. As such, we require a (manual)
normalisation step that is context specific; it depends on the modelling
conventions in use at a particular company.

Our modelling conventions are most restrictive with respect to the type
of pre- and postconditions used in the domain theory. As we do not evaluate
these conditions, we require them to be of the form statevariable=value.
In some cases the conditions for an Operation refer to a formal parame-
ter. Our approach can still be applied if the Messages associated with that
Operation in the sequence diagrams specify a corresponding actual param-
eter. Then, we (manually) apply the condition directly to the Message in
the sequence diagram and substitute the formal parameter for the actual
parameter. More complicated conditions require full interpretation of OCL
expressions.

Of course, pre- and postconditions have to be available for our approach
to produce more than only flat state machines. In the case of Océ, we de-

1Images of the (normalised) source model, as well as all (intermediate) target models for
the ATM example can be downloaded from the ATL transformations repository (http:/
www.eclipse.org/gmt/atl/atITransformations/UMLSD2STMD)

5.7. Discussion 929

rived pre- and postconditions from decorations in the sequence diagrams.
In general, pre- and postconditions are not always obvious from design doc-
umentation. In such situations these might have to be derived indirectly
from documentation or reverse engineered from source code.

The introduction of pre- and postconditions effectively is a normalisa-
tion to the UML standard used by Océ and our tools (version 1.4 [OMG,
2007a]). For the current UML (version 2.1.1) this is not necessary, as such
lifeline decorations became part of the specification (the corresponding
metamodel element is called StateInvariant [OMG, 2007b, page 500]).
To support this, only minor modifications to our ATL transformations are
required.

Scalability of the approach Our approach constitutes a first step towards fully
automated consistency checking.

In the Océ case study, the source model for the transformation step of
our approach includes 10 sequence diagrams that contain 62 messages. The
resulting integrated, hierarchical state machine, of which a fragment was
depicted in Figure 5.8 on page 97, contains 23 transitions between 14 com-
posite states containing in total 47 simple states.

Our approach is a first step to fully automated consistency checking
of behavioural specifications. For now, we rely on manual inspection of
the resulting state machine for actual evaluation of the consistency. As
such, the scalability is currently not limited by the transformation steps (in
the Océ case they each take less than 10 seconds), but by the comparison
step. For cases were the number of states is limited and developers have
knowledge on the system, this is a feasible approach. For ESM, which is a
medium-sized component (approximately 10 KLOC), this turned out not to
be a problem.

Fully automatic consistency checking could be done by relying on nam-
ing. An example of such an approach is discussed by Van Dijk et al. [2005].
It checks the consistency between the underlying XMI representations of
UML models. However, in this case, the names of messages in the scenarios
did not precisely correspond to the names of transition effects and events
in the implementation state machine. Although they are easily matched by
a human, this hampers full automation.

The use of graph matching techniques is another possibility of check-
ing the consistency of two state machines. Also using such techniques the
problem of matching node and edge labels remains.

Also for automatic approaches, however, the generation of a state ma-
chine from a set of scenarios, as discussed in this chapter, is likely to be a
first step.

100 Chapter 5. Model-Driven Conformance Checking

Applicability of the approach Our approach can be applied to iteratively de-
velop behavioural specifications.

We generated a state machine with the purpose of checking the consis-
tency between different behavioural specifications. However, our approach
might have other applications as well. A generated state machine could
also be used for other types of analyses, such as model checking or perfor-
mance analysis.

Next to analysis purposes, our approach is particularly interesting for
forward engineering, especially in the context of model-driven development
approaches as in the case of Océ. Using our transformations based on UML,
developers can easily generate different views on the behaviour of a soft-
ware system or component. Furthermore, the generation not only provides
insight in the consistency of the sequence diagrams with respect to each
other, it also provides developers with a first candidate state machine that
can be refined. As such, our technique can be applied iteratively to develop
complete behavioural specifications of components: (1) specify the interac-
tions of an initial set of use cases as scenarios, (2) generate a state ma-
chine, (3) refactor scenarios to remove inconsistencies in event and action
sequences, and add missing scenarios, (4) go to step 2.

The main reason to choose for a model-driven approach based on UML
for our consistency check, is the integration with Océ’s development pro-
cess. It circumvents the need to extract information from the MDA domain
to another domain, such as the grammarware or the Extensible Markup
Language! (XML) domain. Unfortunately, despite the availability of stan-
dards, currently available tools for (meta)modelling and transformations do
not integrate well, hampering actual integration of our approach in prac-
tice. For a large part this is due to the abundance of possible combinations
of XMI, UML, and MOF versions, as well as vendor specific implementations
of those standards. Other problems occur due to different capabilities of
modelling tools. As an example, we used Poseidon for UML to create source
models because its metamodel is available from the developer’s website.
However, the UML models we generate do not contain layout information.
Unfortunately, Poseidon is not capable of displaying UML models that do
not contain layout information. As a consequence we had to use another
tool for visualisation. From a large set of tools we tried, only Borland’s
Together? is capable of generating a layout for a UML model. However, the
XMI representations used by this tool are not compatible with those gen-
erated by the ATL engine. As a workaround we developed a minimal XSLT
transformation that maps the XMI ‘flavour’ generated by the ATL engine
to that of Together. An alternative is to generate the layout information
required by Poseidon using a model transformation.

Thttp://www.w3.org/XML (June 2007)

5.8. Conclusions 101

UML vs. MOF The use of UML in a limited domain makes transformation
definitions unnecessary complex

The genericity and resulting complexity of the UML metamodel result
in, sometimes, inconvenient navigation through source and target models
to select a certain element. An open question is whether tree traversal
strategies as present in Stratego! or the JJTraveller [Van Deursen and
Visser, 2004] library could help to alleviate this navigation problem. Also,
often relations are defined as n : m while in a specific case 1: 1 would suffice.
The result is that sets have to be converted to sequences of which the first
element has to be selected. This is required very frequently, resulting in
unnecessary complex ATL code.

In cases, where only limited parts of the UML metamodel are used, an al-
ternative could be considered. Instead of using the UML metamodel, custom
MOF-based metamodels could be used, for instance, for scenarios and state
machines. These metamodels could be much simpler, resulting in simpler
transformation definitions. The price to pay is that in order to establish a
connection with actual UML models (e.g., as used by Océ), a mapping be-
tween such custom metamodels and the UML metamodel must be specified.
In Chapter 8 we discuss how to make such a mapping for domain-specific
modelling languages (DSMLs).

5.8 Conclusions

In this chapter we explored the use of model transformations to check the
consistency between behavioural specifications. For this we presented an
approach that consists of normalisation, transformation, and comparison
steps. We consider the following to be the main contributions of this chap-
ter:

e A specification of the mapping between scenarios and state machines
using model transformations that is made available via the ATL trans-
formations repository. An advantage of such a specification is that it
can be executed by the ATL transformation engine. Furthermore, it
is completely based on UML, making integration in industrial practice
easier.

e Modelling conventions for encoding the information required for the
transformation step in a single UML model. Additionally, as an exam-
ple, we discussed the required normalisation step for Océ’s reference
architecture.

Thttp://www.stratego-language.org

102 Chapter 5. Model-Driven Conformance Checking

e Validation of the proposed approach by application to an industrial
system, demonstrating that even small industrial specifications (con-
sisting of just 10 scenarios) contain inconsistencies, which are effec-
tively identified by our approach.

Finally, the proposed approach can be applied for other purposes than
consistency checking as well, such as forward engineering and early be-
havioural analysis based on the generated state machine.

Currently we are extending our work with additional case studies. Fur-
thermore, we investigate the possibilities to do consistency checking auto-
matically, again by the use of MDA model transformation technologies.

Chapter

Model-Driven Conformance Check-
ing of Structural Specifications!

Nowadays, industry is confronted with rapidly evolving systems. In order to
effectively reuse design artefacts such as requirements, architectural views
and analysis results, as well as the code base, it is important to have a
consistent overview in each phase of the development process. In this chapter
we propose a conformance checking system based on views to evaluate the
conformance of an implementation with respect to its architecture. We map
our approach onto technology for model-driven engineering. An academic
case study illustrates application of our framework.

6.1 Introduction

The current trend in embedded systems is product families rather than
single products. Today’s customers are appealed to products that have a
sense of uniqueness, products that are compatible but slightly different
than those of their friends. The answer from industry is to develop flexible
product lines. The extent to which the evolution of software is enabled by
such product-line approaches is largely determined by the amount and ease
of reuse of existing artefacts.

The maintenance phase of a product has always been significant and
will increasingly be so [Lientz et al., 1978; Pigoski, 1996]. The growth of the
complexity of systems is one reason [Lehman and Belady, 1985], the trend
towards product families is another reason. From the survey in Chapter 3

IThis chapter is based on: Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the sys-
tematic conformance check of software artefacts. In Proceedings of the 2"® European
Workshop on Software Architecture (EWSA 2005), volume 3047 of Lecture Notes on Com-
puter Science, pages 203—-221. Springer-Verlag, 2005

103

104 Chapter 6. Conformance Checking II

. Architecture
1 ' alignment

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A r
’

" Implementation
alignment

' [

Figure 6.1: Aligning architecture and implementation

we learnt that new products are rarely developed from scratch and that
reuse of existing development artefacts is typically ad hoc. These obser-
vations triggered our research in the field of conformance checking as a
second step in enhancing the functionality of a product or adapting it to a
changed environment (see Figure 1.2 on page 5). In our view a consistent
set of software development artefacts is a prerequisite for successful reuse.
Conformance checking is required to determine this consistency.

In general, conformance checking could be applied to all related arte-
facts produced in different phases of the software development process. In
this chapter we focus on the conformance between software architectural
views and the corresponding implementation.

An architectural view is a description of a software architecture that
addresses a specific set of concerns. The guidelines for the creation of such
views are described by associated viewpoints [[EEE-1471, 2000]. Views are
developed during the architecture phase to specify constraints over design
elements and relations [Perry and Wolf, 1992] for the subsequent product
implementation, that is, the design space of Figure 6.1.

To check whether an implementation does not violate the constraints
imposed by a view, views need to be created (reconstructed) from imple-
mentations [Van Deursen et al., 2004] to determine (predicate) the prop-
erties of the actual implementation from an architectural perspective, for
instance, to determine how implementation units are related to each other.
The constraints that an architecture specification defines effectively deter-
mine the bounds of the design space in which the implementation has to
be realised. Figure 6.1 illustrates that the implementation in this case vi-
olates some of the architectural constraints and thus does not completely
fall within the permitted design space. These violations can be resolved by
either updating the architecture or the implementation.

Here, a technical and a conceptual problem arise. First the languages
used in implementation (programming languages) and architectural views

6.2. Running Example 105

(modelling languages) differ. Second, the semantic gap between the ele-
ments and relations used in architectural views and the programming lan-
guage constructs available to implement them makes it difficult to recon-
struct an architectural view from an implementation. Therefore, for check-
ing the conformance of an implementation with respect to an architecture,
we propose to define a common conformance viewpoint at an intermediate
level of abstraction. When architectural and implementation views are as-
sociated with a common viewpoint and use the same modelling language
(i.e., metamodel) the identification of discrepancies between the intended
and implemented architecture becomes possible.

We address the problem of conformance checking by means of a confor-
mance checking system (CCS), describing the necessary steps. In order to
be practically applicable in industry, it is required that such a framework
builds on proven technology, and that its application is non-intrusive.

In this chapter we propose and experiment with a conformance check
system (CCS) that facilitates conformance checks through the definition of
a design-space conformance viewpoint bridging the semantic gap between
the implementation and architecture. Such a viewpoint is to be derived
from the involved architectural viewpoint in such a way that views as-
sociated with this viewpoint can both be extracted from the implementa-
tion and the architecture. We map the CCS to technology for model-driven
engineering (MDE) [Bézivin, 2005], and apply it in an academic case study.
Our experiments illustrate the definition of conformance viewpoints, com-
paring associated views, and visualisation of discrepancies between the
intended (specified) architecture and the implemented (predicated) archi-
tecture.

This chapter is organised as follows. Our running example is intro-
duced in Section 6.2. In Section 6.3 we present our CCS and explain what
needs to be done to map it to MDE. Subsequently, we discuss the mapping
of viewpoints to metamodels in Section 6.4 and the mappings and model
transformations for conformance checking in Section 6.5. In Section 6.6 we
discuss our CCS, the applied technology, and related work. We conclude in
Section 6.8 with an overview of our contributions.

6.2 Running Example

The running example in this chapter is the development of an academic
system: a digital music box (DMB) that reads data from a paper disc (the
record). The disc contains a plotted spiral track of pulse-width modulated
data bits. It rotates with a constant speed. The system tracks the spi-
ral, reads the data bits, and then maps those bits to symbols. A string
of symbols will be fed to an output device that transforms the string into

106 Chapter 6. Conformance Checking II

audible music. Here, we focus on the process of reading the record and gen-
erating the symbol stream. A hardware view of this system is depicted in
Figure 6.2. The system is composed of a traditional turn table and a set
of simple light sensors that can be moved axially by a motor. The control
is implemented in Java and distributed between a simple micro controller
and a PC.

Symbol
m[ap
Motor
control

Figure 6.2: Digital music box reader system

The software architecture documentation consists of a set of views. Two
of them are depicted in Figure 6.3 . Their governing viewpoints will be
explained in more detail later.

Figure 6.3(a) depicts the system as a set of communicating processes.
This view uses stereotyped [OMG, 2007a] Unified Modeling Language!
(UML) objects to represent components (processes) and stereotypes links
to represent connectors (messages, and shared data). Here, the trackmotor
process controls the speed of the motor that moves the sensors over the ro-
tating disc (axially). The track process controls the Track Sensor and uses,
via a Message connector, the trackmotor process to keep the Data Sensor po-
sitioned over the spiral track. The read process uses the Data Sensor to
read the disc. Via a SharedData connector the output process plays the read
bits on some output device. Finally, it was foreseen that the read and track
processes needed to communicate via a Message connector, for instance to
communicate the status of the read process.

The planned organisation of implementation units (modules) is given
by the module-uses view depicted in Figure 6.3(b) . Here, modules are rep-
resented by stereotyped UML classes and uses relations by dependencies.
Furthermore, a layering is represented using the package structure. Here,
the lower layers are closer to the hardware (e.g., motors and sensors), while
the upper layers are closer to the user.

Thttp://www.uml.org (June 2007)

6.2. Running Example

< < Process > >
output

< < SharedData > >
< <Message > >

< < Process > >
read

< < Process > >
track

applLayer

< <Message > >

(a) Communicating-processes

< < Process > >
trackmotor

< <module > >
PlayerControl

funcLayer

< <use> >I!

< <use> >

Y A4

< <module > >
DiskReader

< <module> >
ArmControl

m<use>f

Lk <use> >

’< < use > >I

< <use> >

r

< <use'>>

< <module> >
DataSensor

< <module > >
SpeedSensor

< <module> >
TrackSensor

< <module > >
TransMotor

(b) Module-uses

Figure 6.3: Architectural views

107

108 Chapter 6. Conformance Checking II

6.3 Approach

6.3.1 Conformance Checking System

Our conformance checking system (CCS) is based on the idea not to compare
architecture and implementation directly, but to derive views from imple-
mentation and architecture governed by a shared viewpoint expressed in
the same language. This overcomes both the conceptual and technological
problems mentioned in Section 6.1. As such, a conformance check between
implementation and architecture that does not require changes to current
ways of working (e.g., with respect to languages and views used) requires
the definition of a common viewpoint. The semantics of such a “design-
space conformance viewpoint” must be compatible with that of both archi-
tectural and implementation views. Thus, a mapping between the design-
space conformance view the architecture and implementation must exist.
Our approach is based on the work presented by Van Deursen et al. [2004]
and Murphy et al. [1995] on architecture reconstruction.

In this chapter we consider the architectural view as leading. As in the
approach by Murphy et al. [1995] there are three important situations for
any element or relation in the implementation: convergence, divergence,
and absence. A convergence indicates elements or relations in the im-
plementation that have a corresponding element or relation in the archi-
tecture. A divergence only exists in the implementation and an absence
only exists in the architecture. The result of a conformance check is a set
of entities and relations that are attributed according to the three types
above; the significance of mismatches (divergences and absences) found de-
pends in general on the involved design decisions. Therefore, discovery of
mismatches should serve as a trigger to investigate further if they are al-
lowed and possibly documented elsewhere. If not, they are considered to be
discrepancies that reduce the conceptual integrity [Brooks, Jr, 1975] of a
system and may result in unexpected dependencies, reducing the system’s
maintainability.

The conformance checking system (CCS) outlined in Figure 6.4 is based
on the process for architecture reconstruction presented by Van Deursen
et al. [2004]. Using architecture and implementation artefacts, views are
populated that are associated with a design-space conformance viewpoint.
The conformance viewpoint is defined such that its distance to both the
architectural and implementation viewpoints is minimised. Furthermore,
it enables to attribute elements and relation with their conformance status
in a subsequent comparison of the derived conformance views. For this a
set of comparison rules is specified. Finally, a presentation filter visualises
the comparison results.

6.3. Approach 109

’ Architecture ‘ ’Implementation

Conformance
viewpoint

Comparison
rules

Figure 6.4: Conceptual Conformance Checking System

6.3.2 Model-Driven Conformance Checking

In the following sections we discuss how our CCS can be mapped to an
MDE type of approach. Although, several types of technologies are avail-
able to do so, we will use technologies related to the Model Driven Archi-
tecture! (MDA). Alternatively, we could have used technologies based on
the Extensible Markup Language? (XML) or on grammars. In fact, in ear-
lier work we used XML technologies [Van Dijk et al., 2005]. There, we made
the observation that specifications of models and transformations in XML
tend to be verbose, and hence, difficult to maintain.

Using model transformation the XML syntax remains hidden. Moreover,
we chose MDA because of the availability of languages and tools to manipu-
late architectural models specified using UML.

Key to MDE are models and (automatic) model transformations. As such,
we confine our conformance check for an architectural view to its primary
presentation. Here, we assume that this primary presentation consists of
UML diagrams. Using model transformations we can then manipulate the
underlying UML model in order to check the conformance of the correspond-
ing implementation. To this end, we assume that viewpoints prescribe the
modelling language to be used for the primary presentation of associated
Views.

In MDE, modelling languages are specified by metamodels. In the case of
the architectural views that are the subject of our conformance check this
typically is a subset of the UML metamodel. For the conformance viewpoints
we derive these metamodels from the viewpoint descriptions.

Thttp://www.omg.org/mda (June 2007)
2http://www.w3.org/XML (June 2007)

110 Chapter 6. Conformance Checking II

In general, with MDE abstract models are transformed to more concrete
models (and eventually into code). In our case we also transform models in
the opposite direction to obtain a conformance models from the implemen-
tation.

In accordance with the MDA we use the MetaObject Facility! (MOF) for
metamodelling and UML for modelling. For specifying the required model
transformations we used the Atlas Transformation Language [Jouault and
Kurtev, 2005] (ATL).

As such, we intend to check the conformance of an architectural model
with respect to its corresponding implementation using MDA model trans-
formations. Consequently, it is required to obtain an MDA type of model of
the implementation.

Here, we use the concept of a technological space coined by Kurtev et al.
[2002] and described as a working context with a set of associated concepts,
body of knowledge, required skills, tools, and possibilities. MDA is one such
technological space, based on MOF and model transformations. The MDA
technological space can be referred to as modelware. Other technological
spaces are the grammarware (based on grammars) and the XML technolog-
ical space. Here, we refer to the translation of one technological space to
another as projection or bridging. In particular, from the perspective of the
target of such a projection we call it injection, and from the perspective of
the source we call it extraction.

We, thus, obtain a model representation of the implementation by in-
jecting it in a model based on an appropriate metamodel.

6.4 Viewpoints and Metamodels

The architectural views used to document a software architecture are as-
sociated with viewpoints. Several sets of architectural viewpoints have
been defined. To attain a good coverage of the difficulties and possibili-
ties of determining architectural conformance, we consider views from the
two principal categories of views described in literature [Kruchten, 1995;
Hofmeister et al., 1999; Clements et al., 2002a]: component-and-connector
views and module views. As discussed in the previous section we derive a
conformance metamodel for each of those viewpoints. In fact, these meta-
models each specify an architecture description language (ADL).
Viewpoints define the restriction on the elements and relations to be
used in their primary presentation. In our case we assume that diagrams
are UML diagrams, and, thus, based on (a subset of) the UML metamodel.
We derive its conformance metamodel from the restrictions it specifies. It

Thttp://www.omg.org/mof (June 2007)

6.4. Viewpoints and Metamodels 111

< < dataType enumeration > >
ViewPart Conformance
—name:String —convergent:int
—-conformance:Conformance || -divergent:int
—-absent:int

Figure 6.5: Generic metamodel element

is these elements and relations for which we want to establish conformance
as convergent, divergent or absent.

First, we define a generic model element for conformance models in Fig-
ure 6.5. To avoid confusion, we refer to it as ViewPart. It includes a con-
formance attribute: an enumeration data type of convergent, divergent, ab-
sent. In the following we specialise ViewPart for concrete model elements
for which we want to determine conformance in metamodels for particular
viewpoints.

6.41 Component-and-Connector Views

Component-and-connector (C&C) views mainly address the question: how
does the system work? The box-and-line diagrams created early during
software design, usually are included in C&C type of views. C&C views
are runtime views addressing concerns such as concurrency and flow of
data. Most ADLs that have been defined are aimed at this type of views
(see Medvidovic and Taylor [1997] for an overview). ADL models define the
structure of a system in terms of runtime components and their interactions
(connectors). Architectural components are loci of computation and state.
Architectural connectors are loci of interaction [Shaw et al., 1995]. Both
are architectural abstractions of elements that consume resources, either
processing time or memory. As such, a complete C&C view is an abstraction
a system’s structure at runtime.

An example of a C&C view was depicted in Figure 6.3(a) on page 107.
It shows concurrently executing components as communicating processes.
The components interact through different types of connectors.

For the definition of a conformance metamodel for a C&C view we adhere
to the terminology of ADLs (see, e.g., Garlan et al. [2000]). We refer to
the ADL described in Figure 6.6(a) on page 113 as CPADL (Communicating-
Processes ADL). The metamodel states that a System consists of sets of
components and connectors. Each Component and Connector can interact with
its environment through associated interfaces. In case of a component the
interface is called a Port, whereas in case of connector we call it a Role.

In order to establish interaction between two components over a connec-
tor we can attach component ports to connector roles, with the limitation

112 Chapter 6. Conformance Checking II

that such an Attachment is only allowed if the component interacts using the
port as interface and according to the expectations described by the con-
nector role, that is, port and role need to be compatible [Allen and Garlan,
1994]. All attachments together determine the configuration of the System.
Note that although an Attachment is a relation, we define it as a ‘first-class’
model element (a ViewPart) to allow marking its conformance in a CPADL
model.

For several elements we added specialisations for the specification of
more specific communicating-processes views: OutputPort, InputPort, SinkRole,
SourceRole, Process, SharedData, and Message.

Finally, the model elements for which we want to establish the confor-
mance are defined as specialisations of the generic metamodel elements of
Figure 6.5 on the preceding page.

6.4.2 Module Views

In order to arrive at a system functioning as described by the C&C views,
views are developed driving the actual implementation of software and
hardware. Those views that capture the structural organisation of the im-
plementation units are known as the set of module views and mainly ad-
dress the question: how is the system developed? These views are used to
divide the work among developers and development teams. Additionally,
module views can be used to assess non-operational qualities of a system,
such as modifiability. Figure 6.3(b) on page 107 displays a module view for
the DMB system. It depicts the decomposition of the software implementa-
tion units (modules), their use dependencies, and layering.

Modules are supposedly coherent units of functionality that are even-
tually assigned to development teams. Dependency relations between the
modules of a development view are important. Several types of them ex-
ists, such as uses, allowed-to-use, and shares-data-with relations. Here, we
focus on use dependencies.

The corresponding conformance metamodel is depicted in Figure 6.6(b) .
Here, an Implementation consists of a set of modules and uses dependencies. A
Module has a set of uses dependencies. In turn a Uses relation is associated
with another Module. Finally, a Module consist of a set of classes. We added
the concept of Class to simplify the reconstruction of a module-uses model
from source code. Alternatively, we could have used separate metamodels
for the result of the extraction step (classes and calls relations) on the one
hand, and of the abstraction step (modules and uses relations) on the other.

Again, the model elements for which we want to check conformance are
specialisations of relevant elements from Figure 6.5 on the previous page.
We refer to the language defined by this metamodel as MADL (Module ADL).

6.4. Viewpoints and Metamodels

ViewPart
(from Conformance)

—-name:String
—conformance:Conformance

A

SourceRole| |SinkRoIe|

|InputPort| |OutputPort

(a) CPADL metamodel

] ViewPart
Implementation (from Conformance)
—-name:String -name:String

—conformance:Conformance

jgim ;/ uses Zﬁ

I Module

odules *\/+
|Hi Uses

|

/]\+ uses

*
+ uses

*

?ieIdAccess

(b) MADL metamodel

Figure 6.6: Metamodels

113

114 Chapter 6. Conformance Checking II

6.5 Mappings and Model Transformations

The model transformations involved in our CCS cover three phases: model
population, conformance checking, and presentation. We discuss the trans-
formations involved in each phase below.

6.5.1 Model Population

Model population involves injection of source artefacts into a model repre-
sentation, which, subsequently is transformed in extraction and abstrac-
tion steps into a model that conforms to one of the defined conformance
metamodels.

Injection

For the architectural UML models, injection is not required; they already
are in the modelware technological space and, thus, can serve as source
models in model transformations. To this end, UML tools can serialise the
UML models to XML Metadata Interchange! (XMI) format, which, in turn,
can be used by transformation tools.

In the case of the implementation, we first compiled a representation of
the abstract syntax tree (AST) of the Java source code in JavaML [Badros,
2000], an XML based representation of Java source code. Similar technol-
ogy is available for many other programming languages [Al-Ekram and
Kontogiannis, 2005]. Then, we injected this XML document into a model
representation conforming to a generic metamodel for XML. We could reuse
both this injection and the XML metamodel, as they were already available

from ATL’s metamodel and transformation repositories?.

Extraction and Abstraction

In extraction and abstraction steps the obtained implementation (XML-
JavaML) model and the architectural (UML) model are each transformed
into a model conform one of the conformance metamodels we defined.
Here, module and C&C views require a different approach. This is
mainly due to the different relations between both types of architectural
views on the one hand and the implementation on the other. The relation
between module views and the implementation is a refinement relation,
as these views are an abstraction of the implementation units that are
to be (have been) delivered (cf. the relation between a class diagram and

Thttp://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.eclipse.org/gmt/am3/zoos/atlanticZoo and http://www.eclipse.org/m2m/atl/
atlTransformations (June 2007)

6.5. Mappings and Model Transformations 115

the corresponding object-oriented source code). The relation between C&C
views and the implementation can be more complicated; these views are
an abstraction of the systems structure at runtime and not of the im-
plementation itself (cf. the relation between collaborating objects in a
UML collaboration diagram and the source code that caused these objects
to be instantiated). This makes reconstruction of those views a greater
challenge.

Module Views For the population of a MADL model we have to identify mod-
ules and uses relations.

Typically, implementation-level modularisation constructs do not match
one-to-one with the architecture-level modules. Developers typically have
reasons to further refine the provided decomposition of the development
views during implementation. In our approach we assume that the decom-
position is recorded, for instance, through annotations.

A simple, yet sufficient, method is to add comments to the implemen-
tation with @module(...) clauses. These clauses associate a Java class (or
other implementation unit) with a module of the architectural uses view.
Alternatively, packages can be used to represent modules in an implemen-
tation. In this case, however, we already used packages to represent archi-
tectural layering.

Next to modules, a uses view defines uses relations [Clements et al.,
2002a]. The notion of use has conflicting interpretations [Stevens, 2001].
In order to determine the existence or possibly inexistence of a particular
uses relation, we start with the definition given by Clements et al. [2002a]:
“Unit A is said to use unit B if A’s correctness depends on a correct imple-
mentation of B being present.” As our approach cannot guarantee that a
module is correctly implemented, we take a pragmatic position by mapping
the architectural uses relation to a checkable tuple: a link plus an action
that effectuates the link. The link is a reference from a class that belongs
to the ‘using’ module to the class that belongs to the ‘used’ module. The ac-
tion can be anything from a function call to an attribute access. In fact, our
interpretation captures calls and shares-data-with dependency relations,
which are different specialisations of the depends-on relation.

We use the lifting operation described by Fahmy and Holt [2000b] to
transform links, actions, and emodule annotations to create uses relations
in a target model.

First we recover classes and their dependencies from the JavaML repre-
sentation of the AST. Using simple ATL expressions we select the XML Ele-
ments that represent a class and for each create a Class in the MADL target
model. To instantiate corresponding calls and fieldAccess dependencies in
the target model, we select all their child Elements representing method

116 Chapter 6. Conformance Checking II

invocations and field accesses targeted at classes we also implemented.

Because JavaML discards comments, we use a simple Perl-script to re-
trieve emodule clauses and generate an XML-document consisting of <pair
class=''..."'module=""...’"\> elements. The projection of this document
as XML model serves as additional source model to a transformation that
creates modules that are composed of the classes created by the previous
transformation. A final (refining) model transformation lifts the field access
and call dependencies to the level of modules as Uses relations.

Next to the Java source code, the architectural uses view of Figure 6.3(b)
on page 107 was another input for our CCS, representing the ’as-designed’
architecture. Population of a MADL model from this UML model is straight-
forward because of the use of stereotypes to denote modules and uses rela-
tions.

