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Abstract Experience Mapping based Predictive Con-

troller (EMPC) is a recently developed controller based

on the concepts of Human Motor Control. It has been

demonstrated to out-perform other classical controllers

like Proportional-Derivative (PD), Model Reference bas-

ed Adaptive Controller (MRAC), Linear Quadratic Reg-

ulator (LQR) and the Linear Quadratic Gaussian (LQG)

for both Type -1 and Type -0 systems. This paper anal-

yses the stability and efficiency of EMPC for Type 1

systems. EMPC uses rectangular pulse input as con-

trol action for well-damped Type 1 systems and a first

order decay input for under-damped Type 1 systems .

The simulation results of EMPC for position control of

a DC motor with a load coupled through a flexible shaft

are presented as a case study to derive and prove the

stability criterion. The efficiency of EMPC on a practi-

cal system is analysed in terms of energy dissipated in

the armature resistance of the motor and the same is

compared with PD, MRAC, LQR, LQG controller. Fur-

ther, the computational cost of EMPC is discussed and
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compared with traditional controllers from the point of

view of implementation.
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1 Introduction

Stability analysis of controllers is a important require-

ment to prove the usage of the controller in various

applications.

Linear control theory use tools like Root Locus,

Nyquist or Bode plots to prove the stability of the con-

troller. In modern control systems, digital controller al-

gorithms like Linear Quadratic Regulator (LQR), Lin-

ear Quadratic Gaussian (LQG), Model Reference Adap-

tive Controller (MRAC) [1], Sliding Mode Control (SMC),

Fuzzy Control [2] and Neural Networks [3] use more

complex theory like Linear Matrix Inequalities (LMI)

based on Lyapunov’s stability criterion [4] [5] to prove

stability. These controllers require the plant model and

a set of state space equations that govern the system

transfer function [6]. Complex systems such as those in-

volving flexible shafts, have complicated equations and

involve numerous state variables that need to be mea-

sured. Designing a control system which is stable for

an open loop under-damped system or a non-minimum

phase system or one that have many poles or zeros is

a difficult task. The cost of the implementation of such

digital controllers is high.

In literature, certain controllers are also modified

to improve stability by using feed-forward control [7].

When the system to be controlled consists of higher
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order poles, PID controller will be the easiest to im-

plement by using simple techniques like pole-placement

based on the required performance criteria as opposed

to state based controllers which require higher order

matrices to be constructed. PID has also been improved

upon by controlling the PID gains using modified LQR

or LQG controllers [8] [9] to give better response to

noise and disturbance. To adapt these controllers for

change in system parameters, estimators like an ex-

tended Kalman Filter is used so that the system does

not become unstable for a greater range of parameter

changes [10] [11].

In the case of advanced non-linear controllers ap-

plied on non-minimum phase systems, equations for

stability are derived from Lyapunov-Krasovskii and ap-

plied on Fuzzy based [12] and Neural network based [13]

controllers. Thus, design of a controller for a given sys-

tem requires the knowledge of the stability criterion so

that we can be confident that the closed-loop system

will remain stable for predefined conditions.

Recently, a new control algorithm called the Expe-

rience Mapping based Predictive Controller (EMPC)

was developed for position control [14] [15] [16] [17]

and speed control [18] [19] of a DC motor and shown

to outperform other robust controllers. The concepts

were further improved to extend the control for under-

damped Type-1 systems in [20] [21].

1.1 Experience Mapping based Predictive Control

(EMPC)

EMPC is inspired from Human Motor Control (HMC).

Humans develop skills by practice and interaction with

the surrounding environment [22] [23]. They can adapt

to changes in the environment and improve their mo-

tor control skills. The experiences of these interactions

are mapped in the brain as input-output relationships.

Repeated interaction results in improved experiences,

which are stored as motor memories. These motor mem-

ories allow the HMC to operate in quasi-open loop, by

providing the necessary action to achieve a desired re-

sponse, based on past experiences [24] [25].

EMPC closely follows the following principles. Dur-

ing the learning phase, the system steady state outputs

are mapped to the applied inputs and stored in an Ex-

perience Mapped Knowledge base (EMK). For a given

demand, the control action required is then evaluated

from the EMK and applied to the system.

EMPC is capable of handling minor errors intro-

duced due to sensor or system noise and disturbances

through the use of Iterative Predictive Action. These

errors can also occur due to small changes in the sys-

tem parameters. However, significant changes in system

parameters can result in large errors, oscillations and

even instability. Stability analysis of controllers is one

of the important aspects of controls theory and various

approaches have been used for the same with different

controllers. Hence, it is important to analyze and estab-

lish the stability conditions of EMPC under changing

system conditions.

In this paper, we introduce the basics of EMPC

based on earlier literature and build upon the stabil-

ity criteria for the same. Section 2 derives the stability

criteria for EMPC applied for a well-damped type-1

system. In Section 3, we derive the stability criteria

for EMPC applied to an under-damped type-1 system.

Section 4 compares EMPC with PD controller for sta-

bility. Section 5 compares the efficiency of EMPC with

PD, MRAC and LQG when applied to position control

of a DC motor connected to a load through a flexi-

ble shaft based on the energy dissipated by the arma-

ture resistance. Section 6 compares the efficiency when

non-linearities like dry friction are introduced into the

motor-load system. In section 7, computational cost

and controller memory usage of EMPC is compared

with other controllers practical implementation.

2 EMPC for the Well-Damped Type 1 System

EMPC has been developed for a well damped nth order

Type 1 system and implemented on a PMDC motor

position control system [15]. The general form of the

well-damped Type 1 system is described by Eqn.1.

G(s) =
(s+ z1)(s+ z2)....(s+ zm)

s(s+ p1)(s+ p2)....(s+ pn)
(1)

where: (zi, pj) ∈ <, i ∈ [1,m], j ∈ [1, n], m ≤ n for a

causal system. EMPC proposes a control action consist-

ing of a rectangular pulse of fixed amplitude with vary-

ing pulse-width duration which are mapped to corre-

sponding steady state responses using an EMK [14].The

output Y (s) of the system G(s) when a rectangular in-

put of amplitude Am and time width Ton is applied is

defined by Eqn.2.