The result (for implementation and architecture) is represented as a
directed graph as shown in Figure 6.7 . Here, boxes represent modules, and
arrows represent uses dependencies. It can be seen that the model derived
from the implementation consists of two unconnected subgraphs. In fact,
one subgraph corresponds to the part of the implementation deployed on
the PC, the other to the part deployed on the micro controller. Obviously,
no direct method invocations and field accesses are possible between those
parts.

C&C Views Components, ports, connectors, and roles are architectural con-
cepts that may or may not have explicit counterparts in the development
views or implementation. The implementation is not merely a refinement
of these architectural elements as in the case of development views. This
makes the mapping between the architectural C&C views and implementa-
tion constructs indirect and more difficult.

The main concern of the C&C view in Figure 6.3(a) on page 107 is con-
currency. For such a view the components correspond to implementation
mechanisms for concurrency and parallelism, such as processes, threads
and tasks. For example in the case of a system implemented in Java, these
components correspond to threads. Similarly, connectors, in that case, are
abstractions of the mechanisms that allow these threads to interact, for in-
stance inter-process-communication mechanisms, remote-procedure calls,
or shared-data.

Creating a C&C view from static sources is very application specific; it
depends on conventions for implementing, for instance, concurrency and
communication mechanisms. In this case we want to reconstruct a CPADL
model representing a set of communicating processes. As said, in Java
this type of components corresponds to threads. Java threads are classes
with a main-method or classes that extend the Java Thread class. In this

6.5. Mappings and Model Transformations 117

PlayerControl

AN

DiskReader ArmControl
DataSensor SpeedSensor TrackSensor TransMotor
(a) Architecture

Play PlayerControl OutputCon@
DiscReader ArmControl NotePIay@

l

DataSensor TrackSensor TransMo@

(b) Implementation

Figure 6.7: Reconstructed MADL models

case we also assume that such classes are instantiated only once. There-
fore, the first transformation step identifies these classes in the JavaML
model. For each we create a Process component in the CPADL target
model. Note that because in this case there exists a one-to-one mapping
between an implementation construct (Java thread) and the components in
a communicating-processes view, it is not necessary to rely on annotations
as for the module view.

In addition, we search in the first transformation step for two types
of interactions: message passing and shared-data. These types of connec-
tors were implemented using method invocations and Java streams, respec-
tively.

For identification of the relevant method invocations we largely reuse
the ATL expressions for the population of the MADL model. Only now we
just consider method invocations between identified threads. For each dis-
tinct method invocation between two threads we create a Message connec-
tor, and, on the side of the source of the message, an OutputPort for the
involved component and a SinkRole for the connector; at the ‘target side’ we
create an InputPort and a SourceRole. Finally, we create Attachments for those
ports and roles.

118 Chapter 6. Conformance Checking II

The Java platform for the micro controller offers a special type of
(buffered) stream class for which we create a SharedData connector in the
CPADL target model. By identifying each thread that reads from or writes
to an instance of that class we identify Ports (input or output), Roles (source
or sink), and Attachments.

Identification of Message connectors in the transformation explained
above, results in a separate connector instance for each distinct method in-
vocation between two threads. In general, connectors describe a complete
protocol for the interactions allowed between two components. Therefore,
using another model transformation, we abstract all Message connectors
between two components into a single connector representing the allowed
message-based interaction between those components.

The resulting graph is given in Figure 6.8(b) . We represent components
by rectangles and connectors by ellipses. Attachments are represented by
edges and their arrowheads indicate the ‘direction’ of the involved ports
and roles.

The architectural input was the C&C view of Figure 6.3(a) on page 107.
To turn this view into a CPADL model, we map each stereotyped Object to a
Process in the CPADL target model. Each Link is mapped to an appropriate
Connector depending on the applied stereotype. Ports, Roles, and Attachments
are created where necessary. Note that we cannot distinguish between in-
or output ports or source or sink connectors here, as no direction is pro-
vided. The CPADL model populated from the architecture is given in Fig-
ure 6.8(a) .

6.5.2 Model Comparison

The comparison transformations have two source models (derived from
implementation and from architecture) and generate an attributed target
model, containing the elements of the source models attributed with one of
the following labels: convergent, divergent, or absent.

Module Views For each module in both source models it is checked whether
it is a convergent, divergent or absent module. This is simply done using
name matching.

A uses relation in the implementation source model is considered con-
vergent if a uses relation exists between two modules in the architecture
source model that correspond with the two modules involved in that uses
relation in the implementation source model. The result is visualised in
Figure 6.9 . Convergent, divergent, and absent entities are represented by
solid, dashed, and dotted lines respectively.

6.5. Mappings and Model Transformations 119

output SharedData
read
Message
track
trackmotor Message

(a) Architecture

DiscReader

Play SharedData OutputControl
PlayerControl ArmControl Message
TransMotor

Message

Message

(b) Implementation

Figure 6.8: Reconstructed CPADL models

|- == N —— —— =7~
| Play ! PlayerControl ! :OutputControI | !
--- = _,\’\\ e/
_ - L ~N
I___.z:l‘\’\ ’ ’\§\ __i_./_T\\
| DiscReader | | DiskReader : ArmControl [N : NotePlayer | |
— T _ 7 ek v\/‘\ - wz_/
: \
v T | A < N
DataSensor - SpeedSensor TrackSensor TransMotor !
F v— _

Figure 6.9: Merged MADL conformance model

120 Chapter 6. Conformance Checking II

| Play L- SharedData OutputControl
|

-7 T~ R e,
(Message)— DiscReader |- - Message :
- A :
e
-
_____ - - - T~
! PlayerControl - - Message)— ArmControl Message
_— - =] N o -
= ~
~ _ _p TransMotor
N [
a - - o - —"

(Message ™ ~
~ —

Figure 6.10: Merged CPADL conformance model

Note that we determine manually which mismatches actually involve
discrepancies. Partly, the identified mismatches originate from naming,
e.g. DiskReader and DiscReader. One entity has not been implemented:
the SpeedSensor. A divergent uses relation emerges between PlayerControl
and TransMotor. In fact, this relation violates the intended layering.

C&C view Comparing the generated CPADL models results in the identifi-
cation of convergences, divergences, and absences as shown in Figure 6.10.
Comparing the C&C runtime views of Figure 6.8 on the preceding page in-
volves merging the namespaces. Especially in the case of a C&C view this
is necessary, as the names in the source code from which we reconstruct
the c&C view are derived from the module views and therefore often do
not match those in the C&C view. To remedy this we allow the user of
our transformation to provide a mapping between the two involved name
spaces. Again, we use XML to make this possible. In this case the mapping
consists of

<map name="CC">
<mapping src="DiscReader" arch="read"/>
<mapping src="OutputControl" arch="output"/>
<mapping src="ArmControl" arch="track"/>
<mapping src="TransMotor" arch="trackmotor"/>
</map>

As can be seen in Figure 6.10, the PlayerControl component is a diver-
gence. Consultation with the architect revealed that it was intended as a
connector between the read and track components. However, in the im-
plementation it included handling user interaction for which it required a
separate thread.

6.6. Discussion 121

6.5.3 Model Presentation

The final step in our CCS is the presentation of the generated conformance
models. As the defined MADL and CPADL metamodel only define the struc-
ture (abstract syntax) of the associated models and not their graphical no-
tation (concrete syntax) additional transformations are necessary to a lan-
guage that has an associated graphical notation.

We used the graph description language DOT! to visualise the result.
Although DOT is a textual (grammar-based) language, a MOF-based meta-
model is also available, allowing processing using ATL. We defined transfor-
mations from CPADL and MADL to the DOT metamodel. Finally, the textual
representation of the generated DOT models was extracted by a special type
of transformation. This transformation queries a DOT source model and
generates corresponding DOT code as output. The result can be visualised
using dot. Examples were depicted in Figures 6.7 to 6.10 on pages 117-120.

6.6 Discussion

Below we address a number of issues related to the use of MDE for our
CCS. Subsequently, we discuss a number of potential improvements of the
approach.

6.6.1 Modelware

Model Population In our experiment we implemented the population of con-
formance models via XML. We used existing bridges from grammarware
to XML (JavaML) and from XML to the modelware technological space (the
injector for XML data). The drawback of using these bridges, is that sub-
sequent transformations that populate the MADL and CPADL models are
specified in terms of XML metamodel elements (e.g., Node, Element, At-
tribute), rather than elements specific for Java (e.g., Class, Method, Field).
This makes specifying these transformations prone to errors. A helper op-
eration to manipulate a class, for instance, is specified in the context of XML
elements that represent classes. Instead of using the type system, it has to
be checked explicitly that an XML element indeed represents a class.

By construction of an ATL library of helper operations related to the XML
model representation of Java (e.g., an operation to collect all XML elements
that represent a method invocation for an XML element that represents
a class) we could raise the abstraction level somewhat. However, ideally,
we would like to use a representation based on a ‘real’ Java metamodel.
In fact, such a metamodel is currently available from the ATL metamodel

Thttp://www.graphviz.org (June 2007)

122 Chapter 6. Conformance Checking II

repository. The problem remains to populate a model conform this meta-
model based on a set of Java source files. A solution to this problem could
be a transformation that transforms XML models (based on JavaML) into
models based on the Java metamodel. This would allow to specify the model
extraction at the desired level of abstraction. In general, such a transfor-
mation would also be useful for other software evolution tasks that involve
Java source code and might be solved in the modelware technological space
(e.g., architecture reconstruction, program understanding, metric calcula-
tions).

Modelware Management With the application of model transformations to
more and more complicated and diverse problems (see, e.g., Chapters 5,
7, and 8 of this thesis), managing the involved model artefacts becomes an
issue.

Although we did not discuss all of them, the approach presented in this
chapter already involved seven different metamodels, 11 different trans-
formations, and over 20 source, target, and intermediate (generated) mod-
els. In addition, the complete solution involved several transformations
executed outside the modelware space using tools such as sed, Perl, and
Java2xml (for transformation of a Java program text into a JavaML repre-
sentation). Currently, we manage all these artefacts using the Java build
tool Ant!, for which the ATL development tools provide special tasks to ex-
ecute transformations, save and load (meta)models, and apply projectors.
Using Ant, we completely automated our approach, including compilation
of an XML representation for Java source code, execution of various model
transformations, and generation of PostScript output for DOT graphs.

Modelware Reuse Fortunately, not all of the modelware artefacts mentioned
above have to be developed from scratch. We reused and adapted metamod-
els from ATL’s metamodel repository (e.g., metamodels for DOT and XML).
Also projectors were reused (e.g., the XML injector, and the DOT to text ex-
tractor).

Still specification of all remaining metamodels and model transforma-
tions takes considerable effort. However, transformations defined for the
model transformation phase for injection of Java source code into a model
representation can be reused for conformance checking of other views, as
well as for different types of applications that involve the manipulation of
programs.

The metamodels and transformations used in the comparison and pre-
sentation phases are specific to a particular viewpoint. On the other hand
these metamodels are easily extended for other viewpoints, for instance, by

Thttp://ant.apache.org/ (June 2007)

6.6. Discussion 123

addition of additional types of connectors or dependency relations. If such
additions do not require a specific approach for comparison and presenta-
tion, the transformations we specified can still be applied.

6.6.2 Improving the Approach

Generalisation The use of ATL makes our approach specific to the MDA tech-
nological space. This means that we require source models to conform to
a MOF-based metamodel and to be serialised with XMI. In principle this
makes our approach compatible with most UML tools (via XMI). However, in
practice additional transformations are often required to exchange source
and target models between modelling, visualisation and transformation
tools (see also Sections 5.7 and 7.9).

The specification of model population transformations is dependent on
the applied (programming and modelling) style (e.g., usage of patterns and
coding conventions). The required complexity of transformation rules also
depends on the programming style. For instance, the use of getter and
setter methods circumvents the need to look for direct field access.

To generalise the comparison step of our approach we considered the
definition of a complete generic metamodel for (conformance) views. Such a
metamodel would define additional ViewParts (see Figure 6.5 on page 111)
such as Element, ConnectingElement, and Relation. These ViewParts can
then be specialised by metamodels for particular viewpoints. For example,
in the CPADL metamodel a Connector would be a ConnectingElement, and
an Attachment a Relation. All this would make sense when it is possible to
specify transformations for comparison and presentation in terms of those
generic ViewParts. These transformations can then be used for arbitrary
conformance models. The problem with this approach is that it is not possi-
ble to also define generic relations between metamodel elements that can be
specialised by a concrete metamodel. So although it is possible to develop a
transformation to always present a ConnectingElement as an ellipse, such
a transformation cannot also instantiate its relations in a generic way.

We can overcome this problem by the use of higher-order transforma-
tions. These are transformations that have another transformation as
source or target model. For ATL this is made possible by the availability of
a metamodel for model-based representation of ATL transformations and
corresponding projectors. Such a higher-order transformation would take
the metamodel involved in the conformance check as source model and
produce a model of the transformations for comparison and presentation of
the associated models. This appears to be feasible considering the fact that
the transformations we implemented for those steps are quite similar.

This approach is investigated in Graaf and van Deursen [2007b], where
we provide a more extensive generic metamodel, as discussed above. Based

124 Chapter 6. Conformance Checking II

on this (abstract) metamodel we define concrete metamodels for particular
views. The higher-order transformation generates helpers and transfor-
mation rules for concrete instances of the abstract metamodel elements in
a particular view’s metamodel. The resulting ATL transformation is ap-
plied to models conforming to the concrete metamodel to check their con-
formance.

Here, a trade-off can be identified. Addition of extra details in a generic
metamodel (e.g., relations between metamodel elements), allows more
transformation code to be reused, for instance, for visualisation of confor-
mance models with DOT. On the other hand, this prevents to make the
conformance check and visualisations specific for a particular metamodel.
For instance, we visualised connecting elements using ellipses and other
elements using boxes. In a different situation it might be necessary to
visualise different types of connecting elements (message or shared data)
differently.

Identifying Discrepancies In the module view example several mismatches
occurred due to naming (e.g., DiskReader vs. DiscReader). This can be
solved by allowing a user to supply a mapping between name spaces in
a similar way as was done in the case of the C&C view. For determining
whether other mismatches are discrepancies, design decisions have to be
considered.

In general, defining what is a mismatch depends on the type of views
involved and the intentions of the architects. We did, for instance, not
report mismatches for attachments related to different port types when a
port in the model derived from the implementation is a specialisation of a
corresponding port in the model derived from the architectural view.

Static conformance checking of runtime views Although C&C views describe a
system at runtime, we only used static information for our conformance
check. As a result, we cannot always be sure that, for instance, two iden-
tified attachments connect the same component and connector instances.
It would be interesting to also consider dynamic information. This raises
questions such as how to inject that information into models, and what type
of metamodels are suitable for that. One possibility would be to use traces
to instantiate message sequence chart type of models, as is done by Cor-
nelissen et al. [2007].

Introducing annotations Although we required our approach to be non-
intrusive, we did introduce the use of annotations to register more detailed
decompositions than prescribed by the module view. Assuming that the
module views indeed drive the implementation activities, the advent of

6.7. Related work 125

integrated development environments makes dealing with such annota-
tions straightforward. Eclipse! could, for instance, be easily changed such
that this information is requested from the programmer in the wizard for
defining a new class. Furthermore, although we use Java 1.4, in version
1.5 annotations have become an integral part of the Java language. Sub-
sequently, this information could be included in the header of the template
used by the wizard to create classes.

6.7 Related work

Krikhaar [1999] and Mens [2000] independently compared a number of
approaches to check architecture conformance. However, conformance be-
tween models at different abstraction levels is not addressed. Moreover,
most approaches dictate the introduction of specific modelling languages,
requiring a change to current ways of working.

They both mention Murphy et al. [1995] that introduces software re-
flexion models. In that work a high-level model is combined with a source
model and a user provided mapping between the two to generate a so-called
reflexion model. This model indicates where source model and high-level
model agree. Although our merged conformance model is clearly based on
their reflexion model, they only indicate conformance for relations. Their
approach is more suited for cases when the semantic gap between archi-
tecture and implementation is very large.

Our approach extends the generic process for architecture reconstruc-
tion proposed by Van Deursen et al. [2004]. Their process is based on
several industrial case studies and includes separate steps for data gath-
ering, knowledge inference, and information interpretation. We extended
this process for conformance checking by addition of a comparison step.
Furthermore, we make architectural viewpoints concrete by the definition
of metamodels.

Han et al. [2003] discuss the steps required for the reconstruction of
web applications. Although their approach is not automated, their uses
relation is closer to the definition of Clements et al. [2002b] than the one we
implemented. Next to uses relationships based on method calling they also
consider such relationships based on another type of logical interface, HTTP
request parameters. Furthermore, they introduce the ’knows’ relation, a
weaker type of uses. The latter we could easily introduce by generating
’knows’ relationships between elements that own a link (i.e., reference) to
each other that is not effectuated (i.e., by a method call).

IEclipse is a widely-used, open-source integrated development environment, see http:
/lwww.eclipse.org (June 2007)

126 Chapter 6. Conformance Checking II

An alternative to checking conformance after development, would in-
volve the use of MDE to generate source code or extend the implementation
language with architectural constructs as was done in Archdava [Aldrich
et al., 2002]. Such approaches directly connect architecture to implemen-
tation, improving consistency. However, this requires at least a change in
the way of working of the implementation phase, for instance the use of a
new language. This poses a barrier for implementing such an approach in
practical settings.

6.8 Conclusions

In this chapter we propose a conformance checking system (CCS) to sys-
tematically determine discrepancies between an intended architecture and
the realised architecture. Illuminating these differences is a preparatory
step for architecture migration in which previously developed artefacts are
reused for reasons of efficiency. Our the conformance checking system
(ccs) is non-intrusive. It coordinates the interaction between the archi-
tecture and the implementation domain of expertise, while regarding them
autonomously. It uses readily available, possibly tailored, technology for
the actual implementation of CCS. As such, the main contributions of this
chapter are:

e a generic process for conformance checking of architectural views;

e extensible metamodels for C&C and module viewpoints, including
mappings from implementation and architectural artefacts; and

e a demonstration of how to combine different types of technologies
(inside and outside the modelware technological space) into an in-
tegrated approach, while reusing several existing metamodels and
transformations

Although our approach is largely automated, checking the conformance
for particular type of views might require a specific approach. Still, the
CCS provides a generic process based on a common design-space viewpoint.
The cCSs relies on a clear definition of associated metamodel and the map-
pings from the architectural and implementation artefacts to this common
metamodel.

The design-space metamodel (e.g., Figure 6.6 on page 113) captures
checkable concepts, which are the consensus between verifying abstract
properties of the architecture and emerging properties of the implemen-
tation. Possible discrepancies between the two are revealed as mismatches
between the derived conformance models and the impact of a mismatch.

6.8. Conclusions 127

We gave examples of conformance metamodels for the two principal cate-
gories of views and the mappings from architecture and implementation
artefacts. In our case study we used and configured MDE technology.

Although the results are promising we encountered intriguing research
questions, such as to what extent we can further generalise the approach
(i.e., the involved metamodels and transformations). Here, higher-order
transformations and the use of reflection are two possibilities we will in-
vestigate in the future.

To get a better understanding of the scalability of the approach we in-
tend to apply the proposed approach on an industrial case. An interesting
possibility is the application of this approach for checking the conformance
of the behavioural specifications discussed in Chapter 5 of this thesis. For
this we have to investigate whether our approach can be applied to auto-
mate the manual comparison step, in which the state machine we generate
from a set of scenarios are compared to the state machine used for code
generation.

Chapter

Model-driven Migration of Supervi-
sory Machine Control Architectures!

Supervisory machine control is the high-level control in advanced manu-
facturing machines that is responsible for the coordination of manufactur-
ing activities. Traditionally, the design of such control systems is based on
finite state machines. An alternative, more flexible approach is based on
task-resource models. This chapter describes an approach for the migra-
tion of supervisory machine control architectures towards this alternative
approach. We propose a generic migration approach based on model trans-
formations that includes normalisation of legacy architectures before their
actual transformation. To this end, we identify a number of key concerns for
supervisory machine control and a corresponding normalised design idiom.
As such, our migration approach constitutes a series of model transforma-
tions, for which we define transformation rules. We illustrate the applicabil-
ity of this model-driven approach by migrating (part of) the supervisory con-
trol architecture of an advanced manufacturing machine: a wafer scanner
developed by ASML. This migration, towards a product-line architecture,
includes a change in architectural paradigm from finite state machines to
task-resource systems.

7.1 Introduction

As software intensive systems evolve they tend to become increasingly com-
plex [Lehman and Belady, 1985]. Furthermore, the architecture documen-
tation and its corresponding implementation tend to follow asynchronous

IThis chapter was published earlier as: Graaf, Bas, Sven Weber, and Arie van Deursen.
Model-driven migration of supervisory machine control architectures. Journal of Systems
and Software, 2007. Doi: 10.1016/].jss.2007.06.007

129

130 Chapter 7. Model-Driven Migration

evolutionary paths. Consequently, the conformance between the archi-
tecture specification and software implementation decreases as a software
system evolves [Bril et al., 2005].

In practice, increased complexity and loss of conformance between the
architecture as intended and the architecture as implemented make a sys-
tem more difficult to change [Perry and Wolf, 1992]. This results in an
increase of both development and maintenance effort. The involved ef-
fort can, for instance, be reduced by the separation of concerns, the use of
product-line architectures, model-driven development and automatic code
generation.

In this chapter we consider the migration of supervisory machine
control (SMC) architectures towards a product-line approach that, amongst
others, supports model-driven development and code generation. In prac-
tice, adopting such techniques requires architectural changes. When
migrating towards a product line, such a migration needs to be applied re-
peatedly to migrate different product versions into product-line members.
Therefore, ideally, one would like to make such a migration reproducible by
automatically transforming one architecture into another. In this chapter
we investigate how this can be done using model transformations. De-
veloping a model-driven migration approach is particularly beneficial in a
setting where product migration is not a one-off exercise.

In an advanced manufacturing machine, supervisory control [Ramadge
and Wonham, 1987; Gohari and Wonham, 2003] is responsible for the co-
ordination of the (discrete) high-level machine behaviour. This requires,
amongst others, interpretation of manufacturing requests, synchronisa-
tion, scheduling, conditional execution, and exploitation of concurrency
with respect to the resulting manufacturing activities [Sabuncuoglu and
Bayiz, 2000; Buttazzo, 2002; Reveliotis, 2005]. For advanced manufactur-
ing machines, the control systems have an indicative order of magnitude of
10 SMC components, each encompassing 104 - 10° lines of code.

This chapter was motivated by the prototype migration of the SMC archi-
tecture of a wafer scanner as developed by ASML, a manufacturer of equip-
ment for the semiconductor industry. We use this wafer scanner as a run-
ning example to illustrate the migration of a legacy architecture, based on
finite state machines (FSMs), to a new architecture that is based on task-
resource systems (TRSs). This migration is spurred by the fact that a TRS-
based SMC architecture, as opposed to an FSM-based one, is declarative,
separates concerns, and supports run-time dependent decisions [Van den
Nieuwelaar, 2004]. As a result, the maintainability and flexibility of the
migrated software systems is improved.

We consider the start and end point of the migration as different archi-
tectural views [[EEE-1471, 2000]. We refer to these views as the source
and target view respectively. An important element of an architectural

7.1. Introduction 131

view is its primary presentation [Clements et al., 2002a], which typically
contains one or more diagram(s). In this chapter we focus on the models
and their governing metamodels underlying those diagrams. In our mi-
gration approach we use these models to consolidate and reuse as much
existing design knowledge as possible. As such, we consider migration to
constitute a series of model transformations, which we implemented using
Model Driven Architecture! (MDA). It should be noted that we only consider
the actual migration approach; the paradigms for the migration start point
and end point are prescribed by our industrial case.

In order to define a reproducible mapping and perform the migration,
we define practical transformation rules in terms of patterns associated
with the source and target metamodels. These transformation rules are
practical in the sense that they are based on an actual migration as per-
formed manually by an expert. Based on this migration, we have formu-
lated generic, concern-based transformation rules. These rules are defined
using a model transformation language making our approach automated.
Due to practical reasons, which are mainly associated with the informal use
of modelling languages in industry (see Chapter 3 and Lange et al. [2006]),
we first normalise the legacy models before applying our model transfor-
mations.

Although we focus on the migration of the SMC architecture of a partic-
ular manufacturing system, the ASML wafer scanner, the contributions of
this chapter are applicable to similar (paradigm) migrations of supervisory
control components in general. The presented industrial results serve as a
proof a concept, additional migrations have to be performed before the re-
sults can be properly quantified. The experiences as outlined in this chap-
ter are, to a lesser extent, relevant for all software architecture migrations
that can be seen as model transformation problems.

The remainder of this chapter is structured as follows. Section 7.2 dis-
cusses related work. In Section 7.3 we introduce SMC, concerns specific
to SMC systems, and our running example. A generic migration approach,
which we use for the migration between the introduced architectural para-
digms, is presented in Section 7.4. The source paradigm of the migration
and the normalisation of its associated views are discussed in Sections 7.5
and 7.6. The target paradigm and our transformation rules are treated in
Sections 7.7 and 7.8. We illustrate each step of the migration by means of a
running example. Section 7.9 reflects on the migration results. Finally, we
conclude in Section 7.10 with a summary of contributions and an overview
of future work.

Thttp://www.omg.org/mda (June 2007)

132 Chapter 7. Model-Driven Migration

7.2 Related Work

The process that we propose considers migration as a mapping from a
source to a target view. This approach is inspired by the approach for archi-
tecture reconstruction as described by Van Deursen et al. [2004]. There,
architecture reconstruction is considered to be a mapping from a source
view that is extracted from code to an architectural target view.

Our process can also be seen as the application of the MDA to software
migration rather than to software development. In the MDA, software de-
velopment is conceived as a series of transformations from source models
to target models. As such, in both processes, model transformations are ap-
plied but in our case an essential normalisation step is added to the original
MDA framework.

Fahmy and Holt [2000a,b] discuss several types of generic architecture
transformations that can be viewed as graph transformations. In this
chapter we consider domain-specific transformations on architectural mod-
els that are more complex than typed graphs; next to typed nodes, our
models also include attributes on nodes and edges. Moreover, their trans-
formations are intended for small, evolutionary changes to a software
architecture, whereas the transformations as discussed in this chapter are
driven by the migration to a different architectural paradigm.

Bosch and Molin [1999] use architecture transformations during archi-
tecture design to realise the non-functional quality requirements of a sys-
tem. Of the transformation types they identify, the application of an archi-
tectural style is closest to our work. To some extent, changing the architec-
tural paradigm from FSMs to TRSs, as considered in this chapter, could be
understood as such a transformation. In our case, however, this transfor-
mation also results in a product-line architecture.

In other work, transformations are applied to the migration of software
at the level of source code. Baxter et al. [2004] present a toolkit that uses
generalised compiler technology for this purpose. Gray et al. [2004] use
this toolkit for model-driven program transformations where vertical and
horizontal transformations are identified. Here, vertical transformations
concern the creation of software artefacts from artefacts at different ab-
straction levels (translation). Application of the MDA typically involves
vertical transformations, whereas they investigate its applicability to hori-
zontal transformations. The architecture migration we discuss can also be
considered a horizontal transformation. However, where they focus on the
source code, we consider migration at the design level.

7.3. Migration Context 133

user

requests ¢ f results

supervisory controllers

activities ¢ f triggers
mechatronic subsystems

regulative controllers

v)

transducers

Figure 7.1: Machine control context

7.3 Migration Context

In this section we first define the SMC context. Next, we introduce the moti-
vating case and running example for this chapter: a typical wafer scanner
as produced, for instance, by ASML. In this setting we briefly discuss the
key concerns for SMC systems in general. These concerns need to be ad-
dressed during architecture migration. As such, they form the basis for the
design of our normalisation and transformation rules.

7.3.1 Supervisory Machine Control

The machine control context is clarified in Figure 7.1. From a supervisory
perspective, (sub)frames, transducers and associated regulative controllers
form mechatronic subsystems that execute manufacturing activities to add value
to products. The recipe- and customer-dependent routing of multi-product
flows, with varying optimisation criteria, constitutes one of the key (super-
visory) control issues. Moreover, advanced manufacturing machines must
respond correctly and reproducibly to manufacturing requests, run-time events
and results. Consequently, to interpret manufacturing requests and to en-
sure feasible machine behaviour, a supervisory machine control component is
required to coordinate the execution of manufacturing activities [Ramadge
and Wonham, 1987; Sabuncuoglu and Bayiz, 2000; Van den Nieuwelaar,
2004].

In practice, a high-level manufacturing request is translated into valid
low-level machine behaviour using multiple, consecutive control-layers.
This is supported by recursive application of the control context from
Figure 7.1: manufacturing activities of one level become manufacturing
requests for the next level until the level of the mechatronic subsystems.

134 Chapter 7. Model-Driven Migration

@Expose

Figure 7.2: Simplified layout of a wafer scanner

7.3.2 Running Example: A Wafer Scanner

In this chapter we consider the ASML wafer scanner as a representative
example of an advanced manufacturing machine. Wafer scanners are used
in the semiconductor industry and perform the most critical step in the
manufacturing process of integrated circuits (1Cs). Figure 7.2 illustrates a
scanner and its subsystems.

A neighbouring machine, the track (TR), performs pre-processing steps
and delivers silicon wafers to the pre-alignment system (PA), where the
wafer orientation and alignment are determined and adjusted. Next, the
load robot (LR) transports the wafer to one of the two wafer stages (WS:0
or WS:1). Here, the wafer characteristics are measured. After measure-
ment, the wafer stages are swapped and the measured wafer is exposed.
During exposure, a laser projects an image of the required IC pattern onto
the wafer’s surface through a demagnification lens. A wafer is exposed in a
scanning fashion, similar to the process used in a photo-copier. Eventually,
the wafer comes to hold hundreds of small copies (i.e., dies) of this pattern.

After exposure, the stages swap back and the unload robot (UR) trans-
ports the exposed wafer to the discharge unit (DU) where it is buffered.
Next, the wafer is picked up by the track again to undergo various post-
processing steps. Now, the wafer is ready for another exposure if needed;
the process is re-entrant. With each passing, another layer is added to each
die. Once the wafer has been fully processed and inspected, it is diced into
individual dies that are packaged to form ICs such as microprocessors.

For the SMC component of the wafer scanner depicted in Figure 7.2, we
can identify the ‘process wafer w’ manufacturing request, which supports
concurrent measuring and exposing of two wafers. To perform this request
manufacturing activities such as ‘load wafer w onto wafer stage WS:0’ and
‘unload wafer w from wafer stage WS:1’ are executed. For instance, after a

7.3. Migration Context 135

wafer has been exposed, and the stages have swapped, the wafer must be
unloaded from its stage. In turn, these activities are requests for a lower-
level SMC component. In this chapter we will use the ‘process wafer’ and
‘unload wafer’ requests as illustrative examples.

7.3.3 Concerns for Supervisory Machine Control Systems

In advanced manufacturing machines, multiple manufacturing activities -
and sequences hereof - may fulfil a particular request and, in turn, multi-
ple mechatronic subsystems may be available to perform a particular activ-
ity. That is, multiple alternatives exist that require the selection of a spe-
cific subset of both manufacturing activities and mechatronic subsystems
to fulfil a given manufacturing request. For instance, when considering
Figure 7.2 , removing a wafer from DU can be done using either UR or LR.
For supervisory control of advanced manufacturing machines in general,
the following key concerns are identified.

The execution of an activity on a selected subsystem implies a specific
physical state transition of that subsystem. The selected sequence of ac-
tivities for a subsystem requires matching end states and begin states of
consecutive state transitions. When these states do not match, an addi-
tional transition, a setup, has to be executed between consecutive activi-
ties. For instance, when UR is idle at PA, a rotation has to be performed
before a wafer can be unloaded. In SMC, these sequence-dependent setups
are common.

Intuitively, controlled usage of mechatronic subsystems is another im-
portant concern. The control system generally checks the availability of a
subsystem that is required for a manufacturing activity. Once available,
the subsystem should be effectively claimed for the given activity. When
an activity has been (co)performed by claimed mechatronic subsystem(s),
all should be unclaimed or released. In our wafer scanner example, the
unloading of a wafer requires both UR and, for instance, WS:0.

In order to take full advantage of installed capacity, concurrent execu-
tion of activities is done where possible. In practice, activities can be ex-
ecuted concurrently unless this is explicitly prohibited by precedence (se-
quence) relations between manufacturing activities or usage of the required
mechatronic subsystems. In our wafer scanner example, one wafer can be
measured and prepared for exposure while another wafer is being exposed.

Synchronous execution is another common concern. This not only refers
to synchronisation of activities such that they are executed one after the
other (e.g., load a wafer before processing it). It also applies to synchro-
nisation of specific subsystem state transitions related to two activities.
For instance, physical space is often limited, resulting in multiple mecha-
tronic subsystems that simultaneously operate within a confined space.

136 Chapter 7. Model-Driven Migration

This results in so-called hazardous areas in which subsystems can collide
and state transitions must be induced synchronously to ensure safety (e.g.,
swapping WS:0 and WS:1).

Finally, conditional execution of manufacturing activities needs to be
supported. That is, depending on certain conditions in a machine, differ-
ent execution paths for a manufacturing request might be activated, each
consisting of consecutive manufacturing activities. An example of such a
condition in our wafer scanner example is the presence of another wafer on
the wafer stage at the measure-side.

During migration, sequence-dependent setups, subsystem usage, con-
current execution, synchronous execution and conditional execution are
concerns that need to be addressed. To this end, we defined concern-based
transformation rules that map these concerns from the legacy to the new
architecture.

7.4 Model-Driven Migration

Ideally, the migration of software architectures is complete, reproducible,
reliable and automated. We consider the start and end point of the mi-
gration as different architectural views, referred to as the source and tar-
get view respectively. This is similar to the approach for architecture re-
construction as described by Van Deursen et al. [2004]. An architecture
view is associated with a viewpoint [IEEE-1471, 2000], that, amongst oth-
ers, specifies a metamodel for models underlying the primary presenta-
tion [Clements et al., 2002a] of that view. In this chapter we focus on those
models.

For the migration of source models into target models we propose the
migration approach as shown in Figure 7.3 . It uses a two-step process that
includes a normalisation and transformation step.

Models and their specifications are often incomplete and have a ten-
dency to become inconsistent and ambiguous over time. This makes di-
rectly translating a source model into a target model inherently difficult.
This is amplified further by tool limitations and the generally informal
use of modelling paradigms and languages in industry (see Chapter 3 and
Lange et al. [2006]). Combined with incomplete or generic metamodels
(e.g., the Unified Modeling Language! (UML) metamodel), or no explicit
metamodels at all, a multitude of models becomes conceivable that all have
the same intended meaning.

In fact, an analysis of how SMC concerns are addressed in the source
models for our migration, revealed a large variation in the used idiom. This

Thttp://www.uml.org (June 2007)

7.4. Model-Driven Migration 137

1 1
| _ | | !
| Source normalise | Normalised ! transform Target !
I | e I
| view source view ! | view !
1 1 1 |
! o - splecifies ' i
i specifies specifies ! i L]
i i ! specifieg
1 H 1 1
i ! i i
! Source Canonical i ! Target H
i . . ﬂ) . ! i) : !
! viewpoint source viewpoint | ! viewpoint |
1 H 1 |
g N S

source) target
Transformation

rules

Figure 7.3: Generic two-phased migration approach

makes it infeasible to specify generic corresponding transformation rules.
As such, we introduce an intermediate normalisation step that uses a set of
normalisation rules to obtain a normalised source model. The normalisa-
tion rules are defined as mappings from the source metamodel to the nor-
malised source metamodel. This normalised metamodel describes a subset
of the models described by the source metamodel. Next, a set of transfor-
mation rules can be applied to transform a normalised source model into
the target model. These transformation rules are defined as mappings from
the normalised source metamodel to the target metamodel.

In all, we see migration as a series of automated model transforma-
tions that are defined on metamodels to transform a source model into a
target model using a distinct normalisation step. This approach is generic
in the sense that it can be applied to any conforming source and target
model without loss of generality. To actually implement this approach we
require (normalised) source and target metamodels, normalisation rules,
and transformation rules.

Although the approach is generic, our industrial case imposes some
practical restrictions on the enabling technologies. Spurred by the fact that
the existing architecture documentation contained source models (partly)
in UML statecharts, we decided to implement the different steps of our
migration approach using MDA technologies. In the MDA vision, software
development is considered to be a series of model transformations. Simi-
larly, we consider software migration as a series of model transformations.
Starting from UML, technologies compatible with MDA offer convenient and
off-the-shelf means to define and manipulate models. Furthermore, the
MetaObject Facility! (MOF) can be used for the definition of metamodels.

Thttp://www.omg.org/mof (June 2007)

138 Chapter 7. Model-Driven Migration

Finally, various model transformation languages are available to define
transformations.

We defined all transformations in the Atlas Transformation Lan-
guage [Jouault and Kurtev, 2005] (ATL). An advantage of ATL is its syntax,
which is similar to that of the Object Constraint Language! (OCL). This
allows people that have been working with the UML metamodel to under-
stand and create transformation rules with relative ease. The actual ATL
transformation engine relies on two implementations of MOF: the Eclipse
Modeling Framework? (EMF) and the Metadata Repository® (MDR). The ATL
transformation engine can be used in combination with MOF-based models
and metamodels serialised with XML Metadata Interchange* (XMI). As our
source metamodel we used the MOF-UML metamodel available from the
Object Management Group® (OMG) [OMG, 2007a]. To create source models,
we can simply use a UML modelling tool that supports XMI export. For the
target metamodel we also used EMF as it allows for automatic generation
of a primitive, tree-based editor for any arbitrary metamodel. This editor
can then be used to inspect the results of our transformations.

7.5 Source Metamodel

In this chapter, we consider FSMs as the given starting point for the mi-
gration. The use of FSMs as a paradigm for supervisory control has been
proposed by, for instance, Ramadge and Wonham [1987]. Here, the set of
possible machine behaviours is considered to form a language. A discrete
supervisory FSM is synthesised that restricts this language by disabling
a subset of events to enforce valid machine behaviour. This requires the
behaviour in all possible states for all requests to be specified explicitly
using (un)conditional state transitions with associated triggers (events),
and effects or state actions (manufacturing activities). When using this
paradigm, concurrent execution is the result of independent parts of con-
currently executing state machines that can optionally share events to syn-
chronise. Consequently, multiple FSMs are used per controller (typically
one for each type of request).

Our source models are specified using UML statechart diagrams. The
relevant part of the metamodel is shown in Figure 7.4 . Apart from this
metamodel, the UML specification also provides a large number of well-
formedness rules, specified in OCL, of which a few are mentioned below.

Thttp://www.omg.org/technology/documents/modeling_spec_catalog. htm#OCL (June 2007)
2http://www.eclipse.org/emf (June 2007)

3http://mdr.netbeans.org (June 2007)

4http://www.omg.org/mda/specs.htm#XMI (June 2007)

Shttp://www.omg.org (June 2007)

7.5. Source Metamodel 139

Guard + guard

+ expression :BooleanExpression |0..1

0.1 0..1| + trigger
StateMachine —
0.1 + transmons* ‘ .
StateVertex + INcoming Transition
+ tdrget .
+ outgoing
+ spurce N
B AN ?
l+ subvertex I+ to
p 0.1, entry 0.1 } effect
State ’T Action
0.1 exit | + script :ActionExpression
>
0..1
Pseudostate
+ kind :PseudostateKind
[I]
CompositeState SimpleState | | FinalState
0.1 [+ isConcurrent :Boolean
—®
+ container

Figure 7.4: Source metamodel (excerpt from OMG [2007a])

Using this metamodel, UML state machines can be constructed that model
behaviour as a traversal of a graph of state nodes interconnected by tran-
sition arcs.

In Figure 7.4 a state node, or StateVertex, is the target or source of any
number of Transitions and can be of different types. A State represents a
situation in which some invariant over state variables holds. In addition,
an optional entry or exit Action is executed when the state is entered or exited.
The metamodel defines different types of States. A CompositeState contains
(owns) a number of substates (subvertex). If a CompositeState is concurrent
(isConcurrent) it contains at least two composite substates that execute in
parallel. A SimpleState is a State without any substates. Execution of an
enclosing CompositeState ends when a FinalState is entered.

Next to state nodes that describe a distinct situation, the metamodel
also offers a type of StateVertex that models a transient node of a state
graph: a Pseudostate. It allows modelling of more complex (conditional)
transition paths. Three types of pseudo-states (PseudostateKind) are rele-
vant for the state models in this chapter: initial, choice, and junction. An
initial Pseudostate is the default node of a CompositeState. A choice Pseu-

140 Chapter 7. Model-Driven Migration

dostate is used to create a dynamic conditional branch that depends on the
action on its incoming transitions. Alternative paths may be joined using a
junction Pseudostate.

Nodes in a state machine are connected by transitions that model the
Transition from one State (source) to another (target). A Transition is fired
by an Event (trigger). A Transition without such an explicit trigger is fired
by an implicit completion Event that is generated upon completion of all
activities in the currently active State. A Guard is a Boolean expression at-
tached to a Transition that disables or enables its firing upon occurrence of
its trigger (depending on whether it evaluates to true or to false). The effect
of a Transition specifies an Action to be executed upon its firing. Note that,
although there might be a causal relationship between actions and events
(e.g., a call event generated by a call action), UML does not allow to make
such a relationship explicit without the use of OCL. Finally, a StateMachine
consists of a set of transitions and a top State that is a CompositeState.

As an example of how this metamodel is used in practice, consider the
state machines in Figure 7.5 and 7.6 on page 142, which correspond to
the process wafer and unload wafer requests as introduced in Section 7.3.2.
Such state machines are the source models for the migration. Note that
our example requests were adopted from two distinct supervisory control
components with an indicative order of magnitude of 10 requests, 10-102
states, and 102-10° transitions. Although we use actual manufacturing
requests as running examples, we do not depict or discuss these requests
in full detail for reasons of confidentiality.

From the number of choice pseudo-states and guarded transitions it be-
comes clear that conditional execution is the dominant concern in the pro-
cess wafer request in Figure 7.5 . In other words, the activated path is
dependent on conditional synchronisation (e.g., wafer@measure) with other,
concurrently executing requests.

Figure 7.6 on page 142 illustrates that after the actual transfer of the
wafer (TRANSFER_FINISHED) the alternative completion sequences of subsequent
activities, which are associated with the UR_moved and WS_moved events,
are specified exhaustively. Furthermore, observe the use of two distinct
resource usage patterns for WS and UR in our unload wafer request: for
WS only an available Event (WS available) and release Action (release WS)
are specified, for UR also a claim Action (claim UR) has been specified.

Note that for reasons of simplicity, we choose not to include resource
usage and setups in the specification of the process wafer request. Even
from our example requests it becomes clear that, in practice, concerns are
addressed using a multitude of idioms and constructs. This is the main
reason for the introduction of our normalisation step.

7.5. Source Metamodel 141

1 WAIT_WAFER_ARRIVED)
. exit / get_prealignment_and_measurement_data J
.
arrived

[else]

measure_cleared
LOADING

entry / load_Wafer

[wafer@measure]

(WAIT_MEASURE_CLEARED
| P
loaded
7 [else] | [exposed wafer@measure | | CooC
(COMBINED_LOADING UNLOADING | . (erclimE AND PREPARE
Lentry / load_while_unload entry / prepare, measure J
J
A\

prepared measured

(MEASURING)| (PREPARING)

L J L J

/ measure_cleared measured
(EXPOsING) (" SWAPPING
Lentry / expose entry / swap prepared
J N J
[else]
[wafer@measure]
[else]

[exposed_wafer@measure]

[else]

[next_wafer2process]
[next_wafer2process]

(WAIT_WAFER_MEASURED_PREPARED

<trigger>L [else]/ <effect> J

measured

prepared
(WAIT_WAFER_MEASURED (WAIT_WAFER_PREPARED

L J 1 J

<name>

measured prepared
(WAIT_MEASURE_CLEARED (" SWAPPING
entry / swap
. J . J
measure_cleared
swapped

e
UNLOADING / measure_cleared

entry / unload_wafer ﬂ

| —

Figure 7.5: Process wafer request

142 Chapter 7. Model-Driven Migration

IDLE do_unload 1 CHECK_RCB]
entry / check RCB comm.J

S

WS available
[UR not ready]
READY_TO_CLAIM_U START_TO_C LAIM_UI’-I(

e
T

[UR ready]

CLAIM_UR (START_TRANSFER |

entry / claim UR entry / start transfer W2U J
A

transfer_finished
TRANSFER_FINISHEP

[combined_load] %—J

[else]

(WAIT_FOR_UR_OR_WS_MOVED)
entry / UR move to rotate, WS finish exchange J

S

UR_moved WS_moved

(WAIT_WS_MOVED) ~ (WAIT_UR_MOVED
exit / release WS J Lexit/release UR J

S

WS_moved UR_moved
(FINISH_UR_WS_MOVED FINISHED
entry / check RCB comm. exit / report done
) [RCBoK

Figure 7.6: Unload wafer request

7.6. Normalisation Rules 143

7.6 Normalisation Rules

UML, as a generic modelling language, lacks constructs to support its appli-
cation in the domain of SMC systems. This makes that, when using ‘plain’
UML, various design idioms are available for handling SMC concerns. For in-
stance, guards (e.g., ‘subsystem is available’) were often modelled as events
(e.g., ‘subsystem becomes available’) although these are fundamentally dif-
ferent. Similarly, manufacturing activities can be specified as actions on
state transitions or as actions in separate states. This idiom diversity is fu-
elled further by tool limitations. For instance, tools that support a specific
UML version, do not necessarily support all of its constructs.

To define architecture transformations, we need source models in a nor-
malised form. These normalised models are associated with a metamodel
that adds constraints to the legacy source metamodel and augments it with
SMC-specific constructs. These constraints and additional model elements
are used in well-formedness rules that prescribe how to specify SMC-specific
concerns. For this, UML allows attaching constraints to model elements us-
ing OCL, and for the definition of additional model elements by stereotypes.
Together, these enable the definition of a suitable UML-SMC profile for the
normalised source metamodel. Example diagrams that conform to this pro-
file are shown in Figures 7.7 on page 148 and 7.8 on page 149.

Normalised source models have to comply to a set of well-formedness
rules. Most importantly, concerns have to be specified in a uniform way.
We have defined a standardised idiom for the concerns as identified in Sec-
tion 7.3.3. We introduce this idiom by example of Figures 7.7 on page 148
and 7.8 on page 149. Normalisation involves modifying source models to re-
move any violation of these well-formedness rules. Note that, due to the di-
versity of the idioms used in the source models, normalisation is performed
manually in our case study.

Table 7.1 on the following page lists the stereotypes that we define as
part of the SMC profile. Next to stereotypes, the profile also defines a num-
ber of constraints. Listing 7.1 on the next page lists some of these con-
straints, specified in OCL as invariants over the UML metamodel (C1-C4).
We merely use the constraints indicated by the def keyword to define ex-
tra properties on the elements mentioned in their context. This simplifies
the specification of other constraints. Application of these stereotypes and
constraints is discussed below.

Intuitively, the normalisation is context dependent and requires (some)
domain knowledge. Moreover, the normalisation rules not only depend on
the specific source paradigm but also on the modelling conventions as en-
countered in the specific (industrial) migration context. Therefore, we illus-
trate the normalisation step by defining the used context-specific normali-
sation rules for our case study.

144 Chapter 7. Model-Driven Migration

Table 7.1: SMC profile stereotypes

Stereotype | baseClass | description

<wait> State wait for resource state

<claim> Action claim resource action

<release> | Action release resources action
<available>> | Guard resource available guard
<available>> | Event resource becomes available event

context Action def:
—— an action is a release action if a stereotype named ’release’ 1is
applied to it
let isRelease : Boolean = self.stereotype->exists(s|s.name=’'release

")

context State def:
-— a state is a wait state if a stereotype named ’‘wait’ is applied
to it
let isWait : Boolean = self.stereotype->exists(s|s.name=’'wait’)

context Event def:
—-— an event is an available event if a stereotype named ’available’
is applied to it
let isRelease : Boolean = self.stereotype->exists(s|s.name=’release
")

—— Cl: all release Actions are state exit actions
context Action inv:
isRelease implies State.alllnstances->exists(s|s.exit=self))

-— C2: a wait state has at least one outgoing transition triggered
by an available event
context State inv:

isWait implies outgoing—->exists(t|t.trigger.isAvailable))

-— C3: state entry actions are actions that execute manufacturing
activities (i.e., without stereotype)
context State inv:

entry.stereotype->isEmpty

-— C4: all state nodes have no more than two incoming and outgoing
transitions
context StateVertex inv:

outgoing->size () <= 2 and incoming->size() <= 2

Listing 7.1: Some well-formedness rules of the SMC profile, in OCL

7.6. Normalisation Rules 145

Subsystem setups In the source model, subsystem state consistency is en-
sured by specifying setup transitions for every possible subsystem state at
design-time. In practice, this is not done exhaustively. Instead, domain-
knowledge is used to limit the number of setup related alternative transi-
tions. Although subsystem setups can be performed automatically using
the TRS paradigm and, thus, do not need to be specified explicitly, we do
preserve them during the normalisation step. This in fact ensures that the
migrated control system mimics the behaviour of the legacy control system
exactly. When reconsidering Figure 7.6 on page 142 and 7.8 on page 149,
the move to rotate Action is in fact a resource setup.

For the normalised source model we do not use a specific idiom for setup
activities; setups are modelled as any other manufacturing activity. If we
would be less concerned with exact preservation of behaviour, setup activ-
ities could be simply removed during normalisation. In that case, domain
knowledge is required to distinguish between setup activities and manu-
facturing activities.

Subsystem usage The pattern to address the ‘subsystem usage’ concern is
best understood from one of the orthogonal regions in the composite state
in Figure 7.8 on page 149. Before a manufacturing activity (e.g., finish ex-
change) that requires a certain subsystem (WS) is executed, a choice pseudo-
state is entered. Then, if the required resource is available (WS available]),
it is claimed (claim WS) by the transition towards the state in which the
manufacturing activity is executed (FinisH). Otherwise, a state (wAIT_FoR_ws)
is entered that is only left when an event occurs indicating the resource
has become available (WS available). The resource is claimed (claim WS) on
the transition triggered by that event. Once the manufacturing activity is
performed, claimed resources are released again by a release action that is
executed when exiting the state (release). This pattern can easily be gener-
alised.

We use the stereotypes defined by the SMC profile (Table 7.1) to distin-
guish between Actions, Guards, Events, and States related to the use of
subsystems and those related to the execution of manufacturing activities
(to which no stereotypes are applied). Normalisation introduces stereo-
types for specific model elements that are related to the subsystem usage
concern. Furthermore, from Figure 7.6 on page 142, and its normalised
counterpart in Figure 7.8 on page 149, it can be seen that additional model
elements are introduced to complete the pattern described above. Note that
in Figures 7.7 on page 148 and 7.8 on page 149 stereotypes are displayed
only for states: this is a limitation of the UML tool we are using (i.e., 'Posei-
don for UML)).

146 Chapter 7. Model-Driven Migration

Application of the stereotypes to source models requires domain knowl-
edge to recognise the subsystem usage concern. This becomes apparent
when reconsidering Figure 7.8 on page 149. Here, waT_FOR_ws is a state
in which the system waits for a subsystem to become available. This is
intuitively different from the wair warFer MeAsuReD states in Figure 7.7 on
page 148, where the intention is to specify that the system waits for a man-
ufacturing activity to be completed. The <wait>> stereotype is only applied
to the former state.

For normalisation of source models we require that resource usage pat-
terns are made complete. In Figure 7.6 on page 142, for instance, only a
release action is specified for WS. In Listing 7.1 on page 144 C1, 2, and C3
are related to the subsystem usage pattern. C1 specifies that a <release>>
Action only occurs as a state exit Action. C2 states that at least one of the
outgoing Transitions for a <wait>> State is triggered by an «available>>
Event. Finally, to conform to constraint €3, all Actions related to manufac-
turing activities are moved to States as entry Actions. An example of this is
the report done (entry) Action in Figure 7.6 on page 142 that was normalised
to an exit Action (Figure 7.8 on page 149).

Synchronous execution Synchronisation between subsequent manufacturing
activities in the source models is simply achieved by their order in the state
machine. Furthermore, synchronisation between subsystem state transi-
tions is not modelled at this level. As such, no specific idiom is used to
specify this concern. In general, however, we have to take this concern
into account while normalising the patterns associated with other concerns.
While inserting and moving activities we have to make sure that we do not
change their order in the normalised source model.

Concurrent execution In the original source models, concurrency was often
modelled using States, including Actions that start two or more manufac-
turing activities and separate transition paths for all possible completion
sequences, which are enabled by (external) completion Events. As an ex-
ample, consider state MEASURE_AND_PREPARE and associated completions events
prepared and measured in Figure 7.5 on page 141. Because those events can
only be associated with their corresponding manufacturing activities using
naming conventions, such an approach complicates the determination of
the scope of concurrent execution. Therefore, we require that concurrency
is modelled using a concurrent CompositeState containing (orthogonal) re-
gions. This implies that during normalisation, manufacturing activities
are mapped to CompositeStates when they are started in a single State
node and alternative completion sequences are specified exhaustively. Fig-
ure 7.8 on page 149 contains an example of concurrent execution, where

7.7. Target Metamodel 147
two resource usage patterns are executed in parallel.

Conditional execution The idiom for conditional execution is more compli-
cated. First, we require it to be specified using a choice Pseudostate with
two outgoing Transitions. One specifies some condition as a Guard; the
other specifies [else] as a Guard. Furthermore, we require ‘proper’ nesting
of conditional activation paths in a state machine. This means that we re-
quire pairs of corresponding, alternative paths through the state machine
to be merged one at a time (using junction Pseudostates), and in reverse or-
der. Figure 7.7 on the following page contains several (nested) examples of
this pattern (choice and junction Pseudostates are depicted using diamonds
and the smaller black circles, respectively).

Without this requirement for proper nesting, finding the set of States,
and thus Actions, which are enabled when some Guard evaluates to true
would become rather complicated. For the transformation of our source
models to target models, finding this set of states is a necessary step. ‘Non-
proper’ nesting occurs, for instance, in the bottom-half of the process wafer
request in Figure 7.5 on page 141. This results in replication of the ac-
tivities performed on each path during normalisation. The three Compos-
iteStates in the bottom-half of Figure 7.7 on the following page illustrate
this replication. Part of this particular normalisation step is covered by
constraint ¢4, which states that a path through a state machine can only
split in two paths and that no more than two paths can be joined in a single
state node. Because the OCL constraint to express proper nesting is rather
lengthy, we did not include it here.

7.7 Target Metamodel

We consider TRS as the given paradigm for the end-point of the migra-
tion. This end-point is based on a research prototype [Van den Nieuwelaar,
2004]. Using the TRS paradigm, a manufacturing request is translated
into valid machine behaviour in two phases. First, upon arrival of a man-
ufacturing request, a scheduling problem in the context of that request is
instantiated during a planning phase. For this, the request is interpreted
through rules that operate on capabilities (resource types) and behaviours
(task types). Here, a manufacturing activity corresponds to a task and a
mechatronic subsystem to a resource. The first phase results in a hierar-
chical digraph that consists of tasks and their (precedence) relations. Nodes
in this graph can be composite to either denote a set of tasks that all need
to be executed or to denote a set of tasks of which only one will be exe-
cuted based on some condition. Second, a scheduling phase constructively
assigns tasks in this digraph to specific resources over time [Viennot, 1986;

148 Chapter 7. Model-Driven Migration

WAIT_WAFER_ARRIVED
entry / get_prealignment_and_measurement_data

arrived LOADING

entry / load_wafer

MEASURE_AND_PREPARE

[wafer@measure | MEASURING
[exposed_wafer@measure]
"OMBINED_LOADING_UNLOADINq
/ measured

[else] entry / load_while_unload

WAIT_MEASURE_CLEARB

o

PREPARING

entry / prepare

/ prepared

[wafer@measure]
COMBINED_LOADING_UNLOADINq
entry / load_while_unload I

else >i

LOADING
/ @measure_cleared

entry / load_wafer ‘
EXPOSING

entry / expose

@measure_cleared

SWAPPING
entry / swap

[else]

[wafer@measure | [else]

_jexposed_wafer@measure

[else]
next_wafer2process |

[else] [next_wafer2process |

|

= = E

WAIT_WAFER_MEASURED_PREPAR|

WAIT_WAFER_MEASURED_PREPAR

WAIT_WAFER_MEASURED_PREPAR

WAIT_WAFER_M EASURQD
\ / measured

WAIT_WAFER_PREPARED

prepared

WAITfWAFEFLMEASURaD
\ / measured

WAIT_WAFER_PREPARED

prepared

WAIT_WAFER_MEASU RED
’TW

WAIT_WAFER_PREPARKED

prepared

WAIT_M EASUREﬁCLEARE

!

SWAPPING

B!

measure_cleared

entry / swap

measure_cleared

UNLOADING
entry / unload

ot @

Figure 7.7: Normalised process wafer request

7.7. Target Metamodel

b

_ [else] f CHECK_RCB)
V;;ITW;g;>WS entry / check RCB comm.J
— — N
— [WS available]/ claim WS
<< wait >>
WS available/ claim WS lelse] | _WAIT_FOR_UR
N
[UR available]/ claim UR
TRANSFER
/ transfer_finished entry / transfer W2U

. \exit /release)
[combined_load]w [else] UR available / claim UR

(Concurrent_State)

[WS available]/ claim WS
e N

FINISH

entry / finish_exchange
\exit / release

<< wait >> 4
/' WS d
WAIT_FOR_WS —move
(JWS available/ claim WS
[UR available]/ claim UR
e N

MOVE

entry / move UR to rotate
\exit / release

.

<< wait >> <
WAIT_FOR_UR /UR_moved
UR available / claim UR
_ J
CHECK_RCB *Q REPORT

Lentry / check RCB comm. |[RCB ok] | entry / report done

J

Figure 7.8: Normalised unload wafer request

150 Chapter 7. Model-Driven Migration

Generic |
<<module>>
Driver
T
juses
________ e e mm e ————
1 | 1
<<module>> <<module>> <<module>>
Planner Scheduler Dispatcher
T T T
------- Lt LR
! uses ! uses luses
1 1 1
- A s]
1 1
<<module>> <<module>> <<module>>
b > System definition <! Subsystem interface usg Subsystem
Domain-specific

Figure 7.9: Module view for the product-line SMC architecture

Van den Nieuwelaar, 2004]. This results in a fully timed, coordinated TRS
that can be dispatched for execution.

The end-point for our migration is a product-line architecture, of which
Figure 7.9 displays the module view. In this architecture, the decisional re-
sponsibilities are assigned to three generic and reusable components: Plan-
ner, Scheduler, and Dispatcher. This product-line architecture offers variabil-
ity with respect to tasks and resources and can be instantiated for a specific
controller by implementing System definition and Subsystem interface modules.
These modules define the specific system under control and implement the
interfacing with lower-level components. The System definition module is
amenable for code generation, allowing for a reduction of software develop-
ment time and effort.