Y (s) = Am
(1− e(−sTon))

s
G(s) (2)

The steady state response for the rectangular input us-

ing Final Value Theorem is given by Eqn.3

Yss =
b0
a0
AmTon (3)

where, b0 =
∏m
i=1(−zi) and a0 =

∏n
i=1(−pi). From

Eqn.3, it is seen that the steady state output of the sys-

tem G(s) is reached by applying a rectangular input of
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Fig. 1: Standard Rectangular Input action of EMPC and
Response of a Type 1 system G(s) = s+10

s(s2+6s+5)
with

Am = 1,Ksa = 2 and Ton = 2

width Ton from fixed steady state initial condition. The

steady state value Yss is directly proportional to Ton if

the parameters that define the system (a0, b0, Am) are

constant. Therefore Eqn.3 is simplified as Eqn.4

Yss = KsaTon (4)

Where Ksa = b0
a0
Am is the constant of proportionality

for the given system determined by G(s). Am is consid-

ered to be constant since the input to the system can

be considered to be normalized to have an maximum

amplitude of 1, which is then amplified by some drive

circuitry by a value of Am and applied to the system

G(s). Fig.1 shows the response of a Type 1 system for

the application of a standard rectangular input from

steady state.

Eqn.4 establishes that there is a linear relation be-

tween the parameter Ton and the steady state response

Yss for a fixed plant defined by G(s). For a given De-

mand D, EMPC proposes a predictive action where the
input pulse width parameter for the control action, Ton
is given by Eqn.5 [14]

Ton =
|D|
Ksa

(5)

For negative values ofD, a rectangular input of negative

amplitude can be applied to the system with the width

of the input determined using the absolute value of D.

Eqn.5 can be used to calculate precisely the control

action parameter in the absence of any system changes

and/or sensor noise and disturbances. Assuming that

the system G(s) is unchanging, the presence of small

system/sensor noise can result in the expected system

steady state output Yss predicted by Eqn.5, to deviate

from the expected value.

EMPC further improvises the control action in re-

sponse to deviations by using the concept of iterative

predictive action. In this algorithm, multiple rectan-

gular inputs can be used to achieve zero steady state

error. In each iteration, the rectangular input width is

predicted using Eqn.5 for the new value of D, where de-

mand D is difference between the current steady state

value and the required original demand. The control

action is applied to the system when the system is

at steady state. Due to the use of multiple iterations,

EMPC ensures zero steady state error.

2.1 Stability Analysis

Let G(s) be a system whose constant of proportional-

ity has been estimated to be K = Ksa using a single

input-output mapping. This value of K is used for pre-

diction of rectangular pulse width Ton using Eqn.5 to

achieve the required steady state output determined by

the demand D. Let us assume that the system G(s) un-

dergoes a change resulting in K changing from Ksa to

K
′

sa. Since, EMPC uses Iterative Predictive Action for

control without any adaptation mechanism for changes

in the system, it continues to use K = Ksa in Eqn.5 for

prediction and control and this will result in errors.

Consider that the current system steady state out-

put Yss is zero and the system is given a new reference

value R > 0. Then the demand D = R − Yss = R

can be considered as the error e0 at the end of the 0th

iteration. Then,

e0 = R (6)

The width of the rectangular input is predicted using

Eqn.5 as

Ton1 =
|e0|
K

(7)

Since the current system proportionality constant is

K
′

sa, the steady state output of the system for this input

is given by

Y1 = Ton1K
′

sa = e0
K
′

sa

Ksa
(8)

Then the steady state error at the end of the first iter-

ation is given as

e1 = R− Y1 = e0 − Y1 = e0

(
1− K

′

sa

Ksa

)
(9)

The Iterative Predictive Action considers this error e1
as the new demand in the next iteration and hence re-

sults in two main cases.

Case 1: When K
′

sa < Ksa, e1 > 0 and e1 < e0. Iter-

ative Predictive Action is used to calculate the width of

the rectangular input to be fed in the second iteration
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Fig. 2: Simulated Response of G(s) for K
′

sa < K

to correct the error e1. This value of Ton2 is given by

Eqn.10

Ton2 =
|e1|
K

(10)

This results in

Y2 = Y1 + Ton2K
′

sa (11)

Therefore, steady state error at the end of the second

iteration is given by

e2 = R− Y2 = e0(1− K
′

sa

Ksa
)2 (12)

This results in e2 > 0 and e2 < e1 < e0. This can be

repeated to obtain the steady state error at the end of

the nth iteration as en where,

en = e0(1− K
′

sa

Ksa
)n (13)

In this case, en > ∀n ∈ N and en < en−1. The system

response is similar to that of an over-damped system as

y(t) converges to the required steady state value with

each iteration. Fig.2 shows typical response for K
′

sa = 1

Case 2:- When K
′

sa > K. This results in e1 < 0. In

the next iteration, e1 is the new demand D and since

e1 < 0, a rectangular input of negative amplitude is

applied to the system and the width of the input is

predicted with Eqn.10 resulting in,

Y2 = Y1 − Ton2K
′

sa (14)

The error at the end of the second iteration is given by

Eqn.12, which is same as before. Therefore the nth iter-

ation error for this case is also calculated from Eqn.13.

However, since the sign of en alternates in Case 2, the

magnitude of the steady state error at the end of each

iteration is considered and given by Eqn.15

|en| = e0

∣∣∣∣1− K
′

sa

K

∣∣∣∣n (15)

The requirement to ensure stability with the change

in the system parameters is that the magnitude of the

error given by Eqn.15 should asymptotically go towards

zero. This is possible when,∣∣∣∣1− K
′

sa

K

∣∣∣∣n < 1 => −1 <

(
1− K

′

sa

K

)n
< 1 (16)

Since
K
′
sa

K > 0, it is implied that (1− K
′
sa

K ) 6≥ 1. Hence,

(1− K
′
sa

K ) > −1 is the necessary condition. This can be

simplified to obtain the stability criterion for EMPC for

changes in system parameters in the absence of adap-

tation as shown in Eqn.17

K
′

sa < 2K (17)

K
′

sa < K results in case 1 whose response is seen in

Fig.2. This is a stable scenario with an over-damped

response. K
′

sa < 2K is another stable scenario with an

under-damped response as seen in Fig.3. Although, the

system response oscillates around the required steady

state value, the response slowly converges towards the

required steady state value with each iteration. K
′

sa =

2K results in the boundary condition for the stabil-

ity of EMPC where the system response oscillates with

the magnitude of the error at the end of each itera-

tion remaining constant throughout as seen in Fig.4.

K
′

sa > 2Kresults in instability as seen in Fig.5. The
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Fig. 3: Simulated Response of G(s) for K < K
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sa < 2K
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Fig. 5: Simulated Response of G(s) for K
′

sa > 2K

stability condition of Eqn 17 shows that EMPC is capa-

ble of controlling systems for a large range of Ksa values

using the Iterative Predictive Action control technique.

However, without any adaptation there is a deterio-

ration in the performance as the value of K
′

sa moves

further away from Ksa, with multiple iterations and

possible overshoots and oscillations being part of the

response. Hence, it is necessary for EMPC to adapt to

system parameter changes and improve the overall per-

formance.

EMPC proposes an adaptation technique called On-

Job Relearning (OJR) which improves upon the Itera-

tive Predictive action to overcome these problems [15].

In this algorithm, at the end of an iteration, a ratio

called Parameter Correction Coefficient (PCC) is cal-

culated as shown in Eqn.18.

PCC =
|D|

Yss − Yss0
(18)

where Yss is the current steady state output of the sys-

tem after the predicted rectangular input is applied and

Yss0 is the steady state output value before the appli-

cation of the rectangular input. The Parameter Correc-

tion Coefficient can be used to adapt EMPC to correct

the prediction appropriately for the next iteration. This

is achieved by modifying Eqn.5 which is used to predict

the width of the rectangular input to consist of the PCC

term as given below.

Ton =
|D|
K
PCC (19)

The value of PCC is initially set to 1 and remains un-

changed till EMPC needs to adapt to system changes.

When the system parameters change and this results

in a deviation between expected and obtained steady

state response, PCC is calculated based on Eqn.18 ac-

cordingly. Due to this change in PCC in each iteration

of control action, in some subsequent iteration of input,

the system response will converge towards the demand.

It is seen that when error finally reaches zero at some

iteration, Eqn.18 will revert PCC back to 1. Therefore a

more general form of PCC is proposed given by Eqn.20.

PCCi =
|Di|

Yi − Yi−1
PCCi−1 (20)

Stability of OJR based adaptation using PCC can

be evaluated by modifying the criteria for stability given

by Eqn.17

When K = K
′

sa, the steady state value Y1 is given

by Eqn.8. PCC is calculated using Y1 as

PCC1 =
|D|

Y1 − Y0
PCC0 (21)

where PCC0 = 1, D = R, Y0 = 0. This simplifies as,

PCC1 =
R

Y1
=
TonKsa

TonK
′
sa

=
Ksa

K ′sa
(22)

Eqn.10 is now modified as,

Ton2 =
|e1|
K

PCC1 =
|e1|
K ′sa

(23)

The steady state output obtained at the end of the

second iteration is given by Eqn.24, resulting in e2 = 0.

Y2 = Y1 + Ton2K
′

sa = Y1 + e1 = R (24)

Fig.6, Fig.7, Fig.8, Fig.9 show simulated response

for EMPC with OJR. It can be seen that OJR is ca-

pable of adapting and controlling systems even when

the parameter changes result in a violation of the ear-

lier stability criterion of Eqn.17. Although, significant

overshoot is present in the response of the system in

these cases, the stability of the system is assured.
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Fig. 7: Simulated Response of G(s) for K < K
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sa < 2K
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Fig. 9: Simulated Response of G(s) for K
′

sa > 2K

3 EMPC for the Under-Damped Type 1

System

An under-damped system has at least one complex con-

jugate pole pair. The general form of the under-damped

Type 1 system is described by Eqn.25.

H(s) =
1

s(as2 + bs+ c)
× (s+ z1)(s+ z2)....(s+ zm)

(s+ p1)(s+ p2)....(s+ pn)

(25)

where: (zi, pj) ∈ <, i ∈ [1,m], j ∈ [1, n], m ≤ (n+3) for

a causal system, b2 < 4ac for existence of complex con-

jugate poles and b
2a < pj ∀ j ∈ [1, n] for the conjugate

poles to dominate the system response.

When a rectangular pulse is applied to an under-

damped system, oscillations are caused due to the dom-

inant complex conjugate poles. Hence EMPC proposed

in the previous section is modified to reduce overshoots

and oscillations.

EMPC therefore, proposes a control action c(t) de-

fined by Eqn.26, for the control of a Type 1 under-

damped system [20].

c(t) = Am

[
1−

{(
1− e−α(t−T0)

)
u(t− T0)

}]
u(t) (26)

where, Am is the maximum allowed amplitude, α is a

positive decay constant and T0, analogous to Ton used

for well-damped systems is the time-shift parameter.

The Laplace Transform of c(t) is given in Eqn.27.

C(s) =


Am

[
(1−e−T0s)

s + e−T0s

s+α

]
, T0 ≥ 0

Am

(
eαT0

s+α

)
, T0 < 0

(27)

The output Y (s) of a system H(s), when the control

input C(s) is applied to it is given by Eqn.28.

Y (s) = C(s)H(s) (28)

Assuming zero initial conditions, the steady state value

Yss can be obtained as in Eqn.29, using the final value

theorem.

Yss =


Am

b0
a0

(T0 + 1
α ) T0 ≥ 0

Am
b0
a0

eαT0

α T0 < 0

(29)

where, b0 =
∏m
i=1(−zi) and a0 =

(
c
a

)
×
∏n
i=1(−pi)

Similar to the well-damped system, for a given plant

H(s), a0 and b0 are constant. Am is the maximum am-

plitude of input that can be applied to the system which

is normalized for further analysis. Eqn.29 can be sim-

plified as,

Yss =


Ksa(T0 + 1

α ) T0 ≥ 0

Ksa
eαT0

α T0 < 0

(30)

Varying T0 while keeping α constant results in the

control input waveforms being shifted in time as shown

in Fig.10. The dotted lines represent the truncated por-

tion of the exponential decay for T0 < 0. The result of

the control action on an under-damped system is shown

in Fig.11.

3.1 Choosing the Decay Constant α

In any system, the real part of the dominant pole de-

termines the time constant of the system. The time

constant of the under-damped system in Eqn.25 is 2a
b .

It can be seen that for α < b
2a , the system shows no

overshoot, as shown in Fig.12. It may also be observed

that the system rise time increases for smaller values

of α [20] [21]. For the learning phase, a value of α is

chosen which satisfies the condition mentioned, and for

which the system meets the rise time requirements.
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Fig. 12: Responses of System H(s)= 17
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to First Or-

der Decay Inputs [T0 = 0] of various α

3.2 Control Action

For a given demand, the control action parameter T0 is

determined by modiyfing Eqn.30 to Eqn.31.

T0 =


D
Ksa
− 1

α D ≥
Ksa
α

ln αD
Ksa

α D ≤ Ksa
α

(31)

α is fixed according to the conditions mentioned in

Sec.3.1. From Eqn.29, it is understood that for constant

Am, b0, a0 and α, the steady state position value Yss is

dependent only on T0.

It can be seen in Eqn.29, that for T0 ≥ 0, Yss has

a linear relationship with T0, but for T0 < 0, Yss varies

non-linearly with respect to T0.