In order to define our target models, we introduce a governing target
metamodel as depicted in Figure 7.10 . There, the system definition from
Figure 7.9 is represented by the SystemDefinition, which serves as a root el-
ement. This system definition consists of a static and dynamic part. The
static part defines the available Behaviours, Resources and Capabilities of the
system under control. These are used to model types of manufacturing
activities, subsystems, and types of subsystems. In addition, to address
the subsystem usage concern, it defines which capabilities are required by
which behaviour. Furthermore, the corresponding beginState and endState
are specified in CapabilityUsage. These states are, for instance, used to de-
termine sequence dependent setups.

The dynamic part of Figure 7.10 represents the rules for uniquely map-
ping a manufacturing Request to SimpleTasks, which are of a specific Be-
haviour, and assigning Resources that fulfil a required Capability. Every Task

7.8. Transformation 151

Resource -
+name :EString
+ respurces
+ fulfils 0
Capabilit N SystemDefinition Request
L y 4 + requests 9
+ name :EString - ’ +name :EString
+ cappbilities 1.*
+ capability + predecessors
' + tasks
1. + iffalse
CapabilityUsage Task
+ beginState :Eint +id :EString
+ iftrue

+ endState :Elnt + tasks

+ requires ﬁ *

Behaviour

JAN
1

OrTask

1.7

AndTask
+ behaviours
+name :EString SimpleTask

+ behaviour

+ condition :EString

Static Dynamic

Figure 7.10: Target metamodel

includes a set of (direct) predecessors, that is, other Tasks that need to be
executed before it can be dispatched. This relation is used to (dis)allow con-
currency and imply synchronisation; in principle all tasks are executed in
parallel, unless prevented by the predecessor relation. Conditional execu-
tion can be specified using OrTasks, that contain two Tasks (iftrue and iffalse)
that may be composite. The evaluation of its condition determines which one
will be dispatched. Finally, to cluster Tasks that all need to be performed,
an AndTask can be used.

7.8 Transformation

Our transformation rules are defined as mappings from a normalised
source metamodel (i.e., our UML profile) to a TRS metamodel. We used
MOF to define the target metamodel rather than tailoring the UML using
yet another profile. In this section we first introduce the transformation
language that was used to define the transformation step of our migration
approach.

For the definition of our transformations we used the following strategy.
First, we indicate how elements in the normalised source metamodel are
related to the primary elements of the target metamodel. Second, for each

152 Chapter 7. Model-Driven Migration

rule Tasks {
from s:UML!SimpleState (
s.1isTaskState and not thisModule.behaviourStates->includes (s))
to t: TRS!SimpleTask (
behaviour <- thisModule.resolveTemp (s.behaviourState,’b’),
predecessors <- s.getPredecessors)

Listing 7.2: ATL example

of the identified SMC concerns we define and tailor transformation rules
to relate the corresponding patterns in the normalised source model and
the target model. These rules are described reasoning backwards, meaning
that for each of the elements of the target metamodel we explain for what
source model patterns they will be created.

In all, application of these transformation rules to a source model that
conforms to our SMC profile, results in a target model that defines the Sys-
tem definition module for a particular SMC component (i.e., an instance of the
architecture depicted in Figure 7.9 on page 150).

Next, we first introduce ATL. Then we discuss rules that generate the
elements of the ‘basic’ types of the target metamodel in Figure 7.10 on
the preceding page: SystemDefinition, Behaviour, Capability, Resource,
Request, and SimpleTask. Subsequently, we describe rules to create the
elements and relations related to the concerns as previously described in
Section 7.3.3. Finally, we discuss the results of the application of these
rules to our example requests.

7.8.1 The Atlas Transformation Language

All transformation rules are implemented using ATL. As an example, con-
sider the ATL fragment in Listing 7.2. An ATL transformation module con-
sists of rules that contain a £rom clause, specifying a source pattern (s), and
a to clause specifying a target pattern (t). The source pattern consists of
a source type (UML!Simplestate) and an optional guard, which is a Boolean
expression specified in OCL. The target pattern consists of a set of elements
that each specify a target type (Trs!simpleTask) and an associated set of
bindings. A binding refers to a feature of the type (e.g., predecessors) and
specifies an expression that is used to initialise the feature. The source
and target types in the transformation rules in this chapter refer to the
source and target metamodels in Figures 7.4 on page 139 and 7.10 on the
previous page. As such, the rule in Listing 7.2 matches SimpleStates that
conform to some constraints expressed by the guard. This rule generates a
SimpleTask for which it specifies a set of bindings.

7.8. Transformation 153

For every element in the source model that matches the source pattern
of a rule, the elements specified by the target pattern are created in the tar-
get model. Note that in ATL, the source model is read-only and the target
model is write-only. This can also be seen from Listing 7.2 , where only the
source model is navigated to initialise the features referred to in the bind-
ings of the target pattern. Therefore, a specific value-resolution algorithm
is used to initialise features: if the expression of a binding refers to another
target element (created by the same rule) it is simply assigned, if it refers
to a source element it is resolved by application of the rule that matches
that source element and taking the default (first) target element.

For cases where the required target element is not the default element
of another rule, ATL offers the ‘resolveTemp’ construct, a so-called helper
operation. It takes a source model element and a reference to a specific
target element of the matching rule as input parameters. In Listing 7.2 , for
example, this is done in the binding of the behaviour feature. In this case s.
behaviourState evaluates to a SimpleState that is matched by another rule
with multiple target elements, of which the ‘b’ target element is selected
to bind to that feature.

Helpers are typically defined in the context of a metamodel element and
effectively add a feature or operation to instances of that element (cf. the
use of OCL definition constraints in Listing 7.1 on page 144). Alternatively,
a helper can be defined without any context. Then, the default context of
the complete transformation module, represented by the thisModule ele-
ment, applies. The resolveTemp helper is also defined in this default con-
text.

7.8.2 Basic Target Model Elements

SimpleTask and Behaviour SimpleTasks correspond to manufacturing activi-
ties, and Behaviours correspond to types of manufacturing activities in SMC
systems. Therefore, to create SimpleTasks and Behaviours in the target
model we need to identify Actions corresponding to manufacturing activi-
ties in the source model.

According to the UML SMC profile, an Action that corresponds to a man-
ufacturing activity has no stereotype and is executed as a State entry Ac-
tion (see C3 in Listing 7.1 on page 144). For every such Action, a Simple-
Task needs to be created. This is specified by the rule in Listing 7.3 on
the next page. It contains a guard that uses the behaviourstates helper to
only match SimpleStates that map to a Behaviour. Note that in the speci-
fication, we do not map Actions to SimpleTasks, but instead we map the
SimpleStates in which they are executed to SimpleTasks. This does not af-
fect our migration results since Actions corresponding to SimpleTasks are
always State entry Actions (by constraint C3 of the SMC profile).

154 Chapter 7. Model-Driven Migration

rule Behaviours {

from s: UML!SimpleState (
thisModule.behaviourStates->includes(s))

to t: TRS!SimpleTask (
behaviour <- b,
predecessors <- s.getPredecessors),

b: TRS!Behaviour (
name <- s.entry.script.body,
requires <- s.incoming->collect (i|i.source)->iterate(s; ss:Set(
UML!SimpleState) = Set {}|ss->union(s.getResourceClaims)))

Listing 7.3: Rule for tasks and behaviours

In the source model, the executed behaviour is specified in the Action’s
script attribute. Therefore, Actions with identical script attributes effec-
tively define an Action type and should be mapped to the same Behaviour.
To implement this, the behaviourstates helper first selects the set of Sim-
pleStates corresponding to a SimpleTask (i.e., all SimpleStates with entry
Actions without stereotype) and subsequently determines the set of Actions
with unique Behaviours. For all Actions in this set, a SimpleTask and a
Behaviour are created by the behaviour rule. Additionally, we have imple-
mented a rule that creates a SimpleTask for all other SimpleStates with
such entry actions.

For (Simple)Tasks, the predecessors attribute has to be set to the set of
direct predecessor tasks. Furthermore, a Behaviour’s requires attribute is
set to a CapabilityUsage element. This is discussed in Section 7.8.3 for the
related synchronous execution and subsystem usage concerns.

Resource and Capability To create Resources and Capabilities we identify
mechatronic subsystems in the source models. However, in the FSM
paradigm, subsystems are not modelled explicitly. Hence, the source
model does not contain elements that directly correspond to Resources and
Capabilities. We can, however, take advantage of the fact that in the FSM
paradigm, subsystems are explicitly claimed. We create Resources in the
target model based on Actions that claim a specific subsystem, that is,
Actions to which the <claim>> stereotype has been applied. Furthermore,
for every resource we simply create a separate Capability (Resource type).

In the specification of the involved transformation rules (not shown) we
had to take into account that Capabilities can be claimed multiple times
during a single request. This results in multiple Actions claiming the same
Capability. Because we do not want to create a separate Capability for each
of the Actions claiming the same capability, we defined a helper similar to
the behaviourStates helper.

7.8. Transformation 155

SystemDefinition and Request The SystemDefinition root element in a target
model contains all required elements that define the domain specific part of
an SMC controller. As such, this element corresponds to a complete source
model.

A Request encompasses rules that determine how that particular man-
ufacturing request, such as our unload wafer from Figure 7.6 on page 142,
is planned. Planning rules involve a set of Tasks and corresponding prede-
cessor relations. Additionally, a Task can be an AndTask or an OrTask. In
the source model, a complete state machine is used to specify how a manu-
facturing request is to be executed. So, we create a Request element in the
target model for every StateMachine in the source model.

Listing 7.4 on the next page shows the ATL specification of this mapping.
The request rule generates a Request element for every StateMachine in
the source model. This Request contains tasks which are created by other
rules. As will be explained later, States or Guards in the source model may
map to Tasks in the target model. Because the tasks in our target model
may be composite in which case they own other tasks, we should take care
not to select all model elements in the complete state machine that map
to a Task. Instead, for a Request we discard all States or Guards inside a
CompositeState other than the top, and on paths that are only conditionally
enabled (i.e., by a transition’s guard). To this end, we defined two additional
generic helpers. First, rootofsubTree takes a set of states as argument and
recursively selects the “first’ state of that set (i.e., the one without incoming
transitions from other states in the set). Second, getTaskModelElements is
applied to that ‘first’ State to collect all model elements that map to a Task.
In essence, this helper takes a set of states and traverses this set as a
state ‘tree’ starting from the State (or Guard) it is applied to, and bypassing
CompositeStates and conditional paths. During this traversal it collects all
model elements it encounters that map to a Task (i.e., Guards or States).

The systembefinition rule generates a SystemDefinition element that
corresponds to the complete source model. The behaviours, resources and
capability features of the SystemDefinition element are bound to the re-
sult of other rules. In particular for behaviours and resources we had to
use the resolveremp helper as these are not created by the default target
elements of the involved rules. In this case, the relevant source model el-
ements are selected by two helpers that are defined in the context of the
transformation module itself: behaviourstates gives all the source model el-
ements (SimpleStates) that map to a Behaviour, and resourceactions gives
all the source model elements (<claim>> Actions) that map to a Resource.
The requestfeature is bound to the elements created by the request rule for
all StateMachines in the source model.

156 Chapter 7. Model-Driven Migration

rule Request {
from sm: UML!StateMachine
to rg: TRS!Request (
tasks <- thisModule.rootOfSubTree (sm.top.subvertex, sm.top.
subvertex—->asSequence () ->first ()) .getTaskModelElements (sm.top.
subvertex))
}
rule SystemDefinition {
from sm: UML!Model
to sd: TRS!SystemDefinition (
behaviours <- thisModule.behaviourStates->collect (e|thisModule.
resolveTemp (e, 'b")),
resources <- thisModule.claimActions—->collect (e|thisModule.
resolveTemp(e,’'xr’)),
capabilities <- thisModule.claimActions,
requests <- UML!StateMachine->allInstances())

Listing 7.4: Rule for SystemDefinition and Requests

7.8.3 Concern-Based Transformation Rules

Resource usage To address the resource usage concern we need to relate
Behaviours to the Resources and Capabilities (resource types) they require.
In the target metamodel, CapabilityUsage elements are used to this end.
However, we cannot derive the CapabilityUsage elements in the target
model directly, since our source models only contain dynamic information.
Consequently, we will have to derive them indirectly instead.

For each subsystem usage pattern, as described in Section 7.6 we con-
clude that the subsystems claimed at that point are required for the cor-
responding manufacturing activity. These are all the subsystems that are
claimed after the previous release action. In the target model, Capabili-
tyUsage elements are then defined connecting the corresponding Behaviour
and Capabilities. For our unload wafer request, for instance, this results
in the definition of a CapabilityUsage element relating the transfer W2U be-
haviour to the WS capability.

The from clause of the rule in Listing 7.5 matches all <wait>> States,
using the iswait attribute helper. The to clause of this rule creates a
CapabilityUsage element in the target model. The resolveTemp helper is
used to set the capability attribute to the target of the rule that matches
the <claim>> Action involved in the resource usage pattern. Next, a Be-
haviour is linked to CapabilityUsage elements by its requires feature. List-
ing 7.3 on page 154 shows that this is done by first selecting all States
directly preceding the State in which an Action that corresponds to the Be-
haviour is executed. On each of these predecessor States, we iteratively

7.8. Transformation 157

rule ResourceUsage {
from s:UML!SimpleState (s.isWait)
to cu: TRS!CapabilityUsage (
capability <- thisModule.claimActions->select (ala.script.body=s.
outgoing->select (t|t.effect.isClaim) .effect.script.body))

Listing 7.5: Rule for resource usage pattern

call the getrResourceclaims helper that recursively finds all <wait>> States
by backwards traversal of the state machine until a <release>> Action is
encountered. A <release>> Action releases all claimed subsystems. The
< wait>> States in the returned set match the ResourceUsage rule and the
Behaviour is linked by its requires attribute to the corresponding Capabil-
ityUsage elements.

Resource setups In the target model, setups are automatically inserted by
the generic (solving) part of the product-line architecture. This is done at
run-time, based on mismatching beginState and endState attributes of the
CapabilityUsage element. To some extent, these could be derived from the
explicitly specified setups in the source model.

In this chapter, however, we do not define a corresponding transforma-
tion rule as it depends heavily on domain knowledge. Using our transfor-
mations, setups will explicitly end up in the target model as just another
task and behaviour. As said, this ensures that the migrated control system
mimics the behaviour of the legacy control system exactly, thus resulting
in a validated and acceptable baseline.

Synchronous execution The target model defines precedence relations be-
tween those Tasks that require synchronisation (within the same Request).
In principle, these relations follow from the execution order of the manufac-
turing activities and the corresponding Actions within a normalised state
machine. In addition, (virtual) resources can be used for external synchro-
nisation.

For synchronisation within a Request, predecessor relations are created
for every task by searching for its set of (direct) predecessor tasks. For
this we have defined two helpers that both operate on the elements that
match rules that create Tasks. The first helper is depicted in Listing 7.6 on
the following page and is defined on StateVertex whereas the second one
is defined on Guard. For each Task, one of these getPredecessors helpers
is invoked on its corresponding StateVertex or Guard. These helpers de-
termine whether the current element (se1f) corresponds to a task. If so,
this element is returned. Otherwise, the helper is recursively applied to

158 Chapter 7. Model-Driven Migration

helper context UML!StateVertex def: getPredecessors:Set (UML!
ModelElement) =
if self.incoming->isEmpty () then
Set{}
else if self.isOrTaskStateJoin then
self.getFork.outgoing->collect (e|e.guard) ->select (ele.

isOrTaskGuard)
else if self.incoming->collect (e|e.guard)->select (elnot e.
oclIsUndefined())->exists(e|e.isOrTaskGuard or if e.oppositeGuard.

oclIsUndefined() then false else e.oppositeGuard.isOrTaskGuard
endif) then

Set{}
else if self.incoming->collect (e|e.source)->select (e|le.isTaskState)
—>isEmpty () then

self.incoming->collect (e|e.source.getPredecessors)->flatten ()
else

self.incoming->collect (e|e.source)->select (e|e.isTaskState)
endif endif endif endif;

Listing 7.6: Collect predecessors on StateVertex

the finite set of all direct preceding modelling elements that may map to a
task.

Concurrent execution The normalised pattern for concurrency, as discussed
in Section 7.6, is a CompositeState with orthogonal regions. To address the
concurrent execution concern we need to identify instances of such patterns
in the source model.

We defined a transformation rule that creates an AndTask for every con-
current CompositeState in the source model except for the top Composite-
State of the StateMachine. Basically, the predecessors relation is the mech-
anism used in the target model to (dis)allow concurrency: if two tasks are
not related by the transitive closure of the predecessors relation, they can
execute concurrently. Now, these potentially concurrent tasks are executed
as soon as execution of their predecessors has finished and the required
resources are available. In turn, this also implies that a task can have mul-
tiple (concurrent) predecessors. Collecting predecessor tasks was already
discussed in the previous paragraph.

Conditional Execution As discussed in Section 7.6, the normalised source
model uses a state with two outgoing guarded transitions to specify con-
ditional execution. Every two alternative conditional branches in a source
model are mapped to an OrTask in the target model. This OrTask contains
two subtasks (iftrue and iffalse), which may be composite and represent the
two conditionally executed branches following a State with two outgoing

7.8. Transformation 159

rule ConditionalExecution {

from g:UML!Guard (g.isOrTaskGuard)

to t: TRS!OrTask (
condition <- g.expression.body,
iftrue <- at_true,
iffalse <- at_false,
predecessors <- g.getPredecessors),

at_true: TRS!AndTask (
tasks <- g.transition.target.getTaskModelElements (g.
guardedTaskStates))

at_false: TRS!AndTask (
tasks <- g.oppositeGuard.transition.target.getTaskModelElements (g
.oppositeGuard.guardedTaskStates)

Listing 7.7: Rule for conditional execution patterns

guarded Transitions. Subsequently, for the creation of those subtasks, we
need to find all model elements that map to a task in each of the branches.

The specification of this transformation rule is depicted in Listing 7.7.
This rule matches one of the Guards (not the else) for every conditional exe-
cution pattern, determined by the isorTaskcuard helper. It creates an And-
Task for each of the two branches using the getTaskModelElements helper.
The set of States that this helper uses to determine the scope in which it
has to select all ModelElements that map to a Task is calculated by the
guardedTaskStates helper. This helper selects all States ‘guarded’ by some
guard. To this end, it calculates the difference between the path through
the state machine that starts from the target of the conditional transition
and the corresponding alternative transition path.

7.8.4 Transformation Results

In total, we needed approximately 300 lines of ATL code to implement all the
necessary transformation rules and helpers for the transformation step of
our migration approach. Once the source model, source metamodel, target
metamodel, and transformation module are defined and located, the ATL
transformation engine generates the target model (e.g., a system definition)
in its serialised form. The results as obtained for the normalised unload
wafer request are depicted in Figure 7.11 on the following page.

Figure 7.11(a) on the next page shows a screen capture of the created
TRS target model, inspected using the tree-based editor that was generated
for our TRS metamodel by the EMF plugin. There, TRS model elements are
shown in a tree structure to indicate containment. Furthermore, it can be
seen that we are dealing with an SMC component that accepts a Request

160 Chapter 7. Model-Driven Migration

¥ 4 System Definition
< Behaviour check RCB comm.

b <4 Behaviour finish exchange

< Behaviour report done

check RCB comm.

b <4 Behaviour move UR to rotate

b <4 Behaviour transfer w2u

R " <<UR ,WS>>
* Capabillty UR transfer W2U
4 Capability ws
4 Resource UR not(combinedfload)]
< Resource WS
I]
v Request unload_wafer
¥ 4 Or Task combined_load [combined_load]
<4 And Task combined_load <<UR>>
¥ <4 And Task not (combined_load) move UR to rotate
¥ <4 And Task Concurrent_State <<WS>>
simple Task finish exchange finish exchange
Simple Task move UR to rotate

4 Simple Task check RCB comm.

4 Simple Task report done

check RCB comm.

4 >

[Properties &2 Bl R IkY°
Behaviour ‘= Behaviour check RCB comm.
Id ‘= check RCB comm.
Predecessors ‘= Or Task combined_load
(a) TRS target model (b) Activity Diagram

Figure 7.11: Results for unload wafer request

unload_wafer. The selected element under the Properties tab in the bottom
part reveals that “SimpleTask check RCB comm.” can only be dispatched after
its predecessor “OrTask combined_load” has been executed.

The consequence of using a custom metamodel is that we only have the
basic generated editor to visualise and document our transformation re-
sults. Again, we turned to model transformations to solve this problem. As
there is no suitable graphical representation for complete TRS models yet,
we defined a transformation that maps a TRS model to UML Activity Graphs
for the dynamic part (one for each request) and a UML Class model for the
static part. The result of this transformation can easily be displayed using
UML tools. Figure 7.11(b) on this page, for instance, shows the dynamic
part of our unload wafer request displayed as an UML Activity Graph.

Note that, we merely use UML notation to represent part of the task re-
source model. As such, the semantics are not identical to that of UML activ-
ity graphs, but only similar. We represent Tasks as Activities stereotyped
with the resource they require. The transition represent predecessor re-
lationships (in reverse direction). For AndTasks we use fork Pseudostates
(represented by the horizontal black bar). A complete AndTask is thus rep-

7.9. Evaluation 161

resented by the subgraph that starts with a fork and ends when the two
concurrent paths are joined. OrTasks are represented using choice Pseu-
dostates (represented by a diamond with two outgoing arrows). Similar to
the AndTask a complete OrTask is thus represented by the subgraph that
starts with a choice Pseudostate and ends when the two conditional paths
are joined. For convenience we did not explicitly represented the join of the
two concurrent paths (i.e., using another horizontal bar); they are joined in
the same node (the diamond with three incoming arrows) as the conditional
paths.

7.9 Evaluation

Applicability Application of our generic, model-driven migration approach
requires that the source view and target view can be defined using a meta-
model. When this is possible, the actual migration from source to target
constitutes a series of model transformations.

In practice, models are only made as complete and accurate as is de-
manded by their application. However, these demands become more strin-
gent when these models are used as input for automated processing such
as model transformations. As a result, the context-specific normalisation
step is crucial to the applicability of our migration approach in industrial
contexts where (source) models are typically used for communication and
documentation purposes only.

MOF-based metamodels only provide the abstract syntax for conform-
ing models and do not define how to visualise them (concrete syntax). In
fact this is a drawback of using a custom metamodel: no model editors and
viewers are available, apart from the basic editor as generated by the EMF
plugin. In this chapter we again turned to model transformations to docu-
ment and visualise our results. The use of model transformations provides
an elegant and flexible way of generating architecture documentation that
can easily be tailored to meet specific documentation requirements of a mi-
gration context. This is further discussed in Chapter 8.

It turned out that a model-driven migration approach based on MDA
is useful for rapid (incremental) development of normalisation rules and
transformation rules. That is, results can easily be visualised and docu-
mented given the wide variety of available tools.

Scalability With respect to the scalability of our approach we can safely
state that our experiments are of the same order of magnitude as full-
fledged component migrations for real-world wafer scanner applications.
More concretely, the two requests that were migrated as a proof of concept

162 Chapter 7. Model-Driven Migration

account for approximately 10-20% of the source code for our SMC compo-
nents. The application of our transformation rules to the two representa-
tive examples presented in this chapter requires less than 10 seconds to
complete on a 1.7 GHz notebook. Furthermore, we expect the execution
time to be linear with respect to the number of requests. More important
for the execution time is the nesting depth of conditional paths. For our
industrial case we have not encountered requests with deeper nesting than
our example requests.

Effectiveness Our model-driven approach requires that implicit design de-
cisions and design knowledge is consolidated and made explicit for the def-
inition of metamodels and transformation rules. As such, the application
of our approach to the SMC components of our case study increased the
general understanding of concerns and the associated implications (and
difficulties) surrounding the architecture migration of SMC systems. More-
over, the need for experts on both the domain and the target paradigm was
confined to the definition of the normalisation and transformation rules.

The effectiveness of both the MDA approach and our model-driven mi-
gration approach depends partially on the ability of modelling, transforma-
tion and code generation tools to cooperate. As such, standards involved
with the MDA, such as MOF, UML, and particularly XMI, play an important
role. In practice, the availability of different versions of these specifica-
tions made it difficult to setup an appropriate tool chain. For instance, we
could not use the latest version of our UML modelling tool (i.e., Poseidon for
UML) because the UML metamodel it uses, was incompatible with the ATL
transformation engine. Although we took the liberty of selecting tools that
were able to cooperate, we still needed to implement some additional trans-
formations using Extensible Stylesheet Language Transformations! (XSLT)
to overcome some incompatibilities between the various tools. In industry
it will not always be possible to select a specific set of tools for the migra-
tion given practical considerations such as licensing, support, and training
costs.

Apart from tool support, the required human intervention during the
normalisation step also determines the effectiveness of our migration ap-
proach. The complexity of the normalisation step depends on the num-
ber of constraints that the restricted source metamodel adds to the legacy
source metamodel (if present). Here, a trade-off applies: fewer constraints
make the transformation, which is typically automated, more complex be-
cause more specification alternatives have to be covered. For instance, if
we would allow Actions corresponding to manufacturing activities to occur
as Actions on Transitions, searching for predecessors would become much

Thttp://www.w3.org/TR/xslt (June 2007)

7.9. Evaluation 163

more complicated. On the other hand, the normalisation step requires less
effort in that case.

In our case, the target metamodel specifies the domain-specific part of
a product-line. We believe that model transformations are particularly ap-
plicable as a migration approach for the recurring migration of individual
product-line members. In general, a model-based migration approach is
beneficial in situations where a number of similar artefacts need to be mi-
grated. Such a setting provides sufficient return on investment for the
definition of metamodels, normalisation rules, and transformation rules.

More specifically, when considering the previously mentioned trade-off,
a larger number of artefacts that need to be migrated justifies a higher
investment in the definition of transformation rules, allowing for a less in-
volved normalisation step. As another example of this trade-off, consider
our assumption of proper nesting. It implies that alternative branches in
a state machine are joined two at a time and in reverse order. One could
relax this assumption (constraint) and implement a more intricate trans-
formation rule to handle this relaxation.

Extensibility Currently, our transformation rules do not handle synchroni-
sation across different requests. This could prove to be a limitation for the
large scale application of our transformation rules. To this end, we would
have to (at least) extend our profile to include a special type of Event to
denote external events for such inter-request dependencies.

The overall extensibility of our migration approach is demonstrated by
using source models with two distinct origins for our experiments. In the
case of the unload wafer request we used the available architecture docu-
mentation of the involved SMC component. This documentation contained
UML statechart diagrams for the component’s requests, including our ex-
ample request.

However, for the SMC component that performs the process wafer re-
quest, documentation was not available. We had to reconstruct the source
model from the source code. For this we took advantage of the fact that this
component was based on a proprietary library for FSMs. Using this library,
the component implemented three concurrent state machines that covered
the behaviour of all requests and combinations hereof. Figure 7.12 on the
next page depicts one of the component’s three state machines.

This particular state machine illustrates the typical result of an evolv-
ing software architecture: two legacy state-based components were aug-
mented with a new supervisor. This supervisor was obtained by taking the
product of the two legacy state-machines and adding two choice pseudo-
states (i.e., s1 and s11) to allow for different activation paths, based on
legacy request combinations.

7.10. Conclusions and Future Work 165

We extracted the process wafer request state machine from the three
implemented concurrent state machines and the corresponding source code
by isolating state transition paths and combining them into a request state
model. The resulting extracted source models were used as the input for
our normalisation step. In fact, such an extraction step in which we isolate
request state machines (i.e., to obtain models to be normalised) can be seen
as an extension of the ‘front-end’ of our approach.

The ‘back-end’ of our approach can be extended as well by steps that
further process the result of our model transformations. We already men-
tioned the generation of documentation. Another possible extension is the
generation of source code to actually generate the System Definition mod-
ule of the product-line architecture (Figure 7.9 on page 150). Both can be
specified using model transformations.

Note that we did not yet consider the domain specific interface modules
of the product-line architecture. However, this only constitutes a minor
hurdle since we can simply encapsulate the existing source code bodies for
each behavior (preserving interface functionality and behavior).

7.10 Conclusions and Future Work

In this chapter we formulated the migration of SMC systems as a model
transformation problem. The starting point is an SMC architecture based
on FSMs; the end point is a product-line SMC architecture based on TRSs.
Our approach supports the generic migration of the product-line members.

We demonstrated that the development framework for the MDA can
be successfully applied in a migration context as well: migration can be
seen as a series of model transformations. We proposed a generic two-
phased, model-driven migration approach that uses distinct normalisation
and transformation steps to derive the modules required to instantiate the
TRS product-line architecture for a particular (sub)system. The normalisa-
tion step is crucial in overcoming semi-formal, incomplete and ambiguous
specifications as well as tool and language limitations. This normalisa-
tion step requires domain knowledge and manual effort, but makes our
approach suited for industrial application.

A trade-off has been identified between the inherent complexity of auto-
mated transformations and the required manual effort during normalisa-
tion. Based on SMC-specific concerns and a normalised source metamodel,
we have defined and implemented a set of generic transformation rules that
support a migration towards TRS-based product-line architectures. The ap-
plicability of these rules has been illustrated for a real-world industrial
case. Since our transformation rules operate on normalisations, they can
be applied to FSM-TRS migrations of SMC systems without loss of generality.