3.3 Stability Analysis

For a given demand R, error e0 is given by Eqn.15. The

control action parameter T01 is calculated from Eqn.31.

If the system proportionality constant changes to K
′

sa,

the steady state output of the system can be either of

two cases as in Eqn.32, depending on the conditions

of Eqn.31. Iterative predictive action is used here as

well in cases of external disturbance or plant parameter

changes.

Yss =


K
′

sa(T0 + 1
α ) T0 ≥ 0

K
′

sa
eαT0

α T0 < 0

(32)

Substituting Eqn.31 in Eqn.32 results in the earlier

equation of Y1 given by Eqn.8. Therefore, the stability

criteria for the under-damped case will be the same as

that of the well-damped case given by Eqn.17.

Fig.13, Fig.14, Fig.15, Fig.16 show simulated re-

sponse for EMPC applied to the under-damped system

H(s) without adaptation.
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Fig. 13: Simulated Response of H(s) for K < K
′

sa < 2K
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Fig. 14: Simulated Response of H(s) for K < K
′

sa < 2K

Similar to the case of well-damped system, EMPC

proposes OJR for the case of under-damped system as

well by using the parameter correction co-efficient(PCC)
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Fig. 15: Simulated Response of H(s) for K
′

sa = 2K
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Fig. 16: Simulated Response of H(s) for K
′

sa > 2K

shown in Eqn.33.

T0 =


|D|
K PCC − 1

α
|D|
Ksa

PCC ≥ 1
α

ln
(
α|D|
Ksa

PCC
)

α
|D|
Ksa

PCC < 1
α

(33)

Fig.17, Fig.18, Fig.19, Fig.20 show simulated re-

sponse for EMPC applied to the under-damped sys-

tem H(s) = 17
s(s2+2s+17) with adaptation. EMPC with

OJR converges to zero steady state even in the case

of K > 2Ksa which surmounts the earlier set stability

criterion and stability of the system is assured.
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Fig. 17: Simulated Response with OJR for H(s) for K <
K
′

sa < 2K

In both the well-damped and the under-damped

case, EMPC with OJR results in a stable response to

a given system. The results presented in this section
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Fig. 18: Simulated Response with OJR for H(s) for K <
K
′

sa < 2K
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Fig. 19: Simulated Response with OJR for H(s) for K
′

sa =
2K
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Fig. 20: Simulated Response with OJR for H(s) for K
′

sa >
2K

have demonstrated that for change in system parame-

ters EMPC with OJR is able to adapt. Since the adap-

tation occurs only in steady state, it is assumed that

the system parameters do not change during the ap-

plication of the control action. In the event of system

parameter changes during the application of control ac-

tion, EMPC with OJR will consider the average effect

of these changes since it only records the final steady

state value to calculate PCC. Hence EMPC might re-

quire more than 1 iteration to settle to zero steady state

error.

4 Comparision of EMPC and PD for stability

The PD controller is a closed loop error based classical

controller that uses fixed gains on the error to give the
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control action. Typical PD transfer function is of the

form,

P =
Kp + sKd

s+ β
(34)

Where Kp is the proportional constant and Kd is the

differential constant. β is a far away pole to account

for the causality of the controller and to attenuate high

frequency noise from the feedback sensor.

For the well damped system defined by G(s), the

poles are all on the real axis and on the left hand of

the s-domain. The PD gains Kp,Kd ∈ < can be chosen

such that the system response is stable. But changes

in a well-damped plant may result in the PD controller

becoming unstable. Since PD is not an adaptive con-

troller, it is not expected to perform optimally for a

plant parameter change.

To illustrate the strength of the stability of the con-

troller, a 4 pole system is considered for simulation as

shown in Eqn.35.

G(s) =
1000

s(s2 + 60s+ 500)(s2 + 60s+ 500)
(35)

PD controller is critically tuned to get the best possible

well damped response. The tuning is done to achieve

least steady state error and minimum rise time for a

given step input. and EMPC is also made to learn for

this system and during the learning phase, the value of

Ksa is determined to be 4. The first 40 seconds of Fig.21

shows that both PD and EMPC perform optimally to

give the best response. At the end of the 40th second,

the system is changed to Eqn.36.

G1(s) =
1000

s(s2 + 30s+ 200)(s2 + 30s+ 200)
(36)

which is a fairly big change. For this, PD fails to con-

verge and goes into sustained oscillations as shown in

Fig.21. Due to OJR, EMPC is able to adapt by using

PCC and determining the new K
′

sa and is able to con-

verge as shown in the figure. Thus EMPC with OJR is

stable even in regions considered unstable for a tradi-

tional closed loop well damped stable system. Consider

the case of G
′
(s) to have a right hand plane zero as

in the case of a non-minimum phase system, given by

Eqn.37.

G
′
(s) =

0.5(0.2− s)
s(s2 + 2s+ 1)

(37)

Fig.22 shows comparison of system responses to PD

and EMPC when the system contains a RHP zero. PD

controller is tuned to get the best response for system

G
′
(s). EMPC in the first iteration gives the input as

learnt for the minimum phase system. At the end of
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Fig. 21: Comparison of EMPC and PD for G(s) =
1000
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Fig. 23: Comparison of EMPC and PD for G
′

1(s) =
0.5(0.4−s)
s(s2+2s+1)

the first iteration, the parameter correction co-efficient

is calculated from Eqn.18. Adaptation due to OJR gives

the correct input in the second iteration to reach steady

error of zero. Fig.22 shows EMPC settles to the refer-

ence with zero steady state error in two iterations. For

the next set of references, since EMPC has adapted

well, it performs as good as a very well tuned PD in

terms of rise time and initial overshoot. Fig.23 com-

pares PD and EMPC for change in system parameter

K = 2Ksa. It can be seen from the figure that initially

both well tuned PD and EMPC with initial learning

give the best comparable response. At t = 100s, sys-

tem parameter K is changed to twice its original value.

Since PD is not an adaptive controller, it results in over-

shoots. On the other hand, EMPC in the first iteration
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overshoots since adaptation due to OJR occurs only at

steady state. Once adapted, in the next and subsequent

iterations, it is seen that EMPC controller results in op-

timal response for the changed system.

Consider an under-damped system defined by Eqn.38

H(s) =
17

s(s2 + 2s+ 17)
(38)

consisting of at least two open-loop poles in the S do-

main and these two poles being dominant poles in the

system response. From the root locus analysis, it is seen

that the gain for the PD system has to be small < 2.

Fig.24 shows the comparison of EMPC and PD for the

system H(s). For higher gain, the system response will
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Fig. 24: Comparison of EMPC and PD for under-damped
system H(s) = 17

s(s2+2s+17)

be unstable. Also, any change in the plant parameter

will affect the system response significantly especially if

the conjugate poles move more closer to the imaginary

axis.

Fig.25 shows the comparison of system response for

H
′
(s) = 17

s(s2+0.5s+16.0625) to EMPC and PD. It can

be seen that PD is tending towards instability whereas

EMPC using OJR has brought the system to zero steady

state.
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Fig. 25: Comparison of EMPC and PD for under-damped
system H
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(s) = 17

s(s2+0.5s+16.0625)

Fig. 26: Model of a DC Motor Position System coupled to a
Load with a Flexible Shaft

5 Control of a flexible shaft coupled to a DC

motor based positioning System

A DC motor based positioning system with the load

coupled through a flexible shaft, is a Type 1 system with

complex conjugate poles. The mathematical model of

this system is represented in Fig.26. The typical transfer

function for such a system is given by,

P (s) =
KsKm

s
[
(Rm + sLm)(sJl +Bl)(s

2Jm + sBm +Ks)

+KsK
2
m + sK2

m(sJl +Bl)
+Ks(Rm + sLm)(sJm +Bm)

]
(39)

where: Ks is spring constant of the shaft coupling, Km

is the motor torque constant, Rm is the armature re-

sistance, Lm is the armature inductance, Jl is the load

inertia, Bl is the viscous friction at the load, Jm is the

motor inertia and Bm is the viscous friction at the mo-

tor shaft.

It can be seen from Eqn.39 that the system has five

poles. The system, belonging to Type 1 family, has a

pole at the origin. The electrical pole is located to the

far left on the s-plane. The complex conjugate poles are

contributed by the spring - inertia combination. The
system is chosen such that the pole due to the motor

mechanical time constant is faster in comparison to the

complex conjugate poles, allowing the complex poles

to dominate the system response. This system can be

approximated to a second order Type 1 under-damped

system.

5.1 Comparison of efficiency of different controllers

EMPC proposes two distinct control actions based on

whether the system is well-damped or under-damped.

Therefore we compare the two cases where the spring

constant Ks >> 1000mNm/rad (well-damped) and

Ks << 100mNm/rad (under-damped)

5.1.1 Well-damped system

Table1 is a typical well-damped setup. Since the spring

constant is very high, there is stiff coupling between
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Parameter Value Unit
Rm 2 Ω
Lm 2 mH
Jm 20 × 10−7 Kgm2

Bm 10−4 Nm/(rad/s)
Jl 20 × 10−7 Kgm2

Bl 10−4 rad/s
Ks 2000 mNm/rad
Km 20 mNm/A

Table 1: System Specifications used for the Simulink Model

motor and load .Therefore Eqn.39 can be approximated

to a Type-1 second order system defined by Eqn.40

P (s) =
Km

s
[
(Rm + sLm)(s(Jl + Jm) + (Bl +Bm))

] (40)

For the specifications mentioned in Table1, the poles

of the system will lie at −1000,−25. Fig.27compares

the responses of a PD controller tuned for a critically

damped response with that of EMPC. The tuning is

done to achieve least steady state error and minimum

rise time for a given step input. The input to the sys-

tem shown in the subplot is normalised for easy rep-

resentation. Substituting the specification values of the

system into Eqn.40, it can be seen that Ksa = 4. There-

fore EMPC calculates a control action pulse width of

duration 0.25. From the system response it is seen that

PD has a marginally lesser rise time than EMPC. The

second subplot showing the control action input to the

system clearly indicates that PD controller applies more

input than EMPC to give the same response. To bet-

ter understand the energy exchange, the third subplot

shows the I2R energy losses in the armature resistor

due to application of control input. PD controller ap-

plies a brake by giving negative voltage input. this will

result in more I2R losses in the system. Hence EMPC

is more efficient than PD.

In Fig.27, the rise time of EMPC is more than that

of PD. In [16], EMPC proposes another control action

termed bipolar action. Here, during the learning phase,

EMPC applies a pulse width of fixed duration followed

by another pulse width in the negative direction until

the motor stops moving. This effect of ”braking” the

system allows EMPC to give a longer pulse width to

reach the demand faster than the unipolar case. The ef-

fective change for the given setup can be seen in Fig.28.

The second subplot of the figure shows the zoomed in

view of the first subplot and it is seen that EMPC in

bipolar mode has a rise time which is almost the same

as that of critically damped response due to PD con-

troller. Also, since EMPC now gives a negative voltage

as well, the overall energy dissipation across the arma-

ture resistor has increased and almost the same as that

of PD controller.
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Fig. 27: Comparison of EMPC and PD for well-damped po-
sition control of motor
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damped position control of motor
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Fig. 29: Comparison of EMPC and PD for well-damped po-
sition control of motor for large inertia system J

′

l = Jl ∗ 10

Fig.29 shows the comparison of PD and EMPC con-

troller responses for a large inertia system where J
′

l =

Jl ∗10. Here, PD controller is retuned to get the critical

damped response for the new system. Though the PD

input changes significantly, the unipolar EMPC control

action remains the same. This is because the system

proportionality constant Ksa remains the same. Thus,

with the same EMPC control action as before, the sys-

tem is able to reach the required demand but at a much

slower rate since the inertia dominates the response and

the pole is now ten times nearer to the origin. On the

other hand, bipolar mode of EMPC require relearn-

ing.Fig.29 shows that bipolar mode response is faster

than PD since EMPC now has a larger control over

the braking period. As expected, the energy losses in

the armature resistance now reflect these input changes.

EMPC in unipolar is the most efficient use of input en-
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ergy though it has a larger rise time. PD comes second

and EMPC in bipolar mode dissipates largest energy

due to the initial high pumping of energy into the iner-

tia and later applying a large brake to get the best rise

time.

Fig.30 shows comparison of system response of EMPC

and MRAC controllers applied to the same system whose

specifications are mentioned in Table1 both of which

have been previously put through their respective learn-

ing phases and adapted to get the best response. The

MRAC model and tuning were presented earlier in [15]

[14] and the same has been used here for comparison

with EMPC. It can be seen that system response due

to MRAC has a higher rise time than EMPC. Also, the

energy losses in the armature resistor of EMPC and

MRAC are in a comparable range. The higher dissi-

pation by EMPC controller can be attributed to more

energy input provided to the system to improve the rise

time.
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Fig. 30: Comparison of EMPC and MRAC for well-damped
position control of motor

Fig.31 compares the system response of EMPC and
MRAC controllers applied to a modified system where

J
′

l = Jl ∗10. MRAC now has better rise time compared

to unipolar EMPC control but still lesser than EMPC

in bipolar mode. The energy dissipated by MRAC con-

troller in the armature resistor is greater than EMPC in

unipolar mode but lesser than EMPC in bipolar mode.