166 Chapter 7. Model-Driven Migration

The industrial case that motivated this chapter imposes not only the
source and target paradigms but places practical constraints on the en-
abling technologies as well. Starting from UML, we selected technologies
compatible with the MDA to setup a convenient tool-chain that supports
the definition and manipulation of models. Using this tool chain, several
requests from different SMC components have been migrated as a proof of
concept. The experiences we gained from this exercise indicate that the ap-
plication of model transformations not only increases the understandability
of such a migration, but also reduces the need for domain experts.

As such, the main contributions of this chapter are:

e The illustrated applicability of the MDA approach to architecture mi-
grations. To this end, we introduced a vital normalisation step that
enables migrations in an industrial setting.

e A practical view on the use of metamodels and profiles for migrations
in general and, more specifically, on the normalisation, and transfor-
mation of SMC source models.

e The specification of a set of model transformation rules, an SMC UML
profile, and a TRS metamodel that can be applied to FSM-TRS migra-
tions of SMC architectures.

We are in the process of extending our work along the following lines.
First, we want to further investigate the extraction of source models for
our transformation directly from source code. This may also enable (par-
tial) formalisation and automation of our normalisation step. Second, at
the other end of the migration, we want to extend our approach with code
generation from TRS models for the application-specific modules of the TRS
product-line architecture, again using technologies related to the MDA. This
would provide for a full-fledged model-driven migration approach: from
legacy code to new code through a series of model transformations.

Chapter

Visualisation of Domain-Specific
Modelling Languages Using UML!

Currently, general-purpose modelling tools are often only used to draw dia-
grams for the purpose of documentation. The introduction of model-driven
software development approaches involves the definition of domain-specific
modelling languages that allow code generation. Although graphical rep-
resentations of the involved models are important for documentation, the
development of required visualisations and editors is cumbersome. In this
chapter we propose to extend the typical model-driven approach with the
automatic generation of diagrams for documentation. We illustrate the
approach using the Model Driven Architecture in the domains of software
architecture and control systems.

8.1 Introduction

Model-driven engineering refers to software development approaches in
which models are considered the primary development artefacts [Bézivin,
2005] (instead of source code). In these approaches software models are
gradually transformed (automatically) into source code by means of model
transformations. Additionally, such models are used for other (automated)
software engineering tasks, such as performance analysis.

Typically, model-driven engineering (MDE) approaches are based on
modelling languages that offer abstractions focused on a particular domain.
Such languages are referred to as domain-specific modelling languages

IThis chapter was published earlier as: Graaf, Bas and Arie van Deursen. Visualisation
of domain-specific modelling languages using UML. In Proceedings of the 14" Annual
IEEE International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS 2007), pages 586-595. IEEE Computer Society, 2007¢

167

168 Chapter 8. Visualisation of DSMLs

(DSMLs). From DSML models code is generated for a particular software
platform. DSMLs have been developed for various types of domains, such
as software engineering (e.g., software architecture [Medvidovic and Tay-
lor, 1997]) and application domains (e.g., insurance products [Doyle et al.,
2006]).

In general, the use of DSMLs has clear advantages over the use of
general-purpose languages (GPLs) [Van Deursen and Klint, 1998]. More in
particular, in the context of MDE, our experience in industrial case studies
(see Chapters 5 and 7) indicates that the use of a GPL, such as the Unified
Modeling Language! (UML), leads to (unnecessary) complex model trans-
formations, for instance to generate code. As such, the introduction of MDE
typically requires the development of DSMLs.

Although mechanisms are available to define and implement the ab-
stract syntax of DSMLs, such as the MetaObject Facility? (MOF) and the
Eclipse Modeling Framework? (EMF), not much support is available for the
definition of their graphical notation (concrete syntax). As a result devel-
opment of adequate graphical editors and visualisations requires consider-
able effort.

For some software engineering tasks, such editors are not required. For
instance, developers can use a textual syntax for the creation of models
that can subsequently be processed by model transformation tools. How-
ever, other tasks, such as documentation, do require some form of graphical
representation. It is this problem that motivates this chapter.

The basic idea of this chapter is simple: when devising a new DSML we
try to leverage existing visual notations and modelling tools. We propose
to expand the typical MDE process in which abstract models are gradually
transformed into code, with (partial) generation of documentation. To this
end we combine the use of DSMLs for code generation and other automated
software engineering tasks, with the use of UML for documentation. The ap-
proach uses model transformations to specify the mapping between DSMLs
and UML. The diagrams corresponding to the resulting UML models, as
visualised by off-the-shelf UML tools, are used in the documentation. To
investigate the arguments for and against this idea, we study how

e this approach works for various architectural views;

e UML can be used as the target language for visualising these views;
and

e model transformations can be used to specify and automate the map-
ping.
1h‘ctp://wwvv.uml.org (June 2007)

2http://www.omg.org/mof (June 2007)
3http://www.eclipse.org/emf (June 2007)

8.2. Background 169

In practice, the extra effort required for the development of graphical ed-
itors can hamper the introduction of MDE. Consider the following scenario.
A software development organisation decides to introduce MDE. Currently,
the developers use UML. However, as in many other organisations, they
only use UML modelling tools for drawing diagrams [Lange et al., 2006].
These diagrams are important for the communication with other stake-
holders, as they constitute an essential part of the documentation. The
introduction of MDE involves the definition of DSMLs from which code will
be generated. Furthermore, as the developers are comfortable with using
a textual syntax for these DSMLs, no graphical editors are developed. The
result is that they now have to create DSML models for code generation
as well as UML diagrams for documentation. Considering the current use
of UML, as investigated by Lange et al. [2006], and the upcoming of MDE
approaches, such as the Model Driven Architecture! (MDA), this is not an
unlikely scenario.

We investigate the feasibility of our approach in the domain of software
architecture. In Section 8.2 we introduce the languages specific to this do-
main, and the standard documentation approach. Our approach for the
model-driven documentation of software architecture, MDAV, is presented
in Section 8.3 and we report on a small case study in Section 8.4. The ap-
proach is easily applied to other domains as well. An additional (industrial)
case study involving a different type of models is presented in Section 8.5.
We discuss the benefits and limitations of the approach in Section 8.6. After
discussing some related work in Section 8.7, we conclude with an overview
of our contributions and opportunities for future work in Section 8.8.

8.2 Background

In this section we introduce modelling and documentation in the domain
of software architecture. Furthermore, we discuss some of the technologies
that enable our approach.

8.2.1 Software Architecture

Modelling Several notations have been developed to specify architectural
models. These architecture description languages (ADLs) (see Medvidovic
and Taylor [1997] for an overview) mostly consider an architecture to be a
configuration of runtime components and connectors.

Due to their formal syntax and semantics ADLs enable automatic code
generation and analysis. Despite these benefits, and although ADLs have

Thttp://www.omg.org/mda (June 2007)

170 Chapter 8. Visualisation of DSMLs

received much attention from the architecture research community, they
have not been applied much in industry [Kruchten et al., 2006].

Although UML is aimed at object-oriented modelling, it allows practi-
tioners to address a wide range of issues [Medvidovic et al., 2002]. There-
fore, and because of the availability of supporting (graphical) modelling
tools, it is often used in practice to describe software architectures (e.g., see
Chapter 3 and Lange et al. [2006]).

A drawback of using UML for this purpose is the semantic mismatch
between architectural concepts and UML’s concepts, which are aimed at
object-oriented design. This results in compromises between completeness
and legibility [Garlan et al., 2002]. Furthermore, for automatic process-
ing of models (e.g., for code generation) the complexity of UML results in
complex model transformations (see Chapters 5 and 7).

Documentation Because in industrial practice a software architecture is too
complex to describe in a single stroke, different views are used for its doc-
umentation. Different types of views have been defined to address specific
concerns. The two most prominent categories of views are module views
and component-and-connector (C&C) views [Clements et al., 2002a].

A module view addresses the question of how a system is developed; it
defines the most important implementation units (modules) and their rela-
tions. Module views are used, for instance, to evaluate the maintainability
of a system as implied by its architecture.

A component-and-connector (C&C) view, on the other hand, addresses
the question of how a system works. It describes a system in terms of
runtime components and connectors. A component is an abstraction of a
computational element; a connector is an abstraction of the way compo-
nents interact. As such, a C&C view is more suited for analysis of runtime
properties, such as performance.

More specific types of views are defined by imposing restrictions on the
type of elements and relations allowed in a view. In a module-uses view, for
instance, only ‘uses’ relations are allowed.

In the terminology of IEEE Std 1471-2000 [IEEE-1471, 2000], a view
conforms to a viewpoint that “specifies the conventions for using and con-
structing a view”. A viewpoint addresses a set of stakeholder concerns. A
number of viewpoint sets is available from literature, such as [Clements
et al., 2002a]. Furthermore, in practice also custom viewpoints are defined.
Typically, a viewpoint definition prescribes a modelling language or nota-
tion that enables the specification of an architectural model that addresses
the concerns of the viewpoint. As an example, a C&C viewpoint might refer
to a particular ADL. In summary, a viewpoint defines a type of views and a
view is a particular representation of a particular system.

8.2. Background 171

In practice the architectural model for a view is primarily used as a fig-
ure or diagram (the view’s primary presentation [Clements et al., 2002a]) in
a document that describes the view. Because of their wide-acceptance and
available tool support often UML diagrams are used for this (see Chapter 3).

8.2.2 Enabling MDE Technologies

Our approach for model-driven documentation is based on model transfor-
mations. This requires capabilities for (meta)modelling, model transforma-
tion, and model interchange.

For the definition of metamodels we use the MetaObject Facility! (MOF)
and its implementation as an Eclipse plugin: the Eclipse Modeling Frame-
work? (EMF).

The EMF plugin generates an implementation for a metamodel as a set
of Java classes that offers an interface that allows developers to manip-
ulate conforming models. These models can be serialised to a document
in the Extensible Markup Language® (XML) using XML Metadata Inter-
change* (XMI). Additionally, a simple tree-based editor is generated that
can be used as an Eclipse plugin for the creation and inspection of associ-
ated models. As an example consider the screenshot of such an editor in
Figure 8.3(b) on page 175. This editor is also capable of validating a model
against its metamodel.

The Atlas Transformation Language [Jouault and Kurtev, 2005] (ATL) is
based on EMF. We use it to define model transformations that are executed
by a transformation engine. In ATL, transformations are defined in mod-
ules that consist of declarative transformation rules and helper operations.
Using a syntax similar to that of the Object Constraint Language® (OCL),
the transformation rules match model elements in a source model and cre-
ate elements in a target model. A helper is defined in the context of a
metamodel element, to which it effectively adds a feature.

For their input, model transformation tools typically use XMI serialisa-
tions of MOF-based (meta)models. In the case of UML, these models can
simply be created and visualised using standard UML tooling.

Thttp://www.omg.org/mof (June 2007)

2http://www.eclipse.org/emf (June 2007)

Shttp:/www.w3.org/XML (June 2007)

4http://www.omg.org/mda/specs.htm#XMI (June 2007)
Shttp://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL (June 2007)

172 Chapter 8. Visualisation of DSMLs

Metamodel Viewpoint

Mo UML Model
UML Diagram

Architectural Description

conformsTo

conformsTo

L e

used for: Architecture used for:
analysis documentation

code generation communication
model transformations assessments

Figure 8.1: MDAV framework

8.3 Model-Driven Architectural Views

To take advantage of the power of DSMLs for code generation and other
automated software engineering tasks and that of UML for documenta-
tion, we explicitly distinguish architectural documentation and architec-
tural models. We make this concrete by revisiting the conceptual model of
the industry standard for description of software architectures IEEE Std
1471-2000 [IEEE-1471, 2000]). The result, the Model-Driven Architectural
Views (MDAV) framework, is displayed in Figure 8.1.

8.3.1 MDAV Framework

In Figure 8.1, for the development of a software System, an Architecture is
defined that includes the most important design decisions. These are made
concrete in an Architectural Description that consists of Models on the one hand,
and architectural Views on the other. In the spirit of MDE, models conform
to a Metamodel and are used for several (automated) tasks such as, anal-
ysis and code generation. Views on the other hand conform to a Viewpoint
and are primarily used for communication purposes. Both metamodels and
viewpoints are developed to address a certain set of Concerns. A viewpoint
prescribes the language to be used to model the architecture. A metamodel
specifies the abstract syntax of this language. A view includes diagrams in
its primary presentation that represent the associated architectural mod-
els.

8.3. Model-Driven Architectural Views 173

To allow the use of custom defined DSMLs without the need to specifically
develop corresponding graphical representations and editors, we use UML
Diagrams. To this end, we map DSML Models to UML Models that are visualised
as UML diagrams for inclusion in view documentation with standard UML
tooling. Thus, in MDAV the connection between views and models is made
through (UML) diagrams. Thanks to this connection, views can be (partly)
generated from the same models as the source code; they become model
driven.

8.3.2 MDAV Process

In summary, compared to the conceptual model as described by IEEE Std
1471-2000, we add the concept of a diagram that allows to relate a view to
a model. Furthermore, in-line with MDE, we explicitly added a metamodel
as a description of the modelling language used in a view. Application of
the corresponding approach involves three steps: definition of 1) a suitable
metamodel, 2) means to create corresponding models, and 3) a mapping to
UML.

A suitable metamodel for a particular viewpoint can be defined from
scratch or based on an existing ADL that addresses the relevant concern. In
the former case, we use a description of the viewpoint (e.g., from Clements
et al. [2002a]) and create corresponding elements and relations in the meta-
model. In the latter case, we base the metamodel on the ADL’s grammar (or
other language specification mechanism). Given the typically modest size
and simple syntax of ADLs and using appropriate tooling, corresponding
metamodels are easily created.

A means to create models associated with the defined metamodel is also
required. Depending on the complexity of the associated metamodel differ-
ent alternatives are suitable, of which we give examples in Section 8.4.

We specify and implement the mapping between the prescribed meta-
model and UML using a model transformation language. For several ADLs
mappings to UML already exist, that we can specify as model transforma-
tions. This allows us to automatically transform an architectural (ADL)
model to a UML Model. As such, ADL Models and UML Diagrams can evolve
simultaneously.

Although the corresponding UML diagram might not exactly represent
the architectural model (e.g., because the latter uses concepts that do not
correspond to any UML concept), it is typically complete enough for many
communication purposes. This can be concluded by considering the wide-
spread use of UML for architectural documentation in industrial practice
(e.g., see Chapter 3 and Lange et al. [2006]). Moreover, in the case of a
semantic mismatch, we use stereotypes to indicate the type of ADL element
a specific UML element represents.

174 Chapter 8. Visualisation of DSMLs

o1, upper .
- o I

Figure 8.2: C&C model of CaPiTaLiZe (ACME)

¢

8.4 Using MDAV to Generate Views

We applied MDAV to two architectural viewpoints: we defined an appropri-
ate metamodel (i.e., a modelling ‘language’), means to create and manipu-
late associated models, and a mapping to UML,

We use the CaPiTaLiZe system, often used in software architecture
literature [Allen and Garlan, 1997], as a running example. CaPiTaLiZe
transforms a character stream by capitalising alternate characters. A C&C
model of CaPiTal.iZe defined using an ADL (ACME [Garlan et al., 2000]) is
visualised in Figure 8.2. CaPiTaLiZe is designed as a pipe-and-filter sys-
tem, with separate components for splitting a stream of characters in two
streams (split), (un)capitalising characters (upper, lower), and merging two
streams of characters (merge).

The diagram of CaPiTaLiZe’s module view is depicted in Figure 8.3(c)

In this UML class diagram we represent architectural modules with
UML Packages and use-relations with UML Dependencies, as suggested
by Clements et al. [2002a].

8.4.1 Module-Uses View

Metamodel Module-uses views are based on a special type of dependency
relation: the uses relation. As such, these views only contain one type of
element and one type of relation [Clements et al., 2002a].

Although UML is well-suited and therefore also typically used in the
primary presentation of module views, we developed a small custom
metamodel to illustrate MDAV. This MADL metamodel is specified in Fig-
ure 8.3(a) using the MOF. In addition to a Module element and use relation
it defines an Implementation to consist of a set of modules that may use
other modules. Note that this metamodel is different than the MADL meta-
model in Figure 6.6(b) on page 113. Although both are used to address the
same concerns, their purpose is different (documentation vs. conformance
checking). For that reason, the use-relation is modelled by the latter as a
first-class modelling element (to allow specifying its conformance).

8.4. Using MDAV to Generate Views 175

System + modules Module

—name :String . | -name :String
+ use’ ‘

(a) MADL metamodel

~ #] platform:/resource/ViewGen/t: || Property | Value
¥ 4 Implementation Capitalize Name = Split
< Module Driver Use '= Module Config, Module 10lib
< Module Upper
< Module Lower
< Module Merge
< Module Config

< Module 10lib
(b) MADL model of CaPiTaLiZe in EMF edi-
tor
I_ _____ Driver |- —— —— |
[| |
| | T T | |
\, : \'% I \,
Split : Upper Lower : Merge
| |
— | T — | —
I L— PN D PN P P |
| VT v |
| | | |
| Config | | 10lib |
[N T_ N P

(c) MADL diagram (UML)

Figure 8.3: MADL

176 Chapter 8. Visualisation of DSMLs

rule Package {

from m:MADL!Module

to p:UML!Package (
name <- m.name,
clientDependency <- ds),

ds: distinct UML!Dependency foreach (um in m.use) (
client <- m,
supplier <- um)

Listing 8.1: Mapping MADL Modules to UML Packages (ATL)

Model creation Using MOF, in principle, only the abstract syntax is defined.
Although XMI offers an off-the-shelf mapping to XML, it is not intended to
be used directly by software developers [Grose et al., 2002].

For simple metamodels, such as our MADL, we propose to use the editor
generated by EMF for the creation and inspection of models. Figure 8.3(b)
on the preceding page shows a screenshot of this editor while editing the
MADL model for the CaPiTaliZe system. The top part shows the modules
that are defined for this system, while the Properties pane is used to inspect
the properties of those modules. This screenshot shows, for instance, that
Module Split uses Module Config and Module IOlib.

UML mapping The mapping to UML is based on one of the mappings sug-
gested in [Clements et al., 2002a]. We map Modules to UML Packages and
the uses relation to UML Dependencies. We specified this mapping using
ATL. A fragment is depicted in Listing 8.1.

In an ATL transformation rule a from clause specifies a pattern that is
matched by elements of the source model. For each match the target pat-
terns in the to clause are instantiated in the target model. In this case,
the package rule creates a Package (p) and a set of Dependencies (ds) for
each Module (n) in the source model. Using the distinct ... foreach con-
struct a Dependency is created for every Module that is used by the Module
that matched the rule (m.use). For both target elements a set of bindings
is specified to initialise their features. The clientbDependency feature of the
created Package (p), for instance, is initialised with the set of Dependencies
created by this rule as well (as).

The result of applying this transformation to the MADL model of the
CaPiTaLiZe system (Figure 8.3(b) on the preceding page), is visualised us-
ing a UML tool (Figure 8.3(c) on the previous page).

8.4. Using MDAV to Generate Views 177

8.4.2 Component-and-Connector View

Metamodel For C&C views, we define a metamodel for a simple ADL similar
to ACME [Garlan et al., 2000], an ADL interchange language that covers the
most constructs in a wide range of ADLs.

Consider the metamodel for the ADL (CCADL) in Figure 8.4(a) on the fol-
lowing page. Using CCADL the architecture of a System consists of a Style, a
set of Components, and a set of Connectors. A component owns a set of Ports
via which it interacts with its environment. Similarly a connector owns a
set of Roles that define what behaviour is expected from the participants
in the interaction the connector represents. By attaching conforming roles
and ports, configurations of components and connectors can be created. Fi-
nally, the style defines the types of components (ComponentType), connectors
(ConnectorType), roles (RoleType), and ports (PortType). The main difference
with the CPADL metamodel depicted in Figure 6.6(a) on page 113 is that
component, connector, role, and port types are defined on the model level
instead of on the metamodel level.

Model creation Again, a straightforward approach to create CCADL models
is to use the editor generated by EMF. Figure 8.4(b) on the following page
displays a screenshot of this editor, while editing the CaPiTaLiZe CCADL
model. When considering the complexity of the CCADL metamodel (com-
pared to the MADL metamodel), it becomes clear that editing models using
this editor is inconvenient. Using this editor it is not possible, for instance,
to immediately determine the component and connector types and under-
stand their configuration.

As an alternative, we propose to use a simple XML Document Type
Definition (DTD) or schema that allows to describe associated models as
simple as possible. A fragment of an XML document conforming to such a
DTD describing the same CaPiTaLiZe system is depicted in Listing 8.2 on
page 179. Note that the DTD we defined allows to separately specify the
configuration of components and connectors as a set of attachments.

If we use simple XML documents to specify systems in CCADL, we sepa-
rately need to populate a model conforming to the CCADL metamodel. Sev-
eral approaches can be used to populate a model.

One possibility is to develop a so-called injector, a program that parses
a file and uses the application programming interface (API) generated by
EMF to instantiate a corresponding model. In general, an injector is used
to bridge two different domains, in this case the XML and modelware (MOF)
domains. In the context of MDE such domains are also referred to as Tech-
nological Spaces [Kurtev et al., 2002].

178 Chapter 8. Visualisation of DSMLs

RoleType ConnectorType Connector
—name :String —name :String + type —name :String
+ roleTypes * * connectorTypes + connectv.;rs

* iﬂoles

Role

—name :String

Style System + role [0..1

—name :String + style —name :String 0..1 [+ port

Port

—name :String
+ ports *
+ portTypes " * \/+ componentTypes | , components ﬁ

PortType ComponentType * Component
—name :String —name :String —name :String

v & platform:/resource/ViewGen/t: | Property

v 4 System Capitalize

¥ 4 Connector split_upper

< Role sink_splitu
4 Role source_upper

+ type

(a) CCADL metamodel

Value

Name & sink_splitu

Port
Type

ort out_split
= Role Type pipeln

(b) CCADL model of CaPiTalLiZe in
EMF editor

O
input

<< filter >>

split

b 4 Connector split_lower

b 4 Connector upper_merge << pipe >> << pipe >>
b 4 Connector lower_merge

b <4 Component split << filter >> << filter >>
b < Component upper upper lower

b <4 Component lower

b <4 Component merge << pipe >> << pipe >>

<< filter >>

merge

|
O

output

(c) CCADL diagram

(UML)

Figure 8.4: CCADL

8.4. Using MDAV to Generate Views 179

<System name="Capitalize">

<Style name="pf">
<ComponentType name="Filter"/>
<PortType name="filterOut"/>

</Style>

<Component name="split" type="Filter">
<Port name="in_split" type="filterIn"/>
<Port name="out_split" type="filterOut"/>

</Component>

<Connector name="split_upper" type="Pipe">
<Role name="sink_splitu" type="pipeIn"/>
<Role name="source_upper" type="pipeOut"/>
</Connector>

<Configuration>
<Attach port="out_split" role="sink_splitu"/>

</Configuration>
</System>

Listing 8.2: C&C model of CaPiTaLiZe (XML)

As an alternative, we reuse the XML injector, and XML metamodel (see
Figure 8.5 on the following page) provided by the ATL project!. Based on
an XML document this injector instantiates a model that conforms to the
XML metamodel. Subsequently, we transform this model into a model that
conforms to the CCADL metamodel using ATL model transformations. The
latter approach requires the smallest effort because it reuses existing in-
jectors and metamodels, and only requires us to specify a transformation
that maps the XML metamodel to our CCADL metamodel.

The transformation to instantiate a CCADL model based on an (injected)
XML source model is straightforward. Listing 8.3 on the next page con-
tains a fragment of this transformation. The rule matches all XML elements
named ' component’. For each it creates a Component in the CCADL model.
The type and name features are initialised using two helpers, getType and
getName. They navigate the XML model to extract the desired information.
For the type feature this is another XML Element that, in turn, matches
a rule that creates ComponentTypes. The other elements of the CCADL
metamodel are instantiated by similar rules.

Thttp://www.eclipse.org/m2m/atl (June 2007)

180 Chapter 8. Visualisation of DSMLs

Node

—name :String + children
-value :String
+ parent
| 1
Atiribute |[Text || Element |

Figure 8.5: XML metamodel

rule Component {
from el:XML!Element (
el.name=’Component’)
to c:CCADL!Component (
type <- el.getType,
ports <- el.children->select (e|e.name=’Port’),
name <- el.getName)

Listing 8.3: Mapping XML Elements to CCADL Components (ATL)

umL mapping The UML representation of components and connectors is
based on the strategies for modelling software architecture with UML de-
scribed by Garlan et al. [2002]. In Figure 8.4(c) on page 178 component
and connector types are depicted as stereotypes, components as classes,
and connectors as associations. Of the roles and ports we only explicitly
show ports that are not connected to a role. These are represented by
the input and output interfaces (depending on the type of port), depicted
here as small circles connected to the representation of their containing
component.

Listing 8.4 shows two rules of the corresponding ATL model transfor-
mation. The aAssociation rule instantiates an Association (asoc) for each
Connector (conn) in the source model. As our UML tool did not support
stereotypes on Associations, we initialise the name feature to mimic one. Al-
though not very elegant, this is acceptable when considering the goal of our
transformation: generation of diagrams for documentation. In UML an As-
sociation has a connection feature that is a set of AssociationEnds. In our
case, these represent the Roles of a Connector. For simplicity we assumed
a Connector has exactly two Roles. The connection feature is initialised to
the result of the rule that matches the roles of the Connector. Roles are
matched by the Associationknd rule that creates an AssociationEnd (aend)
for every matched Role (r). The isnaviagable feature is initialised depend-
ing on whether the matched Role is of type pipeout (true) or not (false). As

8.5. Industrial Application 181

rule Association {
from conn:CCADL!Connector
to asoc:UML!Association(
name <- ’'<<’ + conn.type.name + ’'>>',
connection <-conn.roles)
}
rule AssociationEnd {
from r:CCADL!Role
to aend:UML!AssociationEnd (
isNavigable <- r.type.name=’'pipeOut’,
participant <-
CCADL!Component->alllInstances () ->select (c|c.ports->includes (r.port))
)
}

Listing 8.4: Mapping CCADL Connectors to UML Associations (ATL)

such, we control the direction of the Association for representation of the
Connector.

Depending on the exact concerns the associated viewpoint addresses,
alternative mappings to UML can be implemented similarly, such as a map-
ping that explicitly shows ports and roles.

8.5 Industrial Application

In this section we discuss a case study in which we applied MDAV to an
architectural view in use for a class of control systems. Before discussing
the three steps of our approach, we briefly introduce the case study.

ASML, a large manufacturer of equipment for the semi-conductor in-
dustry, studies the migration to a new architecture for supervisory machine
control (SMC) components. In an advanced manufacturing machine, such as
the wafer-scanners developed by ASML, an SMC component is responsible
for the coordination of manufacturing activities in order to perform man-
ufacturing requests. In a layered control architecture, an SMC component
receives manufacturing requests from components in a higher layer, and
coordinates the execution of manufacturing activities by components in a
lower layer. Traditionally, the design for SMC systems is based on state
transition models. The new approach [Van den Nieuwelaar, 2004] is based
on task-resource models.

Metamodel Using the task-resource approach, SMC systems consist for a
large part of generic, reusable components defined by a product-line archi-
tecture. The remaining application-specific components are generated

182 Chapter 8. Visualisation of DSMLs

based on a model of an SMC system in terms of tasks and resources. The
associated metamodel is shown in Figure 8.6(a) on page 184.

Task-resource models consist of a static and a dynamic part. The static
part models the controlled System by specifying the Behaviours (manufactur-
ing activities) it can perform, the Capabilities this requires, and the Resources
(subsystems) it controls to offer those capabilities. The dynamic part mod-
els the manufacturing requests the component can perform in terms of
(simple, conditional, or compound) Tasks that are of a specific Behaviour.
Precedence relations between tasks are used to specify restrictions on exe-
cution order.

Based on the metamodel, tools can be developed for the generation of
source code, model validation, and other software engineering tasks that
can be automated. We used it, for instance, as the target of a model trans-
formation that automates the migration of SMC components from a state-
based to a task-resource-based architecture (see Chapter 7).

Model creation In this case, task-resource models were obtained by the au-
tomatic migration of legacy SMC models (based on state machines) to mod-
els based on the task-resource architecture. As such, a means to create
task-resource models directly was not yet required. When SMC systems are
developed based on the task-resource approach from scratch, such means
would be required. In that case, one of the alternatives presented in the
previous section can be used.

An example of a generated task-resource model (as result of the au-
tomated migration) inspected using the EMF editor is depicted in Fig-
ure 8.6(b) on page 184. This editor was generated based on the metamodel
we defined (Figure 8.6(a) on page 184). Apart from this editor there was no
(more advanced) editor available for these models.

UML mapping For the documentation of SMC systems based on the task-
resource architecture we defined a viewpoint. Due to the lack of a con-
venient editor to visualise task-resource models and to take advantage of
available tooling and experience, the viewpoint prescribes that such mod-
els are depicted using UML diagrams. As such, the alignment of the task-
resource view documentation with the task-resource models from which
code can be generated, involved a mapping of the corresponding metamodel
to UML.