EMPC therefore provides a way to compromise on ei-

ther a good rise time by using Bipolar control action

or a energy efficient input by using an Unipolar control

action.

5.1.2 Under-damped system

For the under-damped system we consider Eqn.39. The

various parameters are as per Table2. EMPC for the

under-damped system proposes a first order decaying

input to be the control action to the system [20]. The

parameters for control have been discussed in [20] and

for the system simulated here, the parameters are learnt

based on previous literature.
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Fig. 31: Comparison of EMPC and MRAC for well-damped
position control of motor for large inertia system J

′

l = Jl ∗ 10

Parameter Value Unit
Rm 3 Ω
Lm 3 mH
Jm 1 × 10−7 Kgm2

Bm 10−3 Nm/(rad/s)
Jl 200 × 10−7 Kgm2

Bl 10−4 rad/s
Ks 20 mNm/rad
Km 20 mNm/A

Table 2: Under damped system specifications used for the
Simulink Model

It is seen from Fig.32 and Fig.33, that tuning PD for

an open loop under-damped system is difficult to get a

critical damping in the system response. Especially the

final tuning is very sensitive to change in system pa-

rameters and can lead to unstable outputs if not tuned

well. Figures shows that EMPC for under-damped sys-

tem gives a smooth response unlike that of PD. Though

the subplots indicating the energy dissipated in the ar-

mature resistors show that the efficiency is the same,

PD controller can cause more transient noise and high

frequency noises maybe introduced into the driver cir-

cuit unlike EMPC which gives a smooth decaying input.

Hence EMPC would give a better motor driver perfor-

mance compared to that of PD controller.
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Fig. 32: Comparison of EMPC and PD for under-damped
position control of motor

Fig.34 and Fig.35 compare the MRAC and EMPC

for the same under-damped system. When the load in-

ertia is very low as mentioned in Table2, MRAC gives
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Fig. 33: Comparison of EMPC and PD for under-damped
position control of motor for large inertia system J

′

l = Jl ∗ 10
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Fig. 34: Comparison of EMPC and MRAC for under-damped
position control of motor
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Fig. 35: Comparison of EMPC and MRAC for under-damped
position control of motor for large inertia system J

′

l = Jl ∗ 10

a good control action which results in a steady state

response which has a smooth rise shown in Fig.34. But

the rise time of the system due to MRAC is higher

than that of EMPC. Since MRAC does not give any

sudden changes in input voltage, it performs almost as

efficiently as EMPC for this system.

In Fig.35, it can be seen that MRAC is unable to

give an optimal input to the system even after suffi-

cient iterations of learning. Further, the input given is

chopping in nature and causes heavy losses in both ar-

mature resistance as well as the inductive losses in the

coil.

Fig.36 and Fig.37 compares Linear Quadratic Gaus-

sian(LQG) controller with EMPC. The LQG controller

consists of a Linear Quadratic Regulator(LQR) con-

troller along with a state estimator to predict required
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Fig. 36: Comparison of EMPC and LQG for under-damped
position control of motor

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ad

ia
ns

0

0.5

1
LQG response
EMPC Response
Demand

Time(s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
ol

ta
ge

-1

0

1 LQG Input
EMPC Input

Time(s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
ne

rg
y 

D
is

si
pa

te
d 

(J
ou

le
s)

0

0.05

0.1 LQG
EMPC

Fig. 37: Comparison of EMPC and LQG for under-damped
position control of motor for large inertia system J

′

l = Jl ∗ 10

states from one measured state. The LQR controller

was constructed based on the model from [15] and mo-

tor values changed to reflect the specifications in Ta-

ble1.The matrices Q and R were tuned manually to get

the best possible response. EMPC has better perfor-

mance than LQG in terms of the rise time. The energy

dissipated also matches closely with that of LQG.

6 Control of a Non-Linear system DC motor

based positioning System

Fig. 38: Simulation model of a load coupled to a motor
through a flexible shaft

Fig.38 shows a simulation model on SIMULINK of

practical non-linear setup consisting of a load coupled

to a motor through a flexible shaft. The model consists

of a rotational spring placed in between the motor and
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Parameter Value Unit
RFrictionM −Dry 10 mNm
RFrictionL−Dry 2 mNm

RFrictionM − V iscous 1e− 03 mNm
RFrictionL− V iscous 1e− 04 mNm

Table 3: Friction specifications used for the Simulink Model

an inertial element. Rotational elements RFrictionM

and RFrictionL consisting of a dry friction component

and a viscous friction component are placed on either

side of the rotational spring to create an under-damped

response. The values chosen for the simulation model

are shown in Table2. The additional frictions added

have values shown in Table3.

6.1 Design of EMPC

For practical systems which are based on the trans-

fer function model shown in Eqn.39, [15] [20] [16] show

that system constant of proportionality Ksa varies with

demand and control action parameter T0. The non-

constant value of Ksa can be attributed to the non-

linearities present in practical systems like dry friction

and stiction.

Therefore, EMPC proposes the use of an Experience

Mapped Knowledge(EMK) which is a one to one map-

ping of the control action to the final steady state value

achieved due to the corresponding control action. In the

learning phase, the EMK is populated by applying dif-

ferent input values of T0 to the system and recording

the final steady state value reach by the system. Af-

ter learning is completed, during the application of the

control action when a demand is given, EMPC will re-

fer to the EMK and interpolate the required value of T0
for the given demand. This method of using an EMK

for a practical system has been shown to be robust for

different demands and also shown to adapt to changes

in system parameter [15] [20] [16].

6.2 Comparison of efficiency of different controllers

6.2.1 Well-damped system

For the well-damped case, the spring constant value of

the rotation spring was made 3000mNm/rad to make

it stiff.

Fig.39 shows the comparison of a critically tuned

PD controller with EMPC. Like in the ideal case pre-

sented in Sec.5, performance in terms of rise time and

settling time of EMPC matches that of PD. But due

to the now introduced non-linearities, the energy dissi-

pated in the motor is higher in the case of PD due to
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Fig. 39: Comparison of EMPC and PD for well-damped po-
sition control of a practical motor system

the effect of Derivative part of the controller. The third

subplot shows the difference in energy dissipated to be

about 20% that of EMPC. Therfore, EMPC is shown

to give the best possible input to have the least energy

loss.
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Fig. 40: Comparison of EMPC and MRAC for well-damped
position control of a practical motor system

Fig.40 shows the comparison of MRAC controller

with EMPC. The reference signal to MRAC was deter-

mined intuitively to give the fastest possible rise time

and a low value of learning rate (γ < 0.01) was used

to let the controller adapt itself to give the best pos-

sible input for a given demand. Similar to that of PD,

EMPC matches the performance of MRAC. Unlike the

Derivative part of PD controller, MRAC continously

adapts with a fixed learning rate and hence does not

cause a chopping effect in the input. Therefore, the en-

ergy dissipation is lesser but still significantly higher

than EMPC (about 10%) due to negative input given

to brake the system.