For the documentation of a conforming view, separate diagrams are
used for the static part and for each of the possible requests of the dy-
namic part. For the former, a UML Class Diagram is used in which a Class
with appropriate Stereotype is used to represent a Behaviour, Capability,
or Resource. For the latter, UML Activity Diagrams (one for each request)

8.5. Industrial Application 183

rule ActionState {

from st:TRS!SimpleTask

to state:UML!ActionState (
name <- st.behaviour.name,
stereotype <- stype),

stype: distinct UML!Stereotype foreach (s in st.sTypes) (
name <- s,
baseClass <- ’ActionState’),

Listing 8.5: Mapping TRS SimpleTasks to UML ActionStates (ATL)

are used that effectively represent tasks and their precedence relations as
task graphs. We used ATL to define corresponding mappings from the task-
resource metamodel to UML class models for the static part, and to UML
activity graphs for the dynamic part. A UML tool visualises these models as
a UML Class Diagram, and a UML Activity Diagram, respectively.

As an example, the rule in Listing 8.5 maps a SimpleTask to the element
that represented an activity in a UML Activity Diagram: ActionState. The
name feature of the generated ActionState (state) is initialised using the
name of the behaviour associated with the SimpleTask (st) that matched
the rule. The rule also creates a set of Stereotypes (stype). In that tar-
get element the sTypes helper determines the resources required by the
behaviour associated with the matched SimpleTask. This set is used to
generate a set of ActionState Stereotypes used to initialise the stereotype
feature of the generated ActionState.

Application of the transformation we defined to the model partly de-
picted in Figure 8.6(b) on the following page, results in a class model and
an activity graph for each request. One of those is visualised as an Activity
Diagram in Figure 8.6(c) on the next page. Tasks are represented by Activ-
ities, required resources by Stereotypes on Activities, precedence relations
between Tasks by the order of the Activities, fork bars were used to indicate
tasks that can be executed concurrently (i.e., tasks without precedence re-
lations), and conditional Tasks (OrTasks) were mapped to choice nodes. As
such, to complete the migration, models as the one depicted in Figure 8.6(b)
on the following page are used for model-based generation of source code,
while diagrams as the one in Figure 8.6(c) on the next page are used for
view-based documentation. Using model transformations the diagrams for
this documentation are generated automatically.

184 Chapter 8. Visualisation of DSMLs
Resource *
+name :EString
+ respurces
+ fulfils
Capabilit . SystemDefinition Request
d y 4 + requests 9
+name :EString — +name :EString
+ capgbilities 1.
+ capability + predecessors
' P " + tasks
1.° iffalse
CapabilityUsage Task
+ beginState :Eint | +id:EString -
+endState :Elnt + tasks A + iftrue
+ requires *
OrTask
AndTask
- 1.7 +condition :EString
Behaviour
£s + behaviours
name :EStrin Er——
* 9 SimpleTask
+ behaviour
Static Dynamic
(a) Task-resource metamodel

v 4 System Definition
< Behaviour check RCB comm.
b <4 Behaviour finish exchange
< Behaviour report done
b
b

4 Behaviour move UR to rotate
< Behaviour transfer w2u
4 Capability UR
< Capability ws
< Resource UR
< Resource WS
¥ 4 Request unload_wafer
¥ 4 Or Task combined_load
<4 And Task combined_load
¥ <4 And Task not (combined_load)
¥ < And Task Concurrent_State
< Simple Task finish exchange
4 Simple Task move UR to rotate

4 Simple Task check RCB comm.

4 Simple Task report done

(b) Task-resource model

Figure 8.6: Task-resource metamodel,

check RCB comm.

<<UR ,WS>>
transfer W2U

[not(combined_load)]
<>

[combined_load]

<<UR>>
move UR to rotate

<<WS>>
finish exchange

check RCB comm.

(c) Task-resource dia-
gram (UML)

model, and UML representation

8.6. Discussion 185

8.6 Discussion

Our approach has several benefits. It reduces the effort required for the
introduction of MDE approaches by circumventing the need to specifically
develop graphical editors for the visualisation of DSML models. Further-
more it allows to introduce an MDE approach gradually; UML diagrams can
continue to be used for documentation purposes. As such, in the case of
software architecture, it facilitates the integration of ADLs and supporting
tools in industrial development processes.

As presented here the approach uses MDA technology for model transfor-
mations and metamodelling. The underlying ideas are applicable to other
MDE approaches as well: either by using the available transformation and
metamodelling technologies for that MDE approach, or by implementing a
bridge to MDA. We gave an example of the latter in Section 8.4.2 for XML.

Of course, the diagrams that are generated automatically using our ap-
proach, only constitute a minor part of the complete documentation. Ar-
chitectural views, for instance, typically also document (some of) the ratio-
nale and trade-offs that underlie design decisions [Clements et al., 2002a].
In fact, an architectural view can be seen as ‘diagrams + explaining text’.
Although the ‘explaining text’ is not automatically updated using our ap-
proach, it does provide a starting point for doing so (i.e., the newly gener-
ated diagram).

Whether a mapping to UML is feasible, depends on the type of models
involved and the documentation requirements. A potential risk of our use
of UML, is that the UML semantics might not match with the semantics
of the represented (DSML) model elements, resulting in ambiguities. In
these cases appropriate stereotypes should be introduced. As an example,
consider the stereotypes in Figure 8.4(c) on page 178. These stereotypes
are included in the ATL mappings we defined.

In the case that the semantic gap between the involved metamodel and
UML is too large to be solved with stereotypes, instead of UML, more generic
graph languages such as dot! and GXL? could be used as target of the map-
ping.

The effort required for specification of the mappings to UML is mainly
determined by the complexity and size of the DSML metamodel. Typically,
these are relatively small (e.g., compared to UML). Furthermore, such map-
pings can be either specifically developed (as in the case of task-resource
models) or reused (as in the case of ADLs). In the latter case they only need
to be specified as a model transformation.

Ldot - Language used by Graphviz (Graph Visualisation Software), see http:/www.
graphviz.org (June 2007)
2GXL - Graph eXchange Language, see http:/www.gupro.de/GXL (June 2007)

186 Chapter 8. Visualisation of DSMLs

Our approach focuses on visualisation of DSML models. It does not offer
visual editing for models conforming to complex metamodels. When that
is required, editors have to be developed specifically. Technology to partly
generate such editors is provided in the Eclipse Graphical Editing Frame-
work! (GMF) using EMF. Based on the specification of a concrete syntax
and the abstract syntax specified by a metamodel this plugin can gener-
ate an editor. However, in the case that only visualisation is required, our
approach offers a lightweight alternative.

Another alternative is to simply manually create documentation instead
of automatically as in our approach. In that case the diagrams correspond-
ing to some software models are created (drawn) manually using modelling
or more generic tools. Obviously, consistency becomes an issue with such
an approach.

8.7 Related Work

Fondement and Baar [2005] present an approach to specify (graphical) con-
crete syntax by extending metamodels. Based on this approach tools could
be developed to (partly) generate corresponding editors. Instead, we take
advantage of existing UML tools.

Medvidovic et al. [2002] investigate the use of UML in the domain of
software architecture. More in particular, they investigate how modelling
constructs used in ADLs (i.e., a type of DSML) can be represented using UML.
They consider two approaches for using UML to model software architec-
tures: (1) use UML ‘as-is’, and (2) use UML’s extension mechanisms. They
conclude that UML has a number of limitations when used to model soft-
ware architectures. The lack of architectural modelling constructs makes
it necessary to adopt specific interpretations of UML model elements or to
rely on OCL to constrain the use of model constructs. In this chapter we
investigated a third strategy that is based on the definition of metamodels
for ADLs and their mapping to UML using model transformations.

Five strategies for representing architectural structure in UML are de-
scribed by Garlan et al. [2002]. They conclude that there is no single best
way to do this. Furthermore, they identify a trade-off between complete-
ness and legibility: strategies that assign different UML model elements for
each ADL construct (completeness) tend to be very verbose and hence poorly
readable (legibility). One of their recommendations to solve this, is to con-
tinue to use ADLs but to provide mappings to object-oriented notations. In
the current chapter we specified such mappings using model transforma-
tions, which makes them automated.

Thttp://www.eclipse.org/gmf (June 2007)

8.8. Concluding Remarks 187

Where we propose to use MOF for the definition of DSMLs, Dashofy et al.
[2005] use XML for the definition of ADLs. It provides generic high-level
XML schemas that can be extended for development of ADLs. They leverage
the available tool support for XML. As we use MOF, we leverage available
UML and MOF tools as well. This enables, for instance, the specification of
transformations on a higher level of abstraction by a model transformation
language.

8.8 Concluding Remarks

In this chapter we proposed to combine DSML models and UML diagrams
for model-driven software documentation. Where MDE approaches typically
aim to use DSML models to automatically create source code, our approach
complements MDE with the (partial) creation of documentation.

The main motivation for our approach is the observation that although
DSMLs have clear advantages over general-purpose modelling languages,
it requires considerable effort to develop graphical editors and represen-
tations. In particular, the definition and implementation of their concrete
syntax or notation is much more involved than that of their abstract syn-
tax, which is supported by technologies, such as MOF and EMF. This is a
problem, as graphical representations of models are an essential part of
software documentation.

Our approach uses model transformations to (automatically) map DSML
models to UML models. These UML models are easily visualised as UML dia-
grams using available modelling tools. While the DSML models can be used
for code generation and other automated software engineering tasks, these
diagrams are used in the documentation. As such, our approach allows to
optimise both completeness (by the ADL model) and legibility (by the UML
diagram) of architecture descriptions. Furthermore, part of the documen-
tation can be automatically updated as the software system evolves.

Application of our approach requires the definition of a DSML metamodel
using MOF and mappings to UML using model transformations. This needs
to be done once for each DSML used. Furthermore, a means to create asso-
ciated models is required. We gave several examples for this. Compared to
the development of a complete graphical editor for the defined metamodel,
our approach is more lightweight.

We evaluated our approach in the domain of software architecture, for
which we defined MDAV. It refines the industry standard for architecture
documentation (IEEE Std 1471-2000) by linking architectural views (docu-
mentation) to architectural models using model transformations and UML.
MDAV is easily generalised to other domains. As an example, we discussed
an industrial application in the domain of control systems.

188 Chapter 8. Visualisation of DSMLs

Currently we are investigating how the proposed model transforma-
tions can best be integrated with existing tooling and development pro-
cesses. Another problem we are investigating is the (automatic) derivation
of metamodels (e.g., based on MOF) from grammars (e.g., based on EBNF). A
solution to this problem increases the effectiveness of our approach when
applied to existing DSMLs that are not based on MDA technology.

Chapter

Conclusion

The goal of this thesis is to investigate techniques that reduce the risks
and costs involved in the evolution of software architectures. To structure
this problem we introduced four software evolution tasks to be investigated
further: evaluation, conformance checking, migration, and documentation.

As a conclusion, in this chapter we revisit the research questions we
raised in the introduction of this thesis using our experiences and observa-
tions as discussed in the previous chapters. The main question was:

RQO0 How can the evolution of software architectures be supported?

Below we address this question by first discussing the subquestions we
raised:

RQ1 How to integrate the support for software evolution tasks in practice,
considering the informal use of modelling languages and preference
for proven technologies in industry?

RQ2 What is the impact of the use of software product lines and platforms
on the support for software evolution tasks?

RQ@3 To what extent can the support for software evolution tasks be auto-
mated by the use of model-driven engineering?

Where the chapters of this thesis are mainly set up according to the
software evolution tasks introduced in Chapter 1, the outline of this con-
clusion is based on our research questions. After a list of our contributions,
the results for each of them are discussed in a separate section below. We
conclude with a final list of recommendations and future work.

189

190 Chapter 9. Conclusion

9.1 Contributions

In the process of finding answers to our research questions, we surveyed
the current state of the practice of software engineering in industry and
developed solutions that support the software evolution tasks we defined.
Together with the answers to our research questions, these are the main
contributions of this thesis:

e an overview of the software engineering technologies used in industry
for the development of embedded software (see Chapter 3);

e an approach for the evaluation of product-line architectures (see
Chapter 4);

e a model-driven approach for checking the conformance between state-
based and interaction-based behavioural models (see Chapter 5);

e a model-driven and view-based approach for automatically check-
ing the conformance between implementation and architecture (see
Chapter 6);

e a model-driven approach for the migration of supervisory machine
control architectures (see Chapter 7); and

e a model-driven approach for simultaneous evolution of models and
documentation based on views, the Unified Modeling Language!
(UML), and the Model Driven Architecture? (MDA) (see Chapter 8)

One of the distinguishing characteristics of our work lies in the fact that
we take into account several advances in software development practices,
that is, software product lines and model-driven engineering (MDE). At the
same time we consider the impact and application of these approaches in
terms of software evolution, which takes up most (up to 90%) of the time, ef-
fort, and money of software development projects and organisations [Lientz
et al., 1978; Pigoski, 1996]. Furthermore, we explicitly ensured that the
methods and techniques we proposed are amenable to be integrated in in-
dustrial development practices.

9.2 Integration in Practice (RQ1)

An important observation from the survey we reported on in Chapter 3 is
the gap between software engineering technologies actually used in indus-
try and those developed by the research community. To reduce this gap,

Thttp://www.uml.org (June 2007)
2http://www.omg.org/mda (June 2007)

9.2. Integration in Practice (RQ1) 191

we continuously considered industrial integration as an important aspect
of the solutions we proposed. In particular we aimed at reducing the or-
ganisational impact of our solutions and addressed the adoption of MDA
standards.

Reducing Organisational Impact Instead of defining new languages and meth-
ods, we used existing industrial standards as much as possible (i.e, those
related to the MDA) and took into account current industrial practices, such
as the informal use of modelling. In general, we aimed at using and ex-
tending (similar) technologies as already used in practice. Additionally, we
tried to minimise the resources required to apply our solutions.

We did not advocate the use of new languages if not strictly necessary.
In the cases where we did define new languages, these are used along-
side (Chapter 6) or are mapped to (Chapters 7 and 8) languages already
used (i.e., UML). Moreover, for their definition we used the MetaObject
Facility! (MOF), the metamodelling language of MDA. The advantage is
that MOF uses well-known object-oriented concepts to define modelling lan-
guages. Furthermore, MOF is supported by an increasing number of tools
and open-source implementations are available (e.g., the Eclipse Modeling
Framework? (EMF)).

Although UML is a well-defined language (at least syntactically), even
in organisations where UML is used, models are often very informal. Such
models, are more used as illustrative diagrams than precise software spec-
ifications. To account for the informal use of modelling languages in gen-
eral, and in particular that of UML, our solutions for conformance checking
(Chapter 5) and migration (Chapter 7) involve a specific normalisation step.
Such a step is necessary because our aim to automate these tasks by means
of model transformations, requires that input models strictly conform to a
metamodel.

Currently, the normalisation step is essential for the application of our
model-driven solutions for the software evolution tasks in industry. The
main reason is that at present modelling in industry can be characterised
as immature [Kleppe et al., 2003], which we also observed during our sur-
vey (see Chapter 3). However, when the use of MDE technologies in general,
and the associated standards in particular becomes more wide-spread, we
expect that the modelling maturity level in industry will rise. As models
become more precise, the need for normalisation is reduced.

To increase the potential for integration in practice it is important
that a software engineering technique does not require a software devel-
opment organisation to change much of its current way of working and

Thttp://www.omg.org/mof (June 2007)
2http://www.eclipse.org/emf (June 2007)

192 Chapter 9. Conclusion

that the organisational impact in terms of resources of the technique is
minimal. Therefore, in Chapter 4 we reduced the number of stakeholders
involved in the evaluation approach as much as possible. Furthermore,
by reducing the involvement per stakeholder, the organisational impact is
minimised. The resulting architecture evaluation process is named Dis-
tributed SAAM (DSAAM) and is based on the Software Architecture Analysis
Method (SAAM), which is extensively documented [Kazman et al., 1994,
1996; Clements et al., 2002b]). With stakeholder involvement reduced,
DSAAM still produced valuable results.

Adoption of MDA Standards Owur proposal to generate UML-based documen-
tation from domain-specific language (DSL) models in Chapter 8 en-
ables the adoption of MDE approaches. It is expected that in the fu-
ture MDE approaches will be more based on domain-specific modelling
languages (DSMLs) than on UML [Booch et al., 2004; Bézivin et al., 2005].
This requires a considerable shift from the current wide-spread use of UML.
Additionally, the implementation of tool support for DSMLs requires signif-
icant effort, for instance, to implement model editors and visualisations.
This becomes even more problematic when an MDE approach requires mul-
tiple DSMLs to completely specify and subsequently generate applications.
In such cases, a mapping to UML can be used, while moving to complete
support for those DSMLs with respect to modelling and visualisation tools.

The use of MDA technology, most notably of UML, MOF and XML Metadata
Interchange! (XMI), throughout the chapters of this thesis further supports
the integration of our solutions in practice. The use of these standards
takes advantage of existing tooling and skills of present-day software prac-
titioners. However, although their use is an improvement, the level of in-
teroperability as promised by these standards is not achieved. Without in-
vestigating the underlying reasons, this was also observed by Lundell et al.
[2006]. Among the reasons we encountered during our research are in-
correct and incomplete implementation of standards by tool vendors (espe-
cially of UML), and the use of different versions of UML, MOF, XMI, and com-
binations thereof. The consequence is that additional transformations are
required on model serialisations before they can be exchanged between dif-
ferent tools. Because of the low-level modifications required in such cases
Extensible Markup Language® (XML) processing tools, such as Extensible
Stylesheet Language Transformations® (XSLT), can be used for this.

Thttp://www.omg.org/mda/specs.htm#XMI (June 2007)
2http://www.w3.org/XML (June 2007)
3http://www.w3.org/TR/xslt (June 2007)

9.3. Software Product Lines (RQ2) 193

9.3 Software Product Lines (RQ2)

In Chapter 3 we signalled a trend towards approaches that allow a more
structured form of reuse compared to the ad hoc type of reuse that is typ-
ical in industry. In this context product lines and MDE are two important
developments. We observed that different companies are organising their
software development such that their products are developed as part of a
software product line.

The impact of a product-line architecture on our software evolution
tasks is two-fold:

e The use of software product lines makes the tasks more complicated
because the corresponding product-line architectures are more ab-
stract, apply to multiple products, and, hence, involve a larger number
of stakeholders; their scope is larger with respect to the products and
stakeholders involved.

e On the other hand, the use of an architecture that applies to a whole
set of products improves the return on investment for solutions that
apply to all these product-line members.

Scope of Software Product Lines In Chapter 4 we discuss how the use of
product-line principles makes software architecture evaluations more com-
plex. The findings of such an evaluation are more based on indirect evi-
dence, as scenarios are identified for product-line members and not for the
product line as a whole. Furthermore, a product-line architecture has a
much wider scope than a single-product architecture, thereby increasing
the number of stakeholders. Our approach takes into account both these
effects.

We refined the typical classification of scenarios as either direct (i.e.,
scenarios that do not require changes to the current architecture) or in-
direct (i.e., scenarios that do require changes to the current architecture)
by distinguishing between two types of direct scenarios: concrete scenarios
and floating scenarios. The former are explicitly supported by the product-
line architecture, while the latter are not explicitly supported, but not pre-
vented by it as well (remember that a software architecture is both permis-
sive and restrictive with respect to the implementations it allows).

The number of scenarios that will be characterised as floating in a
product-line architecture evaluation depends on its maturity. By the matu-
rity scale proposed by Bosch [2002], Océ’s product-line architecture can be
characterised as a platform. This means that commonalities are identified
and separated out as a platform, but that the variabilities are not made
explicit. This results in a larger number of floating scenarios. However,

194 Chapter 9. Conclusion

if the maturity is raised by the identification of variabilities and their ex-
plicit specification in a product-line architecture, a larger number of direct
scenarios can be classified as concrete. Thus, a more mature product-line
allows a more complete evaluation.

A drawback of scenario-based architecture evaluation approaches is
their high organisational impact caused by the involvement of the archi-
tecture’s stakeholders in a joint evaluation session, which can take up to
several days. In the case of a product-line architecture this problem is
particularly important. Such architectures have a larger scope resulting in
an increased number of stakeholders. Therefore, we restricted the number
of stakeholders involved in the joint evaluation session and consulted other
stakeholders separately. This significantly reduced the organisational
impact of the evaluation.

Increased Return on Investment As we have seen in this thesis, the use of MDE
approaches requires considerable effort for the definition of metamodels,
and transformation and normalisation rules. For evolution tasks that are
carried out on a regular basis, this effort might be justified. Evaluation or
conformance checking are examples of tasks that are carried out repeatedly
at different points in time. A particular migration, however, is typically
carried out only once. The improved reliability of an automatic migration
based on MDE is possibly not sufficient to motivate the extra effort required.

The use of product lines allows to justify the required effort also in the
case of a migration, as this effort is split over each of the product-line mem-
bers. As such, the increased return on investment for product-line assets,
such as architecture designs and implementations of architectural compo-
nents, also applies to the model transformations and metamodels devel-
oped for the automation of particular software engineering tasks. As an
example, in the case of the migration discussed in Chapter 7 for which we
defined an approach that is domain specific to some extent, we could reuse
the concerns we identified, their corresponding patterns, metamodels, and
transformation rules.

9.4 Model-Driven Engineering (RQ3)

Our goal was to reduce the risks and costs of architecture evolution. To this
end, we aimed at automating our solutions using MDE techniques. Automa-
tion is made possible by considering the involved models (in architectural
views) as models in the MDE sense, that is, specified using a well-defined
(at least syntactically) modelling language. With MDE, modelling languages
are defined using metamodels. As such, this requires the creation or reuse

9.4. Model-Driven Engineering (RQ3) 195

Source Space MDE Space Target Space

Metametamodel 1 —>|Metametamodel | Metametamodel

! sonforms to yconforms to conforms to conforms to

I
]]]]
. | Normalisation Rules | . | Transformation Rules | . |Generation Rules .
1 /I\ 1 /I\ 1 /I\ 1
I I
I 4+ source NG target 1 source: target, 1 source | 7 target !
1 1
Metamodel ! Metamodel ! Metamodel ! Metamodel
1 1 1
represented b
! P dn I represented by ! ! ! !
.) ,) ,conforms to | conforms to !
Iconforms to | conforms to | | | orms to |
. . . represented by .
Source 1 Source Model | 1 |Target Model 1 Target
+ source 1 target 1 + target sourpe| + target
| source | \
1 1 1
| Normalisation | |Evolution Transformation | | Generation |

Figure 9.1: Megamodel for model-driven evolution of software architectures

of suitable metamodels. In particular, we employed MDA standards and
their supporting tools.

In terms of the effort required for the application of MDE, the automa-
tion of a software evolution task involves a trade-off between two aspects:
the process of (partly) automating the task, and the subsequent execution
of the (partly) automated task. The former determines the costs of following
a model-driven approach, while the latter relates to the resulting benefit.
We explain all aspects of the deployment of MDE techniques for the soft-
ware evolution tasks by means of the generic framework in Figure 9.1. In
Section 2.3.2 and Figure 2.6 on page 33 we referred to such a framework as
a megamodel.

A Megamodel for Model-Driven Evolution of Software Architectures The different
MDE solutions for the software evolution tasks we defined and discussed
in this thesis lead to the generic megamodel for model-driven evolution of
software architectures depicted in Figure 9.1. This megamodel illustrates
the artefacts and their relationships involved in the model-driven support
of a software evolution task. We revised and extended the two-phased mi-
gration process of Figure 7.3 on page 137 such that the processes we applied
in the other chapters fit the resulting evolution megamodel as well.

196 Chapter 9. Conclusion

The megamodel involves three technological spaces (see Section 2.3.4): a
Source Space, which contains the Source artefacts for a particular evolution
task; an MDE Space (i.e., modelware), in which we apply model transfor-
mations to support a software evolution task; and a Target Space, in which
the Target artefacts are generated. Depending on the evolution context, the
Source and Target may also be in the MDE space. Other possibilities in-
clude, the XML and grammarware spaces.

The Evolution Transformation is carried out in the MDE Space and trans-
forms a Source Model into a Target Model. It is specified (i.e., represented by)
a set of Transformation Rules in the MDE Space. This implies that these rules
are defined using a model transformation language. This Evolution Trans-
formation is specific to the task at hand. The Transformation Rules are
specified in terms of a source and a target Metamodel associated with the
source and target model of the transformation.

As can be seen from this thesis, often no model is available that is suit-
able to serve as source of the Evolution Transformation. In such cases an
additional step is required. Normalisation is the execution of a set of Normal-
isation Rules with the aim of populating a Source Model in the MDE Space
suitable for further transformation using model transformations.

Finally, in the Generation step the Target for the particular evolution task
is created according to a set of Generation Rules. The target of the Generation
step is in a specific Target Space, for instance, the grammarware or XML
space.

All involved model-level artefacts (see Figure 2.3 on page 30), that is,
the Source, Source Model, Target Model, and Target conform to a Metamodel.
It depends on the type of technological space what kind of Metamodel is
used, such as a grammar, MOF metamodel, or XML schema. In turn, these
metamodels conform to the governing Metametamodel for that technological
space, for instance, MOF in the case of the MDA space.

Normalisation The normalisation step we introduced in several cases is not
always fully automated. It is this normalisation step that allows to auto-
mate subsequent steps. Normalisation is for a large part context depen-
dent. The amount of normalisation required depends on the type of source
artefacts, the modelling maturity level, modelling conventions, the scope of
the source language, and the transformation rules.

When the Source Space of the software evolution task is not the same
as the MDE Space, normalisation at least includes a bridge between that
Source Space and the particular MDE Space (e.g., MDA). In some cases nor-
malisation involves not more than that bridge. If the source is based on a
well-defined language the bridge can be fully automated.

9.4. Model-Driven Engineering (RQ3) 197

Normalisation in Chapter 6 was slightly more involved. Here, after the
bridge between the grammarware and MDA spaces, for which we reused
existing grammarware to XML and XML to MDA bridges, also some abstrac-
tion steps were required. We specified these abstraction steps using model
transformations. Hence, this normalisation step was also fully automated.

In other cases normalisation is more difficult and requires replacement
of custom annotations (see Chapter 5), the application of a UML profile,
or the application of standard idioms for particular concerns (see Chap-
ter 7). These cases involve manual effort for normalisation that requires
domain knowledge. As an example, consider the use of UML, a general-
purpose language (GPL), in Chapter 7. UML allows to express a particu-
lar concern using a multitude of different idioms. Therefore, additional
constraints and modelling conventions are required to reduce the com-
plexity of model transformations. Otherwise such transformations have
to take into account too many possible idioms for a particular concern, as
we illustrated in Chapter 7. As a solution we identified the relevant con-
cerns in the domain of supervisory machine control (SMC) systems. For
each concern, we defined a single corresponding design idiom, which con-
forms strictly to a corresponding metamodel. We defined a UML-SMC profile,
which consists of stereotypes and well-formedness rules in the Object Con-
straint Language! (OCL) corresponding to these design idioms. Normal-
isation involves applying stereotypes to appropriate model elements and
modifying the source model in such a way that concerns are consistently
addressed by their corresponding design idiom without violating any of the
well-formedness rules of the profile.

For complex normalisations, we identified a trade-off between complex
transformation rules to account for a large idiom of possible input patterns,
or a more extensive normalisation procedure to account for a large number
of restrictions on the source models (i.e., to limit the size of the source lan-
guage).

So, even in cases where the source of an evolution task is a valid UML
model (i.e., a model that conforms to the UML metamodel), normalisation
can be required to restrict the number of possible source idioms resulting in
a less complex evolution transformation. This was necessary in Chapter 7
and to a lesser extent also in Chapter 5.

The need for restricting UML like this, raises the question whether the
use of a DSML defined using MOF in such cases wouldn’t be more appropri-
ate. This is a matter of ongoing debate between two schools of thought in
the MDE community [France and Rumpe, 2007]. One argues in favour of the
use of an extensible general-purpose modelling language, while the other
promotes the definition of DSMLs. In current practice, however, the lack of

Thttp://www.omg.org/technology/documents/modeling_spec_catalog. htm#OCL (June 2007)

198 Chapter 9. Conclusion

sufficient tool support for the definition of DSMLs and the wide-spread use
of UML are for companies often sufficient reasons for using UML.

Evolution Transformation Except for evaluation, our solutions for the soft-
ware evolutions tasks were at least partly automated by specifying them
as model transformations in the Atlas Transformation Language [Jouault
and Kurtev, 2005] (ATL). In our solution for the conformance checking tasks
in Chapter 6, we had two source models. In general, we specified the differ-
ent steps of an evolution task in separate model transformations. Typically,
multiple of such transformations are required.

Now that MDE approaches that involve the definition and application
of model transformations get more in use, companies might want to recon-
sider their use of UML. In our research we experienced that the use of UML
results in complicated definitions of model transformations. The reasons
for this are the aforementioned size of the UML metamodel, as well as its
complexity and the fact that most UML modelling tools only partially imple-
ment the UML specification or, even worse, incorrectly. The former relates to
the trade-off we identified between the number of source model restrictions
involved in the normalisation procedure and the complexity of subsequent
model transformations.

Because the current state of modelling in industry is such that lan-
guages as UML are only used informally and free-form box-and-line dia-
grams are also often used, the application of model-driven approaches in in-
dustrial contexts typically requires the definition of metamodels. Of course,
transformation rules also need to be specified. The extent to which the ef-
fort that this requires is justified depends on the particular context. As
discussed above in the case of product lines the return on investment for
this effort is increased. Here, the use of standards for modelling, meta-
modelling, and model transformations, offers a very strong benefit. They
enable, for instance, the creation of repositories to share these MDE arte-
facts among different projects, product lines, and companies. In fact, we
contributed the model transformations we defined in Chapter 5 for the
generation of a state model from a set of scenarios to such a repository?.
In other cases, we reused metamodels (e.g., metamodels for DOT and XML)
and transformations (e.g., DOT to text) available from repositories ourselves
as well.

Generation The final (code) generation step is well-studied in the MDE lit-
erature. For that reason, we decided not to focus on this step in this thesis,
directing our attention to the normalisation and transformation steps in-
stead. Nevertheless, after the execution of the evolution transformation(s),

Thttp://www.eclipse.org/gmt/atl/atlTransformations (June 2007)

9.5. Support for Evolution of Software Architectures (RQO0) 199

typically, some output needs to be generated, possibly in a different techno-
logical space. The result can be, for instance, source code, diagrams, or an
XML representation of the target model. Examples of such generation steps
in this thesis include the following:

e In Chapter 5 generation encompasses serialising the result of the evo-
lution transformation using XMI into XML with the aim of loading the
target model in a UML modelling tool for visualisation. Essentially,
the XMI standard provides the necessary generation rules in this case,
and acts as a bridge between the MDA and XML space.

e In Chapter 6 we generate DOT code in the grammarware space from
the target model. The generation rules include rules to map the tar-
get model of the evolution transformation to a (MOF-based) DOT model
and rules to generate DOT source code from that DOT model. We de-
fined the former ourselves, and reused the latter from a repository of
model transformations.

e Finally, in Chapter 8, the goal of the evolution task is to visualise
DSML models as UML diagrams to be included in documentation. Here,
the generation step is the transformation of a UML model in some
graphical format, such as Scalable Vector Graphics! (SVG) (in the XML
space) or PostScript (in the grammarware space).

9.5 Support for Evolution of Software Architectures (RQ0)

Having looked at the three subquestions, we return to the main question,
how to support the evolution of software architectures. We first revisit the
four software evolution tasks, and then discuss the scope of the industrial
case studies we conducted.

Software Evolution Tasks By validating the research results by means of in-
dustrial case studies, an evaluation of the applicability of our techniques in
to the software evolution tasks in industrial practice was obtained.

For evaluations, in contrast with other approaches (e.g., Gallagher
[2000]; Olumofin and Misli¢ [2006]), DSAAM specifically takes into account
the difference in scope (i.e., with respect to products and stakeholders)
between single-product architectures and product-line architectures. In
fact, Océ used the results of our evaluation to decide to continue with the
development (evolution) of their reference (product-line) architecture.

Thttp://www.w3.0rg/Graphics/SVG (June 2007)

200 Chapter 9. Conclusion

We discussed two approaches for conformance checking. One is fully
automatic, while the other requires a manual comparison. We applied the
latter in Chapter 5 to the embedded software for copiers developed by Océ
and a small ATM example. In both applications we detected inconsistencies
that would have been difficult to detect without our support. Although the
actual comparison is manual, it is made possible by our automatic mapping
between two types of architectural models, which we specified using model
transformations. In Chapter 6 we focused on also automating the actual
comparison step.

For the migration task our automatic, model-driven solution offers clear
benefits with respect to the alternative, a manual migration. The need for
domain experts is reduced and the necessary definition of a suitable meta-
model increases the understanding of the migration itself and the target
architecture. Finally, because the defined transformation and normalisa-
tion rules are generic, they can be reused for the migration of other SMC
components. This was illustrated by the migration of a second SMC compo-
nent, for which we only had to define a few extra transformation rules to
include features of the target architecture that were not relevant in the first
case. Here, the use of product-line principles for the development of these
SMC components, justifies the effort required for applying a model-driven
migration approach.

Our solution for the documentation task offers an alternative for devel-
oping a complete (graphical) notation and corresponding editor for a DSML.
Although it might not always be possible to define a suitable mapping to
UML due to the semantic gap between UML and the DSML, our solution has
the benefit of being more light-weight. As such, our approach is particu-
larly suited for situations where graphical editing of DSML models is not
(yet) required, for example, when a company is gradually migrating from
UML to full DSML support.

Our results demonstrate the applicability of model-driven solutions to
specific software evolution tasks. For the software evolution tasks we con-
sidered, we proposed solutions that take into account product-line archi-
tectures (opposed to single-product architectures), aim to reduce organisa-
tional impact, or are model-driven. Furthermore, we extend and use tech-
nologies that have already proven their applicability in practice, such as
SAAM and MOF.

Embedded Software Although our solutions were investigated in the context
of concrete (industrial) problems, our evaluations show that they can be
applied (to some extent) to our software evolution tasks for a broader class
of systems. In the introduction we also raised the question whether our
results only apply to the evolution of embedded software. To answer this

9.6. Future Work and Recommendations 201

question we have to decide whether a software system’s ‘embeddedness’ is
relevant from the perspective of the software evolution tasks we identified.

Our work applies to a special type of software in terms of the case stud-
ies we conducted; all were in the domain of embedded software. A com-
mon perception is that developing embedded software is different from de-
veloping other kinds of software because of some specific characteristics:
embedded software has a dedicated function, and is embedded in, and re-
active and logically connected to a physical system composed of hardware
(e.g., mechanical, electronic, or optical components) and software. These
characteristics make that embedded software has some specific properties
that make developing embedded software different from a technical point
of view. As an example, in many cases real-time constraints play an im-
portant role, as well as size of memory footprints. Furthermore, embedded
software often needs to comply to safety constraints (in the case it controls
a physical system that might cause physical damage).

So, indeed embedded software has many specific characteristics. How-
ever, most important for software evolution, the topic of our research, is the
fact that this type of software is embedded in a physical system. Although
we cannot conclude from this that software evolution is different for embed-
ded systems, it does make evolution unavoidable. In fact, the two software
evolution laws discussed in Section 2.1 only apply to a special class of sys-
tems. Lehman [1980] defines this class of, so-called, E-type systems, as
the class of systems of which the specification includes a model of the ‘real’
world. The embedded systems such as those studied in our case studies are
prototypical examples of E-type systems. Therefore, we conjecture that our
results are valid for E-type systems in general, and not just for embedded
systems.

9.6 Future Work and Recommendations

In this thesis we investigated how to support four different software evo-
lution tasks. To this end, we defined solutions that are model-driven and
take into account the use of product lines. To enable industry to integrate
our solutions in their development processes, we minimised their organi-
sational impact by reusing proven technologies and standards as much as
possible and limiting the required additional effort. In most cases we inter-
preted the software evolution tasks as model transformation problems and
provided suitable transformation rules, which can be executed automati-
cally.

In the chapters of this thesis we raised many issues to be investigated
further that include, supporting software evolution tasks in other techno-
logical spaces, development of hybrid approaches, and management and

202 Chapter 9. Conclusion

evolution of modelware artefacts. To conclude we briefly revisit them be-
low.

We primarily used MDA model transformations in ATL to support soft-
ware evolution tasks. Similar support can also be developed in other
technological spaces. In the grammarware space, for instance, also for-
malisms and tools are available for the definition of languages and trans-
formations, such as the ASF+SDF Meta-Environment [Klint, 1993] and
Stratego/XT [Visser, 2004]. As the processes we defined for the support
of the different evolution tasks are technology independent, our work
provides the starting point for developing similar support by using and
combining other technologies. This raises interesting research questions
with respect to which technological space is best suited for development of
support for a specific evolution task and how to better combine languages
and transformations defined in different technological spaces.

Assuming that source code remains in the grammarware and software
models remain in the modelware technological spaces, this combination of
artefacts from different technological spaces is unavoidable for most so-
lutions for software evolution tasks. Unfortunately, the required bridges
currently need to be specifically developed, at least partially. The problem
with the bridges we used is that they are defined on the metamodel level.
For such bridges to be generic and reusable they should be defined on the
metametamodel level. In fact, for MDA to XML such a bridge is already
available in the form of XMI. A similar bridge between grammarware and
MDA is essential for combining these two technological spaces. This bridge
would map EBNF to MOF such that EBNF grammars can be automatically
transformed in corresponding MOF metamodels and vice versa, as well as
the programs and models conforming to those grammars and metamodels.

Our experience shows that for automatic support of a particular soft-
ware evolution task multiple model transformations are required. Each
model transformation involves its own transformation rules, source and
target models, and corresponding metamodels. Moreover, often the support
of evolution tasks also involves operations outside the MDA space, such as
XSLT transformations in the XML space, or sed and Perl scripts. This makes
that the management of all the involved artefact and transformations steps
requires special attention. Although this problem was not the focus of our
research, in one case we used a build tool (Ant) to solve this problem. How-
ever, with this approach, the required configuration files also tend to get
very complex. As such, this problem calls for additional support, which
requires additional research.

Means for the management of modelware artefacts are essential for suc-
cessful application of our solutions in industry. Similar to other software
development artefacts this modelware is also expected to evolve. Inter-
esting possibilities to minimise the required evolution of such artefacts by

9.6. Future Work and Recommendations 203

raising their generality, are higher-order transformations. Such transfor-
mations that have another transformation as source or target model, can
be used for the conformance checking task, for instance, to generate confor-
mance checking transformations from the metamodels associated with the
involved models. This requires that there is a metamodel for the transfor-
mation language, which is the case for ATL.

Finally, for further investigation of the issues discussed above, indus-
trial case studies should play an essential role as they did in this thesis.
The focus on real industrial problems enabled us to discover and investi-
gate difficulties that are inherent to industrial practice. As an example, the
need for normalisation, which plays a prominent role in this thesis, could
not have been investigated without such case studies.

Bibliography

Abowd, Gregory, Robert Allen, and David Garlan. Using style to under-
stand descriptions of softwar architecture. ACM SIGSOFT Software En-
gineering Notes, 18(5):pages 9-20, 1993.

Al-Ekram, Raihan and Kostas Kontogiannis. An XML-based framework
for language neutral program representation and generic analysis. In
Proceedings of the 9" European Conference on Software Maintenance and
Reengineering (CSMR 2005), pages 42-51. IEEE Computer Society, 2005.

Aldrich, Jonathan, Craig Chambers, and David Notkin. Archjava: Connect-
ing software architecture to implementation. In Proceedings of the 24"
International Conference on Software Engineering (ICSE 2002), pages
187-197. IEEE Computer Society, 2002.

Allen, Robert and David Garlan. Formalizing architectural connection. In
Proceedings of the 16" International Conference on Software Engineer-
ing. (ICSE 1994), pages 71-80. IEEE Computer Society, 1994.

Allen, Robert and David Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(3):pages 213-249, 1997.

Amyot, Daniel and Armin Eberlein. An evaluation of scenario notations
and construction approaches for telecommunication systems develop-
ment. Telecommunication Systems, 24(1):pages 61-94, 2003.

Atkinson, Colin and Thomas Kiine. Model-driven development: A meta-
modeling foundation. IEEE Software, 20(5):pages 36-41, 2003.

ATLAS group. ATL User Manual. LINA & INRIA, Nantes, 2006. http:
/Iwww.eclipse.org/m2m/atl/doc/ATL_User_Manual[v0.7].pdf.

Badros, Greg J. Javaml: a markup language for java source code. Computer
Networks, 33(1-6):pages 159177, 2000.

205

206 BIBLIOGRAPHY

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 2nd edition, 2003.

Baxter, Ira D., Christopher Pidgeon, and Michael Mehlich. DMS: Program
transformations for practical scalable software evolution. In Proceed-
ings of the 26 International Conference on Software Engineering (ICSE
2004), pages 625-634. IEEE Computer Society, 2004.

Bengtsson, PerOlof, Nico Lassing, Jan Bosch, and Hans van Vliet.
Architecture-level modifiability analysis (ALMA). Journal of Systems
and Software, 69(1-2):pages 129-147, 2004.

Bézivin, Jean. On the unification power of models. Software and Systems
Modelling, 4(2):pages 171-188, 2005.

Bézivin, Jean. Model driven engineering: An emerging technical space. In
Generative and Transformational Techniques in Software Engineering,
International Summer School, (GTTSE 2005), volume 4143 of Lecture
Notes in Computer Science, pages 36—64. Springer-Verlag, 2006.

Bézivin, Jean, Miké&el Barbero, and Frédérique Jouault. On the applica-
bility scope of model driven engineering. In Proceedings of the 4" Inter-
national Workshop on Model-based Methodologies for Pervasive and Em-
bedded Software (MOMPES 2007), pages 3—7. IEEE Computer Society,
2007.

Bézivin, Jean and Olivier Gerbé. Towards a precise definition of the
OMG/MDA framework. In Proceedings of the 16" Annual International
Conference on Automated Software Engineering (ASE 2001), pages 273—
280. IEEE Computer Society, 2001.

Bézivin, Jean, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.
Modeling in the large and modeling in the small. In Model Driven Archi-
tecture: European MDA Workshops, volume 3599 of Lecture Notes in
Computer Science, pages 33—46. Springer-Verlag, 2005.

Bontemps, Yves, Patrick Heymans, and Pierre-Yves Schobbens. From live
sequence charts to state machines and back: A guided tour. IEEE Trans-
actions on Software Engineering, 31(12):pages 999-1014, 2005.

Booch, Grady, Alan Brown, Sridhar Iyengar, James Rumbaugh, and Bran
Selic. An MDA manifesto. In Frankel, David S. and John Parodi, editors,
The MDAJournal: Model Driven Architecture Straight from the Masters,
chapter 11. Meghan-Kiffer Press, 2004.

BIBLIOGRAPHY 207

Bosch, Jan. Design & Use of Software Architectures: Adopting and evolving
a product-line approach. Addison-Wesley, 2000.

Bosch, Jan. Maturity and evolution in software product lines: Approaches,
artefacts and organization. In Proceedings of the 2"¢ International Con-
ference on Software Product Lines (SPLC 2), volume 2379 of Lecture Notes
in Computer Science, pages 257—271. Springer-Verlag, 2002.

Bosch, Jan and Peter Molin. Software architecture design: evaluation and
transformation. In Proceedings of the IEEE Conference and Workshop on
Engineering of Computer-Based Systems (ECBS’99), pages 4-10. IEEE
CS, 1999.

Bril, R.J., R.L. Krikhaar, and A. Postma. Architectural support in indus-
try: a reflection using C-POSH. Journal of software maintenance and
evolution: research and practice, 17:pages 3—25, 2005.

Brohl, A.P. and W. Dréschel. Das V-Modell. Der Standard fiir die Soft-
wareentwicklung mit Praxisleitfaden. Oldenbourg-Verlag, Miinchen, 24
edition, 1995.

Brooks, Frederick P., Jr. The Mythical Man-Month. Addison-Wesley, 1975.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented software architecture:a system of patterns.
John Wiley & Sons, 1996.

Buttazzo, G.C. Hard real-time computing systems: predictable scheduling
algorithms and applications. Kluwer Academic Publishers, 2002.

Chen, Peter Pin-Shan. The entity-relationship model — toward a unified
view of data. ACM Transactions Database Systems, 1(1):pages 9-36,
1976.

Clarke, Edmund M., Jr., Orna Grumberg, and Doran A. Peled. Model
Checking. MIT Press, 1999.

Cleaveland, J. Craig. Building application generators. IEEE Software,
5(4):pages 25-33, 1988.

Clements, Paul, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. Documenting Software
Architectures:Views and Beyond. Addison-Wesley, 2002a.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Ar-
chitectures. Addison-Wesley, 2002b.

208 BIBLIOGRAPHY

Clements, Paul and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

Cornelissen, Bas, Bas Graaf, and Leon Moonen. Identification of variation
points using dynamic analysis. In Proceedings of the 1t International
Workshop on Reengineering towards Product Lines (R2PL 2005), pages
9-13. 2005.

Cornelissen, Bas, Arie van Deursen, Leon Moonen, and Andy Zaidman. Vi-
sualizing testsuites to aid in software understanding. In Proceedings of
the 11" European Conference on Software Maintenance and Reengineer-
ing (CSMR 2007), pages 213-222. IEEE Computer Society, 2007.

Czarnecki, K. and S. Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):pages 621-645, 2006.

Czarnecki, Krzysztof and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

Damm, Werner and David Harel. LSCs: Breathing life into message se-
quence charts. Formal Methods in System Design, 19:pages 45-80, 2001.

Dashofy, Eric M., André van der Hoek, and Richard N. Taylor. A compre-
hensive approach for the development of modular software architecture
description languages. ACM Transactions on Software Engineering and
Methodology, 14(2):pages 199-245, 2005.

Deelstra, Sybren, Marco Sinnema, and Jan Bosch. Product derivation in
software product families: a case study. Journal of Systems and Software,
74(2):pages 173-194, 2005.

Deelstra, Sybren, Marco Sinnema, Jilles van Gurp, and Jan Bosch. Model
driven architecture as approach to manage variability in software prod-
uct families. In Proceedings of the Workshop on Model Driven Archi-
tecture: Foundations and Applications (MDAFA 2003), number TR-CTIT-
03-27 in CTIT Technical Report, pages 109-114. University of Twente,
2003.

Dijkstra, Edsger W. The structure of the "THE"-multiprogramming system.
Communications of the ACM, 11(5):pages 341-346, 1968.

Dijkstra, Edsger W. On the role of scientific thought. Published in Dijkstra
[1982], 1974. EWD447.

Dijkstra, Edsger W. Selected writings on computing: a personal perspective.
Springer-Verlag, 1982,

BIBLIOGRAPHY 209

Dinther, Y. van, W. Schijfs, F. van den Berk, and K. Rijnierse. Architec-
tural modeling: Introducing the Architecture MetaModel. In Landelijk
Architectuur Congres. SERC, Utrecht, The Netherlands, 2001.

Dobrica, L. and E. Niemeld. A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7):pages 638—
653, 2002.

Dohmen, L. A. J. and L. J Somers. Experiences and lessons learned using
UML-RT to develop embedded printer software. In Proceedings of the 4"
International Conference on Product Focused Software Process Improve-
ment (PROFES2002), volume 2559 of Lecture Notes in Computer Science,
pages 475—484. Springer-Verlag, 2003.

Doyle, Duncan, Hans Geers, Bas Graaf, and Arie van Deursen. Migrating
a domain-specific modeling language to MDA technology. In Proceed-
ings of the 3" International Workshop on Metamodels, Schemas, Gram-
mars, and Ontologies for Reverse Engineering (ateM 2006), number 1 /
2006 in Mainzer Informatik-Berichte, pages 47-54. Johannes Gutenberg-
Universitat Mainz, 2006.

D’Souza, Desmond Francis and Alan Cameron Wills. Objects, Components,
and Frameworks with UML : The Catalysis Approach. Addison-Wesley,
1998.

Eden, A .H., Y. Hirshfeld, and R. Kazman. Abstraction classes in software
design. IEE Proceedings Software, 153(4):pages 163-182, 2006.

Eden, Amnon H. and Rick Kazman. Architecture, design, implementation.
In Proceedings of the 25" International Conference on Software Engineer-
ing (ICSE 2003), pages 149-159. IEEE Computer Society, 2003.

Emam, Khaled El, Jean-Normand Drouin, and Walcelio Melo. The Theory
and Practice of Software Process Improvement and Capability Determi-
nation. IEEE Computer Society, 1997.

Endres, Albert and Dieter Rombach. A Handbook of Software and Systems
Engineering. Addison Wesley, 2003.

Fahmy, Hoda and Richard C. Holt. Software architecture transformations.
In Proceedings of the 16" International Conference on Software Mainte-
nance (ICSM 2000), pages 88-96. IEEE Computer Society, 2000a.

Fahmy, Hoda and Richard C. Holt. Using graph rewriting to specify soft-
ware architectural transformations. In Proceedings of 15" IEEE Interna-
tional Conference on Automated Software Engineering (ASE 2000), pages
187-196. IEEE Computer Society, 2000b.

210 BIBLIOGRAPHY

Favre, Jean-Marie. Foundations of meta-pyramids: Languages vs. meta-
models — Episode II: Story of Thotus the Baboon. In Language Engineer-
ing for Model-Driven Software Development, number 04101 in Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005a.

Favre, Jean-Marie. Foundations of model (driven) (reverse) engineering :
Models — Episode I: Stories of The Fidus Papyrus and of The Solarus. In
Language Engineering for Model-Driven Software Development, number
04101 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2005b.

Fondement, Frédéric and Thomas Baar. Making metamodels aware of con-
crete syntax. In Proceedings of the 15t European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA 2005),
volume 3748 of Lecture Notes in Computer Science, pages 190-204.
Springer-Verlag, 2005.

Forward, Andrew and Timothy C. Lethbridge. The relevance of software
documentation, tools and technologies: a survey. In Proceedings of the
2002 ACM symposium on Document engineering (DocEng 2002), pages
26-33. ACM Press, 2001.

France, Robert and Bernhard Rumpe. Model-driven development of com-
plex software: A research roadmap. In Future of Software Engineering
(FoSE 2007), pages 37-54. IEEE Computer Society, 2007.

Gallagher, Brian P. Using the architecture tradeoff analysis method to eval-
uate a reference architecture: A case study. Technical Report CMU/SEI-
2000-TN-007, Carnegie Mellon University, Software Engineering Insti-
tute, 2000.

Garlan, David, Robert Allen, and John Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts. In Proceed-
ings of the 17" International Conference on Software Engineering (ICSE
1995), pages 179-185. ACM Press, 1995.

Garlan, David, Shang-Wen Cheng, and Andrew J. Kompanek. Reconcil-
ing the needs of architectural description with object-modeling notations.
Science of Computer Programming, 44:pages 23—49, 2002.

Garlan, David, Robert T. Monroe, and David Wile. ACME: architectural
description of component-based systems. In Foundations of component-
based systems, pages 47-67. Cambridge University Press, 2000.

BIBLIOGRAPHY 211

Garlan, David and Mary Shaw. An introduction to software architecture.
In Advances in Software Engineering and Knowledge Engineering, vol-
ume 2, pages 1-39. World Scientific Publishing Company, 1993.

Gerber, Anna, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew
Wood. Transformation: The missing link of MDA. In Proceedings of the
1% International Conference on Graph Transformation (ICGT 2002), vol-
ume 2505 of Lecture Notes in Computer Science, pages 90-105. Springer-
Verlag, 2002.

Gohari, P. and WM. Wonham. Reduced supervisors for timed discrete-event
systems. IEEE Transactions on Automatic Control, 48(7):pages 1187—
1198, 2003.

Graaf, Bas. Model-driven evolution of software architectures. In Pro-
ceedings of the 11" European Conference on Software Maintenance and
Reengineering (CSMR 2007), pages 357-360. IEEE Computer Society,
2007.

Graaf, Bas, Marco Lormans, and Hans Toetenel. Software technologies
for embedded systems: An industry inventory. In Proceedings of the 4
International Conference on Product Focused Software Process Improve-
ment (PROFES 2002), volume 2559 of Lecture Notes in Computer Science,
pages 453—465. Springer-Verlag, 2002.

Graaf, Bas, Marco Lormans, and Hans Toetenel. Embedded software en-
gineering: The state of the practice. IEEE Software, 20(6):pages 61-69,
2003.

Graaf, Bas and Arie van Deursen. Model-driven consistency checking of
behavioural specifications. In Proceedings of the 4" International Work-
shop on Model-based Methodologies for Pervasive and Embedded Soft-
ware (MOMPES 2007), pages 115-126. IEEE Computer Society, 2007a.

Graaf, Bas and Arie van Deursen. Using MDE for generic comparison of
views. In Proceedings of the 4" International Workshop on Model De-
sign, Verification and Validation (MoDeVVa 2007), pages 57—-66. INRIA,
2007Db.

Graaf, Bas and Arie van Deursen. Visualisation of domain-specific mod-
elling languages using UML. In Proceedings of the 14" Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2007), pages 586-595. IEEE Computer Society,
2007c.

212 BIBLIOGRAPHY

Graaf, Bas, Hylke van Dijk, and Arie van Deursen. Evaluating an em-
bedded software reference architecture — industrial experience report.
In Proceedings of the 9" European Conference on Software Maintenance
and Reengineering (CSMR 2005), pages 354-363. IEEE Computer Soci-
ety, 2005.

Graaf, Bas, Sven Weber, and Arie van Deursen. Migrating supervisory
control architectures using model transformations. In Proceedings of the
10th European Conference on Software Maintenance and Reengineering
(CSMR 2006), pages 151-160. IEEE Computer Society, 2006.

Graaf, Bas, Sven Weber, and Arie van Deursen. Model-driven migration
of supervisory machine control architectures. Journal of Systems and
Software, 2007. Doi: 10.1016/j.jss.2007.06.007.

Gray, Jeff, Jing Zhang, Suman Roychoudhury, Hui Wu, Rajesh Sudarsan,
Aniruddha, Sandeep Neema, Feng Shi, and Ted Bapty. Model-driven
program transformation of a large avionics framework. In Proceedings of
the 3" International Conference on Generative Programming and Com-
ponent Engineering (GPCE 2004), pages 361-378. Springer-Verlag, 2004.

Greenfield, Jack, Keith Short, Steve Cook, and Stuart Kent. Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks, and
Tools. John Wiley & Sons, 2004.

Grose, Timothy J., Gary C. Doney, and PhD. Stephan A.Brodsky. Mastering
XMI. Java programming with XMI, XML, and UML. John Wiley & Sons,
2002.

Han, Minmin, Christine Hofmeister, and Robert L. Nord. Reconstructing
software architecture for J2EE web applications. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE 2003), pages
67-78. IEEE Computer Society, 2003.

Hatley, Derek J. and Imtiaz A. Pirbhai. Strategies for Real-Time System
Specification. Dorset House Publishing, 1987.

Hofmeister, C., R. Nord, and D. Soni. Applied Software Architecture.
Addison-Wesley, 1999.

Hofmeister, Christine, Philipe Kruchten, Robert L. Nord, Henk Obbink,
Alexander Ran, and Pierre America. Generalizing a model of software
architecture design from five industrial approaches. In Proceedings of
the 5t" Working IEEE | IFIP Conference on Software Architecture (WICSA
2005), pages 77-88. IEEE Computer Society, 2005.

BIBLIOGRAPHY 213

Horowitz, Ellis, Alfons Kemper, and Balaji Narasimhan. A survey of appli-
cation generators. IEEE Software, 2(1):pages 40-54, 1985.

Humphrey, Watts S. Managing the software process. Addison-Wesley, 1989.

IEEE-1219. IEEE standard for software maintenance. IEEE Std 1219-
1998, 1998.

IEEE-1471. IEEE recommended practice for architectural description of
software intensive systems. IEEE Std 1471-2000, 2000.

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1992.

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

Jacobson, Ivar, Martin Griss, and Patrick Jonsson. Software Reuse: Archi-
tecture, Process and Organization for Business Success. Addison-Wesley,
1997.

Jansen, Anton. Software architecture as a set of architectural design deci-
sions. In Proceedings of the 5" Working IEEE |IFIP Conference on Soft-
ware Architecture (WICSA 2005), pages 109-120. IEEE Computer Soci-
ety, 2005.

Jouault, Frédéric and Ivan Kurtev. Transforming models with ATL. In Pro-
ceedings of the Model Transformations in Practice Workshop at MoDELS
2005. 2005.

Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements. Scenario-
based analysis of software architecture. IEEE Software, 13(6):pages 47—
55, 1996.

Kazman, Rick, Len Bass, and Mark Klein. The essential components of
software architecture design and analysis. Journal of Systems and Soft-
ware, 79(8):pages 1207-1216, 2006.

Kazman, Rick, Len Bass, Mike Webb, and Gregory Abowd. SAAM: A
method for analyzing the properties of software architectures. In Pro-
ceedings of the 16" International Conference on Software Engineering.
ICSE 1994, pages 81-90. IEEE Computer Society, 1994.

Kitchenham, Barbara, Lesley Pickard, and Shari Lawrence Pfleeger. Case
studies for method and tool evaluation. IEEE Software, 12(4):pages 52—
62, 1995.

214 BIBLIOGRAPHY

Klein, Mark H., Rick Kazman, Len Bass, Jeromy Carrierea, Mario
Barbacci, and Howard Lipson. Attribute-based architecture styles. In
Proceedings of the 15 Working IFIP Conference on Software Architecture
(WICSA 2001), pages 225-243. 1999.

Kleppe, Anneke, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison Wesley, 2003.

Klint, Paul. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering, 2(2):pages 176-201,
1993.

Klint, Paul, Ralf Liammel, and Chris Verhoef. Towards an engineering
discipline for grammarware. Transactions on Software Engineering and
Methodology, 14(3):pages 331-380, 2005.

Kobryn, Cris. UML 2001: a standardization odyssey. Communications of
the ACM, 42(10):pages 29—-37, 1999.

Krikhaar, René L. Software architecture Reconstruction. Ph.D. thesis, Uni-
versiteit van Amsterdam, 1999.

Kruchten, Philipe, Henk Obbink, and Judith Stafford. The past, present,
and future of software architecture. IEEE Software, 23(2):pages 22-30,
2006.

Kruchten, Philippe B. The 4+1 view model of architecture. IEEE Software,
12(6):pages 42-50, 1995.

Kruchten, Phillipe. The Rational Unified Process. Addison-Wesley, 1998.

Krueger, Charles W. Software reuse. ACM Computing Surveys, 24(2):pages
131-183, 1992.

Kurtev, Ivan, Jean Bézivin, and Mehmet Aksit. Technological spaces:
an initial appraisal. In Confederated International Conferences CooplS,
DOA, and ODBASE 2002, Industrial Track. Springer-Verlag, 2002.

Kuvaja, Pasi, Jouni Simild, Lech Krzanik, Adriana Bicego, Samuli
Saukkonen, and Giinter Koch. Software Process Assessment and Im-
provement: The BOOTSTRAP Approach. Blackwell Publishers, 1994.

Lam, Vitus S.W. and Julian Padget. Analyzing equivalences of UML stat-
echart diagrams by structural congruence and open bisimulations. In
Proceedings of the 2003 IEEE Symposia on Human Centric Computing
Languages and Environments (HCC 2003), pages 137-144. IEEE Com-
puter Society, 2003.