Fig.41 shows the comparison of Linear Quadratic

Gaussian(LQG) controller with EMPC. From the re-

sults, it is seen that EMPC also closely matches the re-

sponse of LQG controller. LQG controller like MRAC

also applies a negative voltage to bring the motor sys-

tem to a halt and hence dissipates more energy. Thus

EMPC proves to be better in terms of energy usage.
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Fig. 41: Comparison of EMPC and LQG for well-damped
position control of a practical motor system

It should also be noted that in the case of all these

controllers, the input is not terminated once steady

state is reached. This is due to the presence of static(dry)

friction which cannot be overcome with a small input.

On the other hand, EMPC terminates the input once

a pulse width of T0 as calculated from the EMK is ap-

plied. Though in the case of the other controllers, a

simple threshold based switch can be introduced to ter-

minate the input, in its native form, the controllers tend

to waste a lot of energy due to their control action. In

practical systems, this would lead to highly in-efficient

usage of power. This issues is clearly resolved in EMPC

in its basic algorithm where the input is terminated

when the steady state error is within a suitable thresh-

old.

6.2.2 Under-damped system

For the under-damped case, the spring constant value

of the rotation spring was made 20mNm/rad to make

it flexible. Fig.42 shows the comparison of a PD con-
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Fig. 42: Comparison of EMPC and PD for under-damped
position control of a practical motor system

troller with EMPC. Due to the non-linearities, it is very

difficult to tune a PD controller for an under-damped

system. The tuning is done to achieve least steady state

error, minimum overshoots and minimum rise time for

a given step input. The response from a PD controller
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Fig. 43: Comparison of EMPC and MRAC for under-damped
position control of a practical motor system

tends to be marginally stable in most cases. The energy

dissipated in the motor therefore is extremely high in

the case of PD. The difference in energy dissipated to

be more than twice that of EMPC. This will further

become worse for PD controller if system parameters

like load inertia is changed during operation.

Fig.43 shows the comparison of MRAC controller

with EMPC. The reference signal to MRAC was cho-

sen to have a slower rise time since MRAC is preferred

to be used only on a well-damped linear system. A very

low value of learning rate (γ < 0.0001) was used to let

the controller adapt itself to give the best possible input

for a given demand. MRAC performs better than PD

controller due to its learning capability. But due to the

conjugate poles of the under-damped system being trig-

gered, MRAC tends to have spikes in its input caused

by oscillations in the speed. Therefore, the energy dissi-

pation is significantly higher than EMPC (about 20%)

due to spikes in the input.
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Fig. 44: Comparison of EMPC and LQG for under-damped
position control of a practical motor system

Fig.44 shows the comparison of LQG controller with

EMPC. From the results, it is seen that LQG controller

performs much better than MRAC and PD. In the case

of the under-damped system, LQG controller ends up

applying an agressive control action causing spikes in

the input to the motor. EMPC on the other hand pro-
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vides a smooth control action and hence proves to be

better in terms of energy usage.

In the case of the under-damped system, another

key area of efficiency comes from reducing switching

losses. It is clearly seen that MRAC,PD and LQG con-

trollers input a high switching control action. EMPC

gives a very smooth input and therefore has a very low

switching losses. This further increases the life of the

motor and driver system in a practical setup.

7 Computational cost of controllers

Modern controllers operate in the digital domain to

benefit by the advancements in micro-controller tech-

nology. Computational cost depends on the number of

mathematical operations to be performed and hence the

overall computation time taken to implement a control

algorithm becomes very important in effective control

of a system. Based on the system time constant, the

sampling duration is fixed and the entire control al-

gorithm should be executed within one sample dura-

tion for proper control action. Therefore selection of a

micro-controller for a given algorithm becomes critical,

which is decided based on the number of floating oper-

ations, multiplications, divisions, matrix operations re-

quired for the given algorithm. Higher the computation

requirements, higher will be the cost of the controllers

to be used. Following paragraphs try to assess the com-

putational requirements of various control algorithms

considered in the paper.

Till recently, the most widely used controller in the

digital domain is the PID controller due to its ease of

implementation. The PID controller requires just about

3 multiplications( One each for Proportional, Deriva-

tive, Integral). A final summation gives the control ac-

tion to be implemented. In the category of adaptive

controller, MRAC ,LQG and EMPC can be compared

to PID in terms of computations.

In the case of MRAC and LQG, both use matrix

multiplications.The order of the matrix is depends on

the number of poles and zeros in the system. For a

higher order system, there maybe a requirement of a

Digital Signal Processor(DSP) to compute inverses of

these matrices. For a typical 2nd order Type-1 system

like that of a position control of DC motor, though a

DSP is not required, the calculation of positive definite

matrices for MRAC or the LQR gain in LQG still re-

quire more than 20-30 multiplications. Also, the time

taken for computing inverse of a matrix is fairly large

compared to just multiplication of two matrices. There

is also a requirement to store intermediate results in the

RAM of the controller and this has to happen at a fast

rate.

In EMPC, the computational process can be seen

majorly in two phases.

The learning phase involves application of input with

one parameter varying (T0) in incremental steps. The

system waits for steady state output. The system is ac-

tually idle until this point and will consume the least

power. Once steady state is reached, the value is di-

rectly stored in the ROM (such as EEPROM,FLASH)

of the micro-controller along with the input parameter

value for that iteration. The final length of this EMK

stored in the memory depends on the resolution and

operational range of the system. [14] explains the map-

ping of position and input parameter T0 to be linear for

a major region and hence the points stored in the EMK

for this region can be far apart and less in number. The

required value during application for given demand is

interpolated between the points in the EMK that it lies.

The interpolation is a simple operation of taking the

slope and calculating the required input parameter to

be given to the system. A typical memory location re-

quired for storing one iteration of input in the learning

phase would be 2 bytes each for the input and output.

A memory of 1Kb would give atleast 500 points. A typ-

ical general purpose micro-controller usually ships with

an inbuilt user memory of 1MB which is far more than

necessary for EMPC.

In the application phase, for the given demand, EMPC

interpolates from the EMK with two math operations

consisting of multiplication and division and applies the

control action and waits for the system to settle. In the

case of OJR, at the end of an iteration, another multi-

plication is performed to get PCC which is applied in

subsequent iterations. In the case of the under-damped

system, a third multiplication occurs during the appli-

cation of control action to calculate the first order decay

input [20].

Thus EMPC requires as much computational power

as that of a PD controller and a small memory unit

to house the EMK. A simple 16 bit general purpose

micro-controller capable of doing basic math operations

is sufficient specification for a EMPC based controller.

8 Conclusion

A stability criterion for Experience Mapping based Pre-

dictive Controller (EMPC) applied to a Type 1 sys-

tem was derived. The stability criterion developed was

tested for both the well damped Type 1 systems and

under-damped Type 1 systems. EMPC with OJR was

shown to assure stability beyond this criteria. The simu-

lation results of EMPC for DC motor based positioning

system with a load coupled through a flexible shaft are
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presented as a case study prove stability even for sys-

tem parameter changes. The efficiency of EMPC on a

practical system was analysed in terms of energy dissi-

pated in the armature resistance of the motor. In prac-

tical cases, EMPC was proven to be the best among

PD,MRAC and State Space based controllers like the

LQR and LQG controllesr. EMPC was also proven to

require least computational power and memory require-

ments compared to other controllers, especially those

that use matrix based equations.

References

1. Guo-Qiang Wu, Shu-Nan Wu, Yu-Guang Bai, Lei Liu,
Experimental Studies on Model Reference Adaptive Con-
trol with Integral Action Employing a Rotary Encoder and
Tachometer Sensors, Sensors, 13, 4742-4759, (2013)

2. Bature AA and Mustapha Muhammad, Auwalu M Ab-
dullahi, Position Control of a DC Motor: An experimental
comparative assesment between fuzzy and state feedback
controller, ARPN Journal of Engineering and Applied Sci-
ences, 8, 984–987, (2013)

3. Sahin M, Bulbul H, Colak I, Position control of a dc motor
used in solar panels with artificial neural network, 2012 11th
International Conference on Machine Learning and Appli-
cations (ICMLA), 2, 487-492, (2012)

4. Bosdan M and Sastry S, Adaptive control stability , con-
vergence and robustness

5. Ho-Cheol Shin, Seung-Bok Choi, Position control of a two-
link flexible manipulator featuring piezoelectric actuators
and sensors, Mechatronics, 707 - 729, (2011)

6. Liu YE, Skormin VA, Liu Z, Experimental comparison on
adaptive control schemes, Proceedings of the 27th IEEE
Conference on Decision and Control, (2002)

7. Ruderman M, Krettek J, Hoffmann F, Bertram T, Opti-
mal State Space Control of DC Motor, Proceedings of the
17th World Congress The International Federation of Au-
tomatic Control, 5796-5801,(2008)

8. Gwo-Ruey Yu, Rey-Chue Hwang, Optimal PID Speed
Control of Brushless DC Motors Using LQR Approach,
Systems, Man and Cybernetics, 2004 IEEE International
Conference, 1, 473–478, (2004)

9. Wan Syahidah and Rosli O and Joraimee MA and Norhi-
dayah A, Linear Quadratic Gaussian (LQG) Controller De-
sign for Servo Motor, Australian Journal of Basic and Ap-
plied Sciences, 8, 700–713, (2014)

10. Tetsuta Iwasaki, Teruo Kataoka, Application of an ex-
tended kalman filter to parameter identification of an induc-
tion motor, Industry Applications Society Annual Meeting,
1989., Conference Record of the 1989 IEEE, 248-253, (1989)

11. Aravind MA, Niranjan Saikumar, Dinesh NS, Optimal
position control of a DC motor using LQG with EKF, 2017
International Conference on Mechanical, System and Con-
trol Engineering (ICMSC), (2017)

12. Chen CL, Feng G, Guan XP, Delay-Dependent Stability
Analysis and Controller Synthesis for Discrete-Time Fuzzy
Systems With Time Delays, IEEE Transactions on Fuzzy
Systems , 13 5 630-643, 2005

13. Qing-LongHan, Improved stability criteria and controller
design for linear neutral systems, Automatica, 45

14. Niranjan Saikumar, Dinesh NS, Position control of DC
motors with Experience Mapping based Prediction Con-
troller, IECON, 2394 - 2399, (2012)

15. Niranjan Saikumar, Dinesh NS, A study of Experience
Mapping based Prediction Controller for position control
of DC motors with inertial and friction load changes, 7th
IEEE International Conference on Industrial and Informa-
tion Systems, (2012)

16. Niranjan Saikumar, Dinesh NS, A study of bipolar con-
trol action with EMPC for the position control of DC mo-
tors, International Journal of Dynamics and Control, (2014)

17. Niranjan Saikumar, Dinesh NS, Pradyumna Kammardi,
Experience mapping based prediction controller for the
smooth trajectory tracking of DC motors, International
Journal of Dynamics and Control, (2015)

18. Raghu CV, Dinesh NS, DC Motor speed control using
Experience Mapping based Prediction Controller (EMPC),
3rd International Conference on Control, Automation and
Robotics (ICCAR), (2017)

19. Raghu CV, Dinesh NS, EMPC for DC motor based track-
ing applications, IEEE 3rd International Symposium in
Robotics and Manufacturing Automation (ROMA), (2017)

20. Aravind MA, Dinesh NS,Rajanna K , Application of
EMPC for under-damped Type-1 systems, 3rd Interna-
tional Conference on Control, Automation and Robotics
(ICCAR), (2017)

21. Aravind MA,Dinesh NS, Rajanna K, Adaptive experi-
ence mapping based predictive controller for under-damped
type 1 systems, International Journal of Dynamics and
Control (2018), Springer Berlin Heidelberg, (2018)

22. Randall Flanagan J, Philipp Vetter, Roland S Johansson,
Daniel M Wolpert, Prediction Precedes Control in Motor
Learning, Current Biology, 13, 146-150, (2003)

23. Ungerleider L, Doyon J, and Karni A, Imaging brain plas-
ticity during motor skill learning, Neurobiol Learn Mem, 78,
553–564, Nov 2002.

24. Brashers-Krug T, Shadmehr R, Bizzi E, Consolidation in
human motor memory, Nature, 382, 252255, (1996)

25. Shadmehr R, Holcomb HH, Neural correlates of motor
memory consolidation, Science, 277, 821825, (1997)


	Introduction
	EMPC for the Well-Damped Type 1 System
	EMPC for the Under-Damped Type 1 System
	Comparision of EMPC and PD for stability
	Control of a flexible shaft coupled to a DC motor based positioning System
	Control of a Non-Linear system DC motor based positioning System
	Computational cost of controllers
	Conclusion