BIBLIOGRAPHY 215

Lange, Christian F.J., Michel R.V. Chaudron, and Johan Muskens. In prac-
tice: UML software architecture and design description. IEEE Software,
23(2):pages 40-46, 2006.

Lehman, M. M. Laws of program evolution - rules and tools for program-
ming management. In Proceedings of the Infotech State of the Art Confer-
ence, Why Software Projects Fail?, pages 11/1 — 11/25. 1978. Reprinted as
Chapter 12 in [Lehman and Belady, 1985].

Lehman, M. M. and L. A. Belady, editors. Program evolution: processes of
software change. Academic Press, 1985.

Lehman, Meir M. Programs, life cycles, and laws of software evolution.
IEEE Proceedings, 68(9):pages 1060—1076, 1980.

Liang, Hongzhi, Juergen Dingel, and Zinovy Diskin. A comparative survey
of scenario-based to state-based model synthesis approaches. In Proceed-
ings of the 5 International Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM 2006), pages 5—-11. ACM, 2006.

Lientz, B. P., E. B. Swanson, and G. E. Tompkins. Characteristics of appli-
cation software maintenance. Communications of the ACM, 21(6):pages
466-471, 1978.

Liu, C.L. and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the Association for
Computing Machinery, 20(1):pages 46-61, 1973.

Lundell, Bjorn, Brian Lings, Anna Persson, and Anders Mattsson. UML
model interchange in heterogeneous tool environments: An analysis of
adoptions of XMI 2. In Proceedings of the 9" International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2006),
number 4199 in Lecture Notes in Computer Science, pages 619-630.
Springer-Verlag, 2006.

Lutz, Robyn R. and Gerald C. Gannod. Analysis of a software product line
architecture: an experience report. The Journal of Systems and Software,
66(3):pages 253-267, 2003.

Medvidovic, Nenad, David S. Rosenblum, David F. Redmiles, and Jason E.
Robbins. Modeling Software Architectures in the Unified Modeling Lan-
guage. ACM Transactions on Software Engineering and Methodology,
11(1):pages 2—57, 2002.

Medvidovic, Nenad and Richard N. Taylor. A framework for classifying
and comparing architecture description languages. In ESEC ’97 / FSE-5:

216 BIBLIOGRAPHY

Proceedings of the 6" European conference held jointly with the 5 ACM
SIGSOFT international symposium on Foundations of software engineer-
ing, pages 60-76. Springer-Verlag, 1997.

Mellor, Stephen J., Anthony M. Clark, and Takao Futagami. Guest editors’
introduction: Model-driven development. IEEE Software, 20(5):pages
14-18, 2003.

Mens, Kim. Automating Architectural Conformance Checking by means of
Logic Meta Programming. Ph.D. thesis, Vrije Universiteit Brussel, 2000.

Mens, Tom and Pieter van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:pages 125-142,
2006.

Mernik, Marjan, Jan Heering, and Anthony M. Sloane. When and
how to develop domain-specific languages. ACM Computing Surveys,
37(4):pages 316-344, 2005.

Monroe, R.T., A. Kompanek, and D. Melton, R.; Garlan. Architectural
styles, design patterns, and objects. IEEE Software, 14(1):pages 43-52,
1997.

Murphy, Gail C., David Notkin, and Kevin Sullivan. Software reflexion
models: bridging the gap between source and high-level models. In
SIGSOFT ’95: Proceedings of the 3™ ACM SIGSOFT symposium on
Foundations of software engineering, pages 18-28. ACM Press, 1995.

Olumofin, Femi G. and Vojislav B. Misli¢c. Extending the ATAM archi-
tecture evaluation to product line architectures. In Proceedings of the 5
Working IEEE | IFIP Conference on Software Architecture (WICSA 2005),
pages 45-56. IEEE Computer Society, 2006.

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Final Adopted Specification. http:/www.omg.org/docs/ptc/
05-11-01.pdf, 2005.

OMG. OMG Unified Modeling Language Specification, Version 1.4. http:
/lwww.omg.org/docs/formal/01-09-67.pdf, 2007a.

OMG. Unified Modeling Language: Superstructure, version 2.1.1. http:
/lwww.omg.org/docs/formal/07-02-05.pdf, 2007b.

Parnas, D.L. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 15(12):pages 1053—1058, 1972.

BIBLIOGRAPHY 217

Partsch, H. and R. Steinbriiggen. Program transformation systems. ACM
Computing Surveys, 15(3):pages 199-236, 1983.

Perry, Dewayne E. and Alexander L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software Engineering Notes,
17(4):pages 40-52, 1992.

Pigoski, Thomas M. Practical Software Maintenance: Best Practices for
Managing Your Software Investment. John Wiley & Sons, 1996.

Potts, Colin. Software engineering research revisited. IEEE Software,
10(5):pages 19-28, 1993.

Poulin, J. S. Measuring Software Reuse: Principles, Practices, and Eco-
nomic Models. Addison-Wesley, 1997.

Ramadge, P.J. and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):pages
206-230, 1987.

Reveliotis, Spyros A. Real-Time Management of Resource Allocation Sys-
tems. A Discrete Event Systems Approach, volume 79 of International Se-
ries in Operations Research & Management Science. Springer-Verlag,
2005.

Sabuncuoglu, I. and M. Bayiz. Analysis of reactive scheduling problems
in a job-shop environment. European Journal of operational research,
126:pages 567-586, 2000.

Schifer, Timm, Alexander Knapp, and Stephan Merz. Model checking UML
state machines and collaborations. Electronic Notes in Theoretical Com-
puter Science, 55(3):pages 357-369, 2001.

Schmidt, Douglas C. Model-driven engineering. IEEE Computer,
39(2):pages 25-31, 2006.

Seidewitz, Ed. What models mean. IEEE Software, 20(5):pages 26-32,
2003.

Selic, Bran. The pragmatics of model-driven development. IEEE Software,
20(5):pages 14-25, 2003.

Selic, Bran, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. John Wiley & Sons, 1994.

Sendall, Shane. Model transformation: The heart and soul of model-driven
software development. IEEE Software, 20(5):pages 42-45, 2003.

218 BIBLIOGRAPHY

Shaw, Mary, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.
Young, and Gregory Zelesnik. Abstarctions for software architecture
and tools to support them. IEEE Transactions on Software Engineering,
21(4):pages 314-335, 1995.

Shaw, Mary and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

Software Engineering Institute. Published software architecture defi-
nitions. http:/www.sei.cmu.edw/architecture/published_definitions.html,
2006.

Soni, D., R. L. Nord, and C. Hofmeister. Software architecture in indus-
trial applications. In Proceedings of the 17*" International Conference on
Software Engineering (ICSE 1995). ACM Press, 1995.

Sonnenberg, C. J. Improving software maintainability: A case study. Mas-
ter’s thesis, Technische Universiteit Eindhoven, 2005.

Spanjers, Hans, Maarten ter Huurne, Dan Bendas, Bas Graaf, Marco
Lormans, and Rini van Solingen. Tool support for distributed software
engineering. In Proceedings of the 1% International Conference on Global
Software Engineering (ICGSE 2006), pages 187-198. IEEE Computer So-
ciety, 2006.

Stevens, Perdita. On associations in the Unified Modelling Language. In
Proceedings of the 4" International Conference on the Unified Modeling
Language, Modeling Languages, Concepts, and Tools (<KUML> 2001),
volume 2185 of Lecture Notes in Computer Science. 2001.

Swanson, E. Burton. The dimensions of maintenance. In Proceedings 2"%
International Conference on Software Engineering (ICSE 1976), pages
492-497. IEEE Computer Society, 1976.

Terekhov, Andrey A. and Chris Verhoef. The realities of language conver-
sions. IEEE Software, 17(6):pages 111-124, 2000.

PROGRESS. Embedded systems roadmap 2002: Vision on the technology
for the future of PROGRESS. Technical report, Technology Foundation
(STW), 2002. http:/www.stw.nl/Programmas/Progress/ESroadmap.htm.

Van den Brand, M.G.J., A. van Deursen, J. Heering, H.A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder,
J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF meta-environment:
A component-based language development environment. In Proceed-
ings of the 10th International Conference on Compiler Construction (CC

BIBLIOGRAPHY 219

2001), volume 2027 of Lecture Notes in Computer Science, pages 365-370.
Springer-Verlag, 2001.

Van den Nieuwelaar, N.J M. Supervisory Machine Control by Predictive-
Reactive Scheduling. Ph.D. thesis, Technische Universiteit Eindhoven,
2004.

Van den Nieuwelaar, N.J.M., J. M. van de Mortel-Fronczak, and J.E. Rooda.
Design of supervisory machine control. In Glover, Keith and Jan
Maciejowski, editors, Proceedings of the European Control Conference
ECC 2003. 2003.

Van der Aalst, Wil, Ton Weijters, and Laura Maruster. Workflow min-
ing: Discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16(9):pages 1128-1142, 2004.

Van Deursen, A., C. Hofmeister, R. Koschke, L. Moonen, and C. Riva.
Symphony: View-driven software architecture reconstruction. In Pro-
ceedings of the 4" Working IEEE |IFIP Conference on Software Archi-
tecture (WICSA 4), pages 122-134. IEEE Computer Society, 2004.

Van Deursen, Arie. De software-evolutieparadox. http://homepages.cwi.nl/
~arie/intreerede/, 2005. Inaugural lecture Delft University of Technology.

Van Deursen, Arie, Jan Heering, and Paul Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST Series
in Computing. World Scientific Publishing Co., 1996.

Van Deursen, Arie and Paul Klint. Little languages: Little maintenance?
Journal of Software Maintenance: Research and Practice, 10(2):pages 75—
92, 1998.

Van Deursen, Arie, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. ACM SIGPLAN Notices, 35(6):pages
26-36, 2000.

Van Deursen, Arie and Joost Visser. Source model analysis using the JJ-
Traveler visitor combinator framework. Software: Practice and Experi-
ence, 34(14):pages 1345-1379, 2004.

Van Dijk, Hylke W., Bas Graaf, and Rob Boerman. On the systematic con-
formance check of software artefacts. In Proceedings of the 2"® European
Workshop on Software Architecture (EWSA 2005), volume 3047 of Lecture
Notes on Computer Science, pages 203—221. Springer-Verlag, 2005.

Van Genuchten, Michiel. The impact of software growth on the electronics
industry. IEEE Computer, 40(1):pages 106-108, 2007.

220 BIBLIOGRAPHY

Van Ommering, Rob, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala component model for consumer electronics software. IEEE
Computer, 33(3):pages 78-85, 2000.

Viennot, Gérard Xavier. Heaps of pieces, I: Basic definitions and combina-
torial lemmas. In Proceedings of the Colloque de combinatoire énuméra-
tive (UQAM 1985), Montreal, Canada, volume 1234 of Lecture Notes in
Mathematics, pages 321-350. Springer-Verlag, 1986.

Visser, Eelco. Program transformation with stratego/xt: Rules, strategies,
tools, and systems in stratego/xt 0.9. In Domain-Specific Program Gen-
eration, number 3016 in Lecture Notes in Computer Science, pages 216—
238. Springer-Verlag, 2004.

Wang, Yingxu, Graham King, Hakan Wickberg, and Alec Dorling. What the
software industry says about the practices modelled in current software
process models? In Proceedings of the 25" EUROMICRO Conference,
volume 2, pages 162-168. IEEE Computer Society, 1999.

Whittle, Jon and Johann Schumann. Generating statechart designs from
scenarios. In Proceedings of the 22"% International Conference on Soft-
ware Engineering (ICSE 2000), pages 314-323. IEEE Computer Society,
2000.

Wirth, Niklaus. Program development by stepwise refinement. Communi-
cations of the ACM, 14(4):pages 221-227, 1971.

Yin, Robert K. Case Study Research: Design and Methods. Sage Publica-
tions, 2003.

Summary

Two well-known software engineering laws state that 1) software has to
be changed constantly in response to new user requirements or a changed
environment, that is, software evolves continuously and 2) software that
is changed, becomes more complicated. The consequence of this trend of
increasing complexity is that the maintainability of software systems de-
creases over time: it becomes more and more difficult to make changes.
The complexity of a software system is for a large part determined by its
structure, often referred to as architecture. This thesis focuses on the evolu-
tion of software architectures. This type of evolution, while common, comes
with a considerable risk and cost. Our aim is to reduce this risk and cost.

Two obvious strategies to remedy the problem of reduced maintainabil-
ity of software systems are: 1) apply techniques to manage the increasing
complexity, or 2) apply techniques to reduce the complexity. Automation
and abstraction are two basic software engineering techniques to support
these strategies. In this thesis we investigated the applicability of tech-
nologies for a new approach of software development, based on automation
and abstraction, to support the evolution of software architectures. This
new approach is referred to as model-driven software development.

The main research question addressed in this work is: How can evo-
lution of software architecture be supported? We clarified the scope of our
work by defining three related subquestions that deal with integration of
evolution support in industrial practice, the implication of the use of prod-
uct line principles on the evolution support, and the automation of evolu-
tion support using model-driven software development techniques.

To get a better understanding of the use software engineering technolo-
gies for different types of tasks in industry, we started by conducting a
survey. In this survey we asked software practitioners of eight software de-
velopment organisations about the software engineering technologies they
use. We also paid attention to the situation in which certain technologies
are applied and potential problems. The trends we observed during this
survey include: the use of product-line approaches, the informal use of mod-

221

222 Summary

elling and the importance of the evolutionary aspect of software (i.e., soft-
ware is seldom developed from scratch). Partly the results of this survey
motivated the aforementioned research questions.

Then, by case studies at Océ and ASML, we investigated how the evolu-
tion of software architectures can be supported. In particular we considered
four types of software engineering tasks related to software evolution

Evaluation A first step when performing changes to a software system,
is the evaluation of whether these changes can be realised within the
current architecture. Here, we mainly investigated how such an eval-
uation can be conducted in the context of a software product line.

Conformance checking When an architecture has to be changed it is
useful to know to extent to which it is consistent with other devel-
opment artefacts. We focused on how model-driven software develop-
ment technologies can be applied to answer that question.

Migration We investigated how an actual migration can be partly auto-
mated by the use of model transformations.

Documentation A disadvantage of the application of domain-specific lan-
guages for model-driven software development is that the definition
of a (graphical) notation requires considerable effort. We investigated
how model transformations can be deployed to map such languages to
UML notation.

We studied each of these tasks separately in a case study.

The informal use of modelling in industry makes it necessary to intro-
duce a normalisation step to enable the integration of evolution support in
industrial practice. This thesis includes several examples of how to imple-
ment this step, which is typically context specific. Additionally by the use
of several standards in the area of model-driven software development we
further improve the potential integration of our results in practice.

In several chapters we address the impact of the use of product-line
principles for the development of software systems on the software evo-
lution support we introduce. Although the increased scope of software
product-lines makes such support more difficult to develop, at the same
time the return on investment (e.g., for the use of a model-driven approach)
is much improved.

The model-driven support for the evolution tasks that we present in
this thesis follows a similar three-step pattern. A set of source models is
first ‘preprocessed’ into a form suitable for model transformations. This
preprocessing includes a normalisation step as well as a translation into

Summary 223

a representation based on the same technology as the model transforma-
tions. Then, model transformations are applied that are defined in a model
transformation language. These transformations do the actual work such
as conformance checking (i.e., using two source models) or migration. Fi-
nally, the resulting target models are postprocessed into the desired target
form. This might be a graphical representation or some representation in-
tended for further processing.

Samenvatting

Twee bekende wetten in de software-engineering zeggen dat: 1) software
voortdurend moet worden aangepast aan nieuwe en gewijzigde omgevings-
en gebruikerseisen; met andere woorden software evolueert continu en 2)
software die gewijzigd wordt, wordt steeds ingewikkelder. Het gevolg van
deze toenemende complexiteit is dat de onderhoudbaarheid van software-
systemen afneemt met de tijd: het wordt steeds moeilijker veranderingen
aan te brengen. Voor een groot deel wordt de complexiteit van een softwa-
resysteem bepaald door zijn structuur, ook wel architectuur genoemd. De
focus in dit proefschrift is op de evolutie van softwarearchitecturen. Hoe-
wel dit soort evolutie vaak voorkomt, is ze risicovol en kostbaar. Ons doel
is het risico en de kosten die gepaard gaan met de evolutie van softwarear-
chitecturen te verminderen.

Voor het probleem dat de onderhoudbaarheid van softwaresystemen af-
neemt bestaan twee voor de hand liggende oplossingsstrategieén: 1) het
gebruik van technieken om de toenemende complexiteit te beheersen en 2)
het gebruik van technieken om de complexiteit te verminderen. Automati-
sering en abstractie zijn twee bekende software-engineeringtechnieken die
voor deze twee strategieén ingezet kunnen worden. In dit proefschrift heb-
ben we onderzocht hoe technieken voor een nieuwe aanpak voor software
ontwikkeling, die gebaseerd is op automatisering en abstractie, toegepast
kunnen worden voor de evolutie van softwarearchitecturen. Deze nieuwe
aanpak wordt modelgedreven softwareontwikkeling genoemd.

De hoofdonderzoeksvraag die we behandelen is: Hoe kan de evolutie van
softwarearchitecturen worden ondersteund?. Een drietal gerelateerde sub-
vragen bakenen ons onderzoek verder af. Deze subvragen gaan over de
integratie van potentiéle evolutieondersteuning in de industriéle praktijk,
de gevolgen van het gebruik van productlijnen op de evolutieondersteuning
en de automatisering van de evolutieondersteuning door middel van model-
gedreven softwareontwikkeltechnologieén.

Om beter te begrijpen welke softwareontwikkeltechnologieén op welke
manier worden ingezet voor verschillende soorten taken, zijn we begon-

225

226 Samenvatting

nen met een enquéte. In deze enquéte hebben we mensen in verschillende
rollen bij een achttal organisaties in de software-industrie gevraagd naar
de ontwikkeltechnologieén die ze gebruiken. Belangrijke aandachtspunten
hierbij waren ook de situatie waarin gebruik wordt gemaakt van een be-
paalde technologie en de problemen die daarbij optreden. Enkele trends
die we tijdens de enquéte hebben opgemerkt zijn: het toenemende gebruik
van productlijnen, de informele wijze van modelleren en het belang van het
evolutionaire aspect van software (softwaresystemen worden zelden vanuit
het niets ontwikkeld). Deels hebben de resultaten van deze enquéte geleid
tot eerder genoemde onderzoeksvragen.

Vervolgens hebben we met behulp van casestudy’s bij Océ en ASML on-
derzocht hoe de evolutie van softwarearchitectuur ondersteund kan wor-
den. We hebben ons hierbij gericht op vier typen softwareontwikkeltaken
die te maken hebben met software-evolutie

Evaluatie Een eerste stap bij wijzigingen is het vaststellen of zij binnen
de huidige architectuur gerealiseerd kunnen worden. Hier hebben we
vooral onderzocht hoe zo’n evaluatie in de context van een productlijn
gemaakt kan worden.

Consistentie Wanneer de architectuur moet worden aangepast is het nut-
tig te weten in welke mate deze consistent is met andere ontwikke-
lartefacten. Wij hebben ons geconcentreerd op de mogelijkheden van
modelgedreven softwareontwikkeltechnieken voor het vinden van een
antwoord op die vraag.

Migratie Wij hebben onderzocht hoe een daadwerkelijke migratie gedeel-
telijk geautomatiseerd kan worden met behulp van modeltransforma-
ties.

Documentatie De toepassing van domeinspecifieke talen voor modelge-
dreven softwareontwikkeling heeft als nadeel dat de ontwikkeling van
een (grafische) notatie veel inspanning vergt. Wij hebben onderzocht
hoe model transformaties kunnen worden ingezet om zulke talen af
te beelden op de UML notatie.

We hebben elk van deze taken bestudeerd in een aparte casestudy.

De informele wijze van modelleren in de industrie maakt het noodzake-
lijk een normalisatiestap te introduceren om de integratie van evolutieon-
dersteuning in de industriéle praktijk mogelijk te maken. Dit proefschrift
bevat verscheidene voorbeelden van hoe deze stap, die contextafthankelijk
is, te realiseren. Verder verbeteren we de integreerbaarheid van onze re-
sultaten in de praktijk door het gebruik van een aantal standaarden op het
gebied van modelgedreven softwareontwikkeling.

Samenvatting 227

In meerdere hoofdstukken komen we terug op de invloed van het ge-
bruik van productlijnen voor de ontwikkeling van softwaresystemen op de
evolutieondersteuning die we ontwikkelen. Alhoewel de grotere reikwijdte
van productlijnen dit moeilijker maakt, nemen de mogelijkheden de nood-
zakelijke investeringen (bv. voor het gebruik van een modelgedreven aan-
pak) terug te verdienen eveneens toe.

De modelgedreven ondersteuning voor de software-evolutietaken die we
in dit proefschrift presenteren volgt een vergelijkbaar driestappenpatroon.
Een verzameling bronmodellen wordt eerst zodanig geprepareerd dat de
modellen een formaat krijgen dat geschikt is om te transformeren met mo-
deltransformaties. De preparatiestap omvat een normalisatie en een ver-
taling naar een representatie die gebaseerd is op dezelfde technologie als
de toe te passen modeltransformaties. Vervolgens worden deze transfor-
maties, die gedefinieerd worden in een modeltransformatietaal, toegepast.
Deze transformaties doen het eigenlijke werk, zoals het controleren van
consistentie (dus met twee bronmodellen) of een migratie. Tenslotte wordt
het resultaat nog bewerkt om het in een gewenst formaat te brengen. Dit
kan bijvoorbeeld een grafische representatie zijn of een tijdelijke represen-
tatie bedoeld voor verdere bewerking.

Curriculum Vitae

Bas Graaf was born in The Hague on Friday the 13t of January in 1978.

There, he graduated gymnasium (high school) in 1996 at CSG Overvoorde.
Subsequently he enrolled in the computer science program at Delft Univer-
sity of Technology. After specialising in software engineering he received
his master’s degree in 2002. He wrote his master’s thesis on component-
based software development and the Unified Modeling Language under su-
pervision of Dr. P.G. Kluit and Prof.dr.ir. J.L.G. Dietz.

In 2002 he started his Ph.D. research at the software technology de-
partment of Delft University of Technology. During this research under
supervision of Prof.dr. A. van Deursen he investigated the applicability of
model-driven software development technologies to support software evo-
lution.

229

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: the-
oretical and experimental aspects.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of In-
dustrial Systems. Faculty of Math-
ematics and Computer Science and

Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Sys-
tems. Faculty of Natural Sciences,
Mathematics and Computer Sci-
ence, UVA. 2002-03

S.P. Luttik. Choice Quantifica-
tion in Process Algebra. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-
04

R.J. Willemen. School Timetable
Construction: Algorithms and
Complexity. Faculty of Mathemat-
ics and Computer Science, TU/e.
2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-
time and Parametric Systems. Fac-
ulty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-
07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in
Model Checking of Timed and Hy-
brid Systems. Faculty of Science,

Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling
and Bin Packing. Faculty of Math-
ematics and Natural Sciences, UL.
2002-09

D. Tauritz. Adaptive Informa-
tion Filtering: Concepts and Algo-
rithms. Faculty of Mathematics
and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-
11

J.I. den Hartog. Probabilistic
Extensions of Semantical Models.
Faculty of Sciences, Division of

Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software
Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2002-13

J.I. van Hemert. Applying Evolu-
tionary Computation to Constraint
Satisfaction and Data Mining. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2002-14

S. Andova. Probabilistic Process
Algebra. Faculty of Mathematics
and Computer Science, TU/e. 2002-
15

Y.S. Usenko. Linearization in
UCRL. Faculty of Mathematics and
Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-

ulty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. 7To Reuse or To
Be Reused: Techniques for com-
ponent composition and construc-
tion. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Represen-
tations. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras
with Data and Timing. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2003-05

S.V. Nedea. Analysis and Simu-
lations of Catalytic Reactions. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-06

M.E.M. Lijding. Real-time
Scheduling of Tertiary Storage.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multime-
dia Process Annotation — CoMPAs.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2003-08

D. Distefano. On Modelchecking
the Dynamics of Object-based Soft-
ware: a Foundational Approach.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek. Team Automata
— A Formal Approach to the Mod-
eling of Collaboration Between Sys-
tem Components. Faculty of Math-
ematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The A Abroad -
A Functional Approach to Software
Components. Faculty of Mathe-
matics and Computer Science, UU.
2003-11

W.P.A.J. Michiels. Performance
Ratios for the Differencing Method.
Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs
and Terms and Their Use in Inter-
active Theorem Proving. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-02

P. Frisco. Theory of Molecular
Computing — Splicing and Mem-
brane systems. Faculty of Mathe-
matics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and
Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization
and Browsing for Home Environ-
ments. Faculty of Mathematics and
Computer Science and Faculty of
Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specifi-
cation Formats. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical For-
malization and Applications. Fac-
ulty of Science, Mathematics and
Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous
Agents in Bargaining Games: An
Evolutionary Investigation of Fun-
damentals, Strategies, and Busi-
ness Applications. Faculty of Tech-
nology Management, TU/e. 2004-
08

N. Goga. Control and Selection
Techniques for the Automated Test-
ing of Reactive Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-09

M. Niqui. Formalising Exact
Arithmetic: Representations, Algo-
rithms and Proofs. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2004-10

A.Loh. Exploring Generic Haskell.
Faculty of Mathematics and Com-
puter Science, UU. 2004-11

L.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Naviga-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Condition-
ally Guaranteed Budgets. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2004-13

J. Pang. Formal Verification of
Distributed Systems. Faculty of
Sciences, Division of Mathematics
and Computer Science, VUA. 2004-
14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Tech-
nology Management, TU/e. 2004-
15

E.O. Dijk. Indoor Ultrasonic Po-
sition Estimation Using a Single
Base Station. Faculty of Math-
ematics and Computer Science,
TU/e. 2004-16

S.M. Orzan. On Distributed Ver-
ification and Verified Distribution.
Faculty of Sciences, Division of

Mathematics and Computer Sci-
ence, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for
Structured Documents. Faculty of

Mathematics and Computer Sci-
ence, UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Qual-
ity Attributes for Component-Based
Software Architectures. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process
Algebra. Faculty of Mathematics
and Computer Science, TU/e. 2004-
20

N.JM. van den Nieuwelaar.
Supervisory Machine Control by
Predictive-Reactive Scheduling.
Faculty of Mechanical Engineering,
TU/e. 2004-21

E. Abraham. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- . Fac-
ulty of Mathematics and Natural
Sciences, UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty
of Biomedical Engineering, TU/e.
2005-02

C.N. Chong. Experiments in
Rights Control - Expression and
Enforcement. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Comput-
ing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof
System Architectures. Faculty of
Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Anal-
ysis Techniques in Security and
Fault-Tolerance. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-07

L. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects
of Treewidth - Lower Bounds and
Network Reliability. Faculty of Sci-
ence, UU. 2005-09

O. Tveretina. Decision Proce-
dures for Equality Logic with Un-
interpreted Functions. Faculty of

Mathematics and Computer Sci-
ence, TU/e. 2005-10

A.ML.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-
ronments. Faculty of Biomedical
Engineering, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classi-
fication and Symbolic Regression.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Ver-
ification of Hybrid Systems using
Simulation Relations. Faculty of
Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analy-
sis of Probabilistic Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Pro-
cesses with Replication. Faculty
of Mathematics and Natural Sci-
ences, UL. 2005-17

P. Zoeteweij. Composing Con-
straint Solvers. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2005-18

J.d. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural

Sciences, Mathematics, and Com-
puter Science, UvA. 2005-19

M.Valero Espada. Modal Ab-
straction and Replication of Pro-
cesses with Data. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2005-20

A. Dijkstra.
Haskell.
2005-21

Y.W. Law. Key management and
link-layer security of wireless sen-
sor networks: energy-efficient at-
tack and defense. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Fac-
ulty of Science, UU. 2006-01

R.J. Corin. Analysis Models for
Security Protocols. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-
tems. Faculty of Science, UU. 2006-
03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and
Analysis of Hybrid Systems. Fac-
ulty of Mathematics and Computer
Science and Faculty of Mechanical
Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sci-
ences, UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and

Stepping through
Faculty of Science, UU.

Applications. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2006-06

J. Ketema. Biéhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of
JML programs. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty
of Biomedical Engineering, TU/e.
2006-09

S.G.R. Nijssen. Mining Struc-
tured Data. Faculty of Mathemat-
ics and Natural Sciences, UL. 2006-
10

G. Russello. Separation and
Adaptation of Concerns in a Shared
Data Space. Faculty of Mathemat-
ics and Computer Science, TU/e.
2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics
and Computer Science, RU. 2006-
12

B. Badban. Verification tech-
niques for Extensions of Equality
Logic. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardiza-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of

Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2006-
15

M.E. Warnier. Language Based
Security for Java and JML. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-16

V. Sundramoorthy. A¢ Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2006-19

C.J.F. Cremers. Scyther - Se-
mantics and Verification of Security
Protocols. Faculty of Mathematics
and Computer Science, TU/e. 2006-
20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Se-
mantics, Implementation and Com-
position. Faculty of Mathematics
and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-
01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Fac-
ulty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2007-04

L. Brandan Briones. Theories
for Model-based Testing: Real-time
and Coverage. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-05

L. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trcka. Silent Steps in Transi-
tion Systems and Markov Chains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development

Processes. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical
Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System
Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A

Series of Empirical Studies about
the UML. Faculty of Mathematics
and Computer Science, TU/e. 2007-
14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science, UvA. 2007-15

B.S. Graaf. Model-Driven Evo-
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TU Delft. 2007-16

